
11.1117pue

91
C655
C6661
1982

The Definition and Specification

of an Integrated Set

of CAE Tools for

pacecraft Multiprocessor System Design

I'll 111111 M 	_. _
i

P
91
C655
C6661
19821

The Definition and Specification
of an Integrated Set

of CAE Tools for
Spacecraft Multiprocessor System Design

1.---Theru-s-Ïr-n,7'6:4-n"-ae
, 	Librarv Queen,

Industrie Canada
. Bibliothèque Queen

Report No. INT-82-16

March 1982

. 	J.P.Ig 9 11 lqq11 JuiL 9 0 1998
JUL

rem.:

Authors: Dr. C. Laferriere
Mr. W.T. Brown
Mr. J.G. Ouimet
Dr. S.A. Mahmoud

Approved by: Dr.S.A. Mahmoud

1
gn

baeun

1.nrikriffi
-.unurItquE

•

I I+ government Gouvernement

1

1
1

1

Der:hareem of Communications

DOC CONTRACTOR REPORT . 	DOC-CR-SP-82-046

DEPARTMENT OF COMMUNICATIONS - OTTAWA r CANADA . • .

SPACEPROGRAM 	. ". 	• 	.

TITLE:/ifile Definition And Specification Of An Integrated Set

• Of CAE Tools For Spacecraft Multiprocessor System Design"

AUTHOR(S): C. Laferriere

W. Brown

• , 	J. Ouimet '

• S.A. Mahmoud
«

ISSUED BY CONTRACTOR AS REPORT NO: INT-82-16

PREPARED BY: Intellitech Canada Ltd.

352 MacLaren St.

Ottawa, Ontario 	"

K2P 0M6

•DEPARTMENT OF SUPPLY AND SERVICES CONTRACT NO: 3ER.36100-1-0273

SN: OER81-03151

DOC-SCIENTIFIC AUTHORITY: R.A. Millar

CLASSIFICATION: Unclassified

This report presents the views of the author(s). Publication
of this report does not constitute DOC approval of the reports
•findings or conclusions. This report is available outside the
department by special arrangement.

DATE: March 1982

Preface

This work was performed for the Department of Communications,

Communications Research - Centre .under DSS Contract• No. OER81-0315 1

entitled "Computer-Aided Engineering Tools for Spacecraft Multi-

MicroprocesSor Design", from September 15, 1981 to March 31, 1982.

-This report is one of the following four contract deliverables:

1 0 	Executive Summary

2. Report #1 - Review of Multiprocessor Systems

and their Spacecraft Applications.

3. Report #2 - A Survey of Computer-Aided

Engineering (CAE) Tools for the Design and

Simulation of Multiprocessor Systems.

4.• Report #3 - The Definition and Specification

of an Integrated Set of CAE Tools for

Spacecraft Multiprocessor System Design.

•MP.

Acknowled,gement

The study team gratefully acknowledges the technical guidance

of Mr. R.A. Millar of the Communications Research Centre. His

knowledge and experience in the field of computer simulation of

spacecraft systems have contributed to the quality of the work and

provided a constant source of encouragement to the study team.

s well, the study team wishes to thank Mr. J.M. Savoie, also

from CRC, for his fruitful discussions and critical reviews.

Table of Contents

Page

I 	

Preface 	
Acknowledgement 	

i
ii

Table of Contents 	iii

I 	

List of Figures 	
List of Tables 	

v
vii

	

1. 	Introduction 	1

II 1.1 Scope and Definition of Multiprocessors 	5
1.2 Structure of the Report 	7

I 2. 	Proposed Methodology 	9

I 	

2.1 Scope of Existing Tools 	
2.2 Toward an Integrated Set of 	

10

CAE Design Tools 	13
2.3 Approaches for Modelling Functional

I Component Description 	14

	

• 	Specification/Validation 	21

II 	3.1 Introduction 	21
3.1.1 Problem Definition 	21

I 	

3.1.2 Spacecraft Environment 	
3.1.3 Design Philosophy 	

23
26

3.1.4 Overview of the Section 	28

3.2 Specification/Decomposition 	29
3.2.1 High Level Specification 	29
3.2.2 Methods of Decomposition 	30
3.2.3 Formalizing the Specification/

Decomposition Process 	34
3.2.4 Ada as a Specification Tool 	36
3.2.5 A Decomposition Example 	44

3.2.5.1 Various decomposition levels 	45
3.2.5.2 Observations on the model 	62
3.2.5.3 System simulation and testing 	69
3.2.5.4 Computer aided tools and the

specification process 	74

3.3 Validation of Specifications 	76
3.3.1 Validation 	76
3.3 2 Testing 	80
3.3.3 Verification 	83
3.3.4 Automated Verification Systems 	96
3.3.5 Proposed Validation Capabilities 	107

3.4 Summary and Conclusions 	112

1 -

1

1
1
1
1
1

4. 	Performance and Reliability 	115

4.1 Introduction 	115
4.2 Scope of CAE Tools in the Performance Area 	116

4.2.1 Architecture Selection 	117
4.2.2 System Model (Hardware and Software

Selection) 	118

4.3 Reliability Models 	122
4.3.1 Component Reliability Model 	122
4.3.2 Exhaustion of Spares Model 	123
4.3.3 Imperfect Coverage Model 	126

4.4 Resource Usage Models 	127
4.4.1 Simple Totals Model 	128
4.4.2 Effects of Allocation Model 	129
4.4.3 Effects of Dynamic Interaction Model 	131

138
4.5.2.1 Hardware Reliability Analysis

I
Tool 	138

4.5.2.2 Static Resource Usage Analysis

Tool 	140

I 	

4.5.2.3 Dynbamic Resource Usage Analysis
Tool 	141

I
4.6 Summary 	142

	

5. 	Integration with Existing Tools 	156
5.1 Introduction 	 156

III 	
5.2 Transition Between Different Tools 	 157
5.3 Sélection of Existing Tools 	159

I 	

6. 	Summary and Further Work 	
6.1 Summary 	

166
166

6.2 Further Work 	171

References 	.173

4.5 Areas for New or Improved CAE Tools 	134
4.5.1 Architecture Independent CAE Tools 	135

I 	
4.5.1.1 Ada Based General Purpose

Simulation Language 	135
4.5.1.2 Exhaustion of Spares 	 .

Il
Analysis Tool 	136

4.5.1.3 Imperfect Coverage • Analysis

Tool 	136

II 	

4.5.1.4 General Reliability Analysis
Tool 	136

4.5.1.5 Resource Allocation Analysis
Tool 	137

II 4.5.2 Architecture Dependent CAE Tools

1

iv -

I I

• 1

1

List of Figures

Page

Figure 2.1 	Mùltiprocessor Specifications/Design

Levels and Corresponding CAE Tools 	17

Figure 2.2 	Design Phases Using an Integrated

Set of CAE Tools 	18

Figure 2.3 	Functional Decomposition in a
Top-down Approach 	19

Figure 2.4 	Example of a Data Flow Model 	20

Figure 3.1 	A Spacecraft Control System 	24

Figure 3.2 	Hierarchy of Machines and Programs 	26

Figure 3.3 	Machine Equivalence ' 	 27

Figure 3.4 	Tree Structure Resulting from
Functional Decomposition 	30

Figure 3.5 	Dataflow Example 	32

Figure 3.6 	Result of the Mixed Approach 	33

Figure 3.7 	An Ada Package 	37

Figure 3.8 	An Ada RendezVous 	38

Figure 3.9 	Basic Structure of a Specification Block 	41

Figure 3.10 	Device Servicing in Ada 	43

Figure 3.11 	Description of the Example 	44

Figure 3.12 	A First Attempt at Decomposition 	46

Figure 3.13 	Data Flow Graph 	47

Figure 3.14 	Definition of Various Commands 	48

Figure 3.15 	Functional Decomposition
(at various stages) 	52

Figure 3.16 	System Représentation with Ada
Building Blocks 	53

Figure 3.17 	Ada RendezVous and Passing of Control... 56

Figure 3.18 	CommandStringInterpreter 	. 59

Figure 3.19 	Expansion of a Separate Procedure 	60

Figure 3.20 	Description of the Reset Module 	61

Figure 3.21 	Procedure Call Arrangements in Ada 	64

Figure 3.22 	Representation of an Input Module 	67

Figure 3.23 	System Model and TestBed 	69

Figure 3.24 	Device Simulation Module 	70

-

Figure 3.25 	Simulation and Testing Package 	71

Figure 3.26 	Example of Transformation 	76

Figure 3.27 	Validation of the Design Process 	77

Figure 3.28 	Skeleton of a Program Control Structure 	81

Figure 3.29 	A Program's Domain and Range 	81

Figure 3.30 	Paths and Assertions 	85

Figure 3.31 	Simple Loop Example 	88

Figure 3.32 	Subprogram for Simple Division 	91

Figure 3.33 	Subprogram with Assertions 	91

Figure 3.34 	Design and Verification of Programs 	97

Figure 3.35 	Procedure InsertSorted 	99

Figure 3.36 	Verification Condition 15 	102

Figure 3.37 	Gypsy Verification Environment 	104

Figure 3.38 	Description of the HDM System 	105

Figure 3.39 	An Ideal System 	107

Figure 3.40 	Proposed Interim Verification System 	110

Figure 4.1 	Performance/Reliability Design
Methodology 	145

Figure 4.2 	Hardware Performance Design
Methodology Example 	146

Figure 4.3 	Resource Usage Design Methodology 	147

•Figure 4.4 	Example Simple Totals Model 	148

Figure 4.5 	Example Access Graph 	149

Figure 4.6a 	Example Effects of Loading Model 	150

Figure 4.6b 	Example Effects of Loading Model 	151

Figure 4.6c 	Example Effects of Allocation Model 	152

Figure 4.7a 	Hardware Reliability Analysis

Tool Example 	153

Figure 4.7b 	Hardware Reliability Analysis
Tool Example 	154

Figure 4.7c 	Hardware Reliability Analysis
Tool Example 	155

- vi -

1 List of , Tables

• Page

	

Table 5.1 	Existing Tool Functional Characteristics 	163

	

I Table 5.2 	Existing Tools Implementation
Characteristics 	164

	

I Table 5.3 	Existing Tools Selection Evaluation 	165

- vii

1.0 	Introduction

Interest in multiprocessor and distributed intelligence

computer systems have increased dramatically in recent

years. 	This interest has been fostered by the availability

of micro-processors with ever increasing performance-price

ratios and the expected emergence of monolithic systems with

still higher capabilities in the near future.

Advances in LSI and VLSI semi-conductor technology

have significantly reduced computer hardware weight, power

consumption and cost. It is now feasible and practical to

employ multi-processor systems on spacecraft in order to in-

crease the reliability, extend mission duration and satisfy

increasingly more computational demand during the mission.

The development 	of multiprocessor and distributed

intelligence computer systems and their utilization in

various applications have been impeded by the lack of

an appropriate theoretical base. 	The control of systems

containing 	large 	number 	of 	processors 	is 	not 	well

understood. While considerable work has been done recently

to develop a theoretical base, it seems unlikely that this

work will have significant impact on practical system design

in the near future. As a result, multiprocessor system

designers have turned to the use of CAE tools for the

1

the development of such systems. Such CAE tools are used, in

general, to support the skill level of the designer, provide

insight into the attributes of alternative architectures,

allow evaluation of these architectures and support the

development, simulation and testing of actual multiprocessor

systems.

More specifically, computer-aided engineering tools are

required to simulate alternate hardware configurations,

evaluate the software implications on selecting a particular

hardware configuration, perform required hardware-software

tradeoffs, establish that the specified hardware and software

are compatible and that overall system performance require-

ments are met. All of these must be done at an early stage

in the design process, before the software is coded and the

hardware is constructed.

In the absence of such computer-aided engineering tools,

it is difficult for the designer to assess and evaluate

system performance adequately before constructing a

breadboard prototype, developing its software, and testing

the resulting system. At this late stage in thel design

process, discovered inadequacies and inconsistencies are

expensive and time-consuming to correct and often require

significant redesign. With the appropriate CAE tools, the

chances of this happening at such a late stage in the design

process are minimized.

1

1

-3-

In an accompanying report [MAHM82], a survey which

examined existing CAE tools for multi-processor design has

been presented. The survey identified six specification and

design phases for the purpose of identifying the utility and

applications of the various available tools. These phases

are:

1. The Requirements Specification phase,

2. The Functional Components Definition phase,

3. The Architectural Design phase,

4. The System Model phase,

5. The Processing Element Partitioning

(Register Transfer Level) phase, and

6. The Logic Design (hardware) phase.

The survey indicated the availability of many design

simulation tools which satisfy different design needs, de-

pending on the design level (or levels) for which it is

developed. Unfortunately, no one simulator was found to be

useful throughout all specification and design phases. This

multiple simulator approach outlined in the survey has two

advantages and several disadvantages. The advantages are:

1. Each simulation can be written in a language

tuned for one particular level, and

2. Each simulation tool can optimize its runtime

organization for one particular task.

The disadvantages include the following:

1. The 	design effort 	is 	multiplied 	by 	the

necessity 	of 	learning 	several 	simulator

systems and writing a design in each.

2. The possibility of error is increased as more

human manipulation is involved.

3. As the design becomes increasingly fragmented,

it becomes impossible to simulate an entire

multiprocessor system at a low level of ab-

straction. Therefore, only small fragments

can be simulated at any one time.

4. Each fragment needs to be driven by a supply

of realistic data and its output must be

interpreted. 	This may make the software

written to serve these needs extremely costly.

Several tools have been developed to overcome the above

difficulties and provide the designer with a uniform simu-

1,ation approach starting at the architecture design level and

going down to the register transfer simulation level. The

utility of these tools can be improved substantially by aug-

menting them with a high level specification package which

allows the designer to describe the functional components of

the system being designed and to interface this high level

description to existing tools at the architectural level. In

addition, two design aspects must be addressed in augmenting

existing tools:

1. Redundancy and fault-tolerance characteristics

analysis must be provided at the architectural

levels if the tools are to be useful in the

design of spacecraft (or avionics) multi-

processor systems.

2. The high level specification language must

contain 'mechanisms for system verification.

As the design process continues, these mecha-

nisms will evolve naturally towards validation

and verification of the software.

The study reported here is concerned with the issue of

augmenting existing tools to generate an integrated set of

multiprocessor design and simulation tools that can be useful

throughout the various phases of the design.

1.1 	Scope and Definition of Multiprocessors

The proliferation of various publications dealing with

• interconnecting microprocessors to form unified systems has

given rise to some ambiguity with respect to the definition

of "multiprocessor systems" and "distributed microprocessor

systems". To avoid such ambiguity, we introduce a definition

•••• 5

for the term "multiprocessors" which will be used-throughout

this report. We also define the "scope of configurations" of

such systems considered to be relevant for spacecraft

applications.

For 	the 	purpose 	of 	this 	report, 	we 	define 	a

multiprocessor system to be [JENS78]:

a multiplicity of microprocessors that are

physically and logically interconnected to

form a single system in which overall

executive control is exercised through the

cooperation of decentralized system elements".

Moreover, we define the scope of multiprocessor systems

considered in this study through the following general

characteristics:

1. The microprocessors forming the system, as

well as all other system elements co-exist in

the same locality (i.e., no telecommunication

lines are used since the elements are not

geographically separated).

2. The microprocessors and other system elements

are interconnected according to one of

alternative structures (uni or multi-bus, a

• loop or ring connection, a matrix switch,

etc.).

3. 	Conceptually, a single executive manages all

of the system's physical and logical resources

in 	an 	integrated 	fashion. The kernel

(control) 	logic 	and 	data 	structures 	are

replicated among a number of processors or

memories.

4. The number of processors to be interconnected

is relatively small (e.g., under 30 pro-

cessors).

5. Redundancy in the hardware is assumed through

the use of identical spares, which along with

other fault •recovery mechanisms constitute

what is known as "fault-tolerant" archi-

tectures.

1.2 	Structure of the Report

The basic methodology adopted for generating an inte-

grated set of CAE tools for multiprocessor systems is

explained in Section 2. It is shown that the underlying

concept is based on a top-down design approach starting from

a high level specification phase.

Section 3 of this report introduces the basic defi-

nitions and specifications of a high level design tool

constructed using ADA as the basic programming language. An

example is provided to illustrate the basic functional

decomposition process. 	The example is based on a hypotheti-

cal application of a multiprocessor system as a controller

for a set of sensors and actuators in a spacecraft.

Section 4 examines the performance evaluation aspects

associated with designing multiprocessor systems for

spacecraft applications. Two performance criteria are

considered: resource utilization and reliability (redundancy

and recovery from failures). The use of CAE tools to assist

in evaluating both criteria is examined.

Section 	5 	investigates 	the 	interfaces 	needed 	to

integrate existing CAE design tools at the architectural and

system model levels with the high level functional specifi-

cation tool described in Section 3. Finally, Section 6

presents a summary of the contents of this report and a set

of recommendations for future work aimed at assimilating an

integrated set of CAE design tools for multi/microprocessors.

«NM 8

2.0 	PropoSed : Methodology

As explained previously, current design practice of

multiprocessors consists of a series of steps which starts by

stating the general requirements and terminates by detailed

hardware and software design, development and testing. A

broad spectrum of tools exists to assist the designer at each

step.

Our survey of existing tools [MAHM81] indicated that

while several design and simulation tools exist to satisfy

different needs, no one simulator is useful throughout all

the specification and design phases. In addition, a gap

exists at the high levels of the design which makes it

difficult to use the output of the tools at the functional

components specification level to generate the input to the

architecture selection stage. This gap will be explained

before introducing the proposed methodology.

In this section, we review briefly the design phases and

the general features of the tools used in each phase. We use

the review to highlight certain deficiencies which exist in

the spectrum of available tools. The review is followed by

an explanation of the concepts underlying the methodology

proposed in this report.

In a general sense, it will be shown that the proposed

methodology is aimed at closing the gap which exists between

the functional component specification phase and the

architecture design phase, and at the same time augmenting

existing tools with mechanisms to evaluate the performance

and the reliability of the system at various design stages.

This will ultimately result in an integrated set of CAE tools

which can be utilized in a consistent fashion throughout the

various design levels.

2.1 	Scope of Existing Tools

Figure 2.1 illustrates the specifications and design

levels of multiprocessor systems (see survey report [MAHM82],

also referenced in the preface of this report). Existing

tools can be classified according to the design level (or

levels) at which the tool is utilized.

At the requirement specification level, tools are used

to define the demands placed upon the system in a complete,

consistent and unambiguous set of statements. The output of

the tools is usually giVen in a machine readable format. The

input can be generated by several authors and the tool is

expected to merge the input from these authors while removing

all redundancies. The output document is used by all design

team . members as a reference for the requirements of the

system.

Design occurs after the requirements phase has been

completed. The first level of the design process consists of

an orderly definition of the main functional components of

the system which satisfy the requirements. This is followed

by further decomposition of the main functional components

into smaller subfunctions, and the process continues until a

system architecture emerges in which a hardware-software

model can be absti.acted and the sub-functions can be mapped

into elements in the model.

• Several tools are currently available for automating the

process of defining the functional components of the system

and for decomposing these components into smaller, less

complex components. The utility of these tools in the design

of multiprocessors is limited by the following factors:

1. the tools lack the ability to describe the

dynamic interaction between the decomposed

functional components. 	Thus aspects such

as concurrency, synchroniiation, 	etc.,

cannot be formally described.

2. The behaviour of the system cannot

described formally using existing tools at

the functional components level. 	The

designer 	is 	forced 	to 	extract 	this

behaviour manually before deciding on a

• suitable architecture. 	This 	informal

extraction is bound to generate errors and

• inconsistencies. 	 •

3. The output of existing tools is not

interfaceable directly to architecture

level procedural simulation languages with

their formal syntax. 	This creates a gap

in the transition to the next lower design

level, i.e., the architecture selection

level.

4. 	Subfunctions and other resources (e.g.,

data structures) that are shared by the

main functions, as well as their access

control structures, cannot be described

easily by existing tools, particularly in•

the dynamic interaction environment of

spacecraft multi/microprocessors.

The above difficulties motivate the development of

tool at the functional component definition level which can

be mutually Integrated with the tools used at the archi-

tecture selection level.

A large number of simulation tools - exist at the archi-

tecture selection level and the levels below it. These tools

can be substantially enhanced with two additional features:

1. The incorporation of formal rules to

• 	

verify the modelled behaviour of each

module and of the entire system.

2. The incorporation of reliability analysis

tools to model and simulate the fault-

. tolerance characteristics of the system.

The development of a formal specification and verifi-

cation tool at the functional component description level,

together with the enhancement of existing tools to handle the

analysis of reliability requirements can be viewed as the

catalyst of the proposed methodology.

2.2 	Toward an Integrated Set of CAE Design Tools

The discussion of Section 2.1 indicated that a "missing

link" exists at present in the set of currently available CAE

design tools for multiprocessors. This "missing link" is at

the functional component description level (see Figure 2.1).

A tool is needed at this level which will be utilized in the

design level between the requirements specification level,

and the system architecture level. The newly developed tool

can be interfaced with existing tools for the requirements

specification and with tools currently used in the simulation

of system architecture.

Figure 2.2 depicts the role of the proposed Functional

Component Specification tool in the multi-phase design

approach. The tool is utilized to translate system require-

ments specification into functional components described

using a high level behavioural description language. As

well, preliminary system architectures can be selected and

evaluated using this tool. The output of this phase will

serve as input to the next phase; namely, the detailed archi-

tecture phase, for which excellent design tools exist at

present.

- 13 -

1

- 14 -

2.3

The main concepts und,erlying the high level functional

description tools are introduced in Section 2.3 with the full

details presented in Section 3. The evaluation tools for

resource utilization performance models and reliability

characteristics models are discussed in Section 4.

Approaches for Modelling Fundtional Component Description

The development of a high level specification tool to

simulate the functional components is based on a modelling

approach which captures the behaviour of its component, its

relationship to other components and the interconnection of

the components to form the entire system. Two alternative

approaches are generally employed for this purpose:

1. A top-down decomposition approach,

2. A data flow model approach.

The general concept underlying the top-down approach can

•be summarized as follows (see Figure 2.3):

each of the main functional components of

the system, defined in the requirements

specification phase, is described in terms

of its external interfaces and the basic

• functions it performs.

each component can then be treated sepa-

rately and divided into subcomponents.

Collectively, these subcomponents must

maintain the same external interfaces of

the parent component. 	Again, each sub-

component is desribed in terms of its

external interfaces.

- the process of 	decomposition can be

applied iteratively to the subcomponents

until they are refined into the simplest

possible (elementary) components.

- a validity check is applied at each

decomposition 	step 	to 	ensure 	the

completeness 	and 	consistency 	of 	the

decomposition.

The top-down design approach •is suitable for the design

of complex systems since it systematically reduces the design

process to simpler components which can be tackled separate-

ly. Its main drawback in the multiprocessor area lies in its

inability to capture the relationship between the various

data structures at different decomposition levels. This is

because many data structures are difficult to decompose in a

hierarchical order.

The data flow model approach represents the system as a•

set of computational modules, sequentially processing a flow

of data. 	The modules form a network with data merging and

branching out. The source of data is a set of input modules

and the terminal is a set of output modules. An example of

data flow Model is depicted in Figure 2.4. This model bears

some relation to many of the features of the spacecraft

processing environment in that the latter consists of input

sources (sensors), output terminals (actuators) and a set of

data processing modules (algorithms). In general, data flow

models are not convenient to use in describing and designing

complex systems.

The development of a high level functional component

description tool (Section 3) is based on a hybrid approach in

which the data flow model is used initially to describe the

behaviour of the system. Each computational module in the

data flow model is regarded as a system component which is

then decomposed in a top-down approach. This hybrid approach

will be shown to combine the advantages of the data flow

model and the top-down decomposition approach.

System

Requirements

System

Functions

•System

Architecture

Hardware/

Software
Relationship

•Functional Level

Simulation

Architectural

• and Model

'Level

Simulation

Processing •

Element
Details

Logic
Design

Requirement

Specifications

Register

Transfer and

Chip Level

Simulation

Figure 2.1 	Multiprocessor Specifications/Design Levels

and Côrresponding CAE Tools

- 17 -

Preliminary
Performance
Evaluation

to

Detailed
Performance
Evaluation

r1n11n1•••n911

(1)

(2)

(3)

System
Requirements

Functional
Component

Description &
Simulation

Preliminary
System
Architecture

Detailed
System

Architecture

...n•n•14

Logic
Design

Hardware/
Software

Simulation

Processing
Element
Details

(4)

_

(1)&(4) - Design phases in
which existing
tools are uti-
lized.

Design phase in which

existing tools are
augmented.

(2) - Design phases for
which new tools are
proposed.

(3) —

Figure 2.2
Design Phases Using an Integrated Set

of CAE Tools

C2 ,2,I C2,2,2 CI,1,1 	C1,1,2 	CI,2,1 	C1,2,2.

Figure 2.3
Functional Decomposition in a Top-down Approach

I CID

IC

I C

I Input Modules

1

\ 	 Ne-
ComputatiOnal Modules 	Output Modules

Figure 2.4
Example of a Data Flow Model

- 20 -

3. 	SPECIFICATION/VALIDATION

3.1 	INTRODUCTION

3.1.1 	Problem Definition

Traditionally, computing systems have been de-

signed by a team of individuals. The design process

was initiated with an effort to determine the

requirements of the system to be built. The term

"requirement" 	takes 	on different interpretation

depending on the background of a given individual in

the design team. 	Hardware and software induced

misunderstandings abound in that early design

phase. Nonetheless, what emerges is a list of items

(often conflicting) depicting in detail what the

system should do, how fast and how often it should

do it and how reliable its performance should be.

The 	next 	phase 	is 	a 	mapping 	of 	the

requirements, usually stated a very informal

fashion, to formal and complete specifications.

This mapping is not trivial and, once done, may

require validation; in other words, going back and

checking that the formally specified system meets

the requirements.

What follows is a series of decomposition or

refinement steps on the original specifications

which are normally at a very high level. Keeping in

mind that specification should lead to imple-

mentation, the high level specifications have to be

translated 	into 	more 	manageable, 	lower 	level

specifications. In this manner, a transition into a

complete software description of 	the intended

behaviour of the system is accomplished. 	At this

point, validation may also be needed.

With the behaviour of the system formally de-

scribed, a partitioning of some functions into

hardware/software or dedicated hardwired controller

can be attempted. 	The necessary guidelines to as-

sist 	in 	this 	process 	are 	obtained 	through

performance analysis and simulation.

A design methodology encompasses all the stages

that have been described, namely: 	requirements,

specification, refinement/decomposition, 	imple-

mentation, and performance analysis. 	This - section

is devoted to describing the high level specifi-

cation 	activities 	and 	the 	ensuing 	series 	of

refinement steps. The output of this process will

be a formal description of the system's behaviour

in a high level language; this description will also

be in a form suitable for further processing by

other levels.

3.1.2 	Spacecraft Environment

A design methodology catering 	to general

purpose environments would be very difficult to

specify precisely. 	This is due •to the multifarious

nature of the tradeoffs involved in system design.

Fortunately, working within a spacecraft environment

allows for some assumptions to be made so as to

restrict the scope of the methodology. The

simplication thus achieved should significantly

reduce the complexity of the methodology, and in

particular , of the - specification/decomposition

process.

A computer system aboard a spacecraft is, by

definition, a dedicated controller. It overseas

most of the current activities and may also be

called upon to perform complicated computations. A

basic representation of such a system is shown in

Figure 3.1 where the input/output characterization

of a spacecraft is illustrated. 	The controller has

the capabilities to perceive the outside world

through its sensors and to influence and to act

CONTROLLER ACTUATORS

===) O

Figure 3.1: A Spacecraft Control System

upon 	the 	physical 	environment 	through 	the

actuators. The attitude of an antenna, for example,

can be sampled by some sensors and the controller

(or computer system) can be made aware of it. Based

upon stored directives or upon remote commands, the

controller may decide to change the orientation of

the antenna. The Actuators, (or servomotors) would

then be used to effect this change on the physical

environment.

There is yet another aspect to be considered:

the real time nature of these actions. It may be

required, for the sake of accuracy perhaps, that the

sampling of the position of the antenna be done

every milisecond. Similar constraints may also

exist on how often and how fast the antenna can be

moved. These observations• lead to the conclusion

that most tasks performed by onboard computer are

periodic. The literature on such systems would seem

to substantiate this view.

The 	set 	of 	requirements 	for 	an 	onboard

controller would reflect the flow of data and its

rate. The sensors would be characterized by an

output data type, and other information such as

average data rate and peak data rate. Similarly for

the actuators, requirements concerning the input

data type, the maximum permissible data rate, the

minimum data rate, etc., would be given. The

control tasks to be performed by the computer can be

described by a transformation of various input types

into some output types, according to some

algorithm. 	Theee functions would also have time

constraints imposed on them to determine their

execution 	speed. 	These 	input, 	output, 	and

processing constraints are easily expressed in a

data flow framework.

3.1.3 	Design Philosophy

As indicated before, the design process is a

translation of informal requirements into formal

specifications, followed by gradual refinement steps

on these specifications. 	This stepwise refinement

approach is analogous a hierarchical system of

machines and programs (as shown in Figure 3.2).

Figure 3.2: Hierarchy of machines and programs

In Figure 3.2, Mi is the highest machine. 	It would

correspond to a machine which would perform all the

system 	functions 	in 	one 	high 	level 	program

instruction. Such a program, Pi, is a trivial

program and is not shown. 	When considering the

problem of designing a complex system, it may be

advantageous to decompose the original design of Mi

into the design of Mi_i and Pi_i. The machine Mi_i

supports the computations performed by Pi_l and is

the computational structure of the system to be

emu.,

 ammo

the computational structure of the system to be

designed. 	The Program Pi_i is the computational

behaviour of the system. 	The fact that Mi_i does

not exist is of no concern; it can always be created

by further decomposing M 1 _1 into Mi_2 and Pi_2.

The methodology presented here, first assumes

the existence of M. It decomposes Mi into Mi_i and

P i_ l. Subsequently, P i-1 is specified using a high

level language and leaving out loger level details.

At that stage, machine Mi_i is assumed to exist. To

proceed further,' M i _ i is decomposed into M1 _2 and

Since all the instructions of P i _i were

directly executable by Mi_l (i.e., were written in

Mi _i's native language), it is easy to see that P i _2

is, in fact, a stepwise refinement on certain

sections of P 1 _1. At that level, the combination of

Pi_i and Pi_2 executing on M 1 _2 still corresponds to

Mi, (as shown in Figure 3.3).

Figure 3.3: Machine equivalence

The methodology calls for this process to be applied

iteratively so that a hierarchy of programs and

machines is created.

The question of when to stop and implement

physically a given machine (or parts of a machine)

is not answered by this level of the methodology.

The goal of the Specification/Decomposition process

is to specify and refine down to a level where other
_

tools 	such as 	performance 	evaluators 	can 	be

applied. 	The results of such tools should help

answer the implementation questions.

3.1.4 	Overview of the Section

This 	section 	comprises 	two 	main 	parts:

specification/decomposition and validation. 	In the

first part, the concept of creating a hierarchy of

programs is covered in details and an example of

specification and decomposition is introduced. The

second part addresses the problem of validation

which was briefly mentioned in the introduction. A

survey of validation techniques and of automated

verification tools constitutes most of the

subsection.

A summary of the section, 	together with

concluding remarks will also be found at the end of

the section.

3.2 	Specification/Decomposition

3.2.1 	High Level Specification

The first step of the methodology involves a

translation of the requirements into very high level

specifications. The nature of this translation

process is not easy to document since it is mostly

accomplished by systems analysts (i.e., humans) and

relies on their intellectual capabilities. Human

intervention 	in 	the 	translation 	process 	may

introduce 	errors 	in 	this 	first 	attempt

specification. 	Substantial research activity has

been generated, notably, [RAMA81] in which a dual

design 	team, 	dual 	specification 	approach 	is

advocated. 	The superiority of their technique has

yet to be firmly established. Requirements

definition has also been studied in [ROSS77a], and

[ROSS77b] in which a structured analysis approach

was proposed.

As mentioned earlier, the first specification

attempt, as well as all others, embodies the

hierarchical concept of machines and programs. It

is important to realize that a machine program

representation is isomorphic to a representation

involving structure and behaviour. The latter type

of representation has been used extensively in

assisting hardware design endeavours [HILL79].

3.2.2 	Methods of Decomposition

Stepwise 	decomposition 	is 	the 	series 	of

activities that will transform the high level

specification into an acceptable implementation.

Although there are several methods to do this, only

two of the most popular techniques will be

described. 	(Also see [BERG81]).

1. 	Functional decomposition

The 	technique 	of 	functional 	decomposition

involves a divide and refine approach. The problem

is first considered as a whole and then divided into

more manageable sub-problems. 	Those sub-problems

can, 	in 	turn, 	be 	decomposed 	using 	the 	same

technique. 	The result is a tree-like structure as •

shown in Figure 3.4.

Figure 3.4: Tree structure resulting from

Functional Decomposition

Functional decomposition, (as described in [DIJK76]

and others), has been in use for a long time, and

lends itself well to hierarchical development of the

type proposed herein. 	The approach is not without

difficulties however. 	One of the major problems

associated with its use is the lack of similarity

among

problem.

independent decompositions 	of 	the 	same

Functional 	decomposition 	requires 	a

concept (e.g., time, dataflow, groups of functions)

with respect to which decomposition will be done.

Lack of uniformity in choosing this concept causes

the discrepancies previously mentioned.

2. 	Data Flow decomposition

An alternative to functional decomposition is

data flow analysis. 	The problem to be solved is

reduced to a flow problem in which afferent*

modules collect various data and transmit these data

to a network of computing modules. Those modules

transform and alter the data and in so doing also

change the flow. The end result, still in a flow

form, is then given to the efferent modules for

interfacing with the application. This method is

described in Figure 3.5.

* In data flow terminology, afferent and efferent
modules are meant to be input and output modules
leading into or away from a network of computing
elements.

- 31 -

%alln•nn•n•nIla1n•n•nnn•••M!MMII.,.,,•MMMIIIIMINMM•n••nnnI•1n•nn•'

Efferent
Modules

Afferent

Modules 	Network of Computational Modules

Figure 3.5: Data flow example

The data flow technique is well documented in

[YOUR75]. It lends itself very well to the dynamic

flow of data model of a spacecraft. It is, however,

unwieldy to use at times, since some problems are

not amenable to this functional decomposition with

respect to data flow.

3. 	A mixed approach

In view of the affinity of the data flow

analysis with the spacecraft design problem, this

method was adopted, at least in the first few

attempts at decomposition. To remedy some of the

data flow analysis 	shortcomings, 	a functional

decomposition method will also be used after the

initial data flow decomposition. Figure 3.6 shows a

hypothetical system decomposition carried out along

those lines.

- 32 -

1

1

1
1

1
1
1
1
1
1
1
1

1

r(r

11n••n•nnnnn•n,e 1 LJ

afferent
modules

efferent
modules

pro•n••nn•ramm.

network of computing modules
subjectèd to further functional

decomposition

Figure 3.6: Result of the mixed approach

It is expected that this mixed approach will be

able to capture the inherent data flow aspect of the

role of an on-board controller and to help in

creating the hierarchy of machines and programs

which is essential to the general methodology. The

mixed approach to decomposition will be used

extensively in an example which will be worked out

in detail in Section 3.2.5.

1 - 33 -

3.2.3 	Formalizing the Specification/Decomposition Process

The specification and decomposition process

requires formalism to establish a common frame of

reference. This goal can be achieved by using

either 	specification 	languages 	Or 	procedural

languages. 	Each option has its own merit and is

adequate in describing the system.

1. 	Specification languages

Specification 	or 	functional 	languages 	are

non-procedural languages, often used for the

purpose 	of 	specifications. 	HISP

(Hierarchically 	Structured 	Specification

Processor) [OKAD80] is such a language. 	HISP

manipulates objects which are represented as:

P = (Q,S,O,E)

where P is an object, Q is a set •of objects,

S is a set of "sorts", 0 is a set of operators

and E is a set of equations. 	In HISP, sorts

are representation of data items relevant

the system. 	HISP also defines operations on

objects 	(creation, construction, 	renaming,

substitution, refinement) which allow a system

to be completely specified. It is also

possible to use a flowchart-like type

approach as formalized in [ROSS77b]. 	Although

not a language as such, this method is, in

fact, a graphical representation of a

functional language.

The advantages of using functional languages

are as follows:

i) their semantics are easy to define,

ii) they 	lend 	themselves 	readily 	to

expressing 	mathematically 	certain

properties of the system. 	(In other

words, 	proofs 	of 	correctness 	are

facilitated.),

iii) they are not encumbered by lower level

details which may detract from precise

specifications.

The major difficulty associated with their use

is that they eventually require translation to

a procedural language like Ada* or Pascal.

*Ada is a trademark of the U.S. Department of
Defense.

- 35 -

2. 	Procedural languages

The major complaint associated with the use of

procedural languages is the presence of lower

level details 'in the specification process.

These details have been minimized to a great

extent in newer languages such as Pascal and

specially Ada. It is now quite feasible to use

the data flow arcs of a high level "mixed

approach" decomposition as basic data

structures and to use procedures 	(either

specified 	or 	stubs) 	to 	represent 	the

functionality 	of 	the 	system. 	Stepwise

refinement 	is, 	of 	course, 	possible 	on

procedures not completely specified.

Using procedural languages for specification

obviates the need for, translation and imposes •a

strict formalism on the description of the

system. It is always possible to introduce a

mathematical model by means of assertions.

3.2.4 	Ada as a specification tool

Ada is a programming language built to the

specifications- of the U.S. Department of Defense.

It is a powerful language [WEGN80] ., [PYLE81],

data types
procedure names

procedure
elaboration

private •data

structure

1

f 1
public
private

private,

subject
to scope
dependent

access
rule

package
specification

package

body

[DOD80], [COMP81] with facilities for data typing,

data and procedure encapsulating, support of con-

currency, etc.

Some of those features are very helpful in

specification/decomposition work:

1. 	Packages

A package is a module encapsulating data

and a set of associated procedures. An Ada

package is shown in Figure 3.7.

Figure 3.7: An Ada Package

A package comprises two parts: 	a specifi -

cation in which the interface to the outside is

defined and a body in which the actual

processing is done. The body does not have to

be completely coded in the early stages of the

design; all is required is a complete specifi-

cation part. The Ada compiler will make the

necessary linking adjustments.

- 37 -

Synchronize

"direction of"

call

2. 	RendezVous

Ada supports concurrency and therefore has

the necessary mechanisms to allow sevèral tasks

to execute in parallel. Concurrently executing

• tasks will often require some means of synchro-

nizing their activities. 	To this end, Ada

provides a RendezVous capability, graphically

• illustrated in Figure 3.8.

task A is

entry Synchronize (---);

end.

task B is

end;

taskbody A is 	taskbody B is

begin 	 begin

accept Synchronize () do 	Synchronize (--);

-- only A executes--

end;

end; •

Figure 3.8: An Ada RendezVous

Task B is the active part in the RendezVous of

Figure 3.8 and it calls task •A. In Ada, tasks

have the same specification and body structure

than packages. In the specification part of a

task, potential RendezVous are listed in the

form of entries. A RendezVous is initiated

when either task B calls the procedure Synchro-

nize or task A accepts it. If task B is first,

it waits until task A accepts the RendezVous.

If the reverse occurs, task A is the one

waiting. 	The actual RendezVous takes place

when both tasks A and B are ready. 	During

RendezVous, the parallel executions of A and B

will be reduced to a Serial execution and at

the end of the RendezVous, both tasks will

resume their parallel execution.

3. 	Separate Compilation Units

There are extensive facilities in Ada for

the support of separate compilation units

Separate compilation is possible for library

units, package bodies and procedure bodies.

Some of the rules governing separate compi-

lation may seem at first a bit intricate, but

this feature is extremely useful when

attempting 	stepwise 	refinement 	during 	the

decomposition phase. 	In 	fact, 	only 	the

procedure 	or 	package 	interface 	need 	be

specified initially. The body of a procedure,

for example, can be left as a stub and refined

later on.

•

When it comes to specifying and applying the

"mixed approach" decomposition to a system, it can

be very advantageous to use Ada as the specification

language. As a procedural language, Ada would

provide the formalism required of such an exercise.

The translation from specification to implementation

would be done in such a way as to result in code

that could very often be of immediate use.

The 	end 	result 	of 	the 	mixed 	approach"

decomposition is a network of computing functions

which 	were 	further 	subjected 	to 	functional

decomposition. 	Despite its powerful features, Ada

cannot be applied directly. 	What is needed is a

construct which would facilitate the specifying of

computing functions while at the same time allow for

the representation of the functional decomposition

process. Such a construct, called a "Specification

Block", is shown in Figure 3.9 and is elaborated on

next.

package body

Specification Block

RendezVous
calls from
outside

1

package Specification
Block

Interface

Data Structure

type definition

TASK

calls 	..

set 	of

procedures

implementing the

functionality
of the block

task

 simulate

Rende zVous
calls to the

outside

normally

used for

data

structure

type

definition

Figure 3.9: Basic Structure of a

Specification Block

A specification block is expressed by means of a

package; 	its 	interface 	is- defined 	in 	the

specification part of the package. Data structure

types are elaborated at that level although similar

results can be achieved in the specification part of

the "Simulate" task.* The package body of the

specification block contains the "simulate" task and

1
* For that reason, the simulation block package will

be usually represented only by the package body.

- 41 -

a set of procedures implementing the functionality

of the system. 	Those procedures, will be the object

of stepwise refinement. 	The "simulate" task ful-

fills two functions:

a) Through the RendezVous mechanism, it is linked

to the data flow network of the decomposition

model. 	The "simulate" tasks is called and

calls other tasks, thereby emulating the flow

of data of the model.

b) The "simulate" tasks embodies the algorithmic

structure of a functional block. This embodi-

ment is the result of the sequence of procedure-

calls the "simulate" task is going through.

Functional refinement ,is made easier when

dealing with such a construct.

The usefulness of the Ada specification block

is not limited to the representation of computing

functions. Even lower level devices can be accommo-

dated by Ada, as shown in Figure 3.10, in which an

interrupt driven device is interfaced to an Ada

module.

Device

acceptance of the call
enables device to be —,
serviced

hardware that

generated entry
call

ale
task X is
entry get (c:in char);

end;

taskbody X is

begin

+accept get (ch);

end

Figure 3.10: Device Servicing in Ada

It can be easily seen that, given a system decompo-

sition, a translation can be made of all the

functional modules to a network of Ada specification

blocks. 	This process, although awkward and tedious

to explain, is relatively straightforward. 	It is

best illustrated by a thorough example of a small

part of a system.

Spacecraft

Antenna
to be
controlled

Ground Station

3.2.5 	A Decomposition Example

In this example, the decomposition process will

be applied to an antenna attitude control module.

The example, Shown in Figure 3.11, consists of a

remote controller for the positioning of a space-

craft antenna. The on-board controller is made

aware of the actual position of the antenna through

sensors so as to implement a closed loop control.

To complement the sensors, a television camera with

digital output is also provided.
TV Camera

Radio Antenna

*Antenna to be moved is
not to be confused with
Radio antenna used to
receive the commands.

Figure 3.11: Description of the example

3.2.5.1 Various decomposition levels

The first attempt at decomposition is shown in

Figure 3.12. Three types of modules are visible in

that figure:

1- Input modules

InRadio, InSensors, InTv

2- Output modules

OutRadio, OutActuators, Outcalib

3- Functional modules

Antenna attitude control module

The functional module can also be further decomposed

as shown in Figure 3.13. 	In that figure, the data

flow, model will be the 	last 	level of 	such

decomposition. 	The functions of each module are

outlined below, in preparation for functional

decomposition (NOTE: numbers correspond to those of

Figure 3.13.):

1- InRadio is the input module dedicated to the

radio receiver. 	It can be thought of as a

device handler.

2- InSensor is the input module dedicated to the

X,Y,Z co-ordinate sensors.

3- InTv is the input module dedicated to the TV

camera.

/

/
/ P S

O E

S N

I S

T 0

1 	I 	R

e- 0 S

N

A

A

A

0

Antenna

Attitude

Control

Module

n••n• .• 	 ...Ma

111 n111111111111

INPUT 	' 	INPUT
DEVICES 	MODULES

InS en)

UM MUM

SYBTEM

FUNCUTONALITY

OUTPUT

MODULES

OUTPUT

DEVICES

••••••

4

\

CALIBRATE

••••••

-

n,

ACCESS'e- ; DATA Fite
IMM • OM» M.11111

Figure 3.12:. A first attempt at decomposition

Devices not Shown *numbers refer to description

INS 	MR MI NM Mill BM 	1•11 MI MI MI 111111 MI MI

ANTENNA

ATTITUDE

CONTROL

MODULE

Figure 3.13: Data Flow Graph

4- Command String Interpreter receives commands

from the ground station. The commands are

structured as shown in Figure 3.14.

type CommandString is

record
CommandType: 	(VisualInspect, Reset, Rotate

Calibrate);

case CommandType is

when Rotater.> Desired Position: Position;

when Calibrate 	Desired Accuracy: Accuracy;
when VisualInspectu> Magnification:Integer;

Switch: 	(on,off)

end case;
 end record;

Figure 3.14: Definition of Various Commands

The Command String Interpreter will activate

the desired modules (and also pass parameters

when applicable) based upon the value of the

Command type contained in the Command String.

5- PositionTask receives the X,Y,Z position of the

antenna. 	Those values are the result of

sampling done at regular intervals. 	The

PositionTask also maintains an up-to-date table

of statistics on the dynamics of the antenna.

6- Reset resets the antenna position to a given

initial point. 	It then sends confirmation to

the ground station, to indicate the status

(success of failure) of the command.

7- Rotate rotates the antenna to a position

specified in the command parameters. 	An

indication of the success or failure of the

command is also sent back to the ground

station.

8- Calibrate moves the antenna to a known position

and re-calibrates the sensors through the use

of the Calibrate module. A Report is sent back

to the ground station.

9- VisualInspect starts the TV camera and transmit

back to the ground station digitized pictures.

A VisualOff parameter stops this process.

their being separate entities is that the for

10- ReportFormatter accepts various types of input

data, 	(e.g., 	confirmation 	of 	successful

rotation, result of calibration, digitized

television pictures, etc.) and prepares them

for transmission.

11- OutRadio is the output module for the radio

transmitter. It is, in fact, a device handler.

12- OutActuator is the output module which takes

care of the servo control mechanisms of the

antenna.

13- OutCalib is the output module dedicated to the

Calibrator device.

At this point, it should be noted that, although

Input and Output modules have always been included,

their presence is not mandatory. In actual fact,

practical considerations may dictate that they be

incorporated in other modules. However, the reason

functions they implement have to exist in most

cases. It is reasoned that it is easy to merge them

with other functions and, besides, they add to the

clarity of the decomposition exercise.

Following two stages of decomposition with

respect to data flow, the system is subjected to a

- 51 -

functional decomposition. 	The result is shown in

Figure 3.15. 	The various modules are broken down

with respect to the functions they are supposed to

implement. This 	functional 	decomposition

illustrated by the tree structures subtending the

data flow modules. The decomposition process is

also shown in various stages of completion and it

should be remembered that it does not necessarily

correspond to reality since its prime purpose is

didactic.

In 	the 	complete 	design, methodology, 	the

functional decomposition, as exemplified by the

diagram of Figure 3.15, is a transitory step.

main purpose is to provide a bridge to a system

representation using the Ada specification blocks.

This system representation is to be found in Figure

3.16.

There are several differences between the

system representations of Figures 3.15 and 3.16.

The most noticeable is, of course, the use of a

procedural language to describe the system. The

formalism 	of 	Ada 	helps 	in 	solidifying 	the

description of the system and of its various

characteristics. 	Another extremely important point

Its

COMMAND
STRING
INTERPRETER

Parse

Command

Lina

Validi ty
Check

6111•nn•• n11 1•••nn•n••4

es la Sealer

POSITIONAL

rnntiLE

Out Actuate

CALIBRATE

Activity 	Positio
Current 	Current

Read ni 	
à X

raloula 	Benda'

à Y

Freeze

4 X 	 REPORT
FORMATTER

Test 	Add 	Read 	Test 	Sind

If 	. or 	Current 	If 	(Moose' 	

/7 _

S. 	Subtract 	Position 	Equal 	or

Con trol 	 e'li Pe Pad end: 	[
Dispa tch 	 --•-..—"— 	

Desired 	Failure

ROTATE

Y

Read 	C.alcul ate

hY,
A Z .

Send Read Peport

Current 	e x. 	Ax, Current 	on

Position 	a. Position 	Statua

A z
	 •

•

•

'

_ 	
Desired

Either 	Reid

Position

Read
-,•'''''''..........- --'.......s..s....°, 	 e,..„,

Desired

A ' a

Or 	Obtain 	- 	 Compare 	Succeis 	Se

A X,

A Z
A Y, 	

.. Current

Detired

	

with 	failure

, or 	Report

Y

X

aloulate

X
Y

Report

on

S tatus

Append
Trailer

Calculate

Peal tion

made
redicted
Values

gaintain
Table

r
D
 onvert 	Range 	Sind

isplace 	Check' 	• à 'I •

ea n t 	 to Out-
-1

(norss •) 	 actuator

OUG

Radio

Cet Characters
Assemble/in.

GetComaandStrine, Send Report

ParseComnand
CheckValidity
GiveControlReset*

q‘,;:gtUigt iOffei;ta*
ive ontro Isualans.ec,g

Sand Packets

Service)(nit

Froc
Actuators

In
Sensor

GetSamples

4.seemb1errame

GatPositicn

Send n's

SarvicsX
Serviced
ServiceZ

Normalize
CalculattPositi
CheckPredictedV
HsintainTable
PassPosition*

,Out
Calib

GetSimples
AtsembleFrame
Gear:me

Calibrate
CalibDavISR

SetAccuracyLevel
ResetAntenna
Butors 	.

' Visual
Inspect

Figure 3.16: System Representation with ADA
Building Blocks

I et

biota

Represent procedures vhich are part of RendesVous.

Direction of arrows is /*portent for understanding the

diagram.

- 53 -

is the disappearance of data flow arcs and their

replacement by procedure call arcs. It should be

noted that the direction of a procedure call arc is

not necessarily indicative of the direction of the

flow of parameters, if and when parameters are

passed. In Ada, the direction of a procedure call

arc has a further significance beyond determining

the calling and called parties. In fact, it plays a

role in establishing how control is passed, and if

not properly set up, may become the proximate cause

of deadlock. Considerations on how the direction of

those arcs affects deadlocks will be found in

Section 3.2.5.3.

Other 	aspects 	of 	Figure 	3.16 	are 	worth

mentioning briefly and are listed below:

i) There is direct linking to devices.

Hardware 	generated 	interrupts 	are

interpreted as procedure calls into one

of the input or output modules.

ii) The control structure of the Rendez Vous

mechanism in Ada has been examined

earlier. 	Based upon that knowledge, it

is interesting to observe that, for a

procedure call from a main functional

module 	to 	one 	of 	the 	input/output

modules, the body of that procedure will

be in the called module.

iii) The structure of the RendezVous, [SILB8],

[MAHJ81], [LAFE81], while generally very

flexible, is sometimes awkward to

manipulate, especially in cases where

control is to be dispatched to other

modules. Two cases should be considered:

Case 1: The Command String Interpreter

(CSI) passes control to one of

the Reset, Rotate, Calibrate, or

VisualInspect modules depending

on the Command String, the CSI

got from the InRadio module.

The procedure call arcs afferent

to the CSI module are distinct,

(i.e., Give Control Reset,

Give Control Rotate,

Give Control Calibrate,

Give Control Visual Inspect).

Were they not distinct, the CSI

module would not be able to

activate the desired module.

This situation is shown

graphically in Figure 3.17 (a &

b).

1

yisualInspec

FIFO

R 	R 	VI 	C 	'
OE 	IN 	A 	•

TSSSL

	

AEUP 	I 	4
T 	T 	A E 	B 	41
E 	L C 	R 	1

	

T 	A
T
E

-

A: CSI could not activate
Reset.

B: The control structure is more intricate but allows
flexibility.

Figure 3.17 (a & b): • Ada Rendez Vous and Passing
of Control

- 56 -

Case 2: Calls to the Positional module

from other modules (in order to

get co-ordinates) are not

distinct. In this case, the need

for 	distinct procedures 	is

obviated by the structure of the

system. 	The calling modules,

(Reset, Rotate and Calibrate)

will normally be waiting for the

CSI module to give them control.

Only one of them will execute at

any one time and, as such, no

contention is present, hence no

need for separate calls.

Further functional decomposition can be carried out

easily with the system model of Figure 3.16. This

will be demonstrated by specifying a subset of

modules such as the CommandStringInterpreter and

the Reset modules. To keep the example simple, the

packaging of those modules will not be shown; Ada

manuals [DOD80], [WEGN80], [PYLE81], describe how to

build packages quite well. 	The description will

proceed from tasks to procedure stubs. 	The reader

is also referred to Figure 3.14 which contains a

full type definition of a command string.

The 	first 	task 	to 	be 	specified 	is 	the

Command String Interpreter task which interfaces

with most of the tasks in the system. The CSI task

is 	shown in Figure 	3.18, 	with 	the 	function

'GiveCommandString" specified as separate.

Figure 3.19 describes how the link up to the CSI

module will be done. The Reset module is of greater

complexity than CSI and, as such, makes an

interesting example. It is shown in Figure 3.20.

No entry specifications are found in task Reset

since it is the active party in RendezVous all the

time.

task CSI is

entry GiveControlReset (CS: out CommandString);
entry GiveControlRotate (CS: out CommandString);
entry GiveControlCalibrate (CS: out CommandString);
entry GiveControlVisualInspect (CS: out CommandString);

end CSI;

task body CSI is
LN: CommandString
function GiveCommandString (Y:CommandString) return

CommandString is separate

begin

loop
GetCommandString (LN);
case LN.CommandType is

when Resettl> accept GiveControlReset (X:outCommandString)do
X:=GiveCommandString(LN);

end GiveCommandReset;

when Rotatem> actept GiveControlRotate(X:outCommandString)do

X:=GiveCommandString(LN);
end GiveControlRotate;

when Calibratee accept GiveControlCalibrate(X:outCommandString)do
X:=GiveCommandString(LN);

end GiveControlCalibrate;

when VisualInspectm>.accept GiveControlVisualInspect(X:outCommandString)do
X:=GiveCommandString(LN);

end GiveCOntrolVisualInspect

end case;
 end loop;

end CSI;
NOTE:

It should be realized that in this case the function
GiveCommandString is redundant. It was included to show how,
if such a function became necessary, link up is possible either
to inside or outside the package.

Figure 3.18 Command String Interpeter (CSI)

separate(CommandStringInterpreter);

function GiveCommandString(Y:CommandString)returnCommandString is

Test:boolean;
function CheckValidity0f(X:CommandString)returnboolean is separate;

begin

Test:=CheckValidity0f(Y);
if Test
then return Y;
else raise "exception";

end if;

end GiveCommandString;

Figure 3.19: Expansion of a separate procedure

task Reset;

task body Reset is
CS: CommandString;

CST: CommandStatus;
CP: CurrentPosition;
Mssg: Message:
DV: DisplacementValue;
InitialPosition: Position:=0,0,0;

procedure

procedure
procedure
procedure
procedure
procedure

GiveControlReset(X:CommandString) is separate;
GetPosition(X:Position) is separate;
NewPositionDisplacement(X,Y:Position) is separate;
MoveAntennaPosition(X:DisplacementValue;Y:CommandStatus)
SeridMessage(X:Message) is separate;
AbortSystemActivities is separate;

is separate;

begin

loop
GetCommandString(CS); 	-- part of RendezVous

AbortSystemActivities;
GetPosition(CP); 	-- part of RendezVous
DV:=NewPositionDisplacement(CP,InitialPosition);
MoveAntennaPosition(DV,CST);
if CST=Success
then Mssg:=Success;
else Mssg:=Failure;

raise actuator failure;
end if;
SendMessage(Mssg);

end loop;
end Reset;

Figure 3.20: Description of the Reset Module

Task Reset also exemplifies the use of separate

procedures. Those procedures can either be in the

package itself or in a different package which may

be compiled separately. In the latter case, many

stages of refinement may have taken place; proper

procedure specification ensured that the rest of the

model was not affected by changes in the separate

procedure body.(*)

3.2.5.2 Observations on the Model

The use of the decomposition methodology yields

a system model which exhibits several desirable

properties. The most important advantage is that

the system is described formally as opposed to an

informal description whose meaning may be subjected

misinterpretation. 	The model is also easy to

visualize. 	Procedures and functions which serve

similar 	purpose 	may 	be 	grouped 	together 	in

anticipation of a complete software design. Such

grouping of subprograms would optimize the coding of

the system tasks. It should • be • realized, however,

that the system tasks obtained through decomposition

are not necessarily optimal nor are they the only

set of tasks which could be obtained. Different

designers or analysts will more than likely arrive

at different task decomposition.

(*) The Ada Manual [DOD80] has a lot more on that

issue.

1

1

The Ada representation of the model makes an

early compilation possible. 	This 	compilation,

although not intended to produce executable code,

can check the validity, and consistency of data types

and most importantly of procedure calls. 	The

network of Ada building blocks 	can also 	be

incorporated in a testbed, early in the design

phase. This will be covered shortly in more detail.

The importance of properly designing the model

with respect to procedure call arcs was stressed

before; a few guidelines will now be provided.

Three cases are of interest and are shown in

Figure 3.21.

- 63 -

Case

Flow of data

Case II

Flow of data

Flow of data

Case III

Figure 3.21: Prdcedure call arrangements in Ada

Case 	I 	is 	the most 	likely situation to be

encountered. 	Task A calls Task B and passes

parameters to the latter. 	The same process takes

place again for B and C. The direction of the data

flow also coincides with that of the calls. This

case of innocuous appearance can be a potential

cause of deadlock if a cycle is allowed to form,

(e.g., A calls B and is delayed because B called C

and B was delayed because C had called A and had

been delayed, etc.)

Case II is introduced to lessen the possibilities of

deadlock when two tasks (e.g., A & C) have to

communicate with each other but, at the same time,

cannot afford to wait on one another. The reason

for this unwillingness to wait may be that both A

and C are tasks offering general purpose services to

other tasks. It should also be noted that agent

task B will convey the parameters of the call from A

to C only. If a reverse flow is desired, another

agent task is required.

Deadlocks are not likely to occur in this arrange-

ment because task B will be alternately waiting on A

to get a message, and on C to give the message. The

actions involved in each case are very short and

should hinder neither A nor C, as task B is doing

the waiting. It is easily seen that the overhead in

terms 	of 	executive 	services 	(e.g., 	context

switching) may be substantial for this configu-

ration.

Case III also lessens the possibilities of deadlock

and is used in cases such as:

a) An input (or output) module which has

service hardware interrupts while

at the same time making the data

available ' to other tasks in the

system.

A module 	which 	provides 	various

services to other tasks, and as such,

cannot be delayed.

An example of an arrangement typifying Case III is

shown in Figure 3.22 which depicts an input module

servicing a hardware device. The input module makes

the data that it collected available to the

processing task.

Procedures

hardware

device Processing
generated

call

Procedures

data flow

Figure 3.22: Representation of an Input Module

The reason behind the call structure of Figure 3.22

is that the Input task should always (ideally)

be able to schedule a hardware generated entry call

from the device. If that is not the case, a loss of

input data will result, caused by either too fast a

device or an inadequate • call structure. The

proposed structure, however, affords the Input task

the best potential for quick scheduling of the

service requests from the device.

Case II and Case III help design systems with lower

probability of deadlock. 	They do not completely

eliminate the risk of deadlock. 	Total elimination

of deadlock can only be achieved by a careful design

and, if need be, some simulation to increase the

confidence in the operations of the system.

•

- 68 -

RADIO SYSTEM

ANTENNA
ATTITUDE
CONTROL
MODULE

A

A

0

0
A

0

Y

3.2.5.3 System Simulation and Testing

Preliminary simulation and testing can be

attempted on a model which is completely (or even

only 	partially) specified by Ada specification

blocks. Figure 3.23 shows the modelled system as a

black box surrounded by device simulator modules.

—111:11.
SIMULATOR

T C S
VA I

M M
E U
R L
A A

0

Figure 3.23: System Model and Test Bed

Input Call

INPUT

Input

Those device simulator modules are outside the model

and serve to simulate the behaviour of the devices

they represent. Such a device simulator is shown in

Figure 3.24 (a & b).

package DeviceSimulator

GetCommandString

task input accepts
interrupts as
simulated by task

DS and stores the
characters it

receives

task DS ;
task body DS is

ch: character; DL:=Delaytime;
begin

loop
ch:=SelectCharacter;
Input(Ch); 	--functions SelectCharacters
DL:=SelectDelay; 	--and SelectDelay implement

delay DL; 	--the behaviour of

end loop; 	--the device

end;

Figure 3.24: Device Simulator Module

1

I.

The 	complete 	specification/simulation/testing

process is shown in Figure 3.25. The specification

block is a manual operation; the system model it

produces is the main input to the simulation and

testing package. The Device simulators are also

given to the simulator package.

1

Specification

System

Model

• Ada

Compiler, Diagnostics

System

Requirements

Input Modules

Device

Simulators

System

Black Box

Representation

Output

Modules

Devi ce

 Simulators

741

Ada

Executive

Support

Simulation

Controller

iiME-11tInj

. Results

Figure 3.25: Simulation & Testing Package

- 71 -

Several steps are necessary to complete the

simulation and testing activities; they are

summarized below:

a) The system model is compiled. 	Data

type checking is performed and some

run-time checks are embedded in the

load module. The load module is a

combination of the compiler output,

the Ada standard executive and the

compiled device simulator modules.

h) If any compile time error is detected,

the compiler will inform the user

through the diagnostic file.

c) The load module is allowed to run.

Run-time checks can detect deadlock,

verify if subtypes are used

consistently and that variable ranges

are within bounds.

Depending- on how sophisticated the

simulation controller is, it might be

possible to 	collect 	data on 	the

comparative execution speed of each

module. 	This information, while not

truly representative of the speed of

the finished product, is extremely

useful when 	hardware/software

decisions have to be made,

When it comes to evaluate the results of the

simulation, it should be realized that the whole

system was implemented in Ada. This may not

necessarily be the case in real systems; special

functions may be coded in machine language for the

sake of 	efficiency. Nevertheless, 	from 	the

execution time figures, execution time limits or

bounds can be derived. 	Once the functions of a

module are known and the maximum time allowed to

execute those functions is established, it becomes

possible to decide whether to:

a) Decompose the module further since no

combinat ion of hardware/software - or

hardware alone can satisfy the speed

requirements of the module.

Implement the module as a specialized

hardwired unit.

c) Implement the module (or merge the

module with another and implement then

both) on a given processor with a

given software algorithm. The actual

allowable time to execute the module

functions is influenced by such

factors as processor speed, processor

power (i.e., how good is the

instruction set), the type of

algorithm chosen to implement the

functions, etc.

- 73 -

It 	should 	be 	stressed 	again 	that

decomposing the system with the help of Ada

specification blocks facilitates the eventual coding

of some functions either as Ada modules or as

assembly language modules. 	It is also obvious that

the high level system model is not immutable. 	In

fact, practical considerations may dictate that

modifications be made to it. Different task

partitioning may also prove to be necessary.

3.2.5.4 Computer Aided Tools and the Specification Process

A computer aided simulation and testing tool

w as proposed in the last section. 	However, this

tool took as input the complete specification of a

The question is: 	Is it possible or

desirable to develop computer aided tools for the

specification process? In the affirmative, what

functions should those tools have and how can they

be built?

The answer to the first question would appear

to indicate the desirability of computer aided

specification tools. A further examination reveals

that the tools that can be built would be restricted

to a small scope. The specification process takes

requirements and transform them into an abstract

system.

- 74 -

form. 	This is still largely the province of the

human mind. 	As such, it is difficult to simulate

completely.

A system called SADT [ROSS77a], [ROSS77b] was

mentioned earlier, in the context of functional

languages. It should be stressed that SADT is also

a complete methodology and as such should be

discussed here. SADT is an elaborate set of rules

and guidelines with the purpose of establishing a

common language and method for specification. SADT

is applied in the early phase of data flow

decomposition and functional analysis. SADT or a

derivative could be used advantageously, in the

preliminary stages of the decomposition process.

The resulting diagrams could then be translated into

Ada specification blocks as before. Some work has

also been done towards integrating SADT with a

simulation tool. 	The result called SAINT [BACH81]

includes a dynamic simulation tool.

A tool that would also be very useful is a

graphics package that would relieve the analyst from

the burden of drawing boxes and connections. The

topology of the graph should be remembered by the

graphics package so that a comparison could be made

with the output of the compiler after an Ada model

has been compiled. Any mismatch would be detected

and the analyst could then correct it.

3,3 	Validation of Specifications

3.3.1 	Validation

Validation is a process whose purpose is to

check the validity of a transformation. Figure 3.26

shows two stages of program development linked by

a transformation T.

Towards Implementation

	›

Representation

II
Representat ion

Transformation

Validation
of T * Continue Re-do

Figure 3.26: Example of Transformation

Q ______,
u u
SI

•E R
R E

M

Definition

Implementation

Validation Validation

The validation of T in this case is the checking of

Representation II against Representation I with re-

spect to functionality. If the functionality of

Representation II does not quite correspond to that

of Representation I, then the transformation is not

entirely correct.

To put the concept of validation in the per-

spective of the design methodology of the previous

section, three main steps should be considered.

Those steps are: Requirements, Specification and

Implementation, as shown in Figure 3.27.

Specification

Figure 3.27: Validation and the Design Process

The role of validation is to check the correctness

of each transformation, from the early requirements

to the final implementation. Several advantages

accrue from this exercise:

1. The transformation is verified.

2. Existing flaws are uncovered so that they

can be rectified.

3. The behaviour of 	the output of 	the

transformation is verified.

Figure 3.27 shows validation in two places:

a) Between 	Definition 	of 	Requirements 	and

Specification.

At this stage, validation is based upon a

mathematical model of the system. Validity of

the specification is carried out through high

level testing or proving (that is, symbolic

execution).

b) Between Specification and various levels

implementations.

Validation is based on the implementation

and the language used to describe it. If the

language is completely axiomatized, assertions

can be derived in order to make the symbolic

I.

an 	acceptable 	mathematical 	form. Research

execution 	of 	the 	program 	possible. 	A

successful symbolic execution of the assertions

in the program attests to the correctness of

the implementation. This method is called

verification.

Another 	method 	to 	obtain 	validated

implementation is testing. 	Testing involves

traversing each of the program branches and

at the same time, checking the output thus

obtained. Although simple 	and 	easy 	to

understand, testing may not always be the best

alternative due - to the difficulty of choosing a

meaningful set of test data.

This section on •validation will concentrate on

validation 	(verification 	and 	testing) 	of

implementations 	of 	systems. 	Validation 	of

specification is more nebulous at present. 	The

difficulty lies in representing the requirements in

activities so far have, therefore, been concentrated

mostly on implementations of systems.

This section will cover three topics of

importance in validation:

a) Testing,

b) Verification, and

c) Automated Verification Systems (AVS).

- 79 -

the course of the discussion, full definitions

will be provided as well as indications of how

applicable and relevant those concepts are to the

current work.

3.3.2 	Testing

Testing [HEND77], [G00D77] 	is a methodology

which can be applied to a program to determine its

validity. 	The degree, that is, the thoroughness of

testing is under user control. 	'Testing rests upon

basic observations on the behaviour of programs, be

they at a high level or at a low level. Figure 3.28

shows the skeleton structure of an imaginary program

with all the control paths being given numbers. The

purpose of testing is to select a set of test data

so that:

a) all the paths of the program have been

traversed at least once and

the output thus obtained is valid.

Another way of explaining testing is to consider a

program F as a transfer function. 	Figure 3.29

depicts the domain and range of the transfer

function F.

ot

Satisfied

Figure 3.28: • Skeleton of a program control

structure

Figure 3.29: A Program's Domain and Range

An element d, deD, will produce r = F(d) and rER.

If this is the case for all deD, then the program is

said to be valid.

Using that definition of testing, it is clear

that the set of test data that is required is the

set of d's, deD so that:

i) F(d)ER

ii) the set is minimal

iii) all the control paths of the program

have been traversed once.

The main advantage of testing and paradoxically

its principal weakness lies in its simplicity.

Testing is easy to carry out in terms of computer

resources and packages. It has the advantage of

using not only real data but also data that is

meaningful. 	The program is, therefore, tested in

its working environment. 	However, unless all the

paths of a program are known and unless the set of

test data is such that complete traversal of those

paths is achieved, testing will not provide a

guarantee of correctness. 	To put this differently,

testing can uncover the presence of flaws but not

prove that there are not any. 	Given the multi-

plicity of paths in a program of even moderate size,

it is not reasonable to expect that testing will

cover all possibilities. 	Nevertheless, testing has

its usefulness in increasing the level of confidence

one has in a program.

3.3.3 	Verification

As mentioned before, a system specification and

its implementation can be represented mathemati-

cally. Given this mathematical model, it is possi-

ble to simulate this system by what is known as

symbolic execution. What is accomplished is, in

fact, the traversal of all control paths in the

program or, more precisely, the testing of the

program for all possible input data.

Program Verification is a research endeavour

which is relatively new. It is nevertheless well

documented as surveys and tutorials on verification

[HANT76], [LOND77], [GRIE76], [KING80] attest.

Another area of research is the automation of the

verification process. Section 3.3.4 is devoted to

Automated Verification Systems.

The basis of program verification can be

defined with respect to the simple diagram of Figure

3.29. An assertion, called pre-assertion, is placed

at the input of F. 	The. . pr e -assertion is true for

all d's in D and false otherwise. 	Similarly, an

assertion, called post-assertion, is placed at the

output of F. The output of the program satisfies

the post-assertion if the output falls in the range

of F. The difficulty most often experienced is in

choosing the pre- and post-assertions.

Refinements are, therefore, needed to make this

choice easier. The approach usually taken is to

break down the program into smaller paths that can

be enclosed by •a pair of pre- and post-assertions.

This is illustrated in Figure 3.30a. 	The next

problem is concerned with the handling of loops.

Loops can be considered as a set of simpler serial

paths with the parameters changing from path

path. 	Figure 3.30b shows such a loop and the

proposed assertion, called a loop invariant. A loop

invariant 	combines 	the 	concepts 	of 	pre- 	and

i.e., post-assertions. 	The assertion is true,

satisfied, 	at the beginning of the loop and

similarly 	at 	the 	end, 	hence 	the 	term

"loop-invariant".

loop

simple
path

	

pre-assertion 	B) 	,loop invariant I

	

1 	1

I

	

1 	1

I

	

•1 	I
1

post-assertion

Figure 3.30: Paths and Assertions

The thesis of program verification is that,

given a program and a set of assertions mathemati-

cally describing the purpose of the program

then, if all the assertions are proved to be true,

the program is correct. This is, in fact, a sym-

bolic execution of the program since real input data

has been replaced by algebraic symbols. This method

is also called "Inductive Assertion" method since

all the program paths (or segment) are proved

independently and an induction argument is then used

to establish the correctness of the whole program

[FLOY67], [R0BI77], [REYN76]. At this point, a

basic requirement of such a verification process

manifests itself. The language used to write the

program has to have a regular behaviour, easily

expressed in mathematical terms. In other words,

the language has to be completely axiomatizable (see

[HOAR69], [HOARE73]. The reason for this require-

A)

1

1

ment is easy to visualize. 	A statement S can be

preceded by a pre-assertion P and a post-assertion

Given that P is true, some means of going from

to Q has to exist. 	If the language of which S is a

statement has been completely 	axiomatized, then S

is the tool that will transform P into Q. 	There-

fore, a complete definition of S renders possible

the proving of Q.

The preceding paragraphs described the most

widely used verification method: 	inductive as-

sertion. 	There exists other variations such as

"predicate transformers" and "sub-goal induction".

In those methods, the basic principles of verifi-

.cation are not altered. Assertions are still used

describe the behaviour of. the ,program and an

axiomatized language is still necessary; interesting

peculiarities exist, however.

1. Predicate Transformers

The concept of predicate transformers [DIJK75],

[YEH77] has been developed to be used in conjunction

• with "predicate calculus". Predicate calculus is a

program methodology destined to help programmers

construct their programs with a strong mathematical

Q.

- 86 -

base. 	Going one step beyond leads to verification

which is made easier by the already existing mathe-

matical description.

The theory behind Predicate Transformation is

based on the state space of a program. On this

state space, predicates P, Q, ..., can be formu-

lated. (A predicate is taken to be an assertion.)

Associated with a given predicate P, there exists a

set of program states, P*, for which P is true.

P* = 	fstates I. P]

Given a program S, it is possible to have a pre-

assertion and a post-assertion. These will be

respectively P and Q and the following relation is

held to be true:

P[S]Q.

In other words, P is true for the input data of S

and following the execution of. S, Q is also true for

the output data produced by S. A function WP will

now be introduced and its effects are as follows:

WP(S,Q) = weakest pre-condition such

that after the execution of

S, Q is true.

WP(S,Q)* = largest set of initial

states of S for which S

terminates and Q is true.

The function WP is called a predicate transformer

since it takes a post-assertion and transforms it

into a pre-assertion. In [LEH77], some predicate

transformer theorems are stated and some examples

are given, illustrating the predicate calculus and

transformer methods.

2. Sub-goal Induction

Sub-goal induction [MORR77] is a proof method

that can be used to complement the general inductive

assertion method. In the latter, loops are handled

through loop invariants, while in the former the

correctness of loops is proved directly from their

input-output specification.

Figure 3.31 shows a simple loop which will be

analyzed using sub-goal induction.

begin

while 	not P(x) do
x:=

end;

Figure 3.31: Simple loop example

1

A post-assertion Q will be used to represent the

desired state of the program after the execution of

the loop. In this example, the predicate Q(x,z)

relates a given input x to the desired output z (*).

Two cases have to be considered in connection

with the loop:

Case 1: When the loop is executed for the first

time, P(x) is true; the loop is ended with

the value of x unchanged. Expressed mathe-

matically, this case amounts to:

P(x) 	—* Q(x,x) 	(cl)

Case 2: When the loop is executed for the first

time, P(x) is false. 	This implies that

x:=N(x) and thus becomes x t . 	This second

case reduces to:

notP(x) and x'=N(x) and Q(xi,z>>Q(x,z) (c2)

(*) This example is that of [MORR77].

- 89 -

1

I I

The two cases, namely, cl and c2, are called

verification conditions. In fact, proving cl and c2

amounts to proving the correctness of the loop.

Sub-goal induction is, therefore, a method to obtain

those verification conditions based upon the

specification of the loop.

To resume the description of the process of

verification, the example of the "Quotient-

Remainder" will be presented. This example has

first been given by [HOAR69], and then by [WIRT73]

and [L0N077]. The example is based on the simple

division program using the successive subtraction

method (shown in Figure 3.32). In a first step,

assertions are introduced in the program, as shown

in Figure 3.33. It should be realized that the

assertions are not executable statements and could

be specified separately in a specification language.

- 90 -

function Divide (var x: integer ; var y:integer):integer
var r,q: integer;
begin

r: x;
q:=0;
while y>=r do

begin --
r:= r-y;
q:= q+1

end;
Divide:=q

end {of function Divide2

Figure 3.32: Sub-program for simple division

function Divide(var x: integer;var y:integer): integer
var r,q:integer;
begin

pre 	true; (no restriction upon entry}
r:=x; q:=0;
while y>=r do
begin

assert x=
r:=r-y;
q:=q+1

end;
D.T7rde:=q;
post x=r+(y*q) and r< y

end { .of function DI7rdej

Figure 3.33: Sub-program with assertions

- 91 -

From the assertions, three lemmas can be obtained

which correspond to the three assertions. 	In

deriving the lemmas, 	it is assumed that the

programming language has been axiomiatized.

1- Lemma I

true and r=x and q=0--> x=r+(y*q)

2- Lemma II

x=r+(y*q) and y<=r and r t =r-y and q'=q+1-4.

x=r' +(y*(1')

3- Lemma III

x=r+(y*q) and not y<=r-+x=r+y*q and r<y

This axiomiatization is necessary in order to be

able to transform a pre-assertion into a

post-assertion. For example, in the lemmas, it can

be seen that := has been replaced by =, since the

behaviour of the assignment construct had been

axiomatized.

The next step in the verification process is to

prove the three lemmas. Fortunately, 	it 	is

relatively easy to do in this case (*).

(*) Obviously, it will not always be that easy!

See [POLA79].

1. Lemma I requires substituting r ,for x and 0

for q and x=r+(y*q) is thus verified.

2. Lemma II requires substituting r-y for r'

and (1+1 for q'. 	The equation x=r'+(y*qt)

is verified since x= (r-y) + (y*(q+1))

which reduces to x= r+(y*q).

3. Lemma III is the exit assertion. The term

r< y is equivalent to not y <=r and the

term x= r+y*q is true.

The proofs of those three lemmas have now been

completed and the correctness of the sub-program

Divide has been established. The lemmas themselves

are interesting because they could have been stated

differently. Hereto, 	the 	lemmas 	have 	been

associated with the forward execution of the

program. 	Backward execution can also be con-

sidered. The lemmas that it yields are slightly

different.

1- Lemma I

true -+ x 	x+y*0

2- Lemma II

x = r+y*q and y <=r->x=(r- y) + y*(q+1)

3- Lemma III

x = r+y*q and not y <=r->x=r+y*q and r <y

The forward and backward methods of generating

assertions are discussed comparatively in [KING 76].

Once a proof of correctness has been obtained

for a given program, the question that comes to mind

how correct and how reliable is the program?

Obviously, the program itself is correct provided

the proof was done correctly and the language was

axiomatized properly. For the program to run

correctly, extra factors have to be considered.

Compiler correctness will influence how reliable the

"correct" program will be. In this case, bugs in

the compiler would jeopardize the correct execution

of the program. Hardware correctness has to be con-

sidered as well. In fact, in order to establish the

correctness of the hardware, the behaviour of the

processor and the other components has to have been

axiomatized. Based upon the material presented in

this section, one can see that hardware axiomati-

zation is necessary if one aims at proving the

correctness of a system.

It would appear that even if a program has been

proven correct, its correct execution is not auto-

matically guaranteed. However, the risks of soft-

ware related failure have been greatly minimized.

is:

To some extent, this is what testing achieved, but

not to the same degree. In practical situations,

testing tries to traverse most of the paths likely

to be used during the execution of a program.

Verification, of course, traverses all of them. The

cost of testing being considerably less than verifi-

cation, there exist situations where, for both

practical and economic reasons one alternative would

be preferable.

A very important point that has to be empha-

sized is that Verification (just like testing) is an

activity that should be planned and carried out in

parallel with program development. The applica-

bility of verification to the design methodology is

still an unresolved issue. On one hand, it would be

advantageous to have a completely validated design

from the top to the bottom level. On the other

hand, Verification is very costly of time and

efforts and requires skilful users. In satellite

systems, where reliability is paramount, verifi-

cation should be a goal worth considering.

3.3.4 	Automated Verification Systems (AVS)

In an effort to facilitate the task of verifi-

cation, 	several 	research 	activities 	have

investigated the 	possibility 	of 	involving 	the

computer in the verification process. Automated

Verification Systems (AVS) were the results of those

efforts. The theory behind the operation of a

typical AVS is no different from that of a hand

proof. Of course, some steps have to be spelled out

due to the different natures of the human mind and

of the computer.

The process of designing and of verifying a

program using a hypothetical AVS is shown in Figure

3.34. The first step towards verification, once the

program is written, is to insert the assertions and

loop-invariants. Those may be difficult to obtain

but it will be assumed that they have been properly

generated.

Automated

Theorem
Prover

Inductive Assertions Method

Assertions

(user generated)

Automated Verification
System

Verification
Condition

Generator

Program

Program

Assertions

1

USER

diagnostic (OK, faulty)

Figure 3.34: Design and Verification of Programs

The AVS accepts as input the program and its

assertions. 	It uses the assertions to produce

verification conditions which will be of a format

suitable for machine proving. 	The verification

conditions are, in fact, considered as theorems and

various techniques can be used by the theorem prover

(see [BOYE79]). 	The "inductive assertions" method

can be used, sometimes supplemented by subgoal

induction. It has to be pointed'out that the AVS

1

will, in general, prove partial correctness. Total

correctness is proved when the program has been

ascertained to terminate. 	In order to illustrate

those concepts, an example will be presented which

will take a subprogram and perform the steps outlined

in Figure 3.34.

The example to be considered is basically that

of [R0BI77] and uses register modules as defined by

[PARN72]. 	A register module is a variable size

vector whose cômponents - are ordered by size in an

increasing sequence. The following 'predicates

always hôld for a register module.

0<= Length <= 1000
Yi, 0<i <= Length, RegisterModule[i] is defined,

Yi j 	RegisterModule[i] is defined,

0<=RegisterModule[i] <=255.

The subprogram to be verified with respect to

the register module is shown in Figure 3.35.

98 -

until c is inserted
—

of InsertSorted end
•••n•n• Assertion III

inserts the value after position i and moves

Procedure InsertSorted(var c: integer);
var x:integer;
begin

_ Assertion I
x:=1;
repeat

_ — Assertion II
if x >= Length+1
then Insert (x-1,c)
else if c < Regis terModule [x

then Insert(x-1,c)
else x:=x+1

Figure 3.35: Procedure InsertSorted

The subprogram of Figure 3.35 refers to another

procedure 	called 	Insert 	(i,j). 	"Insert(i,j)"

subsequent values one position higher. Keeping this

definition in mind, it is now possible to state the

assertions of "InsertSorted". Three assertions are

necessary and should • be placed as indicated by

arrows in Figure 3.35.

1
1

1

1
1
1
1
1

1
1
1

1
1
1

1. Assertion I

\lk 1 1=<k= <Length-1 , Regis terModule [k]= < RegisterModule [k+1]
and 0= < c =<255
and 0= < Length<1000

2. Assertion II
Length = Length () and c=c 0 and

=< k = < Length, RegisterModule[k]=RegisterModule o [k] and
Vkll =< k =< x-1, RegisterModule[k]<c and
1= < x=< Length+1

3. Assertion III
Length = Length () + 1 and
Vk I 1=<k =<Length-I,RegisterModule[k]=< RegisterModule[k+1]
and Bag0f(i,I,Length,RegisterModule(i))=

BagOf (i , 1 ,Length o , RegisterModule o (i))U Bag (c o)

Assertion I describes the state of the RegisterModule at the

beginning of the procedure. 	The RegisterModule is sorted and

has room for another character. The character to be inserted is

within bounds. 	Similarly, Assertion III describes the state of

the RegisterModule after the insertion took place. 	It shows

that the length of the RegisterModule has been incremented and

that the RegisterModule itself is still sorted.

Assertion II describes the state of the hegisterModule and of

the procedure during the lobp. In Assertion II, Bags and

BagConstructors [KNUT68] are used. For example, Bag (a,b,c,) is

the set of three elements a,b,c with Bag(a,b,c) = Bag(b,a,c).

The BagConstructor is Bag0f(i,a,b,expression(i)) which

represents the - bag of elements obtained by substituting b for a,

for i in expression(i).

- 100 -

The next step taken by an AVS is the generation of

verification conditions. Those are to be found in the following

list: 	(The list and proof of VC's are basically that of

[ROBI77]).

1. Vkll<= k=<Length 0 -1, RegisterModule 0 [k]=<RegisterModule 0 [k+1]
2. and 0 =.< c o =< 255
3. and 0 =<ZLengtho < 1000 and
4. Vk I 1 < = k= <x-1 , RegisterModule o [k] < c o
5. and l<= x=< Length 0 +1
6. and x< Length () +1
7. and c o =< RegisterModule o [x]
8. and Length = Length 0+1 and

9. Vk , RegisterModule[k] = if k =< x-1 then RegisterModule [k]* 0 	e
if k = x then c o ;

otherwise RegisterModule 0 [k-1]

After insertion of c o , verification conditions 10 to 16 are

derived from the verification conditions 1 to 9.

10. 1 <= x =< Length () and

11. 0 = < x-1 =< Length ° and
12. 0 = < c o = < 255 and

13. Length o < 1000 and
14. Length = Length () + 1 and

15. Y k 1 = k =< Length-1 , RegisterModule [k] = < RegisterModule [k+1]
16. and BagOf (i,l,Length,RegisterModule(i))=

BagOf (i,l,Length o ,RegisterModule o (i)) liBag (c o)

The automatic verification system would then start proving

each of those verification conditions as theorems. Most of the

above verification conditions are straightforward to prove.

Condition 15 will be used to illustrate the theorem proving

activities of the AVS. Verification condition 15 is simplified

by substituting expressions 8 and 9. The new condition is shown

below, in Figure 3.36.

did]. =< k =< Length ° ,

[if k =< x-1 then RegisterModule o [k]
else if k = x then c o

else RegisterModule 0 [k-1]

me <

[if k+1 =< x-1 then RegisterModule 0 [k+1]
else if k+1 = x then cO

else RegisterModule o [k]].

Figure 3.36: Verification Condition 15

The binary relation =.< relates the two expressions in

bracket. 	Nine possible cases result but with only four of

them being non-trivial. Using the letters at the far right

of Figure 3.36 to represent each particular case, the four

cases of interest become:

1. Case 1: 	a,d
2. Case 2: 	a,c
3. Case 3: 	b,f
4. Case 4: 	c,f

Those cases are proved in the following fashion: (item i

corresponds to case i).

1. V kl 1 =< k =< x-2, RegisterModule o [k]
=< RegisterModule[k+1]

2. RegisterModule 0 [x-1] =< c

3.. c =< RegisterModule o [x]
4. 	dkl x+1=< k=< Length ° ,

RegisterModule[k-1]=<RegisterModule[k]

(a)
(b)
(c)

(d)

(e)
(f)

At this point, the AVS has completed the proof of verifi-

cation condition 15 and would continue on to 16. Automated

verification systems perform along similar lines as a proof

by hand. Their requirements are very much the same in that

they need an axiomatized language and the insertion of

assertions. It is clear that assertions are very important

to the AVS since they mathematically depict the behaviour

of the system. The onus to produce suitable assertions is

on the designer and this seems to indicate that obtaining

the assertions is a rigorous activity which should be

undertaken concurrently with program development.

Several AVS are being experimented with at the present

time, as the following list can attest:

1. Gypsy is a verification system being developed at the

University of Texas, [G00D78], [AMBL77]. Gypsy is also

surveyed in [CHEH81]. The Gypsy verification environ-

ment is shown in Figure 3.37.

SYNTAX
DIRECTED

EDITOR

VERIFICATION
CONDITION

GENERATOR

THEOREM
PROVER

SIMPLIFIER

USER COMMANDS

EXECUTIVE GYPSY
TEXT

GYPSY
PARSER

PROGRAM
DESCRIPTION
LIBRARY

V

COMPILE

FILE
GENERATOR

COMPILE
FILE

Figure 3.37: Gypsy Verification Environment (from [CHEH81])

Gypsy features a single language (i.e., Gypsy) to program

the application and to specify its behaviour mathemati-

cally. 	The Gypsy language is a derivative of Pascal

[JENS74] and supports concurrency. 	Detailed examples of

its use are given in [AMBL77] and also [CHEH81]. 	GYPsY

also features a designer/verifier's assistant package

[M0RI79] to facilitate the task of maintaining previously

verified programs.

2. 	Hierarchical 	Development 	Methodology 	(HDM) 	[R0BI78],

[R0BI79] is a complete methodology for program development

from the early stages of specifications to the final stages

of implementation. 	Mathematical representation of the

system's behaviour is accomplished through Special, a

non-procedural, specification 	and 	assertion 	language.

Figure 3.38 shows some of the details of HDM.

System Description
Using Special

Implementation

Language

Axiomatization
ofImplementation

Language

Verification Condition
Generator

,Boyer Moore
Theorem Prover

Figure 3.38: Description of the HDM System

Special is not a procedural language and, therefore, an

implementation language is necessary. Complete

axiomatization is obviously a requisite condition on the

implementation l'anguage if the verification condition

generator is to perform properly. The verification

conditions thus generated are given to the theorem prover

for automated proof. The theorem prover is the Boyer Moore

[BOYE79] theorem prover and is among the most powerful

available.

1 	3.
Affirm 	[AFFI79] 	is 	primarily 	an 	interactive 	system

requiring considerable directions from the user. It uses a

variant of Pascal for specification and implementation.

Other facilities are also provided for, data type

specification and for theorem proving.

4. 	Other 	systems 	such •as 	the Stanford Pascal Verifier•

[LUCK79], the Formal Development Methodology (FDM) [KEMM80]

should also be mentioned. (Other systems also exist in the

early experimental stages and are not mentioned here.)

As pointed out previously, all those automated verification

systems are at various stages of experimentation. Their use is

costly but, above all, requires trained programmers well versed

in mathematical programming. The next section will cover the

validation capabilities that can be reasonably and realistically

incorporated to the design methodology.

- 106 -

end of verification

3.3.5 	Proposed Validation Capabilities

The specification methodology should incorpo-

rate some validation capabilities. The nature and

the extent of those capabilities should be carefully

chosen. An ideal system, even though not practical

at present, is shown in Figure 3.39.

Requirements 	> User/Analyst

in various
stages

Abstraction

Specification Assertions

Implementation

hardware

Theorem Prover

I Diagnostics

Language

Axiomatization

special

validation
may be

necessary

see [CORY80] and
[CORY81]

software

Verification

Condition
Generator

Data Base
of Theorems

Figure 3.39: An Ideal System

Several factors make this system impractical:

1. Ada 	is 	going 	to 	be 	used 	as 	the

specification/implementation language.

Ada has not been fully axiomatized and it

is not likely that it will, at least in

its present form [YOUN80].

2. Concerns about code correctness may be

dwarfed by concerns about compiler and

especially run-time environment mechanisms

correctness.

3. As pointed out before, use of those AVS

tools 	is not necessarily complicated.

However, 	obtaining mathematical 	de-

scriptions of systems through assertions

is not a trivial task. 	As systems become

more complex and as the issues to be con-

sidered proliferate, the problem of veri-

fication

unwieldy.

will become more 	and more

As more research is pursued in the field of

verification in general and in Automated Verifi-

cation Systems in particular, it is reasonable to

expect that verification and AVS will become more

powerful and easier to use. In their present form,

their overall complexity precludes their use on a

large scale, such as a validation of a complete

system. Validation/verification work of a smaller

scope can be undertaken; an example of such works

would be the verification of small modules imple-

menting functions which are critical to the proper

functioning of a larger system. This latter

alternative would be feasible for the multi-micro

processor design methodology. Its use, however,

should be within in a consistent and logical frame-

work. Such a framework, shown in Figure 3.40,

combines the various features outlined so far in the

last two sections.

The interim verification system of Figure 3.40

is, of course, a compromise and should be augmented

with new capabilities for decomposition and

verification, if and when these become available.

In fact, any addition to the interim verification

system should tend to transform it into the ideal

system of Figure 3.39. At present, the interim

verification system achieves limited verification

partly through checks performed at pre-compilation

and pre-simulation time and partly through formal

verification of some critical sections of limited

scope.

- 109 —

-- User/Analyst

1

Covering only

a few critical

(eeb sections of the
total system

—

Only on

Selected

Cômponents

/Diagnostics

Further

Verification
Implementation

Decisions 	:

Requirements

Abstraction

Assertions Specification

Language

Axiomatization 1
complete

Or

partial
Refinement Stages

Verification

Manual or

Automated
System Representation
Using Ada Building
Blocks

'•••••nn.•••n•nn,,,...••••n••nleej

Prelindnary
Compilation

Preliminary
SimUlation

(Using Testbèd)

Diagnostics

Performance and

Reliability Analysis

- Hardware vs Software

Partitioning

etc.

Figure 3.40: Proposed Interim Verification System

A useful addition to the preliminary compi-

lation would be the inclusion of imports/exports

constructs fashioned after those of Euclid

[LAMP77]. Those constructs are not part of standard

Ada and would be direted expressly at the specifi-

cation blocks. Access into a block and access

originating from inside a block would be tied to a

source or a destination. The advantages accrueing

are twofold:

1. A tight control on interconnection

would be achieved.

2. Further validation work would be made

easier.

3.4 	Summary and Conclusions

This section on specification and validation

was an attempt to describe a design process based on

requirements and producing specifications leading to

easy implementation. Validation of the specifi-

cations and possibly of the implementation was also

covered, mostly by means of survey of existing tech-

niques.

The results of this research can be summarized

as follows:

1. The transformation of requirements

into formal or even informal specifi-

cations is still largely the task of a

systems analyst. 	The necessary ab-

straction power makes the automation

of this activity within the near

future unlikely.

2. The process of obtaining specification

was described and guidelines were pro-

vided. Decomposition techniques, such

as dataflow analysis and functional

decomposition were introduced. 	Ada

specification blocks were used to pro-

vide a strict formalism .

I

I.

1

1

1

3. The specifications obtained with Ada

specification blocks can be trans-

formed 	naturally 	into 	an 	imple-

mentation. This transformation is

done in various steps, with each step

being a refinement of the previous

one.

4. Validation techniques were investi-

gated with respect to their applic-

ability to the design methodology.

Although no concrete validation system

• was specified, preliminary validation

• capabilities were outlined. 	A more

powerful validation system was also

described as a desirable goal for

future research.

Due to its research nature, the work reported herein

is not definitive. Modifications will, no doubt, be

made as new problems are discovered (in the course,

perhaps, of actual experimentation).

The methodology should be •experimented with in

the context of a large example. This would allow

for improving the methodology itself and would also

- 113 -

provide the necessary framework for the development

of computer aided tools such as:

1. A graphical aid to decomposition (out-

lined previously).

2. A simulation testbed for the prelimi-

nary simulation phase.

3. A verifier which could be used on

selected sections of the system.

In connection with verification, it should be

pointed out that, due to the very complex nature of

the task, it would be desirable to gain experience

with an already existing system, such as Gypsy.

Theory would then be substantiated by practical

experience.

4.0 	PERFORMANCE AND RELIABILITY

This section examines the potential applications of CAB

 tools for the analysis and optimization of the performance

and reliability characteristics of multi microprocessor

systems design. 	First the primary questions which CAE tools

can answer are considered. 	Then the application of these

tools at each design stage are explored. Next the reliabili-

ty and resource usage Models which form the building blocks

of CAB tools are examined. Based on these fundamental

models, areas for the development of new or improved CAE

tools are identified. The conclusions are summarized at the

end of the section.

4.1 	Introduction

The problems in which designers employ CAB performance/

reliability tools involve the determination of one of the

following three factors given that the other two are known:

(a) the architecture of the entire sytem,

(h) the performance/reliability levels of each

of the components of the system, and

(c) the performance/reliability of the entire

system.

The most basic CAB tools assist the designer in solving

the following problem:

Given the architecture of the system and the

performance/reliability levels of each of the

components, what is the performance/reliability

of the entire system?

- 115 -

By solving this problem for different design alterna-

tives, the designer can solve the following two more

difficult problems:

1. "Given the architecture and the performance/

reliability requirements of the system, what

is the required performance/reliability levels

of each of the components of the system?",

2. "Given the performance/reliability levels of

each of the components and the required

performance/reliability 	of 	the 	system or

module, what should the architecture be?"

The more powerful and sophisticated CAE tools provide

additional assistance to the, designer in answering these last

two questions. Only in the most fully automated design

environments do the CAE tools answer these questions with a

minimal amount of involvement and interaction on the part of

the designer.

• 4.2 	Scope of CAE Tools in the Performance Area

This section examines the demand for performance/

reliability CAE tools in the successive design stages. The

potential application and scope of CAB tools are derived from

•the designer's needs in each of these stages. 	Opportunities

for "pre-building" the CAE tools before a micro-computer

design project starts are also explored.

4.2.1 	Architecture Selection

The first stage of selecting a hardware/software archi-

tecture is primarily a "strategic" type of decision. Typical

decisions include the level at which redundancy is

implemented (component, assembly, module or system), the

communication protocols, and the resource scheduling

policies. These decisions are based mostly on experience.

Important variables and decisions are often expressed

subjectively. 	Because of the complexity associated with the

design of highly reliable multiprocessor systems, 	the

architecture decisions must - be in the form of a coherent

strategy' rather than separate fragments of detailed

solutions.

CAE tools which are used ml 	Architecture Selection

stage are usually employed on a one shot basis to answer a

specific question. 	Thus the automated tools which are the

most useful are General Purpose Tools. 	Examples of these

tools include general purpose simulation languages such as

GPSS [GORD75] and SIMULA [FRAN77].

An example question related to the performance assess-

ment in •the Architecture Selection stage is "How does the

throughput of a bus with a prioritized demand access protocol

compare with a bus which has a time slot access protocol when

the number of processing units and the frequency of the

processing unit's access to the bus are varied?" The answer

is usually found by simulating the two alternatives under

varying conditions. To do this quickly and economically, the

- 117 -

designer can use an existing general purpose simulation tool

to create a simulation model of the two alternatives. This

simulation model is a Specific Tool for the question at

hand. The designer first validates that the simulation model

is correct by comparing its results with analytical

predictions. Once satisfied with the correctness of the

model, the designer then uses it to examine the performance

of the alternative bus protocols under different conditions.

4.2.2 	System Model (Hardware and Software Selection)

The primary objective of the System Model Design stage

is to optimize the design within the confines of the Design

Policies set by the Architecture Selection stage. Typical

decisions made in the this design stage are the number of

processing units and the allocation of software tasks to

processing units and memory partitions. This optimization

normally involves the handling of a considerable amount of

data and the repetition of complex calculations. Therefore,

this stage is an excellent candidate for computer automation.

The CAE tools which are used for performance evaluation

in the System Model Design stage are usually custom tailored

for the 'hardware/software architecture being employed. To

understand the reason for this, it is useful to review the

underlying methodology for performance/reliability

evaluation. 	The basics of this methodology are shown in

Figure 4.1. 	The process starts with a Design Description

consisting of information such as the hardware organization

of processing units, memories, buses, and I/O ports, software

organization of tasks, buffers and inter-task communi-

cations. 	This 	is 	followed by mapping the relevant

information onto the Performance/Reliability Models. 	This

mapping process is called Abstraction. 	From these models,

results are obtained, interpreted and conclusions drawn.

Based on the Conclusions, design changes can be made and the

cycle repeated until an "acceptable" design is produced. An

acceptable design is one which meets the performance require-

ments.

The application of this methodology, to the performance

evaluation and design of multiprocessor hardware is illus-

trated by, the example of Figure 4.2(a). 	The Design

Description shows a dual processor architecture with both

local and common memory. The various cycle, access, and

delay times are included in the description. By the process

of Abstraction, the performance characteristics of the

components are extracted from the design and configured into

a Performance Model. The model, shown in Figure 4.2(b),

considers the processing units, memories and I/O interface as

servers in a queuing network. The conflicts and resulting

delays in the access to the Common Bus are modelled by the

Common Bus Queue. The delay of the Bus Interfaces and the

access times of. the Common Bus Devices (ROM #3, RAM #3 & I/O)

are lumped into one server, the Common Memory, which has a

total service time of 0.5 uSec.

From the Performance Model of Figure 4.2(b), 	the

following Results are obtained by mathematical calculations

and by running the simulation model:

1. Processing Unit #1 executes 2.0 million cycles/sec.

2. Processing Unit #2 executes 1.3 million cycles/sec.

3. Average Common Bus Queue Length = 0.6

By Interpreting these Results, two Conclusions are

drawn:

1. More processing throughput is needed.

2. Too much time is wasted in accessing Common Memory.

Next, design changes are recommended:

1. Decrease the Access Time of ROM #3, RAM #3, and I/O

to 0.2 uSec.

This completes one cycle of the methodology which is

repeated until a hardware design, which has acceptable

performance, is obtained.

The critical processes in this methodology are the

Abstraction and Interpretation steps. In general, these

steps can only be done by the human mind and cannot be done

by computers until significant breakthroughs are made in

artificial intelligence.

If the Abstraction, Interpretation and Design Change

steps must be performed manually, then the CAE tool can

assist directly in solving the following basic performance

analysis problem:

"Given the architecture of the system or module,

and the performance/reliability levels of each of

its components, what is the performance/

reliability of the system or module?"

In summary, the following conclusions can be made

regarding CAE tools for this design phase:

1. CAE tools which incorporate performance and

reliability models can be used to optimize

many designs which employ various computer

architectures. Their main advantage is to

relieve the designer of the tedious and time-

consuming tasks of processing (number

crunching) and storing large quantities of

data. Because these tools are compatible with

many different architectures, they can be

built before an architecture is selected.

2. CAE tools which perform the Abstraction,

Interpretation and Design Change steps as well

as the performance and reliability calcu-

lations can be built only after the computer

architecture has been selected. These tools

further reduce the amount of manual design

effort and the total time required for the

initial design stage. This is particularly

true if the sanie architecture is used in

several projects since powerful CAE tools

would then be available at the beginning of

each project. Re-using CAE tools in many

projects 	also 	helps 	justify 	their 	often

substantial development costs.

4.3 	Reliability Models

The reliability analysis models enable the designer to

examine the probability of failure, hence the survival

probability of a given architectural configuration. Two

types of failures are considered:

(i) failure due to exhaustion of spares and

(ii) failure due to imperfect coverage.

Also a model for calculating component reliabilities is

presented.

4.3.1 	Component Reliability Model

In general, the failure of the electronic components

follow a Poisson distribution with failure rate L. Thus the

reliability of the component is equal to no failure in time

[0, t], given by:
-Lt

P r (no failure in time [0, t]) = e

1
1
1

1
1
1
1
1

1
	

4.3.2 	Exhaustion of Spares Model

This model calculates the probability that a sufficient

number of spares fail gradually over time so as to render the

remaining parts incapable of performing the required system

function. In this model, the hardware architecture of the

micro-computer system is considered in terms of its Basic

Modules. A Basic Module is a module whose failure is inde-

pendent of the failure of other modules in the system. This

I . approach is often applied in fault tolerant architectures

where identical copies of hardware modules are employed as

spares or in voting strategies. Several assumptions are made

in the construction of this model:

(i) The failure probability of a particular Basic

Module is independent of the failure state of

other Basic Modules.

(ii) A failing Basic Module is not repaired and

will be isolated from the remaining com-

ponents.

(iii) The system starts from an Initial State in

which all components, including the redundant

ones, are functioning, i.e., the system has a

perfect Initial State.

For an architecture with n Basic Module types, there is

defined a state vector, 	S, consisting of the tuple S = (si,

); where s. corresponds to the Basic Module type

i. 	The entry si in vector S is an integer whose domain is

s2, 	oe'e

1 - 123 -

n.

zero to Ni; with Ni denoting the number of identical copies

of Basic Module type i in the perfect Initial State of the

system.

The state of the system, at any time, 	t, is defined by

number of'working (non-failed) copies of each Basic Module

type. The Initial State of the system can be defined by S o

as:

S o = (Ni, N2, •.. N n)

The state of the system after some time t>0 can be

represented by:

S t = (Ni, N2, 	, Nn)

where Ni Ni for i = l, 2, ... , n.

A Minimal State is one in which the system is operating

with a minimum number of copies of each Basic Module in

working condition so that the failure of a copy of any of the

n modules will lead to a total system failure. The Minimal

State is represented by S m :

S m = (NI , NI, •••, N
in

)

where Ni :Ni for i = I, 2, ...

Clearly, the set of Operating States for the system

consists of all those states whose representative vector S is

greater than or equal to S m . All other states correspond to

system failures.

The reliability of the micro-computer system is defined

to be the sum of the reliabilities of all the Operating

States. Thus the failure-to-exhaustion probability can be

computed once the Operating States of the system are

enumerated.

For example, consider an architecture which consists of

10 processing units, 8 shared memory modules, 6 buses and 5

clocks. The minimum operating configuration of this

architecture consists of 7 processing units, 6 shared memory .

modules, 4 buses, and 3 clocks. Let Rp, Rm, Rb, and Re

denote the reliability of a processing unit, a memory module,

a bus, and a clock, respectively. The Initial State of the

system is given by:

S o = (10, 8, 6, 5)

and then the Minimal State is given by:

S m = (7, 6, 4, 3)

The reliability of an Operating State S' = (9, 6, 5, 3

is given by:

(0) 9 	8) 	6 	2
R(S 1) = 	Rp (1 	Rp) * 2 	Rm (1 - Rm) 	*

(61)R15) (1 - Rb) * 	11! (1 - R e)

and the reliability of the system is given by the sum of the

reliabilities of all states S that satisfy:

S m <S <S,

l 4.3.3 	Imperfect Coverage Model

I 	

In this model, the time required to detect an error and

recover from it (e.g., by isolating the failing components,

reconfiguring the hardware architecture, and re-allocating

its functions) is considered. 	Since this time is finite, it

is probable that one or more other components will fail

before the recovery actions are completed. This may or may

not lead to a total system failure, depending on the extent

and complexity of the recovery mechanism.

The above situation can be best modelled by a Markovian

chain which consists of the following states:

(i) The Start-Up (all components good) State which

has a given initial probability that the

system is initially fault-free.

2

- 126 -

(ii) A set of Intermediate States in which one or

more components are in failure but undergoing

detection and recovery. 	It is assumed here

that complete recovery will return the system

to the Start-Up State, i.e., that there are

sufficient spare parts. 	This assumption is

valid as long as the period of time being

analysed is relatively short and that, in the

long run, system reliability is dominated by

the failure-to-exhaustion.

(iii) The set of failing states are lumped together

into one Failure State. This state is reached

from any of the Intermediate States when an

additional 	failure 	occurs 	which 	hampers

recovery and leads to a catastrophic failure.

4.4 	Resource Usage Models

Modelling of the resource usage in a multiprocessor

system can be done at different levels of detail. However,

the methodology for performing the analysis is the same at

all levels of detail as shown in Figure 4.3. From the Design

Description, the Loading and Resource Descriptions are

obtained by constructing suitable models. These descriptions

are combined with the algorithms in the Resource Usage Model

to produce the Resource Usage Estimates. These results are

Interpreted and Design Changes made, thus causing the design

process to cycle until a design with acceptable resource

usage is produced.

- 127 -

1
1

1

1

1

1

1

1

1
types are listed. The capacity of each resource component is 1

1

1

When the resource usage is modelled at lower levels of

detail, the Design, Loading and Resource Descriptions become

increasingly complex. The following sections progress from

the high to low levels of detail. The higher levels provide

more general information on the total amount of resources

needed, while the lower levels yield more information on how

individual resources are used.

1

I 4.4.1 	Simple Totals Model

The simplest assessment of resources can be made by just

summing the load and comparing it to the available or

postulated levels of resources, without considering how the

components of the load will be assigned to the individual

units of resources. 	This type of analysis gives gross

estimates of system sizing and resource utilization.

Examples of Loading, Resource Descriptions and Resource

Usage Estimates are shown in Figure 4.4. 	The Loading

Description lists all software tasks and buffer areas. 	For

each one, the required resources such as processing time, ROM

and RAM are estimated. The individual resource requirements

are summed to estimate the total required amount of each

resource type. In the Resource Description, the resource

multiplied by the number of copies to give the total capacity

of each resource type. 	Next the total capacities are

compared to the required amounts of each resource in the

1 - 128 -

Resource Usage Estimates. 	The resource utilization is the

percentage ratio of required resources to capacity, and the

spare capacity is the difference between required resources

and the capacity.

4.4.2 	Effects of Allocation Model

The next step is to allocate the individual loads to

individual resources. The Design Policies from the

Architecture Select_ion stage place constraints on how this

allocation is done. Examples of Allocation Constraints are:

(i) One single board computer (SBC) may read the

RAM of another SBC but may not write into it.

(ii) The private data of a software task must be

stored in the RAM of the SBC which executes

the task.

(iii) The code for all reliability critical tasks

must be stored on at least two SBC's.

Further Allocation Constraints are derived from the

Design Description. 	These constraints can be summarized in

an Access Graph as shown in the example in Figure 4.5. 	The

Access Graph shows the inter—task communication requirements

and the shared buffer areas. In this example, the In TV task

receives 0.25 K byte messages from the Antenna Attitude

Control task and sends 0.10 K byte messages back. The In TV

task also requires access to the two Video Buffers. The

memory requirements for this task are estimated as 2 K bytes

H I

I
1

ROM and 1 K bytes RAM. 	The resource, message passing and

buffer access requirements of the other tasks are similarly

described by the diagram.

In addition to the Allocation Constraints, the effects

on resource usage caused by the allocation of the software

tasks to hardware resources must be identified. Examples of

these' Allocation Effects could be:

(i) If two tasks are dedicated to the same SBC,

then their inter-task messages can be stored

in their SBC RAM. 	If their messages are

stored in the common memory, then a 0.01 m sec

0.1 m sec per 1 K byte of message will be

added to the common bus load.

(ii) If tasks exchange messages by copying from one

local RAM to another, then a 0.02 m sec + 0.1

m sec per K byte of message will be added to

the common bus load. 	As well, RAM space on

both SBC's must be reserved for the message.

(iii) If a processing unit executes code from common

memory, then the processing unit will run 25%

• slower and a common bus load of 0.2 m sec • per

1.0 	m sec 	of 	processing 	time will 	be

• generated.

(iv) If the processing unit executes code from a

local RAM instead of ROM, then the processing

unit will run 35% slower.

- 130 -

Based on the Allocation Constraints and Effects, the

Loading Description can be created. An example is shown in

Figure 4.6(a). Compared to the Loading Description in

Figure 4.4, the allocation or assignment of tasks to

individual hardware components is shown. The requirements

for the hardware components are summed to produce the total

load on each. 	The Resource Description also shows more

details associated with the resources (Figure 4.6(b)). 	The

individual hardware components are identified and the common

bus which was not considered in the Simple Totals Model is

included. 	The Resource Usage Estimates then show the

utilization and spare capacity of each hardware component

(Figure 4.6(c).

4.4.3 	Effects of Dynamic Interaction Model

Two aspects of dynamic interaction are important:

1. Process Flow - Certain actions must be taken

(or events occur) before other actions 'take

place(or events occur). The order of hardware

and software 	tasks 	and 	their inter-task

communication define the data processing flow

of the system.

2. Resource 	Scheduling 	The 	method 	for

allocating resources in real time between

competing tasks can have a large effect on the

ability of the system to meet its real time

requirements. 	The 	interaction 	between

Resource Scheduling and Process Flow affect

the overall utilization of the resources.

There are two methods for coping with the effects of

dynamic interaction:

(i) Apply Rule of Thumb Utilizations - Because the

undesirable effects of dynamic interaction

usually only occur when one or more of the

resources are heavily utilized, a rule of

thumb may be employed such as:

"No processing unit or shared bus may

have 	greater 	than 	70% 	average

utilization over a system cycle".

By avoiding high loading of any resources,

bottlenecks can be prevented. The maximum

utilization levels can also be set by a worst

case analysis of real time events and system

loading [MELL80]. The advantage of Rule of

Thumb Utilizations is that they are easy to

apply. Given that resource requirements are

usually not known precisely until the near

completion of the system implementation stage,

comparisons to rules of thumb?often provide as

much precision as is possible in the early

design stages.

- 132 -

(ii) Simulate the Dynamic Behaviour - A simulation

model of the system can be constructed and

timing and statistical performance measures

obtained from it. 	This method of evaluating

the resource usage is only appropriate when

there is accurate data on the resource

requirements for each software task. 	Thus

this 	method 	of 	estimating resource

requirements is most appropriately used in the

later design and implementation stages when

this data is available. 	The advantages of

simulating the dynamic behaviour are: 	(1)

more accuracy is obtained in the resource

usage estimates, 	and 	(2) 	the ability to

discover hidden flaws in the design due to

actual 	timing 	and 	resource 	scheduling

problems.

The Rules of Thumb Utilizations can be built into the

Effects of Allocation Model (Section 4.4.2) to:

(i) flag (warn the designer) when the utilization

of a resource exceeds the approved threshold,

and/or

(ii) recalculate the resource utilizations based on

first order effects of Resource Scheduling and

bottlenecks.

1 	4.5

If more accurate information on resource usage is

required, then a CAE tool which simulates the micro-computer

system is needed. There are two possible types of simulator

tools which could be provided to the designer:

(i) A General Purpose Simulation Language - The

designer could use this tool to build a

simulation model which corresponds to his

design and then obtain the resource usage

information from this model.

(ii) A Special Purpose Resource Simulator . - The

designer could feed his Design Description

directly into this tool and then automatically

receive the resource usage information.

Because this type of CAE tool is specialized

for a particular architecture, it can only be

built once the architecture has been

selected.

Areas for New or Improved CAB Tools

In this section, areas for the development of completely

new performance/reliability CAB tools, and the improvement of

existing ones are identified. These tools are separated into

two categories:

(i) tools which are independent of any particular

multiprocessor architecture, and

(ii) tools which are customized for a given multi-

processor architectural scope (Architecture

Dependent Tools).

134 -

Both categories of tools are useful and it is desirable

that the designer would have access to a full complement of

tools from both categories. The Architecture Independent

tools are particularly useful in the Architecture Selection

stage when the computer architecture and Design Policies are

being formulated. These tools can also be employed in the

Detailed Design stage to optimize the design. The

architecture independence feature means that these tools can

be re-used in wide variety of computer design projects which

employ different architectures.

The Architecture Dependent tools are useful primarily in

the Detailed Design stage. Because they are "customized" for

particular architectures, they can perform a larger •portion

of the Abstraction, Interpretation and Design Change steps,

and thus provide a more automated design environment.

4.5.1 Architecture Independent CAE Tools

4.5.1.1 ADA Based General Purpose Simulation Language

Many General Purpose Simulation Languages, GPSS, SIMULA,

SIMSCRIPT, GASP, ..., already . exist. Improving on these

languages and incorporating an ADA base could lessen the cost

and time needed to implement specific simulation models. If

ADA is also the language used for system specification and/or

software implementation, then the incorporation of the ADA

- 135 -

syntax and language constructs into the simulation language

would mean:

(i) less time wasted on learning a multitude of

computer languages, and

(ii) easier and more reliable translation of the

simulation results into the specifications and

implementation.

An ADA Based General Purpose Simulation Language could

also be used to construct the Dynamic Resource Usage Analysis

Tool (Section 4.5.2.3) which is useful in the later design

and implementation stages.

4.5.1.2 Exhaustion of Spares Analysis Tool

This tool incorporates the Exhaustion of Spares Model

(Section 4.3.2) in an automated package. The designer

supplies the parameters for the model and the CAE tool

performs the calculations.

4.5.1.3 Imperfect Coverage Analysis Tool

This tool incorporates the Imperfect Coverage Model

(Section 4.3.3) in an automated package. As with the

previous CAE tool, the designer supplies the parameters for

the model and the tool performs the calculations.

4.5.1.4 General Reliability Analysis Tool

This tool is a more comprehensive combination of the

previous two CAE tools. By integrating all three reliability

models, Component Reliability, Exhaustion of Spares, and

Imperfect Coverage, this tool can provide a more complete

service to the designer. In particular, the designer is

relieved of the chore of transferring data between CAE tools

for the individual models. As before, the designer supplies

the parameters for the models and the tool performs the

calculations.

4.5.1.5 ResoUrce Allocation Analysis Tool

The Simple Totals Model (Section 4.4.1) and the Effects

of Allocation Model (Section 4.5.1) are automated in this

tool. One of the main purposes of this tool is the

generation of up-to-date management reports on the expected

usage of the micro-computer resources. This information is

crucial to the resource management decisions [LARM77] which

must be made as the hardware and software development teams

progress through the design and implementation phases.

The Resource Allocation Analysis Tool automates the

production of the tables shown in Figures 4.4 and 4.6. The

user first enters a list of software tasks and • buffers, and

another list of hardware resources. The CAE tool then builds

the tables for Loading and Resource Descriptions and prompts

the user for the data entries. From this data, the tool

performs the mathematical calculations and outputs a table

showing the Resource Usage Estimates. As the project

progresses from the Architecture Selection stage through

Initial and Detailed Design to implementation, the user can

update the lists of software tasks, buffers and hardware

resources as well as the entries in the tables. The tool

then produces up-to-date summaries of the resource usage.

Two types of summaries are produced: (1) a simple comparison

of total requirements compared to total capacity (Figure

4.4), and (2) a detailed analysis of the loading of each

hardware component (Figure 4.6).

I 4.5.2 	Architecture Dependent CAE Tools

4.5.2.1 Hardware Reliability Analysis Tool

With this tool, the designer assembles a hardware model

from a database of pre-defined components such as processing

units, memories, majority voting circuits, and bus

structures. 	The tool can then use the pre-defined relia-

bility characteristics of the components to:

(i) calculate the overall reliability of the

hardware, or

(ii) select the number of redundant modules which

are necessary to meet the overall hardware

reliability specifications, or

(iii) calculate how reliable the modules must be to

meet the overall hardware reliability specifi-

cations.

A major feature of the Hardware Reliability Analysis

Tool 	is 	the 	support 	of 	Structure/Behaviour 	Design

Partitioning. 	The Structure is the component and module

- 138 -

interconnections specified by the designer. 	In Figure

4.7(a), the Structure is illustrated in a "bottom-up" order.

The lowest level of detail, the Processing Unit, ROM, and RAM

Modules are described first in Sections (a), (b) and (c).

These modules then are configured into the Single Board

Computer Module in Section (d) (Figure 4.7(b)). Finally, the

top level view of the Structure is shown in Section (e)

(Figure 4.7(c)). 	In a "top-down" design approach, the order

of the previous design sections is reversed. 	The top-level

section (e) is drawn first and is subsequently decomposed

into the lower level sections.

The Behaviour, which is analysed by this CAE tool, is

the reliability characteristic of the components, modules and

system configurations. The Behaviours of the components and

modules are stored in the CAE tool's data base. By combining

the system structure specified by the designer with the

component, and module Behaviours from the data base, the tool

formulates (by a pre-programmed algorithm) the parameters of

the reliability models (from Section 4.3). The tool then

computes the reliability characteristics of the complete

system.

The most powerful version of this tool would also adjust

the Structure (such as the number of redundant processing

units), or calculate the component reliabilities (Behaviour)

which are necessary to meet the overall system reliability

1

1
1

Descriptions 	as 	well 	as 	the Resource Usage Resource

Estimates.

1

specification. 	The modelling power of the tool can be ex-

panded by adding more components and modules to the data

base.

1
4.5.2.2 Static Resource Usage Analysis Tool

This 	tool 	automates 	the 	Simple 	Totals 	Model

(Section 4.4.1) and the Effects of Allocation Model

(Section 4.4.2). The major enhancement of the tool over the

Resource Allocation Analysis Tool (Section 4.5.1.5) is the

automatic production of the Loading and Resource Descriptions

from the Design Description. Since the calculation of the

data entries in the Loading Description (Figure 4.6) is the

most laborious step in analysing the resource usage, its

automation is a significant improvement. When using the

Static Resource Usage Analysis Tool, the user inputs the

Design Description and receives from the tool the Loading and

1
The mos.t powerful version of this tool would also:

optimize the allocation of the load to the

individual resources,

(ii) flag resource utilizations which exceed speci-

fied thresholds,

(iii) refine the Resource Usage Estimates based on

the first order effects of Resource Scheduling

and bottlenecks, and

(i)

, 140 -

(iv) select the amount of each resource type which

is required to meet the resource usage speci-

fications.

As 	the 	project 	progresses 	from 	the 	Architecture

Selection stage through Detailed Design to implementation,

the user can update the lists of software tasks, buffers and

hardware resources as well as input new Design Descriptions.

The tool then produces up-to-date summaries of the resource

usage. Two types of summaries are produced: (1) a simple

comparison of total requirements compared to total capacity

(Figure 4.4), and (2) a detailed analysis of the loading of

each hardware component (Figure 4.6).

4.5.2.3 Dynamic Resource Usage Analysis Tool

The purpose of this tool is estimate the resource

usage by simulating the dynamic interactions of the software

tasks and hardware resources. It automatically constructs

the simulation model from the Design Description provided by

the designer. Based on the results of executing the model,

the tool estimates:

(i) the 	utilization 	of 	individual 	resources,

(ii) the timing diagram which shows when each hard-

ware resource is used by each software task,

(iii) the unused resource capacity caused by tasks

holding onto some resources while waiting for

other resources,

(iv) the location of system bottlenecks.

1

The most powerful version of this tool would also:

(i) optimize the allocation of the load to the

resources, and

(ii) select the amount of each resource type which

is required to meet the resource usage speci-

fications.

In order to produce accurate and useful results, this

tool requires that the user provide accurate estimates of the

resource requirements of individual software tasks, as well

as a moderately detailed Design Description. Since this

information is not normally available until later in the

design process, this tool is primarily useful in the Detailed

Design Stage.

I 4.6 	Summary

When choosing a CAE tool or a package of CAE tools for

the evaluation of performance and reliability, the major

factors to be considered are the:

Selectivity and the

(ii) Degree of Automation of the tool(s).

The Selectivity refers to range of multi-processors

designs for which the tool can be used. Tools which are

architecture dependent are specialized for a small range of

multi-processor architectures while tools which are

architecture independent are useful in a wide range of com-

puter designs. The Degree of Automation refers to the amount

of the design process which is performed by the tool.

-142-

(i)

In this section, the proposed CAE tools (Section 4.5)

were 	classified 	as 	either 	Architecture 	Dependent 	or

Architecture Independent. 	The classification was not in-

tended to imply a sharp boundary. 	Quite the contrary is

true. 	The tools of both classifications are built on the

same fundamental performance/reliability models (Sections 4.3

and 4.4). The difference between the two classifications is

the amount of abstraction, interpretation, and design changes

performed by the tool. When these steps are performed

primarily by the designer, an Architecture Independent tool

is defined. The amount of architecture dependency and thus

the• level of Selectivity can be changed by varying the

responsibility for performing the abstraction, interpre-

tation, and design change Steps between the designer and the

CAE tool.

In a complete CAB tool package, the performance/relia-

bility tools would be integrated with the specification and

verification tools. The point of integration is the design

description 	documentation 	which 	is 	produced 	by 	the

specification 	tool 	and 	used 	by 	the 	performance 	and

reliability tools. There must be enough information in the

design description documents to perform the Abstraction and

parameter estimation for the performance/reliability models.

If the Abstraction step is performed manually, then the

precise contents of the design description documents is not

critical so long as they are clear and easy to read. But if

the ,Abstraction step is performed automatically by the

performance/reliability tool, then the accuracy and

completeness of the design description is critical to the

integration of the CAE tool package.

Design

Description

Abstraction

eN

\

Design

Changes

Performance/

Reliability

Models

Results

Interpretation

\ \
IJi

Conclusions

I)

2
—

FIGURE 4.1 - PERFORMANCE/RELIABILITY DESIGN METHODOLOGY

0.2 MS Cycle Time 0.2 MS Cycle Time

Bus

Interface
Bus

Interface
Processing

Unit #2

Processing .
Unit #1

ROM #1 RAM #1 ROM #2 RAM #2

40%

• (b) Performance Model

30ir

30%

Abstraction

40%
150%

10%
-->

Processing Unit #1

Execution Path

Processing Unit #2

Execution Path

Local

Memory

0.4 MS 1:)
Common-

Bus

Queue

Common

Memo

0.5MS
. ry

Processing

unit #2 /
0.2 MS 1

Processing

Unit.#1

0.2.MS
local

emory

0.4 MS

(a) Design Description

ROM #3.

0.4 MS lccess Time

RAM #3 I/O

Common Bus

0.1 MS Delay

Local Bus

I 	
Local Bus

0.4 MS Access Time 	0.4 MS Access Time

*uf

(c) Interpretation

Results:»Processing Unit #1 executes 2.0 million cycles/sec

*Processing Unit #2 executes 1.3 million cycles/sec

*Average Common Bus Queue length = 0.6

	

-Back to 	4jf

	

Design 	Conclusions: 1. More processing throughput is needed.
Description

2. Tho much time is wasted accessing common memory.

II 44Je

	

.t. 	Design Changes: Decrease the Access Time Of ROM #3, RAM #,3 and I/O

to 0.2 MS. -

FIGURE 4.2 - HARDWARE PERFORMANCE DESIGN-METHODOLOGY EXAMPLE -

Resource

Usage

Model

e\\

‘,

Design
Changes

\
\

Modelling

Loading &

Re source

Descriptions

Re source
Usage

Estimates

Interpretation

Design

Description

F-.

"*.

Conclusions

1 	/
/

/ „

FIGURE 4.3 - RESOURCE USAGE DESIGN METHODOLOGY

MI • MI MI MI MI MI IBM BM • MI UM MI 	UM BM MI an MI

(a) Loading Description:

Task or Buffer 	Processing Time 	ROM RAM

1. Antenna Attitude Control 	6 msec/cycle 	6.0K 	2.0K

2. In Radio 	 10 	10.0 	5.0

3. Out Calib 	 2 	 2.0 	1.0

4. Out Actuate 	 1 	 0.5 	0.5

5. In Sensor 	 2 	 0.5 	0.5

6. In TV 	 8 	 2.0 	1.0

7. Out Radio 	 4 	 1.5 	2.0

8. Messages 	 2.75

9. Video Buffers 	 24.0

33 msec/cycle 	22.5K 	38.75K note: 1 cycle = 25 msec

(h) Resource Description:

i 	 .

g- 	Resource Type 	Number 	 Total Resource
.>
co 	. Processing Unit 	 2 ' 	50 msec/cycle processing time

1 	8K ROM Module 3 	 24K,

.16K RAM Module 	 3 	 48K

(c) Resource Usage Estimates

Resource Type 	 Utilization 	Spare Capacity

Processing Units
X 100 = 66% 	

50 - 33 = 17 msec/cycle 3
2
50

ROM 	 22.5
 X 100 = 93% 	

24 - 22.5 = 1.5K

24

RAM 	 38.75
 X 100 = 81% 	

48 - 38.75 = 9.25K

48

FIGURE 4.4 - EXAMPLE SIMPLE TOTALS MODEL

.50 Kbyte Mssg
12K Byte

In Sensor

.5K ROM

.5K RAM

25 Kbyte 	/ /25 Kbyte

Ms sg .25 nyte/ 	Mssg

Mssg Out Calib

2K ROM

1K RAM

; 10 Kbyte

Mssg
.10 Kbyte

Mssg
12K Byte

Kbyte Mssg

In Radio

10K ROM

5K RAM

Antenna

Attitude

Con trol

 6K ROM

2K RAM

Out Radio

1.5K ROM

2K RAM

Kbyte Mssg

IIIIII 	MI 11111111 alII MR MIN IMP MIMI MI MI OM 11111 MI MI Mil MIR MI

Out Actuate

.5K ROM

.5K RAM

FIGURE 4.5 - EXAMPLE ACCESS GRAPH

MO MI. Mil MI Mil BIM Mal BIM IMO 	 111111 	MI MIN OM

(a) Loading DesCription

Task or Buffer

1. Antenna Attitude

Control

Processing Unit

#1 	#2

6

ROM Module 	RAM Module 	Common

#1 	#2 	#3 	. #1 	#2 	#2 	Bus

6.0 	 2.0

2. In Radio 	 10 	8.0 	2.0 	4.0 	1.0 	1.5

3. Out Calib 	2 	2.0 	 1.0

4. Out Actuate 	1 	 0.5 	0.5 	 0.5

5. In Sensor 	 2 	 0.5 	0.5 	 1.0

6. In TV 	 8 	 2.0 	 1.0 	8.0

7. Out Radio 	4 	 1.5 	2.0 	 6.0
1

1-- 8. Messages 	 .75 	2.0 	3.0
ul

c) 9. Video Buffers 	 12.0 	12.0

13 msec/ 20 msec/ 	8.0K 	8.0K 	6.5K 	6.75K 16.0K 	16.0K 	20.0 msec/

cycle 	cycle 	 cycle

Figure 4.6(a) - EXAMPLE EFFECTS OF LOADING MODEL

Processing

Unit #1

Bus

Interface

Bus

Interface

Processing

Unit #2

Local Bus Local Bus

ROM #1 RAM #2 ROM #2 RAM #1

RAM #3 ROM #3 I/o

Common Bus

11

win 	Ma MI MI MI MI MI 	MIM1 MN 1131 11113 MU MU 	11131 1113 MIN

(h) Resource Description

Ui

Resource Unit 	Amount of Resource

Processing Unit #1 	25 m.sec/cycle

Processing Unit #2 	25 m.sec/cycle
ROM #1 	8K.

ROM #2 ' 	8K

• ROM 43 	8K

RAM #1 	' 	16K

RAM.j#2 	16K

RAM #3 	16K

Common Bus 	25 m.sec/cycle

Figure 4.6(b) - EXAMPLE EFFECTS OF LOADING MODEL

t.n
N.)

MI MR MIMI MIMI UM MI IIIMM MIMI BM UM MIMI -. MIMI MIMI UM OMMII 	IMMI MOW

(c) Resource Usage Estimates

Resource Unit 	Utilization 	Spare Capacity

Processing Unit #1

Processing Unit #2

ROM #1

ROM #2

ROM #3

RAM #1

RAM #2

RAM #3

Common Bus

13/25 X 100 = 52% 	25 - 13 = 12 m.sec/cycle

20/25 X100 = 80% 	25 - 20 = 5 m.sec/cycle

8.0/8.0 X 100 = 100% 	8.0 - 8.0 = 0

8.0/8.0 X 100 = 100% 	8.0 - 8.0 = 0

6.5/8.0 X 100 = 81% 	8.0 - 6.5 = 1.5K

6.75/16.0 X 100 = 42% 	16.0 - 6.75 =9.25K

16.0/16.0 X 100 = 100% 	16.0 - 16.0 = 0

16.0/16.0 X 100 = 100% 	16.0 - 16.0 = 0

20.0/25.0 X 100 = 80% 	25.0 - 20.0 = 5.0 m.sec/cycle

Figure 4.6(c) - EXAMPLE EFFECTS OF ALLOCATION MODEL

(a) Processing Unit Module

Clock

Processing

Unit "A"

Processing

Unit "B"

Processing

Unit "C"

Majority Voter

I 	I

(h) ROM Module (c) RAM Module

16 K Bytes

Main RAM

16K X 3 Bits

Redundancy
RAM

I
Error Corrector

px Bytes -

Main ROM

8K X 3 Bits

Redundancy
ROM

nZZ
Error Corrector

Bus Connection Bus Connection

Bus Connection

Figure 4.7(a) - HARDWARE RELIABILITY ANALYSIS TOOL EXAMPLE

External Bus Connections

Processing

Unit

Module

Bus Interface Bus Interface

Bus Interface Bus Interface

ROM

Module
RAM

Module

Local Bus "A"

Local Bus "B"

MIIIIIII1111111111111111111111•1111111111111111•11M11111111111111111111111111•1111111111111111111 111 11111. 11M

(d) Single Board Computer (SBC) Module

Clock Input

Figure 4.7(b) - HARDWARE RELIABILITY ANALYSIS TOOL EXAMPLE

- RAM

Module

Bus Interface

, 	 -1-1111LE.

(p) Multi-Microcomputer System

Clock

Bus Interface
I/O

Module

ROM

Module

Ui

Ui

Common Bus "A"

LLI
Common Bus "B".

Common Bus "C"

ELI
SBC

Module

Figure 4,7(c)- HARDWARE RELIABILITY ANALYSIS TOOL EXAMPLE

SBC

Module'

	

5.0 	INTEGRATION WITH EXISTING TOOLS

	

5.1 	Introduction

As indicated earlier, the development of a fully

integrated set of CAE tools requires significant effort and

can be accomplished in a reasonable period of time only if

built over a solid foundation of existing tools. This

section examines closely the basic characteristics of

existing tools at the architecture design level and the

levels below it. The main objectives are:

- to determine •the suitability of one or more of the

existing tools for possible integration with the

high level specifications tool;

- to 	determine 	the 	necessary 	procedures 	and

interfaces for integrating these tools; and

- to select one or more of the existing CAE tools, if

possible, for procurement and implementation.

The use of existing tools to build a foundation for the

integrated set of tools would provide two significant

advantages. First, they would shorten the development cycle

of the CAE tools, perhaps by as much as half of the total

anticipated four or five years required for complete system

development. Second, the use of these tools would provide

significant input into the design of higher level tools by

broadening the knowledge base of those systems.

5.2 	Transition between Different Tools

Once a design engineer has completed his functional

specification using the tool proposed in Chapter 3 •and is

satisfied with the simulation and performance results, as

discussed in Chapter 4, he must then refine his design to a

lower level of detail: the architecture level. At this

level, the engineer will have to use one of the existing

tools that were defined in a previous report [MAHM82]. Given

a specific tool, the engineer must rewrite the definition of

his design in the language of the new tool; in particular, he

must:

- rethink his design in terms of the concepts used

by the tool; for example, some tools are based

on state models, others on data flow models,

etc.;

- augment the design by the specifying to the

level required; i.e., if progressing from the

functional to the architectural levels, the

designer must now specify some of the hardware

components and their interconnections;

- rewrite the design in the language of the tool;

- re-simulate and re-evaluate this design.

This conversion effort from one tool to another could

perhaps be automated. As an example, program translators

exist that allow almost fully automatic conversion of

programs from RPGII to COBOL or COBOL to PL/I. In our case;

the objective will be to find a translator that accepts the

ADA specification and translates it into the input language

of an existing tool. This translator would be feasible if:

- the language of the second tool is sufficiently

close to ADA (i.e., Pascal);

- the definition concepts or the second tool is

sufficiently close to the hybrid data flow/top

down 	decomposition 	approach 	used 	in 	the

specification level.

There are a number of pitfalls to these transition

efforts which cannot be fully àvoided. These are:

- the overall design effort is multiplied by the

necessity of learning several environments and

of recoding the definition of the design for

each tool;

- translation errors can be introduced in between

levels during the conversion process; these

errors may be difficult to notice since, there

are no mechanisms to measure the correctness of

the translation;

- it may be difficult to determine the source of

errors detected during the evaluation of the

architecture level, for example, if the errors

were caused by an improper translation or by an

incorrect architecture design feature added at

that level;

- results of simulations performed in each tool

may be difficult to compare since simulation

measurements may be based on a different

approach; this would make tracking the design

from top to bottom difficult.

5.3 	Selection of . Existing Tools

Various existing tools are described at length in

[MAHM82] and will be reviewed here in order to select the

best tools possible for the implementation of a complete

integrated design environment. Our aim is to select tools

that will be useful at all the levels of design in order to

complement the specification tool described in Section 3.

Tables 5.1 and 5.2 outline some of the characteristics of

each tool while Table 5.3 summarizes,the comparison.

The functional characteristics of each tool is reviewed

in Table 5.1. The char‘acteristics of concern are:

- the aim of the tool: these existing tools were

designed for specific purposes: the closer that

purpose is to ours, the likelier the tool will

be useful;

.the level of usage: to -,cas can cover one or more

 levels of design; obviously widet ranging tools

are preferred since they minimize the transition

efforts;

- multi-level capability: tools that span more

than one level are especially useful if the

designer is not forced to define all system

components at the same time, i.e., he should be

able to work out some portions of the design

to lower levels while leaving other segments at

a higher level.

- performance evaluation: a good tool should

include performance evaluation mechanisms.

The implementation characteristics of each tool is

detailed in Table 5.2. The characteristics of concern are:

- design specification language: 	the language

used to specify the design;

- tool implementation language: the language used

to program the tools;

- operating system and processor type under which

the tool operates;

- developer: 	the organization where the tool is

available from;

- availability: 	whether the tool can be obtained

or not.

Finally, in order to select a tool, three primary

criteria were chosen: Table 5.3 rates the tools with respect

to each criteria. The selection criteria is based upon the

characteristics described earlier and are:

1. Completeness: 	a good tool should offer a

complete working environment. 	Therefore, it

should cover as many levels of' design as

possible, it should provide multi-level

capability and it should provide performance

evaluation mechanism.

2. Ease of Interface: 	a good tool should provide

for an easy transition between the functional

specification 	level 	and 	the 	other levels.

Therefore, the tool should have been designed

for architectural modelling and simulation. 	It

is also desirable that the language in which the

tool is written be compatible with Ada as an

implementation language.

3. Implementation Potential: 	the tool should be

relatively easy to install 'on the same computer

as the one selected for the development of the

functional 	specification 	tool, 	(e.g., 	DEC's

VAX 11/780). Ideally, the tool should also be

well documented and fully supported by the

vendor.

A review of Table 5.3 shows that the AIDE package

represents the best choice. 	However, the Bell Laboratories

have decided not to release it at this time. 	The next

attractive alternative is the ADLIB/SABLE facility which

will be available commercially in the near future and will be

run on the VAX minicomputer. Once augmented by some of the

performance and reliability tools discussed in Section 4, the

ADLIB/SABLE will provide system engineers with an excellent

environment to pursue the design efforts after the functional

specification phase is completed.

TOOL

AIDE

CASL

N.mPc

ADLIB/
SABLE

Yes

Some

Some

AIM OF
TOOL

modeling and
simulation for
development of
computer
architectures

design and
documentation
for VSLI
implementation

multi-processor

design and
evaluation

multi-level
design

LEVEL OF
USAGE

architectural
and lower

regis ter
 transfer

• register
transfer

architectural
and lower

MULTILEVEL
CAPABLE

PERFORMANCE
EVALUATION

Yes

No

No

Yes

Table 5.1 	Existing Tool Functional Characteristics

I

•1

DESIGN 	TOOL
SPECIFICATION 	IMPLEMENTATION OPERATING 	AVAIL-

TOOL 	LANGUAGE 	LANGUAGE 	SYSTEM 	CPU 	DEVELOPER 	ABILITY

,

AIDE 	C 	augmented 	C 	UNIX 	VAX11/780 Bell
Laboratories 	No

CASL 	CASL 	- 	- 	B1800 	U. of Utah 	No

N.mPc 	ISP' and 	C 	UNIX 	PDP 11/70 Case Western 	Unknown
assembler 	 U.

ADLIB/ 	Pascal 	Pascal 	TOPS 	DEC 20 	Stanford U. 	Yes
SABLE 	augmented and 	or 	or 	or

SDL 	 'VMS 	VAX11/780 Commercial
Company

1

- 164 -

AIDE

CASL -

N.mPc

ADLIB/
SABLE

Completeness
Ease of
Interface

Implementation
Potential

Excellent

Poor

Medium

Good

Medium

Poor

Unknown

Good

Good

Poor

Medium

Good

Table 5.3 	Existing Tool Selection Evaluation

	

6. 	Summary and Further Work

	

6.1 	Summary

'The study reported here examined the role of existing

computer assisted engineering tools in supporting the

application of current design methodologies used in the

development of multiprocessor systems. Specifically, the

study focused on the issue of augmenting and enhancing

existing tools to generate an integrated set of multi-

processor design and simulation tools that can be useful

throughout the various phases of the design. The following

is a summary of the major results and conclusions of the

study.

I.

1

I .

The design process of multiprocessor systems can be

described, in a top-down approach, as consisting of six

phases:

1. The Requirements Specification phase,

2. The Functional Components Definition phase,

3. The Architectural Design phase,

4. The System Model phase,

5. The Processing Element Partitioning (Register

Transfer Level phase), and

6. The Logic Design (hardware) phase.

A survey of existing tools indicated the availability of

many design and simulation tools which satisfy different

design needs, depending on the design level (or levels) for.

- 166 -

which it is developed. 	Unfortunately, no one simulator was

found to be useful throughout all •specification and design

phases. This multiple simulator approach has two advantages

and several disadvantages. The advantages are:

1. Each simulation can be written in a language

tuned for one particular level, and

2. Each simulation tool can optimize its runtime

organization for one particular task.

-

The disadvantages include the following:

1. The design effort is multiplied by the necessi-

ty of learning several simulator systems and

writing a design in each.

2. The possibility of error is increased as more

human manipulation is involved.

3. As the design becomes increasingly fragmented,

it becomes impossible to simulate an entire

multiprocessor system at a low level of

abstraction. 	Therefore, only small fragments

can be simulated at any one time.

4. Each fragment needs to be driven by a supply of

realistic 	data 	and 	its 	output 	must 	be

interpreted. 	This may make the software

written to serve these needs extremely costly.

Several tools have been developed to overcome the above

difficulties and provide the designer with a uniform simu-

lation approach starting at the architecture design level and

going down to the register transfer simulation level. Our

study indicated that the utility of these tools can be

improved substantially by augmenting them with a high level

specification package which allows the designer to describe

the functional components of the system being designed and to

interface this high level description to existing tools at

the architectural level. 	In addition, two design aspects

were addressed in augmenting existing tools:

1. Analysis of redundancy and fault-tolerance charac-

teristics must be prov'ided at the architectural

levels if the tools are to be useful in •the design•

of spacecraft multiprocessor systems. 	Several

performance analysis models were introduced to serve

as basis for reliability and resource scheduling

evaluation both at the end of the functional

specification level and during the architecture

• 	selection phase.

2. A high level specification and verification tool was

introduced to bridge the gap between the requirement

specification phase and the architecture design and

simulation phase. 	It is proposed that the imple-

mentation of this tool be based on the ADA

language. The selection of ADA was made for several

reasons: 	it seems to gain wide acceptance and

support in the programming community; it supports

top-down design and implementation procedures; and

it 	is 	capable 	of 	describing 	concurrency 	and

multitasking through a set of designated constructs.

The main results of our study of the high level

specification and verification tool are:

- The process 	of 	obtaining 	specification was

described 	and 	guidelines 	were 	provided.

Decomposition 	techniques, 	such 	as 	dataflow

analysis 	and 	functional 	decomposition 	were

introduced. 	Ada specification blocks were used

to provide a strict formalism.

- The 	specifications 	obtained 	with 	Ada

specification blocks can be transformed naturally

into an implementation. This transformation is

done in various steps, with each step being a

refinement of the previous one.

- Validation techniques were investigated with

respect to their applicability to the design

methodology. Although no concrete validation

system was specified, 	preliminary validation

capabilities were outlined. 	A more powerful

validation system was also suggested as a

desirable goal in future research.

The methodology proposed here should be experimented with

in the context of a large example. This would assist in

improving the methodology itself and would also provide the

- 169 -

necessary framework for the development of computer aided

tools such as:

- A graphical aid to decomposition (outlined

previously).

- A 	simulation 	testbed 	for 	the 	preliminary

simulation phase.

- A verifier which could be used on selected

sections of the system.

It was also pointed out that in view of the complex

nature of the verification process, it would be desirable to

gain experience with an already existing system, such as

Gypsy. Theory would then be substantiated by practical

experience.

Finally, the interface between the proposed high level

design tool and existing tools at the architectural level was

examined. Several existing tools were investigated in the

process 	of selecting a candidate tool which can be

implemented and used later to support the development of an

integrated set of tools. The selection was based on several

criteria including the ease of interface, completeness,

run-time environment and availability and support by the

vendor. A design and simulation tool, developed by Stanford

University and known as SABLE/ADLIB was identified as a

feasible candidate to be used at the architecture and

register transfer levels of the design.

6.2 	Further Work

The ultimate objective of the work in this area is to

assimilate an integrated set of CAE tools which can be

utilized in all specifications and design stages of multi-

processor systems, with particular emphasis placed on

spacecraft applications. This objective can be achieved

through the utilization of existing tools, provided that they

are augmented by a high level functional specification tool

and a set of performance evaluation packages. To achieve the

stated objective, we propose the following work as a logical

next step to the definition and specification study reported

here:

1. Based 	on 	preliminary 	analysis, 	a• package

developed by Stanford University (SABLE/ADLIB)

and used as a design and simulation tool for

general purpose processors at the Architecture

and Register Transfer levels was selected. A

detailed study is needed to determine its

suitability and utility as a design tool in the

special 	application 	of 	spacecraft

multiprocessors. If selected following the

detailed study, the package must be installed

and checked out. It should be noted that the

use of this package has been limited so far to

research and development applications. 	The

package will be available commercially in the

near future.

2. Design of the functional component specifi-

cation tool defined in this study must be

completed in detail prior to the implementation

of the tool. The general design will be based

on ADA constructs and will follow a general

top-down specification approach. The output of

this tool must be structured to permit the

definition of hardware/software boundaries of

the architecture. 	Initially, the results of

this phase will be manually interpreted and

used to generate the input to the architecture

design and simulations tool.

3. Design of reliability and resource utilization

analysis modules to be used with the high level

specification tool (at the stage where the

hardware/software boundaries are defined). A

more refined form of these modules will also be

used to augment the design and simulation tool

at the architecture selection stage.

[CORY81]

[DIJK75]

I.

1

[AFFI79]

REFERENCES

"The Affirm Reference Library", Gerhart, S.,
Editor, ISI Program Verification Group,
International Science Institute, Marina Del
Rey, California, 1979.

[AMBL77] 	Ambler, A.L. et al "GYPSY: A Language for
Specification and Implementation of Verifiable
Programs", Proceedings of an ACM Conference on
Language Design for Reliable Software, SIGPLAN
Notices, vol. 12, no. 3, pp. 1-9, March 1977.

[BERG81] Bergland, G.D. "A Guided Tour of Program Design
Methodologies", IEEE Computer, vol. 14, no. 10,
pp. 13-37, October 1981.

[BOYE79] 	Boyer, R.S. and Moore, J.S. "A Computational
• Logic", Academic Préss, New York, 1979.

[CHEH81] 	CheheyL, M.H. et al- -Verifying Security", ACM
Computing Surveys, vol. 13, no. 3, pp. 279-340,
Septembe. r 1981.

[COMP81] 	IEEE Computer, 	Special Issue on Ada "Ada
Programming in the 80's",- IEEE Computer.; vol.
14, no, 6, June 1981.

[CORY80] 	Cory, W.E. and VanCleemput, W.M. "Developments
in Verification of Design Correctness: •A
Tutorial", Design Automation Conference, pp.
156-164, 1980.

Cory, W.E. "Symbolic Simulation for Functional
Verification with ADLIB and SDL", Design
Automation Conference, pp. 82-89, 1981.

Dykstra, 	E.W. 	"Guarded 	Commands,
Non-Determinancy 	and 	a Calculus 	for 	the
Derivation Of Programs", Proceedings of the
1975 	International 	Conference 	on Reliable
Software, pp. 2.0-2.13, 1975. 	(also - in CACM,

vol. 18, no. 8, 1975).

[DIJK76] 	Dykstra, E.W. "A Discipline of Programming",

Prentice-Hall, Englewood Cliffs, New Jersey,
1976.

[DOD80] 	United 	States 	Department 	of 	Defense 	"Ada
. Programming - Language", 	Military 	Standard,

MIL-STD-1815, Decembre 1980.

- 173 -

Floyd, R.W. "Assigning Meaning to Programs",
Proceedings of the American Mathematical
Society Symposium in Applied Mathematics, vol.
19, .Providence, R.I., American Mathematical
Society, pp. 19-31, 1967. •

[FLOY67]

[FRAN77]

[GOOD77]

[GOOD78]

W.R. Franta, "The Process View of Simulation",
North-Holland, N.Y. 1977.

Goodenough, J.B. and Gerhart, S.L. "Toward a
Theory of Testing: Data Selection Criteria",
in "Current Trends in Programming Methodology",
Vol. II, Yeh, R.T. (Editor), Prentice-Hall,
Englewood Cliffs, New Jersey, 1977.

Good, D.I., Cohen, R.M. and Hunter, L.W. "A
Report on the Development of Gypsy", Technical
Report ICSCA-CMP-13, University of Texas at
Austin, October 1978.

[GORD75] 	G. Gordon, 	"The Application of GPSS V to
Discrete 	System Simulation", 	Prentice-Hall,
N.J. 1975.

[GRIE76] 	Gries, D. "ArL.Illustration of Current Ideas on
the Derivation of 	Côrrectness 	Proofs 	and
Correct Programs"; IEEE Transactions on
Software Engineering, vol. SE-2, no. 4, pp.
238-244, December 1976. •

[HANT76] 	Hantler, S.L. and King, J.C. "An Introduction
to Proving the Correctness of Programs", ACM
Computing Surveys, vol. 8, no. 3, pp. 331-353,
September 1976.

[HEND77] 	Henderson, P. "Structured Program Testing", in
"Current Trends •in Programming Methodology",
Vol. II, Yeh, R.T. (Editor), Prentice-Hall,
Englewood Cliffs, New Jersey, 1977.

[HILL79] 	Hill, D.D. "ADLIB: A Modular, Strongly Typed
Computer Design Language", Proceedings of the
16th Annual Design Automation Conference, pp.
75-81, 1979.

[HOAR69] 	Hoare, C.A.R. "An Axiomatic Basis for Computer
Programming", 	CACM, 	vol. 	12, 	no. 	10, 	pp.
576-583, October 1969.

Hoare, C.A.R. and Wirth, N. "An Axiomatic

Definition of the Programming Language Pascal",
Acta Informatica, vol. 2, pp. 335-344, 1973.

[HOAR73]

1

[KING80]

[KNUT68]

[LAFE81]

[JENS74] 	Jensen, K. and Wirth, N. "Pascal: 	User Manual
and Report", 	2nd •edition, 	Springer-Verlag,
New York, 1974.

[JENS78] 	E.D. 	Jensen, 	"The 	Honeywell 	experimental
distributed processor - An overview", Computer,
pp. 28-37, Jan. 1978.

[KEMM80] 	Kemmerer, 	R. 	"FDM-A 	Specification 	and
Verification Methodology", Proceedings of the
Third Seminar on the Department of Defense
Computer Security Initiative Program, National
Bureau of Standards, Gaithersburg, Maryland,
November 1980.

King, J.C. "Program Correctness: 	On Inductive
Assertion 	Methods", 	IEEE 	Transactions 	on
Software 	Engineering, 	vol. 	SE-6, 	no. 	5,
pp. 465-479, September 1980.

Kmuth, D.E. "The Art of Computer Programming",
Vol. I, Addisson-Wesley, Reading, Mass 	1968.

Laferriere, C. and Mahmoud, S.A. 	"Ada and
Euclid as .Programming 'Languages for
Communizations Systems", Intellitech Technical
Report, Decembre 1981.

[LAMP77] 	Lampson, B.W., Horning, J.J. et al "Report on
the Programming Language 	Euclid",- SIGPLAN
Notices, vol. 12, February 1977. 	•

[LARM77] 	B.T. Larman, 	"Spacecraft Computer Resource
Margin Management", AIAA Computers in Aerospace
III Conference,. pp. 97-103, 1981.. 	-

	

[LOND77] 	London, 	R.L. 	"Perspectives. 	on - Program
Verification", 	in 	"Current 	Trends 	in
Programming Methodology", Vol. II, Yeh, R.T.

	

. 	(editor), 	Prenticellall, 	Englewood 	Cliffs,
New Jersey, 1977. 	 .

[LUCK79] 	Luckham, D. et al "Standard Pascal Verifier
User Manual", Stanford University Technical
Report, STAN-CS-79-731, 1979.

[MAHJ81] 	Mahjoub, 	A. 	"Some 	Comments 	on Ada •as •a
Real-Time Programming Language", SIGPLAN
Notices, vol. 16, no. 2, pp. 89-95, February,
1981.

S.A. 	Mahmoud 	et. 	al, 	"A 	Survey 	of
Computer-Aided Engineering (CAE) Tools for the
Design and Simulation of Multiprocessor
Systems", Report #INT-82-15, Tntellitech Canada
Ltd., Ottawa, 1982.

[MAHM82]

- 175 -

P.M. 	Mellian-Smith 	"Permissable 	Processor
Loadings for Various Scheduling Algorithms",
Computer Science Lab, SRI International.

[MELL80]

[M0RI79] 	Moriconi, 	M.S. 	"A 	Designer/Verifier's
Assistant", IEEE Transactions on Software
Engineering, vol. SE-5, no. 4, pp. 387-401,
July 1979.

[MORR77]

[OKAD80]

[PARN72]

[POLA79]

Morris, 	J.H. 	and 	Wegbreit, 	B. 	"Program
Verification by Sub-Goal Induction", in
"Current Trends in Programming Methodology",
Vol. II, Yeh, R.T. (editor), Prentice-Hall,
Englewood Cliffs, New Jersey, 1977.

Okada, K., Futatsugi, K. and Toru, K. "Reliable
Program Derivation in Functional Languages by
Applying Jackson's Design Method", IEEE
Fault-Tolerant Computing, pp. 91-96, 1980.

Parnas, 	D.L. 	"A 	Technique 	for 	Module
Specification with Examples", CACM, vol. 15,
no. 5, pp. 330-336, 1972.

Polak, . W. "An Exercise in Automatic Program
Verification", IEEE Transactions on Software
Engineering, vol. SE-5, no. 5, pp. 4,53-457,
Septembre 1979.

[PYLE81] 	Pyle, I.C. "The Ada Programming Language",
Prentice-Hall International, London, 1981..

[RAMA81] 	Ramamoorthy, C.V. et al "Application of a
Methodology for the Development and Validation
of Reliable Process Control Software", IEEE
Transactions on Software Engineering, vol.
SE-7, no. 6, pp. 537-555, November 1981.

[REYN76]

[ROBI77]

Reynolds, C. and Yeh, R.T. "Induction as the
Basis for Program Verification", IEEE
Transactions on Software Engineering, vol.
SE-2, no. 4, .pp. 244-252, December 1976.

Robinson, L. and Levitt, K.N. "Proof Techniques
for Hierarchically Structured Programs", in
"Current Trends in Programming Methodology",
Vol. II, Yeh, R.T. (editor), Prentice-Hall,
Englewood Cliffs, New Jersey, 1977. (also in
CACM, vol. 20, no. 4, pp. 271-283, April 1977).

[ROBI79] 	Robinson, L., Silverberg, B.A. and Levitt, K.N.
"The HDM Hand•ooks", vol. 1-3, Computer Science
Lab, SRI International, Menlo Park, California,
June 1979.

[ROSS77a] 	Ross, 	D.T. 	and 	Schoman, 	K.E. 	"Structured
- Analysis for Requirements Definition", IEEE

Transactions on Software Engineering, vol.
SE-3, no. 1, pp. 6-15, January . 1977.

[ROSS77b] 	Ross, D.T. "Structured Analysis (SA): 	A
Language for Communicating Ideas", IEEE
Transactions on Software Engineering, vol.
SE-3, no. 1, pp. 16-34, January 1977.

[SILB81] 	Silberschatz, 	A. 	"On 	the 	Synchronization
Mechanism of the Ada Language", SIGPLAN
Notices, vol. 16, no. 2, pp. 96-103, February
1981.

[SU77] 	S.Y.H. 	Su, 	"Computer 	Hardware 	Description
Languages and Their Applications: an
Introduction and Prognosis", Computer, Vol. 10,
No. 6, pp. 10-13, June 1977.

[WEGN80] 	Wegner, 	P. 	"Programming 	with 	Ada: 	An•
Introduction by Means of Graduated Examples",
Prentice-Hall, Englewood Cliffs, New Jersey,
1973.

[WIRT73I

1YEH77]

[YOUN801

Wirth, 	N. 	"Systematic 	Programming: 	An
Introduction", Prentice-Hall, Englewood Cliffs,
New Jersey, 1973.

Yeh, 	R.T. 	"Verification 	of 	Programs 	by
Predicate Transformation", in "Current Trends
in Programming Methodology", Vol. II, Yeh,
R.T. (editor), Prentice-Hall, Englewood Clifs,
New Jersey, 1977.

Young, W.D. and Good, D.I. "Steelman and the - ,
Verifiability of (Preliminary) Ada", ..SIGPLAN
Notices, vol. 16, no. 12, pp. 113-11.9, December.
1980.

[Y0UR75] 	Yourdon, E. and Constantine, L.L. "Structured
Design", Yourdon Press, New York, 1975.

Intellitech Canada Ltd
352 Mac Laren Street,
Ottawa, Ontario
K2P0M6
(613)235-5126

