
REVIEW OF MULTIPROCESSOR SYSTEMS

AND THEIR SPACECRAFT APPLICATIONS

'I

_I

F--

. 	 •
IndListry Canada

Library Queen

JUL 2 0 1990

Industrie Canada

Bibliothèque Queen
. „

91

!

C6663

1982

- .REVIEW OF MULTIPROCESSOR SYSTEMS

AND THEIR SPACECRAFT APPLICATIONS - -

Report No. INT-82-14

March 1982

Authors: Mr. J.G. Ouimet
Dr. C. Laferriere
Dr. S.A. Mahmoud
Mr. T.F. Martin

Approved by: Dr. S.A. Mahmoud

PI9LIOUE(IIIE

\N-n•,i;•• n•,4 	ruin 	n d4ti
•

Gil tibia biliMBA

E
I E y 1.0°1984

Ileam remment =rent

Department of Communications

DOC CONTRACTOR REPORT 	 DOC-CR-SP-82O44

DEPARTMENT OF COMMUNICATIONS - OTTAWA - CANADA

SPACE PROGRAM

TITLE.: ,-Review Of Multiprocessor Systems And Their

Spacecraft Applications

AUTHOR(S): J. Ouimet

C. Laferriere

S.A. Mahmoud

T. Martin

ISSUED BY CONTRACTOR AS REPORT NO: INT-82-14

PREPARED BY: Intellitech Canada Ltd.

352 MacLaren St.

Ottawa, Ontario-

K2P 0M6

DEPARTMENT OF SUPPLY AND SERVICES CONTRACT NO: 3ER.36100-1-0273

SN: OER81-03151

DOC-SCIENTIFIC AUTHORITY: R.A. Millar

Ill CLASSIFICATION: Unclassified

This report presents the views of the author(s). Publication
of this report does not constitute DOC approval of the reports
findings or conclusions. This report is available outside the
department by special arrangement.

DATE:March 1982

Preface

•
I.

j.

• This work was performed for the Mepartment of. CoMmunicationsi

Communication Research Centre, under DSS.Contrect No. OER81-03151, entitled

"Computer-Aided Engineering Tools for SpaceCraft Multi-Microprocessor

Design", from September 15, 1981 to March 31, 1982. This report is one of

the following four contract deliverables:

1. Executive Summary

2. Report #1 - Review of Multiprocessor - SyStems and éheir -Spececraft

Applications.

. 3. Report #2 - A Survey of Computer-Aided Engineering (CAE) Tools for

the Design and Simulation of Multiprocessor Systems.

4. Report #3 - The Definition and Specification of an Integrated Set

of CAE Tools for Spacecraft Multiprocessor System

Design.

Acknowledgement

The study team gratefully aCknowledges the technical guidance

of Ms. R.A. Millar of the Communications Research *Centre.. - His

.knowledge and experience in the field of computer simulation of

spacecraft systems have contributed to the quality of the work and

provided a constant source of encouragement to - the study team

-As well, theitudy teaMmiShes to thank Mr. J.M. Savoie of

C.R.C. for many fruitful discussions and critical reviews.

1. INTRODUCTION
Page No.
.. 	1

TABLE OF CONTENTS

1

I.

2. ARCHITECTURAL CONFIGURATIONS OF MULTIMICROPROCESSORS 	 3

2.1 Introduction 	 3
2.2 Classification of Distributed Systems 	 4
2.3 Implementations of Distributed Architectures 	 8
2.4 Fault-Tolerant Distributed Architectures 	 11
2.5 Conclusions 	 14

3. SURVEY OF DISTRIBUTED OPERATING SYSTEM TECHNIQUES 	 15

• 3.1 Introduction 	 15
3.2 Synchronization 	 18
3.3 Scheduling/Resource Management 	 12
3.4 Real-time Interrupts 	 27
3.5 Reliability 	 28
3.6 Applicability to Special Purpose Computers 	 28

4. SURVEY OF CURRENT MULTIPROCESSOR PROJECTS 	 30

4.1 General Description 	• 30'
4.2 Comparative Analysis ofThree Architectures 43

n . THE SPACECRAFT APPLICATION ENVIRONMENT 	 47

5.1 Introduction 	 47
5.2 Processing Requirements 	 47 ,
5.3 Spacecraft Computers 	 50
5.4 Example Spacecraft Systems 	 54 	1
5.5 Automation Trends 	 60

6. SUMMARY 	 67

REFERENCES 	 68

1

1

1. INTRODUCTION

Interest in multiprocessor and distributed intelligence computer

systems has increased dramatically in recent years. This interest has been

fostered by the availability of microprocessors with even increasing

performance/price ratios and the expected emergence of monolithic systems

with still high capabilities in the near future.

A significant advantage of distributed systems is their potential

capability for providing very high reliability through redundancies and

dynamic reconfiguration. Since reliability is of prime concern in the

design of spacecraft systems, distributed systems have received lot of

attention from spacecraft computer systems designers. The aim of this

report is to review the technology of distributed systems and to establish

their applicability to the spacecraft environment.

• Section 2 of the report presents different alternative architectures

for multimicroprocessors. These achitectures differ in the degree and

method of coupling processors and memories, their complexity and ability in

isolating faulty components. The survey of the full spectrum of architec-

tures was conducted irrespective of the number of processors involved in

the architecture. Both architectures commonly used today, and those in

theoretical or design development stages, are presented.

Section 3 surveys Iriefly the techniques .of designing and Implementing

.Executive Software for. multimicroprocessors. The emPhasis is placed on the

general functions of the exécutive and 'the approaches followed for

scheduling tasks and resources and for handling intertask communications

and external interfaces'.

1

Section 4 surveys five research activities reported in the literature

which culminated in the development of five uperimental prototype

multimicroprocessors for avionics and spacecraft applications. These are:

the Cm*.system (Carnegie Mellon University), FTMP (Draper .Laboratory), SIFT -

(Stanford Research Institute),. UDS (Jet. Propulsion Laboratory) . and thé

. french Matra system.

Section 5 an introduction to:the field of spacecraft Computing.

technology. 	The aim of the section is to establish a baseline description

of the environment with attempting to be an exhaustive discussion of the

subject. The section first reviews the processing requirements of space-

crafts, outlines the processors used, then exemplifies the subject through

• the use of• the example spacecrafts and finally presents • some apparent

trends in the development of these computers.

I

1

3

2. ARCHITECTURES FOR DISTRIBUTED SYSTEMS

2.1 Introduction

Significant-advances in the development' of powerful and reliable

computer systems have been based largely on the use of multiple

processors. A system which consists of several prOcessors can be

implemented in many variations. Normally these variations fallwithin

• one of the following broad .classifications:

•a. Multiprocessors: 	Defined as a computer employing two or more
processing units under integrated control. The multiprocessor has
the capability for the direct sharing of memory and I/0 devices by
all processors under control of a single operating. 'system.

b.' Multiple Computer7Network: 	These systems are cOmposed of a number
. of heterogeneous computers loosely coupled, - sometimes only by
communications links.- Each'processor.Operates independently-under
control of its own operating.system, sharing data-With other
systems as required.

c. Multiple Computer-Distributed: 	Thèse systems fall somewhere
between multiprocessors and networks. 	Jensen defines them as "...
a multiplicity of processors that are physically and logically
interconnected to form a single system in which overall executive
control is exercised through the co-operation of decentralized
system elements". [JENS78]

These definitions should not be viewed as the basis for absolute

classification; it is possible to find examples of systems that do

not fit exactly into a single definition and hence combine features

from more than one definition. The real purpose of these definitions

is to provide a framework for structuring the following discussions on

architectures. Before proceeding further, it is necessary to point

out that a review of all the different architectures in the three

categories would require an effort beyond the scope of this work. The

review conducted here in concerned primarily with multiprocessor

architectures that are used in spacecraft applications. Since many

multimicroprocessors and most multiprocessor systems designed for

spacecraft applications fit within the 'distributed system group, we

will limit our discussions to this category.

This section will first present a classification structure

(taxonomy) used to define the environment of distributed systems. It

will then examine some architectures that have been implemented.

Because of its special nature, the issue of fault—tolerance in

architectures will be examined more closely.

2.2 Classification of Distributed Systems

There have been a number of taxonomies 	to . classify

distributed systems. 	An evaluation of these various classification

schemes [JENS76] has concluded that the Andersen/Jensen taxonomy •

[ANDE75] is probably the most complete. It is 'based upon the

decomposition of systems into three primary elements:

a) a Processing Element- (PE): which is a hardware unit in which .•

processes can execute;

b) a Path which is the medium on which messages are transferred
without alteration; and

a Switch which intervenes . between the sender and receiver of a
message by modifying the message (eg. changing its destination'

1

address) and/or by routing to one of a number of alternative paths.

To implement a distributed system, a designer must select various

interconnection parameters. A tree structure can be used to represent

these alternatives as shown in Figure 2.1. This tree is divided into

four decisional levels. These levels are:

a) Link Level: 	A designer MayHselect - to-use direct links between all
PE's or may choose to use a Switch, thereby implementing an
Indirect link architecture: As discussed above, the switCh will
perform address translation. (eg. frOm e logical address to a
physical one) or perform-a routing function. '

b):Routing Level: For Indirect architectures,' theHdesigner my . select
. to centralize the switching/routing function.to one entity or

-decentralize to-a number of entities. - -

• c) Path . Level: At this level;- message tranSfer paths can be shared'or .

dedicated. . A shared path is one to which more than two Pe's . are
, 	connected.

d) Architecture Level: • The final level of the tree are the nodes
which represent specific architectures.

Figure 2.2 gives a number of examples of various architectures

possible. The name of each example is preceeded by a three-character

classification where the first letter indicates whether the link is

. direct • (D) or indirect (I), whêther routing is non-existent (.),

centralized (C) or decentralized (D) and whether paths are dedicated

• (D) or shared (S).

5

LINKS DIRECT

ROUTING

EXAMPLES
. Tree 	. Packet. 	.
.X-Tree 	Networks 	.Mi cronet
.Hypercul es 	. 	• 	• • 	•

. FTSC 	.B5500 	. FTMP

. IBM AP 	C .mmp 	. SI FT
.JPL

111111 	MI MI MI 	 MI UM BIM 	 MI 	1111111

Di stributed Architecture

INDIRECT

-
CENTRALIZED 	 DECENTRALIZED

1 	1
1 	 f

Shared 	 Dedi cated 	Shared
I 	 1 	 I

PATHS 	 Dedicated 	 Shared 	 Dedi cated

I

I 	I 	 I 	I 	 1 	I
ARCHITECTURES 	Loop Comp I ete 	Common Common 	Star Central 	Central

Inter- 	Memory Bus 	 Loop 	Bus
connect

f
Regul ar I rregular 	Bus
Networks Networks 	Window

FIGURE 2.1 - DISTRIBUTED ARCHITECTURE TAXONOMY OF

ANDERSEN/JENSEN

e) ICD 	Loop f) ICD - Star g) ICS -.Centrally
Controlled Bus

h) IDD - Regular
Network

j) IDD - Irregular
' Network

k) IDS - Bus Windows

a) D.D - Loop h) D,D - COmplete 	- c) D.S - Common 	d) D.S - Global Bus
Interconnect 	Memory

FIGURE 2.2 - ARCHITECTURAL EXAMPLES

	

Legend: P 	Processor

M - Memory
P/M - Processor & Memory

	

S 	-'Switch

P/S Procèssor with Switct

Functions.

7

2,3 Implementations of Distributed Architectures

Most of the earlier implementations of multi-processor systems

were done for large machines (IBM 360 and 370 families; Burroughs 5000

and 6000 families, CDC 6000, etc.) in order to improve their

throughput. Most of these machines included a shared memory and used

one of the following interconnection mechanisms between the

processors, memory and I/O processors:

a) - common bus (Figure 2.2d)

b) crossbar switch

c) . multi-port memory (Figure 2.2c)

Enslow [ENSL77] surveys these architectures and the existing

implementations (in 1977). He also analyzes the interconnection

mechanisms and gives a list of advantages/disadvantages for each (see

Table 2.1). Although these multi-processor systems do not meet the

definition of Distributed Systems because of the extremely tight

coupling between the components, much of the analytical work done for

those systems still remains valid.

More recent work in distributed systems has been directed

• primarily towards three architectures: _bus, circuit switches and

indirect. 	The use Of single and multiple buses has been extensive,

particularly for fault-tolerant systems (see Sections 2.4 and 4).

Some theoretical foundations for bus structures have also appeared

[KINN78], 	[HAMA80]. 	A number of indirect networks 	(Indirect

Decentralized, Dedicated) have also been .proposed; these include

binary-trees 	[HOR081], 	[HARR79]; 	X-trees [DESP79]; 	hypercubes

[WITT81]; cluster structures [WU81], etc. Considerable research is

also now taking place in the area of switching where efforts have been

underway for some time to replace the crossbar switches with switches

having all its advantages but none of its disadvantages. In

particular, some of the switches which have been proposed could

eventually be fully implemented in VLSI. Some of these types of

switches are known as delta [DIAS81], omega, banyan [FRAN81], etc.

[FENG79].

o

D

Crossbar Switch 	Multi-port Memory

Functional units remain 	HRequirès most expen-
single and cheap 	sive memory units

Most complex inter- 	Complex interconnection
connection

Expansion simple to
implement

Extremely difficult to
expand since design is
normally size-dependent

Common Bus

lewest overall cost

Least complex

Easy to add or remove

Limited bus.throughput 	Highest total transfer 	- Potential for high
-rate capability 	transfer.rate

Failure at bus is a 	Switch partitioning alters
catastrophic system 	inherent redundancy and
failure 	reconfigurabilitY

A single unit can de-
grade the performance
of the whole system

Easy to remove malfunc-
tioning units

Lowest system efficiency Potential for highest system
•of three types 	efficiency

• TABLE 2.1 - ADVANTAGES/DISADVANTAGES,FOR THREE TYPES OF
. MULTI-PROCESSOR ORGANIZATION

10

2.4 Fault Tolerant Distributed Architectures

Some applications, real-time systems in particular, require a

high degree of reliability. The computer system is expected to

withstand individual component failures while continuing the

processing function. These 'Fault Tolerant (FT) computer systems

have specially tailored architectures designed to provide this

feature.

The Global (or common) Bus architecture has been widely used in,

the design of many FT systems. Some of the better known systems under

development (FTMP, SIFT, UDS) use the bus concept. There is some

speculation that the global bus will remain the basic architecture for

aerospace computers [CARB77], though probably with the addition of

multiple level of buses [CROS77]; Figure 2.3 is an example of a dual-

level bus system.

As shown in Table 2.1, the common bus concept has a number of

inherent disadvantages. In particular, fault tolerance is not an

implicit quality of buses; in order to provide FT, designers must

replicate the buses and design complex bus interface mechanisms to

Wovide the many-CPU to many-buses connections required and to prevent

any one CPU from disabling a bus. Additionally, bus architectures are

very prone to bottlenecks. This has not been a problem so far since

the amount of data passed between processors has always been

relatively small. However, as processors are added and as data-

intensive functions (eg. real-time image processing) come on board,

bus architectures may reach limit points.

11

Notes:. - If P2 can address P13, this is an IDE architecture.

- If P2 does not know P11_13 exiàt but .rather talks to
Pl as if it was the final pràcessor, then this is
the equivalent of-three D.S architectures.

FIGURE 2.3 - DUAL-BUS LEVEL ARCHITECTURE

12

Because of thèse problems, many attempts have been made

implementing other types of architectures in FT systems.

Architectures implemented are, with examples:

a) Bus(D.S) 	FTMP, SIFT, UDS: (see Section 4)
- SARGOS: the computer system of the ground stations

was designed for high reliability. 	SARGOS
• is a system to be used to identify, and

locate distress beacons by satellite.
[DESW81]

- EPOS: 	the Experimental Polyprocessor 	System
designed circa 1979 at Toshiba in Japan uses
multiple independent common buses. [MAEK79]

- C.vmp:

b) Cluster Networks (IDS Bus window)

- Matra System, Cm*: (see Section 4)
- MuTEAM: a multimicroprocessor system now in develop-

ment in Italy, designed for embedded -real-
' 	time - applications- -using,. loosely coupled

clusters of bus connected microprocessors.
[GIOF81]

c) Ring (D.DLoop)

- DDLCN: a fault-tolerant reconfigurable • network
using dual loops and tri-state control logic
interface developed circa 1979 at the Ohio
State University. [WOLF79] 	•

d) Complete Interconnect (D.D)

e) Irregular Structure (IDD)

- RHEA: a reliable and survivable real-tiMe system
designed in France in 1976, it uses a two-

• level structure composed of an irregular
• network controlling groups of local _star

structures. [POWE78]

f) Circuit Switched (IDD Regular)

1 3

Other IDD Regular architectures such as Tree structures [LIU80],

[1(WAN81] and partially meshed Rings have also been studied. This last

architecture (Figure 2.4), in particular, has been analyzed in detail

by Pradhan [PRAD81a], [PRAD81b], [PRAD81c] and others [GRIN80] and•

found to present a very high degree of fault-tolerance and fault-

diagnosability as well as having good distributed systems properties

(low complexity, extensability, partitionability, etc.)

FIGURE 2.4 - A PARTIALLY MESHED RING

2.5 Conclusions

From this review of Distributed Architectures, a few concluding

remarks can be drawn:

a. The 'common bus is still the most widely used implementation
architecture, especially for FT systems.

b. Multiple bus levels-(bus window) and loop architectures :are at .the
design and test stage.

Radically new architectures (meshed rings, tree, etc.) are now
•being theoretically studied and show promise for lông-term imple-
-mentations.

14

3. SURVEY OF DISTRIBUTED OPERATING SYSTEMS TECHNIQUES

3.1 Introduction

A distributed system is an amalgamation of individual computing

entities with the aim of forming a combined single computer system.

Activities take place in the individual entities concurrently and

overall co-ordination is the responsibility of a decentralized

executive. This definition of distributed computer , system is that of

[JENS78].

The decentralized executive is what binds together the collection

of processing entities. 	This binding can be done in different ways,

ranging from very tight coupling to very loose co-ordination. 	It

should be emphasized that the executive itself is a control algorithm.

As such, it can be implemented in hardware, in software, or as is more

likely, in a mixture of both.

Hardwired executives (ie. 	executives whose algorithms are

implemented in hardware) can be found in systems such as array

processors or multiprocessor systems where the processors are tightly

coupled to the executive through a common bus. At the opposite end of

the spectrum, systems such as distributed databases can be found

running on a loosely coupled network of computers. In a distributed

database, the database management systems makes the distributed nature

of the system totally transparent to the users. The database

management system is a purely software entity and works in conjunction

15

with some communications facilities to provide the required co-

ordination. So far, the executive has been characterized by:

1. An algorithm (or set of algorithms) implementing a policy (eg.
loose or tight control scheme), and by

2. An implementation such as hardware; software or a combination
both.

The software part of the implementation of the executive is called the

operating system (0/S). The purpose of this section is to highlight

the software methods used in providing an executive for distributed

systems. This will be done in the context of a general purpose

distributed operating system, in order to cover most of the mechanisms

involved.

From a user point of view, the purpose of an operating system is

to manage efficiently the computer resources under its control. 	More

specifically, the 0/S is involved in the following:

1. Management of Computing Resources

Managing computing resources involves scheduling and synchro-

nization of processes. A process in an instantiation of a program.

The latter is a series of instructions residing in core or in a

core image file on disk while the former is the action of executing

the instructions. A process in characterized by its Process

Control Block (PCB) which contains the program counter, the stack

pointer, the program status word, some registers, etc. In a

• typical computing entity, many processes may be competing for

access to the processor, that is, actively running as opposed to

16

waiting to run. 	The 0/S will oversee the running of the processes

and will ensure that each is given a fair share of the processor.

Processes which execute- concurrently May want to co-Operate

among themselves. 	To this end, interProcess synchronization faci-

•lities should be provided by the 0/S. 	It shoùld also-be realized

that, because.synchronization involves blocking and unblocking Of

processes, it.shares the use of some conceptual mechanisms with - the

. 0/S scheduling facilities. - 	•

Also of importance is how the 0/S will handle real time

interrupts which are demands for service originating from devices.

This area is relevant to control system such as on-board processors

for spacecraft.'

. Management of Physical Resources•

Management of physical resources is mostly concerned with the

allocation (or granting) of hardware devices to processes. Several

• items •are covered under the heading hardware . devices; such items

can be: 	more memory space for -a process, access to fast floating

point processor, control over a disk. drive, or a printer, etc. .

. The result of the management activities of the 0/S is a set of

services. 	As explained before, those services constitute the sofware

part of the executive of a distributed system. 	The remainder of this

section will elaborate on each type of service with appropriate

reference to relevant experimental systems.

17

3.2 Synchronization

In any system supporting concurrent execution (real or contrived)

of processes, facilities have to exist to enable processes to co-

operate among themselves in the execution of certain functions (eg.

managing communication devices, storage devices, etc.). This is the

purpose of. synchronization. As a system service, synchronization

strongly reflects the type of control structure embodied by the

hardware. For example, synchronization through semaphores can be

provided in a tightly coupled system with shared memory, whereas a

message-based synchronization scheme is more suited to a loosely

coupled environment.

Synchronization 'can •be broadly classified into two types:

. Implicit Synchronization

As the name implies, the 01S does not provide synchronization

since it is either provided by the environment or by another 0/S

service. An example of synchronization being provided by the

environment is a system [RENN78a] in which all activities are

deemed to be synchronous. 	In fact, time provides synchronization.

In some other sysems [KATS78] [ORNS75], 	synchronization is

implicitly provided to a "strip" (a strip is a short, non-

interruptible process), through scheduling of another strip.

18

1

1

1

1

1

1

1

1

1

1

1

1

1

1

2. Explicit Synchronization

In this case, synchronization is truly a system service imple-

mented in software by various techniques. The performance of these

techniques will depend upon factors such as: hardware con-

figuration, granularity of the activities of processes using the

synchronization service, frequency of utilization, etc. PONE80].

When dealing with explicit synchronization techniques, it

should be remembered that lower level techniques are always

necessary at a processing entity; synchronization across processing

entity boundaries may necessitate a different type of mechanism

which will be implemented using the former techniques. Explicit

synchronization techniques will then be listed by order of

sophistication.

- Locks 	. 	- •

. The implementation of . locks relies on-the availability of an

indivisible operation (eg. test-and-set) at a given processing

Locks are typically used for co-resident processes

having fine granularity of activities and those processes will

usually implement a policy of "Busy Waiting", that is, will

constantly check the value of the lock until they acquire it.

Two observations can be made in connection with locks:

entity.

i) A 7Busy -Waiting" policy implies
keep the use of the processor. '
permitted to run, even though no
the blocked process.

that a blocked process will
Other processes will not be
constructive work is done by

ii) While a process is blocked On a lock, .the resources it is
currently holding .are not available to. others. Releasing
those resources, however, is' not necessarily the best policy

- since the process would eventually have to re-acquire them
at a later time'.

1
19

b) Semaphores

Based upon locks, a more constructive approach can be taken

in which the blocked processes are suspended and put in a

special queue. A semaphore is the implementation of that policy

and is represented by a mechanism such as a lock and an

associated queue. Semaphores release the processing element

from a blocked process and give other processes a chance to run.

However, the policy involves context switching from one process

to another. Obviously, if the cost of context switching is

higher than that of blocking for a given process then blocking

is preferable; in other situations the reverse may be true.

Furthermore, the resources claimed by a suspended process are

still being inaccesible to others.

c) Message Passing

Message passing is a synchronization technique in which the

sending and receiving of messages (not necessarily their

contents) define blocking and re-start for a process. Local to

a given processing entity, this technique can be implemented by

using semaphores which in turn are implemented partly with

locks. The synchronization object is the mailbox which allows

processes to wait (je. suspend themselves) for the arrival of a

message and to send a message to another mailbox (ie. signal

another process). Clearly, synchronization through message

passing is very well suited to a distributed environment since:

i) it goes across processor boundaries,

ii) it is not bound to any physical set-up, but

iii) it is understandably very much slower than semaphores.

20

The flexibility of message passing synchrônization made it

the choice as a basic synchronization technique for many

experimental distributed operating systems such as [WULF74],

[WULF75], [LEVI75], [COHE75], [JONE79], [OUST80], [S0L079],

[WITT80]. It has ,to be mentioned, however, that in these

systems, the 0/S maintains a consistent interfaCe., for all the

processes. . In actual fact, ,two processes synchronizing each

other through message passing may be using a single semaphore if

they are resident in the same processor or may be exchanging

messages (on a bus, through shared . memory or through a'parallel

. -or .serial interface) if the processes are at 	different

. processors. 	From the point of.view of uniformity, offering one

type of service and making its implementation transparent to the

users seems a good policy; inasmuch - as the 0/S has the necessary.

flexibility. •

A summary of synchronization techniques is shown in Figure 3.1,

together with the systems using them. At this point, a brief descrip-

tion of some of those systems is in order.

1. The Unified Data System (UDS) [RENN78a], [RENN80] is not an

operating system as such, but a multiprocessor organization in

which all operations are synchronous. 	It is on that basis that it

is included in this section. Further description is to be found in

Section 4.

2. Pluribus (circa 1975) [KATS78], [ORNS75] is a computer system

composed of three types of elements, called busses: 	processor-

busses, memory-busses and I/O busses. 	Those busses can be con-

2 1

I.

figured to form a multiple processor system. Some special features

are important to the hardware structure:

all activities are on the form of short, non-interruptible

processes called strips.

b) synchronization among strips is through the scheduling of other

strip()i

scheduling, for both real-time interrupts and software initiated

requests, is through insertion of the identity of the desired

strip(s) into a hardware queue called a Pseudo-Interrupt Device

(PID).

Pluribus ànd UDS are examples of systems-where a sizable portion of

the distributed executive Is.implemented by hardware structures.

. Hydra [WULF74], [WULF75], [LEVI75], [COHE75] is the operating sys-

tem developed for the C.mmp [WULF72]. 	This multiple computer

system was developed at Carnegie-Mellon University and is composed

of ia number of DEC PDP-11140 with separate memory module's..

Memories and processors arè interconnected by means of a 16x16

croSspoint pwitch so that all of the available memory is accessible

by any one of the processors. 	The C.mmp (circa 1970) is the

11 	earliest of such developments at Carnegie-Mellon and precedes the

Cm* both in age and in concepts.

Hydra, the operating system of C.mmp was given the responsibility

of managing the latter's resources. 	Consequently, Hydra provides

facilities for managing the total memory space, for synchronizing

2 2

and scheduling processes, and for allocating:hardware resources.

Support .of the concepts of capabilities • and objects is provided by

• Hydra in an effort to increase security and data confinement.

4. StarOS [JONE79] and Medusa [OUST80] are operating systems designed

for the Cm* (circa 1975) multiprocessor system. 	(Cm* is described

in detail in Section 4.) StarOS was the first 0/S developed for

the Cm*. 	Medusa was developed later, based upon the experience

gained with StarO/S. Both StarO/S and Medusa are close to Hydra in

terms of general philosophy of operations. 	The services they

provide are, in general, similar to Hydra's, except where hardware

differences between C.mmp and Cm* either require extra facilities

or make some services redundant.

5. Other multiple processor operating systems are in existence, slich

as Roscoe IS01,079.] for the Rochester Intelligent datewayHand Micros

[WITT80]..for Micronet.. 	The services they provide are very similar

to those of StarOS or Medusa.

3.3 Scheduling arid Resold.ce Management

The problems of scheduling the execution of processes and of

allocating the existing resources efficiently are both concerned with

the performance of a multiprocessor 'system. On a more general level,

the task of management takes on two . aspects: static and dynaiic.

2 3

Impl ci t

- through timing UDS

- through scheduling of
other tasks
Pluribus

Expl ci t

- through any.of the
fol 1 owi ng . techniques

- 'servi ce provi ded
. by 0/S

Synchronization

Locks

use indivisible .operati ons •
such as testand-set

busy waiting

suitable for • fine . gratned operations

implemented in Hydra ,. StarOS
Medusa, ...

Semaphores

Message
Passing

implemented using locks

used in shared memory context

suspension of blocked processes

allows for coarser grained operations

more expensive because of context switching

implemented in Hydra, Star0S, Medusa, ...

general synchronization technique

makes no assumption as to hardware configuration

goes across processor boundaries

can be uniformly implemented through use of semaphores

is expensive to use

Hydra, Star0S, Roscoe, Medusa, Micros, ...

FIGURE 3.1 - OVERVIEW OF SYNCHRONIZATION TECHNIQUES

24

1. Static management is mostly concerned with how to distribute the

code and data structures of 0/S utilities and other processes among

the various memory modules in the system. It can be seen readily

that static management is extremely dependent upon the hardware

configuration worked with. In highly specialized systems or, in

systems with only global memory (eg. [WULF72]), all processors (or

group of processors dedicated to the same functions), have copies

of all 0/S utilities and other processes. In more general systems

(eg. [FULL78]) memories are arranged in a mix of local and global

partitions. The cost (speed and contention) of accessing local

memory is much less than that of accessing global memory,

indicating that the distribution policy and by extension the

configuration itself, will play an important role in determining

the performance (speed, throughput, response time) of the system.

There also exist other systems (eg. [WITT80] in which all-memoriés.

.are. local td some processors. In thosè Systems, as opposed to,

special purpose systems, processes with non-resident-code have to

executed elsewhere and .are started through a remcite- procedure

call (eg. using message passing constructs).

Static management is therefore concerned with the allocation of 0/S

utilities and other processes into the various types of memories

with the aims of: a) keeping as much free space as possible for

each processor, and b) maximizing the speed of execution of 0/S

processes and others. These aims were, as mentioned previously,

dependent upon the local/global memory arrangement and how much of

each type was provided.

.25

2. Dynamic management is concerned with the scheduling of processes

and the management of resources.

a) Scheduling processes can be accomplished implicitly in

systems 	(eg. 	[RENN784) where time is used to schedule

synchronous processes. This approach is conceptually simple but

only applies to a narrow range of applications and is also•

inflexible. Explicit scheduling can be accomplished by queue(s)

of ready to run processes (called ready to run queue). Sched-

uling can then be implemented as a single or multiple ready to

run queue. One possible arrangement is to have independent

ready to run queues at each processor with static priorities

assigned to queues and dynamic priorities assigned to processes.

In tightly coupled systems, scheduling involves a context switch

the 0/S and then a second context switch to the chosen pro-

ces s. In the case of a remote call in a loosely coupled system,

messages will have to be exchanged and extra context switching

at the recipient processor will have to be done. The resulting

overhead indicates that scheduling should be tailored to the

need of the application so as to minimize unnecessary context

switching and to avoid inter-processor calls as much as

possible.

b) Resource management is responsible for the dynamic allocation of

resources (eg. devices, buffers, etc.) to processes. The

overall performance of the system is very sensitive to bad

decisions made by the resource allocation module. In most

special purpose systems, however, the management policy is de-

2 6

termined statically at design time. 	This policy would likely

accept excess capacity in terms of resources and computing power

in order to minimize contention.

Another concern of the resource management module is that of

deadlock. 	In special purpose very rigid systems, possibilities

of deadlock can be totally eliminated whereas in more flexible

ones distributed deadlock detection has to be used. Deadlock

detection is an added overhead that can prove expensive in terms

of actual processing time used, of memory space for the data

structures and of lost capacity resulting from blocked or pre-

empted processes.

3.4 Real-time Interrupts

The handling of real-time interrupts from devices requesting

service is an important concern in an environment such as a

spacecraft. Interrupts introduce a non-deterministic element in the

execution of software. This makes the validation and debugging of the

software an arduous task.

I, Interrupts have been masked out entirely in systems such as UDS

[RENN78a] in which continuous polling of devices is used instead.

This approach, albeit less responsive, makes it conceptually easy to

assess the correctness of the software. Siàilarly in Pluribus,

interrupts have limited effects on the system; all an interrupt

service routine can do is to arrange for the scheduling of a "strip".

2 7

•1

Other systems which are more general in ,nature accept demand

interrupts but try to contain their .effettsand isolate their' data

 structures, by limiting the •scope of the interrupt service routines. .

3.5 Reliability

In the design of hardware components, physical distribution is

the important criterion whereas in the design of the executive,

logical distribution takes precedence [JONE80]. In the exécution of a

function, it is evident that if software processes are dependent upon

one another to achieve success, failure of one of them will

incapacitate the rest. 	Logical distribution requires that such

dependency should not exist or at least should be kept to a minimum.

• Reliability can also be enhanced by having several instances of a

particular process (at various processors) and by having them operate

in a fashion analogous to back-up processors in hardware. It is also

interesting to note that there is a trade-off between hardware and

software reliability in the sense that software algorithms can be

designed • to enhance the overall system reliability.

3.6 Applicability to Special Purpose Processors

Special purpose processors, whether of the uni- or multiprocessor

type, will have well defined functions to perform. In the case of

multiple processor systems, the precise definition of their functions

will allow for simpler designs and for •som degree of optimization.

. 28

The software mechanisms presented hitherto addressed co-ordination

problems of a general nature, hence their complexity. Special purpose

systems will deal with a fixed population of processes whose needs

will be known a priori. It should be pointed out that the basic

requirements for synchronization and scheduling will still apply to

these systems.

29

4. SURVEY OF CURRENT MULTIPROPROCESSOR PROJECTS FOR SPACECRAFT
AND AIRCRAFT CONTROL

This section examines the design philosophy and general architectural

concepts of five different multimicroprocessor systems that have been

reported recently in various publications. 	Section 4.1 examines the

general software and hardware features and the basic design methodology of

these systems. A comparative study of their architecture is then presented

in Section 4.2.

4.1 General Description

A stirvey of recent publications in the field ofspacecraft and•

avionics multimicroprocessors revealed substantial research. effort, -

 concentrated mainly in buildingprototype systems and examining their

use to realize certain properties. Such properties Include software

verifiability, 	fault tolerance, 	survivability under hostile

conditions, self-checking, capabilities,",etc. 	Most prominent among

these projects are the following four.systems:

(1) Cm*

(2) FTMP

(3) SIFT

(4) UDS

(5) Matra System

30

A brief description of the above systems follows. The details of

these systems can be found in the list of references at the end of

this section.

(1) Cm* [SIEW78],[JONE77],[SWAN77]

The Cm* - multimicroprocessor system was designed and

iMplemented at Carnegie-Mellon University. The system is based on

interconnecting a' set of LSI11/23 processors in a configuration

which permits extensibility, address mapping and software pruning

of faulty components.

The Cm* structure consists of a set of computer modules

gtouped into .clusters. 	The clusters are connected by a mapping

controller which is a programmable high performance processor.

. Thus each controller - ià .shared. .by Several, computer' modules

connected to it by a cOmmon bus via simple interfaces (referred tb

by - S.local).

- Figure 4.1.1 gives the details of each computer module.

Figure 4.1.2 illustrates a simple three cluster network. -The

mapping controller is termed K.map, while each . computer module is

marked by M..

Cm* has a 228 byte segmented virtual address space. 	The

addressing structure provides considerable support for operating

system primitives such as control switching and interprocess

message transmission. Each processor in Cm* uses the top page in

its address space (page 15) for direct program interaction with

K.map. However, each of the 16 pages of the processor provides a

3 1

window into the system-wide 2 28 byte virtual address space and can

be independently bound to différent segments in the virtual

address space.

A significant feature of the Cm* system is that all

communication • is performed by packet switching, except at the

local memory bus level, where conventional circuit switching

used. These buses are allocated only for the period required to

transfer data. The data is latched at each interface, rather than

establishing a continuous circuit from the source to the

destination. This approach is taken in order to increase bus

utilization and avoid bus allocation deadlocks.

32

Mp
124K

M13 1 M33 M32 M31

S. Local

LSI11/23
ISIll BUS

Processor

Mp
4K

FIGURE 4.1.1 - DETAILS OF A COMPUTER MODULE IN Cm*

(K. ml

K.map
1

K.map
3

• Computer
Modules

K.map
2

r M22

FIGURE 4.1.2 - A SIMPLE Cm* THREE-CLUSTER NETWORK

M
21 M23

33

(2) FTMP [HOPK76b],[HOPK78]

The FTMP (Fault-Tolerant Multiprocessor) is a computer

architecture that has been studied, simulated and emulated at the

Draper Laboratory (Cambridge, MA). The target of the project is

to achieve an overall failure rate less than 10-9 failures per

hour, provided that maintenance is available within no more than

ten hours per dispatch.

The FTMP structure is composed of an arbitrary number

processor modules Tgith local memories and an arbitrary number of

memory modules, interconnected by redundant serial buses. Modules

are associated into groups of three to perform triply redundant

functions. 	All data is distributed synchronously and in

triplicate, and every module contains a voting element to mask bus

disagreements. 	All modules contain special circuits to create

logical and physical boundaries to halt the propagation of faults

from one module to another. 	The essential features of the FTMP

system are summarized in the following.

Redundant Organization

All activities in FTMP are conducted by triads of modules and

triads of buses. A module triad is formed by associating any

three like modules with one another. Thus any module can serve as

a spare for any triad. 	A three member subset of N bus lines is

chosen on a quasistatic basis to serve as a bus triad. 	These

three lines are connected to a voter in each module, thus

constituting a TMR element. 	The three active bus lines carry

three independently generated versions of the data, each version

34

coming from a different member of the triad that is transmitting

the data.

Functional Resource Allocation

The programmer of the FTMP system sees this multiprocessor as

a machine for executing job steps. The procedure for each job

step is written in a suitable language and resides in common

memory. 	Each job step is typically scheduled to occur at a given

time or following a given event. 	The relevant dispatch data for

each scheduled job is kept in a queue, where it is frequently

examined to see if the job step is eligible to be run or invoked.

The frequent examination is conducted by processors that have

completed their earlier asaignments, 	and are available to

. undertake new ones. Thus PI) allocation is dyriamic and .adjustable

according_to memory load distribution and module failures.

Synchronization

FTMP employs tight synchronization using a common time

reference that supports hardware voting, allows instantaneous

validation of internal data, configuration control and in some

cases interface data. The problem of, maintaining a continuous

timing reference 'is' solved by a faultrtolerant redundant clocking

arrangement using voltage-controlled crystal oscillators.

In -addition to the above features, the FTMP system contains,

several fault détection and isolation mechanisms. The voting

process which exists at the triad level is the primary tool for

'detecting any .faulty behaviour during - the operation of the system

[ROPK75b], [RUCS]. .

35

(3) SIFT [WENS78],[MENS72]

SIFT 	(Software Implemented Fault Tolerance) 	is an

ultrareliable computer for critical aircraft control application.

The prototype system was developed and tested at SRI. 	This

includes 	error 	detection 	and 	correction, 	diagnosis,

reconfiguration and the isolation of a faulty unit.

The structure of the SIFT hardware is shown in Figure 4.1.3.

Computing is carried out by the main processors. Each processor's

results are stored in the main memory associated with the

prOcessor. The I/O processors have much smaller computational and-

memory capacities than the main processors as they connect to the

•input and output units of the system (eg . . actuators and sensors of

the aircraft). Each processor and memory form a processing

module. Each module is connected to amultiple bus system.

The SIFT system executes a set tasks, each of which

consists of a sequence of iterations. • The input data to each

iteration of a task is the output data produced by the previous

iteration of some collection of tasks. The input and output of

the entire system is accomplished by tasks executed in the I/O

 processors. Reliability is accomplished by having a number of

processors executing redundantly the same iteration of a task; the

output of this iteration is placed in the memory of the processor.

A processor which uses the output of this iteration determines its

value by examining the output of each processor executing it and

taking a majority decision. Errors are discovered in cases of

• disagreement and are used by the executive to discover faulty

36

37

units and reconfigure the system. 	The processors in SIFT are

loosely synchronized (eg. to within 50 microseconds) since we only

need to ensure that the different processors allocated to a task

are executing the same iteration.

Fault isolation in SIFT is accomplished by several mechanisms.

Each unit is autonomous with its own control. This makes it

possible to ignore improper control signals and to time-out

signals that never arrive. Protection against corruption of data

is provided by the way in which units can communicate. A

processing module can read data from any processing module's

memory, but it can write only into its own memory. Finally, each

processor receives multiple copies of the data; each - copy . is

obtained from a different. memory over a different bus, and the-

processor uses majority voting to obtain a correct version of the

•

Formal models for scheduling strategies, software verifica-

tion and reliability prediction were developed for SIFT in order

to guarantee a correct operation within acceptable performance

limits [WENS78],[WENS72].

Bus
Controllers

a

•

Main Processing Module

•

Memory Processor

1 	1 	1 	I
I/0 Lines 	I/0

Processing
• Modules

Multi-buses

FIGURE 4.1.3 - STRUCTURE OF THE SIFT SYSTEM

38

(4) UDS [RENN78b],[RENN80]._

The UDS architecture consists of a set of microcomputer

modules connected by a redundant set of intercommunications buses.

Two types of modules exist: 	terminal modules (TM) and high level

modules (HLM). 	The TM interfaces with other modules in two ways:

1) it receives a single Real-Time Interrupt (RTI) which is common

all modules and which is used for timing and synchronization,

and 2) each TM is interfaced to all intercommunications buses. DMA

techniques are used to enter and extract data from the TM. A TM

cannot initiate bus communications. An external HLM enters

commands, data and timing information into the memory of the TM.

HLM's are responsible for coordinating the processing which is

carried out in the remote TM'S, for control of intercommunications

over the bus systems, and for highlevel.,processing such as data

• compression anddècision.making.

The UDS design is oriented towards moving "hard core" items

whose failure can cause catastrophic system failure. For example,

the buses are made independent to avoid any common failure

mechanisms. Independent clocks are used within each module; the

clocks are synchronized by the common RTI. As well, the UDS

architecture prevents the . TMs from propagating their errors to

the HLM's since the TM's are not allowed to issue communication

calls to the common bus system. Details of the UDS architecture

and the software executive are available in [8] and [9].

The design of the UDS emphasizes_testability and simplicity,

even at the expense Of the computer power and memory utilization.

3 9

1

1

1

1

1

These aspects are manifested in the following architectural

features:

Computer Utilization: 	Low speed and memory utilization enables

the designer to concentrate on the correctness of his code rather

• than its efficiency.

Error Confinement: Most TM's will be performing dedicated low

level functions and are not permitted to modify the memory of

other modules.

Minimization of Interrupts: 	Demand interrupts are avoided

whenever possible. This may . limit I/0 response to milliseconds

rather than microseconds. However, it leads to more predictable

operation, is more easily modified, and allows for software self-

defence.

Control Hierarchy: As explained previously, the HLM's control the

TM's. The programs in the TM's are self-synchronized to process

the data when they arrive and place results in their memories for

subsequent extraction by the high-level computer.

Other simplification features in the UDS architecture include

synchronous communications, timing hierarchy and I/0 timing

granularity to simplify software modifications.

(5) Matra System [SOUB77]

The Matra organization, in France, has developped a multi-

microprocessor system designed to automate the signal and data

processing functions at Attitude and Orbit Control Subsystems

40

(AOCS). 	The system consists of three microprocessora (INTERSIL

6100) using a common bus, some local memory .for the processor.

supervisor programs and global memory for the common data areas

and for the AOCS programs (Figure 4.1.4). '

Each processor is controlled by its supervisor program. When

idle, a processor will read the common supervisor table to

determine which pending task has the highest priority. 	The

processor will then that task. 	The task may generate the

activator of other tasks, through the common supervisor table.

External interrupts andSeal Time Clock Interval pulses can also

. activate tasks. The Real TiMe 'Clocka . 'are used for local processor

monitoring and cverall processaynChronization.

Fault detection is implemented using: -

a. local watch-dég with eaéh.processor (software)

. b..' processing function watch=dogS (sofware)

c. monitoring and reconfiguration capability of local
Interval times

d. self-test programs.

The systei is capable of surviving failures through:

a. halting and disengaging a failed processor

b. reallocating memory module tables in case of a failure
in memory blocks 2 to 7

c - switching the redundant memory module iMplemented for
block 1 (common data).

41

Interval Timer Interval Timer Interval Timer

Memory
Controller

'Memory 	-
Controller

Memory
Controller

Buffer Buffer Buffer

Bus

Memory Block
(Common Data)

Interrupt
Interface

I/O
Unit

Memory Blocks
2 - 7 (AOCS)

MICROPROCESSOR MICROPROCESSOR MICROPROCESSOR

__Memory Block 0
(Supervisor)

_IMemory Block 0

hl (Supervisor)
Memory Block 0
(Supervisor)

FIGURE 4.1.4 - MATRA MULTI-PROCESSOR BLOCK DIAGRAM

4 2

4.2 Architectural Features of Three Systems

Out of the systems discussed in the previous section, three were

designed for a high reliability environment: 	FTMP, SIFT and the JPL

system. Although similar in concept, these systems represent a wide

ranging set of implementations. A study of thèse features will

therefore allow a better understanding of the design of upcoming

spacecraft systems.

Table 4.2.1 is a condensed comparison of these three systems:

a) Memory: 	The JPL and SIFT both have memory which is local to each

processor while the FTMP uses mostly global memory (it has small

local caches for improved performance). 	The way the memory is

structured has two main influences: 	the mechanisms for passing

information between tasks will be very different and the use of the

buses by the FTMP will be much larger, leading to potentially

earlier saturation.

b) Number of Bus Types: 	Both the JPL and SIFT use only one type of

bus while the FTMP uses two buses in an attempt to minimize the•

potential bus loading problem.

c) Bus Replication: 	Buses in the FTMP and SIFT are quintuply

replicated while the JPL triplicates its bus.

d) Bus Controllers: 	The 	SIFT uses dedicated devices as 	Bus

Controllers while the JPL lets a task in one of the general purpose

43

processors carry out the bus arbitration functions. 	The FTMP

appears to use a decentralized bus control mechanism which resides

in each device.

e) Module Types: 	The FTMP. uses three different sorts ,of module

devices (memory, processor/cache and I/O.access). The SIFT 'also .

-uses three types of modules though. they are somewhat . different (bus

-control, -processor/memory and I/O processor). The JPL'attempts to

limit its module types to one by designing an all-purpose building-

block; although this is an interesting concept which simplifies

implementation, it is.also potentially restrictive.

f) Fault Detection: 	In FTMP, fault 'detection Is done : . by having

hardware devices compare the output of three (fixed number)

processors which carry out the same computations simultaneously; if

not all processors agree, voting is used to determine which result

is correct and which processor is faulty; this comparison/voting is

performed for each instruction. In SIFT, a similar

comparison/voting mechanism is used, however, it is implemented in

software; it allows a variable number of processors to participate

and it is carried out at fixed regular intervals, rather than for

every instruction. In the JPL system, a hardware implemented

verification mechanism is imbedded within each bus and is therefore

transparent to other modules.

g) Processor Synchronization: 	Although . in all 	three 	systems

, cooperating tasks.must be closely synchronized with respect to each

other, the actual inter-processor synchronization is implemented

differently in all three processorS. 	In FTMP, since hardware

4 4

• 1 • voting for each instruction is carried out, the processors within

triads must be very tightly synchronized. In SIFT, synchronization

is only required at the voting interval level while in JPL, since

no voting takes place, processor synchronization is not required

(of course, task synchronization still is).

4 5

FTMP
System

SIFT 	JPL

Global; processors have 	Local 	Local
a local cache memory

a) Memory

Yes II d) Bus Controller - Imbedded

g) Processor Syn- 	Tight
chronization

Loose, by interval 	Not required

Feature

I.
b) Bus, Types 	. Memory buses

Types 	Interface buses

) Bus Replication 	5

1 	

Global Bus 	Global Bus

5 	3

e) Module Types Memory 	Bus Control 	Building
Processor/cache 	Processor/Mem. 	Block
I/O Access 	I/O Proc.

f) Fault Detection By Voting, in Hardware, 	By Voting, in Software, Internal to
in triads 	variable no. of 	each Block

processors

TABLE 4.2.1 - ARCHITECTURAL COMPARISON OF THREE SYSTEMS

46

1

1

1

1

1

1

1

d. conclude by discussing the present trends of spacecraft processing

c. illustrate the use of these processors through two example systems:

• Voyageur and Galileo,

including the NASA NEEDS program.

1

1

1

1

5. THE SPACECRAFT APPLICATION ENVIRONNENT

5.1 Introduction

This section will introduce the computing environment of

spacecraft applications. It is not intended as a comprehensive review

of spacecraft systems but rather as a short introduction to the

concepts, techniques and elements of spacecraft computers. The next

four subsections will:

a. present the processing requirements in terms of functions and

resources needed,

b. describe some of the computers that have been or will be used in

spacecrafts,

5.2 Processing Requirements

Typically, the on-board computing functions include [HOLC80]:

a. pyro/propulsion control,

b. mechanical actuator control,

c. radio control,

d. data handling,

4 7

e. command decoding,

. f. instrument control,

g. attitude control,

h. data compression.

Some functions, such as actuator or instrument control, involve

issuance of predetermined command sequences, while functions such as

attitude control involve complex calculations based upon readings from

instruments (eg. star tractors and gyros). The developers of the

Fault Tolerant Spacecraft Computer determined that attitude control

and navigation were the primary functions requiring automation and

that it was their processing requiremens that most affected the FTSC

design; Table 5.1 summarizes the FTSC designers conclusions regarding

the on-orbit computation requirements [FANE77]. The support of the

science instruments is another main area of computer utilization; the

computers must be capable of reading all the data provided by the

instruments and perform the necessary calculations to prepare the data

for transmission. Table 5.2 gives the maximum data rate and the

• amount of memory space required for each of the instruments of the

Galileo orbiter spacecraft.

48

Maximum
Data Rate, 	Memory Size, kbytes

bits/s 	ROM 	RAM Instrument

Program and data 	Computation rate,
Task 	memory, words 	operations/sec

Attitude control and 	2,343 	6E1,250:
pointing

Telemetry 	 1,281 	13,692
ComManding 	 912 	. 19,500
Supervisor 	. 2,909 	33,042
Subsystem management 	876 	1,875 .

-and recovery
Subtotal 	8,321 	, 	136,359

Payload processing 	6,500 	. 	60,000 	-
Subtotal 	6;500 	60,000

Memory size without 	10K
payload processing

Memory size-with 	16K
payload processing 	-

Maximum computation rate 	• • • 	- 200,000

TABLE 5.1 - ESTIMATED ON-BOARD PROCESSING REQUIREMENTS
(Reprinted from [FANE77])

Solid state imaging (SSI) 	768. 	3 	3.5
Near infrared mapping 	 .

spectrometer (NIMS) 	11.52 	3 	1.75
Photopolarimeter radiometer (PPR) 	0.18 	4 	0.25
Ultraviolet spectrometei (UVS) 	1.0 	- 	0.75
Energetic particle detector (EPD) 	0.92 	6 	3
Plasma subsystem (PLS) 	0.60 	8 	8
Magnetometer (MAG) 	0.24 	4 	4
Dust detector subsystem (DDS) 	0.024 	3 	2
Plasma wave subsystems (PWS) 	• 645. 	- 	0.25

(contains no microprocessor)

TABLE 5.2 - GALILE0 SCIENCE INSTRUMENT SUMMARY

49

5.3 Spacecraft Computers

The first general purpose programmable computers to be flown

onboard spacecraft were centralized machines monitoring and

controlling the various subsystems. 	More recent spacecraft designs

have taken the approach of using more than one computer and of having

computers dedicated to certain functions such as attitude control,

while under the overall command of a central command and control

computer.

The two extremes in spacecraft computer architecture are the

completely centralized •and the fully distributed. The completely

centralized approach has one large central computer serving the needs

of all the subsystems, while the fully distributed approach consists

of several small computers serving these needs as peers. 	Neither of

these approaches is optimal for the space environment. 	The highly

centralized system calls for significant data communication overheads

and complex resource allocations within the computer while a fully

distributed system can result in system coordination problems

[HOPK75a].

• 	The approach being taken in current spacecraft computer system

architectures is very much a combination of these two extremes which

permits capitalizing on most of the advantages of both. The Unified

Data System (UDS) which is the model for the command computer system

aboard the most recent satellite, Galileo, is representative of that

approach (see Section 4). Table 5.3 lists the characteristics of some

current on-board computer system [STAK81] while Table 5.4 details the

50

Mission Computer

1. NSSC-1
2. AOP
3. NSSC-1
4. AOP
5. OBP
6. DOC
7. GCSC
8. CCS
9. FDS
10.•CCS
11. AACS
12. SCP-234
13. SCP-234

(USAF)
14. COSMAC
15. NSSC-1*
16. AAC-16ms*

17. CDC 469

MINS (Generic)
Landsat-B/C
SMM
IUE
OAO-C
ATS-6
Viking Lander
Viking Orbiter
MJS-77 (Voyageur)
MJS-77 (Voyageur)
MJS-77 (Voyageur)
TIROS-N
Block 5D

MISÂT Phase IIIB
Landsat-D
Galileo

REA°

TTL
TTL
TTL
TTL
DTL
LPTTL
LPTTL

1.5

1.4
1.3
2.0
5.0
5.0

DMOS

CMOS
CMOS

2.48
1.37
1.37
2.34

characteristics of the processors available for space missions in the

1980s [ROLC80].

Memory Type of Cycle
Number Memory Size Type Processor Time

(in bits)

1 . or 2 	8-64K by 18 CORE
1 	4K by 18 , PWM
2 	48K by 18 PWM
2 , 	12K by 18 .PWM
1 	• 16K by 18 CORE
2 	4K by 18 PWM
2. 	18K by 18 PWM
2 	8K by 18 PWM
2 	8K by 18 CMOS

8K by 18 PWM
2 	8K by 18 PWM
2 	I8K by 18 • CMOS
2 	16K by .18. CMOS

1 	16K by 18 CMOS 	CMOS 	1
2 	64K by 18 CORE 	TTL 	1.5
2 	32K by 18 CMOS 	LSI bit 	0.25

slice
2 	16K by 18 Plated PMOS/LSI

Wire

Abbreviations

CMOS
DTL
LPTTL

- Complementary Metal-Oxide Semiconductor
- Diode-Transisor Logic
- Low-Power Transisor-Transistor , Logic

PWM 	- Plated-Wire Memory
TTL 	7 Transistor-Transistor Logic.
AACS, - Attitude and Articulation Control SubsysteM
AOP 	- Advanced On-board Proces'sor = NSSC-1 	•

- Computer Command Subsystem
- Digital Operations Controller
- Flight Data Subsystem
- On-board Processor

NSSC-1 - NASA Standard Spacecraft Computer
MMS 	- Multimission Modular Spacecraft
SMM 	- Solar Maximum Mission
IUE 	- International Ultraviolet Explorer
OAD 	- Orbiting Astronomical Observatory
ATS-6 - Applications Technology Satellite

II TABLE 5.3 - .CRARACTERISTICS OF SOME . CURRENT ON-BOARD COMPUTER
'SYSTEMS 	(from [STAK81])

CCS
DOC
FDS
OBP

51

Configuration

Cost ($K)
- single string

Weight (lbs)

Power (W)

Word Length (bits)

Maximum Memory
Size (words)

Memory Technology

CPU Technology

NA 115 392 205

17.4

31

18

18 12.5 29

240 25 34

16/32

2 CPU's.
2 Stint".s
2 APU's

2 Sing. 	2 Sing. 	2 Sing.
String 	String 	String
CPU's 	CPU's

2 CPU's
2 Stint's

355

NA

28

18/32 16/32 	16/32

TTL-LSI 	TTL-LSI 	Hyb. TTL Shot. BIP Schot. TTL
CMOS/SOS 	TTL

64K

Core

96K

Core NMOS

40K ,64K:

Sani-
Cond.

- 64K: -

CMOS

Ave. Inst. Speed
(Sec) Add

Nuit

Floating Pt.

Reliability (2 Yr)

Quai. Status

5
38

No

.96

Space

2.5
_21

Yes

.98

Space 	Space
(1980)

.99

5 3.2
33 35

Yes

.96

Yes

.87

None None

.3
5.4

Yes

None None Space Fit. Exp. Galileo
(1984)

SMM (1980) None
Space
Telescope
(1982)

Identification
IBM

NSSC-I

Martin M.
Enhanced 	IBM
NSSC-I 	NSSC-II

	

Litton 	App. Tech.

	

4516E 	ATAC-16MS

TABLE 5.4 - CHARACTERISTICS OF PROCESSORS AVAILABLE FOR SPACE
MISSIONS IN THE 1980s [HOLC80]

5 2

IBM
NAR 	Teledyne 	Raython 	-CMC 	' 	Shuttle

DF-224 	SEC16e-43 	FTSC 	469 	. GPC Identification

Configuration 3 CPU's 	2 CPU's 	4 CPU's 	2 Sing. 	1 CPU
String 	1 IOP
CPU's

Cost ($K)
- single string 	2250 	NA 	1000 	650 	500

Weight (lbs) 	102 	15 	50 	10 	59

Power (W) 	85 (56) 	44 	35 	20 	350

Word Length (bits) 	24 	16 	32 	16/32 	36

Maximum Memory 	 16K
Size (words) 	64K 	64K 	96K 	16K (32K) 106K

(OFT)

Memory Technology 	Plat.Wire CMOS 	CMOS/SOS Plat.Wire Core
(CMOS) 	 (CMOS)

CPU'Technology 	PMOS 	CMOS/SOS , CMOS/SOS 	PMOS/LSI :TTL
MSI/LSI

Ave. Inst. Speed
(Sec) Add 	1.6 	5.4 	5.4 	4.0 	1.9

Mult 	8 	11 	11 	10.4 	5.7

Floating Pt. 	No 	NA 	NA 	No 	Yes

Reliability (2 Yr) 	.97 	.98 	.98 	NA 	NA

Quai. Status 	Space 	Ndne 	None 	. 	Space 	Space

Space Fit. Exp. 	Space 	None 	None 	HEAO 	Shuttle
Telescope 	 (1980)
(1982)

TABLE 5.4 (Cont'd) 	GHARACTERISTICS OF PROCESSORS-AVAILABLE FOR SPACE
MISSIONS IN THE 1980s [HOLC80]

53

5.4 Example Spacecraft Systems

5.4.1 Although there have been many spacecraft launched, two systems

are remarkable-from a computer utilization point of view. They

• are . the Voyageur Spacecraft and the Galileo Orbiter Spacecraft,

.quickly described here..

5.4.2 The VoyageriSpacecraft had three separate computers onboard -

the Command Computer. System (CCS), the Flight Data System(FDS)

• and the Attitude and Articulation Control System (AACS).

[GILL80],[SCUL80]

The CCS (see Figure 5.1) is responsible for the decoding and

distribution of commands and for the coordination of spacecraft -

. functions. It has the following features:

- 4K memory

- 18 bit word length

- priority interrupt structure

- add/subtract cycle time of 90 microseconds. 	It has an

average utilization of approximately 5%.

The FDS (see Figure 5.3) is the computer used for science

instrument control and data processing. It is characterized

by:

- 8K memory

- 16 bit word length

- 4 DMA channels

- an add/subtract cycle time of 15 microseconds

5 4

TIMING
OSC
CLK &

TIMING

• le Kt° re A

INTERRUPT

PROCESSOR

A

CENTRAL

PROCESSOR

A

F. 	DIGITAL DATA

DISCRETE COMMANDS

TELEMETRY 10 POT

OUT-

PUT I

INTERRUPT

PROCESSOR

TIMING 4 MEMORY
OSC

CLX

TIMING

2.4 KHZ l.

2.4 KHZ

INPUTS

SPACECRAFT

& INTERNA . "1"---r."*"

•AUMORIES AP.E OPERATED

1/2 READAYRITE AND

wRITE PROT ECTED (READ ONLY)

F_ DIGITA1 DATA

DISCRETE COMMANDS

	 TELEMETRY TO F05

our
PUT 2

OTHER SIMSYSTGli

01611CONItOL iltMENTS

DIIVER 	 eaorteutoni
inuoit 	reap

°true $1.111311n 1FIAS

-0111t11 COMM(Elth«NIS

FIGURE 5.1 - VOYAGER COMPUTER COMMAND SYSTEM
(Reprinted from [SCUL80])

FIGURE 5.2 - VOYAGER ARTICULATION AND ATTITUDE CONTROL
SUBSYSTEM 	(Reprinted from [SCUL80])

55

&4EmORy A mEMORY I

DmA

COmmAND
GENERAToR

FROcEsSOR

DOwN LINK
mODULATOR

VO

OSC

TimING CHAiN

ENGINEERING
TREE &

ADc

ENGINEERING
DATA souRcEs

TAPE
RECORDER

I/O

Acs

COS GOLAY
CODER

CODED
COMMAND

ENTRY

STATE

•VECTOR

To AU.
 BLOCKS

SCIENCE 	. 	, SCIENCE

	

V 	
1

	

o 	 INSTRUMENTS

TABLE 5.3 - VOYAGEUR FLIGHT DATA SUBSYSTEM

56

The AACS (see Figure 5.2) controls the attitude of the space-

craft and is responsible for navigation. It is characterized

by:

- 4K memory

- 18 bit word length

- a priority interrupt structure

- an add/subtract cycle time of 32.2 microseconds. 	It

has an activity rate (utilization?) of about 95%.

5.4.3 The Galileo Spacecraft

The Galileo Orbiter spacecraft has two types of computer

systems, the Command Data System (CDS) and the Attitude and

Articulation Control System (AACS). The AACS is responsible

for maintaining perturbations of the spinning section within

acceptable levels to allow precise pointing of the scan

platform. The CDS co-ordinates the activities of the space-

craft: 	co-ordination of fault protection, 	isolation and

recovery; supplying the spacecraft clock and timing signals;

collecting, 	formatting and encoding telemetry data; 	and

•
analyzing and distributing commands received from the ground.

In addition to these two subsystems, embedded processors are

also part of most scientific instruments on board.

The CDS is a distributed computer system using six processors

based on the Unified Data System described by Rennels in

[RENN78a] and summarized in Section 4 of this report. It has

overall responsibility for the control of the spacecraft and

57 .

for the operation of the science instruments as well. 	Both

high level modules (32K RAM, IK ROM) and low level modules (16K

RAM, IK ROM) are based on the RCA 1802 microprocessor with a 10

microsecond add/subtract cycle time. 	The bus data rate

806.4 kbps.

The AACS ' uses two : (one redundant) ATAC-16M microcomputers;

these computers are built using. four 4—bit slice 2900—series

:processing elements. The detailed characteristics of these

.processors are given-in Table' . 5.5.

58

Memory Size 30K words1UM
,2K words ROM

Execution Time

add/sub (
mult (s)
div (s)

Weight 	 <18

Power (Watts) 	<34

Word Size (Bits) 	16

No. Instructions 	129

No. Interrupts 	8 levels vectored

Programmed I/0 	Up to 500K words/second

DMA 	 Yes

Floating point words 	32 bits, 24/8 format

Fixed point words 	8, 16, 32 bits

Microprogrammed 	Yes

Memory Addressing 	64K words directly
addressed

Fixed 	Flciat

	

00.75 	5.75

	

05.50 	16.00

	

11.25 	28.50

- - Address Modes 	8

No. General Regisçers 	16

TABLE 5.5 — GALILEO AACS MLUACTERISTICS
(Reprinted from [GILL80])

5 9

1

1

1

1

1
I 5.5 Automation Trends

5.5.1 The Mariner Mars spacecraft (1969) was the first interplanetary

spacecraft to use an inflight programmable computer. 	Since

then, the use of computers aboard spacecraft has been

exhibiting a steadily inàreasing trend-as exemplified- - by the

'Galileo spacecraft scheduled to go into orbit around Jupiter in

1985 with its twenty processors onboard. The growing use of

computers aboard spacecraft has been driven by the increasing

requirements for more autonomoUs operation. These requirements

are discussed-below [AREN77].

i) The need to protect against catastrophic failures. 	This

- requirement is spear-heading - the development of- fault-

talerant computer architectures.

ii) The need to perform very predictable and -highly- repetitive

functions. 	Attitude control, for example, requires much

automation to be effective.

iii) The need to prevent the loss of spacecraft communications.

The spacecraft needs to be able to take care of itself

during periods when it is out of contact with tracking

stations.

iv) The need to accomplish mission objectives during very narrow

v) tTih:e ::::" :Or real-time or near real-time control in such

applications as the control of the descent of a vehicle to a

planet's surface.

vi) The need to perform functions aboard spacecraft at great

distances from the Earth. 	Many functions must be automated

60

since the round trip communication delay inhibits effective

ground control.

vii) The need to implement and support:increasingly more complex

subsystems. Many subsystems require substantial processing

(eg. 	some attitute control subsystems use statistical

• filtering techniques to increase precision) and some have

• processors incorporated into their design.

viii) The need to undertake multi-year missions. 	This requires

more autonomy so that the spacecraft can take care of

itself.

• ix) The need 	to make better use of mission resources.

Increasing emphasis is being placed upon autonomous space-

craft capabilities so that the quantity of Earth station

equipment and the size of mission operations staff can be

minimized. Figure 6.1.1 (reprinted from [GEVA79]) shows the

present 	trend of ground operation costs per mission:

illustrates • how advanced automation will reduce overall

mission costs.

5.5.2 As mentioned previously, the "intellitence" of spacecraft has

•been steadily increasing since a stored program computer was

first used in 1969 on the Mariner Mars spacecraft. 	Three

•characteristics of a spacecraft which serve to define its

"I.Q." are the number of processors onboard, the average speed

• of these processors, and the amount of memory available (see

[AREN77]). 	Figures 5.5 through 5.7 show how spacecraft

intelligence and autonomy have increased in recent years.

6 1

MV62

• MVM
ume

.mmm
1

1970 : 1980 1990

180

160

140

g 120

100
-e
e. 80

60

40

20

0
1960

GALILEO

VOYAGER
•

V I K INC

!MARS ORB.

LANDSAT
• .

SPACE TELESCOPE

(5 YEARS1 	;
MARS EXTEND

ROVER •

MARS ROVER,

1 	I 	I 	I 	I

e

e ee*

e
„er

1 11

1(1

o

N
U

M
B

E
R

 O
F

 P
R

O
C

E
S

S
O

R
S

4

2

YEAR

FIGURE - 5.4 - TREND IN.GROUND OPERATION:COSTS PER MISSION

(Réprinted_from IGEVA79])

#47. •n
n • ____rt 	• 	1 	_i

1. n 	67 • / n .) 	/I 	71 	75 • 	77 	79 	81 	83 • 	RS 	87

YEAR

FIGURE 5.5 - NUMBER OF ON-BOARD PROCESSORS
(Reprinted from [BIRD79b])

62

rr

0
LI 	5
w 10

. 	 Li)

tr
.0

Q.

M .M 77 79

YEAR

BI 	83 	85 	81'

FIGURE 5.6 — AVERAGE PROCESSING SPEED
(Reprinted from [BIRD79b])'--

10
7

ID" 'T 1 	-I

T
O

T
A

L
 C

O
R

E
 (

B
IT

S
)

In
s

10
6

.1

n

_e•

I 	I 	1 	1 	1 	1 	1 	1 	1 	1
6567e717375 7779 ue385 87

YEAR

- FIGURE 5.7 	TOTAL ON,-BOARD MEMORY
(Reprinted from [BIRD79b])

10
a

10
4

63

Ground 	• Orbital 	Data
Budget Category 	Operations 	Operations 	Analysis 	Design

II 	
.

1. Mission Items 	. 	122/90 	-- 	15/10 	90/45

.II• 	. 2. Multimission Operation 	74/55
Support

II 	3. Post-Mission Data
. 	

. __ 	-- 	103/70 • 	-- •
Analysis

11 	4. Network Operations 	44/30 	--- 	--. 	• 57/30

5. Shuttle/Skylab Payload 	14/10 	20/10 	80/40

II 6. SPace Transportation 	182/135 	•. 	-- 	••--

mi 	7. Space Industrialization 	224/170 	• 24/10 	• 	-- 	72/35

Il ' 	Totals 	'646/480 	• 	38/20 	138/90 	• 299/150

II

, Budget Category 	- Test 	Other 	TOTAL

I .

	1. Mission Items 	116/80 	91 	434/225

2. Multimission Operation 	 74/55
Support

II 3. Post-Mission Data 	__ 	-- 	103/70
Analysis

II •4. Network Operations 	8/5 	108 • 	217/65

• Shuttle/Skylab Payload 	100/65 	-- 	214/125

II6. Space Transportation 	908/605 	840 	1930/740

II7.
Space Industrialization 	120/80 	160 	600/295

Totals 	1252/835 	1199/0 	3572/1575

II
Legend

II x/y x: cost without advanced
automation in the 1980s

TABLE 5.6 - ESTIMATED NASA YEARLY 	y: potential savings by 2000
•
 II 	

COSTS [GEVA79] 	• 	with advance automation in
1978 million $

64

5.5.3 Committed to this trend, NASA has recently embarked upon a

multi-year program which establishes a framework for computer

systems research and development. The program is called NASA

End-to-End Data System (NEEDS) and it aims to improve the

effectiveness and efficiency of NASA's overall data/information

management system by improving the performance and functional

capability of on-board processors in the next ten to fifteen

years [HOLC80]. The principal Advanced On-board Computing

Facility components of NEEDS are: •

1. Distributed Microprocessor Data Systems. The development of

a microprocessor based distributed data system capable, in

particular, of real-time on-board determination of accurate

position, •time and attitude.

2. Information Adaptive System. A set of hardware and software

facilities interfacing.directly with the sensors on board

the spacecraft capable of direct preprocessing and editing

to the maximum extent possible in order to minimize the

amount of data transmitted and the need for.ground control.

3. Massively :Parallel Processor (MPP). 	High speed array

processors Capable of real-time image :.processing to be

developed first for ground use and eventually for on-board

use (1990s).

4. Synthetic Aperture Radar (SAR) Processor. 	.Development

concept similar to the MPP,

5. General Purpose On-board Computer Technology. 	In order to

:6 5

limite proliferation, NASA has decided to standardize on the

NSSC computers as much as possible. Since there is a large

performance gap between the NSSC and the MPP, an.

intermediary solution will.have to be developed.

6 6

II 6. SUMMARY

This report presented a basic review which serves as a background for

further studies aimed at developing an integrated set of computer aided

engineering tools for multiprocessor design. In particular, this report

contains:

a. a review of architectures useful for the implementation of

distributed systems: 	the common bus is the most widely used

architecture, with multiple bus levels systems now appearing and

with more advanced architectures now being studied.

b. an outline of the basic concepts of: .the software meChanisms

required for the control and .co-ordination of procesSes through

• synchronization and scheduling in distributed real"time systems.

c. a description of five current multiprocessor systems designed for

spacecraft and avionics applications.

d. an introduction to current -state and trends in

spacecraft computing through a review of processing

processors used, systems implemented and development

the field

requirements,

trends.

6 7

1

Operating
No. 5, pp.

Proceedings

REFERENCES

[AIAA77] AIAA/NASA/IEEE/ACM Computers in Aerospace Conference, 1977, AIAA
Paper #77-1377.

[ANDE75] G.A. Anderson and E.D. Jensen, "Computer interconnection struc-
tures: Taxmomy, characteristics and examples:, ACM Computing
Surveys, Vol. 7, pp. 197-213, December 1975.

[AKEN77] W.E. Arens, "CCD Architecture for Spacecraft SAR Image Proces-
sing", Proceedings of the 1977 Computers in Aerospace Conference,

. 	Los Angeles, November, 1977, AIAA PaPer # 77-1392.

[AUKS74] A.J. Aukstikalnis, "Spacedraft Computers",'Astronautics and Aero-
nautics, July/August, 1974.

[BARR80] R.C. Barry and D.J. Reifer, "Galileo Flight Software Management-
The Science Instruments", Proc. 4th Computer Software and
Applications Conference, Chicago, 1980, pp. 684-690.

[BIRD794 T.H. Bird and B.L. Sharpe, "Spacecraft Automated Operations",
Proceedings of the Annual Rocky Mountain Guidance and Control
Conference, 1979, Paper # AAS 79-016 (Advances in the Astronau-
tical Sciences, Volume 39).

[BIRD79b] •T.H. Bird and' R.R. Sheahan,. - 	"Trends in- the Automation-Of Plane- '
tary Spacecraft", Astronautics.and Aerônautics, May, 1979.

[CARB77] R.L. 'Carberry, "Trends in Aerospace Computers", Prod. 1977 Compu-
ters in Aerospace Conference; 77, pp. 7-10. •

[COHE75] E. Cohen and D. Jefferson, "Protection- in the Hydra
System", Operating Systems_Review, ACM SIGOPS, Vol. 9,
141-161„ November 1975..

[COOP75] A.E. -Cooper, W.T. Chow, "Shuttle Computer Oomplex",'
of the': IFAC 6th World Congress, 1975.

[CORL65] W.R. Corliss, "Space Probes and Planetary Exploration"-, D..yan
Nostrand Inc., Princeton, New Jersey, 1965. 	"

[CROS77] W.A. Crossgrove, "Distributed systems: 	The next integration
method", Proc. AIAA 2nd Digital Avionics Systems Conference, 77,
pp. 45-53.

[DESP79] A.M. Despain and D.A. Patterson, "X-Tree: 	A Tree Structured
Multi-Processor Computer Architecture", Proc. 5th Symposium on
Computer Architecture, April 1979, pp. 90-101.

[DESW81] Y. Deswarte et al, "A.Fault-Tolerant Multi-Microprocessor Archi-
tecture for SARGOS" -, lléh International Symposium on Fault-

. 	Tolerant Computing, June 1981.

68 '

[DIAS81] . D.M. Dias and J.R. Jump, "Analysis and Simulation of Buffered
Data Networks", 'IEEE Transactioon on Computers, Vol. C-30, April
1981, pp. 273-282.

•[DYER77] M.C. Dyer, "Design and Development of Distributed Systems for
Aerospace:. A Hardware/Software Approach", Proceedings Of the

• AIAA/NASA/IEEE/ACM. Computers in Aerospace Conference, Los
Angeles, November.1977,:AIAA Paper #77-1450. - .

[ENSL77] P.H. Enslow, "Multiprocessor . Organization - A Survey", ACM Compu-
ting,Surveys, Vol 9, No. 1, March 1977, pp. 103-129.

[FANE-79.] E.V. Fanelli.and H. Recht, "The Fault Tolerant .SpaCeborne Compu-
ter", Proceedings of the AIAA 2nd Digital Avionics System Con-
ference, 1977, AIAA Paper 77-1490.

[FENG79] T. Feng, C. Wu and D.P. Agrawal, "A MiCroprocessor-Controlled
-Asynchronous Circuit Switching Network", Proc. 6th Symposium on
Computer Architecture, April 1979, pp. 202-215. .

[FRAN81] M.A. - Franklin, "VLSI Performance Comparison of Banyan, and
Crossbar Communications Networks", IEEE Transactions on -Compu-
ters, Vol.-C-30, pp. - 283-291, April 1981. '

[FULL78] S.H. Fuller et al, "Multi-microprocessorsi . an overview and
working example", -Proceedings of the IEEE, Vol. 66,:No. 2, - pp.
216-228, February 1978.

[GEVA79] W.B. GeVarter, E. ileer, "ReqUirements and Opportùnities for Auto-
• noMous Systems in. Space", -.Advances in the Astonautical Sciences,

: 	Volume 39,-1979 i AAS Paper #79-011

[GILL79] G. Gilley, "The Fault Tolerant Spaceborne Computer", Advances in
the Astronautical Sciences, Volume 39, 1979, AAS Paper #79-015.

[GILL80] G. Gilley, "Digital Hardware for Use in Spacecraft Control Appli-
cations", Advances in the Astronautical Sciences, Volume 42,
1980, Paper # AAS 80-031.

•
[GIOF81] G. Gioffi et al, "MuTEAM: Architectural Insights of Distributed

Multi/Microprocessor System", llth International Symposium •on
Fault-Tolerant Computing, June 1981.

[GORD79] J.F. Gordon and A.J. Fucho, "Autonomy in Spa6e -Navigation",
Astronautics and Aeronautics, May, 1979.

[GRIN80] A. Grinarov, L. Kleinrùck aneM.. Gerla, "A:Highly
Distributed Loop Network Architecture", 10th International, Sympù-

-sium on Fault-Tolerant Computing, October 1980. •

[HAMA80] V.C. Harnacher and G.S. Shedler, "Performance of a-Collision-free
• - Local 'Bus Network having Asynchronous - Diàtributed Control", Proc.
• 7th Symposium on Computer. Architecture, May 1980, pp. 80-87.

6 9

[HARR79] J.A. Harris and D.R. Smith, ,"Simulation Experiments on a Tree
Organized Multicomputer", Proc. 6th Symposium on Computer Archi-

• 	tectime, April 1979, pp. 83-89.

[HECH77] H... HeCht, - ."Fault-Tolerant Computers for Spacecraft", Journal of
Spacecraft, Volume 14, Number. 10, October 1977.

[HOLC80] L. Holcomb, "Overview of NASAs On-board Computing Technology
. 	Program", Proc. of COMPCOV 1980, TEEE cat, 80C1-fl491-0C,,pp. 117-

124.

[HOPK75a] A.L. Hopkins, "Hierarchical Autonomy in Spaceborne Information
Processing", Proceedings of IFAC 6th World Congress, Cambridge,
Massachussets, U.S.A.

[HOPK75b] Hopkins, A.L. and Smith, T.B., III, "The architectural elements
of a symmetric fault-tolerant multiprocessor", IEEE Trans.
Comput., Vol. C-24, No. 5, pp. 498-505, May 1975.

[HOPK78] Hopkins, A.L. et al, "FTMP - A Highly Reliable Fault-Tolerant
Multiprocessor for Aircraft", Proceedings of the IEEE, Vol. 66,
No. 10, October 1978.

[HOR081] E. Horowitz ad A. Zorat, "The Binary Tree as an Interconnection
Network: Applications to Multiprocessor Systems and VLSI", IEEE
Transaction on computers, Vol. C-30, April 1981, pp. 247-253.

[JENS76] E.D. Jensen, K.J. Thurber and G.M. Schneider, "A review of sys-
tematic methods in distributed processor interconnection", IEEE
International Conference on Communications, June 1976, pp. 7-17
to 7-22.

1JENS78] E.D. Jensen, "The Honeywell experiMental distributed processor -
An overview", Ccimputer , pp. 28-37, January 1978. 	- 	.

1JONE77] Jones, A.K. et al; "Software management of Cm*, a distributed
- 	multiproceSsor -, in AFIPH Conference Proceedings; Vol. 46, pp.,

657-663, 1977.

..[JONE79] A.K. Jones et al, "Star0S, a multiprocessor operating system for
the support of task forces", Proceedings of..thè 7th . Symposium on
operating systems principles, pp. 117-128, December 1979.

[JONE80] A.K. Jones, P. Schwarz, "Experience- using multiprocessor systems
- A status report",, ACM Computing Surveys, Vol. 12, No. 2, pp. .
121-167, June 1980. .

1KATS78] D. Katsuki et al, "Pluribus: 	An Operational fault-tolerant
microprocessor", Proceedings of the IEEE, Vol. 66, No. 10,
Ootober,

[KINN78] 	Kinney -: and R.G. Arnold, "Analysis of a Multiprocessor System.
. 	with a Shared Rus", Proc. 5th Symposium on CoMputer , Architec-

ture", April 1978, pp. 89-95. 	'

[KWAN811 C.L. Kwan and S. Toida, "Optimal Fault-Tolerant Realizations of
Some 'Classes Of Hierarchical Tree Systems",' llth International
Symposium on Fault-Tolerant Computing, June 1981.

[LEVI75] R. Levin et al, "Policy/Mechanism Separation in Hydra", Operating
Systems Review, ACM SIGOPS, Vol. 9, No. 5, pp. 132-141, November
1975.

[LIU80] 	T.S. Liu, "Availability Analysis of Tree-Structured Computer
Communication Systems", 10th International Symposium on Fault-
Tolerant Computing, 10th International Symposium on Fault-
Tolerant Computing, October 1980.

[MAEK79] M. Maekawa, "Experimental Polyprocessor System (EPOS) - Architec-
ture", 6th Symposium on Computer Architecture, April' 1979.

[ORNS75] S. Ornstein et al, "Pluribus: A reliable :Multiprocessor";.Pro-
ceedings of the AFIPS, National' Computer Conference, AFIPS.press,
1975.

[OUST80] J.K. Ousterhout et al, "Medusa: 	an experiment in distributed
operating system structure", Communications of the 'ACM, Vol. 23,
No. 2, pp. 92-105, February 1980.

[PATT79] D.A. Patterson, E.S. Fehr and C.H. Seguin, "Design Considerations
for the VLSI Processor of X-Tree",. Proc. 6th Symposium on Compu-
ter Architecture, April 1979, pp. 99-101.

[POWE78] D. Powell and J.G. Laprie, "RHEA: 	A System for Reliable and
Survivable Interconnection of Real-Time Processing Elements", 8th
International Symposium on Fault-Tolerant Computing, June 1978.

[PRAD81a] D. .Pradhan and S. Reddy, "A Fanit-Tolerant Communication Archi-
tecture for Distribilted Systems", llth International Symposium on
Fault-Tolerant Computing, June 1981.

[PRADSIb] D. .Pradhan, 	"Interconnection Topologies .for Fault-Tolerant
• Parallel and Distributed Architectures"; Proceedings 1981 Inter-
national'Conference on Parallel Proceasing, August 1981.

[PRAD81c] D. Pradhan, "Processor.Interconnection Architectures for Fault-.
Tolerance and Diagnosability", Technical Report; Oakland Univer-
sity, Rochester, Michigan, September 1981.

[RENN78a] D.A. Rennels, "Reconfigurable modular computer networks for ,

spacecraft on-board processing", IEEE Computer, pp. 49-60, July
1978.

[RENN78b] Rennels, D., "Architectures for Fault-Tolerant Spacecraft Compu-
ters", Proceedings of the IEEE, Vol. 66, No..10, October 1978.

[RENN78c] Rennels, D., "Distributed Fault-Tolerant Computer Systems", Com-
puter, Vol. 13, No, 3, pp. 55-66, March. 1980.

: 71

[ROSS79] M.S. Ross, "NASA Standard Computers: A Description and Compari-
son", Advances in the Astronautical Sciences, Volume 39, 1979•AAS

• Paper # 79-024.

[SCUL80] J.R. Scull, "On-Board Computers for Control", Advances in the
Astronautical Sciences, Annual 'Rocky -MoUntain Guidance and Con-
-trol Conference, Volume 42, 1980, AAS 80-030.

•[SIEW78] Siewiorek, D. et al, "A study of t.mmp, Cm*, and C.vmp: Part I -,
Experiences ' with Fault tolerance .in Multiprocessor Systems",
Proceedings Of the IEEE, Vo. 66, No. 10, pp. 1178-1199, October
1978.

[S0L079] M.H. Solomon, R.A. Finkel, "The Roscoe distributed operating
system", Proceedings of the 7th symposium on operating systems
principles, pp. 108-118, December 1979.

[SOUB79] Soubirou, J., "Multiple-Microprocessor Systems in Attitude and
Orbit Control SubSystems",' Proceedings of AOCS Çonference,-

- Noordwijk, Oct 77, pp 233-239.-

[STAK81] P. Staken, "One Step Forward -'Three Steps Backup, Computing in
' the US Program", Byte, September 1981, pp. 112-144.

[SWAN77] Swan, • R.J. 'et al, -. "A modular, multi/Microprocessor", in AFIPS
' • 	tonference Proceedings, Vol. 46, pp. 637-644, 1977.

[WENS72] Wenàley, J.H., "SIFT software implemented for fault tolerance"-,
IA-I...Proceedings of Fall Joint Computer Conference„ AFIPS Press,
Montvale, N.J., 1972 - , Vol. '41, pp. 243L253. •

[WENS78] Wensley, J.H. et al, "SIFT:- 	Design and ,Analysis of a Fault-
yrolerant Computer for Aircraft Control -, Proceedings of the IEEE,
"Vol. - 66, -No. 10, October 1978. -

[WILS80 .1 L.S. Wilson, "Needs of the - 80s", Aeronautics and Astronautics,
April 1980. 	 _ _

[WITT80] L.D. Wittie, A.M. van Tillborg, "MICROS, a distributed operating
system for MICRONET, a reconfigurable network computer", IEEE
transactions on Computers, Vol. C-29, No. 12, pp. 1133-1144,
December 1980.

[WITT81] L.D. Wittie, "Communications Structures for Large Networks of
Microcomputers",, IEEE Transaction on Computers, Vol. C730, pp.
264-273, April 1981 ,

[WOLF79] J. Wcilf et al, "Design of a Distributed. ,Fault-Tol.erant Loop
Network", 9th International Symposium on Fault-Tolerant Compu-
-ting, June 1979.

[WU81] 	S.W. Wu and M.T. Liu, "A. Cluster Structure as an Interconnection
Network for Large Multimicrocomputer Systems", IEEE Transactions
on Computers, Vol, C-30; pp.- 254-264, April 1981.

7 2

[WULF72] W.A. Wulf, C.C. Bell, "C.mmp; a multi-miniprocessor", AFIPS fall
. joint computer conference,.AFIPS press, December 1972. •

[WULF74] W. Wulf et al, "Hydra: The Kernel of a Multiproceàsor Operating
.System", Communications of the ACM, Vol. 17, No. 6, pp. 337-345,
June 1974.

[WULF75]- W. Wulf* et al,""Overview of the Hydra operating system develop7
. 	ment", Operating SysteMs Review, ACM_SIGOPS, Vol. 9, No. 5, .13P.

122-132, November 1975. 	.

73

Intellitech Canada Ltd

352 MacLaren Street,

Ottawa,Ontare
K2P0M6
(613)235-5126

, 	 ,

