
Computer-Aided Engineering Tools for

Spacecraft Multi-Microprocessor Design

EXECUTIVE SUMMARY

, 	91
: C655

C6662

\,N1982

Computer-Aided Engineering Tools for

Spacecraft Multi-Microprocessor Design

EXECUTIVE SUMMARY

Industry Canada
Library Queen

e= 2 0 1998

Biblioth eào e Queen

lndustrie Canada

May 1982

F

Authors: Dr. S.A. Mahmoud

Dr. C. Laferriere

Mr. J.G. Ouimet

Mr. W.T. Brown

Approved by: Dr. S.A. Mahmoud

I CriZiiiiii'iCATIO`à,S CAilAlill ,--

-..,..„
F Ê ° ,-.1b4384

,

ifi3RARY — BIR1911E1Jf
-

I of Canada
	Gouvernementuoudianerlment

Department of COrnm. unications

DOC CONTRACTOR REPORT 	 DOC-CR-SP -82-043

DEPARTMENT OF COMMUNICATIONS - OTTAWA - CANADA

SPACE PROGRAM

TITLE: Computer-Aided Engineering Tools For Spacecraft
1.2

Multi-Microprocessor Design -/txecutive Summary)

AUTHOR(S): S.A. Mahmoud

C. Laferriere

J. Ouimet

W. Brown

.ISSUED BY CONTRACTOR AS REPORT NO: None

PREPARED BY: Intellitech Canada Ltd.

352 MacLaren St.

Ottawa, Ontario -

K2P 0M6

DEPARTMENT OF SUPPLY AND SERVICES CONTRACT NO: 3ER.36100-1-0273

SN: OER81-03151

DOC,SCIENTIFIC AUTHORITY:R.A. Millar

CLASSIFICATION: Unclassified

This report presents the views of the author(s). Publication
of this report does not constitute DOC approval of the reports
findings or conclusions. This report is available outside the
department by special arrangement.

DATE: May 1982

Preface

This work was performed for the Department of Communications,

Communications Research Centre under DSS Contract No. OER81-03151,

entitled "Computer-Aided Engineering Tools for Spacecraft Multi-

Microprocessor Design", from September 15, 1981 to March 31, 1982. This

report is one of the following four contract deliverables:

1. Executive Summary

2. Report #1 - Review of Multiprocessor Systems and their

Spacecraft Applications.

3. Report #2 - A Survey of Computer-aided Engineering

(CAE) Tools for the Design and Simulation

of Multiprocessor Systems.

4. Report #3 - The Definition and Specification of an

Integrated Set of CAE Tools for Spacecraft

Multiprocessor System Design.

- i-

II

Acknowledgement

The study team gratefully acknowledges the technical guidance of

Mr. R.A.. Millar of the Communications Research Centre. His knowledge

and experience in the field of computer simulation of spacecraft systems

have contributed to the quality of the work and provided a constant

source of encouragement to the study team.

As well, the study team wishes to thank Mr. J.M. Savoie, also from

CRC, for his fruitful discussions and critical reviews.

- ii -

[,

•

EXECUTIVE SUMMARY

1.0 Introduction

Interest in multiprocessor and distributed intelligence

computer systems have increased substantially in recent years.

This interest has been fostered by the availability of micro-

processors with ever increasing performance-price ratios and the

expected emergence of monolithic systems with still higher

capabilities in the near future.

Advances in LSI and VLSI semi-conductor technology have

significantly reduced computer hardware weight, power consumption

and cost. It is now feasible and practical to employ

multiprocessor systems on spacecraft in order to increase the

reliability, extend mission duration and satisfy increasingly more

computational demand during the mission.

The development of multiprocessor and distributed intelligence

computer systems and their utilization in various applications have

been impeded by the lack of an appropriate theoretical base. The

control of systems containing large

well understood. While considerable

develop a theoretical base, it seems

of processors is not

work has been done recently to

unlikely that this work will

number

have significant impact on practical system design in the near

future. The difficulties encountered in developing a theoretical

base are attributed to the large number of interrelated design

variables and decisions, many of which depend on rapidly advancing

hardware and software technologies.

Practical design methodologies of multiprocessors can be

facilitated and enhanced by the availability of computer-assisted

engineering (CAE) tools. Such CAE tools support the skill level of

the designer, provide insight into the attributes of alternative

architectures, allow evaluation of the performance of these

architectures and support the development, simulation and testing

of actual multiprocessor systems.

More specifically, computer-aided engineering tools are

required to simulate alternate hardware configurations, evaluate

the software implications of selecting a particular hardware

configuration, perform required hardware-software tradeoffs,

establish that the specified hardware and software are compatible

and that overall system performance requirements are met. All of

these must be done at an early stage in the design process, before

the software is coded and the hardware is constructed.

In the absence of such 'computer-aided engineering tools, it is

difficult for the designer to assess and evaluate system

performance adequately before constructing a breadboard prototype,

developing its software, and testing the resulting system. At this

late stage in the design process, discovered inadequacies and

inconsistencies are expensive and time-consuming to correct and

often require significant redesign. With the appropriate CAE

tools, the chances of this happening at such a late stage in the

design process are minimized.

The use of these CAE tools in the area of software design and

development for actual multiprocessors provides significant

2

1
1

advantages. 	In current practice, the task of translating the

functional requirements of the system into software modules

(written in a given high level language) is usually left up to the

individual designer. The task is often performed based on ad hoc

(informal) techniques which depend on the designers skill and

background. In the absence of formal tools and techniques that can

ensure the correctness of the software and its compliance with

requirements, several errors that accumulate throughout the design

and development stages are discovered only at later stages.

Correcting these errors often involves massive changes in the soft-

ware design, thus prolonging the projece% development cycle and

increasing its associated cost. The availability of tools for

software verification and validation, and the utilization of these

tools at high levels of the design will enforce good software

programming practice and uniform documentation procedures. It will

thus minimize the probability of major errors appearing at later

stages of the design and development process.

1

2.0 Contract Objectives

The objective of this contract is twofold:

(1) to examine, through a detailed survey, existing CAE

tools for multiprocessor systems design and,

(2) to investigate ways of enhancing and augmenting these

tools to form an integrated set - which can be used at

all design levels.

LI

3.0 Reports Delivered

Results of the study are documented in three reports which

accompany this Executive Summary.

The first report, entitled "Review of Multiprocessor Systems

and their Spacecraft Applications", examines the basic

technological issues involved in the design of software and

hardware architectures of multiprocesors and their applicability in

general to meet the requirements of spacecraft on-board processing.

The advantages of using multiprocessor systems for spacecraft

applications have been identified in terms of reliability enhance-

ment, flexibility in meeting increasing computational demand and

extending mission duration.

The second report, entitled "A Summary of Computer-Aided

Engineering Tools for the Design and Simulation of Multiprocessor

Systems" presents a survey of existing CAE design tools for multi-

processors, covering all design layers including the requirement

specifications phase. Surveyed tools were broadly classified into

four categories accordiàg to the main function of the tool and the

design level at which the tool is primarily used. The advantages

and disadvantages of available tools in each category were

identified according to a specified set of evaluation criteria.

The third report, entitled "The lefinition and Specification

of an Integrated Set of CAE Tools for Spacecraft Multiprocessor

System Design" presents, in detail, our proposal to enhance and

augment existing tools in two aspects. The first involves the

development of a high level functional component description tool,

5

based on the ADA programming language, to bridge the gap between

the high level requirement specification phase and the relatively

low design level at which the system architecture is selected and

simulated. The second aspect involves the development of

performance analysis tools which can be used in evaluating system

reliability and resource utilization. The performance analysis

tools will augment existing special design languages which can be

used to simulate the system architecture and the software/hardware

structure.

6

1

1

4.0 Technical Summary

Unique definitions for the terms "multiprocessor" and "multi-

processor networks" are noticeably lacking in current related

literature. To avoid any ambiguity that may arise as a result of

this, we define, for the purpose of this study, the multiprocessor

system to be a multiplicity of microprocessors that are physically

and logically interconnected to form a single system in which

overall executive control is exercised through the cooperation of

decentralized system elements.

Moreover, the scope of multiprocessor systems examined in this

study can be defined in terms of a set of characteristics

considered to be pertinent in spacecraft applications:

- The microprocessors forming the system, as well

as all other system elements, co-exist in the

same locality (i.e., no telecommunications lines

are used since the elements are not

geographically separated),

- The microprocessors and other system elements

are interconnected according to one of

alternative structures (uni or multi-bus, a loop

or ring connection, a matrix switch, etc.),

- Conceptually, a single executive manages all of

the system's physical and logical resources in

an integrated fashion. The control logic and

data structures are replicated among a number of «

processors or memories,

- The number of processors to be interconnected is

relatively small,

- Redundancy in the hardware is assumed through

the use of identical spares, which along with

other fault recovery mechanisms constitute what

is known as "fault-tolerant" architectures.

To understand the role, scope and utility of multiprocessor

design tools in various design phases, it is essential to describe

the various design steps followed in a general top-down development

process of a multiprocessor system. Figure 1 illustrates the

design steps followed from the early requirements definition step

until a complete system prototype is assembled and tested.

The first step involves the specification of system require-

ments and is followed by a description of the functional components

of the system which are considered necessary to satisfy the

requirements. The high level description of the functional

components is then translated into an intermediate design stage

which involves the selection of a system architecture and its

representation in the form of a system model. Preliminary simula-

tion is usually conducted to examine alternative architectures and

to provide partitioning guidelines which define the boundaries of

the hardware and the software components of the system. Two design

paths are then followed concurrently.

The first path involves determining the architecture of the

software which is then defined in a series of top-down design

steps. The software is then coded and verified using simulators to

8

1
1

1
1
1

1

1
1
1

PRELIMINARY

SIMULATION

FUNCTION

DEFI N I TION

HARDWARE SOFTWARE

ARCHITECTURE

•

IMPLEMENTATION IMPLEMENTATION

1

ARCHITECTURE

SYSTEM

ARCHITECTURE

REF INEMENT REF INEMENT 111

\J/

I V TEST + VALIDATIOe
VALIDATION

VER I FICATION

SYSTEM TEST

REQUI REMENTS

PARTITIONING

GUIDELINES

Figure 1

DESIGN STEPS OF MULTIMICEOPROCESSORS

1
1
1

1

determine its correctness and its compatibility with the hardware.

The second path involves determining the architecture of the

hardware which is then refined in a series of top-down design

steps. The hardware architecture is then simulated to determine

its compatibility with the software. Following simulation, the

hardware is implemented in a prototype which can be tested and

validated. The hardware and software subsystems are then inte-

grated ànd the resultant system is tested.

Evaluation of existing tools can be gonducted based on the

utility and usefulness of the tool with respect to each design step

shown in Figure 1. The following basic criteria are used to

characterize and evaluate the tools covered by the survey.

I. Ability to Specify Functions: '

Function definition follows the requirements specifica-

tion phase and is conducted at the early stage of the design

prior to the selection of the system architecture.

II. Simulation Capabilities:

Simulation is conducted at two different stages: (1)

early (preliminary) simulation, conducted to select a subset

of feasible architectures which will be examined in.detail

later, and (2) complete simulation, conducted to bind the

software and the hardware structure descriptions and test

their compatibility following the refinement of the descrip-

tion of each structure.

10

I
1111

III. Support of Top-down Design Methodology:

Because of the complexity of the system architecture, it

is always convenient to conduct the design refinement process

by detailing each component separately while maintaining the

consistency of the design by specifying the interconnection

between the components at each refinement level. In the

software area, the support of a top-down development approach

means that units or components can be specified, compiled and

tested separately.

IV. Verification Capabitilies:

Verification capabilities exist in the form of certain

mechanisms (constructs) in the programming language (tool)

which can be used to verify the correctness of the executable

code. It is the responsibility of the user to define, in a

mathematical form, all the conditions that correspond to

correct execution. These conditions can be used either as the

basis for a complete symbolic simulation as performed by

verification systems or as run-time checks.

V. Support and Compatibility:

The degree of support a tool is given by the computer

industry and major government users (ee Department of

National Defence) is important since it determines the level

of attention, commitment and future development effort to

enhance the language and to support its evolution.

II
11

It is possible to classify existing tools into four broad

categories based on their essential characteristics and the main

design stage at which the tool is most useful. These categories

are:

(1) Specification Languages

Examples of such languages include:

- SADT/SAINT (System Analysis and Design Techniques,

developed by SofTech and the SAINT simulator

developed by the U.S. Air Force)

- REVS (the Requirements Engineering and Validation

System, developed by TRW Defense and Space Systems)

- RPS (the Requirements Processing System, developed by

GTE Laboratories)

These languages are used primarily as tools at the requirement

and function defenition phases. Their basic characteristics

with respect to the evaluation criteria-described earlier are

summarized in Table 1.

(2) Special Verification Languages

Examples of such languages include:

- GYPSY

- AFFIRM

- EUCLID

- SPECIAL (HDM)

The primary purpose of these languages is to develop

12

I

verifiable software code. Special verification mechanisms are

embedded in the language and can be used to verify the

executable code. The basic characteristics of these

languages, with respect to the evaluation criteria described

earlier, are summarized in Table 2.

(3) General Procedural Languages

The most promising among these languages is the recently

introduced programming language ADA*. The primary objective

of this language is to allow the development of software code

in modular fashion. The modules can be specified, written and

compiled separately. A complex system can be formed as a

combination of these modules. The modular feature of this

language, coupled with its flexible concurrency mechanisms,

makes it an attractive development tool for multiprocessors.

In addition, the language is strongly supported by the

computer industry and the U.S.A. Department of Defense. The

basic characteristics of such a development tool, with respect

to the evaluation criteria described earlier, are summarized

in Table 3..

(4) Special Design Languages

Examples of these languages include:

- AIDE (ArchItecture Design Environment, Bell

Laboratories

* ADA is a trademark of the U.S. Department of Defense.

1

1

1
1

1
1

- N.mPc. (implemented at Case Western Reserve University)

- SABLE (Stanford University)

Such languages are generally used as tools at the architecture

design level and below. They are particularly useful in

simulating the hardware/software details and interactions.

Design consistency and completeness can thus be checked out

and analyzed prior to the implementation of a hardware proto-

type. The basic characteristics of such special design

languages, with respect to the evaluation criteria described

earlier, are summarized in Table 4.

1

1

1
1
1
1
1

1

Table 1

I

I.

SPECIFICATION LANGUAGES

Criteria 	 Comments

I. Ability to Specify Functions 	- Very powerful requirements
definition

II. Simulation Capabilities 	- Limited simulation (except for

SADT/SAINT)

III. Support of Top-down 	- Has no translation (interface)

Methodology 	to lower levels

IV. Verification Capabilities 	- No verification

V. Support and Compability 	- Strongly supported by industry

Table 2

SPECIAL VERIFICATION LANGUAGES

Criteria 	 Comments

I. Ability to Specify Functions 	- Not requirements oriented

- Support mathematical system

specification

II. Simulation Capabilities 	- Limited simulation (at archi-

tecture level and above)

- Restrictive concurrency

III. Support of Top-down 	- Translation to lower levels

Methodology 	possible

- Separate compilation units not

supported

IV. Verification Capabilities 	- Verification possible

- Considerable user expertise

required

V. Support and Compability 	- Currentuse is limited toacademic

institutions & research

Table 3

GENERAL PROCEDURAL LANGUAGES

(Ex. ADA)

Criteria 	 Comments

I. Ability to Specify Functions

II. Simulation Capabilities

- Not requirements oriented

- Useful in function definition

- Support flexible concurrency

- Simulation possible at architec-

ture level and above

- Can be used to provide hardware/

software partitioning guide-

lines

III. Support of Top-down 	- Separate compilation facilities

Methodology

IV. Verification Capabilities - Limited verification (ex. type

checking, range checking,

procedure call checks, ...)

V. Support and Compability 	- Considerable support from U.S.

DOD and computer industry

17

Methodology components

Table 4

SPECIAL DESIGN LANGUAGES

Criteria 	 Comments

L Ability to Specify Functions - Not used above architecture level

- Description at architecture level

and below

II. Simulation Capabilities 	- Simulation possible at architec-

ture level and below

- Simulation allows consistent des-

cription of hardware (structure)

and software (behaviour)

- Limited performance evaluation

possible

III. Support of Top-down 	- System can be decomposed into

IV. Verification Capabilities 	- No verification capability

V. Support and Compability - SABLE/ADLIB and NUnPc. are available

commercially - use so far hàs

been limited to research institu-

tions

18

5.0 Conclusions

Two main conclusions are drawn from the study conducted here:

1. Existing special design languages, such as SABLE/ADLIB and

are extremely useful in simulating system architecture and

in binding the software and hardware detailed structures, and in

testing the compatibility of these structures. The utility of

these languages can be enhanced by the addition of special

performance analysis routines in the resource allocation and

utilization area and in the reliability analysis area.

2. A high level procedural language is needed with the following

characteristics:

- Support function definition and description of system

architecture.

- Allow preliminary simulation in order to select

feasible architectures and specify each architecture

in terms of its software and hardware components.

- Be translatable into lower level target machine code.

- Has verification capability.

- Has considerable support from government and industry.

- Support top-down program development.

The programming language ADA appears to satisfy most of the

above requirements. However, the main drawback of the language is

in its complexity, since the existence of many flexible constructs

makes it difficult to verify those programs that attempt to utilize

the full power of the language. By imposing certain constraints on

the use of some language mechanisms, it is hoped that a compromise

19

is reached such that certain critical program sections can be

verified. The verification issue in ADA will likely be resolved to

some extent as a result of the massive research and development

effort currently underway in various research institutions.

20

6.0 Follow-up Work

6.1 Proposed Short Terni Work (1982-1983)

The following is a summary of the work proposed for the short

terni (1982-1983):

- Acquire special design languages (lmPc, SABLE/ADLIB).

- Install on computer facility at Communications

Research Centre.

- Examine top-down design capability through specific

design examples.

- Assess limitations (performance evaluation).

- Determine required interfaces to high level procedural

• language.

6.2 Proposed Intermediate Term Work (1983-1984)

The following is a summary of the work proposed for the

intermediate term (1983-1984):

- Use of ADA as a tool at the function definition level

and for architecture description and simulation.

- Definition of appropriate constructs to describe data

flow and model system behaviour (concurrency, synchro-

nization, multitasking, etc.)

- Introduce certain restrictions to allow verification

of critical program sections.

- Define and implement interfaces to special design

languages at the architecture level and below.

- Examine utility through specific design examples.

21

intellite.ch
Intel Ittech Canada Ltd

352 MacLaren Street,

Ottawa, Ontario

K2P0M6
(613)235-5126

it[leACIIUBOMW:Mil

