N N e i e
S o o ad R

intellitech The Intelligent Use of
Technology

REVIEW OF MULTIPROCESSOR SYSTEMS

1

AND THEIR SPACECRAFT APPLICATIONS

|

E e e o E— E E W M W W -

e wmm

>

-

. REVIEW OF MULTIPROCESSOR SYSTEMS

AND THEIR SPACECRAFT APPLICATIONS -

Industry Canada - |
- library - Queen

49k 201998

- Industrie Canada _
| Bibliotheque Quesn |

‘Report No. INT-82-14 -

' March 1982

Authors: Mr. J.G. Ouimet
. Dr. C. Laferriere

. Dr. S.A. Mahmoud

‘Mr. T.F. Martin

Approved by: Dr. S.A. Mahﬁodd;

III!,‘, (30wynnent - Gouvemement
of Canada du Canada

I * Department of Communications

00 CONTRACTOR REPORT - DOG-CR-SP ~82-044
DEPARTMENT OF COMMUNICATIONS - OTTAWA - CANADA
SPACE PROGRAM

| TITLE.’ReVleW 0of Multlprocessor Systems And The:.r
' . Spacecraft Appllcatlons
- AUTHOR(S): J. Ouimet '
C. Laferriere
-~ ‘S.A. Mahmoud
. T. Martin .

- ISSUED BY CONTRACTOR AS REPORT NO: INT-82-14 |

PREPARED BY: Intellitech Canada Ltd.
"352 MacLaren St.:

uerary - i Hﬂ“uE&UE |
Ottawa, Ontario - V L
K2P -0M6

DEPARTMENT OF SUPPLY AND SERVICES CONTRACT NO: 3ER.36100-1-0273
, :) SN: OER81-03151

DOC.SCIENTIFIC AUTHORITY: R.A. Millar |

CLASSIFICATION: Unclassified

This report presents the views of the author(s). Publication
of this report does not constitute DOC appraval of the reports:

~ findings or conclusions. This report is available outs1de the
department by spec1a1 arrangement

DATE: March 1982

|

-

.
|

Preface

This..wdfk was performedA for the‘-Department of. Goﬁmunications;
Communication Research Centre, under DSSiContraét No- OEﬁ81;0315i;'entitled
"Computer~Aided Engineering Tools for Spaceér#ft Multi-Microprbééssor
Design“; from September 15, 1981 to Mafch 31,.19820 This report is ome of

the following four contract deliverables:
1. Executive Summary

2. Report #1 - Review of Multiprocessor Systems and their -Spacecraft

Applications.

3. Report #2 - A Survey of Computer-Aided Engineering (CAE) Tools for

the Design and Simulation of Multiprocessor Systems.

4. Report #3 - The Definition an¢ASpe¢ification'of an Integrated Set
of CAE . Tools for Spacecraft Multiprocessor System

Design. | ‘ | ’

Agknowledgement

- The study team gratefully acknowledges the technical guidance

of Mr. R.A. Millar of the Communiéations Research 'Centre, - His

knowledge and experience in the field of computer ‘'simulation of

spacecraft systemsvhave contributed-to the quality~6f the work and

provided a constant source of encouragement to the study team.

As well, the study team wishes to thank Mr. -J.M. Savoie of

C.R.C. for many fruitful discussions'and-critical reviews,

TABLE OF CONTENTS - -

: ~ _ _ ~ Page No.
1A INTRODUCTION ..Il‘...ooll'to.l.tltcl;.lttllt....l..l!ocbhllu' l

1 INtrodUCtion seeessesesessnsosessoasnsssnasssscnsnsnsos
2 Classification of Distributed Systems .veeeieecercasnss
.3 Implementations of Distributed Architectures .eesesesss
4 Fault-Tolerant Distributed Architectures .veceecsaccess
5 CONCLUSLIOMS soveverassecsssrssasossosaossssssasessesasens

3. .SURVEY_OF DISTRIBUTED OPERATING SYSTEM TECHNIQUES ++veveeenss

4.1 GenerélfDesc:iptidn .}...;1}..;;;ﬂL.{....,}.;,;..,,..,;
‘4.2 Comparative Analysis of Three Architectures

(SRS RS G S
. « s w .
v BN

.

6. SUMMARY

REFERENCES +e¢as

Introduction eeocecences

Reliability «...

1
2
3.
4 Real~time Interrupts
5
6 Applicability to Special Purpose COMPULELS «eeavesosses

‘Automation Trends

"8 0 o0

Synchronization seeeusoes s ')
Scheduling/Resource Management . eseeesevecesssnannasss

L I R I N I R I I B I R O I)

INErodUCELION eeeesaosvesonsanssssnssnsssenassnsessanins
Processing ReqUITrementsS .eeecesecesvessssscsssnsnnsessns
Spacecraft COMPULETS eovseenssocassansssocsssassrssssns
Example Spacecraft Systems |

s e v e e o

R IY

" 4. SURVEY OF CURRENT MULTIPROCESSOR PROJECTS wuveeesesuvessanss

‘5. THE SPACECRAFT APPLICATION ENVIRONMENT +«evoveeueacssanenanns

® 8 000 e s NP o

a4 s e I LI EONILOEPEELLILIEELEPORPLOETOLIOLIEILEOLES

e sV OV EDPOSIOEOEBSALIEOEBLIEOGLEOLS

2. ARCHITECTURAL CONFIGURATIONS OF MULTIMICROPROCESSORS ..s.... 3

3
4

s

11

‘14

15

15

18

.12

27
28

28

30

30

43

47

47
47 -

50
54
60

67

68"

-1+ INTRODUCTION

‘Interest - in multiprocessor and distributed intelligence computer

systems has increased dramatically in recent years; This‘interest:has”been'
:‘fostered' by ' the availability of microprocessors ‘with eyen ”increasing

: performance/price ratios and the expected emergence of monolithic systems

with still high capabilities in the near future.f

A Significant advantage of'distributed systems‘ is ~their potential

capability_.for providing very high reliability through redundancies 'and

: ;dynamicl reconfiguration. “Since reliability is of prime concern _in vthe
'designi‘of - spacecraft systems distributed systems have received lot..of'
o attention» from'-spacecraft computer systems designers. The aim\ of ;thisy .
. report is to reView the technology of distributed systems and to: estahlish;

__their applicability to the spacecraft environment.,

Section 2 of the report presents'different.alternative architectures
for multimicroprocessors. These 'achitectures differ in‘thev;degree and

method of coupling processors and memories,_their complexity and ability'in

isolating faulty components.’ The-Survey'of,the”full spectrum of architec—

tures was,'conductedAirresPectiVe‘of'the'number~of processors. involved in

the architecture. Both architectures commonly used today, and those in

theoretical or design development stages,.are presented.

Section 3 surveys briefly the techniques .of designingyandfimplementing:

_Executiye Software for.multimicroprocessorsf The emphasis is placed on. the

general functions of the executive and - the approaches followed for
scheduling tasks ‘and resources and for handlingy intertask- communications

and external interfaces.

 Section ' 4 surveys five research activities reported in the literature.

which culminated in the development of five -experimental ‘prototype'

multimicroprocessors for avionics and spacecraft applications. These are:

the Cm*.systenm (Carnegie'Méllon University), FIMP (Draﬁer_Laboratory); SIFT-
. (Stanford Research Institute), UDS (Jet Propulsion Laboratory) and ‘the

" french Matra‘éyétem,

' Section' 5 is an introduction to. the field of spacecraft C§mputing.‘

* technology. ’,Thé aim of the section is to establish a‘baseline;deécription B

of the environment with attempting to be an exhaustive discussion of the

subject. The Asection first reviews the processing requirements of_spacefA'

crafts, outlines the pfocessors used, then éxemﬁlifies.the»subject through

-the use of the example spacecrafts'and‘finally_-presénts 1somé ~apparent

trends in the development of these computers. .

2. ARCHITECTURES FOR DISTRIBUTED SYSTEMS

2.1

Introduction

>--Sigﬁifiéant=rad§ances‘iﬁ the developmenﬁ{of>powerful'aqd reliable
computgr-.systéms_ have been based largely;on- the' use of @ﬁltiplé
prdcessors, A system' which coﬁsiéts of several prdcessdrs. éans be
implemented‘in~many vgriations.' Normally these variations fﬁli‘wifhin

one of the following broad_classificatidns:;:

’a;;Mﬁltipfocessors:, Defined as a‘computér employing two or more

processing units under integrated control. The multiprocessor has

the . capability for the direct sharing of memory and:I/0 devices by

all processors under control of a single operating system.

b;'Multiplé ComputeffNetwork: “ These systems are_cdmposed'of~a number

of -heterogeneous computers loosely coupled, sometimes “only by
~communications links. Each processor.operates independently under
control of its own operating system, sharing data with other
systems as required. o : - :

c¢. Multiple Computer-Distributed: - These systems fall somewhere

between multiprocessors and networks. -Jensen defines them as "...

a multiplicity of processors that are . physically and logically

- interconnected to form a single system in which overall executive

.control is exercised through the co-operation of decentralized
system elements". [JENS78] - . '

These -definitions should not be viewed as the basis for absolute

classification; it 4is possible to find examples of systems that do

not fit exactly into a single definition and hence combine features.
from more than one definition. " The real purpose of these definitions
‘is to.prdvide.a framework for structuring the following diseussions‘on'

architectures. Before proceeding further, it is necessary to point

2.2

‘out that a review of all the different‘architectdres in the " three

categories would require an .effort beyond the scope of this work. The
review - conducted hefe in concerned primarily‘ with multiproceésqr

architectures that are used in spacecraft applications. Since many

multimicroprocessors and most multiprocessor systems designed - for

spaéecraft.applications fit within ﬁhe“’distribﬁtedbsystem’”group,‘ we

will limit our discussions to this category."

This section will first present -a classification -.structure

(taxonomy) used to define the environment of distributed systems. It
will then examine some architectures that have' been implemented.
Because of 1its special nature, the issue of ~fault-tolerance in

architectures will be éxamined more closely.

Classification of Distributed Systems

There have been a number of taxonomies proposed to .classify

distributed = systems. An evaluation of these various <classification

schemes [JENS76] has concluded that the Andersen/Jensen taxonomy

[ANDE75] 1s probably the most complete. It is based upon the

decomposition of systems into three pfimary elements:

a) a Processing Element (PE). which is a ~hardware wunit ‘in which
processes. can execute; o : o

b) a Path which 1is the'medium_on, which messages are transferred'

- without alteration; and

¢) a Switch which intervenes betwéen the sender and receiver of a
message by modifying the message (eg. changing its destination’

address) and/or by routing to one of a number of alternative paths.

To implement a distributed system, a designer must select various.
intercoﬁnection parameters. A tree structure can be used to represent

these alternatiVeé.as shown in Figure 2.1. - This tree is divided into

" four decisional levels. These levels are:

fa) Link Level: - A designer may..select to use direct links.between‘all

PE"s or may choose to use a switch, thereby implementing an
Indirect 1link architecture: As dlscussed above, the switch will
‘perform address translation (eg. from a loglcal address to ra
 physical one) or perform a routlng functlon. ‘

_b)fRdﬁting'Level: For Indirect architectures, the designer may select

to centralize the switching/routing function to omne ent1ty or:
‘decentralize to a number of entitiles. ' ‘

c¢) Path Level: At this 1evel;fmessage‘traﬁ3fer paths can be shared or.
dedicated. . A shared path is one to which more than two PE"s ‘are
connected. ‘ o : ' o o

E d) Architecture Level: . The - final .1eVel of»the»tree:are- the nodes

.which represent specific architectures. -

- Figure 2.2 gives-a»number'of.examples of wvarious architecthres‘

possible. . The name of each ekample is preceeded by a’three—éheracterA

classification where the first letter indicates whether the link 1is
direct - (D) or indlrect (1), whether routlng is -non~ex1stent‘ OF

centraliied (C) or decentralized (D) and whether paths are -dedicated

'(D)_or shared (8).

"LINKS
* ROUTING

- PATHS

- ARCHITECTURES

 EXAMPLES

Distributed Architecture

* DIRECT INDIRECT
© CENTRALIZED DECENTRALIZE
 Dedicated Shared ' Dedicated - Shared Dedicated - Shared
Loop Cbmp1eté : 'fCommon Common Star_' CéntraT' Central " Regular Irregular = Bus
: Inter- Memory Bus ‘ - Loop - - Bus Networks Networks Window
“connect ‘ ‘ D S . '
: ' .Tree . ..Packet .Cm*
: f;;aCAP ‘55330 '§¥g$ X=-Tree Networks .Micronet
R Semmp .Hypercules ' ‘
| L e
FIGURE 2.1 - DISTRIBUTED ARCHITECTURE TAXONOMY. OF - ‘

ANDERSEN/JENSEN.

~a) D.D - Loop

-e) IGD - Loop

Networkv

FIGURE 2.2

~h) IDD - Regular

b) D.D - Complete
Interconnect

5) 10D - Irregular

Network

ARCHITECTURAL EXAMPLES

B a@&

| “¢) D.S -‘Comﬁon -~d) D.S - Global Bus

~ Memory

g) 1CS - Centrally
Controlled Bus-

@5@

k) IDS - Bus W1ndows

Processor

' Legend: P -
M - Memory :
P/M - Processor & Memory
S - ‘Switch
P/S - Processor with Sw1tcr
Functions .

243

Implementations of Distributed Architectures

Most of the earlier implementations of\multi—procéssor systems

were done for large machines (IBM 360 and 370 families; Burréughs 5000

.", and 6000 . families, . CDC 6000, etec.) in ‘order to improve _theif

throughput. Most of these machineé“included a shared memory and used
one of the following interconnectidh mechaniéms_ between the

processors, memory and I/0 processors:
~a) - common bus (Figure 2.2d)
b) crossbar switch

c) multi-port memory (Figure 2.2c)

" Enslow [ENSL77] surveys these architectures and the existing

- implémentations (in. 1977). 5He -also analyzes the- interéonnéétion"

mechanisms and gives a list of advantages/disadvantages for each (see

Table 2.1). - Although these multi—.procéssor. systems do not meet the

1definition of Distributed Systems because of the extfemely “tight

coupling«between the components, much of the analytical work done for_

those systems still remains valid.

. More Trecent work in distributed systems has been directed

. primarily towards three architectures:__.bus, circuit switches and -

© indirect. The use of single and multiple buses has been extensive,

particularly ‘for fault-tolerant SYStems (see Sections 2.4 and 4.
Some 'théoretical foundations for bus structures have also appeared

[KINN78], [HAMAS0]. A number of indirect .networks (Indirect

:Decent:alized\ Dedicated) have also been :proposed; ~these include

- . . . o .

binary-trees [HORO81], [HARR79]; ~X~trees [DESP79]; - hypercubes

. [WITT81]; cluster structures [WU8L], etc. Considerable research is

also.now taking place in the area of switqhiﬁg where efforts have been

' underway for some time to replace the crossbar ‘switches with switches
having all & its advantages but none of its disadvantages. In
particular, some of the switches which have been proposed could

eventually be fully dimplemented in. VLSI. Some of these types of

switches are known as delta [bIASSl], 6mega, bényan - [FRAN81], etc.

- [FENG79] .

N N I B O N PN BN BN N A DR B BN OE BN TE EE e

Common Bus

erésbér Switch

- Lowest overall cost

Least complex -

. Easy to add or remove .

- Limited bus throughput

' Failure at bus is a

catastrophic system

"failure"'

A single unit can de-

grade the. performance

of the whole system

Lowest system efficiency

of three types

Functional units remain

. single and cheap

Most complex inter-
connection

Expansion simple to

implement

Highest total transfer

-rate capability

Switch partitioning alters

inherent redundancy .and

- reconfigurability

'Easy to remove malfunc-

tioning units

Potential for highest system

efficiency

Multi-port Memory

"Requires most expen-—

sive memory units.

Complex interconnection

Extremely difficult to
expand since design is

normally size-dependent

' Potential for high

transfer .rate

" TABLE 2.1 =~ 'ADVANTAGES/DISADVANTAGES‘FQR THREE TYPES OF

. MULTI-PROCESSOR ORGANIZATION

2.4 TFault Tolerant Distributed_Architeétures

Some applications, .real-time systems in particular, require a
high degree of reliability. The"computer system is. -expected to

withstand ‘individual - component <failures while continuing ~ the

,_processing"function.__ These “Fault Tolerant’ (FT)'computer‘Asystéms
have~~specially' tailored architectufes' desigﬁed _to -‘provide this

feature.

The . Global (or common) Bus architeccufevhas_beén widely used» in .

‘.:he design of many FT systems{.,SOme-of the better known systems under

developmept (FIMP, SIFT, UDS) use the bus concept. - There is :Some

- spéculatidn that the global bus will remain the basic érchitecturerfor-
aefospace‘ computers.~[CARB77],vvthdugh_probably~with'thé addition« of

multiple level of buses [CROS77]; 'Figu:e_2;3;is aﬁ‘éxample of a'dual—'

level bus system.

As shown in Table 2.1, the commbn bus concept has a number of

inherent disadvantages. In particular, fault tolerance is not an _

implicit .quality of buses; in order to provide FT, _désigners must
replicate the buses and design complex bus interface mechanisms to

‘provide the many-CPU to many-buses connections required and to prevent

.any one CPU from disabling.a'bus.' Additionally, bus architectdreé‘are

very prone to bottlenecks.. This has not been a problem so far since

the ' -amount of data passed between processors has always been -

relatively small. However, as processors are added and as data-

“intensive functions (eg. real-time image processing) come on board,

" bus architectures may reach limit points. -

_Bus A

Bus C

NoteS - If P, can address P13r thlS is an IDS archltecture.

- If P does not -know Pll—l3 ‘exist but - rather talks to

% as if it was the final processor, then this is
the '

equlvalent of three D.S archltectures.

FIGURE 2.3 =- DUAL~-BUS LEVEL ARCHITECTURE

12

- Because of these problems, many - attempts’ have been made at

implementing other types of architectures in FT systems.

t

 .55 BuQ(D.S)

= C.vmp:

EPOS:

Architectures implemented are, with examples:

FIMP, SIFT, UDS: (see Section 4) ‘
SARGOS the computer. system of the ground stations i
was designed for high. reliability. SARGOS

is a system to be used to identify. and
locate ' distress beacons by satellite. =
[DESW81] . S

the . .Experimental Polyprocessor System
designed circa 1979 at Toshiba in Japan uses

multiple independent common buses,'[MAEK79]

b) Cluster Netwérks.(IDS.Bus-wihdoW)

- Matra System, Cm*°'(see Section 4)
- MuTEAM a multimicroprocessor system now in. develop-

' c):Riﬁg.(D.DLoop)

- DDLCN:

ment in Italy, designed for embedded .real-
time applications -using loosely . coupled
clusters. of bus connected mlcroprocessors.

[GIOFSl]

a fault—toleréntr reconfigurableA network
using dual loops and. tri-state control logic

~.interface developed circa 1979 at the Ohio
. State Unlver51ty. [WOLF79] :

d)‘Cqmplete Interdonnect'(D.D)-

e) Irregular Structure (IDD)

- RHEA:

a reliable and survivable real-time sYstem
designed in France in 1976, it uses a two-
level structure composed of an irregular
network ‘controlling groups of local star
structures. [POWE78]

£) Circuit’Switchéd (IDD Regular)

2‘.5,‘

Other IDD Regular architectures such as Tree 'structures [LIU80],

[KWAN81] and partially meshed Rings have also been studied. This last

architecture (Figure 2.4), in particular, has been analyzed in detail

by Pradhan [PRAD8la), [PRAD81b], - [PRAD8lc] and others [GRIN8O] and
found to ptesent a very high degree of fault-tolerance and fault—

diégnosability as well.as having gobd-disfributéd systemsf properties .

- (low complexity, extensability, partitiénabiiity,vetc.)

FIGURE 2.4 = A PARTIALLY MESHED RING

Conclusions -

- 'Ffom_ this review of Distributed Architectures, a few cdnciuding

~remarks can be drawn:

a. The “common bus” "is still the most widely used - implementation
-architecture, especially for FT systems.

b. Multiple bus levels (bus.window) and loop architectures1aré at . the
design and test stage. :

.>c{>Radically nev architectures (meshed rings, tree, etc.) are now

‘being theoretically studied and show promise for long-term . imple~
-mentations. : : . . L

1

3. SURVEY OFrDIéTRIBUTED OPERATING SYSTEMS TECHNIQUES

3.1

Introduction

. A-.distributed system is'.an amalgamatioﬁ of individual computing
entities with the aim of fbrﬁing a combined singlé computef systém.‘"'

Activities take 'place in .the individual: entities concur;entlj~ and

voverall.> co—Qrdination‘fis the fespbnsibility~ of a decentralized
__executivé. , This'definition~of distributed'cbmputér system‘is_that of

~ “[JENS78].

The decentralized executive'is what:binds together the,collection'

. of pfodessing'entities. Thié binding éaq.be dome in diffe;entf'ﬁays,
':fanging ifrom ‘vefy,tight éouéling_tO'Qéryf:léose; ééeordinétion{f It

:Should be emﬁhasizeditﬁét.tﬁe éxec#tive'iﬁ;éiflis:é COntfoifaigérithm.'

- As su¢§, itvéan be imﬁlementédsinthardware,‘inlséftware;'or as.is.m6£é

‘likely, in.a mixture of both..

Hardwired executives (ie. ‘executives whose algorithms are

. implemented in hardware) can be found in.<éystems such’ as array
processors or multiprocessor systems where the processors are tightly

coupled to the executive through a common bus. At the~oppoéite end of

the spedtrum, systems such- as distributed databases can be found

-_ruﬁning on a loosely coupled network of computers. In a distributed

database, the database management systems"makes‘the distributed nature

of the system totally transparent .to__the users. . The database

. management system is a purely software entity and works in-éonjunction

- with some communications facilities to provide the required co-

ordination. So far, the executive has been characterized by:.

- 1l. An algorithm. (or set of algorithms) implementing a policy (eg.

loose or tight control scheme), and by

2. An implementation such as hardware, software or a combination ‘of
both. '

The software part of the implementation of the executive is called the

operating system (0/8). The purpose of this section is to highlight

- the software methods used 1in proViding an executive for distributed

" systems. This will be done_in the’context of a general -purpose

distributed operating system,.in*orderftoAcover_most of the mechanisms

inwolved.

From a user point -of view, ‘the purpose of an operating system is..-

' to manage efficiently the computer~resources'under its control. More.

.specifically, the 0/S is involved.in the following:

l.-Management‘of‘Computing Resources

~Managing fcompntinglresources involwes'scheduling and synchro¥
_ niaation of processes. .A process.in an instantiation of a program.
The ‘latter is a series of instructions residing in core or in a
core image file on disk whileithe formeriis the actioncof‘executing
the instructions. A Aprocess intcharacterized‘ by its Process
Control Block (PCB) which contains-the'Program counter,: the 'stack.
pointer, the program status word, some_registers, etc. In\ a
‘typical computing entity,A many processesvmay be competing_ foro

access to the processor, that is, actively running as opposed to

walting.to run. The 0/S will ovérsee the running of the processes

and will ensure that each is given a'faif‘share of the broééssorf'

Processes ~whi;h execdté‘cbncurfeﬁtly @éy.wani to_’co-cperate
among themselves. ' To thié'en&, intefprocess synéhronigatioﬁ'faci—
1litiés fsh§u1d be provided by’thetols. -1£ shé&i&'aiéo;be_rgalized_
'that,;,because»synchronizatiéﬁ invélves blocking and.ﬁnbldckiné_ of .

procééses; it;Shares-the use.of éom§ c6nc§ﬁtﬁal mechaniémg with‘thel_'

0/s scheduling facilities.

Also of dimportance is how the 0/S will handle real ‘time
‘interrupts which are demands fprAservice'originating from devices.
This area .is relevant to control‘system,Such as on~board processors'

for spacecraft.. .

'2.‘Managemant,ofAPhysical Resources

ManagementA of physical re50urcés is mosﬁly concerned wiih_thé
dlldcaﬁioﬁ_(or granﬁing) of_hardware de?iceéito processes. Several
itemS‘:are:cévered~under thé headigg‘ﬁardwafe‘deviées;-?such' items

.caﬁ be! _moré membry.space.for;a‘procéss, access tovfast'floating

'point~pr9cessof, control over a disk drive, or a printer, etc.

The result of the management activities of the 0/S is.a 'set of

‘services. . As explained before, those-services constitute the_éofhare '

- part of the executive of a distributed system. The rémainderiof>this

section will alaboréte on each type of " service with appropriate

reference to relevant experimental systems.

3.2

Synchronization

In. any system supporting concurrent execution (real or contrived)
of processes, facilities have to éxist to enable processes to co~

operate among themselves in the execution of certain “functions (eg.

- managing communication devices, storage devices, etc.). ,This-is,the

pﬁrpose"of‘_synchroniZation. As a system 1serv1ce, synchronization

. strongly Treflects the‘:tyPe ~of control étructure -embodied by the

" hardware. -For example, - syﬂchronization~thrdugh sémaphoreé‘~can ‘be

provided in‘Za,tightly]cdupled.system:withHShared memory; whereas a

" message-based synchronizatiqn -scheme . is more suited to a. loosely

- coupled environment.

,Synchrcnizationlcan'be broadly classified into two typés::‘

1. Implicit Synchronization

 >As fhe naﬁe iﬁpliés, ‘tﬁe O/S'dogs‘not_éfovide sYnéhrogiéatioﬁ

' Sinée lit is either provided.by tﬁe enVirénménf or Sy another- O/S
‘sefvice.' An - example of Asynchronizétion beiﬁg~prq§ided by - the
: envirqnment}_is a system tRENN?Sa]<in'which'-all-~ac£ivities ‘are
déemed to be synchronoug.‘ InAfaqt, tiﬁe‘é:ovides-synéhronization.
In some other sysems [KATS78] [ORNS75], syﬁchrénizéﬁion is
implicitly..providéd to a::"strip" (a st#ip is a shbrt, non-

interfuptible prqcéss),xthrough scheduling of another strip.

2. Explicit Synchronization

In this case, synchronization is truly a system service imple-
mented in software by various techmiques. The performance of these

techniques will depend upon factors‘:suchﬂ as: hardware con-

- figuration, granularity of the activities.of processes using“the.

synch:enization’sefvice, frequeney of ﬁtilization,'etc..[JONESO].

When ‘dealing with explicit -eynchronization techhiques,"it

should- be remembered = that _lower:_ievel‘ techniquesl-are ‘always

»neceesary at a prOcessingvenﬁity; syﬁehfqniZaeipn:ecfess processing'
entity' bogndaries':ﬁey necessiﬁeee a diffefent type . of - mechan;em "

eﬁﬁich wili be implemented using_the_former';techniquee.j_ Explicit
'e_zeynehfbnizetion techniques 1&111_ then be 'listed 1By- order. of

',_eophisticatidn.

" a) Locks

The implementaﬁion.of'locksfrelies on the availability of ‘an

indivisible operation (eg.' test-and-set) at a glven processing'

~entity. Locks . are typically used for co-res1dent -processes

having fine granularity of act1v1t1es and~those;processes will |

usually implement a poiiey of "Busy Waiting", that is, will
constantly check the yalue of the lock until they acquiref it.
Two observations can be made'in-connection with locks:

i) A "Busy Waiting" policy_implieé that a blocked.process will
keep the use of the processor. - Other processes will not be

© permitted to run, even though no constructiVe work is done by_

-the blocked process.

1i) While a process is blocked on a lock, the resources it is

- currently holding -‘are not available to others. Releasing
those resources, however, is not necessarily the best policy

- since the process would eventually have to re-acquire them
at ‘a later time. S ~

b) Semaphores

Based upon locks, a more constructive approach can be taken
in which the blocked procésses.are suspended and put in a
special queuve. A semaphore'ié thgbimplementation of that policy

and is -represented : by. a mechanism such as a 'loék;Aand‘ an

" associated queue. Semaphores :release‘theAprocessing” element

'C)V

- from a blocked process and give other procésses a chance to runm.

However, the policy involves context switching from ome proéess

“to another. Obviously, 'if the cost'ofvéontext switching is

‘Vhighér than that of blocking for .a given process then_,blocking

is preferable; .in -other situations the reverse may be ‘ttue.

- Furthermore, the resources claimed by a suspended process-~are

still being inaccesible to others..

Message Passing

Message passing is a synchronization technique in which the

- sending .and receiving of messages .(not necessafily their

contents) define blocking and re-start for a process. ~Local to

a given processing entity, ‘this technique can be implgﬁented by

using seméphores which in turn are impleméntéd(partly. with

locks. The synchrbnization.object is the mailbox which allows -

processes to wait (ile. ‘suspend themselves) for the arrival of a

message and to send a message to another mailbox (ie. signal

1 another ° process). Clearly, synchromization through ' message -

passing is very well suited to a distributed environmment since:
i) it goes across processor boundaries, -

ii) it is not bound to-any.physiéal set—dp,vbut

. iii);it is.understandably very ﬁuéh-slower than semaphores.

The ~flexibiiity of message passing‘§ynchrdnizétion.ﬁade_ it
the choice as a basic’_synchroniéation technique for mény
experimental distributgd. operating systems such as fWULFZAJ,
[WULF75], [LEVI75], [COHE75], [JoNE791, [OUST80], [80L079] ,
[WITTSO]. It has~(to‘Be_mentioned,‘-howeve;, that ‘in these"
sYstems, the O/S maintains a.consiste#t‘intgrfaée“for all the.
pfoéessas. S In actual féct,‘itﬁo frocgéges é&nchronizing. e;qh-
bﬁhe;.thr0qgh"méssage passihg may bevusing‘a_singié semaphore if.

- they are resident iﬁ_the same'proééséof~or may be e#chahging

.zmessaggs.(on a bus, through sharédimemo:y«or thfodgh a‘éarallelk

--or lgerial interface) if the processes 'ére at &ifferén;
procéssors} FrOmvthe pdint of .view of~uniforﬁity;-offe?ingthe'

type of service and making its implemehtatioﬁ transpérént to the

”.'users seems a good policy, inasmuch as the 0/S hasfthe'neceSséryV\“

flexibility..

A summary of synchronization techniques is shownvip Figure 3.1,

together with the systems,ﬁsing:themJ At_this:pqint,'a.brief,&escrip—ﬁ

tion of some of those systems is in order.

‘1-‘

The " Unified Data System (UDS) [RENN78a], [RENNSO] is not -an -

_operating system as such, but a multiprocessor organizationi in
which all operations are synchromous. It is on that basis that it

‘is included in this section. Further description is to be found in

Section 4.

Pluribus (circa 1975) [KATS78], [ORNS75] is a computer -system

composed of three types of elements, - called busses: processor-

- busses, memory-busses -and I/0 busses. Those busses can be con- -

\

figured to form a multiple processor system. Some;special featﬁres

are important to the hardware structure:’

!

"a) all activities are on the form of short, non-interruptible

processes called strips.

b) synéhronization among strips is :hrough.the schedﬁling of other

strip(s).

xc) scheduling, for both real—time interfuptsfand-softwareyinitiated

reqﬁests, 1s through<inseftion of the-identity of the desired
strip(s) into a hardware~qdeue.calledlafPseudo—Interrupt Device

(PID).S

Pluribus and UDS are examples of systems where a éizable portion 6f _

the distribﬁtéd éxecutive-is.implemented by hardware structures.

“Hydra [WULF74], [WULF75], ’[LEVI,?S]’_,, [COHE75] is the operating sys-—

tem ‘developed' for the Csmmpu[WULF72]. This multiple rcomputer

- system was developed at Carnegie-Mellon University and is composed

of a number ‘of DEC .PDP-11/40~‘with_ separate .memory modules .

Memories and processors areé interconnected by means of a 16x16

- crosspoint switch so that all of the available memory is dccessible

.by. any one of the processors. -The C;mmp (eirca 1970) is _the
~earliest of such developments at Carnegie-Mellon and precedes the

 Cm* Both'in age and in concepts.

Hydra, ‘the operating system of C.mmp was given thé résponsibility

of managing the 1atter’S'resoufces;_' Consequently,- Hydra provides'

facilities for managing the total memory space, for synchronizing

<

3.3

\

and - scheduling processes, and for allocating:hardWare resources.

Support of the concepts of capabiiities‘and bbjects is provided by

' Hydré in an effort to increase'security'and data confinement.

Star0S [JONE79] and Medusa fOUSTBO] are operating5éystems"désigned

 for the Cm* (circa 1975) multiproceésor-éyétem{_-.(Cm*'is described

in detail in Section 4.) Star0S was the first_O/S developed: for
the Cm*. Medusa was deveioped lafer,l based upon the .experience

gained with Star0/S. Both StarO/S.and‘Medusa-are close to Hydra in

terms of general philosophy of ‘operatipns.'> The services they '

provide are, -in general,. similar to Hydra”s, except where hardware

differences between C.mmp and. Cm* either require extra facilities

" or make some services redundant.

Other multiple processor operating syéteﬁs_are in éxistenée, such

"as Roscoe [SOL079] for the Rochester Intelligent GatéwaY*and Micros:

. [WITT80] .for Micronet. The services they provide are very similar

'to.thbse of StarOS or Medusa.

Scheduling and Resoufce Management .

The problems of scheduling the_exeduﬁion of processes and of

allocating the existing resources efficiently are both concerned with

the performance of a multiprocessor system. ' On a more general level,

the task of management takes on two -aspects: static and dynamic.

Implicit

through timing UDS
through scheduling of

other tasks

Pluribus

Synchronization

Explicit =

~through any.of the
following techniaques
service provided
~by 0/S.

.Locks '

*~p--.USeiindivisibTé.operations-:
| such as test-and-set
I busy- wa1t1ng ' ,
{'--su1tab1e for fine. gra1ned operat1ons

| implemented in Hydra, Star0S,
1Medusa, .

Tk 1mp1émented~using Tocks

- used in shared memory context

| suspension of blocked processes

‘I allows for coarser grained operations

Message
Passing

- more. expensive because of context switching
L implemented in Hydra, Star0S, Medusa, ...

- FIGURE 3.1

'genera1 synchron1zat1on techn1que .

makes no assumpt1on as ‘to hardware configuration

goes across processor boundaries

can be uniformly 1mp1emented through use of semaphores
~is expensive to use - .
“Hydra, StarOS Roscoe, Medusa M1cros, cee

- QVERVIEN’OF SYNCHRONIZATION-TECHNIQUES
’ S : S 24

1. Static management is mostly concerned with how to distribute the

code. and data structures of 0/8 utilities and other processes among

‘the various memory modules in the system. It can be seen readily
‘that' static management is extremely dependent upon the hardware.

e,configurétion worked with. In highly specialized systems or- in

systems with only global memory (eg. [WULF72])., all processors (or

S gfoup'of processors dedicated to the -same functiomns), “have - copies

- of all 0/S utilities and other processes; In more general.systems

(eg. [FULL78]) memories are.afréngeduin a mix of local and giobal

- . partitions. The cost (speed énd;contention) of accessing<‘local

memory is ‘much @ less than . that of;.accessing gloBal fmeﬁory,d

‘indicating that. the distfibution-pblicy and by extension the
‘coﬁfiguration itself, will play.an:important role in detefmiﬁing

‘the“performance‘(speed, tthughﬁut, response time) of the system. -

There also exist other systems (eg. [WITTSO] in whichAall-memdries

-are local to some processors. - In those systems, ' as opposed S to,

o special-purpose~systems, processes with non—resident;code have to

be' executed elsewhere and -are started through a remote - procedure

call (eg. using message passing cdnstruets).~

Static management is therefore concerned with the ailqcation of 0/8

utilities and other procesées into'the various types of memories

‘with" the aims of: a) keeping as much free»space as possible for

each processor, and’ b). maximiziﬁg thedspeed of execution of 0/S

processes and others. These ‘aims were, as mentioned previously,

-dependent = upon the local/global memery-arrangement and how much of

each type was provided. -

2. Dynamic management is concerned with the scheduling >pf processes

and the management of resources.

a)

Scheduling of processes can. be accompliéhed implicitly in '
systems (eg. [RENN78a]) where time is wused to schedule

synchronous processes. This appfoach is:conceptually simplé_but

only applies to a narrow raﬁge'of‘applicétions and is also

inflexible. Explicit scheduling can be_acédﬁplished by queue(s)

- . of ready to run processes (called ready to run Lqueﬁe). fSched*_

.b)_

uling - can then be implemented as a. single or multiple ready to

run queue. One possible.arfangemént.is'to have 'indepéndent

réady' to run queues at each processor with static priorities

Aassigned to queues and dynamic~prioritie$.assigned;to processeé.

‘In tightlyycoupled systems,:scheduling in&olves a‘conteXt'switch,

‘to the 0/S and then a second context SWitch:to the chosen fprOf.

cess. In the .case of a.rgﬁote'cali,in a loosely cduplgd system,‘ "
mgésages will have.to be exchaﬁged and extra context ‘switching
at‘tﬁe fecipignt processor wili,have to be done. The résuitiqg
oVerhgad findicateé thaﬁ:géheduling should be tailored to ' the
neéd of the applicétidn sofasltb.ﬁinimize‘unnecessary context
switching and to 'avoid_ inter-processor calls as muéh .. as

possible;

Resource management is responsible for the dynamic allocation of

resources (eg. devices, buffers, etc.) to processes. The

overall performance .of the system is very. sensitive to bad

decisions made by the resource allocation module. = In most

- special purpdse systems, . . however, ¢the~maﬁagement_policy is de~

3.4

termined statically at design time. This policy would ' likely
accept -excess capacity‘in terms of resources and -computing power

in order to minimize contention.

Another concern of the resource management module is .that of

deadlock. " -In special purpose very rigid systems, possibilities

of .deadlock can be totallyneliminaﬁéd whereas in more ‘flexible

ones distributed deadlock detection has to be .used.V-_Deadlock

detection is an added overhead'that can prove expensive in terms

~ of. actual processing time used, of memory space for the data.

structures and of 1OSt‘§apacity resﬁlting from blocked or pre-

empted processes.

Real*timé-lﬁterrupts.

'_ The: handling of real—timeiintepruptévfroﬁ_-devices‘-fequesting'
'~sérviée -1s an “important concern in an:‘environment such as a.
spéceéraf;. Inﬁer;uﬁts ;intrbdﬁce a ndﬁ—determiﬁisﬁic-eleﬁént iﬁ.the]‘
" execution of software. WThis:mékes the validation-and debﬁgging of the

.software an arduous task.

Interrupts have been masked out entirely in systems such as UDS
- [RENN78a] 4in which continuous polling of devices is used instead.
" This approach, albeit less responsive, makes it conceptually easy to

assess the correctness of the software. - Similarly in PLuribus,'

interrupts have limited effects on the system; all an interrupt

service routine can do is to arrange for the scheduling of a "strip",‘

3.5

3.6

Other systems which are more general in .nature accept demand

‘interrupts but try to contain their effects and isolate their‘.data

. structures by limiting the ‘scope of .the interrupt service'routines.

Reliability

:In the design of hardware components, _ohysieal distributioh. is

.the dimportant criterion whereas in the design ' of the 'executive,

- logical distribution takes .precedence [JONE80]. 1In the execution of a

function, it is evident that if software processes are dependent upon

one 'another to achieve success, failure of one of ' them ' will

‘incapacitate the rest. Logical distribution'-requires 'thatf such

deﬁendeﬁcy should not exist or at 1east should be kept to a. mlnimum.

.Rellabllity can also be enhanced by hav1ng several 1nstances _of ‘a
partlcular process (at various processors) and by having them operate

~ in a fashion .analogous to back-up processors in hardware. ° It is-also

interesting to note that there is a trede—off between hardware and

‘'software reliability din the sense'thet software algorithms can be

'designed ‘to enhance the overall system reliability.

:Applicability to Special Purpose Processors

Special purpose processors, whether of the uni- or multiprocessor
type, will have well defined functions to perform. In the case of

multiple. processor systems, the precise definition of their functions

- will allow for simpler designs and for~somefdegree of oo;imization.

The"software mechanisms presented hitherto -addressed co-ordination

p:oblems,of a general mature, hence their complexity. Special pﬁrpose

systems will deal with a fixed populatioﬂ of processesf whose 'needs

- will be known a priori. It should be pointed out that the basic

requirements for synchronization and SCHeduling will still-'apply to -

these systems.

4. SURVEY OF CURRENT MULTIPROPROCESSOR PROJECTS FOR SPACECRAFT
AND AIRCRAFT CONTROL -

This section examines the design philosophy and general‘architectu:al.

-, concepts of five different multimicroprocessor systems that have been

reported recently in. various publications. Section 4.1 examines "the

general software and hardware features and the basic deésign méthodology of

~.these systems. ,A‘comparatiVe study of their architecture is then presented.

in Section 4.2.

4.1 General Description

A- survey of receﬁt publications~in-£ﬁg fiEl& of-spacecraft_ §nd
.~avionics mﬁitimiéroprocessors révealed éubstaﬁtial< reseérch. éfforti
coﬁcentfated"mainly in'bui;ding protbﬁypé.é&étéms aﬁd éxamiﬁiﬁg théir
'.use td:réalize.ce;tain prdperties. - Such ﬁropértieS‘inclﬁde _séfﬁwﬁfe
"verifiabiiity, fauit 'tqlefanée,: 'sur&ivabiiity‘ 'unde;":hostile
conditions, -self-checking capabilities,’fét¢.;¥ Most‘prominent améng

‘these projects are the followiﬁg foﬁrfsystémst

(i) cm*
(2) FIMP
(3) SIFT
(4) . UDS

(5) Matra SyStem'

A brief.description of the above systems foliows. The details of
these 'systems can be found in the list of references at the end of ,

this section.

(1) G (SIEW78] ,[JONE77], [SWAN7?]

rThe“ Co¥ - muitimicroprocessorQ:system‘f nas | designed and
:'impiemented athCarnegieeMellon.UniVersity.‘ The~systen'is_based on
-'1nterconnect1ng- a set of LSIll/23 processors in a configuration
- which permits extensiblllty, address mapplng-and_softwarevpruning

of faulty-components.

The ~ Cm* structure consists of.a set .of..computer .modules
gronped 'into.clusters. The'clusters‘are-connected b&_a mapping
- controller 'which is a programmahle.high ‘performance_ processor.
: Thus each controller” is shared by sereral 'cOmputer' modules
' connected to it by a common bus v1a 51mple interfaces (referred to’

by Se local)

: Figure 4.1.1 gives the detalls of each computer‘ module.
Figure 4.1.2 illustrates a. s1mple three cluster. network. - The
mapping-controller_is termed K,map, whlle each computer module is

marked by M.’

Cm* has a 228 byte-segmented Virtual -address space. The
-addressing structure provides considerable support for operating‘
system primitives .such as control switchlng “and interprocess
_message'transmission. Each processor 1n Cm* uses the top‘page in
its address space (page 15) for'dlrect_program interaction with

K.map. - However, each of the_16'pages of the~processor provides a

I B EE BN N TN A I BN B BE By BE S b TE IE EE e

‘window into the system~wide 228'byte virtual address space and.can
be independently bound to‘différeﬁt _segments in the virtual

- address space.

A significant feature of the Cm* system is that all

“communication -is _performed‘by‘packet s&itching) ’except ~at the.
-local memory bus level, nwhgre conyentiop#l circuit switching\'is
i‘used.:\These buses arg‘allocéted‘énlyifor theAperiod féqﬁired to
_tranéfer>data.A Thejdaté ié 1a£ched at each interface, father thén
”.estaﬁlishing a cbntinﬁdus 'circuit‘"from‘Ethe sourcé to u-tﬁé.
-'destination, (Ihis' apﬁrdach: is-takéﬁ in order ;6. inéreaée bus

‘utilization and avoid bus allocation deadlocks.

* Computer ——
Modules } . Mll | Mio

LST11/23 .

'S. Local

. IST11 BUS

Processor .

4K

1

Mp
24K

K. TTY] -

. FIGURE 4.1.1 - DETAILS OF A COMPUTER MODULE IN Cm*

- [K.DISK

{ K.map
|

M3

K.map

Moy | | Mag

Ma3

K.map

Mgz

-M33

FIGURE 4.1.2 - A SIMPLE Cm* THREE-CLUSTER NETWORK

33

- (2) FTMP [HOPK76b],[HOPK78]

The FIMP (Fault-Tolerant Multiprocessor) is - a - ‘computer

architecture that has been studied, simulated and emulated at the
Draper Laboratory (Cambridge, MA). . "Thé targe: of ‘the pfojéct is

to achieve ' an overall failure rate less than 10'9' failures per .

hoﬁr,. provided ‘that maintenance is available within no more than

ten hours per dispatch.

The FIMP structure . is composed of an arbitrary number of

processor7 modules with loc&l‘memdriés-and an arbitrary number. of

memdfy modulés, interconnec ted by'redundaﬁt séfial\buses. Modﬁles'
are .associated intd-groupé of~thrée to~perform' triply.'redundant-
.fungtions. - ALl déta is digf;ibutedv'syﬁchronously and in
triélicaté,'and éveryvmodﬁle contaiﬁé‘éiﬁoting element to maskvbusz
disagfeements. All moduies ‘éontéiﬁ sﬁécial‘circuits to ~createf

‘logical and'physical boundaries to'hait"the propagation of faults

from one module to another. The essential features of.the_‘FTMP

system are summarized in the following. -

Redundant Organization

"All activities in FTMP are conducted by triads of modules and
triads 'of Dbuses. A module triad is formed by associating any

three like modules with one another. Thus any module can serve as

. a spare for any»triad.’. A.three'mémbéfisubSet of N bus lines is
chosen on a quasistatieAbasis fq'se:vénés a Vﬁué. triad. These -
_three lines are’ connected .to é voter in“éach ‘module, thuS
coﬁstitﬁting a TMR elemgnt. "~ The ﬁhree‘active bus lines carry

" three independently-generatedrversibns of the data, each version

coming‘ from a different member of the triad that is transmitting

the data.

Fuﬁctional Resource Allocation -
' The programmer of the FTMP systém[sees this multiprbcessor as

a machine for executing job steps}. - The procedure for each job

. step - is written .in a suitable languége and resides in common

méﬁory. Each.jdb step is typically.scheduled'to occur at a given

time or following a given event.. The relevant dispatch data for

each . scheduled job is kept in a queue, where it is frequently

examined to see if the job stép is eligible to be rum or invoked. -

The frequent examination is conducted b&Aprocessors that have

completed their earlier >asSignments, and are available . to
N . . . - .

undertake new onmes. Thus job allocaﬁion is dynamic and adjustable

according to memory load distribﬁtibn‘and‘mbdule failures.

Synchronization

FIMP - employs .tight 'synchroﬁizatioﬁ using a coﬁmon _time

‘reference that supports hardware voting, allows ﬂihstantaneous ‘
validation -of internal data, - configurétion control and in some
‘cases interface data. The problem of maintaining a. continuous .

-timing reference ‘is solved by a fault-tolerant redundant clocking-

arrangement using voltage-controlled crystal oscillators.

In -addition to the above features, the FTMP system contains.
several fault detection and isolation mechanisms. The voting

prOGESé which exists at the triad level is the primary -tool for

.Zdétecting any faulty behaviour during the operation of .the system

[HOPK75b], [HOPK78]. .

(3) SIFT [WENS78],(WENS?2]

‘SIFT ~ (Software Implemented;~ Fault = Tolerance) is an

_ultrareliable computer for critical aircraft control application.
?he prototype system was developed and tested at SRI. . This -

- includes error -detection .. and *..correction, ‘diagnosis,

reconfiguration and the isolation of a faulty unit.

The, structure of the SIFT hardﬁare is shown in'Figure 4.1.3.

! Computing is carried out by the main processors. Each’processor’s
. results are ‘stored in the mainllmemory associated' with the
processor;'_The I/0 processors have.much‘smaller‘computational‘and
“‘memoryi.capacities thanitbe main processors as they connect to they

input and output units of the system (eg. actuators and sensors of

the - aircraft) Each processor: and memory form a processing

module.' Each.module_is connected to aimultiple bus system.

The SIFT system executes a set of tasks, each of which

consists of a sequence of iterations; : The.input data to each

iteration of a task is the output data produced by the previous

iteration of some collection of tasks.v. The input and output of

the entire system is accomplished by tasks~executed in the 1I/0

processors. Reliability .is'accomplished by having a number of

processors executing redundantly the same iteration of'a'task;'the

,'output'of this iteration'is placed in the memory of the processor.

A processor whlch uses the output of this iteration determlnes its
value by examining the output of each processor executing 1t and

taking a majority decision. - Errors are. discovered in cases of

-disagreement and. are;usediby~the:executive, to discover faulty

units and reconfigure the system.. The processors in SIFT are

loosely synchronized (eg. to within 50 microseconds) since we only

"need to ensure that the different processors allocated to a task

are executing the same iteration.

Fault isolation in SIFT is a¢c0mplished’by several medhanismé.

. Each unit is autonomous with its dwn.control. This makes it

possible to ignore improper control signals and to time-out

- signals that never arrive. .. Protection against corruption of data
~ is’ provided by the way-in ~which units can comnunicate. A
" processing module can: read data from- ahy " processing module’s

- memory, but it can write only into its own memory. . Finally, each

processor receives multiple copies of the data; - each copy is

obtained from a different~mem6ry over a different bus, and thé'f~3

 processor uses majority vbting‘;o’obtainfa correct version of the -

“data.

V Formal models for scheduling'strategies, software verifica~
tion .and reliability prediction were developed for SIFT inv‘drder;
to guérantee a correct operation within‘ acceptablé performance

limits [WENS78],[WENS72].

¢
Bus : . '
——| Controllers 4____““"'_ :
. - . Multi-buses
‘e 2. .
pma— ” Processor , Merdory o
Main Processing Modu.l,e
L4
r .
¢
Processor Memory J,('
7 : \
1/0 Lines I/0
Processing
Modules '
FIGURE 4,1.3 - STRUCTURE OF“ THE SIFT SYSTEM
38

(4) UDS [RENN_Zsb],[REm'qSO] |

The UDS architecture consists of a set of microcomputer

- modules comnected by a redundant set of intercommunications buses.

Two typeé-of modules exist: - terminal modules (TM) and»high ie#el

 ‘modu1es (HLM) . E_The»TM interfaces ﬁith other modules'in two ways:
‘l) it receives a singlé Real—Time‘Iﬁﬁerrupt.(RTI) which isAcommép

_ﬁo 'éil>modu1es ép@'&hich is #éed_for timing and. synchrohizatioﬁ,.
 and:2) each T is interfgﬁgd to all intércommunicatiOns'buses..DMA
"techniques arg»used-;o_entéf and éxtfact~da;a from the fM._ A TMi

‘cannot initiate bus communicatioms. - Ap“fextérnal HLM enters

commands, data. and timing information into the memory .of the TM.

‘-HLM’s:a;e-responsible fbr-coordinatingrthe“pfogessing which is

‘carried out in the remote TMfs, for control of intercommuniqatiohs
"~ over 'the bus'systems, and for high*level.processing such aé_data

~compression and decision .making,

. The . UDS design is oriented towards moving "hard core" items

whose failure can cause catastrophic ‘system failure. For example,

the buses are made indepehdent to avoid . any - common- failure

mechanisms. Independent clocks are used within. each module; the
éiocks are synchronized by the common RTI. As Well,» the UDS

architecture prevents the TM"s from propagating their errors to

.-the HLM s since the TM"s are not allowed td(issue .communication
‘calls to the common bus system. Details of the UDS architecture

" and the software éxecutivevare-availéble'in {8] and [9].

‘The design of the UDS emphasizes.testabiliﬁy and simplicity,

"even at the expense of the computer power and memory .utilization.

3

e

 These aspects are manifested in the following architectural

features:

Computer Utilization: Low speed and memory utilization enables

the' designer to concentrate on the correctness of his code rather

than its~efficienc§.

Error Confinement: Most TM”s will.be performing’ dedicated ' low
levél. functions and are not pérmitted to-modify the'_mémory of

other modules.

.Minimization QfVInterrupts: Demand interrupts are . avoided

_whenever»~possible; This may limit I/0 reéponse to milliseconds

rather than microseCOnds}v However, it leads to more predictable

operation, is more easily modified,-and'allbwé for software self-

‘defence.

control Hierarchy: As explained breviOQSly, the HLM"s control the
TM’é. The prégrams in the TM"s are self%synchronize& to process
thevdata when they arrive and place results in their memories for

subsequent extraction by the highflevel-computer.

Other ~simplification features in the UDS architecture include

_ synchronous communications, timing hierarchy and I/0 timing

(3)

granularity to simplify software modifications.

Matra System [SOUB77]

The Matra organization, in France, has developped a multi-

" microprocessor - system 'designed to automate the Signal and data

processing functions at Attitude and Orbit Control Subsystems

(AOCS). The system consists of three michprocessqrs (INTERSIL

6100) " using a common bus, some local memory for the processor .

- supervisor programs and global memory for the common data areas

and for the AOCS programs (Figure 4.1.4).

"~ Each processor is controlled by its supervisor'ﬁrdgram. When

idle, a processor will read the common supervisor table to

determine which pending tésk-has-_the “highest .prioritj. - The

processor will then that task.. The task may generate the

activator of other tasks, through the common supervisor - table.’

‘External - interrupts andzReél Time_Cioék Inﬁérval‘pulses can also

activate tasks. The Real Time Clocks are used for local pfocesso:

monitoring and overall process synchronization.

Faultvdetectionvis‘implementedﬂusiﬁg:
a. local watch-dog with each,processor (software)
. b processing function: watch-dogs (sofware)

‘Ce monltoring' and reconflguratlon capability of local
Interval times-

d. self-test programs.

The system is capable of surviving failures through:
a. halting and disengaging a failed processor

b. reallocating memory.-module tables in case of a faillure
in memory blocks 2 to 7

¢+ switching the redundant memory module 1mplemented for
block 1 (common data).

MICROPROCESSOR

I Interval Timer

Memory
Controller

__Membr_Y Biock O

. Bus”

MIGROPROCESSOR

- MICROPROCESSOR

—tInterval Timer

| | Mé'mory:
Controller

| Memory Block 0 .

H Interval Timer

| Memory
Controller

| [Memory Block 0

“(Supervisor) ‘(Supervisor) - ‘(Supervisor)
Buffer Buffer . Buffer
Interrupt 1/0 Memory Blocks Memory Block 1|
Interface Unit 2 = 7 (AOCS) (Common Data)

"FIGURE 4.1.4 = MATRA MULTI-PROCESSOR BLOCK~DIAGRAM

4.2

Architectural Features of Three Systems

Out of the systems discussed in the previous section, three were

_designed for a high reliability environment: FIMP, SIFT and the JPL

system. Although similar in concept; these systems represent a wide

ranging ‘sét of implementations. - A study of»'thesé features will

therefore allow a better underétaﬁdingfof the design of upcoming-'

spacecraft systems.

a)

‘Table 4.2.1 is 'a condensed comparisoﬁ'of these three systems: .

‘Memory: The JPL and SIFT both have'memofy which is local to each

>prqcessdr' while the FIMP uses.mostly'élobaizmemory (it has small

local’ caches ' for iﬁproved performance).f ' The way the memory is

b)

' structured -has two main influencésé,- théimechanisms for 'passing

information'between tasks will be very différent and the use of the

“buses by the FTIMP will be much larger,“leading to potentially

earlier saturation..

Number of Bus Types: Both the JPL and SIFT use only one fypé of

bus ‘while the FTIMP uses two buses in .an éttempt to minimize - the

" potential bus loading problem.

d)

Bus Replication: Buses in the FTMP and SIFT are quintuply

replicated while the JPL triplicates its bus.

Bus Controllers: The SIFT uses‘ dedicéted devices as Bus

Controllers while the JPL lets a task in onme of the genmeral purpose

processors carry out the bus arbitration. functions: The FTIMP

appears to use a decentralized bus control mechanism which resides

- in each device.

£).

Module Types: ..The FTMP uses’ three'different sorts ,offemodule‘

devices'(memory, processor/cache and I/O access) The»SIFT "also
‘uses three types of modules though they are somewhat dlfferent (bus

_control, .processor/memory and I/O»processor). eThe.JPL attempts to

limit its module. types to one by designing an all-purpose huilding—

‘block; although this is am interesting concept whichfvsimplifies

implementation, it.is‘also potentially restrictive. -

Fault Detection: In dFTMP,..fault detection is done ' by havimg

hardware devices compare ‘the. output of three (fixed number)

- processors which carry out the same computations»simultameoosly;»if

not all processors agree, voting is used to determine which result
is correct:and which processor is faulty; this comparison/voting is

performed' for each’ instruction. . In SIFT, --a similar

.comparison/votimg mechanism is used ”‘however,vit is implemented in

' software; it allows a variable number. of processors to partlcipate '

and it is carried out at fixed regular intervals,‘ rather than for
every instruction. In the JPL system, a hardware ‘implemented

verification.mechanism iseimbedded within each bus'and is therefore

‘transparent to other modules.

 Processor Synchronization; “Although . in all three systems

fcooPerating tasks must be closely symchronized with respect to each

other, the actual inter—processor.synchroniéation is implemented

differently in all three processors. In ‘FTMP, since hardware

"voting for each instruction is carried out, the processors within

_triads must be very tightlyﬂsynchrOnized. In SIFT, synchronization

is only required at the voting interval level while in 'JPL, since

no voting takes place, processor synchronization is not required

 (of‘course, task synchronization still is).,.

°

V System -
, FIMP SIFT JPL-
 Feature '
a) Memory .. 1 Global; processors have -~ Local " Local
' ‘a local cache memory
b) Bus Types f " Memory buses Global Bus " Global Bus
. Types Interface buses ' ' » :
" ¢) Bus Replicétion’ 5 5 3
.d) Bus Controller - - No Yes - IImbedded
e) Module Types Memory‘ _ - Bus Control - Building -
: : Processor/cache Processor/Mem. Block
1/0 Access 1/0 Proc.
"f) Fault Detection By Voting, in Hardware, By Voting, in Softwére, Internal to

in triads variable no. of each Block
processors
g)‘Processor Syn— Tight Loose, by -interval- Not required
chronization o -

- TABLE 4.2.1 .~ ARCHITECTURAL COMPARISON OF'THREE SYSTEMS

5.

© 5.1

5.2

THE SPACECRAFT APPLICATION ENVIRONMENT

Introduction .’

This section will introduce the computing environment of

spacecraft_applications. It is- not intended as a comprehensive review -

" of spacecraft systems but rather as a short introduction to the

concepts, -techniques and elements of spacecraft computers. The next

four subsections will:

a. present - the processing requirements in terms of funCtions» and of.

" resources needed,
v\>

}b{‘descrioe~~some‘ of the computers that have beentor will be used in

spacecrafts,

¢. illustrate the use of these processors through'two~example*systems:'

-Voyageur and Galileo,

d. conclude by dlscu551ng the present trends of. spacecraft proce531ng_

includlng the NASA NEEDS program.

Processing Requirements

'Typically, the‘on~board computing‘functions‘include [HOLC80]:

a. pyro/propulsion control,
b. mechanical actuator control,
¢c. radio control,

. d. data handling,

A

"e. command decoding,
. f. instrument control,
g. attitude control,

h. data compression.

Some functions, such- as actuator or -instrument control, involve

issuance of predetermined command sequences, while functions such as

attitude control involve complex calculations baséd\upon readiﬁgs~fr0m:

instrumehts3~(eg. star tractors and;gyros); - The developer5~fof3 the

Fault Tolerant: Spacecraft.Computér_determined that attitude control

-and .naﬁigation were the primary functi§ns,re§uifing' éutémation and
.ﬁhat it wés.their processing'requiremenégtﬁatlﬁoét affected ﬁhe, FTSC
3'désigﬁ; Table 5.1 summarizes the FTSC designefs‘fconclusibns rega;ding:
the on-orﬁit coﬁputatioh requireménts [FANE77}. ' The suﬁport bf- the
'»SCiencg‘instruménts is another main afga pf"computer utilization; - the
»computefs' ﬁust be‘capable_of reading‘ali thé"daté »pfovided <by‘ithe
- instruments and perfofm‘the necesSafyvéaicuiaﬁioné'to preﬁére‘ﬁhe data
forl transmission. Table 5.2 .gives the maxiﬁumgéata fate and the

-amOunt; of memory space required for each of the instruments of the

Galileo orbiter spacecraft.

Program and data =~ -Computation rate,

Task _ memory, words ~ operations/sec
Attitude control and : 2,343 - 68,250
'~ pointing E - S
Telemetry : 1,281 . - 13,692
Commanding & © 912 ... 19,500 -
- Supervisor - e : 2,909 ' © 33,042
Subsystem management 876 = - 2 - 1,875
-and recovery ‘ C
, " Subtotal S T 8,321 : . 136,359
Payload processing : : . 6,500 . C 60,000 .
Subtotal ' o " 6,500 60,000
 Memory size without _ 10K . e

payload processing _ ' :
Memory size with 16K : T e
payload processing ' ‘ '

. Maximum computation rate ‘ oo A 0 200,000

TABLE'5.1 - ESTIMATED ON-BOARD PROCESSING REQUIREMENTS
" ‘(Reprinted from [FANE77]) - '

Maximum o i .
, . : Data Rate, Memory Size, kbytes
‘Instrument ‘bits/s’ " ROM RAM

Solid state imaging (SSI) _ 768. 3 3.5
Near infrared mapping I o : ‘

spectrometer (NIMS) 11.52 3 1.75
Photopolarimeter radiometer (PPR) "~ 0.18 4 0.25
.Ultraviolet spectrometer (UVS) 1.0 - - 0.75
Energetic particle detector (EPD) 0.92 6 3
Plasma subsystem (PLS) 0.60 '8 8.
Magnetometer (MAG) 0.24 4 4
Dust detector subsystem (DDS) 0.024 3 -2
Plasma wave subsystems (PWS) 645. - 0.25

(contains no microprocessor) ‘

TABLE 5.2 - - GALILEO SCIENCE INSTRUMENT»SUMMARY

5.3

Spacecraft Computers

The first general pqrposefprogfaﬁmable>cdmputers to be flown

onboard spacecraft .were centralized machines - monitoring and

controlling the various subsystems. More recent spadecraft designs

have taken the approach of using more than one computer and of having

comﬁutérs dedicated to certain functions such as_‘attitude conttol;
while under the overall command of a. central. éommand and control

computer,

" The two3 extremes in spacecraft computer architecture ‘are the.

_cpmﬁletely ;éentralized -and~the'fully -distributed. - The completely .
centralized approach has one large central éomputervserving the needs

» ~of all the subsystems, while the fully distributed approach - consists

of several small computers serving these needs as peers. Neither of

these approachés is optimal for the space- environment. The highly

centralized Aéystem-éalls for significant data communication overheads

and complex resource allocations within the computer while -a fully

distributed system can. result in system: coordination problems

[HOPK75a] .

The approach~being taken in current spacecraft computer system
architectures is very much a combination of‘these two extremes which
permits éapitalizing on most of tﬁe advantages of both. V:The 'Unified
Data. Systém (UDS)vwhich~is the modelvfor the command co@puter system

aboard the most recent satellite, fGalileo, is representative of that

approach (see Sedtion 4. ATable'S.B‘lists the characteristics of some

curréntAﬂon4bdard coﬁputer system [STAKSl] while Table 5.4 details the

' SYSTEMS (from [STAK81])

characteristics of the processors available for space missions in the
'1980s [HOLC80].
- : : - ‘ " Memory Type of Cycle
Computer - ‘Mission Number . Memory Size Type Processor Time
' ' ' (in bits) .
1. NSSC-1 - MMS (Gemneric) lor 2 .8-64K by 18 .-CORE CTTL 1.5
2. AOP '~ Landsat-B/C 1 © 4K by 18 - PWM CTTL -
3. NS8SC-1 SMM 2 . 48K by 18 PWM- TTL 1.4
4, AOP 1UE 2 12K by 18 PWM TTL 1.3
5. OBP 0A0~-C 1 16K by 18 CORE DTL - 2.0
6. DOC ATS-6 2 . - 4K by 18 PWM LPTTL 5.0
7. GCSC Viking Lander . 2 18K by 18 "PWM LPTTL 5.0
8. CCs Viking Orbiter 2 8K by 18 PWM S -
9. . FDS MJIS-77 (Voyageur) 2 8K by 18 CMOS . DMOS 2.48
10. CCS - MJS~77 (Voyageur) 2 8K by 18 PWM - 1.37
11, AACS MJS-~77 (Voyageur) 2 8K by 18 PWM L 1.37
12. 8CP-234 - TIROS-N ’ -2 18K by 18 CMOS = - CMOS 2.34
- 13. sCP-234 - Block 5D 2 16K by 18 CMOS 'CMOS -
- (USAF) ' : - :
14. COSMAC - AMSAT Phase IIIB 1 - 16K by 18 CMos "gCMOS; 1
. 15. NSSC-1% Landsat=D 2 64K by 18 CORE TTL 1.5
16. AAC-l6ms* Galileo 2 32K by:18 CMOS LS bit - 0.25
: i : o o . slice
17..CDC 469 - HEAO 2 16K by 18 Plated = PMOS/LSI
‘ - : - . Wire
Abbreviations
CMOS - Complementary Metal-Oxide Semiconductor
DTL - ~ Diode-Transisor Logic : ‘
" LPTTL - Low-Power Transisor-Transistor Logic
PWM - Plated~Wire Memory
.- TTL -~ Transistor-Transistor Logic . ' o
- AACS, .~ Attitude and Articulation Control Subsystem
AQP - Advanced On-board Processor = NSSC-1
CCs -~ Computer Command Subsystem :
DOC -~ Digital Operations Controller
FDS — Flight Data Subsystem
OBP - On~-board Processor
NSSC~1 - NASA Standard Spacecraft Computer
MMS - Multimission Modular. Spacecraft
SMM - Solar Maximum Mission
1UE — International Ultraviolet Explorer.
0AO - Orbiting Astronomical Observatory
ATS-6 - Applications Technology Satellite -
TABLE 5.3 - .CHARACTERISTICS OF SOME CURRENT ON-BOARD COMPUTER

[HOLC80] -

: Martin M. ‘
. IBM Enhanced IBM Litton App. Tech.
- Identification NSSC-1 NSSC-I ,NSSCfII ~ 4516E _ ATAC-16MS
Configuration 2 CPU"s 2 CPU"s. . 2 Sing. 2 Sing.- - 2 Sing.
C 2 Stint”s 2 Stint”s - String -String String
2 APU”s CPU”s CPU”s T
Cost ($K) ‘ | :
- single string 205 355 NA 392 115
| Weight (1bs) - L 17.4 NA 29 12.5 18
Power (W) 31 28 240 25 34
Word Length (bits) 18 18/32 16/32° 16/32 . 16/32
' Méximum Memory . - : o
Size (words) T 64K 96K 40K . L 64K © 64K’
. Memory Technology Core Core NMOS ‘Semi- CMos:
' I : C - " Cond . -
CPU Technology . - ' TTL-LSI_ TTL-LSI - Hyb. TTL Shot. BIP Schot. TTL
- ' CM0OS/s0sS - - . TITL :
Ave. Inst. Speed - : o
(. Sec) add 5 5 3.2 2.5 .3
Mult 38 33 - 35 2L 5.4
Floating Pt. No . Yes ' Yes Yes Yes
Reliability (2 Yr) .96 .96 - .87 .99 .98
Qual. Status Space None None Space " Space
' (1980) :
Space Flt. Exp. . SMM (1980) None None .None Galileo
Space (1984)
Telescope '
(1982)

TABLE 5.4. - CHARACTERISTICS OF PROCESSORS AVAILABLE FOR SPAGE
o - MISSIONS IN THE 1980s

MISSIONS IN THE 1980s [HOLCS80]

| o IBM
- NAR Teledyne Raython ‘CDC Shuttle.
-Identification - DF=-224 MECA-43 ~ FTSC 469 GPC
Configuration . . 3 CPU"s 2 CPU"s 4 CPU"s 2 Sing.. 1 CPU
: ‘ ‘ String 1 10P
CPU”s
Cost (SK) o)

- single string - 2250 NA 1000 - 650 500
Weight (1bs) 102 15 50 10 59
Power (W) 85 (56) 44 35 20 350
Word Length (bits) 24 16 32 16/32 36
Maximum Memory » ' B e , 16K

Size (words) - 64K 64K 96K 16K (32K) 106K

' : ' ' (OFT)
.Memory:Technology Plat.Wire CMOS CM0OS/S0S - Plat.Wire. Core
R o . ~(CMO0S)) . (CMO0S) ‘

'CPU ' Technology PMOS CMOS/S0S . CMOS/S0S . PMOS/LSI - TTL

o ' = E .- 'MSI/LSI
Ave. Inst. Speed :) : :

" (Sec) Add | 1.6 5.4 5.4 4.0 1.9
 Fldating Pt. " No NA NA . No Yes
Reliability (2 Yr) .97 .98 .98 NA NA
Qual. Status Spacé. None None Space. Space
Space Flt. Exp. Space None None HEAO Shuttle
" Telescope " ~(1980)
(1982) ‘

' TABLE 5.4 (Cont”d) =~ CHARACTERISTICS OF PROCESSORS AVAILABLE FOR SPACE

5.4 Example Spacecraft Systems

5.4.1

5.4.2

Although there have been many spacecraft launbhed,_ two systémé
are'remarkablelfrom a computer utilization point of view. They

are‘the_Voyagéur_Spacecraft-and the Galileo Crbiter Spacecraft,

‘.quickly'described here.

"The. VoyagérISpacecraft had three sepatate cbmputers ohboard -

the Command Computer System (CCS), the Flight Data System (FDS)

and the Attitude and- Axticuiation.fControl System (AACS).

~ [GILL80],SCUL8O]

The . CCS (see Figure 5.1) is respomsible for the decoding and -

distribution of commands and for the coordination of spacecraft’

'_functions. It hés the following:featuresz-

- 4K memofy.
- 118Abit word lengtﬁ
. = priority interrupt~strdgtufe
-:”add/subtract cycle,time Qf 90 microsecondé; It hgs én.

average utilization of approximatély‘5%._

The .FDS (see Figure 5.3) is the computer used for science

instrument control and data processing. It is characterized

by:

= 8K memory
- 16 bit word length
- 4 DMA'channeis

- 'an add/subtract cycle time of 15 microseconds

bt DIGITAL DATA

b= DISCRETE COMMANDS

Lot TELEMETEY 10 FOS

e DIGITAL DATA
= DISCRETE COMMANDS

pmmsseeeerie TELEMETRY TO FDS

o .
2.4 KHZ - - QX4 - *MEMOXY A . TIMING
TIMING
. INPUTS INTERRUPT CENTRAL out-
SPACECRAFT =p= PROCESSOR PROCESSOR T
" & INTERNAL A A
INTERRUFT CENTRAL ‘out-
PROCESSOR PFROCESSOR
s s T2
1
Y
osC
2,4 KHZ ClX & *MEMOKY % TIMING
TIMING . -

FIGURE 5.1 =~

*MEMORIES ALE OPERATED
1/2 READ/WRITE AND :
1/2 WRITE PROTECTED, (READ ONLY)

VOYAGER COMPUTER COMMAND SYSTEM

2.4XHL

MEMOLY A

(Reprinted from [SCUL8O])

e —

INRUTS

2.4 XH2

Wi CENTAAL | SHCIAL
PLOCESSOR - PIOCESSO Yo
A A - CReUITRY
.
INTERRUPT cNTAL sreciaL
PROCESSOF PLOCESSOR 0
]) cucuney
o
axe “"‘f’"’
TIWNG

fommi DR SURSYSTEMS
. etete QIHER CONIROL ELEMENTS

%

ftom OTHIR SUMSYSTEMS

REMOTE rYeo &
DHVER [PAOTULSION

"ONRR CONRTROL ELEMENTS

FIGURE 5.2 =~ VOYAGER ARTICULATION AND ATTITUDE GONTROL

- SUBSYSTEM (Reprinted from [SCUL80]) .

MEMORY A MEMORY 3
& 4
4
_ I DMA
" PROCESSOR TAPE
— e e RECORDER
COMMAND 1/0
{ GENERATOR .
Y o
. - ACS
A 1
- CODED)
CCS bt © COMMAND GoLy
ENTRY CODER
1 y N
r L IR
STATE . MODULATOR : h
_VECTOR el Yo et DOWN LINK .
T .
T0 all
% BLOCKS
ose
A Jougme
TIMING CHAIN
Iy A
SCIENCE SCIENCE
EN(:;;?;EEE;R!NG Vo] INSTRUMENTS
ADC .
ENGINEERING

TABLE 5.3 - -

DATA SOURCES

VOYAGEUR FLIGHT DATA SUBSYSTEM

5 6

5.4.3

The AACS (see Figure 5.2) controls the attitude of the space-

craft énd is responsible for navigation. It .is characterized

by:

- 4K memory
. = 18 bit word length

- \a priority>iﬁterrupt structure
.= an add/suBtracg cycle:time‘of 32.2 microseqﬁnds. It

has an activity rate (utili;ation?) of about 95%.

The Galileo Spacecraft

The " Galileo Orbiter . spacecraft has two types 'éf._combuter.
systems, the Command Data System (CDS) and thé Attitude and

Articulation Control System (AACS). The AACS is responsible =

for'_méintaining perturbations of the spinning_Section“_within

acceptable levels to allow precise pointing of thé scan

-platform. The CDS'co—ordiﬁates.the activities of the 'space-

craft: ‘co-ordination of fault protection, isolation and

recovery;. supplying the spacécraft clock ‘and timing éignals;

. collecting, formatting - and encoding telémetry dataj ~and

analyzing _and‘distributing.commands received from the ground.
In addition to these two subsystems, embedded proceésoté are

also part of most scientific instruments. on board.

The CDS is a distributed computer system using six processors

based on the Unified Data System described by "Rennels in

' [RENN78a] and summarized in Section 4 of this report. It has -

overall responsibility ‘for the control of the spacecraft and

for the operation of the science instruments as well. Both
high level modules (32K RAM, 1K ROM) and low-level'modules (16K
RAM, 1K ROM) are based on the RCA 1802 microprocessor with a 10

microsecond add/subtrgct cycle time. The bus data rate is

- 806.4 kbps.

The AACS ' uses two7(ohe; redundant) ATAC-16M microcomputers;

these computers ‘are built using-foﬁr»h—bit-slice 2900-series

-processing elements. The detailed characteristics bf‘.these

" processors are given in Table '5.5.

. Weight

Power-(Wétts)

‘=Word:Sizé (Bits)
_No; Inétructions

- No. Interrupts -
:Progfamme& I/Q v
.DMA '

:Floating~point,words

Fixed point words .

Micrdprogrémﬁed

‘.Mémof§ Size
. Memory Addressing

" Execution Time

‘add/sub (é)z
mult (s) .-
div (s)

;AddrésskModeé_

No. General Registers

<18

<34
16

129

8 levels vectqfed'

. .Up to 500K words/second
- . Yes

- 32 bits, 24/8 format

8, 16, 32 bits

. _Yes

'.30K,wordéiRAM~.

2K words ROM

64K words direéﬁly ,

~addressgd

Fixed ~ Float

11.25 © 28.50

-8

16

'TABLE 5.5 . '- GALILEQ AACS CHARACTERISTICS

(Reprinted from [GILL80])

5.5.1

5.5 "Automation Trends

The Mariner Mars spacecraft (1969) wés the first interplanetary
épacecraft to use: an in=flight programmable compufer; ‘ Since
then, the use of computers éboard spacecraft hasrvbeen
exhibiting ‘a steadily'inCreasing'ﬁrend~as exemplified 'by _thé
 Galileo ;pééecraft scheduled to go intotorbiﬁ around Jupitef in

1985 with' its twenty processors omboard. The growing use of

~ computers aboard spacecraft has been driven by the increasing

requirements for more autonomous operation. These requirements

" are discussed below [AREN77].

i) The need to protect against catasﬁrophié_‘failuresL .This_

| reéuirement~.is 'spear-ﬁeading:~the..d¢velopmént of;‘fault4
tolerant domputer aréhitectqres; .

ii) The need_to.perform‘vgry éredictable and»highly» répe;itive
functions. Attitude céﬁtrol;>:fo: éxample,. requires much

automation to be effective. .

1ii) The need to prevent~the loss of spacecraft communications.

. The spacecraft ngeds~ to be able to:take - care of -itself
during periods when it is out of -contact with tracking
stations. |

iv) The need to accomplish mission objectives during very narrow

.time windows. | | |

v) The need for real-time or near reai—time control. in such
applications as the control of the descént of a vehicle to a

planet”s surface.

»vi) The need to perforﬁ functions aboérd-spaéecraft at great

- distances from the Earth, Many functions must be automated

Cvidi)

viii)®

5.5.2

since the round trip communication delay inhibits effective

-ground control.

The ‘heed t0'imp1ement and'supportgincreasingly more complex

'sﬁbsystems. Many subsystems require substantial processing
. (eg. ~some attitute control 'subsystems. use 'Statistical

'filtering~ techniques to increase precision) and some have

processors incorporated into their design.

The need.to undertake multi—year'missioné. This fequires

- more autonomy so that the spacecraft can ' take care of

| itself. -

ix)

The - need to make better use ‘of mission: reéources.

Increasing emphasis is being placed upon autonomous §pace-

craft capabilities so that the qdantity of Earth “station -

" equipment and the size of mission operations staff can be |

minimized. Figure 6.1.1 (reprinted from [GEVA79]) shows the

present trend of~"ground operation costs per mission: .
~illustrates - how advanced automation will reduce overall .

mission costs.

As mentioned previcusly, the "intellitence" of spégecraft.has

"been steadily increasing since a stored -program computer . was.

first used in 1969 on the Mariner Mars spacecraft. Three

"I.Q." are the number of processors ohboard,_.the average speed~

‘characteristics of a spacecraft_which serve to ‘define its

of these processors, and the amount of memory available ' (see

" [AREN77]). - Figures 5.5 through 5.7 show how spacecraft '

intelligence and autonomy have increased in recent years.

FIGURE 5.4

_FIGURE 5.5

T T — | v
ol » * SPACE TELESCOPE .
. . {5 YEARSY) —- i
- MARS EXTEND
160 |- "ROVER &
140 - -
% b MARS ROVER s/ |
2 100 N
. E i
. % 80 -
Tl N
ol .
0) V I
)] L \
1960 1970 1980 ' 19%
YEAR B

- TREND IN.GROUND OPERATION. COSTS PER MISSION

(Reprinted from [GEVA791)

2 | —— T T T T T T T

4

P
" V4
c 4 7 .
o - ¥]
w
w2 V4 .
e ;
o]
& o !/]
w o II
o
T g 7 .
s ’
E .
S & -
z -

-
4 7 N
rd
’
? . &7 o
Fo Th g
P 00 S S S T SR A IO N
e 67 s 073 750 77 719 Bl 81 RS 67
' YEAR

- NUMBER OF ON-BOARD PROCESSORS

- (Reprinted from [BIRD79b})

0 T T T | T T T T T
108
9—) ©
= o -
8 51 .
w 1o . - o
0 . R
mommm
o i
- ! -
5. T '
!
2 5l . N
R f "
|
1
|02r— . ;)——(-S - -
L g I ! ! ! t { ' 1
65 67 & 71 73 .75 77 7% 81 83 8 &
" YEAR : S,
"FIGURE 5._6A‘ -~ AVERAGE PROCESSING SPEED . -
‘ (Reprinted from [BIRD79b]) v
o i — T T 1T T
w0 -
. ;;,«@'
T : - a
= . -
8 St L
o~
/ .
9 0k 4 ~
< U4
5 V4
o
- -
-’
10* ,"{ .
U4
/
§
' .
103}] -
! . ,
L) i I) i | I ! |
65 67 & 71 73 75 77 79 81 83 85

' FIGURE 5.7 = TOTAL ON~BOARD MEMORY

- (Reprinted from [BIRD79b])‘

87 .

_TABLE 5.6 -

ESTIMATED NASA YEARLY
COSTS [GEVA79]

xly %

y:

' . Ground Orbital Data
Budget Category Operations - QOperations -Analysis Design
1. Mission Items 122/90 - 15/10 90/45
2., Mﬁltimission'Operétion ‘ 74/55 - - : —
Support
-3;~Post;Miésion"Da£a‘.> - f— 103/70 ’f ';-‘:
-~ Analysis '

4, Nétwork Qperatibné 44/30 - --:1 '_}, 57/30
5;.Shuttle/SkyléB Payload - 14710 20/10 80/40
6. Sﬁace Trén§portation 182/135 - — -
7. Space Industrialization 224/170 24/10 - ‘ 72/35

Totals N "646/480 38/20 ;' 138/90 - '299/150
 Budget Catégory . Test Other 'iOTAL,T
1. Mission Items) 116/80 91 434/225 -
2. Mulﬁimission‘OpegatiOn ~~'J — 74/55
‘ Support : .
Post-Mission Data - - 103/70
Analysis

4. Network Operations - 8/5 1108 217/65

'5. Shuttle/Skylab Payload 100/65 - 214/125
6. Space Transportation 1908/605 .‘ 840 1930/740
7. Sﬁace_lndustrialization 120/80 160 600/295

Totals 1252/835 1199/0 3572/1575
Legend

cost without advanced

automation in the 1980s’

potential savings by 2000

with advance automation in-
1978 million §°

5.5.3

Committed to this trend, NASA has recently embarked upon a

multi-year program which establiéhes a framework for epmputer .

. systems research and'development.‘_ Theiprogram is called _NASA

End-to-End Data System (NEEDS) and it. aims to improve' the =

effectiveness and eff1c1ency ‘of NASA”s overall data/information

' management ' system by improving the performance and functional‘

_capability of on-board proceSsors in the next ten to- fifteen .

years fHOLC80]. The.-principal'Adﬁanced On-board Comﬁutiﬁg

‘Eacility components of NEEDS are: ..

' l.iDistributed'Microproceesor Data Syétemsf_ The develOpment»of

a _midroprqcessor based distributed data-ayatem_capable;’ iﬁ~
partiedlar,l-of‘realftime onrboard'deteriidatidd df'accﬁrate
position,-time and attitude. | | -
2..Information Adaptive System. A set of hardware*and sqftwared
afacilities VinterfaCing.directly witﬁ the‘sensors .on' board
-‘-the 'spacecraft.capable of direet preﬁrOcessing'and-'editing."
'eto the maximum extent poséible.injdrder‘to minimize the

amount. of data transmitted and the need for .ground control.

3. Massively Parallel Processor (MPP). High speed array

proceseors Capable' of real-time image -processing to be
A deveioped5.first'for grodnd use. and eventuallyifer on;beard
use (1990s). | |
4. Synthetic -Aﬁerture 'Radar. (SAR) Processor. ' fDevelopment_
-concept similar to the MPP. o |

S.IGeneral Purpose On-board Comphter Technology. In order to

limite proliferation, NASA has decided to standardize on the
NSSC computers as much as possible. Since. there is a lafge
performance gap between the NSSC. and the MPP, ' an-

inﬁermediary solution will have to be*develdped.

6. . SUMMARY

This report presented a basic review which_serves.as a background for
further studies aimed at developing an integrated set of. computer aided .
engineering tools for-multiprocessbr deéign. In-parﬁieulef,- this,'report_

contains:

a. a = review of architectures useful for the .implementation of
distributed systems: the common bus is:the'»most lwidely ‘used
architecture, with multiple bus~levels'syspems now appeering and

with more advanced architectures now being studied.

b. anf outlinee of * the basic concepts - of. .the software Lmeéhanisms
. required for the.control»aﬁd;co-ordination-of procesSes.'through
* synchronization and scheduling in distribﬁted real-time syStems.
c. a description of five_currentvmultiprocessor systems designed_ for
spacecraft and -avionics applications.
d. an introduction to current .state and trends in . the field of

spacecraft computing through a review of processing requirements,

processors used, systems implemented and development trends.

[ATAA77]

[ANDE75]

[AREN77]

[AUKS74]

'»[BARRSO]

[BIRD79a]

[BIRD79b)

- [CARB77]

[COHE?S]»

[COOP75]

" REFERENCES

AIAA/NASA/IEEE/ACM Computers in Aerospace Conference, 1977, AIAA
Paper # 77-1377. '

G.A. Anderson and E.D. Jensen, “Computer:interconnection struc-

tures: - Taxmomy, characteristics "and examples:, ACM Computing

‘Surveys, Vol. 7, pp. 197-213, December 1975.

W.E. Arens, "CCD Architecture for Spacecraft SAR Image Proces-
sing", Proceedings of the 1977 Computers in Aerospace Conference,
Los Angeles, November, 1977, AIAA Paper # 77-1392.

A.J. Aukstikalnis, "Spacecraft Computers R Astronautics and Aero-i

nautics, July/August, 1974.

R.C. Barry and D.J. Reifer, fCalileocFlight Software Manegement“—

The - Science Instruments" Proc. . 4th Computer -Software - and -,
'Applicatlons Conference, Chicago, 1980, PP. 684 690. ’

.

T H. Bird and B.L: Sharpe, Spacecraft Automated Operations”

-Proceedings of the Annual Rocky ‘Mountain Guidance -and’ Control

Conference, 1979, Paper # AAS 79-016 (Advances in the Astronau-
tical Sciences, Volume 39). e S

‘T.H. ‘Bird'and'R;R.-'Sheahan, "Trends in the Automation-of Plane—‘i

tary Spacecraft”, Astronautics and Aeronautics, May, 1979.

‘R.L. Carberry, ' Trends in Aerospace Computers , Proc. 1977 Compu~

ters in Aerospace Conference, 77, pp. 7-10.

.E.. Cohen and D. Jefferson, Protection in the Hydra Operating

System”, Operating Systems Review ACM SIGOPS Vol. 9, No. 5, pp-
141-161, November 1975. '

A.E.. CoOper, W.T. Chow, "Shuttle Computer Complex s Proceedings '

: of ‘the: IFAC 6th World Congress, 1975.

[GORL65]

[CROS77]
[DESP79]

[DESW8L]

W.R. Corliss, "Space Probes and Planetary Exploration”, D.. van
Nostrand Inc., Princeton, New Jersey, 1965.

W.A. Crossgrove, "Distributed systems:ﬁf The next integration
method”, Proc. AIAA 2nd Digital Avionics Systems Conference, 77,

pp. 45-53.

A.M. Despain and D.A. Patterson, ."X-Tree: A Tree Structured

Multi-Processor. Computer Architecture™, Proc. 5th Symposium on
Computer Architecture, April 1979, pp. 90-101.. :

Y. Deswarte et al, "A3Fault—Tolerant Multi—Microprocessor Archi-
tecture for SARGOS", 1llth International Symposium on Fault-
Tolerant Computing, June 1981. - '

© [DIAS8LlY)

' [DYER77]

[FANE79)]
[FENG79]

[FRANS1]

© . [FULL78]
S[GEVA79]

[6ILL79)

[GILL8O] .

[GoRD79]

[GRINSO]

l.[nAMAso]

[ENSL77]

[GLOF81]

D.M. Dias and J.R. Jump, "Analysis and Simulation of Buffered

Data Networks", IEEE Transactioon on Computers, Vol. C-30, April
1981, pp. 273~ 282.

M.C. Dyer, "Design and Development of Distributed Systems for
Aerospace: A Hardware/Software Approach", Proceedings of the
ATAA/NASA/IEEE/ACM. Computers in ‘Aerospace Conference, Los

Angeles, November 1977, AIAA Paper #'77'1450'n“

P.H. Enslow, Multiprocessor Organization - A Survey", ACM Compu-

ting Surveys, Vol 9, No. 1, March 1977, pp. 103- 129.

E.V. . Fanelli and H. Hecht, "The Fault Tolerant Spaceborne Compu-—

ter", Proceedings of the AIAA 2nd Digital Avmonics System Con-
ference, 1977 AIAA Paper # 77-1490. ;

- T. Feng,- C. Wu and D.P. Agrawal A Mlcroprocessor—Controlled~
- Asynchronous Circuit Switching Network”, Proc. 6th Symposium on
‘Computer Architecture, April 1979, pp. 202-215.' ' ;

M.A. = Franklin, "VLSI Performance .Comparison of Banyan ‘and -
Crossbar Communications Networks", IEEE Transactions on Compu-_!‘

ters, Vol.~ C-30, pPp. 283-291, April 1981.

S.H. Fuller et al, Multl—microprocessorsi' ‘an overview and
- 'working example”, Proceedings of the IEEE, Vol. 66, No. 2, pp.
: 216 228 February 1978. : ' R,

W;B.'Gevarter, E. Heer, ReQuirements and Opportunities for Auto-—

nomous Systems in Space”, - Advances in the Astonautical Sciences,

"Volume 39, 1979, AAS Paper #79~011.

"G Gllley, "The Fault Tolerant Spaceborne Computer s Advances in

the Astronautical Sciences, Volume 39, 1979 'AAS' Paper #.79-015.

G. Gilley; "Digital Hardware for Use in Spacecraft Control Applif

cations", '"Advances in the Astronautlcal Sclences, Volume 42,
1980, - Paper # AAS 80—031. : '

G. Gioffi et al, "MuTEAM: Architectural Insights of Distributed

‘Multi/Microprocessor System", 1lth International Symposium - on
" Fault-Tolerant Computlng, June 1981. :

J.F. Gordon and A.J. Fucho, Autonomy in Space ‘Navigation",
Astronautics and Aeronautics, May, 1979. o : .

A. Grlnarov, SL. Kleinrock - and- M. Gerla,' "A ‘Highly Reliable,

Distributed Loop Network Architecture”, 10th International Sympo-
- sium on Fault-Tolerant Computing, October 1980. '

V.C. Hamacher and G.S. Shedler,‘"Performance of a- Collis1on-free o
‘Local Bus Network having Asynchronous Distributed Control", Proc.

7th Symposium on Computer Architecture, May 1980, pp. 80-87.

9

[HARR79]

[HECH77]

- [HOLC8O]
- [HOPK75a]
[HOPK7 5b]

[HOPK78]

[HORO81]

[JENS76]

[JENS78]

“[JONE771

[JONE79]

[JONESO]

[KATS78]

[KINN78]

J.A. ‘Harris and D.R. Smith, Simulation Experiments on a Tree

OrganiZed Multicomputer”, Proc. 6th Symposlum on Computer Archi-

tecture, April 1979, pp. 83—89

Hecht,' 'Fault Tolerant Computers for Spacecraft N Journal of

‘Spacecraft Volume 14, Number 10, October 1977.

L. Holcomb, "Overview of NASAs 0n~board Computing Technology<
Program", -Proc. of’ COMPCOV 1980, IEEE cat. 80CH1491-0C, pp. 117~

A.L. :Hopkins,""Hierarchical Autonomy in‘SpaceBorne Information

Processing”, Proceedings of IFAC 6th World Congress, Cambridge,

Massachussets, U.S.A.

Hopkins, _AlL. :and Smith, T.B., III, “The architectural -elements C
of a symmetric. fault-tolerant multiprocessor”,. - TIEEE Trans.

Comput., Vol. C=24, No. 5, pp. 498-505, May 1975.

Hopkins,"A;L. et al, "FTMP - A Highly Reliable Fault-Tolerant
Multiprocessor for Aircraft”, Proceedings of the IEEE, Vol. 66,
'No.-lo;aOctober 1978. : R :

E. Horow1tz ad A.- -Zorat,v"The Binary‘Tree asaanlIntercOnnection‘”
Network: Applications to Multiprocessor Systems and VLSI", -IEEE

Transaction on. Computers, Vol. C-30 Apr11 1981, pP- 247-253.

E. D. Jensen, K.J. Thurber and G. M. Schnelder, "A rev1ew of ‘sys-
tematic . methods in distributed processor interconnection", IEEE

Internatlonal Conference on Communlcations, June 1976, . pp. 7-17

to 7—22.

E.D. Jensen The Honeywell experimental dlstrlbuted processor -

An overv1ew , Computer, pp. 28 37 January 1978.

Jones,_ A.K. et al, Software management of Cm¥*, .a'distributed .
multiprocessor”, ' in AFIPS Conference Proceedings, Vol. 46, pp. ~
.657-663, 1977. : ST ‘ § :

A.X. Jones et al, "Star0S, a multiprocessor operating system for
the support of task forces”, Proceedings of the 7th Symposium on
operating systems principles, pp. 117-128, December 1979.

A.R. Jones, P. Schwarz, "Experience using multiprocessor systems

- A status report"”, ACM Computing Surveys, Vol. 12, No. 2, pp. .

121-167, June 1980. .

'D. Katsuki et»al, “"Pluribus: An operationai. fault—tolerant

microprocessor”, Proceedings of the IEEE, Vol. 66, No. 10,

October, 1978.

L.L. Kinney and R.G. Arnold, "Analysis of a Multiprocessor System -

with a Shared Bus", Proc. 5th Symposium on-Computer -Architec-

- ture”, ‘April 1978, pp. 89-95.

[KWANS1]

[LEVI75]

C.L. Kwan and 8. Toida, "Optimal Fault—Tolerant Realizations of
Some 'Classes of Hierarchical Tree Systems", 11lth International
Symp051um on Fault-Tolerant’ Computlng, June 1981.

R. Levin et al, Policy/Mechanlsm Separatlon in Hydra s Operating

-8ystems Review, -ACM SIGOPS _Vol.r9 -No.- 5,»pp. 132-141, November

1975,

[Liuso}'"

[MAEK7 9]

[ORNS75]

{QI‘JVsTso‘]:‘
tPATT79]“
~ [POWE78]
tensbeic

[PRAD81D]

[PRAD81c]

' [RENN78a]

[RENN78b]

[RENN78¢]

-Tv8. Liu, "Availability ‘Analysis of Tree-Structured -Computer

Communication Systems™, 10th International Symposium on -Fault-

‘Tolerant Computing, 10th - International Symp051um on Fault-

Tolerant Computing, October 1980.

M. Maekawa,-"Experimental Polyprocessor‘System (EPOS) - Architec-
ture”, 6th Symposium on Computer Architecture, April 1979.

S. Ornstein et al, "Pluribus: A reliable multiprocessor"; Pro-
ceedings of the AFIPS, National Computer Conference AFIPS press,
1975.

J.K. Ousterhout et al, "Medusa: an- experiment in ‘distributed

operating system structure”, .Communications of the ACM, Vol. 23,
No. 2, pp. 92~105, February 1980.

'D.A. ‘Patterson, E.S. Fehr and C.H. . Seguin, "De51gn Con81derations“

for the VLSI Processor of X-Tree" s 'Proc. 6th Symp031um on. Compu-

. ter Archltecture Aprll 1979, PP+ 99-101.

D. Powell and J.G. Laprie, “REFA:- A System for Reliable and-
Survivable Interconnection of Real-Time Processing Elements", 8th
International Symposium on Fault-Tolerant Computlng, June 1978.

D. Pradhan and S. Reddy, "A Fault—Tolerant Communicatlon Archl-
tecture for’ Distributed Systems", 1llth International SympOSLum on

'Fault—Tolerant Computlng, June 1981.

D. . Pradhan, "Interconnection Topologies . for Fault-Tolerant .
Parallel and Distributed Architectures”, Proceedings 1981 Inter-
national Conference on Parallel Processing, August 198l.

D. Pradhan, "ProcessortInterconneCtlon Architectures for Fault-.
Tolerance and Diagnosability”, Technical Report, Oakland Univer-
sity, Rochester, Michigan, September 1981.

D.A. Rennels, 'Reconfigurable -modular computer networks for
spacecraft on-board processing"”, - IEEE Computer, pp. 49-60, July
1978, : '

Rennels, ‘Do, "Architectures for: Fault—Tolerant Spacecraft Compu-
ters” s Proceedlngs of the IEEE Vol 66, No..10, October 1978.

Rennels, D., "Distributed Fault-Tolerant Computer Systems , Com-
puter, Vol. 13, No. 3, pp. .55-66, March 1980.

"[ROSS79]

[SCUL8O]

[SIEW78]

© [S0L079]

[S0UB79]

[STAKS81]
[SWAN77]

 [WENS72]

[WENS78]

 [WITT80] .

[WITT81]

© [WOLF79]

[WUSL

[WILS8O]

M.S. Ross, "NASA Standard Computers A Deseription and Compari-
son”, Advances in the Astronautical Scierices, Volume 39, 1979 AAS

' Paper # 79-024,

J.R. Scull, 'On-Board Computers for Control" Advances in the
Astronautical Sclences, Annual Rocky Mountain Guidance and Con-

“trol Conference, Volume 42, 1980, AAS 80-030.

Slewiorek D. et al, "A study of C. mmp,,Cm*, and C. ~Vmp: Part_I -
Experiences ' with Fault tolerance .in Multiprocessor Systems",

‘Proceedings of the 1EEE, Vo. 66, No. 10, pp. 1178-1199, October

1978.

‘M.H. Solomon, R.A. Flnkel "The Roscoe distributed operatlng

system s Proceedings of the 7th symp051um on operat1ng ~systems

,prlnciples, pp. -108-118, December 1979.

Soubirou, J.,_)"Multlple—MicrOprocessor Systems in Attitude and
Orbit Control Subsystems"; Proceedings of AOCS Conference,

‘Noordwijk, Oct 77, pp 233;239.»

P. Staken, "One Step Forward - Three Steps Backup, Computlng in

* the US Program”, Byte, September 1981, pp. 112-144 .

Swan, - R.J. ‘et.al, - "A modular, mnulti/microprocessor”, in AFIPS

Conference Proceedings, Vol. 46, pp. 637-644, 1977. -

‘Wensley, J.H., "SIFT software implemented'for fault toleramce“,‘
. in Proceedings of Fall Joint Computer Conference, AFIPS Press,
- Montvale, N.J., 1972, Vol. 41, pp. 243-253. o

Wensley, J.H. . et al, "SIFT: Design and Analysis of,a Fault-

‘Tolerant Computer for Aircraft Control", Proceedings of the IEEE,
" Vol. 66, No. 10, October 1978. ‘ : :

L.S. Wilson, "Needs of the ’80s“,’Aeronautics_ahd Astronautics,

- April 1980. ' ' : L

L.D. Wittie, A.M. van Tillborg, "MICROS, a distributed operating

.system for MICRONET, a reconfigurable network computer”, IEEE

transactions on Computers, Vol. C-29, No. 12, pp. 1133-1144,

‘December 1980.-

L.D. Wittie, "Communications Structures for Large Networks of
Microcomputers"”, IEEE Transaction on Computers, Vol. C-30, pp.
264-273, April 1981

-J. Wolf et al, "Design of a Distributed,\Fault-Tolerant> Loop

Network", 9th International Symposium on Fault-Tolerant Compu-

.ting, June 1979.

S.W. Wu and M.T. Liu, "A Cluster Structure as an Interconnection
NetWork for Large Multlmlcrocomputer Systems”, IEEE Transactlons

on Computers, Vol. C-30, pp. 254-264, April 1981.

[WULF72]

[WULF74]V

[WULF75].

W.A. Wulf, C.G. Bell, "C.mmp; a multi-miniprocessor”, AFIPS fall

joint computer conference, AFIPS press, December 1972.

W. Wulf et al, "Hydra: The Kernel of a Multiprocessor Operating _
System”, Communications of the ACM, Vol. 17, No. 6, pp. 337-345, -
~ June 1974. : ‘ : PR

W. Wulf et al, "Overview df the Hydra operating system develop-

‘ment", Operating Systems Review, - ACM SIGOPS, Vol. 9, No. .5, pp. -
' 122-132, November 1975. S o EE .

= R, — 2

~

intellitech
ntellitech Conoda td
352 Moclaen Street,
Ottawa, Ontario

K2POMb6
6132350126

I

1.

-

e
L

-

AA_C‘v:'A-

P 1

wm e wm e

