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1.0 	Introduction  

Interest in multiprocessor and distributed intelligence 

computer systems have increased dramatically in recent 

years. 	This interest has been fostered by the availability 

of micro-processors with ever increasing performance-price 

ratios and the expected emergence of monolithic systems with 

still higher capabilities in the near future. 

Advances in LSI and VLSI semi-conductor technology 

have significantly reduced computer hardware weight, power 

consumption and cost. It is now feasible and practical to 

employ multi-processor systems on spacecraft in order to in-

crease the reliability, extend mission duration and satisfy 

increasingly more computational demand during the mission. 

The development 	of multiprocessor and distributed 

intelligence computer systems and their utilization in 

various applications have been impeded by the lack of 

an appropriate theoretical base. 	The control of systems 

containing 	large 	number 	of 	processors 	is 	not 	well 

understood. While considerable work has been done recently 

to develop a theoretical base, it seems unlikely that this 

work will have significant impact on practical system design 

in the near future. As a result, multiprocessor system 

designers have turned to the use of CAE tools for the 

1 



the development of such systems. Such CAE tools are used, in 

general, to support the skill level of the designer, provide 

insight into the attributes of alternative architectures, 

allow evaluation of these architectures and support the 

development, simulation and testing of actual multiprocessor 

systems. 

More specifically, computer-aided engineering tools are 

required to simulate alternate hardware configurations, 

evaluate the software implications on selecting a particular 

hardware configuration, perform required hardware-software 

tradeoffs, establish that the specified hardware and software 

are compatible and that overall system performance require-

ments are met. All of these must be done at an early stage 

in the design process, before the software is coded and the 

hardware is constructed. 

In the absence of such computer-aided engineering tools, 

it is difficult for the designer to assess and evaluate 

system performance adequately before constructing a 

breadboard prototype, developing its software, and testing 

the resulting system. At this late stage in thel design 

process, discovered inadequacies and inconsistencies are 

expensive and time-consuming to correct and often require 

significant redesign. With the appropriate CAE tools, the 

chances of this happening at such a late stage in the design 

process are minimized. 
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In an accompanying report [MAHM82], a survey which 

examined existing CAE tools for multi-processor design has 

been presented. The survey identified six specification and 

design phases for the purpose of identifying the utility and 

applications of the various available tools. These phases 

are: 

1. The Requirements Specification phase, 

2. The Functional Components Definition phase, 

3. The Architectural Design phase, 

4. The System Model phase, 

5. The Processing Element Partitioning 

(Register Transfer Level) phase, and 

6. The Logic Design (hardware) phase. 

The survey indicated the availability of many design 

simulation tools which satisfy different design needs, de-

pending on the design level (or levels) for which it is 

developed. Unfortunately, no one simulator was found to be 

useful throughout all specification and design phases. This 

multiple simulator approach outlined in the survey has two 

advantages and several disadvantages. The advantages are: 

1. Each simulation can be written in a language 

tuned for one particular level, and 

2. Each simulation tool can optimize its runtime 

organization for one particular task. 



The disadvantages include the following: 

1. The 	design effort 	is 	multiplied 	by 	the 

necessity 	of 	learning 	several 	simulator 

systems and writing a design in each. 

2. The possibility of error is increased as more 

human manipulation is involved. 

3. As the design becomes increasingly fragmented, 

it becomes impossible to simulate an entire 

multiprocessor system at a low level of ab-

straction. Therefore, only small fragments 

can be simulated at any one time. 

4. Each fragment needs to be driven by a supply 

of realistic data and its output must be 

interpreted. 	This may make the software 

written to serve these needs extremely costly. 

Several tools have been developed to overcome the above 

difficulties and provide the designer with a uniform simu-

1,ation approach starting at the architecture design level and 

going down to the register transfer simulation level. The 

utility of these tools can be improved substantially by aug-

menting them with a high level specification package which 

allows the designer to describe the functional components of 

the system being designed and to interface this high level 



description to existing tools at the architectural level. In 

addition, two design aspects must be addressed in augmenting 

existing tools: 

1. Redundancy and fault-tolerance characteristics 

analysis must be provided at the architectural 

levels if the tools are to be useful in the 

design of spacecraft (or avionics) multi-

processor systems. 

2. The high level specification language must 

contain 'mechanisms for system verification. 

As the design process continues, these mecha-

nisms will evolve naturally towards validation 

and verification of the software. 

The study reported here is concerned with the issue of 

augmenting existing tools to generate an integrated set of 

multiprocessor design and simulation tools that can be useful 

throughout the various phases of the design. 

1.1 	Scope and Definition of Multiprocessors  

The proliferation of various publications dealing with 

• interconnecting microprocessors to form unified systems has 

given rise to some ambiguity with respect to the definition 

of "multiprocessor systems" and "distributed microprocessor 

systems". To avoid such ambiguity, we introduce a definition 

•••• 5 



for the term "multiprocessors" which will be used-throughout 

this report. We also define the "scope of configurations" of 

such systems considered to be relevant for spacecraft 

applications. 

For 	the 	purpose 	of 	this 	report, 	we 	define 	a 

multiprocessor system to be [JENS78]: 

a multiplicity of microprocessors that are 

physically and logically interconnected to 

form a single system in which overall 

executive control is exercised through the 

cooperation of decentralized system elements". 

Moreover, we define the scope of multiprocessor systems 

considered in this study through the following general 

characteristics: 

1. The microprocessors forming the system, as 

well as all other system elements co-exist in 

the same locality (i.e., no telecommunication 

lines are used since the elements are not 

geographically separated). 

2. The microprocessors and other system elements 

are interconnected according to one of 

alternative structures (uni or multi-bus, a 

• loop or ring connection, a matrix switch, 

etc.). 



3. 	Conceptually, a single executive manages all 

of the system's physical and logical resources 

in 	an 	integrated 	fashion. The kernel 

(control) 	logic 	and 	data 	structures 	are 

replicated among a number of processors or 

memories. 

4. The number of processors to be interconnected 

is relatively small (e.g., under 30 pro-

cessors). 

5. Redundancy in the hardware is assumed through 

the use of identical spares, which along with 

other fault  •recovery mechanisms constitute 

what is known as "fault-tolerant" archi-

tectures. 

1.2 	Structure of the Report  

The basic methodology adopted for generating an inte-

grated set of CAE tools for multiprocessor systems is 

explained in Section 2. It is shown that the underlying 

concept is based on a top-down design approach starting from 

a high level specification phase. 

Section 3 of this report introduces the basic defi-

nitions and specifications of a high level design tool 

constructed using ADA as the basic programming language. An 

example is provided to illustrate the basic functional 



decomposition process. 	The example is based on a hypotheti- 

cal application of a multiprocessor system as a controller 

for a set of sensors and actuators in a spacecraft. 

Section 4 examines the performance evaluation aspects 

associated with designing multiprocessor systems for 

spacecraft applications. Two performance criteria are 

considered: resource utilization and reliability (redundancy 

and recovery from failures). The use of CAE tools to assist 

in evaluating both criteria is examined. 

Section 	5 	investigates 	the 	interfaces 	needed 	to 

integrate existing CAE design tools at the architectural and 

system model levels with the high level functional specifi-

cation tool described in Section 3. Finally, Section 6 

presents a summary of the contents of this report and a set 

of recommendations for future work aimed at assimilating an 

integrated set of CAE design tools for multi/microprocessors. 

«NM 8 



2.0 	PropoSed : Methodology 

As explained previously, current design practice of 

multiprocessors consists of a series of steps which starts by 

stating the general requirements and terminates by detailed 

hardware and software design, development and testing. A 

broad spectrum of tools exists to assist the designer at each 

step. 

Our survey of existing tools [MAHM81] indicated that 

while several design and simulation tools exist to satisfy 

different needs, no one simulator is useful throughout all 

the specification and design phases. In addition, a gap 

exists at the high levels of the design which makes it 

difficult to use the output of the tools at the functional 

components specification level to generate the input to the 

architecture selection stage. This gap will be explained 

before introducing the proposed methodology. 

In this section, we review briefly the design phases and 

the general features of the tools used in each phase. We use 

the review to highlight certain deficiencies which exist in 

the spectrum of available tools. The review is followed by 

an explanation of the concepts underlying the methodology 

proposed in this report. 

In a general sense, it will be shown that the proposed 

methodology is aimed at closing the gap which exists between 

the functional component specification phase and the 



architecture design phase, and at the same time augmenting 

existing tools with mechanisms to evaluate the performance 

and the reliability of the system at various design stages. 

This will ultimately result in an integrated set of CAE tools 

which can be utilized in a consistent fashion throughout the 

various design levels. 

2.1 	Scope of Existing Tools  

Figure 2.1 illustrates the specifications and design 

levels of multiprocessor systems (see survey report [MAHM82], 

also referenced in the preface of this report). Existing 

tools can be classified according to the design level (or 

levels) at which the tool is utilized. 

At the requirement specification level, tools are used 

to define the demands placed upon the system in a complete, 

consistent and unambiguous set of statements. The output of 

the tools is usually giVen in a machine readable format. The 

input can be generated by several authors and the tool is 

expected to merge the input from these authors while removing 

all redundancies. The output document is used by all design 

team . members as a reference for the requirements of the 

system. 

Design occurs after the requirements phase has been 

completed. The first level of the design process consists of 

an orderly definition of the main functional components of 



the system which satisfy the requirements. This is followed 

by further decomposition of the main functional components 

into smaller subfunctions, and the process continues until a 

system architecture emerges in which a hardware-software 

model can be absti.acted and the sub-functions can be mapped 

into elements in the model. 

• Several tools are currently available for automating the 

process of defining the functional components of the system 

and for decomposing these components into smaller, less 

complex components. The utility of these tools in the design 

of multiprocessors is limited by the following factors: 

1. the tools lack the ability to describe the 

dynamic interaction between the decomposed 

functional components. 	Thus aspects such 

as concurrency,  synchroniiation, 	etc., 

cannot be formally described. 

2. The behaviour of the system cannot 

described formally using existing tools at 

the functional components level. 	The 

designer 	is 	forced 	to 	extract 	this 

behaviour manually before deciding on a 

• suitable architecture. 	This 	informal 

extraction is bound to generate errors and 

• inconsistencies. 	 •  

3. The output of existing tools is not 

interfaceable directly to architecture 



level procedural simulation languages with 

their formal syntax. 	This creates a gap 

in the transition to the next lower design 

level, i.e., the architecture selection 

level. 

4. 	Subfunctions and other resources (e.g., 

data structures) that are shared by the 

main functions, as well as their access 

control structures, cannot be described 

easily by existing tools, particularly in•

the dynamic interaction environment of 

spacecraft multi/microprocessors. 

The above difficulties motivate the development of 

tool at the functional component definition level which can 

be mutually Integrated with  the tools used at the archi-

tecture selection level. 

A large number of simulation tools - exist at the archi-

tecture selection level and the levels below it. These tools 

can be substantially enhanced with two additional features: 

1. The incorporation of formal rules to 

• 	

verify the modelled behaviour of each 

module  and of the entire system. 

2. The incorporation of reliability analysis 

tools to model and simulate the fault-

. tolerance characteristics of the system. 



The development of a formal specification and verifi-

cation tool at the functional component description level, 

together with the enhancement of existing tools to handle the 

analysis of reliability requirements can be viewed as the 

catalyst of the proposed methodology. 

2.2 	Toward an Integrated Set of CAE Design Tools  

The discussion of Section 2.1 indicated that a "missing 

link" exists at present in the set of currently available CAE 

design tools for multiprocessors. This "missing link" is at 

the functional component description level (see Figure 2.1). 

A tool is needed at this level which will be utilized in the 

design level between the requirements specification level, 

and the system architecture level. The newly developed tool 

can be interfaced with existing tools for the requirements 

specification and with tools currently used in the simulation 

of system architecture. 

Figure 2.2 depicts the role of the proposed Functional 

Component Specification tool in the multi-phase design 

approach. The tool is utilized to translate system require-

ments specification into functional components described 

using a high level behavioural description language. As 

well, preliminary system architectures can be selected and 

evaluated using this tool. The output of this phase will 

serve as input to the next phase; namely, the detailed archi-

tecture phase, for which excellent design tools exist at 

present. 

- 13 - 
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2.3 

The main concepts und,erlying the high level functional 

description tools are introduced in Section 2.3 with the full 

details presented in Section 3. The evaluation tools for 

resource utilization performance models and reliability 

characteristics models are discussed in Section 4. 

Approaches for Modelling Fundtional Component Description  

The development of a high level specification tool to 

simulate the functional components is based on a modelling 

approach which captures the behaviour of its component, its 

relationship to other components and the interconnection of 

the components to form the entire system. Two alternative 

approaches are generally employed for this purpose: 

1. A top-down decomposition approach, 

2. A data flow model approach. 

The general concept underlying the top-down approach can 

•be summarized as follows (see Figure 2.3): 

each of the main functional components of 

the system, defined in the requirements 

specification phase, is described in terms 

of its external interfaces and the basic 

• functions it performs. 

each component can then be treated sepa-

rately and divided into subcomponents. 

Collectively, these subcomponents must 

maintain the same external interfaces of 



the parent component. 	Again, each sub- 

component is desribed in terms of its 

external interfaces. 

- the process of 	decomposition can be 

applied iteratively to the subcomponents 

until they are refined into the simplest 

possible (elementary) components. 

- a validity check is applied at each 

decomposition 	step 	to 	ensure 	the 

completeness 	and 	consistency 	of 	the 

decomposition. 

The top-down design approach  •is suitable for the design 

of complex systems since it systematically reduces the design 

process to simpler components which can be tackled separate-

ly. Its main drawback in the multiprocessor area lies in its 

inability to capture the relationship between the various 

data structures at different decomposition levels. This is 

because many data structures are difficult to decompose in a 

hierarchical order. 

The data flow model approach represents the system as a• 

set of computational modules, sequentially processing a flow 

of data. 	The modules form a network with data merging and 

branching out. The source of data is a set of input modules 

and the terminal is a set of output modules. An example of 

data flow Model is depicted in Figure 2.4. This model bears 



some relation to many of the features of the spacecraft 

processing environment in that the latter consists of input 

sources (sensors), output terminals (actuators) and a set of 

data processing modules (algorithms). In general, data flow 

models are not convenient to use in describing and designing 

complex systems. 

The development of a high level functional component 

description tool (Section 3) is based on a hybrid approach in 

which the data flow model is used initially to describe the 

behaviour of the system. Each computational module in the 

data flow model is regarded as a system component which is 

then decomposed in a top-down approach. This hybrid approach 

will be shown to combine the advantages of the data flow 

model and the top-down decomposition approach. 
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3. 	SPECIFICATION/VALIDATION  

3.1 	INTRODUCTION  

3.1.1 	Problem Definition  

Traditionally, computing systems have been de-

signed by a team of individuals. The design process 

was initiated with an effort to determine the 

requirements of the system to be built. The term 

"requirement" 	takes 	on different interpretation 

depending on the background of a given individual in 

the design team. 	Hardware and software induced 

misunderstandings abound in that early design 

phase. Nonetheless, what emerges is a list of items 

(often conflicting) depicting in detail what the 

system should do, how fast and how often it should 

do it and how reliable its performance should be. 

The 	next 	phase 	is 	a 	mapping 	of 	the 

requirements, usually stated a very informal 

fashion, to formal and complete specifications. 

This mapping is not trivial and, once done, may 

require validation; in other words, going back and 

checking that the formally specified system meets 

the requirements. 

What follows is a series of decomposition or 

refinement steps on the original specifications 

which are normally at a very high level. Keeping in 



mind that specification should lead to imple- 

mentation, the high level specifications have to be 

translated 	into 	more 	manageable, 	lower 	level 

specifications. In this manner, a transition into a 

complete software description of 	the intended 

behaviour of the system is accomplished. 	At this 

point, validation may also be needed. 

With the behaviour of the system formally de- 

scribed, a partitioning of some functions into 

hardware/software or dedicated hardwired controller 

can be attempted. 	The necessary guidelines to as- 

sist 	in 	this 	process 	are 	obtained 	through 

performance analysis and simulation. 

A design methodology encompasses all the stages 

that have been described, namely: 	requirements, 

specification, refinement/decomposition, 	imple- 

mentation, and performance analysis. 	This - section 

is devoted to describing the high level specifi- 

cation 	activities 	and 	the 	ensuing 	series 	of 

refinement steps. The output of this process will 

be a formal description of the system's behaviour 

in a high level language; this description will also 

be in a form suitable for further processing by 

other levels. 



3.1.2 	Spacecraft Environment  

A design methodology catering 	to general 

purpose environments would be very difficult to 

specify precisely. 	This is due  •to the multifarious 

nature of the tradeoffs involved in system design. 

Fortunately, working within a spacecraft environment 

allows for some assumptions to be made so as to 

restrict the scope of the methodology. The 

simplication thus achieved should significantly 

reduce the complexity of the methodology, and in 

particular ,  of the - specification/decomposition 

process. 

A computer system aboard a spacecraft is, by 

definition, a dedicated controller. It overseas 

most of the current activities and may also be 

called upon to perform complicated computations. A 

basic representation of such a system is shown in 

Figure 3.1 where the input/output characterization 

of a spacecraft is illustrated. 	The controller has 

the capabilities to perceive the outside world 

through its sensors and to influence and to act 
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Figure 3.1: A Spacecraft Control System 

upon 	the 	physical 	environment 	through 	the 

actuators. The attitude of an antenna, for example, 

can be sampled by some sensors and the controller 

(or computer system) can be made aware of it. Based 

upon stored directives or upon remote commands, the 

controller may decide to change the orientation of 

the antenna. The Actuators, (or servomotors) would 

then be used to effect this change on the physical 

environment. 

There is yet another aspect to be considered: 

the real time nature of these actions. It may be 

required, for the sake of accuracy perhaps, that the 

sampling of the position of the antenna be done 

every milisecond. Similar constraints may also 

exist on how often and how fast the antenna can be 

moved. These observations•  lead to the conclusion 

that most tasks performed by onboard computer are 

periodic. The literature on such systems would seem 

to substantiate this view. 



The 	set 	of 	requirements 	for 	an 	onboard 

controller would reflect the flow of data and its 

rate. The sensors would be characterized by an 

output data type, and other information such as 

average data rate and peak data rate. Similarly for 

the actuators, requirements concerning the input 

data type, the maximum permissible data rate, the 

minimum data rate, etc., would be given. The 

control tasks to be performed by the computer can be 

described by a transformation of various input types 

into some output types, according to some 

algorithm. 	Theee functions would also have time 

constraints imposed on them to determine their 

execution 	speed. 	These 	input, 	output, 	and 

processing constraints are easily expressed in a 

data flow framework. 



3.1.3 	Design Philosophy  

As indicated before, the design process is a 

translation of informal requirements into formal 

specifications, followed by gradual refinement steps 

on these specifications. 	This stepwise refinement 

approach is analogous a hierarchical system of 

machines and programs (as shown in Figure 3.2). 

Figure 3.2: Hierarchy of machines and programs 

In Figure 3.2, Mi is the highest machine. 	It would 

correspond to a machine which would perform all the 

system 	functions 	in 	one 	high 	level 	program 

instruction. Such a program, Pi, is a trivial 

program and is not shown. 	When considering the 

problem of designing a complex system, it may be 

advantageous to decompose the original design of Mi 

into the design of Mi_i and Pi_i. The machine Mi_i 

supports the computations performed by Pi_l and is 

the computational structure of the system to be 
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the computational structure of the system to be 

designed. 	The Program Pi_i is the computational 

behaviour of the system. 	The fact that Mi_i does 

not exist is of no concern; it can always be created 

by further decomposing M 1 _1 into Mi_2 and Pi_2. 

The methodology presented here, first assumes 

the existence of M.  It decomposes Mi into Mi_i and 

P i_ l.  Subsequently, P i-1 is specified using a high 

level language and leaving out  loger level details. 

At that stage, machine Mi_i is assumed to exist. To 

proceed further,' M i _ i  is decomposed into M1 _2 and 

Since all the instructions of P i _i were 

directly executable by Mi_l (i.e., were written in 

Mi _i's native language), it is easy to see that P i _2 

is, in fact, a stepwise refinement on certain 

sections of P 1 _1. At that level, the combination of 

Pi_i and Pi_2 executing on M 1 _2 still corresponds to 

Mi, (as shown in Figure 3.3). 

Figure 3.3: Machine equivalence 



The methodology calls for this process to be applied 

iteratively so that a hierarchy of programs and 

machines is created. 

The question of when to stop and implement 

physically a given machine (or parts of a machine) 

is not answered by this level of the methodology. 

The goal of the Specification/Decomposition process 

is to specify and refine down to a level where other 
_ 

tools 	such as 	performance 	evaluators 	can 	be 

applied. 	The results of such tools should help 

answer the implementation questions. 

3.1.4 	Overview of the Section 

This 	section 	comprises 	two 	main 	parts: 

specification/decomposition and validation. 	In the 

first part, the concept of creating a hierarchy of 

programs is covered in details and an example of 

specification and decomposition is introduced. The 

second part addresses the problem of validation 

which was briefly mentioned in the introduction. A 

survey of validation techniques and of automated 

verification tools constitutes most of the 

subsection. 

A summary of the section, 	together with 

concluding remarks will also be found at the end of 

the section. 



3.2 	Specification/Decomposition  

3.2.1 	High Level Specification  

The first step of the methodology involves a 

translation of the requirements into very high level 

specifications. The nature of this translation 

process is not easy to document since it is mostly 

accomplished by systems analysts (i.e., humans) and 

relies on their intellectual capabilities. Human 

intervention 	in 	the 	translation 	process 	may 

introduce 	errors 	in 	this 	first 	attempt 

specification. 	Substantial research activity has 

been generated, notably, [RAMA81] in which a dual 

design 	team, 	dual 	specification 	approach 	is 

advocated. 	The superiority of their technique has 

yet to be firmly established. Requirements 

definition has also been studied in [ROSS77a], and 

[ROSS77b] in which a structured analysis approach 

was proposed. 

As mentioned earlier, the first specification 

attempt, as well as all others, embodies the 

hierarchical concept of machines and programs. It 

is important to realize that a machine program 

representation is isomorphic to a representation 

involving structure and behaviour. The latter type 

of representation has been used extensively in 

assisting hardware design endeavours [HILL79]. 



3.2.2 	Methods of Decomposition  

Stepwise 	decomposition 	is 	the 	series 	of 

activities that will transform the high level 

specification into an acceptable implementation. 

Although there are several methods to do this, only 

two of the most popular techniques will be 

described. 	(Also see [BERG81]). 

1. 	Functional decomposition 

The 	technique 	of 	functional 	decomposition 

involves a divide and refine approach. The problem 

is first considered as a whole and then divided into 

more manageable sub-problems. 	Those sub-problems 

can, 	in 	turn, 	be 	decomposed 	using 	the 	same 

technique. 	The result is a tree-like structure as •  

shown in Figure 3.4. 

Figure 3.4: Tree structure resulting from 

Functional Decomposition 



Functional decomposition, (as described in [DIJK76] 

and others), has been in use for a long time, and 

lends itself well to hierarchical development of the 

type proposed herein. 	The approach is not without 

difficulties however. 	One of the major problems 

associated with its use is the lack of similarity 

among 

problem. 

independent decompositions 	of 	the 	same 

Functional 	decomposition 	requires 	a 

concept (e.g., time, dataflow, groups of functions) 

with respect to which decomposition will be done. 

Lack of uniformity in choosing this concept causes 

the discrepancies previously mentioned. 

2. 	Data Flow decomposition 

An alternative to functional decomposition is 

data flow analysis. 	The problem to be solved is 

reduced to a flow problem in which afferent* 

modules collect various data and transmit these data 

to a network of computing modules. Those modules 

transform and alter the data and in so doing also 

change the flow. The end result, still in a flow 

form, is then given to the efferent modules for 

interfacing with the application. This method is 

described in Figure 3.5. 

* In data flow terminology, afferent and efferent 
modules are meant to be input and output modules 
leading into or away from a network of computing 
elements. 
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Modules 

Afferent 

Modules 	Network of Computational Modules 

Figure 3.5: Data flow example 

The data flow technique is well documented in 

[YOUR75]. It lends itself very well to the dynamic 

flow of data model of a spacecraft. It is, however, 

unwieldy to use at times, since some problems are 

not amenable to this functional decomposition with 

respect to data flow. 

3. 	A mixed approach 

In view of the affinity of the data flow 

analysis with the spacecraft design problem, this 

method was adopted, at least in the first few 

attempts at decomposition. To remedy some of the 

data flow analysis 	shortcomings, 	a functional 

decomposition method will also be used after the 

initial data flow decomposition. Figure 3.6 shows a 

hypothetical system decomposition carried out along 

those lines. 

- 32 - 



1 

1 

1 
1 

1 
1 
1 
1 
1 
1 
1 
1 

1 

r(r 

11n••n•nnnnn•n,e 1  LJ 

afferent 
modules 

efferent 
modules 

pro•n••nn•ramm. 

network of computing modules 
subjectèd to further functional 

decomposition 

Figure 3.6: Result of the mixed approach 

It is expected that this mixed approach will be 

able to capture the inherent data flow aspect of the 

role of an on-board controller and to help in 

creating the hierarchy of machines and programs 

which is essential to the general methodology. The 

mixed approach to decomposition will be used 

extensively in an example which will be worked out 

in detail in Section 3.2.5. 
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3.2.3 	Formalizing the Specification/Decomposition Process  

The specification and decomposition process 

requires formalism to establish a common frame of 

reference. This goal can be achieved by using 

either 	specification 	languages 	Or 	procedural 

languages. 	Each option has its own merit and is 

adequate in describing the system. 

1. 	Specification languages 

Specification 	or 	functional 	languages 	are 

non-procedural languages, often used for the 

purpose 	of 	specifications. 	HISP 

(Hierarchically 	Structured 	Specification 

Processor) [OKAD80] is such a language. 	HISP 

manipulates objects which are represented as: 

P = (Q,S,O,E) 

where P is an object, Q is a set •of objects, 

S is a set of "sorts", 0 is a set of operators 

and E is a set of equations. 	In HISP, sorts 

are representation of data items relevant 

the system. 	HISP also defines operations on 

objects 	(creation, construction, 	renaming, 

substitution, refinement) which allow a system 

to be completely specified. It is also 

possible to use a flowchart-like type 



approach as formalized in [ROSS77b]. 	Although 

not a language as such, this method is, in 

fact, a graphical representation of a 

functional language. 

The advantages of using functional languages 

are as follows: 

i) their semantics are easy to define, 

ii) they 	lend 	themselves 	readily 	to 

expressing 	mathematically 	certain 

properties of the system. 	(In other 

words, 	proofs 	of 	correctness 	are 

facilitated.), 

iii) they are not encumbered by lower level 

details which may detract from precise 

specifications. 

The major difficulty associated with their use 

is that they eventually require translation to 

a procedural language like Ada* or Pascal. 

*Ada is a trademark of the U.S. Department of 
Defense. 
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2. 	Procedural languages 

The major complaint associated with the use of 

procedural languages is the presence of lower 

level details 'in the specification process. 

These details have been minimized to a great 

extent in newer languages such as Pascal and 

specially Ada. It is now quite feasible to use 

the data flow arcs of a high level "mixed 

approach" decomposition as basic data  

structures and to use procedures 	(either 

specified 	or 	stubs) 	to 	represent 	the 

functionality 	of 	the 	system. 	Stepwise 

refinement 	is, 	of 	course, 	possible 	on 

procedures not completely specified. 

Using procedural languages for specification 

obviates the need for, translation and imposes •a 

strict formalism on the description of the 

system. It is always possible to introduce a 

mathematical model by means of assertions. 

3.2.4 	Ada as a specification tool  

Ada is a programming language built to the 

specifications- of the  U.S. Department of Defense. 

It is a powerful language [WEGN80] ., [PYLE81], 



data types 
procedure names 

procedure 
elaboration 

private  •data 

structure 

1 

f 1 
public  
private 

private, 

subject 
to scope 
dependent 

access 
rule 

package 
specification 

package 

body 

[DOD80], [COMP81] with facilities for data typing, 

data and procedure encapsulating, support of con-

currency, etc. 

Some of those features are very helpful in 

specification/decomposition work: 

1. 	Packages 

A package is a module encapsulating data 

and a set of associated procedures. An Ada 

package is shown in Figure 3.7. 

Figure 3.7: An Ada Package 

A package comprises two parts: 	a specifi - 

cation in which the interface to the outside is 

defined and a body in which the actual 

processing is done. The body does not have to 

be completely coded in the early stages of the 

design; all is required is a complete specifi-

cation part. The Ada compiler will make the 

necessary linking adjustments. 
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"direction of" 

call 

2. 	RendezVous 

Ada supports concurrency and therefore has 

the necessary mechanisms to allow sevèral tasks 

to execute in parallel. Concurrently executing 

• tasks will often require some means of synchro-

nizing their activities. 	To this end, Ada 

provides a RendezVous capability, graphically 

• illustrated in Figure 3.8. 

task  A is 

entry  Synchronize (---); 

end.  

task B is 

end; 

taskbody  A is 	taskbody  B is 

begin 	 begin  

accept  Synchronize ( ) do 	Synchronize (--); 

-- only A executes--  

end;  

end; • 

Figure 3.8: An Ada RendezVous 

Task B is the active part in the RendezVous of 

Figure 3.8 and it calls task  •A. In Ada, tasks 

have the same specification and body structure 

than packages. In the specification part of a 

task, potential RendezVous are listed in the 

form of entries. A RendezVous is initiated 



when either task B calls the procedure Synchro-

nize or task A accepts it. If task B is first, 

it waits until task A accepts the RendezVous. 

If the reverse occurs, task A is the one 

waiting. 	The actual RendezVous takes place 

when both tasks A and B are ready. 	During 

RendezVous, the parallel executions of A and B 

will be reduced to a Serial execution and at 

the end of the RendezVous, both tasks will 

resume their parallel execution. 

3. 	Separate Compilation Units 

There are extensive facilities in Ada for 

the support of separate compilation units 

Separate compilation is possible for library 

units, package bodies and procedure bodies. 

Some of the rules governing separate compi-

lation may seem at first a bit intricate, but 

this feature is extremely useful when 

attempting 	stepwise 	refinement 	during 	the 

decomposition phase. 	In 	fact, 	only 	the 

procedure 	or 	package 	interface 	need 	be 

specified initially. The body of a procedure, 

for example, can be left as a stub and refined 

later on. 

• 



When it comes to specifying and applying the 

"mixed approach" decomposition to a system, it can 

be very advantageous to use Ada as the specification 

language. As a procedural language, Ada would 

provide the formalism required of such an exercise. 

The translation from specification to implementation 

would be done in such a way as to result in code 

that could very often be of immediate use. 

The 	end 	result 	of 	the 	mixed 	approach" 

decomposition is a network of computing functions 

which 	were 	further 	subjected 	to 	functional 

decomposition. 	Despite its powerful features, Ada 

cannot be applied directly. 	What is needed is a 

construct which would facilitate the specifying of 

computing functions while at the same time allow for 

the representation of the functional decomposition 

process. Such a construct, called a "Specification 

Block", is shown in Figure 3.9 and is elaborated on 

next. 
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Figure 3.9: Basic Structure of a 

Specification Block 

A specification block is expressed by means of a 

package; 	its 	interface 	is- defined 	in 	the 

specification part of the package. Data structure 

types are elaborated at that level although similar 

results can be achieved in the specification part of 

the "Simulate" task.* The package body of the 

specification block contains the "simulate" task and 

1 
* For that reason, the simulation block package will 

be usually represented only by the package body. 
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a set of procedures implementing the functionality 

of the system. 	Those procedures, will be the object 

of stepwise refinement. 	The "simulate" task ful- 

fills two functions: 

a) Through the RendezVous mechanism, it is linked 

to the data flow network of the decomposition 

model. 	The "simulate" tasks is called and 

calls other tasks, thereby emulating the flow 

of data of the model. 

b) The "simulate" tasks embodies the algorithmic 

structure of a functional block. This embodi-

ment is the result of the sequence of procedure-

calls the "simulate" task is going through. 

Functional refinement ,is made easier when 

dealing with such a construct. 

The usefulness of the Ada specification block 

is not limited to the representation of computing 

functions. Even lower level devices can be accommo- 

dated by Ada, as shown in Figure 3.10, in which an 

interrupt driven device is interfaced to an Ada 

module. 



Device 

acceptance of the call 
enables device to be —, 
serviced 

hardware that 

generated entry 
call 

ale
task  X is 
entry get (c:in char); 

end; 

taskbody  X is 

begin  

+accept get (ch); 

end 

Figure 3.10: Device Servicing in Ada 

It can be easily seen that, given a system decompo- 

sition, a translation can be made of all the 

functional modules to a network of Ada specification 

blocks. 	This process, although awkward and tedious 

to explain, is relatively straightforward. 	It is 

best illustrated by a thorough example of a small 

part of a system. 
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3.2.5 	A Decomposition Example 

In this example, the decomposition process will 

be applied to an antenna attitude control module. 

The example, Shown in Figure 3.11, consists of a 

remote controller for the positioning of a space-

craft antenna. The on-board controller is made 

aware of the actual position of the antenna through 

sensors so as to implement a closed loop control. 

To complement the sensors, a television camera with 

digital output is also provided. 
TV Camera 

Radio Antenna 

*Antenna to be moved is 
not to be confused with 
Radio antenna used to 
receive the commands. 

Figure 3.11: Description of the example 



3.2.5.1 Various decomposition levels  

The first attempt at decomposition is shown in 

Figure 3.12. Three types of modules are visible in 

that figure: 

1- Input modules 

InRadio, InSensors, InTv 

2- Output modules 

OutRadio, OutActuators, Outcalib 

3- Functional modules 

Antenna attitude control module 

The functional module can also be further decomposed 

as shown in Figure 3.13. 	In that figure, the data 

flow, model will be the 	last 	level of 	such 

decomposition. 	The functions of each module are 

outlined below, in preparation for functional 

decomposition (NOTE: numbers correspond to those of 

Figure 3.13.): 

1- InRadio is the input module dedicated to the 

radio receiver. 	It can be thought of as a 

device handler. 

2- InSensor is the input module dedicated to the 

X,Y,Z co-ordinate sensors. 

3- InTv is the input module dedicated to the TV 

camera. 
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Figure 3.12:. A first attempt at decomposition 
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Figure 3.13: Data Flow Graph  



4- Command String Interpreter receives commands 

from the ground station. The commands are 

structured as shown in Figure 3.14. 

type CommandString is 

record  
CommandType: 	(VisualInspect, Reset, Rotate 

Calibrate); 

case CommandType is 

when Rotater.> Desired Position: Position; 

when Calibrate 	Desired Accuracy: Accuracy; 
when  VisualInspectu> Magnification:Integer; 

Switch: 	(on,off) 

end case; 
 end record;  

Figure 3.14: Definition of Various Commands 



The Command String Interpreter will activate 

the desired modules (and also pass parameters 

when applicable) based upon the value of the 

Command type contained in the Command String. 

5- PositionTask receives the X,Y,Z position of the 

antenna. 	Those values are the result of 

sampling done at regular intervals. 	The 

PositionTask also maintains an up-to-date table 

of statistics on the dynamics of the antenna. 

6- Reset resets the antenna position to a given 

initial point. 	It then sends confirmation to 

the ground station, to indicate the status 

(success of failure) of the command. 

7- Rotate rotates the antenna to a position 

specified in the command parameters. 	An 

indication of the success or failure of the 

command is also sent back to the ground 

station. 

8- Calibrate moves the antenna to a known position 

and re-calibrates the sensors through the use 

of the Calibrate module. A Report is sent back 

to the ground station. 

9- VisualInspect starts the TV camera and transmit 

back to the ground station digitized pictures. 

A VisualOff parameter stops this process. 



their being separate entities is that the for 

10- ReportFormatter accepts various types of input 

data, 	(e.g., 	confirmation 	of 	successful 

rotation, result of calibration, digitized 

television pictures, etc.) and prepares them 

for transmission. 

11- OutRadio is the output module for the radio 

transmitter. It is, in fact, a device handler. 

12- OutActuator is the output module which takes 

care of the servo control mechanisms of the 

antenna. 

13- OutCalib is the output module dedicated to the 

Calibrator device. 

At this point, it should be noted that, although 

Input and Output modules have always been included, 

their presence is not mandatory. In actual fact, 

practical considerations may dictate that they be 

incorporated in other modules. However, the reason 

functions they implement have to exist in most 

cases. It is reasoned that it is easy to merge them 

with other functions and, besides, they add to the 

clarity of the decomposition exercise. 

Following two stages of decomposition with 

respect to data flow, the system is subjected to a 
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functional decomposition. 	The result is shown in 

Figure 3.15. 	The various modules are broken down 

with respect to the functions they are supposed to 

implement. This 	functional 	decomposition 

illustrated by the tree structures subtending the 

data flow modules. The decomposition process is 

also shown in various stages of completion and it 

should be remembered that it does not necessarily 

correspond to reality since its prime purpose is 

didactic. 

In 	the 	complete 	design, methodology, 	the 

functional decomposition, as exemplified by the 

diagram of Figure 3.15, is a transitory step. 

main purpose is to provide a bridge to a system 

representation using the Ada specification blocks. 

This system representation is to be found in Figure 

3.16. 

There are several differences between the 

system representations of Figures 3.15 and 3.16. 

The most noticeable is, of course, the use of a 

procedural language to describe the system. The 

formalism 	of 	Ada 	helps 	in 	solidifying 	the 

description of the system and of its various 

characteristics. 	Another extremely important point 

Its 
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is the disappearance of data flow arcs and their 

replacement by procedure call arcs. It should be 

noted that the direction of a procedure call arc is 

not necessarily indicative of the direction of the 

flow of parameters, if and when parameters are 

passed. In Ada, the direction of a procedure call 

arc has a further significance beyond determining 

the calling and called parties. In fact, it plays a 

role in establishing how control is passed, and if 

not properly set up, may become the proximate cause 

of deadlock. Considerations on how the direction of 

those arcs affects deadlocks will be found in 

Section 3.2.5.3. 

Other 	aspects 	of 	Figure 	3.16 	are 	worth 

mentioning briefly and are listed below: 

i) There is direct linking to devices. 

Hardware 	generated 	interrupts 	are 

interpreted as procedure calls into one 

of the input or output modules. 

ii) The control structure of the Rendez Vous 

mechanism in Ada has been examined 

earlier. 	Based upon that knowledge, it 

is interesting to observe that, for a 

procedure call from a main functional 

module 	to 	one 	of 	the 	input/output 

modules, the body of that procedure will 

be in the called  module. 



iii) The structure of the RendezVous, [SILB8], 

[MAHJ81], [LAFE81], while generally very 

flexible, is sometimes awkward to 

manipulate, especially in cases where 

control is to be dispatched to other 

modules. Two cases should be considered: 

Case 1: The Command String Interpreter 

(CSI) passes control to one of 

the Reset, Rotate, Calibrate, or 

VisualInspect modules depending 

on the Command String, the CSI 

got from the InRadio module. 

The procedure call arcs afferent 

to the CSI module are distinct, 

(i.e., Give Control Reset, 

Give Control Rotate, 

Give Control Calibrate, 

Give Control Visual Inspect). 

Were they not distinct, the CSI 

module would not be able to 

activate the desired module. 

This situation is shown 

graphically in Figure 3.17 (a & 

b). 
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A: CSI could not activate 
Reset. 

B: The control structure is more intricate but allows 
flexibility. 

Figure 3.17 (a & b): • Ada Rendez Vous and Passing 
of Control 
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Case 2: Calls to the Positional module 

from other modules (in order to 

get co-ordinates) are not 

distinct. In this case, the need 

for 	distinct  procedures 	is 

obviated by the structure of the 

system. 	The calling modules, 

(Reset, Rotate and Calibrate) 

will normally be waiting for the 

CSI module to give them control. 

Only one of them will execute at 

any one time and, as such, no 

contention is present, hence no 

need for separate calls. 

Further functional decomposition can be carried out 

easily with the system model of Figure 3.16. This 

will be demonstrated by specifying a subset of 

modules such as the CommandStringInterpreter and 

the Reset modules. To keep the example simple, the 

packaging of those modules will not be shown; Ada 

manuals [DOD80], [WEGN80], [PYLE81], describe how to 

build packages quite well. 	The description will 

proceed from tasks to procedure stubs. 	The reader 

is also referred to Figure 3.14 which contains a 

full type definition of a command string. 



The 	first 	task 	to 	be 	specified 	is 	the 

Command String Interpreter task which interfaces 

with most of the tasks in the system. The CSI task 

is 	shown in Figure 	3.18, 	with 	the 	function 

'GiveCommandString" specified as separate. 

Figure 3.19 describes how the link up to the CSI 

module will be done. The Reset module is of greater 

complexity than CSI and, as such, makes an 

interesting example. It is shown in Figure 3.20. 

No entry specifications are found in task Reset 

since it is the active party in RendezVous all the 

time. 



task  CSI is 

entry  GiveControlReset (CS: out CommandString); 
entry  GiveControlRotate (CS: out CommandString); 
entry  GiveControlCalibrate (CS: out CommandString); 
entry  GiveControlVisualInspect (CS: out CommandString); 

end CSI; 

task  body  CSI is 
LN: CommandString 
function  GiveCommandString (Y:CommandString) return  

CommandString is separate  

begin  

loop  
GetCommandString (LN); 
case  LN.CommandType is 

when  Resettl> accept  GiveControlReset (X:outCommandString)do 
X:=GiveCommandString(LN); 

end  GiveCommandReset; 

when  Rotatem> actept GiveControlRotate(X:outCommandString)do 

X:=GiveCommandString(LN); 
end GiveControlRotate; 

when  Calibratee accept  GiveControlCalibrate(X:outCommandString)do 
X:=GiveCommandString(LN); 

end  GiveControlCalibrate; 

when  VisualInspectm>.accept GiveControlVisualInspect(X:outCommandString)do 
X:=GiveCommandString(LN); 

end GiveCOntrolVisualInspect 

end case; 
 end loop;  

end CSI; 
NOTE: 

It should be realized that in this case the function 
GiveCommandString is redundant. It was included to show how, 
if such a function became necessary, link up is possible either 
to inside or outside the package. 

Figure 3.18 Command String Interpeter (CSI) 



separate(CommandStringInterpreter); 

function  GiveCommandString(Y:CommandString)returnCommandString is 

Test:boolean; 
function  CheckValidity0f(X:CommandString)returnboolean is separate; 

begin  

Test:=CheckValidity0f(Y); 
if Test 
then return  Y; 
else raise  "exception"; 

end if; 

end GiveCommandString; 

Figure 3.19: Expansion of a separate procedure 



task  Reset; 

task  body  Reset is 
CS: CommandString; 

CST: CommandStatus; 
CP: CurrentPosition; 
Mssg: Message: 
DV: DisplacementValue; 
InitialPosition: Position:=0,0,0; 

procedure  

procedure  
procedure  
procedure  
procedure  
procedure  

GiveControlReset(X:CommandString) is separate;  
GetPosition(X:Position) is separate;  
NewPositionDisplacement(X,Y:Position) is separate;  
MoveAntennaPosition(X:DisplacementValue;Y:CommandStatus) 
SeridMessage(X:Message) is separate;  
AbortSystemActivities is separate; 

is separate;  

begin  

loop  
GetCommandString(CS); 	-- part of RendezVous 

AbortSystemActivities; 
GetPosition(CP); 	-- part of RendezVous 
DV:=NewPositionDisplacement(CP,InitialPosition); 
MoveAntennaPosition(DV,CST); 
if CST=Success 
then Mssg:=Success; 
else Mssg:=Failure; 

raise  actuator failure; 
end if; 
SendMessage(Mssg); 

end loop; 
end Reset; 

Figure 3.20: Description of the Reset Module 



Task Reset also exemplifies the use of separate 

procedures. Those procedures can either be in the 

package itself or in a different package which may 

be compiled separately. In the latter case, many 

stages of refinement may have taken place; proper 

procedure specification ensured that the rest of the 

model was not affected by changes in the separate 

procedure body.(*) 

3.2.5.2 Observations on the Model  

The use of the decomposition methodology yields 

a system model which exhibits several desirable 

properties. The most important advantage is that 

the system is described formally as opposed to an 

informal description whose meaning may be subjected 

misinterpretation. 	The model is also easy to 

visualize. 	Procedures and functions which serve 

similar 	purpose 	may 	be 	grouped 	together 	in 

anticipation of a complete software design. Such 

grouping of subprograms would optimize the coding of 

the system tasks. It should  • be  • realized, however, 

that the system tasks obtained through decomposition 

are not necessarily optimal nor are they the only 

set of tasks which could be obtained. Different 

designers or analysts will more than likely arrive 

at different task decomposition. 

(*) The Ada Manual [DOD80] has a lot more on that 

issue. 
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The Ada representation of the model makes an 

early compilation possible. 	This 	compilation, 

although not intended to produce executable code, 

can check the validity,  and consistency of data types 

and most importantly of procedure calls. 	The 

network of Ada building blocks 	can also 	be 

incorporated in a testbed, early in the design 

phase. This will be covered shortly in more detail. 

The importance of properly designing the model 

with respect to procedure call arcs was stressed 

before; a few guidelines will now be provided. 

Three cases are of interest and are shown in 

Figure 3.21. 
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Case 

Flow of data 

Case II 

Flow of data 

Flow of data 

Case III 

Figure 3.21: Prdcedure call arrangements in Ada 



Case 	I 	is 	the most 	likely situation to be 

encountered. 	Task A calls Task B and passes 

parameters to the latter. 	The same process takes 

place again for B and C. The direction of the data 

flow also coincides with that of the calls. This 

case of innocuous appearance can be a potential 

cause of deadlock if a cycle is allowed to form, 

(e.g., A calls B and is delayed because B called C 

and B was delayed because C had called A and had 

been delayed, etc.) 

Case II  is introduced to lessen the possibilities of 

deadlock when two tasks (e.g., A & C) have to 

communicate with each other  but,  at the same time, 

cannot afford to wait on one another. The reason 

for this unwillingness to wait may be that both A 

and C are tasks offering general purpose services to 

other tasks. It should also be noted that agent 

task B will convey the parameters of the call from A 

to C only. If a reverse flow is desired, another 

agent task is required. 

Deadlocks are not likely to occur in this arrange-

ment because task B will be alternately waiting on A 

to get a message, and on C to give the message. The 

actions involved in each case are very short and 



should hinder neither A nor C, as task B is doing 

the waiting. It is easily seen that the overhead in 

terms 	of 	executive 	services 	(e.g., 	context 

switching) may be substantial for this configu-

ration. 

Case III  also lessens the possibilities of deadlock 

and is used in cases such as: 

a) An input (or output) module which has 

service hardware interrupts while 

at the same time making the data 

available ' to other tasks in the 

system. 

A module 	which 	provides 	various 

services to other tasks, and as such, 

cannot be delayed. 

An example of an arrangement typifying Case III is 

shown in Figure 3.22 which depicts an input module 

servicing a hardware device. The input module makes 

the data that it collected available to the 

processing task. 



Procedures 

hardware 

device Processing 
generated 

call 

Procedures 

data flow 

Figure 3.22: Representation of an Input Module 

The reason behind the call structure of Figure 3.22 

is that the Input task should always (ideally) 

be able to schedule a hardware generated entry call 

from the device. If that is not the case, a loss of 

input data will result, caused by either too fast a 

device or an inadequate • call structure. The 

proposed structure, however, affords the Input task 

the best potential for quick scheduling of the 

service requests from the device. 



Case II and Case III help design systems with lower 

probability of deadlock. 	They do not completely 

eliminate the risk of deadlock. 	Total elimination 

of deadlock can only be achieved by a careful design 

and, if need be, some simulation to increase the 

confidence in the operations of the system. 

• 
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3.2.5.3 System Simulation and Testing  

Preliminary simulation and testing can be 

attempted on a model which is completely (or even 

only 	partially) specified by Ada specification 

blocks. Figure 3.23 shows the modelled system as a 

black box surrounded by device simulator modules. 
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Figure 3.23: System Model and Test Bed 



Input Call 

INPUT 

Input 

Those device simulator modules are outside the model 

and serve to simulate the behaviour of the devices 

they represent. Such a device simulator is shown in 

Figure 3.24 (a & b). 

package  DeviceSimulator 

GetCommandString 

task input accepts 
interrupts as 
simulated by task 

DS and stores the 
characters it 

receives 

task DS ; 
task body  DS is 

ch: character; DL:=Delaytime; 
begin  

loop  
ch:=SelectCharacter; 
Input(Ch); 	--functions SelectCharacters 
DL:=SelectDelay; 	--and SelectDelay implement 

delay  DL; 	--the behaviour of 

end loop; 	--the device 

end; 

Figure 3.24: Device Simulator Module 
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I. 

The 	complete 	specification/simulation/testing 

process is shown in Figure 3.25. The specification 

block is a manual operation; the system model it 

produces is the main input to  the simulation and 

testing package. The Device simulators are also 

given to the simulator package. 

1 

Specification 

System 

Model 

• Ada 

Compiler, Diagnostics 

System 

Requirements 

Input Modules 

Device 

Simulators  

System 

Black Box 

Representation 

Output 

Modules 

Devi ce 

 Simulators 

741 

Ada 

Executive 

Support 

Simulation 

Controller 

iiME-11tInj  

. Results 

Figure 3.25: Simulation & Testing Package 
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Several steps are necessary to complete the 

simulation and testing activities; they are 

summarized below: 

a) The system model is compiled. 	Data 

type checking is performed and some 

run-time checks are embedded in the 

load module. The load module is a 

combination of the compiler output, 

the Ada standard executive and the 

compiled device simulator modules. 

h) If any compile time error is detected, 

the compiler will inform the user 

through the diagnostic file. 

c) The load module is allowed to run. 

Run-time checks can detect deadlock, 

verify if subtypes are used 

consistently and that variable ranges 

are within bounds. 

Depending- on how sophisticated the 

simulation controller is, it might be 

possible to 	collect 	data on 	the 

comparative execution speed of each 

module. 	This information, while not 

truly representative of the speed of 

the finished product, is extremely 

useful when 	hardware/software 

decisions have to be made, 



When it comes to evaluate the results of the 

simulation, it should be realized that the whole 

system was implemented in Ada. This may not 

necessarily be the case in real systems; special 

functions may be coded in machine language for the 

sake of 	efficiency. Nevertheless, 	from 	the 

execution time figures, execution time limits or 

bounds can be derived. 	Once the functions of a 

module are known and the maximum time allowed to 

execute those functions is established, it becomes 

possible to decide whether to: 

a) Decompose the module further since no 

combinat ion of hardware/software -  or 

hardware alone can satisfy the speed 

requirements of the module. 

Implement the module as a specialized 

hardwired unit. 

c) Implement the module (or merge the 

module with another and implement then 

both) on a given processor with a 

given software algorithm. The actual 

allowable time to execute the module 

functions is influenced by such 

factors as processor speed, processor 

power (i.e., how good is the 

instruction set), the type of 

algorithm chosen to implement the 

functions, etc. 
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It 	should 	be 	stressed 	again 	that 

decomposing the system with the help of Ada 

specification blocks facilitates the eventual coding 

of some functions either as Ada modules or as 

assembly language modules. 	It is also obvious that 

the high level system model is not immutable. 	In 

fact, practical considerations may dictate that 

modifications be made to it. Different task 

partitioning may also prove to be necessary. 

3.2.5.4 Computer Aided Tools and the Specification Process  

A computer aided simulation and testing tool 

w as  proposed in the last section. 	However, this 

tool took as input the complete specification of a 

The question is: 	Is it possible or 

desirable to develop computer aided tools for the 

specification process? In the affirmative, what 

functions should those tools have and how can they 

be built? 

The answer to the first question would appear 

to indicate the desirability of computer aided 

specification tools. A further examination reveals 

that the tools that can be built would be restricted 

to a small scope. The specification process takes 

requirements and transform them into an abstract 

system. 
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form. 	This is still largely the province of the 

human mind. 	As such, it is difficult to simulate 

completely. 

A system called SADT [ROSS77a], [ROSS77b] was 

mentioned earlier, in the context of functional 

languages. It should be stressed that SADT is also 

a complete methodology and as such should be 

discussed here. SADT is an elaborate set of rules 

and guidelines with the purpose of establishing a 

common language and method for specification. SADT 

is applied in the early phase of data flow 

decomposition and functional analysis. SADT or a 

derivative could be used advantageously,  in the 

preliminary stages of the decomposition process. 

The resulting diagrams could then be translated into 

Ada specification blocks as before. Some work has 

also been done towards integrating SADT with a 

simulation tool. 	The result called SAINT [BACH81] 

includes a dynamic simulation tool. 

A tool that would also be very useful is a 

graphics package that would relieve the analyst from 

the burden of drawing boxes and connections. The 

topology of the graph should be remembered by the 

graphics package so that a comparison could be made 



with the output of the compiler after an Ada model 

has been compiled. Any mismatch would be detected 

and the analyst could then correct it. 

3,3 	Validation of Specifications  

3.3.1 	Validation  

Validation is a process whose purpose is to 

check the validity of a transformation. Figure 3.26 

shows two stages of program development linked by 

a transformation T. 

Towards Implementation 

	› 

Representation 

II 
Representat  ion  

Transformation 

Validation 
of T * Continue Re-do 

Figure 3.26: Example of Transformation 
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The validation of T in this case is the checking of 

Representation II against Representation I with re-

spect to functionality. If the functionality of 

Representation II does not quite correspond to that 

of Representation I, then the transformation is not 

entirely correct. 

To put the concept of validation in the per-

spective of the design methodology of the previous 

section, three main steps should be considered. 

Those steps are: Requirements, Specification and 

Implementation, as shown in Figure 3.27. 

Specification  

Figure 3.27: Validation and the Design Process 



The role of validation is to check the correctness 

of each transformation, from the early requirements 

to the final implementation. Several advantages 

accrue from this exercise: 

1. The transformation is verified. 

2. Existing flaws are uncovered so that they 

can be rectified. 

3. The behaviour of 	the output of 	the 

transformation is verified. 

Figure 3.27 shows validation in two places: 

a) Between 	Definition 	of 	Requirements 	and 

Specification. 

At this stage, validation is based upon a 

mathematical model of the system. Validity of 

the specification is carried out through high 

level testing or proving (that is, symbolic 

execution). 

b) Between Specification and various levels 

implementations. 

Validation is based on the implementation 

and the language used to describe it. If the 

language is completely axiomatized, assertions 

can be derived in order to make the symbolic 



I. 

an 	acceptable 	mathematical 	form. Research 

execution 	of 	the 	program 	possible. 	A 

successful symbolic execution of the assertions 

in the program attests to the correctness of 

the implementation. This method is called 

verification. 

Another 	method 	to 	obtain 	validated 

implementation is testing. 	Testing involves 

traversing each of the program branches and 

at the same time, checking the output thus 

obtained. Although simple 	and 	easy 	to 

understand, testing may not always be the best 

alternative due - to the difficulty of choosing a 

meaningful set of test data. 

This section on •validation will concentrate on 

validation 	(verification 	and 	testing) 	of 

implementations 	of 	systems. 	Validation 	of 

specification is more nebulous at present. 	The 

difficulty lies in representing the requirements in 

activities so far have, therefore, been concentrated 

mostly on implementations of systems. 

This section will cover three topics of 

importance in validation: 

a) Testing, 

b) Verification, and 

c) Automated Verification Systems (AVS). 
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the course of the discussion, full definitions 

will be provided as well as indications of how 

applicable and relevant those concepts are to the 

current work. 

3.3.2 	Testing  

Testing [HEND77], [G00D77] 	is a methodology 

which can be applied to a program to determine its 

validity. 	The degree, that is, the thoroughness of 

testing is under user control. 	'Testing rests upon 

basic observations on the behaviour of programs, be 

they at a high level or at a low level. Figure 3.28 

shows the skeleton structure of an imaginary program 

with all the control paths being given numbers. The 

purpose of testing is to select a set of test data 

so that: 

a) all the paths of the program have been 

traversed at least once and 

the output thus obtained is valid. 

Another way of explaining testing is to consider a 

program F as a transfer function. 	Figure 3.29 

depicts the domain and range of the transfer 

function F. 



ot 

Satisfied 

Figure 3.28: • Skeleton of a program control 

structure 

Figure 3.29: A Program's Domain and Range 



An element d, deD, will produce r = F(d) and rER. 

If this is the case for all deD, then the program is 

said to be valid. 

Using that definition of testing, it is clear 

that the set of test data that is required is the 

set of d's, deD so that: 

i) F(d)ER 

ii) the set is minimal 

iii) all the control paths of the program 

have been traversed once. 

The main advantage of testing and paradoxically 

its principal weakness lies in its simplicity. 

Testing is easy to carry out in terms of computer 

resources and packages. It has the advantage of 

using not only real data but also data that is 

meaningful. 	The program is, therefore, tested in 

its working environment. 	However, unless all the 

paths of a program are known and unless the set of 

test data is such that complete traversal of those 

paths is achieved, testing will not provide a 

guarantee of correctness. 	To put this differently, 

testing can uncover the presence of flaws but not 

prove that there are not any. 	Given the multi- 

plicity of paths in a program of even moderate size, 

it is not reasonable to expect that testing will 



cover all possibilities. 	Nevertheless, testing has 

its usefulness in increasing the level of confidence 

one has in a program. 

3.3.3 	Verification  

As mentioned before, a system specification and 

its implementation can be represented mathemati-

cally. Given this mathematical model, it is possi-

ble to simulate this system by what is known as 

symbolic execution. What is accomplished is, in 

fact, the traversal of all control paths in the 

program or, more precisely, the testing of the 

program for all possible input data. 

Program Verification is a research endeavour 

which is relatively new. It is nevertheless well 

documented as surveys and tutorials on verification 

[HANT76], [LOND77], [GRIE76], [KING80] attest. 

Another area of research is the automation of the 

verification process. Section 3.3.4 is devoted to 

Automated Verification Systems. 

The basis of program verification can be 

defined with respect to the simple diagram of Figure 

3.29. An assertion, called pre-assertion, is placed 

at the input of F. 	The.  . pr e -assertion is true for 

all d's in D and false otherwise. 	Similarly, an 



assertion, called post-assertion, is placed at the 

output of F. The output of the program satisfies 

the post-assertion if the output falls in the range 

of F. The difficulty most often experienced is in 

choosing the pre- and post-assertions. 

Refinements are, therefore, needed to make this 

choice easier. The approach usually taken is to 

break down the program into smaller paths that can 

be enclosed by  •a pair of pre- and post-assertions. 

This is illustrated in Figure 3.30a. 	The next 

problem is concerned with the handling of loops. 

Loops can be considered as a set of simpler serial 

paths with the parameters changing from path 

path. 	Figure 3.30b shows such a loop and the 

proposed assertion, called a loop invariant. A loop 

invariant 	combines 	the 	concepts 	of 	pre- 	and 

i.e., post-assertions. 	The assertion is true, 

satisfied, 	at the beginning of the loop and 

similarly 	at 	the 	end, 	hence 	the 	term 

"loop-invariant". 
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Figure 3.30: Paths and Assertions 

The thesis of program verification is that, 

given a program and a set of assertions mathemati-

cally describing the purpose of the program 

then, if all the assertions are proved to be true, 

the program is correct. This is, in fact, a sym-

bolic execution of the program since real input data 

has been replaced by algebraic symbols. This method 

is also called "Inductive Assertion" method since 

all the program paths (or segment) are proved 

independently and an induction argument is then used 

to establish the correctness of the whole program 

[FLOY67], [R0BI77], [REYN76]. At this point, a 

basic requirement of such a verification process 

manifests itself. The language used to write the 

program has to have a regular behaviour, easily 

expressed in mathematical terms. In other words, 

the language has to be completely axiomatizable (see 

[HOAR69], [HOARE73]. The reason for this require- 

A) 
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1 

ment is easy to visualize. 	A statement S can be 

preceded by a pre-assertion P and a post-assertion 

Given that P is true, some means of going from 

to Q has to exist. 	If the language of which S is a 

statement has been completely 	axiomatized, then S 

is the tool that will transform P into Q. 	There- 

fore, a complete definition of S renders possible 

the proving of Q. 

The preceding paragraphs described the most 

widely used verification method: 	inductive as- 

sertion. 	There exists other variations such as 

"predicate transformers" and "sub-goal induction". 

In those methods, the basic principles of verifi-

.cation are not altered. Assertions are still used 

describe the behaviour of. the ,program and an 

axiomatized language is still necessary; interesting 

peculiarities exist, however. 

1. Predicate Transformers 

The concept of predicate transformers [DIJK75], 

[YEH77] has been developed to be used in conjunction 

• with "predicate calculus". Predicate calculus is a 

program methodology destined to help programmers 

construct their programs with a strong mathematical 

Q.  
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base. 	Going one step beyond leads to verification 

which is made easier by the already existing mathe-

matical description. 

The theory behind Predicate Transformation is 

based on the state space of a program. On this 

state space, predicates P, Q, ..., can be formu-

lated. (A predicate is taken to be an assertion.) 

Associated with a given predicate P, there exists a 

set of program states, P*, for which P is true. 

P* = 	fstates  I.  P] 

Given a program S, it is possible to have a pre-

assertion and a post-assertion. These will be 

respectively P and Q and the following relation is 

held to be true: 

P[S]Q. 

In other words, P is true for the input data of S 

and following the execution of. S, Q is also true for 

the output data produced by S. A function WP will 

now be introduced and its effects are as follows: 

WP(S,Q) = weakest pre-condition such 

that after the execution of 

S, Q is true. 

WP(S,Q)* = largest set of initial 

states of S for which S 

terminates and Q is true. 



The function WP is called a predicate transformer 

since it takes a post-assertion and transforms it 

into a pre-assertion. In [LEH77], some predicate 

transformer theorems are stated and some examples 

are given, illustrating the predicate calculus and 

transformer methods. 

2. Sub-goal Induction 

Sub-goal induction [MORR77] is a proof method 

that can be used to complement the general inductive 

assertion method. In the latter, loops are handled 

through loop invariants, while in the former the 

correctness of loops is proved directly from their 

input-output specification. 

Figure 3.31 shows a simple loop which will be 

analyzed using sub-goal induction. 

begin 

while 	not P(x) do 
x:= 

end; 

Figure 3.31: Simple loop example 



1 

A post-assertion Q will be used to represent the 

desired state of the program after the execution of 

the loop. In this example, the predicate Q(x,z) 

relates a given input x to the desired output z (*). 

Two cases have to be considered in connection 

with the loop: 

Case 1: When the loop is executed for the first 

time, P(x) is true; the loop is ended with 

the value of x unchanged. Expressed mathe-

matically, this case amounts to: 

P(x) 	—* Q(x,x) 	(cl) 

Case 2: When the loop is executed for the first 

time, P(x) is false. 	This implies that 

x:=N(x) and thus becomes x t . 	This second 

case reduces to: 

notP(x) and x'=N(x) and Q(xi,z>>Q(x,z) (c2) 

(*) This example is that of [MORR77]. 
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The two cases, namely, cl and c2, are called 

verification conditions. In fact, proving cl and c2 

amounts to proving the correctness of the loop. 

Sub-goal induction is, therefore, a method to obtain 

those verification conditions based upon the 

specification of the loop. 

To resume the description of the process of 

verification, the example of the "Quotient- 

Remainder" will be presented. This example has 

first been given by [HOAR69], and then by [WIRT73] 

and [L0N077]. The example is based on the simple 

division program using the successive subtraction 

method (shown in Figure 3.32). In a first step, 

assertions are introduced in the program, as shown 

in Figure 3.33. It should be realized that the 

assertions are not executable statements and could 

be specified separately in a specification language. 
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function Divide (var  x: integer ; var  y:integer):integer 
var r,q: integer; 
begin  

r: x;  
q:=0; 
while  y>=r do 

begin  -- 
r:= r-y; 
q:= q+1 

end; 
Divide:=q 

end {of  function Divide2 

Figure 3.32: Sub-program for simple division 

function  Divide(var x: integer;var y:integer): integer 
var r,q:integer; 
begin  

pre 	true; (no restriction upon entry} 
r:=x; q:=0; 
while  y>=r do 
begin  

assert  x=  
r:=r-y; 
q:=q+1 

end; 
D.T7rde:=q; 
post  x=r+(y*q) and r< y 

end { .of  function DI7rdej 

Figure 3.33: Sub-program with assertions 
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From the assertions, three lemmas can be obtained 

which correspond to the three assertions. 	In 

deriving the lemmas, 	it is assumed that the 

programming language has been axiomiatized. 

1- Lemma I 

true and r=x and q=0--> x=r+(y*q) 

2- Lemma II 

x=r+(y*q) and y<=r and r t =r-y and q'=q+1-4. 

x=r' +(y*(1') 

3- Lemma III 

x=r+(y*q) and not y<=r-+x=r+y*q and r<y 

This axiomiatization is necessary in order to be 

able to transform a pre-assertion into a 

post-assertion. For example, in the lemmas, it can 

be seen that := has been replaced by =, since the 

behaviour of the assignment construct had been 

axiomatized. 

The next step in the verification process is to 

prove the three lemmas. Fortunately, 	it 	is 

relatively easy to do in this case (*). 

(*) Obviously, it will not always be that easy! 

See [POLA79]. 



1. Lemma I requires substituting r ,for x and 0 

for q and x=r+(y*q) is thus verified. 

2. Lemma II requires substituting r-y for r' 

and (1+1 for q'. 	The equation x=r'+(y*qt) 

is verified since x= (r-y) + (y*(q+1)) 

which reduces to x= r+(y*q). 

3. Lemma III is the exit assertion. The term 

r< y is equivalent to not y <=r and the 

term x= r+y*q is true. 

The proofs of those three lemmas have now been 

completed and the correctness of the sub-program 

Divide has been established. The lemmas themselves 

are interesting because they could have been stated 

differently. Hereto, 	the 	lemmas 	have 	been 

associated with the forward execution of the 

program. 	Backward execution can also be con- 

sidered. The lemmas that it yields are slightly 

different. 

1- Lemma I 

true -+ x 	x+y*0 

2- Lemma II 

x = r+y*q and y <=r->x=(r- y)  + y*(q+1) 

3- Lemma III 

x = r+y*q and not y <=r->x=r+y*q and  r <y 



The forward and backward methods of generating 

assertions are discussed comparatively in [KING 76]. 

Once a proof of correctness has been obtained 

for a given program, the question that comes to mind 

how correct and how reliable is the program? 

Obviously, the program itself is correct provided 

the proof was done correctly and the language was 

axiomatized properly. For the program to run 

correctly, extra factors have to be considered. 

Compiler correctness will influence how reliable the 

"correct" program will be. In this case, bugs in 

the compiler would jeopardize the correct execution 

of the program. Hardware correctness has to be con-

sidered as well. In fact, in order to establish the 

correctness of the hardware, the behaviour of the 

processor and the other components has to have been 

axiomatized. Based upon the material presented in 

this section, one can see that hardware axiomati-

zation is necessary if one aims at proving the 

correctness of a system. 

It would appear that even if a program has been 

proven correct, its correct execution is not auto-

matically guaranteed. However, the risks of soft-

ware related failure have been greatly minimized. 

is: 



To some extent, this is what testing achieved, but 

not to the same degree. In practical situations, 

testing tries to traverse most of the paths likely 

to be used during the execution of a program. 

Verification, of course, traverses all of them. The 

cost of testing being considerably less than verifi-

cation, there exist situations where, for both 

practical and economic reasons one alternative would 

be preferable. 

A very important point that has to be empha-

sized is that Verification (just like testing) is an 

activity that should be planned and carried out in 

parallel with program development. The applica-

bility of verification to the design methodology is 

still an unresolved issue. On one hand, it would be 

advantageous to have a completely validated design 

from the top to the bottom level. On the other 

hand, Verification is very costly of time and 

efforts and requires skilful users. In satellite 

systems, where reliability is paramount, verifi-

cation should be a goal worth considering. 



3.3.4 	Automated Verification Systems (AVS)  

In an effort to facilitate the task of verifi-

cation, 	several 	research 	activities 	have 

investigated the 	possibility 	of 	involving 	the 

computer in the verification process. Automated 

Verification Systems (AVS) were the results of those 

efforts. The theory behind the operation of a 

typical AVS is no different from that of a hand 

proof. Of course, some steps have to be spelled out 

due to the different natures of the human mind and 

of the computer. 

The process of designing and of verifying a 

program using a hypothetical AVS is shown in Figure 

3.34. The first step towards verification, once the 

program is written, is to insert the assertions and 

loop-invariants. Those may be difficult to obtain 

but it will be assumed that they have been properly 

generated. 
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Assertions 

(user generated) 

Automated Verification 
System 
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Program 

Assertions 

1 

USER  

diagnostic (OK, faulty) 

Figure 3.34: Design and Verification of Programs 

The AVS accepts as input the program and its 

assertions. 	It uses the assertions to produce 

verification conditions which will be of a format 

suitable for machine proving. 	The verification 

conditions are, in fact, considered as theorems and 

various techniques can be used by the theorem prover 

(see [BOYE79]). 	The "inductive assertions" method 

can be used, sometimes supplemented by subgoal 

induction. It has to be pointed'out that the AVS 
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will, in general, prove partial correctness. Total 

correctness is proved when the program has been 

ascertained to terminate. 	In order to illustrate 

those concepts, an example will be presented which 

will take a subprogram and perform the steps outlined 

in Figure 3.34. 

The example to be considered is basically that 

of [R0BI77] and uses register modules as defined by 

[PARN72]. 	A register module is a variable size 

vector whose cômponents - are ordered by size in an 

increasing sequence. The following 'predicates 

always hôld for a register module. 

0<= Length <= 1000 
Yi, 0<i <= Length, RegisterModule[i] is defined, 

Yi  j 	RegisterModule[i] is defined, 

0<=RegisterModule[i] <=255. 

The subprogram to be verified with respect to 

the register module is shown in Figure 3.35. 
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until  c is inserted 
— 

of InsertSorted end 
•••n•n• Assertion III 

inserts the value after position i and moves 

Procedure  InsertSorted(var c: integer); 
var x:integer; 
begin  

_ Assertion I 
x:=1; 
repeat  

_ — Assertion II 
if x >= Length+1 
then  Insert (x-1,c) 
else  if c < Regis terModule [ x 

then  Insert(x-1,c) 
else  x:=x+1 

Figure 3.35: Procedure InsertSorted 

The subprogram of Figure 3.35 refers to another 

procedure 	called 	Insert 	(i,j). 	"Insert(i,j)" 

subsequent values one position higher. Keeping this 

definition in mind, it is now possible to state the 

assertions of "InsertSorted". Three assertions are 

necessary and should • be placed as indicated by 

arrows in Figure 3.35. 
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1. Assertion I 

\lk  1  1=<k= <Length-1 , Regis terModule [k]= < RegisterModule [k+1 ] 
and 0= < c =<255 
and 0= < Length<1000 

2. Assertion II 
Length = Length ()  and c=c 0  and 

=< k = < Length, RegisterModule[k]=RegisterModule o [k] and 
Vkll =< k =< x-1, RegisterModule[k]<c and 
1= < x=< Length+1 

3. Assertion III 
Length = Length ()  + 1 and 
Vk I 1=<k =<Length-I,RegisterModule[k]=< RegisterModule[k+1] 
and Bag0f(i,I,Length,RegisterModule(i))= 

BagOf (i , 1 ,Length o  , RegisterModule o  ( i))U Bag (c o ) 

Assertion I describes the state of the RegisterModule at the 

beginning of the procedure. 	The RegisterModule is sorted and 

has room for another character. The character to be inserted is 

within bounds. 	Similarly, Assertion III describes the state of 

the RegisterModule after the insertion took place. 	It shows 

that the length of the RegisterModule has been incremented and 

that the RegisterModule itself is still sorted. 

Assertion II describes the state of the hegisterModule and of 

the procedure during the lobp. In Assertion II, Bags and 

BagConstructors [KNUT68] are used. For example, Bag (a,b,c,) is 

the set of three elements a,b,c with Bag(a,b,c) = Bag(b,a,c). 

The BagConstructor is Bag0f(i,a,b,expression(i)) which 

represents the - bag of elements obtained by substituting b for a, 

for i in expression(i). 
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The next step taken by an AVS is the generation of 

verification conditions. Those are to be found in the following 

list: 	(The list and proof of VC's are basically that of 

[ROBI77]). 

1. Vkll<= k=<Length 0 -1, RegisterModule 0 [k]=<RegisterModule 0 [k+1] 
2. and 0 =.< c o  =< 255 
3. and 0 =<ZLengtho < 1000 and 
4. Vk I 1 < = k= <x-1 , RegisterModule o [k] < c o  
5. and l<= x=< Length 0 +1 
6. and x< Length ()  +1 
7. and  c o  =< RegisterModule o [x] 
8. and  Length = Length 0+1 and 

9. Vk , RegisterModule[k] = if k =< x-1 then RegisterModule [k]* 0 	e 
if k = x then  c o ; 

otherwise RegisterModule 0 [k-1] 

After insertion of c o , verification conditions 10 to 16 are 

derived from the verification conditions 1 to 9. 

10. 1 <= x =< Length ()  and 

11. 0 = < x-1 =< Length °  and  
12. 0 = < c o  = < 255 and 

13. Length o < 1000 and 
14. Length = Length ()  + 1 and 

15. Y k 1 = k =< Length-1 , RegisterModule [k] = < RegisterModule [k+1 ] 
16. and BagOf (i,l,Length,RegisterModule(i))= 

BagOf (i,l,Length o ,RegisterModule o (i)) liBag (c o ) 

The automatic verification system would then start proving 

each of those verification conditions as theorems. Most of the 

above verification conditions are straightforward to prove. 

Condition 15 will be used to illustrate the theorem proving 

activities of the AVS. Verification condition 15 is simplified 

by substituting expressions 8 and 9. The new condition is shown 

below, in Figure 3.36. 



did]. =< k =< Length ° , 

[if k =< x-1 then  RegisterModule o [k] 
else  if k = x then  c o  

else  RegisterModule 0 [k-1] 

me < 

[if k+1 =< x-1 then  RegisterModule 0 [k+1] 
else  if k+1 = x then  cO 

else  RegisterModule o [k]]. 

Figure 3.36: Verification Condition 15 

The binary relation =.< relates the two expressions in 

bracket. 	Nine possible cases result but with only four of 

them being non-trivial. Using the letters at the far right 

of Figure 3.36 to represent each particular case, the four 

cases of interest become: 

1. Case 1: 	a,d 
2. Case 2: 	a,c 
3. Case 3: 	b,f 
4. Case 4: 	c,f 

Those cases are proved in the following fashion: (item i 

corresponds to case i). 

1. V kl 1 =< k =< x-2, RegisterModule o [k] 
=< RegisterModule[k+1] 

2. RegisterModule 0 [x-1] =< c 

3.. c =< RegisterModule o [x] 
4. 	dkl x+1=< k=< Length ° , 

RegisterModule[k-1]=<RegisterModule[k] 

(a) 
(b) 
(c) 

(d) 

(e) 
(f) 



At this point, the AVS has completed the proof of verifi-

cation condition 15 and would continue on to 16. Automated 

verification systems perform along similar lines as a proof 

by hand. Their requirements are very much the same in that 

they need an axiomatized language and the insertion of 

assertions. It is clear that assertions are very important 

to the AVS since they mathematically depict the behaviour 

of the system. The onus to produce suitable assertions is 

on the designer and this seems to indicate that obtaining 

the assertions is a rigorous activity which should be 

undertaken concurrently with program development. 

Several AVS are being experimented with at the present 

time, as the following list can attest: 

1. Gypsy is a verification system being developed at the 

University of Texas, [G00D78], [AMBL77]. Gypsy is also 

surveyed in [CHEH81]. The Gypsy verification environ-

ment is shown in Figure 3.37. 
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Figure 3.37: Gypsy Verification Environment (from [CHEH81]) 

Gypsy features a single language (i.e., Gypsy) to program 

the application and to specify its behaviour mathemati- 

cally. 	The Gypsy language is a derivative of Pascal 

[JENS74] and supports concurrency. 	Detailed examples of 

its use are given in [AMBL77] and also [CHEH81]. 	GYPsY 

also features a designer/verifier's assistant package 

[M0RI79] to facilitate the task of maintaining previously 

verified programs. 



2. 	Hierarchical 	Development 	Methodology 	(HDM) 	[R0BI78], 

[R0BI79] is a complete methodology for program development 

from the early stages of specifications to the final stages 

of implementation. 	Mathematical representation of the 

system's behaviour is accomplished through Special, a 

non-procedural, specification 	and 	assertion 	language. 

Figure 3.38 shows some of the details of HDM. 

System Description 
Using Special 

Implementation 

Language 

Axiomatization 
ofImplementation 

Language 

Verification Condition 
Generator 

,Boyer Moore 
Theorem Prover 

Figure 3.38: Description of the HDM System 



Special is not a procedural language and, therefore, an 

implementation language is necessary. Complete 

axiomatization is obviously a requisite condition on the 

implementation l'anguage if the verification condition 

generator is to perform properly. The verification 

conditions thus generated are given to the theorem prover 

for automated proof. The theorem prover is the Boyer Moore 

[BOYE79] theorem prover and is among the most powerful 

available. 

1 	3.  
Affirm 	[AFFI79] 	is 	primarily 	an 	interactive 	system 

requiring considerable directions from the user. It uses a 

variant of Pascal for specification and implementation. 

Other facilities are also provided for, data type 

specification and for theorem proving. 

4. 	Other 	systems 	such  •as 	the Stanford Pascal Verifier• 

[LUCK79], the Formal Development Methodology (FDM) [KEMM80] 

should also be mentioned. (Other systems also exist in the 

early experimental stages and are not mentioned here.) 

As pointed out previously, all those automated verification 

systems are at various stages of experimentation. Their use is 

costly but, above all, requires trained programmers well versed 

in mathematical programming. The next section will cover the 

validation capabilities that can be reasonably and realistically 

incorporated to the design methodology. 
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end of verification 

3.3.5 	Proposed Validation Capabilities  

The specification methodology should incorpo-

rate some validation capabilities. The nature and 

the extent of those capabilities should be carefully 

chosen. An ideal system, even though not practical 

at present, is shown in Figure 3.39. 

Requirements 	> User/Analyst 

in various 
stages 

Abstraction 

Specification Assertions 

Implementation 

hardware 

Theorem Prover 

I Diagnostics 

Language 

Axiomatization 

special 

validation 
may be 

necessary 

see [CORY80] and 
[CORY81] 

software 

Verification 

Condition 
Generator 

Data Base 
of Theorems 

Figure 3.39: An Ideal System 



Several factors make this system impractical: 

1. Ada 	is 	going 	to 	be 	used 	as 	the 

specification/implementation language. 

Ada has not been fully axiomatized and it 

is not likely that it will, at least in 

its present form [YOUN80]. 

2. Concerns about code correctness may be 

dwarfed by concerns about compiler and 

especially run-time environment mechanisms 

correctness. 

3. As pointed out before, use of those AVS 

tools 	is not necessarily complicated. 

However, 	obtaining mathematical 	de- 

scriptions of systems through assertions 

is not a trivial task. 	As systems become 

more complex and as the issues to be con- 

sidered proliferate, the problem of veri- 

fication 

unwieldy. 

will become more 	and more 

As more research is pursued in the field of 

verification in general and in Automated Verifi-

cation Systems in particular, it is reasonable to 

expect that verification and AVS will become more 

powerful and easier to use. In their present form, 

their overall complexity precludes their use on a 



large scale, such as a validation of a complete 

system. Validation/verification work of a smaller 

scope can be undertaken; an example of such works 

would be the verification of small modules imple-

menting functions which are critical to the proper 

functioning of a larger system. This latter 

alternative would be feasible for the multi-micro 

processor design methodology. Its use, however, 

should be within in a consistent and logical frame-

work. Such a framework, shown in Figure 3.40, 

combines the various features outlined so far in the 

last two sections. 

The interim verification system of Figure 3.40 

is, of course, a compromise and should be augmented 

with new capabilities for decomposition and 

verification, if and when these become available. 

In fact, any addition to the interim verification 

system should tend to transform it into the ideal 

system of Figure 3.39. At present, the interim 

verification system achieves limited verification 

partly through checks performed at pre-compilation 

and pre-simulation time and partly through formal 

verification of some critical sections of limited 

scope. 
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A useful addition to the preliminary compi- 

lation would be the inclusion of imports/exports 

constructs fashioned after those of Euclid 

[LAMP77]. Those constructs are not part of standard 

Ada and would be direted expressly at the specifi-

cation blocks. Access into a block and access 

originating from inside a block would be tied to a 

source or a destination. The advantages accrueing 

are twofold: 

1. A tight control on interconnection 

would be achieved. 

2. Further validation work would be made 

easier. 



3.4 	Summary and Conclusions  

This section on specification and validation 

was an attempt to describe a design process based on 

requirements and producing specifications leading to 

easy implementation. Validation of the specifi-

cations and possibly of the implementation was also 

covered, mostly by means of survey of existing tech-

niques. 

The results of this research can be summarized 

as follows: 

1. The transformation of requirements 

into formal or even informal specifi-

cations is still largely the task of a 

systems analyst. 	The necessary ab- 

straction power makes the automation 

of this activity within the near 

future unlikely. 

2. The process of obtaining specification 

was described and guidelines were pro-

vided. Decomposition techniques, such 

as dataflow analysis and functional 

decomposition were introduced. 	Ada 

specification blocks were used to pro- 

vide a strict formalism . 



I  

I. 

1 

1 

1 

3. The specifications obtained with Ada 

specification blocks can be trans- 

formed 	naturally 	into 	an 	imple- 

mentation. This transformation is 

done in various steps, with each step 

being a refinement of the previous 

one. 

4. Validation techniques were investi-

gated with respect to their applic-

ability to the design methodology. 

Although no concrete validation system 

• was specified, preliminary validation 

• capabilities were outlined. 	A more 

powerful validation system was also 

described as a desirable goal for 

future research. 

Due to its research nature, the work reported herein 

is not definitive. Modifications will, no doubt, be 

made as new problems are discovered (in the course, 

perhaps, of actual experimentation). 

The methodology should be  •experimented with in 

the context of a large example. This would allow 

for improving the methodology itself and would also 
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provide the necessary framework for the development 

of computer aided tools such as: 

1. A graphical aid to decomposition (out-

lined previously). 

2. A simulation testbed for the prelimi-

nary simulation phase. 

3. A verifier which could be used on 

selected sections of the system. 

In connection with verification, it should be 

pointed out that, due to the very complex nature of 

the task, it would be desirable to gain experience 

with an already existing system, such as Gypsy. 

Theory would then be substantiated by practical 

experience. 



4.0 	PERFORMANCE AND RELIABILITY  

This section examines the potential applications of CAB 

 tools for the analysis and optimization of the performance 

and reliability characteristics of multi microprocessor 

systems design. 	First the primary questions which CAE tools 

can answer are considered. 	Then the application of these 

tools at each design stage are explored. Next the reliabili-

ty and resource usage Models which form the building blocks 

of CAB  tools are examined. Based on these fundamental 

models, areas for the development of new or improved CAE 

tools are identified. The conclusions are summarized at the 

end of the section. 

4.1 	Introduction  

The problems in which designers employ  CAB performance/ 

reliability tools involve the determination of one of the 

following three factors given that the other two are known: 

(a) the architecture of the entire sytem, 

(h) the performance/reliability levels of each 

of the components of the system, and 

(c) the performance/reliability of the entire 

system. 

The most basic CAB  tools assist the designer in solving 

the following problem: 

Given the architecture of the system and the 

performance/reliability levels of each of the 

components, what is the performance/reliability 

of the entire system? 
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By solving this problem for different design alterna-

tives, the designer can solve the following two more 

difficult problems: 

1. "Given the architecture and the performance/ 

reliability requirements of the system, what 

is the required performance/reliability levels 

of each of the components of the system?", 

2. "Given the performance/reliability levels of 

each of the components and the required 

performance/reliability 	of 	the 	system or 

module, what should the architecture be?" 

The more powerful and sophisticated CAE tools provide 

additional assistance to  the, designer in answering these last 

two questions. Only in the most fully automated design 

environments do the CAE tools answer these questions with a 

minimal amount of involvement and interaction on the part of 

the designer. 

• 4.2 	Scope of CAE Tools in the Performance Area  

This section examines the demand for performance/ 

reliability CAE tools in the successive design stages. The 

potential application and scope of CAB  tools are derived from 

•the designer's needs in each of these stages. 	Opportunities 

for "pre-building" the CAE tools before a micro-computer 

design project starts are also explored. 



4.2.1 	Architecture Selection  

The first stage of selecting a hardware/software archi- 

tecture is primarily a "strategic" type of decision. Typical 

decisions include the level at which redundancy is 

implemented (component, assembly, module or system), the 

communication protocols, and the resource scheduling 

policies. These decisions are based mostly on experience. 

Important variables and decisions are often expressed 

subjectively. 	Because of the complexity associated with the 

design of highly reliable multiprocessor systems, 	the 

architecture decisions must - be in the form of a coherent 

strategy' rather than separate fragments of detailed 

solutions. 

CAE tools which are used  ml 	Architecture Selection 

stage are usually employed on a one shot basis to answer a 

specific question. 	Thus the automated tools which are the 

most useful are General Purpose Tools. 	Examples of these 

tools include general purpose simulation languages such as 

GPSS [GORD75] and SIMULA [FRAN77]. 

An example question related to the performance assess-

ment in •the Architecture Selection stage is "How does the 

throughput of a bus with a prioritized demand access protocol 

compare with a bus which has a time slot access protocol when 

the number of processing units and the frequency of the 

processing unit's access to the bus are varied?" The answer 

is usually found by simulating the two alternatives under 

varying conditions. To do this quickly and economically, the 
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designer can use an existing general purpose simulation tool 

to create a simulation model of the two alternatives. This 

simulation model is a Specific Tool for the question at 

hand. The designer first validates that the simulation model 

is correct by comparing its results with analytical 

predictions. Once satisfied with the correctness of the 

model, the designer then uses it to examine the performance 

of the alternative bus protocols under different conditions. 

4.2.2 	System Model (Hardware and Software Selection)  

The primary objective of the System Model Design stage 

is to optimize the design within the confines of the Design 

Policies set by the Architecture Selection stage. Typical 

decisions made in the this design stage are the number of 

processing units and the allocation of software tasks to 

processing units and memory partitions. This optimization 

normally involves the handling of a considerable amount of 

data and the repetition of complex calculations. Therefore, 

this stage is an excellent candidate for computer automation. 

The CAE tools which are used for performance evaluation 

in the System Model Design stage are usually custom tailored 

for the 'hardware/software architecture being employed. To 

understand the reason for this, it is useful to review the 

underlying methodology for performance/reliability 

evaluation. 	The basics of this methodology are shown in 

Figure 4.1. 	The process starts with a Design Description  

consisting of information such as the hardware organization 



of processing units, memories, buses, and I/O ports, software 

organization of tasks, buffers and inter-task communi- 

cations. 	This 	is 	followed by mapping the relevant 

information onto the Performance/Reliability Models. 	This 

mapping process is called Abstraction. 	From these models, 

results are obtained, interpreted and conclusions drawn. 

Based on the Conclusions, design changes can be made and the 

cycle repeated until an "acceptable" design is produced. An 

acceptable design is one which meets the performance require-

ments. 

The application of this methodology, to the performance 

evaluation and design of multiprocessor hardware is illus- 

trated by,  the example of Figure 4.2(a). 	The Design 

Description shows a dual processor architecture with both 

local and common memory. The various cycle, access, and 

delay times are included in the description. By the process 

of Abstraction, the performance characteristics of the 

components are extracted from the design and configured into 

a Performance Model. The model, shown in Figure 4.2(b), 

considers the processing units, memories and I/O interface as 

servers in a queuing network. The conflicts and resulting 

delays in the access to the Common Bus are modelled by the 

Common Bus Queue. The delay of the Bus Interfaces and the 

access times of. the Common Bus Devices (ROM #3, RAM #3 & I/O) 

are lumped into one server, the Common Memory, which has a 

total service time of 0.5 uSec. 



From the Performance Model of Figure 4.2(b), 	the 

following Results are obtained by mathematical calculations 

and by running the simulation model: 

1. Processing Unit #1 executes 2.0 million cycles/sec. 

2. Processing Unit #2 executes 1.3 million cycles/sec. 

3. Average Common Bus Queue Length = 0.6 

By Interpreting these Results, two Conclusions are 

drawn: 

1. More processing throughput is needed. 

2. Too much time is wasted in accessing Common Memory. 

Next, design changes are recommended: 

1. Decrease the Access Time of ROM #3, RAM #3, and I/O 

to 0.2 uSec. 

This completes one cycle of the methodology which is 

repeated until a hardware design, which has acceptable 

performance, is obtained. 

The critical processes in this methodology are the 

Abstraction and Interpretation steps. In general, these 

steps can only be done by the human mind and cannot be done 

by computers until significant breakthroughs are made in 

artificial intelligence. 



If the Abstraction, Interpretation and Design Change 

steps must be performed manually, then the CAE tool can 

assist directly in solving the following basic performance 

analysis problem: 

"Given the architecture of the system or module, 

and the performance/reliability levels of each of 

its components, what is the performance/ 

reliability of the system or module?" 

In summary, the following conclusions can be made 

regarding CAE tools for this design phase: 

1. CAE tools which incorporate performance and 

reliability models can be used to optimize 

many designs which employ various computer 

architectures. Their main advantage is to 

relieve the designer of the tedious and time-

consuming tasks of processing (number 

crunching) and storing large quantities of 

data. Because these tools are compatible with 

many different architectures, they can be 

built before an architecture is selected. 

2. CAE tools which perform the Abstraction, 

Interpretation and Design Change steps as well 

as the performance and reliability calcu-

lations can be built only after the computer 

architecture has been selected. These tools 

further reduce the amount of manual design 



effort and the total time required for the 

initial design stage. This is particularly 

true if the sanie architecture is used in 

several projects since powerful CAE tools 

would then be available at the beginning of 

each project. Re-using CAE tools in many 

projects 	also 	helps 	justify 	their 	often 

substantial development costs. 

4.3 	Reliability Models  

The reliability analysis models enable the designer to 

examine the probability of failure, hence the survival 

probability of a given architectural configuration. Two 

types of failures are considered: 

(i) failure due to exhaustion of spares and 

(ii) failure due to imperfect coverage. 

Also a model for calculating component reliabilities is 

presented. 

4.3.1 	Component Reliability Model  

In general, the failure of the electronic components 

follow a Poisson distribution with failure rate L. Thus the 

reliability of the component is equal to no failure in time 

[0, t], given by: 
-Lt 

P r  (no failure in time [0, t]) = e 



1 
1 
1 

1 
1 
1 
1 
1 

1 
	

4.3.2 	Exhaustion of Spares Model  

This model calculates the probability that a sufficient 

number of spares fail gradually over time so as to render the 

remaining parts incapable of performing the required system 

function. In this model, the hardware architecture of the 

micro-computer system is considered in terms of its Basic  

Modules. A Basic Module is a module whose failure is inde-

pendent of the failure of other modules in the system. This 

I .  approach is often applied in fault tolerant architectures 

where identical copies of hardware modules are employed as 

spares or in voting strategies. Several assumptions are made 

in the construction of this model: 

(i) The failure probability of a particular Basic 

Module is independent of the failure state of 

other Basic Modules. 

(ii) A failing Basic Module is not repaired and 

will be isolated from the remaining com- 

ponents. 

(iii) The system starts from an Initial  State  in 

which all components, including the redundant 

ones, are functioning, i.e., the system has a 

perfect Initial State. 

For an architecture with n Basic Module types, there is 

defined a state vector, 	S, consisting of the tuple S = (si, 

); where s. corresponds to the Basic Module type 

i. 	The entry si in vector S is an integer whose domain is 

s2, 	oe'e 

1 - 123 - 



n. 

zero to Ni; with Ni denoting the number of identical copies 

of Basic Module type i in the perfect Initial State of the 

system. 

The state of the system, at any time, 	t, is defined by 

number of'working (non-failed) copies of each Basic Module 

type. The Initial State of the system can be defined by S o  

as: 

S o  = (Ni, N2, •.. N n ) 

The state of the system after some time t>0 can be 

represented by: 

S t  = (Ni, N2, 	, Nn ) 

where Ni Ni for i = l, 2, ... , n. 

A Minimal  State is one in which the system is operating 

with a minimum number of copies of each Basic Module in 

working condition so that the failure of a copy of any of the 

n modules will lead to a total system failure. The Minimal 

State is represented by S m : 

S m  = (NI , NI,  •••,  N
in

)  

where Ni :Ni for i = I, 2, ... 



Clearly, the set of Operating  States  for the system 

consists of all those states whose representative vector S is 

greater than or equal to S m . All other states correspond to 

system failures. 

The reliability of the micro-computer system is defined 

to be the sum of the reliabilities of all the Operating 

States. Thus the failure-to-exhaustion probability can be 

computed once the Operating States of the system are 

enumerated. 

For example, consider an architecture which consists of 

10 processing units, 8 shared memory modules, 6 buses and 5 

clocks. The minimum operating configuration of this 

architecture consists of 7 processing units, 6 shared memory .  

modules, 4 buses, and 3 clocks. Let Rp, Rm, Rb, and Re 

denote the reliability of a processing unit, a memory module, 

a bus, and a clock, respectively. The Initial State of the 

system is given by: 

S o  = (10, 8, 6, 5) 

and then the Minimal State is given by: 

S m  = (7, 6, 4, 3) 



The reliability of an Operating State S' = (9, 6, 5, 3 

is given by: 

(0)  9 	8) 	6 	2 
R(S 1 ) = 	Rp (1 	Rp) * 2 	Rm  (1 - Rm ) 	* 

(61)R15)  (1 - Rb) * 	11! (1 - R e ) 

and the reliability of the system is given by the sum of the 

reliabilities of all states S that satisfy: 

S m  <S <S, 

l 4.3.3 	Imperfect Coverage Model  

I 	

In this model, the time required to detect an error and 

recover from it (e.g., by isolating the failing components, 

reconfiguring the hardware architecture, and re-allocating 

its functions) is considered. 	Since this time is finite, it 

is probable that one or more other components will fail 

before the recovery actions are completed. This may or may 

not lead to a total system failure, depending on the extent 

and complexity of the recovery mechanism. 

The above situation can be best modelled by a Markovian 

chain which consists of the following states: 

(i) The Start-Up (all components good) State which 

has a given initial probability that the 

system is initially fault-free. 

2 
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(ii) A set of Intermediate  States  in which one or 

more components are in failure but undergoing 

detection and recovery. 	It is assumed here 

that complete recovery will return the system 

to the Start-Up State, i.e., that there are 

sufficient spare parts. 	This assumption is 

valid as long as the period of time being 

analysed is relatively short and that, in the 

long run, system reliability is dominated by 

the failure-to-exhaustion. 

(iii) The set of failing states are lumped together 

into one Failure  State.  This state is reached 

from any of the Intermediate States when an 

additional 	failure 	occurs 	which 	hampers 

recovery and leads to a catastrophic failure. 

4.4 	Resource Usage Models  

Modelling of the resource usage in a multiprocessor 

system can be done at different levels of detail. However, 

the methodology for performing the analysis is the same at 

all levels of detail as shown in Figure 4.3. From the Design  

Description,  the Loading  and Resource Descriptions  are 

obtained by constructing suitable models. These descriptions 

are combined with the algorithms in the Resource  Usage  Model  

to produce the Resource  Usage  Estimates.  These results are 

Interpreted and Design Changes made, thus causing the design 

process to cycle until a design with acceptable resource 

usage is produced. 
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types are listed. The capacity of each resource component is 1 

1 

1 

When the resource usage is modelled at lower levels of 

detail, the Design, Loading and Resource Descriptions become 

increasingly complex. The following sections progress from 

the high to low levels of detail. The higher levels provide 

more general information on the total amount of resources 

needed, while the lower levels yield more information on how 

individual resources are used. 

1 

I 4.4.1 	Simple Totals Model  

The simplest assessment of resources can be made by just 

summing the load and comparing it to the available or 

postulated levels of resources, without considering how the 

components of the load will be assigned to the individual 

units of resources. 	This type of analysis gives gross 

estimates of system sizing and resource utilization. 

Examples of Loading, Resource Descriptions and Resource 

Usage Estimates are shown in Figure 4.4. 	The Loading 

Description lists all software tasks and buffer areas. 	For 

each one, the required resources such as processing time, ROM 

and RAM are estimated. The individual resource requirements 

are summed to estimate the total required amount of each 

resource type. In the Resource Description, the resource 

multiplied by the number of copies to give the total capacity 

of each resource type. 	Next the total capacities are 

compared to the required amounts of each resource in the 
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Resource Usage Estimates. 	The resource utilization is the 

percentage ratio of required resources to capacity, and the 

spare capacity is the difference between required resources 

and the capacity. 

4.4.2 	Effects of Allocation Model  

The next step is to allocate the individual loads to 

individual resources. The Design Policies from the 

Architecture Select_ion stage place constraints on how this 

allocation is done. Examples of Allocation  Constraints  are: 

(i) One single board computer (SBC) may read the 

RAM of another SBC but may not write into it. 

(ii) The private data of a software task must be 

stored in the RAM of the SBC which executes 

the task. 

(iii) The code for all reliability critical tasks 

must be stored on at least two SBC's. 

Further Allocation Constraints are derived from the 

Design Description. 	These constraints can be summarized in 

an Access Graph  as shown in the example in Figure 4.5. 	The 

Access Graph shows the inter—task communication requirements 

and the shared buffer areas. In this example, the In TV task 

receives 0.25 K byte messages from the Antenna Attitude 

Control task and sends 0.10 K byte messages back. The In TV 

task also requires access to the two Video Buffers. The 

memory requirements for this task are estimated as 2 K bytes 



H I 

I  
1 

ROM and 1 K bytes RAM. 	The resource, message passing and 

buffer access requirements of the other tasks are similarly 

described by the diagram. 

In addition to the Allocation Constraints, the effects 

on resource usage caused by the allocation of the software 

tasks to hardware resources must be identified. Examples of 

these' Allocation  Effects  could be: 

(i) If two tasks are dedicated to the same SBC, 

then their inter-task messages can be stored 

in their SBC RAM. 	If their messages are 

stored in the common memory, then a 0.01 m sec 

0.1 m sec per 1 K byte of message will be 

added to the common bus load. 

(ii) If tasks exchange messages by copying from one 

local RAM to another, then a 0.02 m sec + 0.1 

m sec per K byte of message will be added to 

the common bus load. 	As well, RAM space on 

both SBC's must be reserved for the message. 

(iii) If a processing unit executes code from common 

memory, then the processing unit will run 25% 

• slower and a common bus load of 0.2 m sec • per 

1.0 	m sec 	of 	processing 	time will 	be 

• generated. 

(iv) If the processing unit executes code from a 

local RAM instead of ROM, then the processing 

unit will run 35% slower. 
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Based on the Allocation Constraints and Effects, the 

Loading Description can be created. An example is shown in 

Figure 4.6(a). Compared to the Loading Description in 

Figure 4.4, the allocation or assignment of tasks to 

individual hardware components is shown. The requirements 

for the hardware components are summed to produce the total 

load on each. 	The Resource Description also shows more 

details associated with the resources (Figure 4.6(b)). 	The 

individual hardware components are identified and the common 

bus which was not considered in the Simple Totals Model is 

included. 	The Resource Usage Estimates then show the 

utilization and spare capacity of each hardware component 

(Figure 4.6(c). 

4.4.3 	Effects of Dynamic Interaction Model  

Two aspects of dynamic interaction are important: 

1. Process  Flow  - Certain actions must be taken 

(or events occur) before other actions 'take 

place(or events occur). The order of hardware 

and software 	tasks 	and 	their inter-task 

communication define the data processing flow 

of the system. 

2. Resource 	Scheduling 	The 	method 	for 

allocating resources in real time between 

competing tasks can have a large effect on the 

ability of the system to meet its real time 

requirements. 	The 	interaction 	between 



Resource Scheduling and Process Flow affect 

the overall utilization of the resources. 

There are two methods for coping with the effects of 

dynamic interaction: 

(i) Apply  Rule  of Thumb Utilizations  - Because the 

undesirable effects of dynamic interaction 

usually only occur when one or more of the 

resources are heavily utilized, a rule of 

thumb may be employed such as: 

"No processing unit or shared bus may 

have 	greater 	than 	70% 	average 

utilization over a system cycle". 

By avoiding high loading of any resources, 

bottlenecks can be prevented. The maximum 

utilization levels can also be set by a worst 

case analysis of real time events and system 

loading [MELL80]. The advantage of Rule of 

Thumb Utilizations is that they are easy to 

apply. Given that resource requirements are 

usually not known precisely until the near 

completion of the system implementation stage, 

comparisons to rules of thumb?often provide as 

much precision as is possible in the early 

design stages. 
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(ii) Simulate  the Dynamic Behaviour  - A simulation 

model of the system can be constructed and 

timing and statistical performance measures 

obtained from it. 	This method of evaluating 

the resource usage is only appropriate when 

there is accurate data on the resource 

requirements for each software task. 	Thus 

this 	method 	of 	estimating resource 

requirements is most appropriately used in the 

later design and implementation stages when 

this data is available. 	The advantages of 

simulating the dynamic behaviour are: 	(1) 

more accuracy is obtained in the resource 

usage estimates, 	and 	(2) 	the ability to 

discover hidden flaws in the design due to 

actual 	timing 	and 	resource 	scheduling 

problems. 

The Rules of Thumb Utilizations can be built into the 

Effects of Allocation Model (Section 4.4.2) to: 

(i) flag (warn the designer) when the utilization 

of a resource exceeds the approved threshold, 

and/or 

(ii) recalculate the resource utilizations based on 

first order effects of Resource Scheduling and 

bottlenecks. 



1 	4.5 

If more accurate information on resource usage is 

required, then a CAE tool which simulates the micro-computer 

system is needed. There are two possible types of simulator 

tools which could be provided to the designer: 

(i) A General Purpose  Simulation  Language - The 

designer could use this tool to build a 

simulation model which corresponds to his 

design and then obtain the resource usage 

information from this model. 

(ii) A Special Purpose Resource Simulator .  - The 

designer could feed his Design Description 

directly into this tool and then automatically 

receive the resource usage information. 

Because this type of CAE tool is specialized 

for a particular architecture, it can only be 

built once the architecture has been 

selected. 

Areas for New or Improved  CAB  Tools  

In this section, areas for the development of completely 

new performance/reliability  CAB  tools, and the improvement of 

existing ones are identified. These tools are separated into 

two categories: 

(i) tools which are independent of any particular 

multiprocessor architecture, and 

(ii) tools which are customized for a given multi-

processor architectural scope (Architecture 

Dependent Tools). 
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Both categories of tools are useful and it is desirable 

that the designer would have access to a full complement of 

tools from both categories. The Architecture  Independent  

tools are particularly useful in the Architecture Selection 

stage when the computer architecture and Design Policies are 

being formulated. These tools can also be employed in the 

Detailed Design stage to optimize the design. The 

architecture independence feature means that these tools can 

be re-used in wide variety of computer design projects which 

employ different architectures. 

The Architecture  Dependent tools are useful primarily in 

the Detailed Design stage. Because they are "customized" for 

particular architectures, they can perform a larger  •portion 

of the Abstraction, Interpretation and Design Change steps, 

and thus provide a more automated design environment. 

4.5.1 Architecture Independent CAE Tools  

4.5.1.1 ADA Based General Purpose Simulation Language  

Many General Purpose Simulation Languages, GPSS, SIMULA, 

SIMSCRIPT, GASP, ..., already .  exist. Improving on these 

languages and incorporating an ADA base could lessen the cost 

and time needed to implement specific simulation models. If 

ADA is also the language used for system specification and/or 

software implementation, then the incorporation of the ADA 
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syntax and language constructs into the simulation language 

would mean: 

(i) less time wasted on learning a multitude of 

computer languages, and 

(ii) easier and more reliable translation of the 

simulation results into the specifications and 

implementation. 

An ADA Based General Purpose Simulation Language could 

also be used to construct the Dynamic Resource Usage Analysis 

Tool (Section 4.5.2.3) which is useful in the later design 

and implementation stages. 

4.5.1.2 Exhaustion of Spares Analysis Tool  

This tool incorporates the Exhaustion of Spares Model 

(Section 4.3.2) in an automated package. The designer 

supplies the parameters for the model and the CAE tool 

performs the calculations. 

4.5.1.3 Imperfect Coverage Analysis Tool  

This tool incorporates the Imperfect Coverage Model 

(Section 4.3.3) in an automated package. As with the 

previous CAE tool, the designer supplies the parameters for 

the model and the tool performs the calculations. 

4.5.1.4 General Reliability Analysis Tool  

This tool is a more comprehensive combination of the 

previous two CAE tools. By integrating all three reliability 

models, Component Reliability, Exhaustion of Spares, and 



Imperfect Coverage, this tool can provide a more complete 

service to the designer. In particular, the designer is 

relieved of the chore of transferring data between CAE tools 

for the individual models. As before, the designer supplies 

the parameters for the models and the tool performs the 

calculations. 

4.5.1.5 ResoUrce Allocation Analysis Tool  

The Simple Totals Model (Section 4.4.1) and the Effects 

of Allocation Model (Section 4.5.1) are automated in this 

tool. One of the main purposes of this tool is the 

generation of up-to-date management reports on the expected 

usage of the micro-computer resources. This information is 

crucial to the resource management decisions [LARM77] which 

must be made as the hardware and software development teams 

progress through the design and implementation phases. 

The Resource Allocation Analysis Tool automates the 

production of the tables shown in Figures 4.4 and 4.6. The 

user first enters a list of software tasks and • buffers, and 

another list of hardware resources. The CAE tool then builds 

the tables for Loading and Resource Descriptions and prompts 

the user for the data entries. From this data, the tool 

performs the mathematical calculations and outputs a table 

showing the Resource Usage Estimates. As the project 

progresses from the Architecture Selection stage through 

Initial and Detailed Design to implementation, the user can 



update the lists of software tasks, buffers and hardware 

resources as well as the entries in the tables. The tool 

then produces up-to-date summaries of the resource usage. 

Two types of summaries are produced: (1) a simple comparison 

of total requirements compared to total capacity (Figure 

4.4), and (2) a detailed analysis of the loading of each 

hardware component (Figure 4.6). 

I 4.5.2 	Architecture Dependent CAE Tools  

4.5.2.1 Hardware Reliability Analysis Tool  

With this tool, the designer assembles a hardware model 

from a database of pre-defined components such as processing 

units, memories, majority voting circuits, and bus 

structures. 	The tool can then use the pre-defined  relia- 

bility characteristics of the components to: 

(i) calculate the overall reliability of the 

hardware, or 

(ii) select the number of redundant modules which 

are necessary to meet the overall hardware 

reliability specifications, or 

(iii) calculate how reliable the modules must be to 

meet the overall hardware reliability specifi-

cations. 

A major feature of the Hardware Reliability Analysis 

Tool 	is 	the 	support 	of 	Structure/Behaviour 	Design 

Partitioning. 	The Structure is the component and module 
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interconnections specified by the designer. 	In Figure 

4.7(a), the Structure is illustrated in a "bottom-up" order. 

The lowest level of detail, the Processing Unit, ROM, and RAM 

Modules are described first in Sections (a), (b) and (c). 

These modules then are configured into the Single Board 

Computer Module in Section (d) (Figure 4.7(b)). Finally, the 

top level view of the Structure is shown in Section (e) 

(Figure 4.7(c)). 	In a "top-down" design approach, the order 

of the previous design sections is reversed. 	The top-level 

section (e) is drawn first and is subsequently decomposed 

into the lower level sections. 

The Behaviour, which is analysed by this CAE tool, is 

the reliability characteristic of the components, modules and 

system configurations. The Behaviours of the components and 

modules are stored in the CAE tool's data base. By combining 

the system structure specified by the designer with the 

component, and module Behaviours from the data base, the tool 

formulates (by a pre-programmed algorithm) the parameters of 

the reliability models (from Section 4.3). The tool then 

computes the reliability characteristics of the complete 

system. 

The most powerful version of this tool would also adjust 

the Structure (such as the number of redundant processing 

units), or calculate the component reliabilities (Behaviour) 

which are necessary to meet the overall system reliability 



1 

1 
1 

Descriptions 	as 	well 	as 	the Resource Usage Resource 

Estimates. 

1 

specification. 	The modelling power of the tool can be ex- 

panded by adding more components and modules to the data 

base. 

1 
4.5.2.2 Static Resource Usage Analysis Tool  

This 	tool 	automates 	the 	Simple 	Totals 	Model 

(Section 4.4.1) and the Effects of Allocation Model 

(Section 4.4.2). The major enhancement of the tool over the 

Resource Allocation Analysis Tool (Section 4.5.1.5) is the 

automatic production of the Loading and Resource Descriptions 

from the Design Description. Since the calculation of the 

data entries in the Loading Description (Figure 4.6) is the 

most laborious step in analysing the resource usage, its 

automation is a significant improvement. When using the 

Static Resource Usage Analysis Tool, the user inputs the 

Design Description and receives from the tool the Loading and 

1 
The mos.t powerful version of this tool would also: 

optimize the allocation of the load to the 

individual resources, 

(ii) flag resource utilizations which exceed speci-

fied thresholds, 

(iii) refine the Resource Usage Estimates based on 

the first order effects of Resource Scheduling 

and bottlenecks, and 

(i) 
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(iv) select the amount of each resource type which 

is required to meet the resource usage speci-

fications. 

As 	the 	project 	progresses 	from 	the 	Architecture 

Selection stage through Detailed Design to implementation, 

the user can update the lists of software tasks, buffers and 

hardware resources as well as input new Design Descriptions. 

The tool then produces up-to-date summaries of the resource 

usage. Two types of summaries are produced: (1) a simple 

comparison of total requirements compared to total capacity 

(Figure 4.4), and (2) a detailed analysis of the loading of 

each hardware component (Figure 4.6). 

4.5.2.3 Dynamic Resource Usage Analysis Tool  

The purpose of this tool is estimate the resource 

usage by simulating the dynamic interactions of the software 

tasks and hardware resources. It automatically constructs 

the simulation model from the Design Description provided by 

the designer. Based on the results of executing the model, 

the tool estimates: 

(i) the 	utilization 	of 	individual 	resources, 

(ii) the timing diagram which shows when each hard-

ware resource is used by each software task, 

(iii) the unused resource capacity caused by tasks 

holding onto some resources while waiting for 

other resources, 

(iv) the location of system bottlenecks. 



1 

The most powerful version of this tool would also: 

(i) optimize the allocation of the load to the 

resources, and 

(ii) select the amount of each resource type which 

is required to meet the resource usage speci-

fications. 

In order to produce accurate and useful results, this 

tool requires that the user provide accurate estimates of the 

resource requirements of individual software tasks, as well 

as a moderately detailed Design Description. Since this 

information is not normally available until later in the 

design process, this tool is primarily useful in the Detailed 

Design Stage. 

I 4.6 	Summary  

When choosing a CAE tool or a package of CAE tools for 

the evaluation of performance and reliability, the major 

factors to be considered are the: 

Selectivity  and the 

(ii) Degree of Automation of the tool(s). 

The Selectivity refers to range of multi-processors 

designs for which the tool can be used. Tools which are 

architecture dependent are specialized for a small range of 

multi-processor architectures while tools which are 

architecture independent are useful in a wide range of com-

puter designs. The Degree of Automation refers to the amount 

of the design process which is performed by the tool. 
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In this section, the proposed CAE tools (Section 4.5) 

were 	classified 	as 	either 	Architecture 	Dependent 	or 

Architecture Independent. 	The classification was not in- 

tended to imply a sharp boundary. 	Quite the contrary is 

true. 	The tools of both classifications are built on the 

same fundamental performance/reliability models (Sections 4.3 

and 4.4). The difference between the two classifications is 

the amount of abstraction, interpretation, and design changes 

performed by the tool. When these steps are performed 

primarily by the designer, an Architecture Independent tool 

is defined. The amount of architecture dependency and thus 

the•  level of Selectivity can be changed by varying the 

responsibility for performing the abstraction, interpre-

tation, and design change Steps between the designer and the 

CAE tool. 

In a complete  CAB  tool package, the performance/relia-

bility tools would be integrated with the specification and 

verification tools. The point of integration is the design 

description 	documentation 	which 	is 	produced 	by 	the 

specification 	tool 	and 	used 	by 	the 	performance 	and 

reliability tools. There must be enough information in the 

design description documents to perform the Abstraction and 

parameter estimation for the performance/reliability models. 

If the Abstraction step is performed manually, then the 

precise contents of the design description documents is not 

critical so long as they are clear and easy to read. But if 



the ,Abstraction step is performed automatically by the 

performance/reliability tool, then the accuracy and 

completeness of the design description is critical to the 

integration of the CAE tool package. 
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(a) Loading Description: 

Task or Buffer 	Processing Time 	ROM RAM 

1. Antenna Attitude Control 	6 msec/cycle 	6.0K 	2.0K 

2. In Radio 	 10 	10.0 	5.0 

3. Out Calib 	 2 	 2.0 	1.0 

4. Out Actuate 	 1 	 0.5 	0.5 

5. In Sensor 	 2 	 0.5 	0.5 

6. In TV 	 8 	 2.0 	1.0 

7. Out Radio 	 4 	 1.5 	2.0 

8. Messages 	 2.75 

9. Video Buffers 	 24.0 

33 msec/cycle 	22.5K 	38.75K note: 1 cycle = 25 msec 

(h) Resource Description: 

i 	 . 

g- 	Resource Type 	Number 	 Total Resource 
.> 
co 	. Processing Unit 	 2 ' 	50 msec/cycle processing time 

1 	8K ROM Module 3 	 24K, 

.16K RAM Module 	 3 	 48K 

(c) Resource Usage Estimates  

Resource Type 	 Utilization 	Spare Capacity  

Processing Units
X 100 = 66% 	

50 - 33 = 17 msec/cycle 3
2  
50 

ROM 	 22.5 
 X 100 = 93% 	

24 - 22.5 = 1.5K 

24 

RAM 	 38.75 
 X 100 = 81% 	

48 - 38.75 = 9.25K 

48 

FIGURE 4.4 - EXAMPLE SIMPLE TOTALS MODEL 
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(a) Loading DesCription  

Task or Buffer  

1. Antenna Attitude 

Control 

Processing Unit 

#1 	#2 

6  

ROM Module 	RAM Module 	Common 

#1 	#2 	#3 	.  #1 	#2 	#2 	Bus  

6.0 	 2.0 

2. In Radio 	 10 	8.0 	2.0 	4.0 	1.0 	1.5 

3. Out Calib 	2 	2.0 	 1.0 

4. Out Actuate 	1 	 0.5 	0.5 	 0.5 

5. In Sensor 	 2 	 0.5 	0.5 	 1.0 

6. In TV 	 8 	 2.0 	 1.0 	8.0 

7. Out Radio 	4 	 1.5 	2.0 	 6.0 
1 

1-- 8. Messages 	 .75 	2.0 	3.0  
ul 

c)  9. Video Buffers 	 12.0 	12.0 

13 msec/ 20 msec/ 	8.0K 	8.0K 	6.5K 	6.75K 16.0K 	16.0K 	20.0 msec/ 

cycle 	cycle 	 cycle 

Figure 4.6(a) - EXAMPLE EFFECTS OF LOADING MODEL 
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(h) Resource Description  

Ui  

Resource Unit 	Amount of Resource 

Processing Unit #1 	25 m.sec/cycle 

Processing Unit #2 	25 m.sec/cycle 
ROM #1 	8K. 

ROM #2 ' 	8K 

• ROM 43 	8K 

RAM #1 	' 	16K 

RAM.j#2 	16K 

RAM #3 	16K 

Common Bus 	25 m.sec/cycle 

Figure 4.6(b) - EXAMPLE EFFECTS OF LOADING MODEL 
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(c) Resource Usage Estimates  

Resource Unit 	Utilization 	Spare Capacity  

Processing Unit #1 

Processing Unit #2 

ROM #1 

ROM #2 

ROM #3 

RAM #1 

RAM #2 

RAM #3 

Common Bus 

13/25 X 100 = 52% 	25 - 13 = 12 m.sec/cycle 

20/25  X100 = 80% 	25 - 20 = 5 m.sec/cycle 

8.0/8.0 X 100 = 100% 	8.0 - 8.0 = 0 

8.0/8.0 X 100 = 100% 	8.0 - 8.0 = 0 

6.5/8.0 X 100 = 81% 	8.0 - 6.5 = 1.5K 

6.75/16.0 X 100 = 42% 	16.0 - 6.75 =9.25K 

16.0/16.0 X 100 = 100% 	16.0 - 16.0 = 0 

16.0/16.0 X 100 = 100% 	16.0 - 16.0 = 0 

20.0/25.0 X 100 = 80% 	25.0 - 20.0 = 5.0 m.sec/cycle 

Figure 4.6(c) - EXAMPLE EFFECTS OF ALLOCATION MODEL 
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5.0 	INTEGRATION WITH EXISTING TOOLS  

	

5.1 	Introduction  

As indicated earlier, the development of a fully 

integrated set of CAE tools requires significant effort and 

can be accomplished in a reasonable period of time only if 

built over a solid foundation of existing tools. This 

section examines closely the basic characteristics of 

existing tools at the architecture design level and the 

levels below it. The main objectives are: 

- to determine  •the suitability of one or more of the 

existing tools for possible integration with the 

high level specifications tool; 

- to 	determine 	the 	necessary 	procedures 	and 

interfaces for integrating these tools; and 

- to select one or more of the existing CAE tools, if 

possible, for procurement and implementation. 

The use of existing tools to build a foundation for the 

integrated set of tools would provide two significant 

advantages. First, they would shorten the development cycle 

of the CAE tools, perhaps by as much as half of the total 

anticipated four or five years required for complete system 

development. Second, the use of these tools would provide 

significant input into the design of higher level tools by 

broadening the knowledge base of those systems. 



5.2 	Transition between Different Tools  

Once a design engineer has completed his functional 

specification using the tool proposed in Chapter 3  •and is 

satisfied with the simulation and performance results, as 

discussed in Chapter 4, he must then refine his design to a 

lower level of detail: the architecture level. At this 

level, the engineer will have to use one of the existing 

tools that were defined in a previous report [MAHM82]. Given 

a specific tool, the engineer must rewrite the definition of 

his design in the language of the new tool; in particular, he 

must: 

- rethink his design in terms of the concepts used 

by the tool; for example, some tools are based 

on state models, others on data flow models, 

etc.; 

- augment the design by the specifying to the 

level required; i.e., if progressing from the 

functional to the architectural levels, the 

designer must now specify some of the hardware 

components and their interconnections; 

- rewrite the design in the language of the tool; 

- re-simulate and re-evaluate this design. 

This conversion effort from one tool to another could 

perhaps be automated. As an example, program translators 

exist that allow almost fully automatic conversion of 

programs from RPGII to COBOL or COBOL to PL/I. In our case; 



the objective will be to find a translator that accepts the 

ADA specification and translates it into the input language 

of an existing tool. This translator would be feasible if: 

- the language of the second tool is sufficiently 

close to ADA (i.e., Pascal); 

- the definition concepts or the second tool is 

sufficiently close to the hybrid data flow/top 

down 	decomposition 	approach 	used 	in 	the 

specification level. 

There are a number of pitfalls to these transition 

efforts which cannot be fully àvoided. These are: 

- the overall design effort is multiplied by the 

necessity of learning several environments and 

of recoding the definition of the design for 

each tool; 

- translation errors can be introduced in between 

levels during the conversion process; these 

errors may be difficult to notice since, there 

are no mechanisms to measure the correctness of 

the translation; 

- it may be difficult to determine the source of 

errors detected during the evaluation of the 

architecture level, for example, if the errors 

were caused by an improper translation or by an 

incorrect architecture design feature added at 

that level; 



- results of simulations performed in each tool 

may be difficult to compare since simulation 

measurements may be based on a different 

approach; this would make tracking the design 

from top to bottom difficult. 

5.3 	Selection of . Existing Tools  

Various existing tools are described at length in 

[MAHM82] and will be reviewed here in order to select the 

best tools possible for the implementation of a complete 

integrated design environment. Our aim is to select tools 

that will be useful at all the levels of design in order to 

complement the specification tool described in Section 3. 

Tables 5.1 and 5.2 outline some of the characteristics of 

each tool while Table 5.3 summarizes,the comparison. 

The functional characteristics of each tool is reviewed 

in Table 5.1. The char‘acteristics of concern are: 

- the aim of the tool: these existing tools were 

designed for specific purposes: the closer that 

purpose is to ours, the likelier the tool will 

be useful; 

.the level of usage: to -,cas can cover one or more 

 levels of design; obviously widet ranging tools 

are preferred since they minimize the transition 

efforts; 



- multi-level capability: tools that span more 

than one level are especially useful if the 

designer is not forced to define all system 

components at the same time, i.e., he should be 

able to work out some portions of the design 

to lower levels while leaving other segments at 

a higher level. 

- performance evaluation: a good tool should 

include performance evaluation mechanisms. 

The implementation characteristics of each tool is 

detailed in Table 5.2. The characteristics of concern are: 

- design specification language: 	the language 

used to specify the design; 

- tool implementation language: the language used 

to program the tools; 

- operating system and processor type under which 

the tool operates; 

- developer: 	the organization where the tool is 

available from; 

- availability: 	whether the tool can be obtained 

or not. 



Finally, in order to select a tool, three primary 

criteria were chosen: Table 5.3 rates the tools with respect 

to each criteria. The selection criteria is based upon the 

characteristics described earlier and are: 

1. Completeness: 	a good tool should offer a 

complete working environment. 	Therefore, it 

should cover as many levels of' design as 

possible, it should provide multi-level 

capability and it should provide performance 

evaluation mechanism. 

2. Ease of Interface: 	a good tool should provide 

for an easy transition between the functional 

specification 	level 	and 	the 	other levels. 

Therefore, the tool should have been designed 

for architectural modelling and simulation. 	It 

is also desirable that the language in which the 

tool is written be compatible with Ada as an 

implementation language. 

3. Implementation Potential: 	the tool should be 

relatively easy to install 'on the same computer 

as the one selected for the development of the 

functional 	specification 	tool, 	(e.g., 	DEC's 

VAX 11/780). Ideally, the tool should also be 

well documented and fully supported by the 

vendor. 



A review of Table 5.3 shows that the AIDE package 

represents the best choice. 	However, the Bell Laboratories 

have decided not to release it at this time. 	The next 

attractive alternative is the ADLIB/SABLE facility which 

will be available commercially in the near future and will be 

run on the VAX minicomputer. Once augmented by some of the 

performance and reliability tools discussed in Section 4, the 

ADLIB/SABLE will provide system engineers with an excellent 

environment to pursue the design efforts after the functional 

specification phase is completed. 



TOOL 

AIDE 

CASL 

N.mPc 

ADLIB/ 
SABLE 

Yes 

Some 

Some 

AIM OF 
TOOL 

modeling and 
simulation for 
development of 
computer 
architectures 

design and 
documentation 
for VSLI 
implementation 

multi-processor 

design and 
evaluation 

multi-level 
design 

LEVEL OF 
USAGE 

architectural 
and lower 

regis  ter 
 transfer 

• register 
transfer 

architectural 
and lower 

MULTILEVEL 
CAPABLE 

PERFORMANCE 
EVALUATION 

Yes 

No 

No 

Yes 

Table 5.1 	Existing Tool Functional Characteristics 



I  

•1 

DESIGN 	TOOL 
SPECIFICATION 	IMPLEMENTATION OPERATING 	AVAIL- 

TOOL 	LANGUAGE 	LANGUAGE 	SYSTEM 	CPU 	DEVELOPER 	ABILITY 

, 

AIDE 	C 	augmented 	C 	UNIX 	VAX11/780 Bell 
Laboratories 	No 

CASL 	CASL 	- 	- 	B1800 	U. of Utah 	No 

N.mPc 	ISP' and 	C 	UNIX 	PDP 11/70 Case Western 	Unknown 
assembler 	 U. 

ADLIB/ 	Pascal 	Pascal 	TOPS 	DEC 20 	Stanford U. 	Yes 
SABLE 	augmented and 	or 	or 	or 

SDL 	 'VMS 	VAX11/780 Commercial 
Company 

1 
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AIDE 

CASL -

N.mPc 

ADLIB/ 
SABLE 

Completeness 
Ease of 
Interface 

Implementation 
Potential 

Excellent 

Poor 

Medium 

Good 

Medium 

Poor 

Unknown 

Good 

Good 

Poor 

Medium 

Good 

Table 5.3 	Existing Tool Selection Evaluation 



	

6. 	Summary and Further Work  

	

6.1 	Summary  

'The study reported here examined the role of existing 

computer assisted engineering tools in supporting the 

application of current design methodologies used in the 

development of multiprocessor systems. Specifically, the 

study focused on the issue of augmenting and enhancing 

existing tools to generate an integrated set of multi-

processor design and simulation tools that can be useful 

throughout the various phases of the design. The following 

is a summary of the major results and conclusions of the 

study. 

I. 

1 

I .  

The design process of multiprocessor systems can be 

described, in a top-down approach, as consisting of six 

phases: 

1. The Requirements Specification phase, 

2. The Functional Components Definition phase, 

3. The Architectural Design phase, 

4. The System Model phase, 

5. The Processing Element Partitioning (Register 

Transfer Level phase), and 

6. The  Logic Design (hardware) phase. 

A survey of existing tools indicated the availability of 

many design and simulation tools which satisfy different 

design needs, depending on the design level (or levels) for.  
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which it is developed. 	Unfortunately, no one simulator was 

found to be useful throughout all  •specification and design 

phases. This multiple simulator approach has two advantages 

and several disadvantages. The advantages are: 

1. Each simulation can be written in a language 

tuned for one particular level, and 

2. Each simulation tool can optimize its runtime 

organization for one particular task. 

- 

The disadvantages include the following: 

1. The design effort is multiplied by the necessi-

ty of learning several simulator systems and 

writing a design in each. 

2. The possibility of error is increased as more 

human manipulation is involved. 

3. As the design becomes increasingly fragmented, 

it becomes impossible to simulate an entire 

multiprocessor system at a low level of 

abstraction. 	Therefore, only small fragments 

can be simulated at any one time. 

4. Each fragment needs to be driven by a supply of 

realistic 	data 	and 	its 	output 	must 	be 

interpreted. 	This may make the software 

written to serve these needs extremely costly. 

Several tools have been developed to overcome the above 

difficulties and provide the designer with a uniform simu- 



lation approach starting at the architecture design level and 

going down to the register transfer simulation level. Our 

study indicated that the utility of these tools can be 

improved substantially by augmenting them with a high level 

specification package which allows the designer to describe 

the functional components of the system being designed and to 

interface this high level description to existing tools at 

the architectural level. 	In addition, two design aspects 

were addressed in augmenting existing tools: 

1. Analysis of redundancy and fault-tolerance charac-

teristics must be prov'ided at the architectural 

levels if the tools are to be useful in •the design• 

of spacecraft multiprocessor systems. 	Several 

performance analysis models were introduced to serve 

as basis for reliability and resource scheduling 

evaluation both at the end of the functional 

specification level and during the architecture 

• 	selection phase. 

2. A high level specification and verification tool was 

introduced to bridge the gap between the requirement 

specification phase and the architecture design and 

simulation phase. 	It is proposed that the imple- 

mentation of this tool be based on the ADA 

language. The selection of ADA was made for several 

reasons: 	it seems to gain wide acceptance and 

support in the programming community; it supports 

top-down design and implementation procedures; and 



it 	is 	capable 	of 	describing 	concurrency 	and 

multitasking through a set of designated constructs. 

The main results of our study of the high level 

specification and verification tool are: 

- The process 	of 	obtaining 	specification was 

described 	and 	guidelines 	were 	provided. 

Decomposition 	techniques, 	such 	as 	dataflow 

analysis 	and 	functional 	decomposition 	were 

introduced. 	Ada specification blocks were used 

to provide a strict formalism. 

- The 	specifications 	obtained 	with 	Ada 

specification blocks can be transformed naturally 

into an implementation. This transformation is 

done in various steps, with each step being a 

refinement of the previous one. 

- Validation techniques were investigated with 

respect to their applicability to the design 

methodology. Although no concrete validation 

system was specified, 	preliminary validation 

capabilities were outlined. 	A more powerful 

validation system was also suggested as a 

desirable goal in future research. 

The methodology proposed here should be experimented with 

in the context of a large example. This would assist in 

improving the methodology itself and would also provide the 
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necessary framework for the development of computer aided 

tools such as: 

- A graphical aid to decomposition (outlined 

previously). 

- A 	simulation 	testbed 	for 	the 	preliminary 

simulation phase. 

- A verifier which could be used on selected 

sections of the system. 

It was also pointed out that in view of the complex 

nature of the verification process, it would be desirable to 

gain experience with an already existing system, such as 

Gypsy. Theory would then be substantiated by practical 

experience. 

Finally, the interface between the proposed high level 

design tool and existing tools at the architectural level was 

examined. Several existing tools were investigated in the 

process 	of selecting a candidate tool which can be 

implemented and used later to support the development of an 

integrated set of tools. The selection was based on several 

criteria including the ease of interface, completeness, 

run-time environment and availability and support by the 

vendor. A design and simulation tool, developed by Stanford 

University and known as SABLE/ADLIB was identified as a 

feasible candidate to be used at the architecture and 

register transfer levels of the design. 



6.2 	Further Work  

The ultimate objective of the work in this area is to 

assimilate an integrated set of CAE tools which can be 

utilized in all specifications and design stages of multi-

processor systems, with particular emphasis placed on 

spacecraft  applications. This objective can be achieved 

through the utilization of existing tools, provided that they 

are augmented by a high level functional specification tool 

and a set of performance evaluation packages. To achieve the 

stated objective, we propose the following work as a logical 

next step to the definition and specification study reported 

here: 

1. Based 	on 	preliminary 	analysis, 	a• package 

developed by Stanford University (SABLE/ADLIB) 

and used as a design and simulation tool for 

general purpose processors at the Architecture 

and Register Transfer levels was selected. A 

detailed study is needed to determine its 

suitability and utility as a design tool in the 

special 	application 	of 	spacecraft 

multiprocessors. If selected following the 

detailed study, the package must be installed 

and checked out. It should be noted that the 

use of this package has been limited so far to 

research and development applications. 	The 

package will be available commercially in the 

near future. 



2. Design of the functional component specifi-

cation tool defined in this study must be 

completed in detail prior to the implementation 

of the tool. The general design will be based 

on ADA constructs and will follow a general 

top-down specification approach. The output of 

this tool must be structured to permit the 

definition of hardware/software boundaries of 

the architecture. 	Initially, the results of 

this phase will be manually interpreted and 

used to generate the input to the architecture 

design and simulations tool. 

3. Design of reliability and resource utilization 

analysis modules to be used with the high level 

specification tool (at the stage where the 

hardware/software boundaries are defined). A 

more refined form of these modules will also be 

used to augment the design and simulation tool 

at the architecture selection stage. 
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