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Preface 
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the following four contract deliverables: 

1.*Executive Summary 

2. Report #1 - Review of Multiprocessor.SYstems and their.  Spacecraft 

Applications.  

3. Report #2 - A Survey of Computer-Aided Engineering (CAE) Tools for 

the Design and Simulation of Multiprocessor Systems. 

4. Report #3 - The Definition and Specification of an Integrated Set 

of CAE Tools for. Spacecraft Multiprocessor System 

Design. 
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1.0 Introduction 

Interest in multiprocessor and distributed intelligence computer 

systems has increased dramatically in recent years. This interest has been 

fostered by the availability of microprocessors with ever increasing 

performance/price ratios and the expected emergence of monolithic systems 

with still higher capabilities in the near future. 

The development of multiprocessor and distributed intelligence 

computer systems and their utilization in various applications have been 

impeded by the lack of an appropriate theoretical base. The control of 

systems containing more than several processors is not well understood. 

While considerable work has been done recently to develop a theoretical 

base, it seems unlikely that this work will have significant impact on 

practical system design in the near future. As a result, multiprocessor 

system designers have turned to the use of CAE tools for the development of 

such systems. Such CAE tools support the skill level of the designer, 

provide insight into the attributes of alternative architectures, allow 

evaluation of these architectures and support the development, simulation 

and test of actual multiprocessor systems. 

The main objective of this report is to survey the multi-

microprocessor computer aided engineering design tools that are currently 

available, as well as the design tools that are currently at various stages 

of research and development. 

To understand the role, scope and utility of such multiprocessor 

design tools, it is worth reviewing the various design steps followed in a 

general top-down development process of a multiprocessor system. The first 

step involves the specifications of system requirements and is followed by 



a description of the functional components of the system which are 

considered necessary to satisfy the requirements. This high level 

description of the functional components can then be translated into an 

intermediate design stage which involves the selection of a system 

architecture and its representation in the form of a system model. This 

model is used to describe the hardware and software structures and their 

relationships. Finally, at the lowest level, a register transfer model is 

used to provide details of the processing elements and to facilitate the 

hardware (logic) circuit design and test. In summary, the following design 

phases (see Figure 1.1) are identified in a top-down design approach: 

(1) Specification of System Requirements 

(2) System Function Specification 

(3) System Architecture Selection 

(4)Hardware/Software Relationship (System'Model) 

(5) Processing Element Details (Register Transfer Model) 

(6) Logic Design 

Before surveying CAE tools available to support each of the above 

specification/design levels, the issues examined at each level and the 

implications of following a top-down approach in the specification and 

design process are described. 
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(1) Specification of System Requirements  

The term "requirements" is used to describe any demand upon the 

system to be designed. A complete list of the requirements should be 

defined before the design process begins and documented in a 

requirement specification document. As this document constitutes part 

of a contract between the user and the designer, and between members 

of the design team, it should be consistent, unambiguous and non-

redundant. To maintain these properties and to ensure the 

completeness of the requirement specification document, much effort 

has been directed towards developing appropriate tools for automating 

the requirement phase. 

(2) System Functions Specification 

The design process begins after the requirements phase has been 

completed. 	Design consists of an orderly decomposition of the system 

functional components into sub-functions. 	The first level of 

decomposition is usually carried out without specifying the 

architectural alternatives for implementing the set of sub-functions 

of the multiprocessor system. Thus this phase of the design process 

involves defining the functional components of the system which 

collectively satisfy the stated requirements. 

(3) System Architecture Selection 

At the architectural level, the designer is concerned with the 

overall structure of the system. This involves the components 

(processors, memories, etc.) and their interconnections in such 
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configurations 	that are likely to satisfy the specifications 

(expressed in terms of functional components). Each of the 

architectural components has certain quantitative attributes which 

determine its performance (eg. memory size, processor speed, bus data 

transfer rates, etc.). 

(4) System Model  

The architectural description of the system can be abstracted at 

this level into a system model which includes description of the 

algorithmic behaviour of certain functions as well as a description of 

the structure of each architectural component and the interconnection 

of the various components. At this level,  •the relationship and trade-

off between the hardware and the software of the system can be 

analysed and understood. 

(5) Register Transfer Level  

At the Register Transfer level, the designer is concerned wih 

realizing the functions described in the system model by sequences of 

operations. These operations are usually specified as transfers of 

information between the different facilities established in the 

architectural and system model steps. Thus if the multiprocessor 

system is considered as a large finite state machine, then the purpose 

of the register transfer design level is to establish the various 

states as well as the particular actions to be taken when the system 

is in a given state. 

5 



(6) Logic Design Level  

At the Logic Design level, the designer is concerned with the 

mapping of the microoperations and the control structure, defined in 

the previous step, into physical hardware elements. This step 

requires a detailed knowledge of the technology in which the design is 

to be implemented (eg. IC components on a PCB, LSI or VLSI technology, 

etc.). 

The 'survey presented in this report groups the design.tools into four 

categories, depending on the design level at which a given tool is 

utilized. These categories are: 

(i) Tools for specification of system (multiprocessor) requirements. 

Such tools are useful for design level (1) àescribed above. 	A 

survey of such tools is provided in Section 2.1 (Requirements 

Specification Tools). 

(ii) Tools 	for definition of system functions to satisfy the 

requirements. 	Such tools are useful for design level (2) 

described above and are discussed in Section 2.2 (Tools for 

Definition of Functional Components). 

(iii)Tools for simulating . system architecture and system model. 

These tools are useful for design levels (3) and (4) described 

above and are discussed in Section 2.3 (Architecture and System 

Model Simulation Tools). 

(iv) Tools for modelling and simulation of the system model at the 

register transfer level. These tools are also known as hardware 
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description and simulation languages. 	They are used at design 

level (5) described above. 	Section 2.4 presents a survey of 

these tools (Register Transfer Level Simulation Tools). 

Our survey does not cover the logic design level tools. 	As indicated 

earlier, the structure and utility of these tools are closely related to 

the technology adopted and are beyond the scope of this study. 

The survey of multiprocessor CAE tools presented in Section 2 of this 

report has been prepared with reference to the design levels described 

above and illustrated in Figure 1.1. It should be noted, however, that 

such categorization of the design tools does not represent a universally 

acceptable standard, nor can the lines defining the boundaries of each 

design level be sharply drawn. In fact, several of the design tools 

surveyed may cross the boundaries between design levels and may also serve 

in the design process at two or more successive levels. 

Finally, the survey presented in this report is not claimed to be an 

exhaustive treatment of all existing and planned multiprocessor CAE design 

tools. More accurately, the survey may be viewed as an attempt to present 

current approaches and techniques in the field of CAE tools for 

multiprocessor design. The authors are confident that the systems included 

in the survey are representative of such approaches and techniques. 
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2.0 Survey of Existing Multiprocessor CAE Design Tools  

2.1 Requirements Specifications Tools  

The term "requirements" is used to describe any demand upon the 

system. 	Before the system is actually designed and implemented, all the . 

requirements should be defined and be consistent, unambiguous and non-

redundant. 

Traditionally, requirements specification documents were written 

English. However, this choice of language led to two problems: 

1. the inherent ambiguity of English led to major disagreements between 

the requirements writers and system designers, and 

2. the requirements did not lend themselves to machine processing. 

Automated requirements tools offer solutions to these two problems. 

First, these tools could be used as processors for formal requirements 

languages with compact vocabulary and semantics. Second, the tools produce 

documents that could be processed by other software tools. 

Two tools are currently in use which can be regarded as purely 

requirements tools. These are: 

1. the Requirements Engineering and Validation System (REVS), authored by 

TRW Defense and Space Systems [ALF077], [DAVI77], and 

2. the Requirements Processing System (RPS), from. GTE Laboratories 

[DAVI79a], [DAVI79b]. 

Many other tools reported in the literature have been referred to as 

requirements specification tools even though they tend to support the 
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design process through decomposition of the system into 	functional 

components. 	Such tools should not be regarded as pure requirements 

specification tools,  je.  they do not fall into the same category of the two 

tools listed above. A survey of these tools is provided under the 

Functional Component Definition category of tools (Section 2.2). 

In general, REVS and RPS consist of a table-driven compiler that 

allows the user to define the features of the system in a language 

specifically tailored for his application area. Thus, while the syntax of 

the language is defined, the user has the freedom of introducing his own 

vocabulary and semantics within the given syntax rules. 

Using REVS or RPS as tools for requirements specification provides the 

following advantages: 

1. Multiple Authorship  

'Many groups of people, each working independently, may write their 

sections of the requirements. The requirements specification tool 

merges all the independently written sections into one coherent, 

cohesive and fully integrated system description. 

2. Document Formatting  

The requirements specification tool can serve as an automated 

formatter, that is capable of producing formatted text, table of 

contents, and cross-reference indexes. 

3. Consistency Checking  

The requirements specification tool reports any violation in the 

specification in the areas of incompleteness, inconsistency, ambiguity 

and redundancy. The generated output will be in aluachine readable 



format which lends itself to further processing, if needed, during 

later design phases. 

2.2 Tools for Definition of Functional Components  

Design occurs after the requirements phase has been completed. 	The 

first level of the design process consists of an orderly definition of the 

main functional components of the system which satisfy the requirements. 

Next, these functional components are further decomposed into smaller sub-

functions, and the process continues until a system architecture emerges in 

which a hardware/software model can be abstracted and the sub-functions can 

be mapped into elements  in the model. 

Several tools are currently available for automating the process of 

defining' the functional components of the system and •or decomposing theSe 

components into smaller, less complex components. 

Initially, each component is defined in terms of its external 

interfaces to other components and the specific feature (or features) of 

the requirements it is supposed to satisfy or perform. Once the external 

behaviour of all components is completely specified, the decomposition 

process can begin and can be applied to each component separately and 

independently. Each component can be decomposed into subcomponents; each 

subcomponent is described, in turn, in terms of its external behaviour 

(interfaces). As long as no changes are introduced by the decomposition 

process to affect the external behaviour of the component being decomposed, 

the refinement process can be performed on the components separately. 

1 0  



A decomposition process along the lines described above leads to a 

"top-down" design approach. Practical experience with complex systems 

indicates that such an approach is necessary for reducing the development 

effort and keeping the design process within controllable bounds. 

Several tools have been developed in recent years for automating the 

definition and decomposition of system functional components. The most 

widely known of these tools are: 

- the Problem Statement Language/Problem Statement Analysis (PSL/PSA) 

System from the University of Michigan [TEIC77] 

- System Analysis and Design Techniques. from SofTech [ROSS77] 

- AUTO-IDEF from the Computer Corporation of America [LIPK80] 

- Input-Output Requirement Language (IORL) from Teledyne [EBER80] 

- the System Design Processing SPD.from GTE [ROMA79]. 

The above set of tools differ in the syntax of the language used and 

the details for the functional decomposition utility offered to the 

designer. The tools, however, tend to offer similar services to the 

designer in the following aspects: 

- automated documentation of the functional components of the system. 

Each component is defined in ternis of its external interfaces to other 

components. 

- validation check of the functional decomposition process, je.  ensuring 

that a component may not accept a message unless another component 

sends it. 	Also ensuring that the decomposition of a component into 
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,cost/performance  and  other related factors ( availability). 	The g • 

subcomponents does not violate the external interfaces associated with 

the definition of the component. 

— ensuring 	that all the features defined 	in the requirements 

specification are satisfied by at least one component. 

2.3 Architecture and System Model Simulation Tools  

The next step following the decomposition process of the functional 

components of the system is to select an overall structure with components 

such as memories, processors and I/O  devices which can best satisfy the 

requirements explicitly stated in the description of the functional 

components. The selection of the most suitable structure is based on 

cost/performance factor is derived for each architecture as a function of 

the quantitative attributes of the structural components (eg. memory size, 

CPU speed, word length, bus bandwidth, etc.). 

Existing CAE tools at the architectural level tend, in general, 

towards assisting the designer in evaluating a number of architectures 

(selected by the designer based on past experience) and selecting the best 

architecture based on the evaluation criteria. 

The evaluation can be conducted by first formulating a model using the 

tool. 	This is known as model definition.  The tool checks the consistency 

of the model definition and then provides the designer with a simulation 

environment in which the performance aspects of the modelled architecture 

can be monitored. 

12  



The tools available at the architectural design level can be 

classified into two types: 

1. General Purpose Simulation Languages: 

Examples of these languages are GPSS [GENE73], SSH  [ROI-1M77] and SIMULA 

[DAHL76]. 	A model must be constructed for the architecture and 

defined using the syntax of the language. 	Following compilation, the 

defined model can be run using simulated input data (transactions). 

The results of the simulation runs contain information related to high 

level resource utilization aspects such as throughput, delay, bus 

congestion, etc. Once analysis at this level is completed, the design 

is refined into more concrete hardware and software components which 

can be studied using the second type of tools described below. 

2. Special Purpose Simulation Languages 	• 

These simulation languages have been developed to serve as simulation 

tools for single processors and multiprocessor systems. The general 

approach followed, as indicated in the three example tools surveyed in 

the remainder of this section, is to provide the designer with two 

languages: one language is used to describe the intended behaviour of 

the system (behaviour description language) and a second language is 

used to describe the actual implementation details (structure 

description language). The model of the system being designed 

consists of the compiled outputs of the two languages for the source 

code which represents the model behavioural and structural 

definitions. The two compiled outputs are linked and then used as 

part of a runtime simulation package controlled by the user. 

13  



The remainder of this section presents three tools which have been 

developed for the Architectural and System Model design level. The tools 

follow the conceptual approach described above. 

2.3.1 AIDE - ArchItecture Design Environment  

AIDE is a modelling and simulation system designed to support the 

development of computer architectures. The system is optimized for 

the modelling and evaluation of computer hardware architectures 

(ELLE81]. The area of applicability of AIDE ranges from the system 

architecture level to the micro-architecture (internal hardware 

organization) level. 

The AIDE system consists of three components (shown in Figure 

2.1): 

(1) the  Language Environment, 

(2) the Runtime Environment, and 

(3) the User Interface.  

The language environment allows the user to define models for the 

computer system in the form of behavioural modules; each module 

contains a set of functions connected to the outside world by a set of 

inputs and outputs. The path of interaction between the modules is 

defined by an interconnection structure which links the outputs of 

modules to the inputs of other modules. Thus an AIDE model requires 

the use of two languages: a behaviour description language and an 

interconnection description language. 

14  
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The runtime support package provides the mechanisms needed to 

allow concurrent behavioural execution, manage system resources and 

support performance evaluation. 

Simulation control is linked to the user interface, where the 

user interactively issues execution commands. These commands allow 

the user to examine aspects like performance analysis in addition to 

rudimentary tasks (stop, go, store results in a file for later 

processing, etc.). 

A description of the- above three components is detailed in the 

following. 

(1) The Language Environment  

As mentioned earlier, the AIDE model requires the use of two 

languages: a Behaviour Description Language (BDL) and an 

Interconnection Description Language (IDL). The BDL in AIDE is an 

extension of the C programming language in two areas. 	The first 

involves "modularization"  •of model descriptions. 	The second 

involves the support of additional data types and constructs 

model concurrent and asynchronous functions. The description of 

each module begins with the type name of the module, followed by 

declarations of all inputs and all outputs. 	These declarations 

act as interface ports to other behaviour modules. 

As an option, a module may contain "state" variables which are 

global to all the code within the module, but are not accessible 

from outside the module. Examples of these state variables 

include memory arrays, registers and state variables. 



1 

The module body follows the input/output port and state 

declarations. It contains the code which specifies the behaviour 

of the module in terms of a set of constituent processes. 

Processes within the same module share a common scope and can 

interact with each other directly. For inter-module process 

interaction, a process is always attached to one or more input 

ports of the module in which it is defined. The interconnection 

language links ports together and defines the interaction path 

between the respective processes. 

The AIDE Interconnection Design Language (IDL) allows the 

description of single entities called "macros". A macro is 

externally identical to a behaviour module but contains no 

behaviour code. Instead, a macro acts as a shell that identifies 

a logically unique subsystem which consists of a number of 

modules. Once defined, a macro may be used either as a complete 

system or as a "module" in some other system. 

Typically, a macro is first compiled as a system and is 

evaluated separately. After testing, the macro may be recompiled 

as a component for subsequent use in layered systems. The macro 

approach has several advantages: 

i. Components containing complex functionality can be built and 

tested piecemeal. 	Design synthesis is facilitated through 

this button-up approach. 

ii. Each component may be placed in a library containing other 

modules or macros and recalled for later design. 	As the 

library grows, the work involved for new developments 

shrinks. 

17 



iii. The macro approach also aids the top—down design process by 

providing consistent interfaces within a model undergoing 

refinement. 

j .  

(2) The Runtime Support Package  

The organization of the runtime support package in AIDE is 

shown in Figure 2.2. The model developed in the language 

environment is first compiled and then linked with the runtime 

support package. The resultant executable load module is called a 

"simulation model". The runtime simulation support for the model 

consists of four components: 

i. Scheduler:  The AIDE Scheduler fields events generated during 

simulations, schedules and executes them at the proper time. 

The events are scheduled with respect to a global system 

clock. Most of these events are generated by the model. 

However, the scheduler also handles special control events 

initiated by the user. 

ii. Memory Monitor: This component contains software memory 

management routines so that a user need only declare memory 

in his model using the state variable declaration. The 

simulated memory manager uses a software paging scheme to 

create a file for each paged memory declared in the user's 

model. 

iii. Performance Monitor:  Users are allowed toconstruct commands 

meaningful to their application from several AIDE native 

commands. 	User commands can create triggers during 

simulation to detect conditions on monitored variables. When 
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one in a list of triggers fires, a specified command list is 

executed. The performance monitor also provides a mechanism 

for recording and manipulating performance information. 

iv. The Command Interpreter: The 	command 	interpreter 

communicates with the user interface by sending and receiving 

messages. It thus provides a central point of control and 

access to the simulation model. 

(3) The User Interface  

The main purpose of the user interface is ta provide a 

friendly environment for the user to control and evaluate a 

simulation. It communicates with the command interpreter when 

requesting some runtime action. User commands include sequencing 

commands (go, 'halt, etc.), query commands regarding the status of 

the simulation, and other commands to load and display model 

variables and simulated memory locations. 

2.3.2 N,mPc Design Environment  

N.mPc is an interactive environment for the design and evaluation 

of multiprocessor systems ([PARK79a], [ROSE79], [PARK79b], [ORDY79]), 

developed and implemented at Case Western Reserve University. It 

contains six separate components which work together to produce 

function, register transfer level simulations of multiple processor, 

heterogeneous target systems. 

Figure 2.3 presents a simplified system block diagram of the 

N.mPc system Components. The "meta assembler" allows the designer to 

specify the details of the target instruction set in a format which is 

1 9 
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machine independent. 	The "linking loader" resolves the machine 

dependent aspects of metamicro assembler description output and 

allocates the resulting code to physical memory according to user 

selected memory allocation strategy. The linking loader generates a 

"simulated memory processor". 

The 	ISP Compiler is used to 	translate processor and 

interconnection element descriptions,, defined using a hardware 

description language, into executable modules. These modules are 

linked with the target system topology description by the "Ecologist" 

component which generates the "simulation model program". The 

simulation model program, also known as the 'kernel', runs under the 

control of a "Runtime Package". The Runtime Package consists of a 

Command Interpreter, the Kernel and the Simulated Memory Manager. The 

Kernel and Command Interpreter provide the user with interactive 

control and monitoring of simulations. 	The Simulated Memory Manager 

supervises memory content to optimize the performance of 	the 

simulation. 

A brief description of the six components of the N.mPc system is 

provided in the following: 

(1) MetaMicro Assembler  

. 	The assembler contains a set of facilities for both vertically 

and horizontally organized target architectures. 	The facilities 

include the following main sections: 

- A declaration section to describe the structure and semantics of 

the target machine. 

21 
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- An instruction section  to assemble the source program 

instructions. 

- A register transfer  notation section  to provide a source 

instruction format using register transfer notation and "opcode-

operand" notation. 

- An allocation  control  section  to provide information to the 

linking loader concerning absolute address and contiguous code 

requirements. 

In addition, the assembler contains facilities to handle 

variable length instructions, predefined source text inclusion, 

external/internal interface functions and illegal opcode checking. 

(2) Linking Loader  

The linking loader accepts the output of the metamicro 

assembler along wih a "command" program which defines the physical 

memory constraints and the semantics of the target machine. These 

semantics include an instruction and format declaration section, 

the addressing modes of the target processor, and a set of rules 

for allocating physical memory spaces according to one of four 

user specified algorithns. 

(3) ISP Compiler  

A register transfer language, ISP, is used to describe the 

hardware modules along .with a compiler which converts ISP module 

description into executable code. ISP allows the descriptions of 

multiple processor/module architectures through the use of "PORT" 

constructs which interface the module.to  the external environment. 

Synchronization between the modules can be achieved by a 'WAIT' 

2 3 



construct. 	Events within a processor may be separated in time by 

the use of a "DELAY" construct which specifies the execution or 

delay time associated with the previous register transfer 

statement. 

(3) Ecologist  

The Ecologist generates an executable program for the 

simulation of the desired target architecture. It accepts as 

input the compiled ISP modules for each of the hardware components 

of the target system and connects the specified hardware ports. 

To do so, the ecologist must obtain as input the specified 

topology of the target architecture. The topology is described in 

the form of a series of declarations: 

- Signal Declarations: define control lines and data buses 

- Processor Declarations: create an instance of a processor which 

can be referred to by name at runtime 

- Time Delay Declarations: 	define the time unit to be used with 

the DELAY statement 

- Connection Declarations: 	connect the PORTS of an ISP processor 

to signals defined in the signal declarations 

- Initial Declarations: 	bind an ISP processor memory to either a 

linking loader output file or to a UNIX (operating system) file 

or device. 
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(5) Simulated Memory Processor  

The Simulated Memory Processor prepares memory files for use 

by the Runtime Package. All linking loader output files needed by 

the simulation are converted from the packed format produced by 

the linking loader to the segmented or paged format required by 

the simulation program. The Simulated Memory Processor also 

creates a memory symbol table file containing the names of the 

memory files available to the simulation. 

(6) Runtime  Package  

The Runtime Package consists  of  three Components: 

- the simulation model (kernel) generated by the EcOlogist. 

7. the Siàulated Memory Manager (with input from the simuiated 

memory processor) 

-.- a runtime command interpreter . connected to the user interface.' 

•  The simulation kernel performs ISP process scheduling and data 

manipulation functions required for the execution of the 

simulation. The kernel also manages monitor functions used for 

automatic collection of simulation data. 

Simulated memories are handled by the Simulated Memory 

Manager. Up to 128K bytes of simulated memory may reside in the 

main memory of the supporting computer (PDP11). 

The runtime command interpreter handles the interface between 

the simulation user and the simulation tool itself. The 

interpreter ,  accepts commands from the user to examine or modify 

simulation states, control the execution, set execution 

breakpoints and collect data from a running simulation. 
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component's behaviour. 	SABLE then analyzes the structure the 

2.3.3 SABLE: A Tool for Generating Structured Multi-level Simulations  

SABLE's approach is similar to that of other simulation languages 

at the architectural level in that it uses a structure specifications 

language to specify the nesting.and interconnectivity of components, 

and a general Purpose algorithmic - language to describe each 

1 
1 

1 
1 
1 

system and connects the appropriate behavioural descriptions 

accordingly [HILL79a], [HILL79b]. 

The concept of components operating at various data levels is 

central to the top-down design methodology adopted in SABLE, which 

encourages simulation prior to detailed design. Like other design 

automation tools, SABLE models a computer system as a collection 

components interconnected by nets. Bach  component is an instance of a 

particular component type, abbreviated comptype,  such as "nand-gate" 

or "controller". The structure of the component is described using a 

• language called ADLIB. 

When developing a new system, the SABLE user can start at the 

topmost nesting level of his design and decompose it into a few 

interconnected components. He then specifies the desired behaviour of 

each component by writing an ADLIB comptype. He runs SABLE and uses 

the resulting simulation to evaluate overall configuration and 

performance. Gradually, the components are decomposed into smaller 

functional blocks, which may now include both hardware and software 

units. The behaviour of each is again specified in ADLIB. The 

decomposition and refinement of components is recursive as described 

earlier. 

26 



1 

27 

The design at each point can be evaluated by checking if the 

simulated behaviour of the refined design matches that of the higher 

level component that it was supposed to implement. Errors in the 

refined design can be easily identified if any mismatch is found. 

SABLE has  been implemented on a DECSYSTEM-20 using about 5000 

lines of PASCAL. The support software consists of three parts: the 

ADLIB precompiler, the runtime support code, and the SABLE module 

itself, which also contains a simple SDL compiler. In order to use 

the system, a user must provide an ADLIB and an SDL source file, 

though the SDL file may be generated with an interactive graphic 

structure editor. 

The user•  first runs the ADLIB precompiler, which parses the 

program and produces several files. These include a simple database 

that reflects all the external attributes of each comptype, ie. its 

name, nets and parameters. If no ADLIB syntax or semantic errors were 

detected, the precompiler generates a valid PASCAL program using the 

ADLIB source and the runtime support code. The user then runs SABLE, 

which compiles his SDL source and generates a topology file and a 

parameter file. The standard PASCAL compiler is then used to compile 

the reformatted ADLIB program, and simulation begins. 	During the 

start of simulation,. part of the runtime support code uses the 

topology file to interconnect and activate the desired selection  of 

 components. 



2.4 Register Transfer Level Simulation Tools  

The Register Transfer Level is concerned with realizing the functional 

specifications by sequences of operations. If we consider a digital system 

as a large finite state machine, then the purpose of register-transfer 

level design is to establish the various states in which the system may 

find itself, as well as the particular actions to be taken when the system 

is in a given state. 

The register level is one at which most computer hardware description 

languages are used. As in the architectural and system model level, 

hardware design languages tend to fall into one of two categories: 

Behaviour Description Languages and Structure Description Languages. 

Hardware design languages in both categories have been used 

extensively over the past decade and are well documented in the open 

literature. In view of the availability of excellent surveys covering this 

level of design, the discussion of this section will not be extended beyond 

the references to relevant publications. 

An excellent survey of all major computer hardware description 

languages can be found in [SU74]. 	A bibliography on the  subject can be 

found in [VANC76], [VANC77], [VANC78]. Finally, a survey of the 

applications of different hardware ,  design languages can be found in 

[VANC79]. 

Several multiprocessor systems development tools that are available 

commercially fall into the register transfer simulation category of tools. 

Typically these tools are developed for specific microprocessor (eg. Intel 

8086 or Zilog Z80/CPM) and allow the designer to simulate the target code 
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for the processor on a host machine (eg. PDP11/45) to check its correctness 

and rectify any errors. As well, tools such as in—circuit emulators are 

usually provided to allow the user to perform on—line debugging and testing 

of the code prior to the field testing stage. 
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3.0 Summary and Conclusions  

A survey of CAE tools for multiprocessor design has been presented. 

The survey identified six specification and design phases for the purpose 

of identifying the utility and applications of the various available tools. 

These phases are: 

(1) the Requirements Specification phase, 

(2) the Functional Components Definition phase, 

(3) the Architectural Design phase, 

(4) the System Model (Hardware/Software trade-off) phase, 

(5) the Processing Element Partitioning (Register Transfer 

Level) phase, and 

(6) the Logic Design (Hardware) phase. 

The survey presented covered existing tools for the first five design 

and specification phases. It was pointed out that the lowest level (Logic 

Design) is related to the technOlogy used (eg. PCB/IC, VLSI, etc.) and is 

beyond the scope of this survey. 

Many of the tools surveyed do not necessarily fall exclusively within 

the boundaries of one design level. In fact, tools that are based on a 

top-down design methodology tend to span the boundaries of several design 

levels and can thus be used iteratively throughout several design phases. 

The general concept underlying the top-down design approach can be 

summarized as follows: 
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- Following the requirements specification phase, the main functional 

components of the system are defined. 	Each component is described in 

terms of its external interfaces and the basic functions it performs. 

- Each component 

subcomponents. 

same external 

subcomponent is 

can then be treated separately and divided into 

Collectively, these subcomponents must maintain the 

interfaces of the parent component. Again, each 

described in ternis of its external interfaces. 

- The process of decomposition can be applied iteratively to the 

subcomponents until they are refined into the simplest possible 

(elementary) components. 

- A validity check is applied at each decomposition step to ensure its 

completeness among the subcomponents (the output/input of each 

subcomponent is either an input/output to another subcomponent or is 

an output/input of the parent component). The validity check is also 

applied to ensure the consistency of the decomposition process. 

The above four steps constitute the design  specification path (the 

top-down direction). The dual process, called the design  synthesis, takes 

place in the opposite direction (bottom-up) and follows the design 

specification process. Design synthesis starts with the most refined 

(elementary) components and assembles the pieces to form high level 

components. The synthesis continues until the main components are formed. 

The survey presented here indicated the availability of many design 

simulation tools which satisfy different design needs, depending on the 

design level (or levels) for which it is developed. 	Unfortunately, no one  

simulator, is useful throughout all specification and design phases. 	This 
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multiple simulator approach outlined in the survey has two advantages and 

several disadvantages. The advantages are: 

1. Each simulation can be written in a language tuned for one particular 

level, and 

2. Each simulation tool can optimize its runtime organization for one 

particular task. 

The disadvantages include the following: 

1. The design effort is multiplied by the necessity of learning several 

simulator systems and writing a design in each. 

2. The possibility of error is increased as more human manipulation 

is involved. 

3. As the design becomes increasingly,  fragmented, it becomes impossible 

to simulate an entire multiprocessor system at a low level of 

abstraction. 	Therefore only small fragments can be simulated at any 

one time. 

4. Each fragment needs to be driven by a supply of realistic data and its 

output must be interpreted. 	This may make the sofware written to 

serve these needs extremely costly. 

Several tools have been developed to overcome the above difficulties 

and provide the designer with a uniform simulation approach starting at the 

architecture design level and going down to the register transfer 

simulation level. 	Examples of these tools are the AIDE package (Bell 

Laboratories) and SABLE (Stanford University). 	The utility of these tools 

can be improved substantially by augmenting them with a high level 
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specification package which allows the designer to describe the functional 

components of the system being designed and to interface this high level 

description to existing tools at the architectural level. In addition, two 

design aspects must be addressed in augmenting existing tools: 

1. Redundancy and fault-tolerance characteristics analysis must be 

provided at the architectural levels if the tools are to be useful in 

the design of spacecraft (or avionics) multiprocessor systems. 

2. The high level specification language must contain mechanisms for 

system verification. As the design process 	continues, 	these 

mechanisms will evolve naturally towards validation and verification 

of the software. 

The issue. of  augmenting existing tools to generate an integrated set 

of multiProcessor design and simulation tools is addressed in a separate 

study report (Report #3, referenced in the preface of this report). 
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