
A SURVEY OF COMPUTER-AIDED

ENGINEERING (CAE)

TOOLS FOR THE DESIGN AND SIMULATION

OF MULTIPROCESSOR SYSTEMS

• A SURVEY OF COMPUTER-AIDED

ENGINEERING'(ÇAE)

TOOLS FOR THE DESIGN AND SIMULATION

OF MULTIPROCESSOR SYSTEMS

Industry Canada
Library Queen

'I .«WL- 2 a 1998

Industrie Canada

Bibliothèque Queen

Report No. INT-82-15

March 1982

Authors: Dr. S.A. Mahmoud
Mr. J.G. Ouimet
Dr. C. Laferriere
Mr. W.T. Brown

Approved by: Dr. S.A. Mahmoud

1 DOCCR.SP-82-o45 -DOC CONTRACTOR REPORT

FP3, 10 1981

ISRARY 7 S 'il3- 1.11)TfitglIE

1

1

I Governrnent Gouvernernent
of Canada 	du Canada

Depanrnent of Communications

DEPARTMENT OF COMMUNICATIONS f. OTTAWA - CANADA

SPACE.PROGRAM

TITLE: /Survey .of Computer-Aided Engineering (CAE) Tools For

. 	The Design And Simulation of Multiprocessor Systems,/

AUTHOR(S): S.A. Mahmoud

C. Laferriere

J. Ouimet

V. Brown

ISSUED BY CONTRACTOR AS REPORT NO: INT-82-15

wenii
\

• PREPARED BY: Intellitech Canada Ltd.

352 MacLaren St.

Ottawa, Ontario

K2P 0146

3ER.36100-1-0273

SN: OER81-03151

DEPARTMENT OF SUPPLY AND SERVICES CONTRACT'NO:

DOC-SCIENTIFIC AUTHORITY: R.A. Millar

CLASSIFICATION: Unclassified

This report presents the views of the author(s). Publication
of this report does not constitute DOC approval of the reports
findings or conclusions. This report is available outside the
department by special arrangement.

DATE: March 1982

Preface

This work was performed for. the Department of Communications,

Communication Research'Centre, under DSS Contract No. 0ER:81-03151, entitled

"Computer-Aided Engineering Tools for Spacecraft Multi-Microprocessor

Design", from September 15, 1981 to March 31, 1982. This report is one of

the following four contract deliverables:

1.*Executive Summary

2. Report #1 - Review of Multiprocessor.SYstems and their. Spacecraft

Applications.

3. Report #2 - A Survey of Computer-Aided Engineering (CAE) Tools for

the Design and Simulation of Multiprocessor Systems.

4. Report #3 - The Definition and Specification of an Integrated Set

of CAE Tools for. Spacecraft Multiprocessor System

Design.

Acknowledgement

The study team gratefully acknowledges the technical

guidance of Mr. R.A. Millar of thè Communications Research

Centre. His knowledge and experience in the field of computer

simulation of spacecraft systems have contributed to the quali-

ty of the work and provided a constant source of encouragement

to the study team.

As well, the study team wishes to thank Mr. J.M. Savoie

also of C.R.C. for his fruitful discussions and critical

reviews.

Tâble of Contents

1.0 Introduction 	1

2.0 Survey of Existing Multiprocessor. CAE Design Tools 	8

. 2.1 Requirements Specifications Tools 	8

2.2 Tools for Definition of Functional Components 	 10

2.3 Architecture and System Model Level Simulation Tools 	 12

2.4 Register Transfer Level Simulation Tools 	 28

3.0 Summary and Conclusions 	 30

4.0 References 34

List of Fis •

Figure 1.1 Multiprocessor Specifications/Design Levels
and Corresponding CAE Tools 	3

Figure 2.1 AIDE Components 	 15

Figure 2.2 AIDE Runtime Environment 	 20

Figure 2.3 Main Components of N.mPc System 	 22

1.0 Introduction

Interest in multiprocessor and distributed intelligence computer

systems has increased dramatically in recent years. This interest has been

fostered by the availability of microprocessors with ever increasing

performance/price ratios and the expected emergence of monolithic systems

with still higher capabilities in the near future.

The development of multiprocessor and distributed intelligence

computer systems and their utilization in various applications have been

impeded by the lack of an appropriate theoretical base. The control of

systems containing more than several processors is not well understood.

While considerable work has been done recently to develop a theoretical

base, it seems unlikely that this work will have significant impact on

practical system design in the near future. As a result, multiprocessor

system designers have turned to the use of CAE tools for the development of

such systems. Such CAE tools support the skill level of the designer,

provide insight into the attributes of alternative architectures, allow

evaluation of these architectures and support the development, simulation

and test of actual multiprocessor systems.

The main objective of this report is to survey the multi-

microprocessor computer aided engineering design tools that are currently

available, as well as the design tools that are currently at various stages

of research and development.

To understand the role, scope and utility of such multiprocessor

design tools, it is worth reviewing the various design steps followed in a

general top-down development process of a multiprocessor system. The first

step involves the specifications of system requirements and is followed by

a description of the functional components of the system which are

considered necessary to satisfy the requirements. This high level

description of the functional components can then be translated into an

intermediate design stage which involves the selection of a system

architecture and its representation in the form of a system model. This

model is used to describe the hardware and software structures and their

relationships. Finally, at the lowest level, a register transfer model is

used to provide details of the processing elements and to facilitate the

hardware (logic) circuit design and test. In summary, the following design

phases (see Figure 1.1) are identified in a top-down design approach:

(1) Specification of System Requirements

(2) System Function Specification

(3) System Architecture Selection

(4)Hardware/Software Relationship (System'Model)

(5) Processing Element Details (Register Transfer Model)

(6) Logic Design

Before surveying CAE tools available to support each of the above

specification/design levels, the issues examined at each level and the

implications of following a top-down approach in the specification and

design process are described.

2

System

Requirements

Requirement

Specifications

System

Architecture

Hardware/

Software
Relationship

Processing

Element

Details

Logic

Design

Architectural

and Model

Level

Simulation

Register

Transfer and

Chip Level

Simulation

Figure 1.1

Multiprocessor Specifications/Design Levels
and Corresponding CAE Tools

System

Functions

Functional Level

Simulation

(1) Specification of System Requirements

The term "requirements" is used to describe any demand upon the

system to be designed. A complete list of the requirements should be

defined before the design process begins and documented in a

requirement specification document. As this document constitutes part

of a contract between the user and the designer, and between members

of the design team, it should be consistent, unambiguous and non-

redundant. To maintain these properties and to ensure the

completeness of the requirement specification document, much effort

has been directed towards developing appropriate tools for automating

the requirement phase.

(2) System Functions Specification

The design process begins after the requirements phase has been

completed. 	Design consists of an orderly decomposition of the system

functional components into sub-functions. 	The first level of

decomposition is usually carried out without specifying the

architectural alternatives for implementing the set of sub-functions

of the multiprocessor system. Thus this phase of the design process

involves defining the functional components of the system which

collectively satisfy the stated requirements.

(3) System Architecture Selection

At the architectural level, the designer is concerned with the

overall structure of the system. This involves the components

(processors, memories, etc.) and their interconnections in such

4

configurations 	that are likely to satisfy the specifications

(expressed in terms of functional components). Each of the

architectural components has certain quantitative attributes which

determine its performance (eg. memory size, processor speed, bus data

transfer rates, etc.).

(4) System Model

The architectural description of the system can be abstracted at

this level into a system model which includes description of the

algorithmic behaviour of certain functions as well as a description of

the structure of each architectural component and the interconnection

of the various components. At this level, •the relationship and trade-

off between the hardware and the software of the system can be

analysed and understood.

(5) Register Transfer Level

At the Register Transfer level, the designer is concerned wih

realizing the functions described in the system model by sequences of

operations. These operations are usually specified as transfers of

information between the different facilities established in the

architectural and system model steps. Thus if the multiprocessor

system is considered as a large finite state machine, then the purpose

of the register transfer design level is to establish the various

states as well as the particular actions to be taken when the system

is in a given state.

5

(6) Logic Design Level

At the Logic Design level, the designer is concerned with the

mapping of the microoperations and the control structure, defined in

the previous step, into physical hardware elements. This step

requires a detailed knowledge of the technology in which the design is

to be implemented (eg. IC components on a PCB, LSI or VLSI technology,

etc.).

The 'survey presented in this report groups the design.tools into four

categories, depending on the design level at which a given tool is

utilized. These categories are:

(i) Tools for specification of system (multiprocessor) requirements.

Such tools are useful for design level (1) àescribed above. 	A

survey of such tools is provided in Section 2.1 (Requirements

Specification Tools).

(ii) Tools 	for definition of system functions to satisfy the

requirements. 	Such tools are useful for design level (2)

described above and are discussed in Section 2.2 (Tools for

Definition of Functional Components).

(iii)Tools for simulating . system architecture and system model.

These tools are useful for design levels (3) and (4) described

above and are discussed in Section 2.3 (Architecture and System

Model Simulation Tools).

(iv) Tools for modelling and simulation of the system model at the

register transfer level. These tools are also known as hardware

6

description and simulation languages. 	They are used at design

level (5) described above. 	Section 2.4 presents a survey of

these tools (Register Transfer Level Simulation Tools).

Our survey does not cover the logic design level tools. 	As indicated

earlier, the structure and utility of these tools are closely related to

the technology adopted and are beyond the scope of this study.

The survey of multiprocessor CAE tools presented in Section 2 of this

report has been prepared with reference to the design levels described

above and illustrated in Figure 1.1. It should be noted, however, that

such categorization of the design tools does not represent a universally

acceptable standard, nor can the lines defining the boundaries of each

design level be sharply drawn. In fact, several of the design tools

surveyed may cross the boundaries between design levels and may also serve

in the design process at two or more successive levels.

Finally, the survey presented in this report is not claimed to be an

exhaustive treatment of all existing and planned multiprocessor CAE design

tools. More accurately, the survey may be viewed as an attempt to present

current approaches and techniques in the field of CAE tools for

multiprocessor design. The authors are confident that the systems included

in the survey are representative of such approaches and techniques.

7

2.0 Survey of Existing Multiprocessor CAE Design Tools

2.1 Requirements Specifications Tools

The term "requirements" is used to describe any demand upon the

system. 	Before the system is actually designed and implemented, all the .

requirements should be defined and be consistent, unambiguous and non-

redundant.

Traditionally, requirements specification documents were written

English. However, this choice of language led to two problems:

1. the inherent ambiguity of English led to major disagreements between

the requirements writers and system designers, and

2. the requirements did not lend themselves to machine processing.

Automated requirements tools offer solutions to these two problems.

First, these tools could be used as processors for formal requirements

languages with compact vocabulary and semantics. Second, the tools produce

documents that could be processed by other software tools.

Two tools are currently in use which can be regarded as purely

requirements tools. These are:

1. the Requirements Engineering and Validation System (REVS), authored by

TRW Defense and Space Systems [ALF077], [DAVI77], and

2. the Requirements Processing System (RPS), from. GTE Laboratories

[DAVI79a], [DAVI79b].

Many other tools reported in the literature have been referred to as

requirements specification tools even though they tend to support the

8

design process through decomposition of the system into 	functional

components. 	Such tools should not be regarded as pure requirements

specification tools, je. they do not fall into the same category of the two

tools listed above. A survey of these tools is provided under the

Functional Component Definition category of tools (Section 2.2).

In general, REVS and RPS consist of a table-driven compiler that

allows the user to define the features of the system in a language

specifically tailored for his application area. Thus, while the syntax of

the language is defined, the user has the freedom of introducing his own

vocabulary and semantics within the given syntax rules.

Using REVS or RPS as tools for requirements specification provides the

following advantages:

1. Multiple Authorship

'Many groups of people, each working independently, may write their

sections of the requirements. The requirements specification tool

merges all the independently written sections into one coherent,

cohesive and fully integrated system description.

2. Document Formatting

The requirements specification tool can serve as an automated

formatter, that is capable of producing formatted text, table of

contents, and cross-reference indexes.

3. Consistency Checking

The requirements specification tool reports any violation in the

specification in the areas of incompleteness, inconsistency, ambiguity

and redundancy. The generated output will be in aluachine readable

format which lends itself to further processing, if needed, during

later design phases.

2.2 Tools for Definition of Functional Components

Design occurs after the requirements phase has been completed. 	The

first level of the design process consists of an orderly definition of the

main functional components of the system which satisfy the requirements.

Next, these functional components are further decomposed into smaller sub-

functions, and the process continues until a system architecture emerges in

which a hardware/software model can be abstracted and the sub-functions can

be mapped into elements in the model.

Several tools are currently available for automating the process of

defining' the functional components of the system and •or decomposing theSe

components into smaller, less complex components.

Initially, each component is defined in terms of its external

interfaces to other components and the specific feature (or features) of

the requirements it is supposed to satisfy or perform. Once the external

behaviour of all components is completely specified, the decomposition

process can begin and can be applied to each component separately and

independently. Each component can be decomposed into subcomponents; each

subcomponent is described, in turn, in terms of its external behaviour

(interfaces). As long as no changes are introduced by the decomposition

process to affect the external behaviour of the component being decomposed,

the refinement process can be performed on the components separately.

1 0

A decomposition process along the lines described above leads to a

"top-down" design approach. Practical experience with complex systems

indicates that such an approach is necessary for reducing the development

effort and keeping the design process within controllable bounds.

Several tools have been developed in recent years for automating the

definition and decomposition of system functional components. The most

widely known of these tools are:

- the Problem Statement Language/Problem Statement Analysis (PSL/PSA)

System from the University of Michigan [TEIC77]

- System Analysis and Design Techniques. from SofTech [ROSS77]

- AUTO-IDEF from the Computer Corporation of America [LIPK80]

- Input-Output Requirement Language (IORL) from Teledyne [EBER80]

- the System Design Processing SPD.from GTE [ROMA79].

The above set of tools differ in the syntax of the language used and

the details for the functional decomposition utility offered to the

designer. The tools, however, tend to offer similar services to the

designer in the following aspects:

- automated documentation of the functional components of the system.

Each component is defined in ternis of its external interfaces to other

components.

- validation check of the functional decomposition process, je. ensuring

that a component may not accept a message unless another component

sends it. 	Also ensuring that the decomposition of a component into

11

,cost/performance and other related factors (availability). 	The g •

subcomponents does not violate the external interfaces associated with

the definition of the component.

— ensuring 	that all the features defined 	in the requirements

specification are satisfied by at least one component.

2.3 Architecture and System Model Simulation Tools

The next step following the decomposition process of the functional

components of the system is to select an overall structure with components

such as memories, processors and I/O devices which can best satisfy the

requirements explicitly stated in the description of the functional

components. The selection of the most suitable structure is based on

cost/performance factor is derived for each architecture as a function of

the quantitative attributes of the structural components (eg. memory size,

CPU speed, word length, bus bandwidth, etc.).

Existing CAE tools at the architectural level tend, in general,

towards assisting the designer in evaluating a number of architectures

(selected by the designer based on past experience) and selecting the best

architecture based on the evaluation criteria.

The evaluation can be conducted by first formulating a model using the

tool. 	This is known as model definition. The tool checks the consistency

of the model definition and then provides the designer with a simulation

environment in which the performance aspects of the modelled architecture

can be monitored.

12

The tools available at the architectural design level can be

classified into two types:

1. General Purpose Simulation Languages:

Examples of these languages are GPSS [GENE73], SSH [ROI-1M77] and SIMULA

[DAHL76]. 	A model must be constructed for the architecture and

defined using the syntax of the language. 	Following compilation, the

defined model can be run using simulated input data (transactions).

The results of the simulation runs contain information related to high

level resource utilization aspects such as throughput, delay, bus

congestion, etc. Once analysis at this level is completed, the design

is refined into more concrete hardware and software components which

can be studied using the second type of tools described below.

2. Special Purpose Simulation Languages 	•

These simulation languages have been developed to serve as simulation

tools for single processors and multiprocessor systems. The general

approach followed, as indicated in the three example tools surveyed in

the remainder of this section, is to provide the designer with two

languages: one language is used to describe the intended behaviour of

the system (behaviour description language) and a second language is

used to describe the actual implementation details (structure

description language). The model of the system being designed

consists of the compiled outputs of the two languages for the source

code which represents the model behavioural and structural

definitions. The two compiled outputs are linked and then used as

part of a runtime simulation package controlled by the user.

13

The remainder of this section presents three tools which have been

developed for the Architectural and System Model design level. The tools

follow the conceptual approach described above.

2.3.1 AIDE - ArchItecture Design Environment

AIDE is a modelling and simulation system designed to support the

development of computer architectures. The system is optimized for

the modelling and evaluation of computer hardware architectures

(ELLE81]. The area of applicability of AIDE ranges from the system

architecture level to the micro-architecture (internal hardware

organization) level.

The AIDE system consists of three components (shown in Figure

2.1):

(1) the Language Environment,

(2) the Runtime Environment, and

(3) the User Interface.

The language environment allows the user to define models for the

computer system in the form of behavioural modules; each module

contains a set of functions connected to the outside world by a set of

inputs and outputs. The path of interaction between the modules is

defined by an interconnection structure which links the outputs of

modules to the inputs of other modules. Thus an AIDE model requires

the use of two languages: a behaviour description language and an

interconnection description language.

14

Behavioural

Language

CCompile

-

Interconnection

Language

	DCompile

1

1

1

Figure 2.1

AIDE Components

Link

Runtime Environment

User Interface

I I

The runtime support package provides the mechanisms needed to

allow concurrent behavioural execution, manage system resources and

support performance evaluation.

Simulation control is linked to the user interface, where the

user interactively issues execution commands. These commands allow

the user to examine aspects like performance analysis in addition to

rudimentary tasks (stop, go, store results in a file for later

processing, etc.).

A description of the- above three components is detailed in the

following.

(1) The Language Environment

As mentioned earlier, the AIDE model requires the use of two

languages: a Behaviour Description Language (BDL) and an

Interconnection Description Language (IDL). The BDL in AIDE is an

extension of the C programming language in two areas. 	The first

involves "modularization" •of model descriptions. 	The second

involves the support of additional data types and constructs

model concurrent and asynchronous functions. The description of

each module begins with the type name of the module, followed by

declarations of all inputs and all outputs. 	These declarations

act as interface ports to other behaviour modules.

As an option, a module may contain "state" variables which are

global to all the code within the module, but are not accessible

from outside the module. Examples of these state variables

include memory arrays, registers and state variables.

1

The module body follows the input/output port and state

declarations. It contains the code which specifies the behaviour

of the module in terms of a set of constituent processes.

Processes within the same module share a common scope and can

interact with each other directly. For inter-module process

interaction, a process is always attached to one or more input

ports of the module in which it is defined. The interconnection

language links ports together and defines the interaction path

between the respective processes.

The AIDE Interconnection Design Language (IDL) allows the

description of single entities called "macros". A macro is

externally identical to a behaviour module but contains no

behaviour code. Instead, a macro acts as a shell that identifies

a logically unique subsystem which consists of a number of

modules. Once defined, a macro may be used either as a complete

system or as a "module" in some other system.

Typically, a macro is first compiled as a system and is

evaluated separately. After testing, the macro may be recompiled

as a component for subsequent use in layered systems. The macro

approach has several advantages:

i. Components containing complex functionality can be built and

tested piecemeal. 	Design synthesis is facilitated through

this button-up approach.

ii. Each component may be placed in a library containing other

modules or macros and recalled for later design. 	As the

library grows, the work involved for new developments

shrinks.

17

iii. The macro approach also aids the top—down design process by

providing consistent interfaces within a model undergoing

refinement.

j .

(2) The Runtime Support Package

The organization of the runtime support package in AIDE is

shown in Figure 2.2. The model developed in the language

environment is first compiled and then linked with the runtime

support package. The resultant executable load module is called a

"simulation model". The runtime simulation support for the model

consists of four components:

i. Scheduler: The AIDE Scheduler fields events generated during

simulations, schedules and executes them at the proper time.

The events are scheduled with respect to a global system

clock. Most of these events are generated by the model.

However, the scheduler also handles special control events

initiated by the user.

ii. Memory Monitor: This component contains software memory

management routines so that a user need only declare memory

in his model using the state variable declaration. The

simulated memory manager uses a software paging scheme to

create a file for each paged memory declared in the user's

model.

iii. Performance Monitor: Users are allowed toconstruct commands

meaningful to their application from several AIDE native

commands. 	User commands can create triggers during

simulation to detect conditions on monitored variables. When

18

one in a list of triggers fires, a specified command list is

executed. The performance monitor also provides a mechanism

for recording and manipulating performance information.

iv. The Command Interpreter: The 	command 	interpreter

communicates with the user interface by sending and receiving

messages. It thus provides a central point of control and

access to the simulation model.

(3) The User Interface

The main purpose of the user interface is ta provide a

friendly environment for the user to control and evaluate a

simulation. It communicates with the command interpreter when

requesting some runtime action. User commands include sequencing

commands (go, 'halt, etc.), query commands regarding the status of

the simulation, and other commands to load and display model

variables and simulated memory locations.

2.3.2 N,mPc Design Environment

N.mPc is an interactive environment for the design and evaluation

of multiprocessor systems ([PARK79a], [ROSE79], [PARK79b], [ORDY79]),

developed and implemented at Case Western Reserve University. It

contains six separate components which work together to produce

function, register transfer level simulations of multiple processor,

heterogeneous target systems.

Figure 2.3 presents a simplified system block diagram of the

N.mPc system Components. The "meta assembler" allows the designer to

specify the details of the target instruction set in a format which is

1 9

Figure 2.2

AIDE Runtime Environment

Scheduler

Simulated

Memory
Manager

Model

Command

Interpreter

User Interface

Performance
Monitor

20

machine independent. 	The "linking loader" resolves the machine

dependent aspects of metamicro assembler description output and

allocates the resulting code to physical memory according to user

selected memory allocation strategy. The linking loader generates a

"simulated memory processor".

The 	ISP Compiler is used to 	translate processor and

interconnection element descriptions,, defined using a hardware

description language, into executable modules. These modules are

linked with the target system topology description by the "Ecologist"

component which generates the "simulation model program". The

simulation model program, also known as the 'kernel', runs under the

control of a "Runtime Package". The Runtime Package consists of a

Command Interpreter, the Kernel and the Simulated Memory Manager. The

Kernel and Command Interpreter provide the user with interactive

control and monitoring of simulations. 	The Simulated Memory Manager

supervises memory content to optimize the performance of 	the

simulation.

A brief description of the six components of the N.mPc system is

provided in the following:

(1) MetaMicro Assembler

. 	The assembler contains a set of facilities for both vertically

and horizontally organized target architectures. 	The facilities

include the following main sections:

- A declaration section to describe the structure and semantics of

the target machine.

21

ISP

Compiler

Target

System

Topology

Ecologist

ISP

Sour ce

Simulations

Output

User

Commands

MetaMicro

Source

MetaMicro

Assembler

Figure 2.3

Main Components of the N.mPc System

)101 	
RUNTIME PACKAGE

• Simulation Program
• Command Interpreter
. Simulated Memory Manager

Memory
List

Machine

Descriptions

Linking

Loader

Simula ted

 Memory
Processor

22

- An instruction section to assemble the source program

instructions.

- A register transfer notation section to provide a source

instruction format using register transfer notation and "opcode-

operand" notation.

- An allocation control section to provide information to the

linking loader concerning absolute address and contiguous code

requirements.

In addition, the assembler contains facilities to handle

variable length instructions, predefined source text inclusion,

external/internal interface functions and illegal opcode checking.

(2) Linking Loader

The linking loader accepts the output of the metamicro

assembler along wih a "command" program which defines the physical

memory constraints and the semantics of the target machine. These

semantics include an instruction and format declaration section,

the addressing modes of the target processor, and a set of rules

for allocating physical memory spaces according to one of four

user specified algorithns.

(3) ISP Compiler

A register transfer language, ISP, is used to describe the

hardware modules along .with a compiler which converts ISP module

description into executable code. ISP allows the descriptions of

multiple processor/module architectures through the use of "PORT"

constructs which interface the module.to the external environment.

Synchronization between the modules can be achieved by a 'WAIT'

2 3

construct. 	Events within a processor may be separated in time by

the use of a "DELAY" construct which specifies the execution or

delay time associated with the previous register transfer

statement.

(3) Ecologist

The Ecologist generates an executable program for the

simulation of the desired target architecture. It accepts as

input the compiled ISP modules for each of the hardware components

of the target system and connects the specified hardware ports.

To do so, the ecologist must obtain as input the specified

topology of the target architecture. The topology is described in

the form of a series of declarations:

- Signal Declarations: define control lines and data buses

- Processor Declarations: create an instance of a processor which

can be referred to by name at runtime

- Time Delay Declarations: 	define the time unit to be used with

the DELAY statement

- Connection Declarations: 	connect the PORTS of an ISP processor

to signals defined in the signal declarations

- Initial Declarations: 	bind an ISP processor memory to either a

linking loader output file or to a UNIX (operating system) file

or device.

24

(5) Simulated Memory Processor

The Simulated Memory Processor prepares memory files for use

by the Runtime Package. All linking loader output files needed by

the simulation are converted from the packed format produced by

the linking loader to the segmented or paged format required by

the simulation program. The Simulated Memory Processor also

creates a memory symbol table file containing the names of the

memory files available to the simulation.

(6) Runtime Package

The Runtime Package consists of three Components:

- the simulation model (kernel) generated by the EcOlogist.

7. the Siàulated Memory Manager (with input from the simuiated

memory processor)

-.- a runtime command interpreter . connected to the user interface.'

• The simulation kernel performs ISP process scheduling and data

manipulation functions required for the execution of the

simulation. The kernel also manages monitor functions used for

automatic collection of simulation data.

Simulated memories are handled by the Simulated Memory

Manager. Up to 128K bytes of simulated memory may reside in the

main memory of the supporting computer (PDP11).

The runtime command interpreter handles the interface between

the simulation user and the simulation tool itself. The

interpreter , accepts commands from the user to examine or modify

simulation states, control the execution, set execution

breakpoints and collect data from a running simulation.

2 5

component's behaviour. 	SABLE then analyzes the structure the

2.3.3 SABLE: A Tool for Generating Structured Multi-level Simulations

SABLE's approach is similar to that of other simulation languages

at the architectural level in that it uses a structure specifications

language to specify the nesting.and interconnectivity of components,

and a general Purpose algorithmic - language to describe each

1
1

1
1
1

system and connects the appropriate behavioural descriptions

accordingly [HILL79a], [HILL79b].

The concept of components operating at various data levels is

central to the top-down design methodology adopted in SABLE, which

encourages simulation prior to detailed design. Like other design

automation tools, SABLE models a computer system as a collection

components interconnected by nets. Bach component is an instance of a

particular component type, abbreviated comptype, such as "nand-gate"

or "controller". The structure of the component is described using a

• language called ADLIB.

When developing a new system, the SABLE user can start at the

topmost nesting level of his design and decompose it into a few

interconnected components. He then specifies the desired behaviour of

each component by writing an ADLIB comptype. He runs SABLE and uses

the resulting simulation to evaluate overall configuration and

performance. Gradually, the components are decomposed into smaller

functional blocks, which may now include both hardware and software

units. The behaviour of each is again specified in ADLIB. The

decomposition and refinement of components is recursive as described

earlier.

26

1

27

The design at each point can be evaluated by checking if the

simulated behaviour of the refined design matches that of the higher

level component that it was supposed to implement. Errors in the

refined design can be easily identified if any mismatch is found.

SABLE has been implemented on a DECSYSTEM-20 using about 5000

lines of PASCAL. The support software consists of three parts: the

ADLIB precompiler, the runtime support code, and the SABLE module

itself, which also contains a simple SDL compiler. In order to use

the system, a user must provide an ADLIB and an SDL source file,

though the SDL file may be generated with an interactive graphic

structure editor.

The user• first runs the ADLIB precompiler, which parses the

program and produces several files. These include a simple database

that reflects all the external attributes of each comptype, ie. its

name, nets and parameters. If no ADLIB syntax or semantic errors were

detected, the precompiler generates a valid PASCAL program using the

ADLIB source and the runtime support code. The user then runs SABLE,

which compiles his SDL source and generates a topology file and a

parameter file. The standard PASCAL compiler is then used to compile

the reformatted ADLIB program, and simulation begins. 	During the

start of simulation,. part of the runtime support code uses the

topology file to interconnect and activate the desired selection of

 components.

2.4 Register Transfer Level Simulation Tools

The Register Transfer Level is concerned with realizing the functional

specifications by sequences of operations. If we consider a digital system

as a large finite state machine, then the purpose of register-transfer

level design is to establish the various states in which the system may

find itself, as well as the particular actions to be taken when the system

is in a given state.

The register level is one at which most computer hardware description

languages are used. As in the architectural and system model level,

hardware design languages tend to fall into one of two categories:

Behaviour Description Languages and Structure Description Languages.

Hardware design languages in both categories have been used

extensively over the past decade and are well documented in the open

literature. In view of the availability of excellent surveys covering this

level of design, the discussion of this section will not be extended beyond

the references to relevant publications.

An excellent survey of all major computer hardware description

languages can be found in [SU74]. 	A bibliography on the subject can be

found in [VANC76], [VANC77], [VANC78]. Finally, a survey of the

applications of different hardware , design languages can be found in

[VANC79].

Several multiprocessor systems development tools that are available

commercially fall into the register transfer simulation category of tools.

Typically these tools are developed for specific microprocessor (eg. Intel

8086 or Zilog Z80/CPM) and allow the designer to simulate the target code

28

for the processor on a host machine (eg. PDP11/45) to check its correctness

and rectify any errors. As well, tools such as in—circuit emulators are

usually provided to allow the user to perform on—line debugging and testing

of the code prior to the field testing stage.

2 9

3.0 Summary and Conclusions

A survey of CAE tools for multiprocessor design has been presented.

The survey identified six specification and design phases for the purpose

of identifying the utility and applications of the various available tools.

These phases are:

(1) the Requirements Specification phase,

(2) the Functional Components Definition phase,

(3) the Architectural Design phase,

(4) the System Model (Hardware/Software trade-off) phase,

(5) the Processing Element Partitioning (Register Transfer

Level) phase, and

(6) the Logic Design (Hardware) phase.

The survey presented covered existing tools for the first five design

and specification phases. It was pointed out that the lowest level (Logic

Design) is related to the technOlogy used (eg. PCB/IC, VLSI, etc.) and is

beyond the scope of this survey.

Many of the tools surveyed do not necessarily fall exclusively within

the boundaries of one design level. In fact, tools that are based on a

top-down design methodology tend to span the boundaries of several design

levels and can thus be used iteratively throughout several design phases.

The general concept underlying the top-down design approach can be

summarized as follows:

30

- Following the requirements specification phase, the main functional

components of the system are defined. 	Each component is described in

terms of its external interfaces and the basic functions it performs.

- Each component

subcomponents.

same external

subcomponent is

can then be treated separately and divided into

Collectively, these subcomponents must maintain the

interfaces of the parent component. Again, each

described in ternis of its external interfaces.

- The process of decomposition can be applied iteratively to the

subcomponents until they are refined into the simplest possible

(elementary) components.

- A validity check is applied at each decomposition step to ensure its

completeness among the subcomponents (the output/input of each

subcomponent is either an input/output to another subcomponent or is

an output/input of the parent component). The validity check is also

applied to ensure the consistency of the decomposition process.

The above four steps constitute the design specification path (the

top-down direction). The dual process, called the design synthesis, takes

place in the opposite direction (bottom-up) and follows the design

specification process. Design synthesis starts with the most refined

(elementary) components and assembles the pieces to form high level

components. The synthesis continues until the main components are formed.

The survey presented here indicated the availability of many design

simulation tools which satisfy different design needs, depending on the

design level (or levels) for which it is developed. 	Unfortunately, no one

simulator, is useful throughout all specification and design phases. 	This

31

multiple simulator approach outlined in the survey has two advantages and

several disadvantages. The advantages are:

1. Each simulation can be written in a language tuned for one particular

level, and

2. Each simulation tool can optimize its runtime organization for one

particular task.

The disadvantages include the following:

1. The design effort is multiplied by the necessity of learning several

simulator systems and writing a design in each.

2. The possibility of error is increased as more human manipulation

is involved.

3. As the design becomes increasingly, fragmented, it becomes impossible

to simulate an entire multiprocessor system at a low level of

abstraction. 	Therefore only small fragments can be simulated at any

one time.

4. Each fragment needs to be driven by a supply of realistic data and its

output must be interpreted. 	This may make the sofware written to

serve these needs extremely costly.

Several tools have been developed to overcome the above difficulties

and provide the designer with a uniform simulation approach starting at the

architecture design level and going down to the register transfer

simulation level. 	Examples of these tools are the AIDE package (Bell

Laboratories) and SABLE (Stanford University). 	The utility of these tools

can be improved substantially by augmenting them with a high level

32

specification package which allows the designer to describe the functional

components of the system being designed and to interface this high level

description to existing tools at the architectural level. In addition, two

design aspects must be addressed in augmenting existing tools:

1. Redundancy and fault-tolerance characteristics analysis must be

provided at the architectural levels if the tools are to be useful in

the design of spacecraft (or avionics) multiprocessor systems.

2. The high level specification language must contain mechanisms for

system verification. As the design process 	continues, 	these

mechanisms will evolve naturally towards validation and verification

of the software.

The issue. of augmenting existing tools to generate an integrated set

of multiProcessor design and simulation tools is addressed in a separate

study report (Report #3, referenced in the preface of this report).

33

4.0 References

[ALF077] M. Alford, "A Requirement Engineering Methodology for Real-Time
Processing Requirements", IEEE Transactions on Software Engi-

neering, SE-3, pp. 60-69 (1977).

[DAHL76] 0.J. • Dahl and K. Nyggard, "SIMULA: 	An Algol based Simulation
Language", Communications of the the ACM, Vol. 9, September 1976.

[DAVI77] C. Davis and C. Vick, "The Software Development System", IEEE
Transactions on Software Engineering, SE-3, pp. 69-84, (1977).

[DAVI79a] A. Davis and T. Rauscher, "Formal Techniques and Automatic Pro-
cessing to Ensure Correctness in Requirements Specifications",
IEEE Conference on Specifications of Reliable Software, Cam-
bridge, Massachusetts, pp. 15-35, (1979).

[DAVI79b] A. Davis, et al, "RLP - An Automated Tool for the Automatic
Processing of Requirements", Proceedings of COMPSAC 79, Chicago,
Illinois, pp. 289-299, (1979).

[EBER80] C. 	Eberhard, 	presentation on "IORL" and panel discussion
"Software Requirements Engineering", NCC 80, May 1980, Anaheim,
California.

[ELLE81] D.J. Ellenberger and Y.W. Ng, 'AIDE - A tool for Computer Archi-
tecture Design", 18th Design Automation Conference (IEEE), pp.
796-803, 1981.

[GENE73] "General Purpose Simulation System/360 User's Manual", Form 1120-
0326, IBM Corp., White Plains, N.Y., 1973.

[HILL79a] D. Hill and W. VanCleemput, "SABLE: A Tool for. Generating Struc-
tured Multi-level Simulation", Design Automation Conference,

1979, pp. 272-279.

[HILL79b] D. Hill, "ADLIB - SABLE iJsers Guide", Computer Systems Lab Tech

Report, Stanford University, Stanford, 1979.

[LIPK80] S. Lipka, "Software Requirements Engineering: A ToorDevelopers
View on AUTOIDEF", NCC 80, May 1980, Anaheim, California.

[ORDY79] G.M. Ordy and F.I. Parke, "An Evaluation of the N.mPc.• Design

System", Proceedings 16th Design Automation Conference, pp. 537-
541, June 1979.

[PARK79a] F.J. Park, "An Introduction to the N.mPc.' Design Environment",

Design Automation ConferenCe, pp. 513-519, June 1979. -

[PARK79b] F.J. Park et al, "The N.mPc. Runtime Environment", Proceedings
16th Design Automation Conference, June . 1979, pp. 529-536.

[ROHM77] J. Rohmer, "SSH Simulator for Hierarchical Systems", Proceedings

10th Annual Simulation Symposium, pp. 109-127,1977,

34

•

1
1
1

1

[ROMA79] J. Romanos, "The Software Design Processor", Proceedings

COMPSAC 79, Chicago, Illinois, pp. 380-383(1979).

[ROSE79] C.W. Rose, et al, "The N.mPc. System Description Facility",

Proceedings 16th Design Automation Conference, June 1979, pp.

520-528.

[ROSS77] D. Ross and K.E. Shoman, Jr., "Structured• Analysis for Require-

ments Definition", IEEE Transactions on Software Engineering, SE-

3, pp. 6-15 (1977).

[SU74] 	S. Su, "A Survey of Computer Hardware Description Languages.in

the U.S.A.", IEEE Computer, Vol. 7, No. 12 § pp. 45-51, December

1974.

[TEIC77] D. Teichroew and E.A. Hershey, "PSL/PSA: 	A Computer-Aided

Technique for Structured Documentation and Analysis of Informa-

tion Processing Systems", IEEE Transactions on Software Engi-

neering, SE-3, pp. 41-48 (1977).

[VANC76] W.M. vanCleemput, "Computer-Aided Design of Digital Systems: a

Bibliography", Woodland Hills, Cal.: Computer Science Press,

1976.

[VANC77a] W.M. vanCleemput, "Computer-Aided Design of Digital Systems: a

Bibliography, volume 2: 1975-76", Woodland Hills, Cal.:

Computer Science Press, 1977.

[VANC77b] W.M. vanCleemput, "A Hierarchical Language for the Structural

Description of Digital Systems", 	Proceedings 14th> Design

- 'Automation Conference, New Orleans, June 1977,- pp. 378-385.

1VANC78] W.N.' 	vanCleemput, "Computer-Aided Design of Digital SyStems': a

Bibliography, 	volume 3: 	1976-1977", Woodland -Hills, Cal.:

Computer Science Press, 1978.

1

35

1
Intellitech Canada Ltd

352 Mac_aren Street,

Ottawa. Ontario

 K2P0M6
(613)235-5126

ir

