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Preface 

• 
I. 

j. 

• This work was performed for the Mepartment of. CoMmunicationsi 

Communication Research Centre, under DSS.Contrect No. OER81-03151, entitled 

"Computer-Aided Engineering Tools  for  SpaceCraft Multi-Microprocessor 

Design",  from September 15, 1981 to March 31, 1982. This report is  one of  

the following four contract deliverables: 

1. Executive Summary 

2. Report #1 - Review of Multiprocessor - SyStems and éheir -Spececraft 

Applications. 

. 3. Report #2 - A Survey of Computer-Aided Engineering (CAE) Tools for 

the Design and Simulation of Multiprocessor Systems. 

4. Report #3 - The Definition and Specification of an Integrated Set 

of CAE Tools for Spacecraft Multiprocessor System 

Design. 
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1. INTRODUCTION 

Interest in multiprocessor and distributed intelligence computer 

systems has increased dramatically in recent years. This interest has been 

fostered by the availability of microprocessors with even increasing 

performance/price ratios and the expected emergence of monolithic systems 

with still high capabilities in the near future. 

A significant advantage of distributed systems is their potential 

capability for providing very high reliability through redundancies and 

dynamic reconfiguration. Since reliability is of prime concern in the 

design of spacecraft systems, distributed systems have received lot of 

attention from spacecraft computer systems designers. The aim of this 

report is to review the technology of distributed systems and to establish 

their applicability to the spacecraft environment. 

•  Section 2 of the report presents different alternative architectures 

for multimicroprocessors. These achitectures differ in the degree and 

method of coupling processors and memories, their complexity and ability in 

isolating faulty components. The survey of the full spectrum of architec-

tures was conducted irrespective of the number of processors involved in 

the architecture.  Both architectures commonly used today, and those in 

theoretical or design development stages, are presented. 

Section 3 surveys Iriefly the techniques .of  designing and Implementing 

.Executive Software for. multimicroprocessors. The emPhasis is placed on the 

general functions of the exécutive and 'the  approaches followed for 

scheduling tasks and resources and for handling intertask communications 

and external interfaces'. 
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Section 4 surveys five research activities reported in the literature 

which culminated in the development of five uperimental prototype 

multimicroprocessors for avionics and spacecraft applications. These are: 

the Cm*.system (Carnegie Mellon University), FTMP (Draper .Laboratory), SIFT -

(Stanford Research Institute),. UDS (Jet. Propulsion Laboratory) .  and thé 

. french Matra system. 

Section 5 an introduction to:the field of spacecraft Computing. 

technology. 	The aim of the section is to establish a baseline description 

of the environment with attempting to be an exhaustive discussion of the 

subject. The section first reviews the processing requirements of space-

crafts, outlines the processors used, then exemplifies the subject through 

•  the use of• the example spacecrafts and finally presents • some apparent 

trends in the development of these computers. 
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2. ARCHITECTURES FOR DISTRIBUTED SYSTEMS 

2.1 Introduction 

Significant-advances in the development' of powerful and reliable 

computer systems have been based largely on the use of multiple 

processors. A system which consists of several prOcessors can be 

implemented in many variations. Normally these variations fallwithin 

• one of the following broad .classifications: 

•a. Multiprocessors: 	Defined as a computer employing two or more 
processing units under integrated control. The multiprocessor has 
the capability for the direct sharing of memory and I/0 devices by 
all processors under control of a single operating. 'system. 

b.' Multiple Computer7Network: 	These systems are cOmposed of a number 
. of heterogeneous computers loosely coupled, - sometimes only by 
communications links.- Each'processor.Operates independently-under 
control of its own operating.system, sharing data-With other 
systems as required. 

c. Multiple Computer-Distributed: 	Thèse  systems fall somewhere 
between multiprocessors and networks. 	Jensen defines them as "... 
a multiplicity of processors that are physically and logically 
interconnected to form a single system in which overall executive 
control is exercised through the co-operation of decentralized 
system elements". [JENS78] 

These definitions should not be viewed as the basis for absolute 

classification; it is possible to find examples of systems that do 

not fit exactly into a single definition and hence combine features 

from more than one definition. The real purpose of these definitions 

is to provide a framework for structuring the following discussions on 

architectures. Before proceeding further, it is necessary to point 



out that a review of all the different architectures in the three 

categories would require an effort beyond the scope of this work. The 

review conducted here in concerned primarily with multiprocessor 

architectures that are used in spacecraft applications. Since many 

multimicroprocessors and most multiprocessor systems designed for 

spacecraft applications fit within the 'distributed system group, we 

will limit our discussions to this category. 

This section will first present a classification structure 

(taxonomy) used to define the environment of distributed systems. It 

will then examine some architectures that have been implemented. 

Because of its special nature, the issue of fault—tolerance in 

architectures will be examined more closely. 

2.2 Classification of Distributed Systems  

There have been a number of  taxonomies 	to . classify 

distributed systems. 	An evaluation of these various classification 

schemes [JENS76] has concluded that the Andersen/Jensen taxonomy •  

[ANDE75] is probably the most complete. It is 'based upon the 

decomposition of systems into three primary elements: 

a) a Processing Element- (PE):  which is a hardware unit in  which .•

processes can execute; 

b) a Path which is the medium on which messages are transferred 
without alteration; and 

a Switch which intervenes .  between the sender and receiver of a 
message by modifying the message (eg. changing its destination' 
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address) and/or by routing to one of a number of alternative paths. 

To implement a distributed system, a designer must select various 

interconnection parameters. A tree structure can be used to represent 

these alternatives as shown in Figure 2.1. This tree is divided into 

four decisional levels. These levels are: 

a) Link Level: 	A designer MayHselect - to-use direct links between all 
PE's or may choose to use a Switch, thereby implementing an 
Indirect link architecture: As discussed above, the switCh will 
perform address translation. (eg. frOm e logical address to a 
physical  one) or  perform-a routing function. ' 

b):Routing Level:  For  Indirect architectures,' theHdesigner my . select 
. to centralize the switching/routing function.to  one entity or 

-decentralize to-a number of entities. - - 

• c) Path . Level:  At this level;- message tranSfer paths can be shared'or . 

dedicated. . A shared path is one to which more than two Pe's . are 
, 	connected. 

d) Architecture Level: •  The final level of the tree are the nodes 
which represent specific architectures. 

Figure 2.2 gives a number of examples of various architectures 

possible. The name of each example is preceeded by a three-character 

classification where the first letter indicates whether the link is 

. direct • (D) or indirect (I), whêther routing is non-existent (.), 

centralized (C) or decentralized (D) and whether paths are dedicated 

• (D) or shared (S). 

5 



LINKS  DIRECT 

ROUTING  

EXAMPLES  
. Tree 	. Packet. 	. 
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FIGURE 2.1 - DISTRIBUTED ARCHITECTURE TAXONOMY OF 

ANDERSEN/JENSEN 



e) ICD 	Loop f) ICD - Star g) ICS -.Centrally 
Controlled Bus 

h) IDD - Regular 
Network 

j) IDD - Irregular 
' Network 

k) IDS - Bus Windows 

a) D.D - Loop h) D,D - COmplete 	- c) D.S - Common 	d) D.S - Global Bus 
Interconnect 	Memory 

FIGURE 2.2 - ARCHITECTURAL EXAMPLES 

	

Legend:  P 	Processor 

M - Memory 
P/M - Processor & Memory 

	

S 	-'Switch 

P/S Procèssor with Switct 

Functions. 
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2,3 Implementations of Distributed Architectures  

Most of the earlier implementations of multi-processor systems 

were done for large machines (IBM 360 and 370 families; Burroughs 5000 

and 6000 families, CDC 6000, etc.) in order to improve their 

throughput. Most of these machines included a shared memory and used 

one of the following interconnection mechanisms between the 

processors, memory and I/O  processors: 

a) - common bus (Figure 2.2d) 

b) crossbar switch 

c) .  multi-port memory (Figure 2.2c) 

Enslow [ENSL77] surveys these architectures and the existing 

implementations (in 1977). He also analyzes the interconnection 

mechanisms and gives a list of advantages/disadvantages for each (see 

Table 2.1). Although these multi-processor systems do not meet the 

definition of Distributed Systems because of the extremely tight 

coupling between the components, much of the analytical work done for 

those systems still remains valid. 

More recent work in distributed systems has been directed 

• primarily towards three architectures: _bus, circuit switches and 

indirect. 	The use Of single and multiple buses has been  extensive, 

particularly for fault-tolerant systems (see Sections 2.4 and 4). 

Some theoretical foundations for bus structures have also appeared 

[KINN78], 	[HAMA80]. 	A number of indirect networks 	(Indirect 

Decentralized, Dedicated) have also been .proposed; these include 



binary-trees 	[HOR081], 	[HARR79]; 	X-trees [DESP79]; 	hypercubes 

[WITT81]; cluster structures [WU81], etc. Considerable research is 

also now taking place in the area of switching where efforts have been 

underway for some time to replace the crossbar switches with switches 

having all its advantages but none of its disadvantages. In 

particular, some of the switches which have been proposed could 

eventually be fully implemented in VLSI. Some of these types of 

switches are known as delta [DIAS81], omega, banyan [FRAN81], etc. 

[FENG79]. 

o  
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Crossbar Switch 	Multi-port Memory 

Functional units remain 	HRequirès most expen- 
single and cheap 	sive memory units 

Most complex inter- 	Complex interconnection 
connection 

Expansion simple to 
implement 

Extremely difficult to 
expand since design is 
normally size-dependent 

Common Bus  

lewest overall cost 

Least complex 

Easy to add or remove 

Limited bus.throughput 	Highest total transfer 	- Potential for high 
-rate capability 	transfer.rate 

Failure at bus is a 	Switch partitioning alters 
catastrophic system 	inherent redundancy and 
failure 	reconfigurabilitY 

A single unit can de-
grade the performance 
of the whole system 

Easy to remove malfunc-
tioning units 

Lowest system efficiency Potential for highest system 
•of three types 	efficiency 

• TABLE 2.1 - ADVANTAGES/DISADVANTAGES,FOR THREE TYPES OF 
. MULTI-PROCESSOR ORGANIZATION 
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2.4 Fault Tolerant Distributed Architectures  

Some applications, real-time systems in particular, require a 

high degree of reliability. The computer system is expected to 

withstand individual component failures while continuing the 

processing function. These 'Fault Tolerant (FT) computer systems 

have specially tailored architectures designed to provide this 

feature. 

The Global (or common) Bus architecture has been widely used in, 

the design of many FT systems. Some of the better known systems under 

development (FTMP, SIFT, UDS) use the bus concept. There is some 

speculation that the global bus will remain the basic architecture for 

aerospace computers [CARB77], though probably with the addition of 

multiple level of buses [CROS77]; Figure 2.3 is an example of a dual-

level bus system. 

As shown in Table 2.1, the common bus concept has a number of 

inherent disadvantages. In particular, fault tolerance is not an 

implicit quality of buses; in order to provide FT, designers must 

replicate the buses and design complex bus interface mechanisms to 

Wovide the many-CPU to many-buses connections required and to prevent 

any one CPU from disabling a bus. Additionally, bus architectures are 

very prone to bottlenecks. This has not been a problem so far since 

the amount of data passed between processors has always been 

relatively small. However, as processors are added and as data-

intensive functions (eg. real-time image processing) come on board, 

bus architectures may reach limit points. 

11  



Notes:. - If P2  can address P13, this is an IDE  architecture. 

- If P2 does not know P11_13 exiàt but .rather talks to 
Pl as if it was the final pràcessor, then this is 
the equivalent of-three D.S architectures. 

FIGURE 2.3 - DUAL-BUS LEVEL ARCHITECTURE 
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Because of thèse problems, many attempts have been made 

implementing other types of architectures in FT systems. 

Architectures implemented are, with examples: 

a) Bus(D.S) 	FTMP, SIFT, UDS: (see Section 4) 
- SARGOS: the computer system of the ground stations 

was designed for high reliability. 	SARGOS 
• is a system to be used to identify,  and 

locate distress beacons by satellite. 
[DESW81] 

- EPOS: 	the Experimental Polyprocessor 	System 
designed circa 1979 at Toshiba in Japan uses 
multiple independent common buses. [MAEK79] 

- C.vmp: 

b) Cluster Networks (IDS Bus window) 

- Matra System, Cm*: (see Section 4) 
- MuTEAM: a multimicroprocessor system now in develop- 

ment in Italy, designed for embedded -real- 
' 	time - applications- -using,. loosely coupled 

clusters of bus connected microprocessors. 
[GIOF81] 

c) Ring (D.DLoop) 

- DDLCN: a fault-tolerant reconfigurable • network 
using dual loops and tri-state control logic 
interface developed circa 1979 at the Ohio 
State University. [WOLF79] 	• 

d) Complete Interconnect (D.D) 

e) Irregular Structure (IDD) 

- RHEA: a reliable  and  survivable real-tiMe system 
designed in France in 1976, it  uses a two- 

• level structure composed of an irregular 
• network controlling groups of local _star 

structures. [POWE78] 

f) Circuit Switched (IDD Regular) 

1 3 



Other IDD Regular architectures such as Tree structures [LIU80], 

[1(WAN81] and partially meshed Rings have also been studied. This last 

architecture (Figure 2.4), in particular, has been analyzed in detail 

by Pradhan [PRAD81a], [PRAD81b], [PRAD81c] and others [GRIN80] and•

found to present a very high degree of fault-tolerance and fault-

diagnosability as well as having good distributed systems properties 

(low complexity, extensability, partitionability, etc.) 

FIGURE 2.4 - A PARTIALLY MESHED RING 

2.5 Conclusions  

From this review of Distributed Architectures, a few concluding 

remarks can be drawn: 

a. The 'common bus is still the most widely used implementation 
architecture, especially for FT systems. 

b. Multiple bus levels-(bus window) and loop  architectures :are at .the 
design and test stage. 

Radically new architectures (meshed rings, tree, etc.) are now 
•being theoretically studied and show promise for lông-term imple-
-mentations. 

14 



3. SURVEY OF DISTRIBUTED OPERATING SYSTEMS TECHNIQUES 

3.1 Introduction 

A distributed system is an amalgamation of individual computing 

entities with the aim of forming a combined single computer system. 

Activities take place in the individual entities concurrently and 

overall co-ordination is the responsibility of a decentralized 

executive. This definition of distributed computer , system is that of 

[JENS78]. 

The decentralized executive is what binds together the collection 

of processing entities. 	This binding can be done in different ways, 

ranging from very tight coupling to very loose co-ordination. 	It 

should be emphasized that the executive itself is a control algorithm. 

As such, it can be implemented in hardware, in software, or as is more 

likely, in a mixture of both. 

Hardwired executives (ie. 	executives whose algorithms are 

implemented in hardware) can be found in systems such as array 

processors or multiprocessor systems where the processors are tightly 

coupled to the executive through a common bus. At the opposite end of 

the spectrum, systems such as distributed databases can be found 

running on a loosely coupled network of computers. In a distributed 

database, the database management systems makes the distributed nature 

of the system totally transparent to the users. The database 

management system is a purely software entity and works in conjunction 

15 



with some communications facilities to provide the required co- 

ordination. So far, the executive has been characterized by: 

1. An algorithm (or set of algorithms) implementing a policy (eg. 
loose or tight control scheme), and by 

2. An implementation such as hardware; software or a combination 
both. 

The software part of the implementation of the executive is called the 

operating system (0/S). The purpose of this section is to highlight 

the software methods used in providing an executive for distributed 

systems. This will be done in the context of a general purpose 

distributed operating system, in order to cover most of the mechanisms 

involved. 

From a user point of view, the purpose of an operating system is 

to manage efficiently the computer resources under its control. 	More 

specifically, the 0/S is involved in the following: 

1. Management of Computing Resources 

Managing computing resources involves scheduling and synchro- 

nization of processes. A process in an instantiation of a program. 

The latter is a series of instructions residing in core or in a 

core image file on disk while the former is the action of executing 

the instructions. A process in characterized by its Process 

Control Block (PCB) which contains the program counter, the stack 

pointer, the program status word, some registers, etc. In a 

• typical computing entity, many processes may be competing for 

access to the processor, that is, actively running as opposed to 

16  



waiting to run. 	The 0/S will oversee the running of the processes 

and will ensure that each is given a fair share of the processor. 

Processes which execute- concurrently May want to co-Operate 

among themselves. 	To this end, interProcess synchronization faci- 

•lities should be provided by the 0/S. 	It shoùld also-be realized 

that, because.synchronization involves blocking and unblocking Of 

processes, it.shares the use of some conceptual mechanisms with - the 

. 0/S scheduling facilities. - 	• 

Also of importance is how the 0/S will handle real time 

interrupts which are demands for service originating from devices. 

This area is relevant to control system such as on-board  processors 

for spacecraft.' 

. Management of Physical Resources• 

Management of physical resources is mostly concerned with the 

allocation (or granting) of hardware devices to processes. Several 

• items •are covered under the heading hardware . devices; such  items 

can be: 	more memory space for -a process, access to fast floating 

point processor, control over a disk. drive,  or a printer, etc. . 

. The result of the management activities of the 0/S is a set of 

services. 	As explained before, those services constitute the sofware 

part of the executive of a distributed system. 	The remainder of this 

section will elaborate on each type of service with appropriate 

reference to relevant experimental systems. 

17 



3.2 Synchronization 

In any system supporting concurrent execution (real or contrived) 

of processes, facilities have to exist to enable processes to co-

operate among themselves in the execution of certain functions (eg. 

managing communication devices, storage devices, etc.). This is the 

purpose of. synchronization. As a system service, synchronization 

strongly reflects the type of control structure embodied by the 

hardware. For example, synchronization through semaphores can be 

provided in a tightly coupled system with shared memory, whereas a 

message-based synchronization scheme is more suited to a loosely 

coupled environment. 

Synchronization 'can •be broadly classified into two types: 

. Implicit Synchronization 

As the name implies, the 01S does not provide synchronization 

since it is either provided by the environment or by another 0/S 

service. An example of synchronization being provided by the 

environment is a system [RENN78a] in which all activities are 

deemed to be synchronous. 	In fact, time provides synchronization. 

In some other sysems [KATS78] [ORNS75], 	synchronization is 

implicitly provided to a "strip" (a strip is a short, non- 

interruptible process), through scheduling of another strip. 

18 
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2. Explicit Synchronization 

In this case, synchronization is truly a system service imple-

mented in software by various techniques. The performance of these 

techniques will depend upon factors such as: hardware con-

figuration, granularity of the activities of processes using the 

synchronization service, frequency of utilization, etc. PONE80]. 

When dealing with explicit synchronization techniques, it 

should be remembered that lower level techniques are always 

necessary at a processing entity; synchronization across processing 

entity boundaries may necessitate a different type of mechanism 

which will be implemented using the former techniques. Explicit 

synchronization techniques will then be listed by order of 

sophistication. 

- Locks 	. 	- • 

. The implementation of . locks relies on-the availability of an 

indivisible operation (eg. test-and-set) at a given processing 

Locks are typically used for co-resident processes 

having fine granularity of activities and those processes will 

usually implement a policy of "Busy Waiting", that is, will 

constantly check the value of the lock until they acquire it. 

Two observations can be made in connection with locks: 

entity. 

i) A 7Busy -Waiting" policy implies 
keep the use of the processor. ' 
permitted to run, even though no 
the blocked process. 

that a blocked process will 
Other processes will not be 
constructive work is done by 

ii) While a process is blocked On a lock, .the resources it is 
currently holding .are not available to. others. Releasing 
those resources, however, is' not necessarily the best policy 

- since the process would eventually have to re-acquire them 
at a later time'. 

1 
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b) Semaphores 

Based upon locks, a more constructive approach can be taken 

in which the blocked processes are suspended and put in a 

special queue. A semaphore is the implementation of that policy 

and is represented by a mechanism such as a lock and an 

associated queue. Semaphores release the processing element 

from a blocked process and give other processes a chance to run. 

However, the policy involves context switching from one process 

to another. Obviously, if the cost of context switching is 

higher than that of blocking for a given process then blocking 

is preferable; in other situations the reverse may be true. 

Furthermore, the resources claimed by a suspended process are 

still being inaccesible to others. 

c) Message Passing 

Message passing is a synchronization technique in which the 

sending and receiving of messages (not necessarily their 

contents) define blocking and re-start for a process. Local to 

a given processing entity, this technique can be implemented by 

using semaphores which in turn are implemented partly with 

locks. The synchronization object is the mailbox which allows 

processes to wait  (je. suspend themselves) for the arrival of a 

message and to send a message to another mailbox (ie. signal 

another process). Clearly, synchronization through message 

passing is very well suited to a distributed environment since: 

i) it goes across processor boundaries, 

ii) it is not bound to any physical set-up, but 

iii) it is understandably very much slower than semaphores. 
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The flexibility of message passing synchrônization made it 

the choice as a basic synchronization technique for many 

experimental distributed operating systems such as [WULF74], 

[WULF75], [LEVI75], [COHE75], [JONE79], [OUST80], [S0L079], 

[WITT80]. It has ,to be mentioned, however, that in these 

systems, the 0/S maintains a consistent interfaCe., for all the 

processes. . In actual fact, ,two processes synchronizing each 

other through message passing may be using a single semaphore if 

they are resident in the same processor or may be exchanging 

messages (on a bus, through shared . memory or through a'parallel 

. -or .serial interface) if the processes are at 	different 

. processors. 	From the point of.view of uniformity, offering one 

type of service and making its implementation transparent to the 

users seems a good policy; inasmuch - as the 0/S has the necessary. 

flexibility. • 

A summary of synchronization techniques is shown in Figure 3.1, 

together with the systems using them. At this point, a brief descrip-

tion of some of those systems is in order. 

1. The Unified Data System (UDS) [RENN78a], [RENN80] is not an 

operating system as such, but a multiprocessor organization in 

which all operations are synchronous. 	It is on that basis that it 

is included in this section. Further description is to be found in 

Section 4. 

2. Pluribus (circa 1975) [KATS78], [ORNS75] is a computer system 

composed of three types of elements, called busses: 	processor- 

busses, memory-busses and I/O busses. 	Those busses can be con- 

2 1 



I. 

figured to form a multiple processor system. Some special features 

are important to the hardware structure: 

all activities are on the form of short, non-interruptible 

processes called strips. 

b) synchronization among strips is through the scheduling of other 

strip( )i 

scheduling, for both real-time interrupts and software initiated 

requests, is through insertion of the identity of the desired 

strip(s) into a hardware queue called a Pseudo-Interrupt Device 

(PID). 

Pluribus ànd UDS are examples of systems-where a sizable portion of 

the distributed executive Is.implemented by hardware structures. 

. Hydra [WULF74], [WULF75], [LEVI75], [COHE75] is the operating sys- 

tem developed for the C.mmp [WULF72]. 	This multiple computer 

system was developed at Carnegie-Mellon University and is composed 

of ia number of DEC PDP-11140 with  separate memory module's.. 

Memories and processors arè interconnected by means of a 16x16 

croSspoint pwitch so that all of the available memory is accessible 

by any one of the processors. 	The C.mmp (circa 1970) is the 

11 	earliest of such developments at Carnegie-Mellon and precedes the 

Cm* both in age and in concepts. 

Hydra, the operating system of C.mmp was given the responsibility 

of managing the latter's resources. 	Consequently, Hydra provides 

facilities for managing the total memory space, for synchronizing 
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and scheduling processes, and for allocating:hardware resources. 

Support .of the concepts of capabilities • and  objects is provided by 

• Hydra in an effort to increase security and data confinement. 

4. StarOS [JONE79] and Medusa [OUST80] are operating systems designed 

for the Cm* (circa 1975) multiprocessor system. 	(Cm* is described 

in detail in Section 4.) StarOS was the first 0/S developed for 

the Cm*. 	Medusa was developed later, based upon the experience 

gained with StarO/S. Both StarO/S and Medusa are close to Hydra in 

terms of general philosophy of operations. 	The services they 

provide are, in general, similar to Hydra's, except where hardware 

differences between C.mmp and Cm* either require extra facilities 

or make some services redundant. 

5. Other multiple processor operating systems are in existence, slich 

as Roscoe IS01,079.] for the Rochester Intelligent datewayHand Micros 

[WITT80]..for Micronet.. 	The services they provide are very similar 

to those of StarOS or Medusa. 

3.3 Scheduling arid Resold.ce Management  

The problems of scheduling the execution of processes and of 

allocating the existing resources efficiently are both concerned with 

the performance of a multiprocessor 'system. On a more general level, 

the task of management takes on two . aspects: static and dynaiic. 
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FIGURE 3.1 - OVERVIEW OF SYNCHRONIZATION TECHNIQUES 
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1. Static management is mostly concerned with how to distribute the 

code and data structures of 0/S utilities and other processes among 

the various memory modules in the system. It can be seen readily 

that static management is extremely dependent upon the hardware 

configuration worked with. In highly specialized systems or, in 

systems with only global memory (eg. [WULF72]), all processors (or 

group of processors dedicated to the same functions), have copies 

of all 0/S utilities and other processes. In more general systems 

(eg. [FULL78]) memories are arranged in a mix of local and global 

partitions. The cost (speed and contention) of accessing local 

memory is much less than that of accessing global memory, 

indicating that the distribution policy and by extension the 

configuration itself, will play an important role in determining 

the performance (speed, throughput, response time) of the system. 

There also exist other systems (eg. [WITT80] in which all-memoriés. 

.are. local td some processors. In thosè Systems,  as  opposed to, 

special purpose systems, processes with non-resident-code have to 

executed elsewhere  and .are  started through a remcite- procedure 

call (eg. using message passing constructs). 

Static management is therefore concerned with the allocation of 0/S 

utilities and other processes into the various types of memories 

with the aims of: a) keeping as much free space as possible for 

each processor, and b) maximizing the speed of execution of 0/S 

processes and others. These aims were, as mentioned previously, 

dependent upon the local/global memory arrangement and how much of 

each type was provided. 
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2. Dynamic management is concerned with the scheduling of processes 

and the management of resources. 

a) Scheduling processes can be accomplished implicitly in 

systems 	(eg. 	[RENN784) where time is used to schedule 

synchronous processes. This approach is conceptually simple but 

only applies to a narrow range of applications and is also•

inflexible. Explicit scheduling can be accomplished by queue(s) 

of ready to run processes (called ready to run queue). Sched-

uling can then be implemented as a single or multiple ready to 

run queue. One possible arrangement is to have independent 

ready to run queues at each processor with static priorities 

assigned to queues and dynamic priorities assigned to processes. 

In tightly coupled systems, scheduling involves a context switch 

the 0/S and then a second context switch to the chosen  pro-

ces s. In the case of a remote call in a loosely coupled system, 

messages will have to be exchanged and extra context switching 

at the recipient processor will have to be done. The resulting 

overhead indicates that scheduling should be tailored to the 

need of the application so as to minimize unnecessary context 

switching and to avoid inter-processor calls as much as 

possible. 

b) Resource management is responsible for the dynamic allocation of 

resources (eg. devices, buffers, etc.) to processes. The 

overall performance of the system is very sensitive to bad 

decisions made by the resource allocation module. In most 

special purpose systems, however, the management policy is de- 
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termined statically at design time. 	This policy would likely 

accept excess capacity in terms of resources and computing power 

in order to minimize contention. 

Another concern of the resource management module is that of 

deadlock. 	In special purpose very rigid systems, possibilities 

of deadlock can be totally eliminated whereas in more flexible 

ones distributed deadlock detection has to be used. Deadlock 

detection is an added overhead that can prove expensive in terms 

of actual processing time used, of memory space for the data 

structures and of lost capacity resulting from blocked or pre-

empted processes. 

3.4 Real-time Interrupts  

The handling of real-time interrupts from devices requesting 

service is an important concern in an environment such as a 

spacecraft. Interrupts introduce a non-deterministic element in the 

execution of software. This makes the validation and debugging of the 

software an arduous task. 

I,  Interrupts have been masked out entirely in systems such as UDS 

[RENN78a] in which continuous polling of devices is used instead. 

This approach, albeit less responsive, makes it conceptually easy to 

assess the correctness of the software. Siàilarly in Pluribus, 

interrupts have limited effects on the system; all an interrupt 

service routine can do is to arrange for the scheduling of a "strip". 
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Other systems which are more general in ,nature accept demand 

interrupts but try to contain their .effettsand isolate their'  data 

 structures, by limiting the •scope of the interrupt service routines. . 

3.5 Reliability 

In the design of hardware components, physical distribution is 

the important criterion whereas in the design of the executive, 

logical distribution takes precedence [JONE80]. In the exécution of a 

function, it is evident that if software processes are dependent upon 

one another to achieve success, failure of one of them will 

incapacitate the rest. 	Logical distribution requires that such 

dependency should not exist or at least should be kept to a minimum. 

• Reliability can also be enhanced by having several instances of a 

particular process (at various processors) and by having them operate 

in a fashion analogous to back-up processors in hardware. It is also 

interesting to note that there is a trade-off between hardware and 

software reliability in the sense that software algorithms can be 

designed  • to enhance the overall system reliability. 

3.6 Applicability to Special Purpose Processors  

Special purpose processors, whether of the uni- or multiprocessor 

type, will have well defined functions to perform. In the case of 

multiple processor systems, the precise definition of their functions 

will allow for simpler designs and for  •som degree of optimization. 
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The software mechanisms presented hitherto addressed co-ordination 

problems of a general nature, hence their complexity. Special purpose 

systems will deal with a fixed population of processes whose needs 

will be known a priori. It should be pointed out that the basic 

requirements for synchronization and scheduling will still apply to 

these systems. 
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4. SURVEY OF CURRENT MULTIPROPROCESSOR PROJECTS FOR SPACECRAFT 
AND AIRCRAFT CONTROL 

This section examines the design philosophy and general architectural 

concepts of five different multimicroprocessor systems that have been 

reported recently in various publications. 	Section 4.1 examines the 

general software and hardware features and the basic design methodology of 

these systems. A comparative study of their architecture is then presented 

in Section 4.2. 

4.1 General Description 

A stirvey of recent publications in the field ofspacecraft and•

avionics multimicroprocessors revealed substantial research. effort, - 

 concentrated mainly  in buildingprototype systems and examining their 

use to  realize certain properties. Such properties Include software 

verifiability, 	fault tolerance, 	survivability under hostile 

conditions, self-checking, capabilities,",etc. 	Most prominent among 

these projects are the following four.systems: 

(1) Cm* 

(2) FTMP 

(3) SIFT 

(4) UDS 

(5) Matra System 
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A brief description of the above systems follows. The details of 

these systems can be found in the list of references at the end of 

this section. 

(1) Cm* [SIEW78],[JONE77],[SWAN77]  

The Cm* - multimicroprocessor system was designed and 

iMplemented at Carnegie-Mellon University. The system is based on 

interconnecting a' set of LSI11/23 processors in a configuration 

which permits extensibility, address mapping and software pruning 

of faulty components. 

The Cm* structure consists of a set of computer modules 

gtouped into .clusters. 	The clusters are connected by a mapping 

controller which is a programmable high performance processor. 

. Thus each controller -  ià .shared. .by Several, computer' modules 

connected to it by a cOmmon bus via simple interfaces (referred tb 

by - S.local). 

- Figure 4.1.1 gives the details of each computer module. 

Figure 4.1.2 illustrates a simple three cluster network. -The 

mapping controller is termed K.map, while each . computer module is 

marked by M.. 

Cm* has a 228  byte segmented virtual address space. 	The 

addressing structure provides considerable support for operating 

system primitives such as control switching and interprocess 

message transmission. Each processor in Cm* uses the top page in 

its address space (page 15) for direct program interaction with 

K.map. However, each of the 16 pages of the processor provides a 
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window into the system-wide 2 28 byte virtual address space and can 

be independently bound to différent segments in the virtual 

address space. 

A significant feature of the Cm* system is that all 

communication  • is performed by packet switching, except at the 

local memory bus level, where conventional circuit switching 

used. These buses are allocated only for the period required to 

transfer data. The data is latched at each interface, rather than 

establishing a continuous circuit from the source to the 

destination. This approach is taken in order to increase bus 

utilization and avoid bus allocation deadlocks. 
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(2) FTMP [HOPK76b],[HOPK78]  

The FTMP (Fault-Tolerant Multiprocessor) is a computer 

architecture that has been studied, simulated and emulated at the 

Draper Laboratory (Cambridge, MA). The target of the project is 

to achieve an overall failure rate less than 10-9  failures per 

hour, provided that maintenance is available within no more than 

ten hours per dispatch. 

The FTMP structure is composed of an arbitrary number 

processor modules Tgith local memories and an arbitrary number of 

memory modules, interconnected by redundant serial buses. Modules 

are associated into groups of three to perform triply redundant 

functions. 	All data is distributed synchronously and in 

triplicate, and every module contains a voting element to mask bus 

disagreements. 	All modules contain special circuits to create 

logical and physical boundaries to halt the propagation of faults 

from one module to another. 	The essential features of the FTMP 

system are summarized in the following. 

Redundant Organization  

All activities in FTMP are conducted by triads of modules and 

triads of buses. A module triad is formed by associating any 

three like modules with one another. Thus any module can serve as 

a spare for any triad. 	A three member subset of N bus lines is 

chosen on a quasistatic basis to serve as a bus triad. 	These 

three lines are connected to a voter in each module, thus 

constituting a TMR element. 	The three active bus lines carry 

three independently generated versions of the data, each version 
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coming from a different member of the triad that is transmitting 

the data. 

Functional Resource Allocation  

The programmer of the FTMP system sees this multiprocessor as 

a machine for executing job steps. The procedure for each job 

step is written in a suitable language and resides in common 

memory. 	Each job step is typically scheduled to occur at a given 

time or following a given event. 	The relevant dispatch data for 

each scheduled job is kept in a queue, where it is frequently 

examined to see if the job step is eligible to be run or invoked. 

The frequent examination is conducted by processors that have 

completed their earlier asaignments, 	and are available to 

. undertake new ones. Thus PI) allocation is dyriamic and .adjustable 

according_to memory load distribution and module failures. 

Synchronization  

FTMP employs tight synchronization using a common time 

reference that supports hardware voting, allows instantaneous 

validation of internal data, configuration control and in some 

cases interface data. The problem of, maintaining a continuous 

timing reference 'is' solved by a faultrtolerant redundant clocking 

arrangement using voltage-controlled crystal oscillators. 

In -addition to the above features, the FTMP system contains, 

several fault détection and isolation mechanisms. The voting 

process which exists at the triad level is the primary tool for 

'detecting any .faulty behaviour during -  the operation of the system 

[ROPK75b], [RUCS]. . 
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(3) SIFT [WENS78],[MENS72]  

SIFT 	(Software Implemented Fault Tolerance) 	is an 

ultrareliable computer for critical aircraft control application. 

The prototype system was developed and tested at SRI. 	This 

includes 	error 	detection 	and 	correction, 	diagnosis, 

reconfiguration and the isolation of a faulty unit. 

The structure of the SIFT hardware is shown in Figure 4.1.3. 

Computing is carried out by the main processors. Each processor's 

results are stored in the main memory associated with the 

prOcessor. The I/O  processors have much smaller computational and- 

memory capacities than the main processors as they connect to the 

•input and output units of the system (eg . . actuators and sensors of 

the aircraft). Each processor and memory form a processing 

module. Each module is connected to amultiple bus system. 

The SIFT system executes a set tasks, each of which 

consists of a sequence of iterations.  •  The input data to each 

iteration of a task is the output data produced by the previous 

iteration of some collection of tasks. The input and output of 

the entire system is accomplished by tasks executed in the I/O 

 processors. Reliability is accomplished by having a number of 

processors executing redundantly the same iteration of a task; the 

output of this iteration is placed in the memory of the processor. 

A processor which uses the output of this iteration determines its 

value by examining the output of each processor executing it and 

taking a majority decision. Errors are discovered in cases of 

• disagreement and are used by the executive to discover faulty 
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units and reconfigure the system. 	The processors in SIFT are 

loosely synchronized (eg. to within 50 microseconds) since we only 

need to ensure that the different processors allocated to a task 

are executing the same iteration. 

Fault isolation in SIFT is accomplished by several mechanisms. 

Each unit is autonomous with its own control. This makes it 

possible to ignore improper control signals and to time-out 

signals that never arrive. Protection against corruption of data 

is provided by the way in which units can communicate. A 

processing module can read data from any processing module's 

memory, but it can write only into its own memory. Finally, each 

processor receives multiple copies of the data; each -  copy .  is 

obtained from a different. memory over a different bus, and the-

processor uses majority voting to obtain a correct version of the 

• 

Formal models for scheduling strategies, software verifica- 

tion and reliability prediction were developed for SIFT in order 

to guarantee a correct operation within acceptable performance 

limits [WENS78],[WENS72]. 
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(4) UDS [RENN78b],[RENN80]._ 

The UDS architecture consists of a set of microcomputer 

modules connected by a redundant set of intercommunications buses. 

Two types of modules exist: 	terminal modules (TM) and high level 

modules (HLM). 	The TM interfaces with other modules in two ways: 

1) it receives a single Real-Time Interrupt (RTI) which is common 

all modules and which is used for timing and synchronization, 

and 2 ) each TM is interfaced to all intercommunications buses. DMA 

techniques are used to enter and extract data from the TM. A TM 

cannot initiate bus communications. An external HLM enters 

commands, data and timing information into the memory of the TM. 

HLM's are responsible for coordinating the processing which is 

carried out in the remote TM'S, for control of intercommunications 

over the bus systems, and for highlevel.,processing such as data 

• compression anddècision.making. 

The UDS design is oriented towards moving "hard core" items 

whose failure can cause catastrophic system failure. For example, 

the buses are made independent to avoid any common failure 

mechanisms. Independent clocks are used within each module; the 

clocks are synchronized by the common RTI. As well, the UDS 

architecture prevents the . TMs from propagating their errors to 

the HLM's since the TM's are not allowed to issue communication 

calls to the common bus system. Details of the UDS architecture 

and the software executive are available in [8] and [9]. 

The design of the UDS emphasizes_testability and simplicity, 

even at the expense Of the computer power and memory utilization. 
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These aspects are manifested in the following architectural 

features: 

Computer Utilization: 	Low speed and memory utilization enables 

the designer  to concentrate on the correctness of his code rather 

• than its efficiency. 

Error Confinement:  Most TM's will be performing dedicated low 

level functions and are not permitted to modify the memory of 

other modules. 

Minimization of Interrupts: 	Demand interrupts are avoided 

whenever possible. This may .  limit I/0 response to milliseconds 

rather than microseconds. However, it leads to more predictable 

operation, is more easily modified, and allows for software self-

defence. 

Control Hierarchy:  As explained previously, the HLM's control the 

TM's. The programs in the TM's are self-synchronized to process 

the data when they arrive and place results in their memories for 

subsequent extraction by the high-level computer. 

Other simplification features in the UDS architecture include 

synchronous communications, timing hierarchy and I/0 timing 

granularity to simplify software modifications. 

(5) Matra System [SOUB77]  

The Matra organization, in France, has developped a multi- 

microprocessor system designed to automate the signal and data 

processing functions at Attitude and Orbit Control Subsystems 
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(AOCS). 	The system consists of three microprocessora (INTERSIL 

6100) using a common bus, some local memory .for the processor. 

supervisor programs and global memory for the common data areas 

and for the AOCS programs (Figure 4.1.4). ' 

Each processor is controlled by its supervisor program. When 

idle, a processor will read the common supervisor table to 

determine which pending task has the highest priority. 	The 

processor will then that task. 	The task may generate the 

activator of other tasks, through the common supervisor table. 

External interrupts andSeal Time Clock Interval pulses can also 

. activate tasks. The Real TiMe 'Clocka . 'are used for local processor 

monitoring and cverall processaynChronization. 

Fault detection is implemented using: - 

a. local watch-dég with eaéh.processor (software) 

. b..' processing function watch=dogS (sofware) 

c. monitoring and reconfiguration capability of local 
Interval times 

d. self-test programs. 

The systei is capable of surviving failures through: 

a. halting and disengaging a failed processor 

b. reallocating memory module tables in case of a failure 
in memory blocks 2 to 7 

c -  switching the redundant memory module iMplemented for 
block 1 (common data). 
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4.2 Architectural Features of Three Systems  

Out  of the systems discussed in the previous section, three were 

designed for a high reliability environment: 	FTMP, SIFT and the JPL 

system. Although similar in concept, these systems represent a wide 

ranging set of implementations. A study of thèse  features will 

therefore allow a better understanding of the design of upcoming 

spacecraft systems. 

Table 4.2.1 is a condensed comparison of these three systems: 

a) Memory: 	The JPL and SIFT both have memory which is local to each 

processor while the FTMP uses mostly global memory (it has small 

local caches for improved performance). 	The way the memory is 

structured has two main influences: 	the mechanisms for passing 

information between tasks will be very different and the use of the 

buses by the FTMP will be much larger, leading to potentially 

earlier saturation. 

b) Number of Bus Types: 	Both the JPL and SIFT use only one type of 

bus while the FTMP uses two buses in an attempt to minimize the•

potential bus loading problem. 

c) Bus Replication: 	Buses in the FTMP and SIFT are quintuply 

replicated while the JPL triplicates its bus. 

d) Bus Controllers: 	The 	SIFT uses dedicated devices as 	Bus 

Controllers while the JPL lets a task in one of the general purpose 
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processors carry out the bus arbitration functions. 	The FTMP 

appears to use a decentralized bus control mechanism which resides 

in each device. 

e) Module Types: 	The FTMP. uses three different sorts ,of module 

devices (memory, processor/cache and I/O.access). The SIFT 'also .  

-uses three types of modules though. they are somewhat . different (bus 

-control, -processor/memory and I/O processor). The JPL'attempts to 

limit its module types to one by designing an all-purpose  building-

block;  although this is an interesting concept which simplifies 

implementation, it is.also potentially restrictive. 

f) Fault Detection: 	In FTMP, fault 'detection Is done : . by having 

hardware devices compare the output of three (fixed number) 

processors which carry out the same computations simultaneously; if 

not all processors agree, voting is used to determine which result 

is correct and which processor is faulty; this comparison/voting is 

performed for each instruction. In SIFT, a similar 

comparison/voting mechanism is used, however, it is implemented in 

software; it allows a variable number of processors to participate 

and it is carried out at fixed regular intervals, rather than for 

every instruction. In the JPL system, a hardware implemented 

verification mechanism is imbedded within each bus and is therefore 

transparent to other modules. 

g) Processor Synchronization: 	Although . in all 	three 	systems 

, cooperating tasks.must be closely synchronized with respect to each 

other, the actual inter-processor synchronization is implemented 

differently in all three processorS. 	In FTMP, since hardware 
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• 1 • voting for each instruction is carried out, the processors within 

triads must be very tightly synchronized. In SIFT, synchronization 

is only required at the voting interval level while in JPL, since 

no voting takes place, processor synchronization is not required 

(of course, task synchronization still is). 
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FTMP 
System 

SIFT 	JPL 

Global; processors have 	Local 	Local 
a local cache memory 

a) Memory 

Yes II d) Bus Controller - Imbedded 

g) Processor Syn- 	Tight 
chronization 

Loose, by interval 	Not required 

Feature 

I. 
b) Bus, Types 	. Memory buses 

Types 	Interface buses 

) Bus Replication 	5 

1 	 

Global Bus 	Global Bus 

5 	3 

e) Module Types Memory 	Bus Control 	Building 
Processor/cache 	Processor/Mem. 	Block 
I/O  Access 	I/O Proc. 

f) Fault Detection By Voting, in Hardware, 	By Voting, in Software, Internal to 
in triads 	variable no. of 	each Block 

processors 

TABLE 4.2.1 - ARCHITECTURAL COMPARISON OF THREE SYSTEMS 
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d. conclude by discussing the present trends of spacecraft processing 

c. illustrate the use of these processors through two example systems: 

• Voyageur and Galileo, 

including the NASA NEEDS program. 

1 

1 

1 

1 

5. THE SPACECRAFT APPLICATION ENVIRONNENT  

5.1 Introduction 

This section will introduce the computing environment of 

spacecraft applications. It is not intended as a comprehensive review 

of spacecraft systems but rather as a short introduction to the 

concepts, techniques and elements of spacecraft computers. The next 

four subsections will: 

a. present the processing requirements in terms of functions and 

resources needed, 

b. describe some of the computers that have been or will be used in 

spacecrafts, 

5.2 Processing Requirements  

Typically, the on-board computing functions include [HOLC80]: 

a. pyro/propulsion control, 

b. mechanical actuator control, 

c. radio control, 

d. data handling, 
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e. command decoding, 

. f. instrument control, 

g. attitude control, 

h. data compression. 

Some functions, such as actuator or instrument control, involve 

issuance of predetermined command sequences, while functions such as 

attitude control involve complex calculations based upon readings from 

instruments (eg. star tractors and gyros). The developers of the 

Fault Tolerant Spacecraft Computer determined that attitude control 

and navigation were the primary functions requiring automation and 

that it was their processing requiremens that most affected the FTSC 

design; Table 5.1 summarizes the FTSC designers conclusions regarding 

the on-orbit computation requirements [FANE77]. The support of the 

science instruments is another main area of computer utilization; the 

computers must be capable of reading all the data provided by the 

instruments and perform the necessary calculations to prepare the data 

for transmission. Table 5.2 gives the maximum data rate and the 

• amount of memory space required for each of the instruments of the 

Galileo orbiter spacecraft. 
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Maximum 
Data Rate, 	Memory Size, kbytes  

bits/s 	ROM 	RAM Instrument 

Program and data 	Computation rate, 
Task 	memory, words 	operations/sec 

Attitude control and 	2,343 	6E1,250: 
pointing 

Telemetry 	 1,281 	13,692 
ComManding 	 912 	. 19,500 
Supervisor 	. 2,909 	33,042 
Subsystem management 	876 	1,875 .  

-and recovery 
Subtotal 	8,321 	, 	136,359 

Payload processing 	6,500 	. 	60,000 	- 
Subtotal 	6;500 	60,000 

Memory size without 	10K 
payload processing 

Memory size-with 	16K 
payload processing 	- 

Maximum computation rate 	• • • 	- 200,000 

TABLE 5.1 - ESTIMATED ON-BOARD PROCESSING REQUIREMENTS 
(Reprinted from [FANE77]) 

Solid state imaging (SSI) 	768. 	3 	3.5 
Near infrared mapping 	 . 

spectrometer (NIMS) 	11.52 	3 	1.75 
Photopolarimeter radiometer (PPR) 	0.18 	4 	0.25 
Ultraviolet spectrometei (UVS) 	1.0 	- 	0.75 
Energetic particle detector (EPD) 	0.92 	6 	3 
Plasma subsystem (PLS) 	0.60 	8 	8 
Magnetometer (MAG) 	0.24 	4 	4 
Dust detector subsystem (DDS) 	0.024 	3 	2 
Plasma wave subsystems (PWS) 	• 645. 	- 	0.25 

(contains no microprocessor) 

TABLE 5.2 - GALILE0 SCIENCE INSTRUMENT SUMMARY 
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5.3 Spacecraft Computers  

The first general purpose programmable computers to be flown 

onboard spacecraft were centralized machines monitoring and 

controlling the various subsystems. 	More recent spacecraft designs 

have taken the approach of using more than one computer and of having 

computers dedicated to certain functions such as attitude control, 

while under the overall command of a central command and control 

computer. 

The two extremes in spacecraft computer architecture are the 

completely centralized  •and the fully distributed. The completely 

centralized approach has one large central computer serving the needs 

of all the subsystems, while the fully distributed approach consists 

of several small computers serving these needs as peers. 	Neither of 

these approaches is optimal for the space environment. 	The highly 

centralized system calls for significant data communication overheads 

and complex resource allocations within the computer while a fully 

distributed system can result in system coordination problems 

[HOPK75a]. 

• 	The approach being taken in current spacecraft computer system 

architectures is very much a combination of these two extremes which 

permits capitalizing on most of the advantages of both. The Unified 

Data System (UDS) which is the model for the command computer system 

aboard the most recent satellite, Galileo, is representative of that 

approach (see Section 4). Table 5.3 lists the characteristics of some 

current on-board computer system [STAK81] while Table 5.4 details the 
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Mission Computer 

1. NSSC-1 
2. AOP 
3. NSSC-1 
4. AOP 
5. OBP 
6. DOC 
7. GCSC 
8. CCS 
9. FDS 
10.•CCS 
11. AACS 
12. SCP-234 
13. SCP-234 

(USAF) 
14. COSMAC 
15. NSSC-1* 
16. AAC-16ms* 

17. CDC 469 

MINS (Generic) 
Landsat-B/C 
SMM 
IUE 
OAO-C 
ATS-6 
Viking Lander 
Viking Orbiter 
MJS-77 (Voyageur) 
MJS-77 (Voyageur) 
MJS-77 (Voyageur) 
TIROS-N 
Block 5D 

MISÂT Phase IIIB 
Landsat-D 
Galileo 

REA° 

TTL 
TTL 
TTL 
TTL 
DTL 
LPTTL 
LPTTL 

1.5 

1.4 
1.3 
2.0 
5.0 
5.0 

DMOS 

CMOS 
CMOS 

2.48 
1.37 
1.37 
2.34 

characteristics of the processors available for space missions in the 

1980s [ROLC80]. 

Memory Type of Cycle 
Number Memory Size Type Processor Time 

(in bits) 

1 . or 2 	8-64K by 18 CORE 
1 	4K by 18 , PWM 
2 	48K by 18 PWM 
2 , 	12K by 18 .PWM 
1 	• 16K by 18 CORE 
2 	4K by 18 PWM 
2. 	18K by 18 PWM 
2 	8K by 18 PWM 
2 	8K by 18 CMOS 

8K by 18 PWM 
2 	8K by 18 PWM 
2 	I8K by 18 • CMOS 
2 	16K by .18. CMOS 

1 	16K by 18 CMOS 	CMOS 	1 
2 	64K by 18 CORE 	TTL 	1.5 
2 	32K by 18 CMOS 	LSI bit 	0.25 

slice 
2 	16K by 18 Plated PMOS/LSI 

Wire 

Abbreviations 

CMOS 
DTL 
LPTTL 

- Complementary Metal-Oxide Semiconductor 
- Diode-Transisor Logic 
- Low-Power Transisor-Transistor ,  Logic 

PWM 	- Plated-Wire Memory 
TTL 	7 Transistor-Transistor Logic. 
AACS, - Attitude and Articulation Control SubsysteM 
AOP 	- Advanced On-board Proces'sor = NSSC-1 	• 

- Computer Command Subsystem 
- Digital Operations Controller 
- Flight Data Subsystem 
- On-board Processor 

NSSC-1 - NASA Standard Spacecraft Computer 
MMS 	- Multimission Modular Spacecraft 
SMM 	- Solar Maximum Mission 
IUE 	- International Ultraviolet Explorer 
OAD 	- Orbiting Astronomical Observatory 
ATS-6 - Applications Technology Satellite 

II TABLE 5.3 - .CRARACTERISTICS OF SOME . CURRENT ON-BOARD COMPUTER 
'SYSTEMS 	(from [STAK81]) 

CCS 
DOC 
FDS 
OBP 
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Configuration 

Cost ($K) 
- single string 

Weight (lbs) 

Power (W) 

Word Length (bits) 

Maximum Memory 
Size (words) 

Memory Technology 

CPU Technology 

NA 115 392 205 

17.4 

31 

18 

18 12.5 29 

240 25 34 

16/32 

2 CPU's. 
2 Stint".s 
2 APU's 

2 Sing. 	2 Sing. 	2 Sing. 
String 	String 	String 
CPU's 	CPU's 

2 CPU's 
2 Stint's 

355 

NA 

28 

18/32 16/32 	16/32 

TTL-LSI 	TTL-LSI 	Hyb. TTL Shot. BIP Schot. TTL 
CMOS/SOS 	TTL 

64K 

Core 

96K 

Core NMOS 

40K ,64K: 

Sani- 
Cond. 

- 64K: -  

CMOS 

Ave. Inst. Speed 
( Sec) Add 

Nuit 

Floating Pt. 

Reliability (2 Yr) 

Quai.  Status 

5 
38 

No 

.96 

Space 

2.5 
_21 

Yes 

.98 

Space 	Space 
(1980) 

.99 

5 3.2 
33 35 

Yes 

.96 

Yes 

.87 

None None 

.3 
5.4 

Yes 

None None Space  Fit.  Exp. Galileo 
(1984) 

SMM (1980) None 
Space 
Telescope 
(1982) 

Identification 
IBM 

NSSC-I 

Martin M. 
Enhanced 	IBM 
NSSC-I 	NSSC-II  

	

Litton 	App. Tech. 

	

4516E 	ATAC-16MS 

TABLE 5.4 - CHARACTERISTICS OF PROCESSORS AVAILABLE FOR SPACE 
MISSIONS IN THE 1980s [HOLC80] 
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IBM 
NAR 	Teledyne 	Raython 	-CMC 	' 	Shuttle 

DF-224 	SEC16e-43 	FTSC 	469 	. GPC Identification 

Configuration 3 CPU's 	2 CPU's 	4 CPU's 	2 Sing. 	1 CPU 
String 	1 IOP 
CPU's 

Cost ($K) 
- single string 	2250 	NA 	1000 	650 	500 

Weight (lbs) 	102 	15 	50 	10 	59 

Power (W) 	85 (56) 	44 	35 	20 	350 

Word Length (bits) 	24 	16 	32 	16/32 	36 

Maximum Memory 	 16K 
Size (words) 	64K 	64K 	96K 	16K (32K) 106K 

(OFT) 

Memory Technology 	Plat.Wire CMOS 	CMOS/SOS Plat.Wire Core 
(CMOS) 	 (CMOS) 

CPU'Technology 	PMOS 	CMOS/SOS , CMOS/SOS 	PMOS/LSI :TTL 
MSI/LSI 

Ave. Inst. Speed 
( Sec) Add 	1.6 	5.4 	5.4 	4.0 	1.9 

Mult 	8 	11 	11 	10.4 	5.7 

Floating Pt. 	No 	NA 	NA 	No 	Yes 

Reliability (2 Yr) 	.97 	.98 	.98 	NA 	NA 

Quai.  Status 	Space 	Ndne 	None 	. 	Space 	Space 

Space  Fit.  Exp. 	Space 	None 	None 	HEAO 	Shuttle 
Telescope 	 (1980) 
(1982) 

TABLE 5.4 (Cont'd) 	GHARACTERISTICS OF PROCESSORS-AVAILABLE FOR SPACE 
MISSIONS IN THE 1980s [HOLC80] 
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5.4 Example Spacecraft Systems  

5.4.1 Although there have been many spacecraft launched, two systems 

are remarkable-from a computer utilization point of view. They 

• are . the Voyageur Spacecraft and the Galileo Orbiter Spacecraft, 

.quickly described here.. 

5.4.2 The VoyageriSpacecraft had three separate computers onboard - 

the Command Computer. System (CCS), the Flight Data System(FDS) 

• and the Attitude and Articulation Control System (AACS). 

[GILL80],[SCUL80] 

The CCS (see Figure 5.1) is responsible for the decoding and 

distribution of commands and for the coordination of spacecraft - 

. functions. It has the following features:  

- 4K memory 

- 18 bit word length 

- priority interrupt structure 

- add/subtract cycle time of 90 microseconds. 	It has an 

average utilization of approximately 5%. 

The FDS (see Figure 5.3) is the computer used for science 

instrument control and data processing. It is characterized 

by: 

- 8K memory 

- 16 bit word length 

- 4 DMA channels 

- an add/subtract cycle time of 15 microseconds 
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FIGURE 5.1 - VOYAGER COMPUTER COMMAND SYSTEM 
(Reprinted from [SCUL80]) 

FIGURE 5.2 - VOYAGER ARTICULATION AND ATTITUDE CONTROL 
SUBSYSTEM 	(Reprinted from [SCUL80]) 
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DmA 

COmmAND 
GENERAToR 
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DOwN LINK 
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VO 

OSC 

TimING CHAiN 

ENGINEERING 
TREE & 

ADc 

ENGINEERING 
DATA  souRcEs 

TAPE 
RECORDER 

I/O 

Acs 

COS GOLAY 
CODER 

CODED 
COMMAND  

ENTRY 

STATE 

•VECTOR 

To  AU. 
 BLOCKS 

SCIENCE 	. 	, SCIENCE 

	

V 	
1 

	

o 	 INSTRUMENTS  

TABLE 5.3  - VOYAGEUR FLIGHT DATA SUBSYSTEM 
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The AACS (see Figure 5.2) controls the attitude of the space-

craft and is responsible for navigation. It is characterized 

by: 

- 4K memory 

- 18 bit word length 

- a priority interrupt structure 

- an add/subtract cycle time of 32.2 microseconds. 	It 

has an activity rate (utilization?) of about 95%. 

5.4.3 The Galileo Spacecraft  

The Galileo Orbiter spacecraft has two types of computer 

systems, the Command Data System (CDS) and the Attitude and 

Articulation Control System (AACS). The AACS is responsible 

for maintaining perturbations of the spinning section within 

acceptable levels to allow precise pointing of the scan 

platform. The CDS co-ordinates the activities of the space- 

craft: 	co-ordination of fault protection, 	isolation and 

recovery; supplying the spacecraft clock and timing signals; 

collecting, 	formatting and encoding telemetry data; 	and 

• 
analyzing and distributing commands received from the ground. 

In addition to these two subsystems, embedded processors are 

also part of most scientific instruments on board. 

The CDS is a distributed computer system using six processors 

based on the Unified Data System described by Rennels in 

[RENN78a] and summarized in Section 4 of this report. It has 

overall responsibility for the control of the spacecraft and 
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for the operation of the science instruments as well. 	Both 

high level modules (32K RAM, IK ROM) and low level modules (16K 

RAM, IK ROM) are based  on the  RCA 1802 microprocessor with a 10 

microsecond add/subtract cycle time. 	The bus data rate 

806.4 kbps. 

The AACS ' uses two : (one redundant) ATAC-16M microcomputers; 

these computers are  built using. four 4—bit slice 2900—series 

:processing elements. The detailed characteristics of these 

.processors are given-in Table' . 5.5. 
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Memory Size 30K words1UM 
,2K words ROM 

Execution Time 

add/sub ( 
mult ( s) 
div ( s) 

Weight 	 <18 

Power (Watts) 	<34 

Word Size (Bits) 	16 

No. Instructions 	129 

No. Interrupts 	8 levels vectored 

Programmed I/0 	Up to 500K words/second 

DMA 	 Yes 

Floating point words 	32 bits, 24/8 format 

Fixed point words 	8, 16, 32 bits 

Microprogrammed 	Yes 

Memory Addressing 	64K words directly 
addressed 

Fixed 	Flciat  

	

00.75 	5.75 

	

05.50 	16.00 

	

11.25 	28.50 

- - Address Modes 	8 

No. General Regisçers 	16 

TABLE 5.5 — GALILEO AACS MLUACTERISTICS 
(Reprinted from [GILL80]) 

5 9 



1 

1 

1 

1 

1 
I 5.5 Automation Trends  

5.5.1 The Mariner Mars spacecraft (1969) was the first interplanetary 

spacecraft to  use  an inflight programmable computer. 	Since 

then, the use of computers aboard spacecraft has been 

exhibiting a steadily inàreasing trend-as exemplified- - by the 

'Galileo spacecraft scheduled to go into orbit around Jupiter in 

1985 with its twenty processors onboard. The growing use of 

computers aboard spacecraft has been driven by the increasing 

requirements for more autonomoUs operation. These requirements 

are discussed-below [AREN77]. 

i) The need to protect against catastrophic failures. 	This 

- requirement is spear-heading -  the development of- fault-

talerant computer architectures. 

ii) The need to perform very predictable and -highly- repetitive 

functions. 	Attitude control, for example, requires much 

automation to be effective. 

iii) The need to prevent the loss of spacecraft communications. 

The spacecraft needs to be able to take care of itself 

during periods when it is out of contact with tracking 

stations. 

iv) The need to accomplish mission objectives during very narrow 

v) tTih:e  ::::" :Or real-time or near real-time control in such 

applications as the control of the descent of a vehicle to a 

planet's surface. 

vi) The need to perform functions aboard spacecraft at great 

distances from the Earth. 	Many functions must be automated 
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since the round trip communication delay inhibits effective 

ground control. 

vii) The need to implement and support:increasingly more complex 

subsystems. Many subsystems require substantial processing 

(eg. 	some attitute control subsystems use statistical 

• filtering techniques to increase precision) and some have 

• processors incorporated into their design. 

viii) The need to undertake multi-year missions. 	This requires 

more autonomy so that the spacecraft can take care of 

itself. 

• ix) The need 	to make better use of mission resources. 

Increasing emphasis is being placed upon autonomous space-

craft capabilities so that the quantity of Earth station 

equipment and the size of mission operations staff can be 

minimized. Figure 6.1.1 (reprinted from [GEVA79]) shows the 

present 	trend of ground operation costs per mission: 

illustrates • how advanced automation will reduce overall 

mission costs. 

5.5.2 As mentioned previously, the "intellitence" of spacecraft has 

•been steadily increasing since a stored program computer was 

first used in 1969 on the Mariner Mars spacecraft. 	Three 

•characteristics of a spacecraft which serve to define its 

"I.Q." are the number of processors onboard, the average speed 

• of these processors, and the amount of memory available (see 

[AREN77]). 	Figures 5.5 through 5.7 show how spacecraft 

intelligence and autonomy have increased in recent years. 
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Ground 	• Orbital 	Data 
Budget Category 	Operations 	Operations 	Analysis 	Design 

II 	
.  

1. Mission Items 	. 	122/90 	-- 	15/10 	90/45 

.II• 	. 2. Multimission Operation 	74/55 
Support 

II 	3. Post-Mission Data 
. 	

. __ 	-- 	103/70 • 	-- • 
Analysis 

11 	4. Network Operations 	44/30 	--- 	--. 	• 57/30 

5. Shuttle/Skylab Payload 	14/10 	20/10 	80/40 

II 6. SPace Transportation 	182/135 	•. 	-- 	••-- 

mi 	7. Space Industrialization 	224/170 	• 24/10 	• 	-- 	72/35 

Il ' 	Totals 	'646/480 	• 	38/20 	138/90 	• 299/150 

II 

, Budget Category 	- Test 	Other 	TOTAL 

I . 

	1. Mission Items 	116/80 	91 	434/225 

2. Multimission Operation 	 74/55 
Support 

II 3. Post-Mission Data 	__ 	-- 	103/70 
Analysis 

II •4. Network Operations 	8/5 	108 • 	217/65 

• Shuttle/Skylab Payload 	100/65 	-- 	214/125 

II6. Space Transportation 	908/605 	840 	1930/740 

II7.
Space Industrialization 	120/80 	160 	600/295 

Totals 	1252/835 	1199/0 	3572/1575 

II 
Legend  

II x/y x: cost without advanced 
automation in the 1980s 

TABLE 5.6 - ESTIMATED NASA YEARLY 	y: potential savings by 2000
• 
 II 	

COSTS [GEVA79] 	• 	with advance automation in 
1978 million $ 
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5.5.3 Committed to this trend, NASA has recently embarked upon a 

multi-year program which establishes a framework for computer 

systems research and development. The program is called NASA 

End-to-End Data System (NEEDS) and it aims to improve the 

effectiveness and efficiency of NASA's overall data/information 

management system by improving the performance and functional 

capability of on-board processors in the next ten to fifteen 

years [HOLC80]. The principal Advanced On-board Computing 

Facility components of NEEDS are: • 

1. Distributed Microprocessor Data Systems. The development of 

a microprocessor based distributed data system capable, in 

particular, of real-time on-board determination of accurate 

position, •time and attitude. 

2. Information Adaptive System. A set of hardware and software 

facilities interfacing.directly with the sensors on board 

the spacecraft capable of direct preprocessing and editing 

to the maximum extent possible in order to minimize the 

amount of data transmitted and the need for.ground control. 

3. Massively :Parallel Processor (MPP). 	High speed array 

processors Capable of real-time image :.processing to be 

developed first  for  ground use and eventually for on-board 

use (1990s). 

4. Synthetic Aperture Radar (SAR) Processor. 	.Development 

concept similar to the MPP, 

5. General Purpose On-board  Computer  Technology. 	In order to 
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limite proliferation, NASA has decided to standardize on the 

NSSC computers as much as possible. Since there is a large 

performance  gap between the NSSC and the MPP, an. 

intermediary solution will.have to be developed. 
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II 6. SUMMARY 

This report presented a basic review which serves as a background for 

further studies aimed at developing an integrated set of computer aided 

engineering tools for multiprocessor design. In particular, this report 

contains: 

a. a review of architectures useful for the implementation of 

distributed systems: 	the common bus is the most widely used 

architecture, with multiple bus levels systems now appearing and 

with more advanced architectures now being studied. 

b. an  outline of the basic concepts of: .the software meChanisms 

required for the control and .co-ordination of procesSes through 

• synchronization and scheduling in distributed real"time systems. 

c. a description of five current multiprocessor systems designed for 

spacecraft and avionics applications. 

d. an introduction to current -state and trends in 

spacecraft computing through a review of processing 

processors used, systems implemented and development 

the field 

requirements, 

trends. 
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