| Lintellitech
'B /

i/
’«# J

The Definition and Specification
of an Integrated Set
of CAE Tools for
5pacecraft Multiprocessor System Design

The Definition and Specification
of an Integrated Set
~ of CAE Tools for
Spacecraft Multiprocessor System Design

[ndustry Canada
LLibrary Queen

Jon- 2.0 1998
Industrie Canada

 Bibliothegue Queen

sogrezan

Report No. INT-82-16

March 1982

Authors: Dr. C., Laferriere
Mr. W.T. Brown
Mr. J.G. Ouimet
Dr. S.A. Mahmoud

Approved by: Dr.S.A. Mahmoud

l E Govemment Gouvemement | _
ofCanada © du Canada '

- Department of Communications

Dac CONTRACTOR REPORT : | o " DOC-CR-SP-82- -046
DEPARTMENT OF COMMUNICATIONS - OTTAWA - CANADA |

| SPACE PROGRAM

TITLE:~The Definition And Specification Of An Integrated Set

Of CAE Tools For Spacecraft Multiprocessor System De51ggf//
AUTHOR(S) C. Laferriere

- W, Brown

J. Oulmet N
S.A. Mahmoud .
: e

b cinge”
.\\’dx.‘}uh

© - ISSUED BY CONTRACTOR AS REPORT NO: INT-82-16

352 MaclLaren St.

Ottawa, Ontario-

e memm e

U__‘.,.,.

K2P OM6 - o - -

”DEPARTMENT OF SUPPLY AND SERVICES CONTRACT NO' 3ER.36100-1-0273 -
SN: OER81-03151

DOC\SCIENTIFIC'AUTHORITY: R.A. Millar

_:CLASSI?ICATIQN:C Unclassified

This report presents the views. of the author(s) Pub11cat1on
of this report does not constitute DOC approval. of the reports
findings or conclusions. This report is ava11ab1e outs1de the
‘department by special arrangement

. DATE: March 1982

1
i
i
|
|
|
|
|
llé . _:PREPARECrBY: Intellitech Canada Ltd.
i
|
|
|
!
|
I
1

| o e

B B GaN GmE BN NN mEe

. P eI N

1,..., TR

P:eface

This work was performed for the Department of Communications,‘
Communi.catidﬁs Research Centre under DSS GQontract No. 'OER81.-03151 5
entitled "Computer-Aided Engineering Tools for Spacecraft Multi-

MicroprocessQr Design", from September 15, 1981 to March 31, 1982.

This report is ome of the following four contract deliverables:

1. Executive Summary

2. Report #1 =~ Review of Multiprocessor Sysﬁeﬁs
and ﬁheir Spacecraft Applications.

3. Report #2 = A Survey of Computer—Aided
Engineering (CAE) Tools for the Design and
Simulation of Multiproceésor Systems.

4: - Report #3 -~ The Definition and Specification
of an 1Integrated Set of CAE Tools for

Spadecraft Multiprocessor System Design.

Acknowledgement

The study team gratefully acknowledges the technical guidance
of Mr. R.A. Millar of the Communications Research Centre.‘ His
knowledge and experience in the field of computer simulation of
spacecraft systems have contributed to the quality of the work and

provided a constant source of encouragement to the study team.

~As well, the study team wishes to thank Mr. J.M. Savoie, also

from CRC, for his fruitful discussions and critical reviews.

2.3

Preface.ieeesanveee
Acknowledgement....
Table of Contents..
List of FigureS....
List of TablesS.sese

IntroductionNesseses

1.1
1.2

Table of Contents

Proposeanethodology}...................

2‘1
2.2

Scope of Existing ToolS.esesesssess
Toward an Integrated Set of

CAE Design TOOLSueeessosseosennsnaes
Approaches for Modelling Functional

Component Descriptioneesceseceecnes

Specification/Validation.siesenwsaons

NEroduction seeesessenvonsnne
Problem Definition.....
‘Spacecraft Environment.

" Design Philosophy.eeeesen

. Overview of the Section.

fication/Decomposition.....
High Level Specification.
Methods of Decomposition.

.

~'Formalizing the Specificatdion/

Decomposition ProcCeSS.ceessesse

3.1 ‘Intro
3.1.1
3.1.2
3.1.3
3.1
3.2 Speci
3.2.1
3.2.2
3.2.3
3.2.4
3.2.5
3.2.5.1
3.2.5.2°
3.2.5.3
3.2.5.4
3.3 Val
. 3,31
3.3 2
3.3.3
3.3.4
3.3.5
3.4

[

Scope and Definition of Multiprocessors
Structure of the RepoOTListeesseenses

Ada as a Specification Tool.....
A Decomposition Example....sses.

.

Various decomposition levels.
Observations on the model....

System simulation and testing.
Computer aided tools and the

specification procesS.iesecses

- iii -

Summary and Conclusions.;,.,..

alidation of SpecificationS..seseseses
l Validatiolesesovsesvovoonsnononns
TeStingessvevssevsososeveassnans
VerificatioNessosoeososssvoocans
Automated Verification Systems..
Proposed Validation Capabilities

*

LR I I]

Page

ii
iii

vii

~ WU

10
13
14

21

21,
21
23
26
28

29
29
30

34
36
44
45
62
69

74

76
76
80
83 .
96
107

112.

"Performance and Reliability.eesueseenseeeeeananin

4.1 IntroductionNeesesesscesanesorsssnsecssansnnes
4.2 Scope of CAE Tools in the Performance Area..
4.2.1 Architecture Selection.iicivieveceness
4.2,2 System Model (Hardware and Software
Selection)ieseeieesenessssasssnsannnss
4.3 Reliability ModelSeisveesesosossssvsvnoosans
4.,3.1 Component Reliability Model.::vivessss
4,3.2 Exhaustion of Spares Model...s.svuenes
4.3.3 Imperfect Coverage Model.seseesoseeoes
4,4 Resource Usage ModelS.ssessossssssvseonscnsan
4,4,1 Simple Totals Model.eeseesoeooeoanoss
b,4,2 Effects of Allocation Model.sssswsoen
4,4,3 Effects of Dynamic Interaction Model.
4.5 Areas for New or Improved CAE T0OlSeuecovsses
~4.,5.1 Architecture Independent CAE Tools...

4,5.1.1 . Ada Based General Purpose

Simulation Langu'ag_e.ntouoo'-

»

4,5.1,2 . Exhaustion of Spares
Analysis To0lueseeeeosoonsonns
4.,5,1.3 1Imperfect Coverage Analysis
: TO00 e e eoeaoseesssscsssasnnsosn
4.5.1.4 General Reliability Analysis
TOOLliesevetrnseosnsscenunnosnss
Resource Allocation Analysis

4.,5.,1.5

4,5.2.1 Hardware Reliability Analysis

TOOLeveensoosnsnssnssessnennss

4,5.2,2 Static Resource Usage Analysis

' ¢
Dynbamic Resource Usage Analysis

4,5.2.3

496 Summary.0..!‘0.......0'00-:.n...loi'

Integration with Existing ToolSeseusesos
5.1 IntroductionNesecseesessssssencnanss
5.2 Transition Between Different Tools.
5.3 Selection of Existing ToolSssseesss

Summary and Further WOTK.seseeoeesseososss
6.1 Summary.. 2 % 8 2 5 8 3 0 0 8 0 . 8 8 0 0 2 2 % B e
6‘2) Further work‘ ® 8 8 % 0 3 0 0 8 0 2 0 BB N e oD

ReferenceSuoooolo'oooco‘loo!o-o-.nol.nit

L]

TOOl.-.-...-.-c_......-l...'.-.._

Architecture Dependent CAE To0lSscesoas

TOO_l--o--o-...’.-......--..-..-a

115

115
116
117

118
122

122
123

126 -

127
128
129
131

134

135

135

136

136

136

137

138

138
140
141

142

156

156
157
159

166
166
171

173

Figure

Figure

Figure

Figure.

Figure.

Figure

2.1

Figure 3

Figure

Figure
Figure
Figure
Figure
Figure
Figure
Figure

Figure

Figure

Figure

Figure
"Figure

Eigure
Figure

Figure
Figure
Figure
Figure
Figure

Figure

3.5

3.6

3.7

3.8

3.9
3.10

3.11

3.12
3.13
3.14
3.15

3.16

3.17

3.18

3.19
3.20

3.21
3.22

3.23
3.24

List of Figures

Multiprocessor Specifications/Design

Levels and Corresponding CAE Tools..

Design Phases Using an Integrated

Set OF CAE TOOLSesesseennonoesesens

Functional Decomposition in a

Top—down Approach.eeesecsessosascecse

Example of a Data Flow Model.ce.es..

A Spacecraft Control System.....;..

" Hierarchy. of Machlnes and Programs.

Machine Equlvalence................

Tree Structure Resulting from
Functional Decomposition......

Dataflow EXample...eeeeeocssos
Result of the Mixed Approach..

An Ada Package.eevesesoneonnns

An Ada RendezVoUSeieeovevsesansea

.

Basic Structure of a Spec1f1cat10n Block.

Description of the Example..cees.
A First Attempt at Decomposition.
Data Flow Graph..................

Definition of Various Commands...

Functional Decomposition

(at various StagesS)eessesssseesss

System Representation with Ada

Device Servicing in Ada.sveeeeveenve

.

.

Building BlO'CkS.--.‘..-..'...........-ra

Ada RendezVous and Passing of Control.

CommandStringIlnterpretereesasseseceass

Expansion of a Separate Procedure..

Description of. the Reset Module....

Procedure Call Arréngements.in Ada.

Representation of an Input Module..

System Model and TestBed.eeeseososs

Device Simulation Module...eeeeaeoes

- 7 -

.

Page

17

18

19
20

24
26
27

30
32
33
37
38
41
43
A
46
47
48

52

53

© 56
" 59

60
61
64
67
69
70

Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure

Figure

Figure

Figure

Figure

Figure

Figure

Figure

Figure-

Figure

Figure

Figure

Figure

3.25

3.26
3.27.
3.28

3.29
3.30
3.31

3.32 -

3.33
3.34
3.35
3.36
3.37
3.38
3.39

3.40

4.3
bob
4.5
4.6a
4.6b
4.6¢c
b,7a

Simulation and Testing Package..soeeeoos

Example of TransformatioNieeceeeseescess

Validation of the Design ProcesS.ciessess

Skeleton of a Program Control Structure.

Paths and ASSertioOnNS.secseccecosocses

Simple Loop Exampie......;.........

 Subprogram for Simple Division.....

Subprogram with ASSETrtionSessensass
Design and Verification of Programs

Procedure InsertSorted. ccceeeeeesas

"Verification Condition 15¢sceeececen

Gypsy Verification Environment.....
Description of the HDM'System...{..

A.n Ideal SyStem-o..o....-‘--...-a-..

Proposed Interim Verification System.

Performance/Reliability Design
Methodology....Q.'.Q.Q’Q.‘.....l...

Hardware Performance Design
Methodology ExamPlEanoooénnnnnooo-

Resource Usage Design Methodology..

Example Simple Totals Model.esseoss

Example‘Access Grapheoooovinenensns

Example Effects of Loading Model...

-Example Effects ‘of Loading Model...
‘Example Effects of Allocation Model

Hardware Reliability Analysis
Tool Examplell’ll.".l.."!l...l'.l

Hardware Reliability Analysis
Tool Example...‘O.‘Q.l..‘l‘".'.'.ll.

Hardware Reliability Analysis .
TOOl Example’..‘.--.....'....'-.......v

- vi -

A Program's Domain and Range..eioeeaes

.

71
76
77
81
81
85
88
91
91
97
99
102
104
105
107
110

145

146

147

148

149

150
151
152

153

154

155

Table 5.1
‘Table 5.2

Table 5.3

List of Tébies\

Existing Tool Functional CharacteristicS......

Existing Tools Implementation
Characteristics‘...._...l..'._.ll......ll.......

Existing Tools Selection Evaluationeeesesseons

- vii -

Page

163

164
165

Introduction

Interest in multiprocessor and distributed'iﬁtelligence
computer systems have increased' dramatiéally in recent
years. This interest has been fostered by the availability
of miaro—processors with ever increasing performance-price
ratios and the expected emergence of monolithic sYstems.wirh

still higher capabilities in the near future.

Advances in LSI and VLSI sémi-conductorr technology
have éignificanrly reduced computer hardware weight, power
consumption and cost. It is now feasible and practical to
employ multi-processbr systems on spacecraft in order to in-

crease the reliability, extend mission duration and satisfy

-increasingly more computatidnal demand during the mission.

The development of rmultiprbcessor‘ and distributed
intelligence computer systems and ‘tﬁeir utilization in
various applications have been impeded by the'.lack of
aa' appropriate theoretical base. The control . of systems
containing large . number of processors . is not ‘well
understood. .Whiie copsiderable work has beenidone‘recently

to develop a theoretical base, 1t seems unlikely that this

work will have significant impact on practical system design’

in the near future. As a result, multiprocessor system

designers have turﬁed to the wuse of GCAE tools for the

the development of such systems. Such CAE tools are used, in
general, to support the skill level of the designer, provide

insight into the attributes of altermative architectures,

allow evaluation of these architectures and support the

development, simulation and testing of actual multiprocessor

systems.

‘More specifically, compﬁterfaided engineering tools are
required to simulate alternate hafdware configurations,
evaluate the.Software implications on selecting aAparticular
hardware configuration, perform‘ requifed hardware~software
tradeoffs, establish tﬁat the sﬁecified hardware and software
are compatible and that overall éystem perfofmanée_require—
meﬁts are met. - All of these_must be done at an early stage
in the design process, before the software is_co&ed_énd the

hardware is constructed.

In the absence of such computer-aided engineering tools,

it is difficult for the designer to assess and. evaluate

system performance adequately ‘before -constructing a

breadboard prototype, developing its software, and testing

the resulting system. At this late. stage in -the design

process, discovered inadequacies and - inconsistencies_ are

expensive and time-consuming to correct and often require

significant redesign. With the appropriate CAE tdols, the

chances of this happening at such a late stage in the design

process are minimized.

In an accompanying report [MAHM82], a survey which
examined existing CAE tools for multi-processor design has
been presented. The survey identified six sPecification~and'

design phases for the purpose of identifying the utility and

applications of the.variOus available tools. ' These phases
are: |

1. The Requirements Specification phase,

2. The Functional Components Definition phase,

3. The Architecturai Design phlase,

74: The Sy;teﬁ Model phasé,. |

5. The Processing Element Partitioning
(Register Transfer Lével) phase, and

6. The Logic Design (hardware) phase.

The sﬁrvey' indicated thg availability of many désign‘
simulation tools which satisfy different deSignvneeds, de-
pending on the design-_level' (or levels) for thch it is
developed. Unfortunately, no one simulator was found to be
ﬁseful throughout all specification:and desigﬁ phases. This

multiple simulator approach outlined in the survey has two

~advantages and several disadvantages. ‘The advantages are:

1. Each simulation can be written in a languagé
tuned for one particular level, and
2. Each simulation tool can optimize its runtime

organization for one particular task. .

The disadvantages include the féllowing:

1. 'The design. effort is ﬁultiplied by the
necessity of \learning " several simula;or
systems and writing a design in each.

2. The possibility of error is increased as more
human manipulation is involved.

3. As the design becones increasingly fragmented,
it becomes‘impossibie to simulate an entire
multiprocessor system at a low level of ab-
stractién. Therefore, only..small fragments
can be simulated‘at any one time.

4, Each fragment needs to be driven by a supply
of .realistic - data ' and its ‘output must 'be
interpreﬁed. This may Zmake. the software

written to Serve thése~needs extremely costly.

Se&eral tools have been déyeloﬁed fo overcome the above
difficulties and providé the designer with a uniform'simu—
lation approéch sfarting at fhe-architecture design level and
going down to the register tranéfér simulaﬁion‘level. The. .

utility of these tools can be impfoved substantially'by aug-

menting them with a high level specification package which

“allows the designer to describe the functional components of

the system being designed and to interface this high level

description to existing tools at the architectural level. 1In

‘addition,~two'design aspects must be addressed in augmenting

existing tools:

1. Redundancy and»fault;tolerance.cﬁaracteristics
~analysis must be provided at the architectural
levels if the tools are to be useful in the
design of spacecraft (or .avionics) multi-
pfocessor systems. |

2. The high level specification 'language must
contain 'mechanisms- for system verification.
As.the deéign process éontinues, these megha—
'nismé will evolve naturally towards validation

and verification of the software.

The study reported here is concerned with the issue of:

- augmenting existing tools to generate an integrated set of

multiprocessor design and simulation tools that can be useful

throughout the various phases of the design.

Scope and Definition of Multiprocessors

The pfoliferation‘of various publications dealing with

~interconnecting microprocessors to form unified systems has

given rise to some ambiguity with respect to the definition
of "multiprocessor systems” and "distributed. microprocessor

systems”. To avoid such ambiguity, we introduce a definition

for the term "multiprocessors" which will be used throughout
this report. We also define the "scope of configurations" of
such systens considered to be relevant for "~spacecraft

applications.

For the purpose of this - reoortg we define a
multiprocessor system to be [JENS?S];

“a multiplicity of micrOprocessors that are
physically and 1logically interconnected .to
form a single system in which overall

executive control is exercised through the

cooperation of decentralized system elements”.

lMorcoVer, we»defineAthe>Scope of multiprocessor systems
considered in this stndy through the following genéral
characteristics:A | |
1. The mwmicroprocessors forming thc- éystem,‘ as
well as all other systém elcmenrs co—exist in
thc same-locality (i.e., no telecommunication
-lines are used sinceA che‘ elements are not

geographically separated).

2;_ The microproceosors and other s&stem elenencs
are interconnected “according :.to" one of
alternaciVe structures (uni or multi-bus, a

" loop ‘or ring connection; a matrix switch,_

etc.).

3.. Concepfually, a single exeCdtive-manages all
of the.system's physical and iogical'resources
in an integrated fashion. The kernel
(control) logic and data structures are
replicated among a numbef of pfocessors or
memories.

4., The number of processors to be interconnected
is relatively small (e.g., wunder 30 pro-

cessors).

5. Redundancy in the hardware is assumed through

the use of identical spares, which along with
other fault recovery mechanisms ~constitute
what is known as “fault-tolerant" archi-

tectures.,

Structure of the Report

The basic ﬁéthodology adopted for generating an inte-—

grated . set of CAE tools for multiprocessor systems - is

explained in Section 2. It 1is shown that the underlying

cbncept/is based on a top-down design approach starting from

‘a high level specification phase.

Section 3+ of this report dintroduces the basic defi-
ﬁitions and specifications of a high- leVel_Adesign tool

éonstructed using ADA as the basic programming language. An

"example is oprovided to illustrate the basic functional

deéomposition process., The example is based on a hypotheti-
cal application of a multiprocessor system as a controller

for a set of sensors and actuators in a spacecraft.

Section 4 examines the performance evaluation aspects

‘associated with designing multiprocessor - systems for

spacecraft applications. Two performance criteria are

considered: ‘resource utilization and reliability (redundancy
and recovery from failures). The ‘use of CAE tools to assist

in evaluating both criteria is examined.

Section 5 investigates the. interfaces needed to
integrate existing CAE design tools at thg architectural and
system model levels with the.high level fqﬁctidnal‘specifi—
cation toql described-_in -Section.:3}A Finally, >Section 6
prQSenté’a summary of the confents'ofxthiS'répqrt‘and a set
of recommendations for future work aimed,at assimilafing én

infegrated set of CAE design tools for muiti/microprocessdrs.

PropoSed;MethodoIogy

" As explained previously, current design practice of

- multiprocessors consists of a series of steps which starts by

stating the general requirements and terminates by detailed
hardware and software design, development and testing. A
broad spectrum of tools exists to assist the designer at each

step.

Qur survey . of existing -tools fMAHMSl] indicated that
while:several'design'and simulation toolé exist to sagisfy
different.needs, no one simulator is_usefui.thréughout ail
the specification and vdésign‘ phasés._ In addition, a éap
existé at the high. levels of‘ the design .which makes it
difficult to use the outéut of tﬁe téqls at the functional
compbnents specification le&el to generate the input to the
architecture selection étage.“ ‘Tﬁis gap will~be explainéd

before introducing the proposed methodology.

In this section, we review briefly the design phases and

the general features of the tools used in each phase. We use

‘the review to highlight certain deficiencies which exist in

the spectrum of available tools. The teview is followed by

~an explanation of the concepts underlying the methodology

proposed in this report.

In a general sense, it will be shown that the proposed
methodology is aimed at closing the gap which exists between

the functional - component specification phase and the

architecture design phase, and at the same time augmenting

- existing tools with mechanisms to evaluate the performance

and the reliability of the syétem'at various design stages.

- This will ultimately'result in an integrated set of CAE tools

which can be utilized in a consistent fashion throughout the

‘various design levels.’

Scope of Existing Tools

Figufe 2,1 dillustrates the specificatidns and design

levels of multiprocessor systems (see survey report [MAHM82],

also referenced in the preface of this report). Existing

tdols can be classified accbrding to the désign level (or

levels) at which the tool is utilized.

At the requiremen# épecificatién level, tools are used
to defiﬁe the demands ?laced upo# the system in a cdmplete,
consistent and pnamﬁiguoﬁs set of statements. The .butput of
the tools is usually givén inva-mééhiﬁe-readablé_format. The
input ‘can be génefated byxséveral:authdrs'and the tooi iS
expectéd to mefge the input from these authors Wﬁile rémoving_

all redundancies. The output document is used by all design

team members as a reference for the requirements of the

system.

Design occurs after the. reduirémenté_ phase . has _béen
completed. The first level of the design process. consists of

an orderly definition of the main functional-gompphents of

the system which satisfy the requirements. This is followed

by further decomposition of the main functional'components

into smaller subfunctions, and the process continues until a

system architecture emerges in which a hardware-software

model can be abstracted and the Sub—fﬁnctions can be mapped

into elements in the model.

Several tools are_currently.availéble for automating the

process .of defining the functional components of the system.

and for decomposing these components into smaller, . less
coﬁpiex.coﬁpongnts. The utility of thesé tools in the désign
of multiprocessors is limited by the following factors:
1. the tools lack the ability to describe the
dynamic interaction between the decomposed'
funétional componenté.‘ Thus aspects such
as concurreﬁcy, synchroniéation, etc;;
cannot be formallyfdescribed.
2. The behaviour of - the system caﬁnot ‘be
described formally using existing'tooys at
‘the functional components level. ; The
designer is forced = to extraét ~ this
behaviour maﬁual;y- before deciding on é
suitable architecture. :'This informal
extraction is bound to generate errors and
inconsigtencies. |
3. The output of existing " tools is~‘not

interfaceable directly to architecture

level procedural simulation languages with
their formal syntax. This pre;tes a gap
in the transition to tﬁg next lower design
level, i.e., the architecture selection
level.

4. Subfunctions and other resources. (e;g.,
data Structures) that are shared by the
main functions, as well as their access
‘eontrol structuresx'vcanﬁot be_ described.
easily by exiéting.tools, pgrticﬁlarly‘in
the - d&namié,‘interéction_ éhvironment of

spacecraft multi/microprocessors.

The above _difficulties‘ motivate the deveiopmént of a

“tool at the functional component-definition level which can

be mutually integrated with the tools used at the archi-

teéture selection level.

A large number of. simulation tools exist at the archi--

tecture selection level énd the ievels-bélow if. Theée fools
caﬁ Be substantially enhanced with two additional features:
l.. Thé incorporatioﬁ.:pf‘:formal' rulés to:‘
verify the modelled -behaviour of each
‘module and of the entire system.
2. The incorpbration of réiiability analysis
tools to model and simulate the fault-

tolerance characteristics of the system.

The development of a formal specification and verifi-
cation tool at the functional component description level,
together with the enhancement of existing tools to handle the

analysis of reliability requirements can be viewed as the

catalyst of the proposed methodology.

Toward an Integrated Set of CAE Design Tools

The discussion of Section 2.1 indicated that a "missing

‘link" exists at present in the set of currently available CAE

design tools for multiprocessors. - This "missing link” is at
the functional compoﬂeﬁt déscriptiph"ievel (sée.Figure 2.1).
A tooi ié needed at this level thdh will be~utilized.in fhe
design.level.betwgen thg requiréments specifiéatioh~levél,

and the system architecture level. The newly developed tool

can be interfaced with existing tools for the requirements .

specification and with tools currently used in the simulation

of system architecture.

Figure 2}2 depicts the role of the proposed Functional

Component Specification tool in . the multi-phase design

approach. The tool is utilized to translate system“req@ire~'
ments = specification dinto functional components described

using a- high 1level behavioural description language. As

well, preliminary system architectures can be selected and

evaluated using this tool. The output of this phase will

serve as input to the next phase; namely, the detailed archi-’

tecture phase, for which excellent design tools exist at

present.

[*]
. . .
w

[y

.The main concepts underlying the high level functional

description tools are introduced in Section 2.3 with the full

details presented in Section 3. . The evaluation tools for

resource utilization performance models and reliadbility

characteristics models are discussed in Section 4.

Appréaches for Modelling Funétiqnal_Component Description

The deveiopment'of>é high»lével specificétionytool to
simulate the functional'componeﬁts is based on.a modelling
approach:which captures the behayigur of its component, its

relationship to other components and the interconnection of

the components to form the entire system. Two alternative

approaches are generally employed for this purpose:
1. A top-down decomposition approach,

2., A data flow model approach.

The general COncept.underlying the tob—ddwn approach can

-be_summariZed as follows (see'Figure 2.3):

- each of the méin functionalAcomponents‘of

the system; defined in:_tﬁe requiréments.

SPecificatioq phase, is described in terms

bf~it§ extérnél interféégs and the basic

functions it pérfofms.

- each component can theﬁ be treated sepa-—
rately and dividéd into subcomponents.
Collectively, these subcomponents must

maintain the same external interfaces of

the parent coﬁpbnent. Again, eaéh sub-
component is desribed in terms df ~its
external interfaces.

- the process of .decomposition' can be
applied iteratively to the subcomponents
until they are refined into the simplest
possible (elementary) components.

- a vélidity check is applied at each
decomposition step to ensure the
compieteness- and consistency of thé

decomposition.

The top-down design approach is suitable for the design

of complex systems since it éystematically reduces the design-

process to simpler components which can be tackled éeparate-
ly. 1Its main drawback.in the multiprocessof aréa lies in iﬁs
inabi@ity t§H capture the relationship between the wvarious
data structures atAdifferent'decomposition levels.iiThis is
beéause many data structurés are difficult to decompose in a

hierarchical order.

The data flow model approach represents the system as a
set of computational modules, sequéntially_prpcessing a flow

of data. The modules form a network with data merging and

.Eranching out. The source of -data is a set’ of input modules

and the terminal is a set of output modules. An example of

data flow model 1is depicted in Figure 2.4. This model bears

some relation to many of the features of the spabecraft

.processing environment in that the latter consists of input

sources (sensors), output terminals (actuators) and a set of
data processing modules (algorithms). In general, data flow
models are not convenient to use in describing and designing

complex systems.

The development of a high level functional component

description. tool (Section 3) is based on a hybrid approach in

- which the data flow model.is used initially to describe the

behaviour of -the system. Each computational.module in the
data flow ‘model is régarded'as a sySfem~component which is
then‘decbmposed in a top-—down approacﬁ} ‘This hybrid approach
will be shown to combine the',advantages of the data flow.

model and the top-down decomposition approach.’

\
System Requirement
Requirements >? Specifications
w
Y
System " Functional Level
Functions Simulation
J
) N
Y
- System
Architecture ‘
‘ ' Architectural
- " and Model
; vel
R | Leve
Hardware/ Simulation
Software ‘
Relationship
v)
Processing °
- Element
Details Register
> Transfer and
Y Chip Level
Logic Simulation
Design

and Corresponding CAE Tools

- 17 -

Figure 2.1 . Multiprocessor Specificétions/Design Levels

(l)ﬁ

(2) 9

(3)

()¢

System
Requirements

—— v ——— —— - — —— WA o — — — —— — o ———n —

Functional
Component
Description &
Simulation

Preliminary
1 System s

- |Preliminary .
- Performance

Architecture

]

— avew wimm v . dmp oty oo | s i —— ate e —

Detailed
System g

Evaluation

Performance

Architecture

Hardware/
Software
Simulation

Processing

Element
Details

>Logic
Design

Figure 2.2

Evaluation

i

| s

! - Detailed
!

|

|

|

(1)&(4) - Design phases in
: which existing
tools are uti-
lized. '

" (3) - Design phase in which

existing tools are
-augmented.

,(2)>*_Design phases for

which new tools are
proposed.

. 7

Design Phases Using an Integrated Set

of CAE Tools

Co Cy
Cas1l Casa| | C2.3] B R C1s2
C25251 C25252 C2,253 Cis151 C1s152 C1s251 Cirs2s2

1

: Figure 2.3 ,
. Functional Decomposition in a Top-down Approach-

0}
()]
—
o]
o
=
S
i R
j= 2
o
13
o]
o
—
[I
o
le]
=
=
o
w =
[} L B
i e 1
=} o~ ©
o 49
o o Q
= - “4 0
J i
> bo
« +
= Bz U
o - o]
-~
43 [}
© i
4 o
J =
[a¥ o]
=]]
o . =1
i) .
0}
()]
—
o]
o
m.
>
13
u.
o
[
—

[- b :

SPECIFICATION/VALIDATION

INTRODUCTION

Problem Definition

Traditionally, computing systems have been de-
signed by a team of individuals. ‘The design process
was ‘initiated withi an effort to determine the
requirements of theAsystem to be built. The term
"requirement"” takes on ‘diffefent interpretation
depending oe the background of a given individual in
the‘ldesign team. Hardware and software induced
misunderstandinge} abound in that early design
phase. Nonetheless, what emefges is a list of items
(often conflicting) .depictiné in. detail what' -the
sYstem should do, hew fas; and - how often.it should

do it and how reliable its performance should be.

The next - phase - is & mapping of ‘the

requirements, usually stated din a very informal

fashion, to formal and . complete specifications.

This mapping is not trivial and, dnce‘ done, may
require validation; in other words, going back and
checking that thelformally specified system- meets

the requirements.

What follows is a series of decomposition or
refinement steps on the original specifications

&hich are normally at a very high'level. Keeping in

mind that specification should lead to imple-
mentation, the high level specifications have to be

translated into more 'manageable, lower level

specifications. In this manner, a transition into a

complete software description of the intended
behaviour of the system 1s accomplished. At this

point, validation may also be needed,

‘With. the behaviour of the system formally de-

scribed, a partitioning of some functions into
hardware/software or dedicated hardwired controller

“can be attempted. The necessary guidelines to as-

sist in this process are obtained through

performance analysis .and simulation.

A design methodology encompasses all the stages

that have been described, namely: requirements,
specification, refinement/decomposition, imple-
mentation, and performance analjsis. This ‘section .

is devoted to describing the high level specifi-

cation activities and the ensuing series of

refinement steps. The output of this process will

be a formal description of the systémfs~behaviour

in a high_level'languagé; this description will also

be in a form suitable for further processing by

other levels.

Spacecraft Environment

A design methodology catering to general
purpoée environments would be very difficuit ‘to
specify précisely. This is due to the mulgifarious
nature of the tradeoffs invoived in system design.
Fortuﬁately, working within a épaéecraft environment
allows fof some assumptions to be made so as ¢to
restrict the scope of the methodology. The

simplication thus achieved should significantly

‘reduce the complexity of the methodology, and. in

particular of the ‘spetifiéation/decompositibn

process.

A computer system aboard a spacecraft is, by
definition, a .dedicated controller. It overseas

most of the current activities and may also be

- called upon to perform éomplicated'computatiohs. A

basic representation of such a system is shown in
Figure 3.1 where the dinput/output characterization
of a spacecraft is illustrated. The controller has

the capabilities to perceive the outside ‘world

'through its sensors -and to.Ainfluence and to act

S

E A

N CONTROLLER ACTUATORS
0

R

'S

Figure 3.1t ‘A Spacecraft Control System:
upon the physical enﬁironment through the

actuators.. The attitude of an éntenna, for_example,
can . be saﬁpled by some sensors and the controller
(or computer system) can be made aware of it. Based
upon stored directives or.ﬁpén rémote comménds, the

controller may decide to change the orientation of

"the antennas ‘The Actuators, (or servomotors) would

then be used to effect this chaﬁge on the -physical

environment.

‘Ihefe is yet anofhet aspeéf fo be considered:
the real‘time nature,of~thes¢.actions. It may be
required, for the sake of accuracy.perhaps, that the
sampling of the position of ‘the antenna be done
eVefy milisecond. Similar:_conétraints ﬁay. also
exist on how often and how faét the antenna can be
moved. These observati§ﬁs-lead'td the conclusion
fhat‘most tasks’perfofme& by onboard coﬁputef are
periodic. The literature oniéuéh systems would seem

to substantiate this view.

The set of requirements for an onboard
controller would reflect the flow of data and its
rate. The sensors would be characterized by an
output data type, and other information su;ch~ as
average data trate and peak.data rate. Similarly for
the _actuators, requirements concerning the input
data type, the maximum permissible data rate, the
minimum data rate, etc., would be given. . The
control tasks to be performed by the'computer can be
described by a transformation_of Various.input types
into some output . types, | aééording. to some
aigorithm. "These._functibns would also have time
constraints impbsed on them to'vdetérmine their
execution speed. These input, oﬁtput, -énd
processing constraints are easily expressed in a

data flow framework.

3.1.3

Design Philosophz
As indicafed'before, the design procésé 1s a

translation of informal requirements into formal

specifications, followed by gradual refinement steps

on these specifications. This stepwise refinement
approach. is analogous to a hierarchical system of

machines and programs (as shown in Figufe 3.2).

Figure 3.2: Hierarchy of machines and programs

" In Figure 3.2, Mi-is the highest machine. It would

correspond to a machine which would perform all the

system functions: _in" one high level progranm
instruction. Such a program, Py, is a trivial
program and is not shown. When considefing the

proBiem‘of. désigning:a .complex~s§stem, it may Be
advantageous to decomposé the original design of My
into the.design of My and Pj-1. The machine My
supports the compﬁtatioﬁs performed.by Pi—l and is

the computational structure of the system"to be

the computational structure of the system to be
designed. The Program Pi—1 is the computational
behaviour of the system. The féct that Mj;.; does
not existAis_of no concern; it can always bé created

by further decbmposing Mj—-j) into Mj.9 and Py_9.

The methodology presented here, first assumes
the existence of My, It decomposes M; into Mj.; and
Pj-1- Subéequently, Py.p 1is specified using a high

level language and leaving out lower level details.

‘At that étage, machine Mj._y is assumed to exist. To

proceed further,‘Mi_l is .decomposed into Mj_9 and

Pjg- Since all the dinstructions of P. ‘were

i-1

~directly executable by M;j_; (i.e., were written 1in

Mi_IYS native ;anguage); it is easy_;o see that Pj._o

is, 1in fact, a stepwise refinement on certain.

sections of Py.;. At that level, the combination of

Py-1 and Pj_, executing on Mi,2 still corrgsponds.to

Mi, (as shown in Figure 3.3).

' -’
\ PR
\’n —’
Figure 3.3: Machine equivalence
- 27 =

The methodology calls for this proceéss to bé applied

iteratively so that a hierarchy of programs and

machines 1s created.

The question of when to étop' and implement
physically a.given machine (or parts of a machine)
is not answered by this ievel of the methodology.
The goal of the Specification/Decomposition process

is to specify and refine down to a level where other

tools such as performance evaluators can be

applied. The results of such tools should help

answer the implementation questions.

Overview of the Section’

This section comprises: two main : parts:
specification/decompositioﬁ'and validation. In the
first part, the concept of creating a hierarchy of

programs 1is covered in details and an example of

spécification~and‘decomposition is introduced;. The -

second part' addresses the problem of wvalidation

which was briefly mentioned in the introduCtion, A

‘survey of wvalidation .techniques and of automated

verification tools constitutes most . of the

subsection.

A summary of -the section, together with

concluding remarks will also be found at the end of

the section.

Specification/Decomposition

High Level Specification

The first step of the methodology involves a
translation of the requirements into very high level
specifications. The ﬁaturé of this translation
process 1s not easy to doéument since it is mostly

accomplished by systems analysts (i.e., humans) and

relies on their intellectual capabilities. "Human
intervention in the ~translation process may
introduce errors in this | first attémp; . at
specification. Substantial research activity has

been generated, notably, [RAMA81] in which a dual
design team, dual specification approach is
advocated. The superiority of their technique has

yét to be firﬁly establiéhed. Requirements

definition has also been studied in [ROSS77a], and

[ROSS77b] in which a structuredvanalysis-approach

was proposed.

As men;ioned'earlier, fhe first specification
attempt, as well as all othgrs, embodies the
hierarchical.concept df machines and'prograﬁs. It.
is important to _realize_ théf a machine prégraﬁ
representation is isomorphic to 'a representation
involving étructure and behaviour, The latter ﬁype
of representation hés "been wused -extensively in

assisting hardware design endeavours [HILL79].

Methods of Decomposition

Stepwise- decomposition is the series of
activities that will transform the high level
specifiéation into an acceptable implementation.
Although there are several methods to do this, only
two of the most populéf techniques will be

described. (Also see [BERG81]).

L. Functional. decomposition

The. - technique of functional decomposition
iﬁvolves a divide and refine approach. Thé problem
is first considered as a whole‘and>theniﬁivided into
more manageable sub—probiemst .ThOSe sub;problems
can, in turn, be dgcomposed using the same

technique. - The 'result is a tree—like. structure as.

shown in_Figure 3.4,

Figure 3.4: Tree structure resulting from
' Functional Decomposition

Fuﬁctional decomposition, (as described in'[DIJK76]
and others), has been in use for a long time, and
lends itself well to hierarchical development of the
type proposed herein. The‘approach is not without
difficulties however. One o0of the major problems
assoéiated with its use is " the lackvof similarity
aﬁohg ihdependent decompositions | of the - same
problem. Functional decoﬁposition ‘requires. a
cénceﬁt (e.g., time, détaflow, groups of fggctions)

with respect to which decomposition will be done.

Lack of uniformity in éhoosing this concept causes

the discrepancies previously mentioned.

2. " Data Flow decomposition
An alternative to functional decomposition 1is
data flow analysis. The problem to be solved is

reduced to a flow problem in which afferent®

. modules collect various data and transmit these data

to a network of computing modules. Those modules

transform and alter the data and in so doing also

_change the flow. The end resuit; still in a flow

form, is then given to the efferent modules for
interfacing with the application. This method 1is

described in Figure 3.5.

#* In data flow terminology, afferent and efferent
modules are meant to be input and output modules
leading into or away from a network of computing
elements. ’

- 3] -

Afferent : Efferent
Modules. Network of Computational Modules Modules

Figure 3.5: Data flow example

The data flow technique is well documented in

[YOUR75]. It lends ‘itself very well to the dynamic

flow of data model of a spacecraft. It is, however,
unwieldy to use at times,. since some problems are
not amenable to this functional decomposition with

respect to data flow.

3. . A mixed‘approaéh

‘In view- of the affinity of the data £flow

banalysis with the spacecraft design brbblem, this

method_ was adopted, at . least in the first few-

- attempts at'decomposition. To remedy some of the

data flow analysis shortcomings,. a functional
decomposition method will ‘also. be used after the
initial data flow decomposition. Figure 3.6 shows a

hypothetical system decomposition carried out along

» those lines.

- 32 -

— | S S— —/
afferent - efferent
.modules _ - modules

network of compdting modules
subjectéd to further functional
decomposition

: Figure 3.6: Result of the mixed approach

It is expected that this mixed approach will be
able to capture the inherent data flow aspect of the

role of an on-board controller and to help in

creating the hierarchy - of machines and programs

which is essential to the general methodology. The

‘mixed approach to decomposition will be wused

extensively in an examplé which will be worked out

in detail in Section 3.2.5.

- 33 -

Formalizing'the Specification/Decomposition Process

The specification and decomposition process

requires formalism to establish a common frame of

reference. This goal can be achieved by wusing
either specification languages or procedural
languages. Each option has its own merit and is

adequate in describing the system.
1. Specification languages

Specification or . functional languages are

non—procedural languages, often wused for the

purpose of specifications. . . HISP -

(Hierarchical;y Structured ‘Specification
Processor) [OKAD8O] is sdch a langﬂage; HISP
manipulatés objéc;s which.are‘repreéentedAast

P =(Q,$,0,E)
where P is an object, Q ié;a set -of objects,
§ is a set of “sortsf,.o ig'a set of opérators

and E is a set of equations. In HISP, sorts

are representation of data items relevant to

the system. HISP also defines operations on

objects - (creation, construction, renaming,

substitution, refinement) which allow a system

to Dbe completely' specified. It is also .

possible to wuse a flowchart-like type of

approach as formalized -in [ROSS77b]. Although
not a language as such, this method is, in

fact, a graphical representation of a

‘functional language. -

The advantages of using functional languages
are as follows:

i) their semantics are easy to define,

ii) they lend theméelvgs readily to
expressing ﬁathematically .certain
properties of the system. (In other
wo?ds, proofs of .correctness are

facilitated.),
iii) they are not encumbered by lower level
details - which may detract from -preciée

specifications.

The major difficulty associated with their use
is that they eventually require translation to

a procedural language like Ada* orvr Pascal.

*Ada is a trademark of the U.S. Department of
Defense. ' .

- 35 -

2; Procedural languages

The major comblaint associated with the use.of
procedural languages is the presence of lower
level details "in the specification process.
These details have»beeﬁ minimized to a great
extent in newer languages such as Paséal and
specially Ada. It is now quite feasible to use

the data flow arcs of a high level “mixed

approéchf deCOmﬁosition as basic QQEQA
.structures and to - use précedures (gither
specified or stubs) - to represent the
functionality of the system; .~ Stepwise
rEfinement is, " of course, possible .on

pfocedures not completely specifiéd.

Using procedﬁral lénguages for specification.
obviates_the need for_tranélation and impoées'a
strict formalism én the déscription of tﬁe
system. It is always pﬁssiBle to introduce a

mathematical model by means of assertions.

3.2.4 Ada as a specification tool

Ada 1is a programming language built to the
'specifications»of the U.S. Department of Defense.

It dis a powerful language [WEGNS8O], [PYLESL],

[DOD80], [COMP81l] with facilities
data and procedure encapsulating,

currency, etc.

Some of those features are
specification/decomposition work:

1. Packages

for data typing,

support of con-

very helpful in

A package is a module encapsulating data

and a set of associated proc

edures. An Ada

~package is shown in Figure 3.7.

package data types public
gspecification procedure names. private
package ‘ 1 procedure
body : elaboration private,
: _ subject
private data to scope
"structure dependent
' ' access
rule
Figure 3.7: An Ada Package
A package comprises two parts: a specifi-

cation in which the interface to the outside is

defined and a body in which the actual

processing is done.“The body does ndt'have to
be'completely cédedlin the‘eérly stages of the
design; all is requifed is a complete épecifi—
cation part. . The Ada compiler will make the .

necessary linking adjustments.

- 37 -

2. RéndezVous
Ada supports concurrency and therefore has
the necessary mechanisms to allow séyéral tasks
to execute in parallel. Concurrently executing
tasks will ofteﬁ reqﬁire some meansiof‘synchro—
nizing their activities. To this eﬁd, Ada
provides a RendezVous capability, graphically
illustrated in Figure 3.8.
Synchroniée
"direciion of"
call
task A is |) task B is
entry Synchronize (---); end;

end; |

taskbody A is | taskbody B is

begin. =~ o : begin

accept Synchronize (’) _2 .Synchfbnize (==
-—- only A executes
‘2213
end;

Figdre 3.8: An Ada RendezVous

‘Task B is the actlve part in the Rendeszus.of

Figure 3.8 andfit‘calls'task'A.. In Ada, tasks
have the same specification aﬁd‘body structure
than packages; In the specification part of a
task, potential RendezVous are listed in the

form of entries. . A RendezVous 1is dinitiated

- 38 =

when either task B calls the procedure Synchro-
nize or task A accepts:it. If task B is first,
it waits until task A accepts the RendezVous.
If the .reversé occurs, task A dis the one
waiting. The actual RendezVous takes. place
when both tasks A and- B are ready. Duripg
RendezVous, the paraliel executions of A and B
will be reduced to a sSerial execution and at
the end of the RendezVous, both tasks will

resume their parallel execution.

Separate Compilatioh Units

There are extensive facilities in ‘Ada for

‘the support of separate compilation - units.

Separate .compilation is. possible- for - library
units, ﬁackage bddiéé and procédufe bodies.
Some of the rules go&erﬁing. separate compi-
lation may.seeﬁ at first aubit intricate, But
this feature': is extremeiy useful when.
attémgting stepwise‘ refinemént ddring - the

decomposition phase. In fact, only. the

procedure or package . interface - need. be

'specified initially.. The body of a procedure,

for example, can be left as a stub and refined

later on.

When it comes to specifying and'applying the
"mixed approach"” decomposition to a system, it can

be very advantageous to use Ada as the specification

'language. As a procedural language, Ada would

provide the formalism required of such an exercise.
The translation from specification to implementation

would be done in such a way'as to result in code

.. that could very often be of immediate use.

The end result of the "mixed approach”

decomposition is a network of computing functions

which were further subjected to functional
décomposition. Despite‘its.ﬁowerful features, Ada
cannot be applied directly. What 4is” needed is a

_construct which would facilitate the specifying of

computing functions Whiie at the same time allow for
the representation of the functional decomposition
process. Sugh a conStruct, called a "Specification
Block", is shawn in Figure 3.9 and is elaborated on

next.

package Specification Interface normally
Block Data Structure used for

type definition data
structure

type

definition

AN
task
simulate

package body
- Specification Block

set of
procedures
implementing the
functionality -
of the block:

L L I R S

s 2 0.0 00 ¢ e

RendezVous - " RendezVous

calls from o , calls - to the
outside . ' . . : ' outside-
Figure 3.9: Basic Strﬁcture of a

Specification Block

.A'specification block is expressed. by.méans of a
package; its interface is- defined in the
specification paft of the package. Data s:ructﬁre
t&pes~are elébora:ed at ‘that level althoughléimil;r
results can be achieved in the_specification part‘of

the. "Simulate" task.* The package body of the

specification block contains the "simulate™ task and

* For that reason, the simulation block ﬁackage will
"be usually represented only by the package body. -

- 41 =

a set of procedures impleﬁenting the functionality

of the system. Those procedures will be the object

of stepwise refinement. The "simulaté" task ful-
fills two functions:

a). Through the RendezVous mechanism, it is.linked
to the data flow ﬁetwork bf the decomposition
model. | The "simulate” tasks 1is called and
calls other tasks, ﬁhereby emulating the flow
of data. of the model.

b) The “simulate" tasks'embodies the algorithmic
structure of a~functional block. This eﬁbodi—
ment is the result of the sequence of procedure -
calls the "simulate” task is going through,
Functional refineﬁent .1is made —easier when

dealing with such a construct.

The usefulneés of the Ada‘spécifiCation'block
is not limited‘to the_répresentation.bf computing
functibns. Even lower level devices can be accommo=-
déted by Adé, as éhown in Figure 3.10, iﬁ whicﬁ an

interrupt driven 'device is. interfaced to an Ada

module.

hardware that
generated entry

call
: task X is
Device entry get (c:in char);
end;
acceptance of the call - taskbody X is
enables device to be ~<
serviced - So begin
~
~
S ea - accept get (ch);
end
Figure 3.10: Device Servicing in Ada

It can be easily seen that, given a system decompo—-

sition, a translation can be made of all the.

functional modules to a network of Ada specification

blécks._ This process, although awkward and tedious
to explain, is relatively straightforward. It is
best illustrated by .a thorough example of a small

part of a system.

- 43 -

3.2.5

A Decomposition Example

In this oxample,‘the decomposition process will
be. applied to an antenna attitude controi module.
The example, shown in Figure 3.l1l1, consists of a
remote controller for the positioning of a space-
craft antenna. The on-board controller 1s made
aware of‘the actual position of the antenna through
sensors so as to implement a closed loop-control}
To complement the sensors, a television camera with

digital output 1is also provided.

Spaoecfaft . ;:&

)
“
n o
: Qoo
Controller o «
) a 3
. g n
[0S
w0 <g
Radio Antenna » ‘
Commands _<i:)- S . _
*Antenna to be moved is

(i;> not to be confused with

.Radio antenna used to
receive the commands.

Ground Station

Figure 3.11: Deécriptioﬁvof the example

TV Camera

Antehna
to be
controlled

3.2.5.1 Various decomposition levels

The first attempt at decomposition is shown in
Figure 3.12. Three types of modules are visible in
that figure:
1= Input modules

InRédio, inSensors,-InTQ
2~ Output modules

OutRadio, OutActuators, Outcalib

© 3~ Functional modules

Antenna attitude control module

The functional module can also be further deéomposed

as shown in Figure 3.13. In that figure,.thé data

flow modéi' will be the last ™ level of such.‘

decomposition. The functions of each module are
outlined Dbelow, in preparatidn for functional

decomposition (NOTE: numbers correspond to those of

Figure 3.13.):

1-- InRadio is the inpﬁt module dedicated to the
radio receiver. It can be thought of as a
device handler.

2- InSensor isﬂéhe input module dedicated tb the
X,Y,Z co-ordinate sensors. |

3- InTv is the dinput module dedicatea to the TV

camerae.

9%

HPpZ2O0OMHaaHW®MOoON

INPUT
DEVICES

RADIO
RECEIVER

NWwoma WM

TELEVISION
CAMERA

—>

ACCESS” -

- INPUT
MODULES

DATA FLOW

NWwowrEdwyOw

SYSTEM OUTPUT OUTPUT
FUNCTIONALITY MODULES DEVICES
RADIO
TRANSMITTER
/
/V
- X
/7
/
/
- Antenna —_—— ——
Attitude L v
Control
Module
- N\
4 ! \
/. \ N z
/ \\ \\.\\‘ib '
‘ ‘V
N\
N\
N ‘ >
\ — w—]
A CALIBRATE

Figure 3.12: A first attempt at decomposition

Ly

InRadio

Devices not Shown

ANTENNA
ATTT TUDE
CONTROL
MODULE

COMMAND
STRING
INTERPRETER

Posiﬁional
Task

10

o

REPORT
FORMATTER

oxr

13

Figure 3.13: Data Flow Graph -

*numbers refer to description

4~ Command String Interpreter receives commands
from the ground station. The commands are

structured as shown in Figure 3.14.

type CommandString is
record .
CommandType: (Visuallnspect, Reset, Rotate
Calibrate);
case CommandType is

when Rotate = Desired Position: Position;

when Calibrate= Desired Accuracy: Accuracy;

when VisualInspect=> Magnification:Integer;
. Switch: (on,o0ff)

end case; : '

end record;

Figure 3.14: Definition of Various Commands

The Command String Interpreter will activate
the desired modules (and also pass parameters
when applicable) bésed upon the wvalue of the
Command type contained in the Command String.
PositionTask receives the X,Y,Z position of the
antenna. Those values are the result of
sampling done at fegular intervals. ‘ The
PositionTask also maintains an up-to-date table
of statistics on the dynamigs of the antenna.
Reset resets the‘ antenna position to a given
initial point. It’then sends confirmationlto
the ground station, to iﬁdicate the status:
(success of failure) of thé command.

Rotate rotates the antenna to a .position
specified din the command parameters. An
indication of the success or failure of the
command 1is also sent back to the ground
station. |

Calibrate mo?es the antenna.to a known pdsition
and re—célibrétes the:sénsors through the use

of the Calibrate module. A Report is sent back

~to the ground station.

VisuallInspect starts the TV camera and transmit

back to the ground station digitized pictures.

A VisualOff parameter stops this process.

10- ReportFormatter accepts various types of input
data, (e.g., confirmation of successful
rotation, result of calibration, digitized
television pictures, etc.) and prepéres. them

for transmission.

' 11- OutRadio is the output module for the radio

transmitter. It is, 1in fact, a device handler.

12- OQutActuator is the output module which takes

care of thé servo control mechanisms of the
antenna.
13- OutCalib is the output module dedicated to the

Calibrator device.

At this point, 1t should be noted that, although
Input and Qutput modules hav§ always been included,
their presenée is not mandatpry. In actual fact,
practical considerationsA'may diétate 'thaf they Be

incorporated in other modules. However, the reason

_for their Dbeing separate entities 1is that the

functions they dimplement have to exist in most’
cases. It is reasoned that it is easy to merge them
with other functions and, besides, they add to the

clarity of the decomposition exercise.

Following two stages of <decomposition with

respect to data flow, the system is subjected to a

Ml W PN N N BN N P AN EE BN B oE B

functional decomposition. The result is shown in

Figure 3.15, The various modules are broken down

with respect to the functions they are supposed to:

implement. This functional decomposition is
illusfratedtby the tree structures subtending the
data flow moduies.' The deaomposition process 1is
also shown in various stages of completion and it

should be remembered that it does not necessarily

correspond to reality since its prime purpose. is .

didactic,

‘In the complete design. methodology, the

functional decomposition, as-.exemplifiedv by the

diagram of Figure 3.13, is a tfansitory step. Its .
main purpose 1is to provide a bridge to a system

representation using‘thé Ada specification blocks.

This system representation is to be found in Figure

3.16,

There are several differences ‘between the

system representations of Figures 3.15 and 3.16.

The most noticeable is, of course, the wuse of a -

procedural language to describe the system. The
formalism of Ada helps in solidifying the
description of the "~system and of dits various

characteristics. Another extremely important point

xand String '
aloulats SendX’
X aAx
Y AY
L ax
/—_’(IQQ be
‘Test Add Raad Test _Send
it " er KCurrent It Success
R Same ubtract iPosi tion Equal Qr
) . i
Dispatch Casired Fallure
Control '
ROTATE

- n Secsor /

"
.

N Raad Calculats
. Currxent aX,
. Position AY, .

Seand
AX,

A!I .
Az

Raad
Current
Position

m .
Out Radio
A
REPORT
FORMATTER
: App;nd Appard FEC
Hoader Trailer

’ Raad or Cbeain Compare Buccess’) Send
POSITIONAL Either Read ax, Cucrent ,or Report
o) Desired Desired Ay, with railure t
. MNUILE position| a's Az Desired
y . - fconvart | | Rangs Send
' ’ Chack ‘|pisplaced Checks ‘A's
Calculata| Predictad Maintain e nt .1 to Out=
Position Valuas Table (norm.") actuator|
l . CALIBRATE
‘ - . o
o // \\ Out Calibrats
. Sat Reset ’ Rastore
- Accuracy] Antenna Calibrate old
Lavel Position Sensors Position
“gave ‘Raset
Pravious .
' Position
. From IoTv VISUAL
' INSPECT
! Gat ofe on
Paramatexs ’
) Turn Stop Turn ' Acquize Send
: . off | Trans= .on ‘a1 Traxe
3.1%: Tunctional Decomposition Camara kitting Canara 1 reana ’
(in varicus stages)

I ; - 52 -

(- - s meaas oy L e - e C)
Rapore Out ‘—’——'
Forpatte Radio
Cet Ch t - B
is l:b.l“: exs ParseCoumand y
ssexbleline CheekValidity . - Sand Packats
CatComarnds trinf| GiveControlRaset® Send Report Service Xmit
iRttt |
iGiveContro Gf:\mHSSpec,
. rs
| e
In s ——
Sansor —
CatSaxmples Ty
M le? CalculatePositicn Send 4 8
seablefrace CheckPredictedVal gcnricnﬁ
HMain tatnTab . arvice
GatPositica . PluP:U?Haég SarviceZ
. Freezs
Calculats A's-

Calibrate

Gccsi;ngh-)])
AssambleFrame . : CalibDavISR -
GatFraxa® Calculate a's

SetAccuracylLeval
ResetAntenna
Rastora

Figure 3.16: System Representation with ADA ControlCamera
' . Building Blocks . FormatIVFrane
' ’ Couprasalrane

#: Rapresent procadures vhich are part of RaendaxVous.
Motat Direction of arrows {s important for undarstanding the
disgram.

| s

is tﬁe disappearance of data flow arcs and their
replacement by p;ocedure call arcs. It should.be
noted that the direction of a procedure call arc 1is
not‘necessarily indiéative of the direction of tHe
floﬁ of parameters, 1if and when parameters are
passed., In Ada, the direction of a pr&cedure céll

arc has a further significance beyond determining

the calling and called parties. In fact, it plays a.

.role in'establishing how control i1s passed, and 1f

not properly set up, may become the proximate cause

of deadlock. Considerations on how the direction of

- those arcs affects deadlocks will be found in

Section 3.2.5.3.

6ther_ aspects of Figure> 3.16 are worth
mentioning briefly and érg listed’belowz |
i) There is’ direcf linking to devices.
. Hardware generated interrupts are
interpreted as procedure calls iﬁto one
of.the inﬁut or output modules.

ii) ‘The control stfucture.of the Rendez Vous
- mechanism . in Adg :hasi been' examined
eariier. Baséd upon that knowledge, it
is interesting to>_observe tﬁat, fof ‘a
procedure call -from a main functional
module- .to "one of the input/output
modules, the body'of.that procedure will

be in the called module.

- 54 -

iii)

The structure of the RendezVous, [SILBS8],
(MAHJ81], ([LAFE81], while generally very
flexible, is sometimes awkward to

manipulate, especially in cases where

- control dis to be dispatched to other

modules. Two cases should be considered:

Case 1: The Command String interpreter
(CSI) passes control té one of
the Reset, Rotate, Calibrate, or
VisdalInspect modules dépending
on the Command‘String, the CSI
goﬁ from the InRadio module.
The procedure call arcs.afferent
to the CSI module are distinct,
(i.e., Give Control Reset,

Give Control Rotate,

Give Control Calibrate,
Giﬁe-Control Visual Inspect).
Were they not distinct, the CSI
moduie would not be able to
acﬁivate- the desired - module.
This situation is | shown
'graﬁhically in Figure 3.17 (a &

b).

A

B:

FIFQ
: - Rotate
R | R | VI c -
0 E 1N A
T S S S L-
A E U P 1
T T A E B
E L C R
T A
~ T
B

CSI could not actlvate
Reset,

" The control structure 1s more intricate but allows
flexibility.

Figure 3.17 (a & b): - Ada Rendez Vous and Pass1ng
of Control

Case 2: Calls to the Positional module
from other modules (in order to
get co-ordinates) are not
distinct. In this case,’the need
for distinct ‘_procedures is .
obviated by the structure of the
system, The calling ﬁodﬁles,
(Reset, Rotate and Calibrate)
will normally be waiting for the
CSI module to give them control.

- Only one of ﬁhem will execute at
‘any one time and, as such, no
contention is present, hence no

need for separate calls.

Further functional decomposition can be carried out

easily with the system model of Figuré 3.16. This

. will be demonstrated by specifying a subset of

modules such as the CommandStringInterpreter and
the Reset modules. To keep the example simple, the

péckaging of those modules will not be shown; Ada

.manuéls [DOD80], [WEGN80], [PYLE8l], describe how to

build packages quite well. _Thé ~description will"

proceed from tasks to procedure stubs. The reader
is also referred to Figure 3.14 which contains a

full type definition of a command string.

!

- 57 =~

The first task | to be specified is . the
Command String Interpreter task which interfaces
with most of the tasks in the system.. The CSI.task
is shown in Figure 3.18, with the function
”GiveCommandString"v specified as separate.
Figure 3.19 describes how‘theAlink upvto the CSI
module will be ‘done. The Reset.module is of greafer

complexity than CSI and, as - such, makes an

interesting example. It is shown in Figuré 3.20.

No entry specifications are found in task Reset

since it is the active party in RendezVous .all the

‘time.

task CSI is

entry GiveControlReset (CS: out CommandStrlng),

' entry GiveControlRotate (CS: out CommandString);
entry GiveControlCalibrate (CS: out CommandString);

entry GiveControlVisualInspect (CS: out CommandString);
end C

task body CSI is
LN: CommandString A
function GiveCommandString (Y:CommandString) return
CommandString is separate

begin .
' loop
GetCommandString (LN);
case LN.CommandType is
when Reset => accept GiveControlReset (X: outCommandString)do
X: —leeCommandStrlng(LN)
end G1veCommandReset,
when ‘Rotate=» accept GiveControlRotate(X: outCommandStrlng)do "
X: —leeCommandStrlng(LN),
end leeControlRotate,
when Calibrate=> accept GiveControlCalibrate(X: outCommandStrlng)do
X:=GiveCommandString(LN); _
end GiveControlCalibrate;
~when Visuallnspect=> accept G1veControlV1sualInspect(X outCommandStrlng)do
X:=GiveCommandString(LN);
end GiveControlVisuallnspect
- end case;
end loop,_ NOTE: : ‘ ,
end CSI; R It should be realized that in this case the function

GiveCommandString is redundant. It was included to show how,
if such a function became necessary, link up is possible either
to inside or outside the package. ~

Figure 3.18 Command String Interpeter (CSI)

separate(CommandStringInterpreter);

function GiveCommandString(Y:CommandSttring)returnCommandString is
Test:boolean; :

function CheckValidityOf(X:CommandString)returnboolean is separate;

begin)
Test:=CheckValidityO£f(Y);
if Test
then return Y;
else raise "exception”;
end if;

end GiveCommandString;

Figure 3.19: Expansion of.a separate procedure

task Reset;

task body Reset is
CS: CommandStrings;
CST: CommandStatus;
CP: CurrentPosition;
Mssg: Message:
DV: DisplacementValue;
InitialPosition: Position:=0,0,0;

procedure GiveControlReset(X:CommandString) is separate;
procedure GetPosition(X:Position) is separate;
procedure NewP051tlonDlsplacement(X Y:Position) is separate;
procedure MoveAntennaP031tion(X DlsplacementValue Y:CommandStatus) is separate;
Erocedure SendMessage(X:Message) is separate;
. procedure AbortSystemAct1v1t1es'£g separate;

begin
loop :
. GetCommandString(CS); —-— part of RendezVous
AbortSystemActivities; '
* GetPosition(CP); - -— part of RendezVous
DV:=NewPositionDisplacement(CP, InitlalPOSltion),
MoveAntennaPosition(DV,CST);
if CST=Success
then Mssg:=Success;
else Mssg:=Failure;
raise actuator failure; .
end if; : :
SendMessage(Mssg);

end loop;-

end Reset;

Figure 3.20: Description of the Reset Module

3.2.5.2

Task Reset also exemplifies the use of separate

procedures. Those procedures can either be in the

package itself or in a different package‘which may
be‘gompiled separately.._ In the latter case, many’
stages of refinement may hévé taken place; proper
procedure specification ensured that the rest of_the
model was not affected by changes in the separate

procedure body. (%)

Observations on thé Model

| The use of the decomposition mefhodoldgy yieids
a 'system: model which exhibits séveral desirable
properties. The most important adyantagg_is that
the system is described'fﬁrmallyAas opposed to an

informal description whose meaning may be subjected

to miSinterpretation; The hodél is alSO“easy to
visualize. Procedures and -fﬁnctions which serve
~similar purpose nay be . grouped together in
anticipation of a completé software design. Such

grouping of - subprograms would optimize the coding of
the system tasks. It.shéuld-be-fealized, however,

that the system tasks obtained through decomposition

.are not necessarily optimal nor are they the only

_set of tasks which could be obtained. -Different

desighers or analysts will more than likely arrive

at different task decomposition.

(*) The Ada Manual [DOD80] has a lot more on that
issue. ' . '

The Ada representation of the model makes an

early compilation possible. This compilation,

although not intended to produce executable dode,
can check the validity and consistency of data types
and most importaﬁtly of procedure calls. The
network of AdaA building blocks can also . be
incorporated din a testbed, early in the design

phase. This will be covered shortly in more detail.

The importance of properly designing the model
with respect to procedure call arcs was étressed
before; a few guidelines will now be provided.
Three cases are of ‘interest and are shown in

Figure 3.21.

.Case III

Flow of data

N

Case 1

v

cA

Flow of data

Case I1I

¥ -

Al

|

Flow of data-
' N

L

Figure 3.21: Prdcedure call arrangements in Ada

Case I is the most likely Situation to. be

encountered; Task A callé Task B and passes
paraﬁeﬁers to.the.latter. The same process takes
place again for B and C. The direction of the data
flow also coincides with that of the calls. This
case of innocuous appearance can be a potential
cause of deadlock if a cycle is allowed to form,
(e.g.,_A callé B and is delayed because B called C
and B was delayed because. C had called A and had

been delayed, etc.)

Case II is introduced to lessen the possibilities of

deadlock when two tasks (e.g., A & C). have to
communicate with.each other but,«ét the same time,
cénnot afford to wait on one another. fhé,reason
for this unwillingness to wait may be that‘botﬁ‘A
and C are tasks offefing‘genefai purpose services. to
other tasks. It should .also “be noted that agent
task B will convey the paraﬁetefs éf'the>call from A
to C only. If a reverse floﬁ is désired; another

agent task is required.

Deadlocks are not likely to occur in this arrange-
ment because task B will be alternately waiting on A
to get a message, and on C to give the message. The

actions involved in each case are very short and

‘should hinder neither A nor C, as task B is doing

the waiting. It is easily seen that the overhead in
terms of ‘executive services . (e.g., context
switching) may be substantial for this configu-

ration.

Case III also lessens the possibilities of deadlock

and is used in cases such as:

a) An input (or output) module which. has
to service hardware interrupts while
at the same time making thé data
available - to‘ other- ‘tasks in the

syétem.
b) A module ; which provides varioué
services to other tasks; and‘as such,.

cannot be délayed,

An example of an arrangement typifying Case. III is

shown in Figure 3.22 which depicts an input module

servicing a hardwafe device. The'input module makes
the data that it_collected available to the

processing task.

data flow

‘.’
hardware
‘ r ’ ‘ :)
device _ Processing
generated
call
Procedures N Procedures
“Figure 3.22: Representation of an Input Module

The reason behind the call structure of Figure 3.22

is that the Input task should always (ideally)
‘be able to schedule a hardware generated entry call

from the device. If that is not the case, a loss of

input data will result, caused by either too fast a

device or an - inadequate- call structure. The

proposed structure, however, affords the Input task

‘the best potential for quick scheduling of the

service requests from. the device.

Case II and Case III help désign'systems with lower
probability of deadlock. They do.not completely
eliminate the risk of deadlock. Tofal elimination
of deadlock can only be achieved by a careful design
and, if need be, some simulation to increase the

confidence in the operations of the system.

3.2.5.3 System Simulation and Testing

Preliminary simulation .and testihg can be
attempted on a model which is completeiy (or even
only partially) specifie& by Ada specification
blocks. Figure 3.23 shows the modelled system as a

black box surrounded by device simulator modules.

SIMULATOR . . SYSTEM RADIO
X ANTENNA e
/ ATTITUDE -—
s s Y CONTROL Y A
E I |—"""| wMoDULE *—
N M z . z T
0 L ‘ A
‘R A T
S T 0.
0 R
"R s
T C S
vV A I
MM
E U
R L
A A
T
0
R

Figure 3.23: System Model and Test Bed

- 69 -

. Those device simulator modules are outside the model
and serve to simulate the behaviour of the devices

they represent. Such a device simulator is shown in

_Figure 3.24 (a & b),

GetCommandString
task input accepts

" interrupts as
simulated by task

DS and stores the
characters it

Input Call

receives
package DeviceSimulator
task DS ;
task body DS is :
ch: character; DL:=Delaytime;
begin "
loop . :

' ch:=SelectCharacter; _ :
Input(Ch); ' o -—functions SelectCharacters
DL:=SelectDelay; -—-and SelectDelay implement
"delay DL; ‘ ~-—the behaviour of

end loop; . —==the device
end;

Figure 3.24: Device Simulator Module

The compiete ' specification/éimulafion/testing
process is shown in Figure 3.25. The specification
block is 'a maqual operation; the. system model it
produces 1is the main input ¢to ﬁhe simulation and
testing packagé. The Deviée simulators are also

given to the simulator package.

: | - System - Ada 1. :
Specification|e—p! Model 3l Compiler ‘Diagnostics
, ~ 4 _
Input Modules| Output
' - : Device System 't |[Modules’
System Simulators ~ [MBlack Box Device
Requirements ' -} |Representation| |Simulators

[I

Ada
Executive
Support

Simulation
Controller

Simulation
[/Results

Figure 3.25: Simulation & Testing Package

Several steps are mnecessary to complete

simulation and testing - activities; they

‘summarized below:

a)

b)

c)

The system model is compiled. Data

type checking is performed and some

" run-time checks are embedded in the

load module. The load module is a
combination of the compiler output,
the Ada standard executive and- the

compiled device simulator modules.

'If any compile time error is detected,

the compiler will inform the user

through the diagnostic file.

The load module is allowed to run.
'Run~timé checks can detect deadlock,

verify if subtypes ' are ‘used

consistently and that variable ranges

are within Bounds.

Depending.. on how éophisticatedﬂ the

“simulation controllér is, it might be

possible to collect - data on . - the

comparative "execution speed of each

‘module. This information, while not

truly representative of the speed of

"the .finished product, 1is extremely

useful when hardware/sbftWare

decisions have to be made.

the

are’

When it comes to evaluate the results of the
simulation, it .should be realized that the whole
system was implemented in Ada. This may .not
necéssarily bé the case inv real systems; special
functions may be coded‘in machine language for the .
sake of efficiency. Neveftﬁeless, from thé
execution‘ time figures, execution time 1limits or
bounds can be derived. Once the functions of a
module are known and. the maximum time. allowed to
execute those functions is.established, it'becdmés
possible to decide whether to:

a) Decompose the module further since no
combination of hardﬁare/software' or
hardware alqne can satisfy the speed
requirements of the module. |

b) Imélement'the module as a specialized
hardwired unit.

¢) Implement the ﬁodule (of merge~.the
module with another and_implemenﬁ.then
both) on a giyen processor Qiéh a’
given software algorithm. The actual
allowablé time to execute the module-
functions ~ is influenced by such
factorg'gs processor:speéd, processor
power (i.e., . how good is the
instruction set), the type of
algorithm chosen to. implement. the

functions, etc.

- 73 -

3.2.5.4

It should. ‘be streésed' again that
decomposihg the systém with .the he1§~ of Ada
specification,blocks facilitates the eventﬁal coding
of some functions either as Ada modulés or as
assembly language modules. Itlié also obvious that

the high level system model is mnot dimmutable. In

'fact, practical consideratioms may dictate that

modifications = be made to it. Different task

partitioning may also prove to be necessary. -

Computer Aided Tools and‘the.Specification Process

A computer aided: simﬁlation_ and testing tool .
was proposed in the last section. = However, this
tool took aé inpﬁt the complete specification of a’
systém. | The Question is: Is it bpossible or
desirable to develop computer aided tools for the
specification process? . In the Taffirmative; what

functions should those tools have and how can they

be built?

The‘aﬁswef to the first question Wouid appear
to indicate. the; desirability of computer aided
specification tools. A further examination reveals
that the ﬁools ﬁhat can be buiit would be restric&ed
to'é small scobe. 'The specification process takes

requirements and transform them into an abstract

form. This is still largely the province of the
human mind. As such, it is difficult to simulate

coﬁpletely.

A system called SADT ([R0OSS77a], [R0SS77b] was
mentioned earliér,l in the context Qf functional
lénguages. It should be stressed that SADT is also
a complete methodology and as such should be
discussed here. SADT is an elaborate set of rules

and guidelihes with the purpose of establishing a

common language and methbd.for specification. SADT

'is applied in the early"phase of data flow

decomposition and functional énalysis.« SADT or a
derivative could be used " advantageously. in the:
prelimiﬁary .stages of the decomposition " process.,
The resulting diagrams'could then be translated:into
Ada specification blocks as before. VSome work. has
also been. done towards infegrating SADT with a
simulation fool. The-reSult.caliéd SAINT [BACHS81]

includes a dynamic simulation tool.

A tool thati would also bé,'very useful is a
graphics package that-w0uld relieve the anaiyst from
the burden of drawing boxes and connections. The
topology of the graﬁh'shoﬁld be'remembered'by the

graphics package so that a comparison could be made

with the output of the compiler after an Ada model
hés been compiled. Any mismatch.would be detected

and the analyst could then correct it.

Validation of Specifications

Validation

Validation 1s a procesé whose pufpose is to
check the validity of a transformation. Figure 3.26
~shows two stages of program development linked by

a transformation T.

Towards Implementation

>
Representation _ —— _-i::>.Representation
I : A : II
Transformation
S
L : ' Validation - o o
Re=d0 aum— of T jwerrm——p Continue
Figure 3.26: Example of Transfbrmatidn

Pl e 7 W)
m;-azm'zmﬁdr—qc:,omw

The validation of T in this case is the checking of
Representation II against Representation I with re-
spect to functionality. If the functionality of
Representation II does not quite correspond,to that

of Representation I, then the transformation is not

entirely correct.

To put the concept of validation in the per-
spective of the design methodology of thé previous
section, three main steps shbuld be considered.
Thoée steps are: ‘Requifements,‘ Sbecificaﬁion ahd

Implementation, as shown in Figure 3.27.

‘Definition‘___d;ﬁ*Specification

Implementation

n

Validation ' Validation

>Figure 3.27: Validation and the Design Process

The fole.of vélidation is to check the correctness.
of each transformétion, from the early requirements
to the final implementation. Several advantages
accrue from this exercise:
L. The transformation is verified.
2, Existing flaws-aré’uncovered so that they
can be rectified.
3. The behaviour of the output of the
transformation is verified.
Figure'3.27 shows validation in two places:
af' Between Definition of Requi;ements_. and

- Specification.

At this stagé, vali&ation is.based upon a’
mathematiéal model of the system.._Validitf‘of
the specification is carried opt.through high
level testiﬁg‘ or proﬁing’ (thaf is, symbolic

execution).

'b) - Between Specification: and various levels of

implementations.

Validation is based on the implementation
and the language used to describe it. If the
language 1is completely axiomatized, assertions

can be derived in order to make the symbolic

execution of the program possible. .A
successful s&mbolic execufion of the assertions
in the prograﬁ‘atteéts to the correctness of
the implementation. This method 1is called

verification.

Another method to obtain véiidated
implementation is testing. . Testing involves
traversing each of the program branches and
at. the same time, checking the output thus
obtained. Although - simple and easy to
understand, testing méy not élways be thé Best
alternative due:to the difficulty of choosing a

meaningful set of test ‘data.

This section on validation will concentrate on

validation (verification and testing) of
implementations. - of systems. Validation of
~specification is more nebuloué at present. The

difficulty lies in representing the requirements in

“an acceptable mathematical form.. Research

activities so far have, therefore, been concentrated

mostly on implementations of systems.

This section will cover three topics of

~importance in validationt

a) Testing,
b) Verification, and
¢) Automated Verification Systems (AVS).

- 79 =

In the course of the discussion, full definitions

will be provided as well as indications: of how
3

applicable and relevant those concepts are to the

current work.

Testing
Tésting.[HEND77], [GooD77] is a methodology

which can be ‘applied to a program to determine its

validity. The degree, that is, the thoroughness of
testing is under user control. . Testing rests upon

basic observations on the behaviour of programs, be.

" they at a high level or at. a low level. Figure 3.28

shows the skeleton structure of an imaginary prqgram

with all the control paths being given numbers. The-

purpose of testing is to select a set of test data
so that: ‘
a) all the paths of the program have been

traversed at least once and

. b) the output thus obtained is valid.

Another way of explaining testing is to consider a
program F as a transfer function. Figure 3.29
depicts . the domain and rénge of the transfer

function F.

(Begin }.

Computation Path' 1 .
. \ » Path 2
Test Satlsf;e§ : End
ot
Satisfied Path 3
Computation

: Satisfied
/\Loop :
| satisfiea Skip
Computation . Path 5 Path 4
>
T
Computation Path 6
ol
.~
Figure 3.28: . Skeleton of a program control

structure.-

Input . :
Domain > Progranm
S I T
R = F(D)
Fiéure 3.29: A Program's Domain and Range
- 81 -

An element d, deD, will produce r = F(d) and reR.
If this is the case for all de¢D, then the program is

said to be wvalid.

Using that definition of testing, it is clear
that the set of test data that 1s required is the
set of d's, deD so that:

i) F(d)eRr

ii) the set is minimal |
iid) ail the éontrol paths of the program

have been traversed once.

The main advantage of testing.and paradoxically
its principal weakness lies din dits ~simplicity.

Testing is easy to carry out in terms of computer

‘resources ‘and packages. It has the advantage of

using not only real data but also data that is

- meaningful. The program is, therefore, tested in

its working environment. However, unless all the
paths of a program are known and unless the set of
test data is such that complete traversal of those

paths is achieved, testing will not provide a

-guarantee of correctness. To put this differently,

testing can uncover the presence of flaws but not
prove that there are not any. Given the multi-
plicity of paths in a program of even moderate size,

it is not reasonable to expect that testing will

cover all possibilities. Nevertheless, testing has
its usefulness in increasing the level of confidence

one has in a program.

Verification

As mentioned before, a system specification and
its dimplementation can be represented mathemati-
cally. Given this mathematical model,‘it is possi-
ble to simulate this system by what is ‘known as
symbolic execution. What is accomplished ig, in
fact, the traversal of all control pathé -in the
program or, more precisely, the testing of the

program for all possible inpﬁt data.

Program Verification is a research endeavour
which is relatively new. It is nevertheless well

documented as surveys and tutorials on verification

[HANT76], [LOND77], [GRIE76], [KING8O] attest.

Another area of research is the automation of the
verification process. ~Section 3.3.4 is devoted to

Automated Verification Systems.

The -basis of program verification can be

defined with respect to the simple diagram of Figure

3.29, An assertion, called pre-assertion, is piaced

at the input of F. The .pre-assertion is true for
all d's in D and false otherwise. Similarly, an
- 83 =~

éssertion, called post—assertion, is placed at the
output of F,. The output of the program satisfies
the post—assertion if the output falls in the range
of F. The difficulty most often experienced is in

choosing the pre- and post—assertions,

Refinements are, therefore, needed to make this
choice easier. The approach usually taken is to

break down the program into smaller paths that can

be enclosed by a pair of pre— and post-assertions.

This is illustrated in Figure 3.30a. The - next
problem is concerned. with the handling of loops.

Loops can be considered as a set of simpler serial

paths with the parameters changing from path to

Vpath.- Figure 3.30b shows such a loop and the

proposed assertion, called a loop invariant. A loop
invariant combines the. concepts of pre- and
post—assertions., =~ The assertion is trhe, i.e.,

satisfied, at the Tbeginning of the >loop and

similarly at the end, ~ hence the term

‘"loop-invariant".

simple
path

A) pre-assertion B) Loop invariant.
<
v | l <
I | C 1
|] - 1 1

loop

post—assertion

Figure 3.30: Paths and Assertions

The thesis of .program verification is that,

given a program and a set of assertions mathemati-

cally describing the purpose of the program

theﬁ, if all the assertions are proved to be true,
the program is coprect. This is,_in fact, a sym=
bolic execution of the program since real input data
has been replacéd by algébraic symbols.. This method
is also called "Inductive Assertion" method since
all the program .paths (or segment) are proved

independently and an induction argument is then used

‘to establish the correctness of the whole program

[FLOY67], [ROBI77], [REYN76]. At this point, a

basic requirement of 'such a verification process

manifests itself. The language‘ﬁsed to write the

program has to have “a regular behaviour, easily

expressed 1in mathematical terns. In other words,
the language has to be completely axiomatizable (see

[HOAR69], [HOARE73]. The .reason for this require-

- 85 =

3

ment is easy to visualize. A statement S can be
preceded by a pre—-assertion P and a post—assertion
Q. Given that P is true, some means of going from P
to‘Q has to exist. If the language of which S is a
statement has been completely axiomatized, then'S
is the tool that will transform P into Q. There-
fore, a comﬁlete definition of S renders possible

the proving of Q.-

_The ﬂfégeding .paragraphs described the most

widely used verification method: inductive as-

sertion. There exists other variations such as
"predicate transformers” and . "sub-goal induction".

In those methods, the basic principles of verifi-

"cation are not altered. . Assertions are still used

to describe the behaviour of. the ~program and an
axiomatized language 1s still necessary; interesting

peculiarities exist, however.

1. Predicate Transformers
The concept ‘of predicate transformers [DIJK75],

[YEH77] has been &eveloped_to be used in conjunction

"with "predicate calculus". Predicate calculus is a

program methodology destined to help programmers

construct their programs with a strong mathematical

base. Going one step beyond leads to verification
which is made easier by the already existing mathe-

matical description.

The theory behind Predicate Transformation is
based on the state space of a program. on this
state space, predicates P, Q, ..., can be formu-

lated. (A predicate is taken to be an assertion.)

‘Associated with a given predicate P, there exists a

set'of program states, P*, for which P is true.
P® = {statés l P }‘ _
Given - a program S, it dis possiblé to have a pre-
assertion. and a post-assertion. Thesé will be
respectively P and Q~and_thé following reiation is
Héld to be true: |
PISjQ-
Iﬁ other words, P 1is true for the input data of S.
and fdll§wing the execution of.-S, Q is a156 true for
the oﬁtput data prodﬁced by S. A function WP will
now be introduced and its_effeéts are as follows:.
WP(S,Q) = weakest pre-dondition such .
‘vthat after the executién'of
S, Q is true;
WP(S,Qﬁ* = lérgest set of initiél
stateé of S for which §

terminates and Q is true.,

The function WP is called a.predicate transfofmer
sinée it takes a post—-assertion and transforms it
into a pre-assertion. In [YEH77], some pfédicate
transformer theorems are stated and some examples
are given, dillustrating the predicate calculus and

transformer methods.

2, Sub-goal Induction

-Sub-goal induction [MORR77] is a proof method
that can be used - to complement the general inductive
assertion method. In the latter, loops are handled
through loop invariants, while in the former the

correctness of loops is proved directly from their

input—output specification.

Figuxe 3.31 shows a simple loop which will be

analyzed using sub-goal induction.

begin

while not P(x) gg
x:= N(x);

3 eve

end;

Figure 3.31: Simple loop example

A post—assertion Q will be used to represent the

desired state of the program after the execution of

the loop. In this exéméle, the predicate Q(x,z)

relates a given input X to the desired output z (*).

Two

with the

Case 1;

Case 2:°

cases have to be considered in connection
loop:
When the loop is executed for the first

time, P(x) is true; the loop is ended with
the value of x unchanged. Expressed mathe-
maticaliy, this case amounts fo:

R - Qxx) ey

When the loop 1s executed for the first

‘time, P(x) .is false. - This implies that

x:=N(x) and thus becomes x'. This second
case reduces to:

notP(x) and x'=N(x) and Q(x',z)?>Q(x,z) (c2)

(*) This example is that of [MORR77].

The two cases, namely, . ci and c¢2, are called
verification conditions. 1In fact, proving cl and c2
amounﬁs to proving the corfectness of the loop.
Sub-goal induction is, therefqre, a method to obtain
those verification conditions based upon the

specification of the loop.

To resume the description of the process of

verification, the . example of the "Quotient-

Remainder" will be presented. This example has
first been given by [HOAR69], and then by [WIRT73]

and [LOND77]. The -example 1s based on the simple

.division program using the successive subtraction

method (shown in Figure 3.32). In a first step,
assertions are introduced in the program, as shown

in Figure 3.33. It should be - realized that the:

"assertions are not executable statements and could

be specified separately in a specification language.

function Divide (var x: integer-; var yéinteger):integer

var r,q: integer;

Eggin
Ti=x;
q:=U;
while y >=r do
begin
r:= r-y;
q:= qt+l
end;
Divide:=q

eﬁd {of function Divide}

Figure 3.32: Sub-program for simple division

function Divide(var x: integer;var y:integer): integer
var r,q:integer; ‘
begin _
- pre - true; {no restriction upon entry}
r:i=x; q:=0; ‘ :
while y > =r do
begin '
assert x= r+(y*q);
ri=r-y;
q:=q+l
end; ‘
Divide:=q;
post x=r+(y*q) and rgy’

end {of function Divide}

Figure 3.33: Sub-program with assertions

- 91 -

From the assertions, three lemmas can be obtained
which correspond to the three assertions. . In
deriving the lemmas, it is assumed that the

programming language has been axiomiatized.

1- Lemma I
true and r=x and q=0-> x=r+(y¥*q)
2- Lemma II
| x=r+(y*q) and y<=r and r'=r-y and q'=q+1->
Cx=r' +(Y*§')
3- Lemma III

x=r+(y*q) and not y&=r =» x=1r+y%*q and r <y

This axiomiatizaﬁion'.is necessary iﬁ ordér to be -
able to .transform a pre—assertion inﬁo‘ a
ﬁost—assertion.. For example, in the lemmas, it can
Se éeen that := has been replaced‘by =, since the
behaviour of the assignment construct had been

axiomatized.

The next step in the verification process is to
prove the three lemmas. Fortunately, it is

reiatively easy to do in_this case (*).

(*) Obviousiy, it will not always be that easy!
See [POLA79].

1. Lemma I requires substituting r .for x and O
for q and x%r+(y*q).is thus verified.

2., Lemma II requires substituting r-y for r'
and q+1 for q'. The équation x=r'+(y*q')
is verified since x= (r=y) + (y*(q+l))
which reduces to x= r+(y*q).

3. Lemma III is the -exit assertiom. The term
r<y is equivalent to EQE.Y <=r and the

term x= r+y¥*q is true.

The prdofs of those. three lemmas have now been

completed and the correctness of the sub-program

Divide has been established. - The lemmas themselves
are intéreéting becagse ﬁhey~could have been stated
differently. Hereto, the lemmas hafe". been
associated' with the forward execution of ‘the
program. Backward execution .can also be con-

sidered. The lemmas that it yields are slightly

different.

l1- Lemma I

true = x = x+y*0 -
2~ _Lemma I1

x = r+y*q and y <=r=>x=(r-y) + y*(q+l)
3- Lemma III |

x = r+y*q and not y =r-»x=rt+y¥*q and r <y

The forward and backward methods of generating

assertions are discussed comparatively in [KING 761].

Once a proof of correctness has been obtained
for a given program, the question that comes to mind

is: how correct and how reliable is the program?

- Obviously, the program itself is correct provided

the proof was done correctly and the language was
axiomatized properly. For the program' to run

correctly, extra factors have to be considered.

‘Compiler correctness will influence how reliable the

‘correct” program will be. In this case, bugs in
the compiler would jeopardize-the correct execution
of the program. Hardware correctnéss has to be con-
;idered as well, .In fact, in or&er to establish the
gorfectness of the hérdware, the behavioﬁr.of the
processor and the other components has to have_been
axiomatized. Basgd>upon_the maﬁerial,preéénted in
thié section, one can see that hardware axiomati-
zétion’ is neéessafy if one aims at proving» the

correctness of a system.

It would appear that even if a:programhhas been

proven correct, its correct execution is not auto-

matically guafanteed. However, the risks of soft-

ware related failure have been greatly minimized.

To some extent, this is what festing achieved, but
not to the same degree, .in practical situations,
testing tries to traverse most of the paths likely
to be wused during the execution of a progran.
Verification, of course, traverses all of theﬁ. The
cost of testing ﬁeing considerably less than,vgrifi—
cétion, there exist situations where, for Dboth
practical and economic reasons one aiternativé would

be preferable. .

A very dimportant poiﬂt that has to Be empha-
sized is that Verification (just like testing) is an
activity that should be plaﬁged and carried out in
parallel with program development, fhe applica- .
bility of verification to the design methodology is

still an unresolved issue. On one hand, it would be

..advantageous.to have a completely validated design

from the top to the bottom level. On the other
hand, ‘Verification is very costly of time and

efforts and requires skilful users. In satellite

systems, where reliability is paramount, verifi-

cation should be a goal worth considering.

- Automated Verification Systems (AVS)

In an effort to facilitate the task of vérifi—
cation, several research activities have
investigated the - possibility of involving A the
computer in the verification process. Automated
Verification Sjstems (AVS) were the results of those
efforts. The theory behind the‘ operatioﬁ of a
typical AVS is' no diffefenﬁ from that of a hand
prpof. 0f course, some steps have.tO'be spelled out
due to the different natures of the human miﬁd and

of the computer.

" The process of designing and of verifying a
program using a hypothetical AVS is shown in Figure
3.34. The first stép towards verification, once the .

program is written, is to insert the assertions and

~loop-~invariants. Those may be difficult to obtain

but it will be assumed that they have been properly.

generated.

- 96 -

USER

|

Program Inductive Assertions Method

Program Assertions
+ ‘(/”’——~(user generated)

Assertions|

:

Verification
Condition
Generator

l 'Autémated Vefification
; , System. :

Automated
Theorem
Prover

!

diagnostic (OK, faulty)

Figﬁre 3.34: Design and Verification of,Programé

The AVS accepts as‘input the program and its
assertions. It uses the assertions to produce

verification conditions which will be of a format

suitable for machine proving. The verification

conditions are, in fact, considered as theorems énd
various technidues can be used by the theorem prover
(see [BOYE79]). The "inductive assertions"” method
can be uged, sometimes supplgmented by subgoal .

induction. It has to be pointed out that the AVS

will, in general, prove partial correctness. Total

correctness 1is proved when the program has been

ascertained to -terminate. In order to illustrate

‘those concepts, an ekample'will be presented which

will take a subprogram and perform the steps outlined

in Figure 3.34.

The example to be considered 1is basiéally that
of [ROBI77] and uses register modules as defined by
[PARN72]. A regisﬁer ﬁodule is a variable size
§ector thse cbmponéntéjare ofdeted by size in aﬁ~
increasing sequénce. The fcllowing " predicates

always hold for a register module.

0<= Length <= 1000 ‘
Y?, 0<7 <= Length, RegisterModule[i] is defined,
vi| RegisterModule[i] is defined, '
O<=RegisterModule[i] <=255."

The subprogram to be verified with respect to

the register module is shown in Figure 3.35.

Procedure InsertSorted(var c: integer);

var x:iinteger;
begin '
. C — et . . e - Assertion I
x:=1;
repeat
b~ - —i - - . Assertion II.
if x >= Length+l '
then Insert (x-1,c)
else if ¢ = <RegisterModule[x]
then Insert(x-1l,c)
"else x:=x+1- '

until ¢ is inserted)
— e sniw e wmn - - Assertion III

‘end of InsertSorted

Figure 3.35: Procedure InsertSorted

The subprogram of Figure 3.35 refers to another

procedure called Insert :(i,j)." “Insert(i,j)”
inserts the Qalue 3 aftef pﬁsition i _and moves
éubsequent valués one position higher.f~Keeping this
definition in mina, it is now poséible to state. the

assertions of "InsertSorted".. Three assertions are

‘necessary and should be placed as indicated .by

-arrows in Figure 3.35.

1. Assertion I '
Yk | 1=<k=<Length-1, RegisterModule[k]=< RegisterModule[k+1]
and 0=<c =<255 » |
and 0=< Length<l1l000

2. Assertion II
Length = Length, and c=c, and
Ykil =< k =< Length ReglsterModule[k]—ReglsterModule [k] and
Ykl =<k =< x~1, RegisterModule[k]<c and
1=< x=< Length+l

3. Assertion III _
Length = Lengthy + 1 and-
Vk | 1=<k —<Length l1,RegisterModule[k]=< ReglsterModule[k+l]
and BagOf(i,l Length RegisterModule(i))=
BagOf(i,l Lengtho,ReglsterModule (1)) U Bag (co)

Assertion I describes the state bf the RegisterModule at the
beginning of the procedure. The RegisterModule 1is sorted‘an&
has room for another character. Thé-charactervto be inserted is
Within~b0unds. Similariy, Assertion III*deSgribes the state of
the RegisterModule affer the insertion took place. It shpWs
that the length of the RegisterModﬁle has been incremented‘and

that the RegisterModule itself is still sorted.

Assertion II'describes the.state of the RegisterModule and‘of
the procedure during thei‘lobp." In 'Assertion II, Bags and
BagConstructdrs [KNUT68];are used. For example, Bag (a,b,c,) is
the set of three élements a,b,c with Bag(a,b,c) = Bag(b,a,c).
The - BagConstructdr is BagOf(i,a,b,expression(i)) which
represents the-bag of elements obtained by substituting b for a,

for i in expression(i).

- 100 -

O OO W
-

10.

11.

121

13.
14,
" 15,
- 16,

The next step taken by an AVS is the generation of
verification conditions. Those are to be found in the following

list: (The 1list and proof of VC's are basically that of

[ROBI77]).

Vkil <= k=<Length,~1, RegisterModule,[k]=<RegisterModule,[k+1]
and 0 =< ¢, =< 255 «
and 0 =< Lengthy< 1000 and

Vk|l1 <= k=<x-1 , RegisterModule,[k]< ¢,

and 1<= x=< Length,+1

and x< Length, +1

and c, =< RegisterModuley[x]

and Length = Length,+1 and

Vk , RegisterModule[k] = if k =< =x-1 then RegisterModuley[k];

if k = x then cg; Cos
otherwmse RegisterModuleg[k-1]

After insertion of c,, verification conditions 10 to 16 are -

derived from the verification conditions 1 to 9.

= x =< Length, and
< x-1 =< Lengthy and
< ¢, =< 255 and
Lengthy,< 1000 and
Length = Length, + 1 and
Ykil =<k =< Length ReglsterModule[k]~<ReglsterModule[k+l]
and BagOf (i,l,Length, ReglsterModule(i))-
" BagOf (i,l,Length,,RegisterModule (i)) U Bag (c,)

The automatic verification system would then start proving

each of those verification conditions as theorems. Most of the

~ above verification <conditions are straightforward to prove.

Condition 15 will be used to illustrate the theorem proving
activities of the AVS. Verification condition 15 is simplified
by substituting expressions 8 énd-9. The new condition is shown

below, in Figure 3.36.

- 101 -

Vikll =<k =< Length,

{1f k =< x-1 then ReglsterModule [k]
else if k = x then Co
else ReglsterModule [k- l]}
=<
if k+1 =& x-1 then RegisterModule, [k+l]
else if k+l = x then Co
else ReglsterModule [k]}
Figure 3.36: Verification Condition 15
The binary relation =€<» relates the two -expressions in

bracket. ANine'possible cases result but with only four of

them being non-trivial. Using the letters at the far right.

of Figure 3.36 to represent each particular case, the four

cases of interest become:

1., Case 1: a,d
2, Case 2: a,c
3. Case 3: b,f
4, Case 4: ¢,f

Those cases are proved in the following fashion: (item i

corresponds. to case 1i).

1. Ykll =¢k =< x-2, RegisterModule,[k]
=< RegisterModule[k+1]
- 2. RegisterModule,[x-1] =< ¢
3. ¢ =< RegisterModule, [x]
4, YR xt+l=< k=<K Length
' ‘ ReglsterModule[k lL—(ReglsterModule[k]

- 102 -

At this point, the AVS has completed the proof of verifi-
cation condition 15 and would continue on to 16. Automated

verification systems perform along similar lines as a proof

- by hand. Their requirements are very much the same in that

they need an axiomatized language and the insertion éf
assertions.. It is clear that assertions are very important
to the.AVS since they mathematically depict the behaviour
of the system. The 'onus to produce suitaBle assertioﬁs ié
on the designer and this seems to indicate that obtaining
the assertions 1is a rigorous _activity which should be

undertaken concurrently with program development.

Several AVS are being experimented with at the present

~ time, as the following list can attest:

'l. Gypsy -is a verification system beiﬁg developed at the

University of Texas, [GOOD78],‘[AMBL77].':Gypsy is also
surveyed in [CHEH81]. The Gypsy verification environ-

‘ment is shown in Figure 3.37.

- 103 -

USER COMMANDS

b

GYPSY EXECUTIVE PROGRAM
TEXT ¢————3 DESCRIPTION
. V'l LIBRARY
| | *)
GYPSY SYNTAX VERIFICATION THEOREM COMPILE
|PARSER DIRECTED CONDITION PROVER FILE
EDITOR GENERATOR GENERATOR
COMPILE
SIMPLIFIER

FILE

Figure 3.37: Gypsy Verification Environment (from [CHEH81])

Gypsy features a singleAlanguage (i.e., Gypsy) to program
the application and to specify. its behaviour mathemati-
cally. The Gypsy language 1is a derivative Vof Pascal
[JENS74] and supports cpncurrencyi> Detailed exampies of
its.use are given in [AMBL77] and also [CHEﬁSl]. Gypsy

also features a designer/verifier's assistant - package "

" [MORI79] to facilitate the task of maintaining previously

verified programs.

- 104 -

" Hierarchical

. system's

Development Methodology (apM) [ROBI78],

[ROBI79] is a complete methodology for program development
from the early stages of specifications to the final stageé

of implementation. Mathematical representation of the

behaviour is accomplished through Special, a

non-procedural, specification and assertion

language.

Figure 3.38 shows some of the details of HDM.

System Description
Using Special

Implementation
Language

. Axiomatization .
ofImplementation

Language

\ R '

Verification Condition
Generator

|

Boyer Moore
Theorem Prover

Figure 3.38: Description of the HDM System

- 105 -~

El

As

Special 1is nét a procedural language and, therefore, an
implementation language is necessary. _ Cohplete
axiomatization is obviously a requisite condition on the
implementation lénguage if the verification -condition
generator is to perform properly. The verification
conditions thus generated are giveﬁAto the théorem prover
for automated proof. The theorem provér is the Boyer Moore
[BOYE79] theorem prover and is among‘ the most powerful

available.

Affirm- [AFFI79] is primarily an - intefaétiﬁe system
re@uiring cénsidérable directions from the user. It ﬁses a
variant of Pascal for specification and implemenfation.
Other facilities are‘ ,élsb pro&ided for data | type

specification and for theorem proving.,

Other systems such as the: Stanford Pascal Verifier
[LUCK79], the Formal Development Methodology (FDM) [KEMMS80]
should also be mentioned. (Other systems also exist in the

early experimental stages and are not mentioned here.)

pointed out previoﬁsly, all those. automated verification

systems are at various stages of experimentation. vTheir use 1is
cosfly but; above all, requires trained programmers well versed
iﬁ mathematiéal prbgramming.. The nekt”section'will cover the
validation‘capabilities that can. be reasonably and realistically

incorporated to the design methodology.

106

3.3.5 Proposed Validation Capabilities

The specification methodology should incbrpo?
rate someAvalidation capabilities. The nature and
the extent of those capabilities should be carefully
chosen, An ideal system, even though not ﬁractical

at present, is shown in Figure 3.39.

Requirements € » User/Analyst
~Abstraction
Specification — —3 Assertions
in various
stages
‘—44 Implementation Language
: . : . - |Axiomatization

software

hardware
' R
special - o Verification
validation Condition
may be . Generator

Theorem Proﬁerk—_____.. Data Base
-) 0f Theorems
i o

Diagnostics

" necessary -
see [CORY80] and o | <>

end of verification

Figure 3.39: An Ideal System

- 107 -

Several factors make this system impractical:

1. Ada is going = to be used as the
specification/implementation language.
Ada has not been fully axiématized and it
is not likely that it will, at least in
its present form [YOUN8O].

2.. Concerns about code correctness may be
dwarfed by concerns about compiler and
especially run—-time environment mechanisms
‘corréctness.

3. As pointed out before, uée of those AVS

| tools is not . necesSariiy complicated.
However, obtaining mathematicél de¥
éériptibns of systems fhrough assertions
is. not a ‘trivial task. As systems beéome
more complex and as the issues to be con-
sidered proliferéte, the problem of veri-
fication will become: more ~and more

unwieldy.

As. more reséarch is pursued in the field of
verification- in‘ general and in Automated Verifi-
cation Systems in particular;'it is feasonable to
expect that verification and ‘AVS will become more
powerful and easier to uée. In their present form,

their overall complexity precludes their use on a

- 108 -

large scale, such as a validation of a complete
system. Validation/verification work of a~sméller
scope can be undertaken; an example of such works
would be the verification.of small'modulés imple-
menting functions which ‘are critical to the proper
functioning of a larger system. This latter
alternative would be feasible for the multi-micro
processor design méthodology. Its use, howéver,
should be within in a consistent and logical frame-—
work. Such a framework, shown in Figure 3.40,
combines the varioﬁs features outlined so far in the

last two sections.

The interim verification system of Figure 3.40

is, of course, a compromise and should be augmented

with new capabilities for - decomposition and -

verification, 1f and when these become available.
In. fact, any addition to the interim verification
system should tend to transform it into the ideal

system of Figure 3.39. ' At present, the interim

verification system achieves 1limited verification
partly through checks performed at pre-compilation
and pre-simulation time and partly through formal.

verification of° some critical sections of limited

scope.

- 109 -~

Requirements

PR —

Abstraction

.l

- Specification

User/Analyst

‘_

|
|
|
l
+

Covering only
a few critical
"sections of the

total system

0l

———p Refinement Stages

- o o——

v

/
¢~ — —— —— — P Assertions
Language
Axiomatization
complete
or
partial
Onlylon +
Selected 3 verification
Components . - ‘

Blocks’

System Representation
Using Ada Building

3

P

‘Implementation
‘Decisions)

Preliminaxy
Compilation

| Preliminaxy
Simulation.

(Using Testbed)

k 4

Diagnostics

]

- 110 -

Performance and
Reliability Analysis
Hardware vs Software
Partitioning

etc.

"Manual ox

Automated

iagnostics

Figure 3.40: Proposed Interim Verification System

A useful addition to -the preliminary c0mpif
lation would be the inciusion of imports/exports
constructs fashioned = after tﬁose of Euclid
[LAMP77]. Those constructs are -not part - of standard

Ada and would be direted expressly at the specifi-

cation blocks. Access dinto a block and aécess

originating from inside a block would be tied to a

source or a destination. The advantages accrueing

are twofpld:

l. A tight control on interconnection
would be achieved.
2. Further validation work would be made

easier.

- 111 -

Summary and Conclusions

This section on specifiéation and validation
was an attempt to describe a deéign process 5asea on
requirements and producinglspecifications leading to
easy implementaﬂion. _Validation of the specifi-
cations and possibly qf the impleﬁentation was also
covered, mostly by means bf survey of existing tech-

niques.

The ﬁesults of this.research can be summarized

as follows: |

1. Thé transformation of requirements
into formal or even informal specifi-
cations is still lafgely the task of a
systems analyst.. The neceésary ab-
straction power makes the automation
of this = activity within the near
future unlikely;

2. The procéss-of obtaining specificétion
was described and guidelinés were pfo—
vided. Decomposition techniques, such
as dataflow analysis and functional
decomposition were introduced. Ada.
specification blocksiwere‘used to pro-

vide a strict formalism .

- 112 -

N B N B BN B EE e

3. The specifications obtained with Ada
specificaﬁion blocks can be trans-
formed naturélly into an imple-
mentation. This transformation is
done in various steps, with each step
being a refinement of the previous
one.

4, Validation techniques were investi-
gated with respect to -their applic-
ability to the design methodology.
Although no concrete validation system
was: specified, preliﬁinary validation
capabilities were. outlined. A.,ﬁore
powerful validation system was also
described as a.>desirable goal for

future research.

Due to its research nature, the work reported herein
is not definitive. Modifications will, no doubt, be

made as new problems are discovered (in the course, -

perhaps, of actual experimentation).

The methodology should‘be<experimented with in

the context of a largé‘example. This would allow’

for improving the methodology itself and would also

- 113 -

provide the necessary framework for the development
of computer aided tools such as:
1. A graphical aid to decomﬁosition (out-
lined previously).
2. A simulation testbed for the prélimi—
nary simulation phase.
3. A verifier which c0uldA be wused on

selected sections of the system.

In connection with verification, it should Dbe
pointed out that, due to the very complexvnature of
the task, it would be desirable to gain experience

with an already existing sYStem,\ such as .Gypsy.

. Theory would then be substantiated by practical

experience.

- 114 -

bl

PERFORMANCE AND RELIABILITY
This section examines the potential applications of CAE
tools for the analysis and optimization of the performance

and reliabiiity characteristiecs of multi microprocessor

systems design. First the primary questions which CAE tools

can answer are considered. Then the application éf these
tools at each design stage are explored. Next the reliabili—
ty and resource usage models Which form the building blocks
of CAE tools are examined. Based on these fundamental.

models, areas for the development of new or improved CAE

‘tdols are identified. The conclusions are summarized at the

end of the section.

Introduction

The‘problems»ih which'&eSigners employ CAE performance/
feliaﬁility tools involve ;he determination of one of _the
fqilowing tHree factors given tﬁat‘the other'tﬁobare known:

(a) the architecture of the entire sytem,

(b) the performance/reliability levels of each

. of the componehtsvof>the system, and

(é) the performaﬁce/reliability of the entire:

system.

The most basic CAE tdols assist the désigner,in solviﬁg.
the following problem:
| Given the architecture of the system and the
performance/reliabiliﬁy levels of each of the
compénents, what is the perforﬁance/reliability

of the entire system?

- 115 -

By solving this problem for different design alterna-
tives, the designer -~ can sbl&e the following two more
difficult problems:

1. "Given the'architecture,and the performance/

reliaﬁility requirements of the system, What
is the required performance/reliability levels
of each of tﬁe components of the system?”,

2. "Given the perfprmance/feliability levels of

each of the components and the required
performance/reliability of the system or

module, what should the architecture be?"”

The more powerful éndlsophisticated CAE tools érovide
additional assistance to‘thé_designer in answering these last
two .questioné. . Only in the most fully automated desién
environmedts do the CAE tools answer these question& with a
minimal amount of in&oivement and interaction on the pért of

the designer.

Scope of CAE Tools in the Performance Area
This section examines the‘ démand for performance/
reliability CAE tools ;n thé succéssive design stages. The
potential application and scope of CAE tools are derived from
" the designer's needs 1in each of these stages. Opportuniﬁies
for "pre—~building"” the CAE tools .before a micro—-computer

design project starts are also explored.

- 116 -

Architecture Selection

Thé first stage of selecting a hardware/software archi-
tecture is primarily a "strategic" type of decision. Typical
decisions include the levgl at which redundéncy is
implemented (component, assembly, module or system), the
communication protocols, and the resource scheduling

policies. These decisions are based mostly on. experience.

Important variables and decisions are. often expressed

subjectively. Because of the complexity associated with the
design of highly reliable multip;ocessor .sfstems, the
architecture decisions must be in.the form pf a coherent
Strategy' rather than sepafate | fragments - of detailed

solutions.

CAE tools which are used in the Architecture Selection

‘" stage are usually employed on a one shot basis to answer a
specific question. Thus the automated tools which are the

most useful are General Purpose Tools., Examples of these

tools include general purpose simulation languages such as

GPSS [GORD75] and SIMULA [FRAN77].

An example question related to the performance assess-—

ment in the Architecture Selection stage is "How does the

throughpﬁt of a bus with a pripritized demand access protocol
compare with é bus which has a time slot access protocol Wﬁen
the number bf processing wunits and the freqﬁency of the
processing unit's éccess to the bus are varied?" The answer
is wusually found by simulating ‘the two altérnatives under

varying conditions. To do this qﬁickly and economically, the

- 117 -

designer can use an existing general purpose simulation tool
to create a simulation model of the two-alterﬁaﬁives.‘ This
Isimulation model is a Specific Tool for the question at
hand. The designer first validates that the simulation model
is correct by comparing its results with analytical

predictions. Once satisfied with the correctness of the

model, the designer then uses it to examine the performance

of the alternative bus protocols under different conditions.

4,2.2 System Model.(Hardware and Software Selection)

VThelprimary objécﬁive of the System Model Design étage

is to optimizé the design within the .confines of the Design

:Policies set by the Architecture Selection stage. Typical
decisions_made in the this design stage are the number;of

procéésing units and ;he‘ alloca;ion .0f software- tasks. to

processing units and memdry partitions. - This optimization

ﬁorﬁaily involves the handling of a éonsiderable amount of

.data and the repetition of coﬁplex calculations. Thetefore,
this stage is an excellent candidate for.computer automation.

The CAE tools which are‘used.for performénce eﬁaluatién

in the Sjstem Model Design stage are usually custom tailored

fot the,iardﬁare/softwaré archiﬁecture being employed. To

understand the reason for. this, it is useful to review the

underlying methodology for performance/reliability
evaluation. The basics of this methedology are shown in
Figure 4.1, The process starts with a Design Description

‘consisting of information such as the hardware organization

- 118 =

of processing units, memories, buses, and I/0 ports, software
organization of tasks, ©buffers and inter-task communi-

dations. This is followed by mapping the relevant

information onto <the Performance/Reliability‘Models. This
mapping process is called Abstraction. From these models,

results are obtained, interpreted and conclusions drawn.
Based on the Conclusions, design éhanges can be made and the
cycle repeated until an "acceptable” désign is produced. “An
acceptable design is one Which‘meets the perform#nce réquire—

ments.

Tﬁe application .of this methodology to the performanée
evaluation and design of multiprocessof hardware is illus—
trated by the example of TFigure 4.2(a). The Design
Descfiﬁtion' shows a dual processor ‘a#chitecturel<with botﬁ
local and common memory. The varioqs cycle; access, and

deléY'tiﬁes are included in the description. = By the process

.0f 'Abstraction, the performancé characteristics of the

components are extracted from .the design and configured into
a Performance Model. The model, shown in Figure 4.2(b),

considers the processing units, memories and I/0 interface. as

servers in a queuing network. The conflicts and resﬁlting

delays in the access to the Common Bus are modelled by thé
Common Bus Queue. The delay-of the Bus Interfaces and the
access times of the Common Bus Devices (ROM #3, RAM #3 & I/0)
are lumped iﬁto.one server, the Common‘Memory, which has a

total service time of 0.5 uSec.

- 119 -

- From the Performance Model of Figure 4.2(b), the
foliowing Results are obtained by mathematical calculations
and by running the simulation model: |

l. Processing Unit #1 executes 2.0 million cycles/sec.
2. Processing Uﬁit #2 executes 1.3 million cycles/sec.

3. Average Common Bus Queue Length = 0.6.

By Interpreting these Results, two Conclusions are
drawn:
l. More processing throughput is needed.

2. Too much time is wasted in accessing Common Memory.

Next, design changes are‘recommended:
1. Decrease the Access Time of ROM #3, RAM #3, and I/0

to 0.2 uSec.

This completes one cycle of the methodology which is
repeated wuntil a hardware design,. which has acceptable

performance, is obtained.

The critical processes 1in this methodology are the
Abstraction. and Interpretation steps. In' general, these
-steps éan only be done by the hﬁman_mind and cannqt be done
by computers until significant breakthroughs afe made in

artificial intelligence.

~ 120 -

If the Abstraction, Interpretation and Design Change
steps must be performed manually, tﬁen the CAE tool can
assist directly in solving thevfollOWing basic performance
analysis problem:

"Given the architecture of the system or module,

and the performance/reliability levels of each of

its components, what is the performance/

reliability of the system or module?”

In summary, the. fdllowing conclusions can be‘ made

régarding CAE tools for this design phase:.

Vl..CAE tools which incorporate performahcé aﬁd
religbility models can be wused to optimize
'many designs which émploy Vérious computer
architectures. Their main advantage 1is to
relieve the designgr of the tedious and time-
consuming tasks .of processing - (number
crunching) and storing large quantiﬁies of
data.-.Because thesé tools are compatible with
many different architectureé, they can kbe
built before an architecture is selected.

2. CAE tools which perform the Abstraction,
Interpretation and Design Ciapgé steps as Qell
as the. performance andl feliability calcu-
létions can be built bnly after the computer
architecture has bheen selected. These tools

further reduce the amount of manual "design-

- 121 <

effort and the total time réquired for 'the
initial design stage. This 1is particularly
true if the .same architecture is wused in
several projects since powerful . CAE tools
would then be available at the beginﬁing of
each project. Re—~using CAE tools in many
projects also helbs justify thedir often

substantial development costs.

Reliability Models

Ihe reliability analysis models enable the designer to.
examine the probability of failure, hence thé survival "
probébility of a given architectural configuratidn. Two
types of failures are‘considered:‘

(i). failure due to'exhaustiqn of spares ‘and

(ii) failure due to imperfect coverage.

Also a model for calculating component reliabilities is

presented.

Component Reliability Model

In genéral,’ the failure of the elect:onic components
follow a Poisson distribution with failure rate L. Thus the

reliability of the component is equal to no failure in time

[0, t], given by:

-Lt

P (no failure in time [0, t])= e -

Exhaustion of Spares Model

This model calculates the probaﬁility that a sufficient
number of spares fail gradually over time so as to render the -
remaining parts incapable of performing the required system
function. In this model, the hardware architecture of the

micro~computer system 1is considered in terms of its Basic

Modules. A Basic Module 1is a module whose failure is inde-

pendent of the failure.of~other;moduies'in the system. This
approach is often apﬁlied in fault tolerant architeétures
where identical copies of hardware modules are employed as
spares or in.voting strategies. Séveral assumptions are made
in the-construction'qf this model:
(i) The failure probabiliﬁy of a. particular Basic
Module is independent of the failure state of
other Basic Modules.
.(ii) A..failing~ Baéic Module is not repairedl and
Will be .isolated Ifrom‘ the reméining' com=
ponénts.

(i11) The system starts from an Initial State in

which all components, including the redundant
"ones, are functioning, i.e., the system_has\a

perfect Initial State.

For an architecture with n Basic Module types, there is
defined a state vector, S, consisting of the tuple S =‘<Sl’
S0y e s,); where sy corresponds to the Basic Module type

i. The entry s; in vector S is an integer whose domain is

- 123 -

zero to Nj; with Nj denoting the number of identical copies
of Basic Module type i in the perfect Initial State of the

system.

The state of the system, at any time, t, 1is defined by
number of working (non-failed) coﬁies of each Basic Module
type. The Initial State of the system can be defined by S,
as:

) So = (Nl, Nz, * s e Nn)

The state of the system after some time t>0 can be

represented by:

t t t
St = (Nl, Nz, LIRS) Nn)
£ _
where N;j 4 N; for i = 1, 2, ..., n.

A Minimal State is one in which the system is.operating
with a minimum number of copies of each Basic Module in
working condition so that the failure of a copy of any of the

n modules will lead to a total system failure. The Minimal

State is represented by Sp:.

m m V m
Sp = (N, Noy, «ov, N
. |

where N. € N.

i i for i=1, 2, ... , n.

- 124 -

Clearly, the set of Operating States for the system
consists of all those states whose representative vector S 1is
greater than or equal to S;. All other states correspond to

system fallures.

‘The rellability of the micro-computer system is defined
to be the sum of the reliabilities of all the Operating

States. Thus the failure-to-exhaustion probability can be

- computed once the Operating States of the system are

enumerated.

For example, consider an architecture which consists of
10 processing units, 8 shared memory modules, 6 buses and 5

clocks. The minimum operating configuration of this

architecture consists of 7 processing units, 6 shared memory

modules, 4 buses, and 3 clocks. Let Rp, Rm, Rb, and Rc
denote the reliability of a processing unit, a memorY-modulé,
a bué, and a clock, respectively. The Initial State_of_the

system is given by:
S, = (10, 8, 6, 5)

and then the Minimal State is given-byi

Sp = (7, 6, 4, 3)

- 125 =~

The reliability of an Operating Staté s' = (9, 6, 5, 3)

is given by:

10\ 9 g8) 6 2
R(S") =<1>Rp(l - Rp) % <2> Rp (1 = Rp) *

6\ 5 5 3 2

<1>Rb (1 = Ry) * <2) Re (1 - Ry)

and the reliability of the system is given by the sum of the

" reliabilities of all states S that satisfy:

Sp €8 <58,

Imperfect Coverage Model

In this model,'the time required to detect an error and
recover from it (e.g., by isolating the failing compbnents,
feconfiguring the. hardware architecture, and re—allocating
its functions) is considered. Since this time is finite, it
isv probable that one or more other componentél will fail-
pefore the recovery actions are completed.: This may or may
not lead to a total system failure, depending on the extent

and complexity of the recovery mechanism.

The above situation can be best modelled by a Markovian
chain which consists’gf the following states:
(i) The Start-Up (all components good) State which
has a given initial pfobability ‘that the

system is initially fault-free.

- 126 -

(ii) A set of Intermediate States in which one or

more components are in faiiure but undergoing
detection and recovery. It is assumed ‘here
that complete recovery will reéurn the sysfem
to the Start-Up State, i.e., that there are
sufficient spare parts; This assumption ié
valid as long as the period of time being
analysed is relatively short and that, in the
long rﬁn, system reliability is dominated by,
the failure-to—-exhaustion.

(iii) The set of failing states are lumped together

into one Failure State. This state ‘is reached

from any of the Intermediate States when an
additional failure ocecurs . which hampers

recovery and leads to a datastrophic failure.

Resource Usage Models
Modelling of the resource wusage in a"multiprocessor

system can be done at different levels of detail. However,

the methodology for performing the analysis is the same at

all levels of detail as shown in Figure 4.3. From the Design

.Descriptioh, the Loading and Resource Descriptions are

obtained by constructing suitable models. These descriptions

are combined with the algorithms in the Resource Usage Model

to produce the Resource Usage Estimates. These results are
Interpreted and Désign Changes made, thus causing the design
process to c¢ycle until a design with acceptable resource

usage is produced.

- 127 -

When the resource usage is modelled at lower levels of
detail, the Design, Loading and Resource Descriptions become
increaéingly complex. The following sections progress from
the high to low levels of detail. The higher levels provide
more general information on thg total amount of resources
needed, while the:lower levels yield more information on how

individual resources are used.

Simple Totals Model

The ‘simplest assessment of resources can be made by just
summipg the load and comparing it to +the available or
bostulated lévels of fesources,'withbdt considering how the
coﬁponents of the load will be assigned to the individual
units of resources. This type of ‘analysis gives \gross

estimates of system sizing and resource utilization.

Examples of Loading, Resource Descriptions and Resource

Usage Estimates are shown in Figure 4.4. The Loading

Description lists all software tasks and buffer areas. For

each one, the required resources such as processing time, ROM
and RAM are estimated. The individual resource requirements

are summed to estimate the total required amount of. each

resource type. In the Resource Description, the resource

types are listed. The capacity of each resource component 1is
multiplied by the number of copies to give the total capacity
of each resource .type. Next the total capacities are

compared to the required amounts of each resource in the

- 128 -

Resource Usage Estimates. The resource utilization is the
percentage ratio of required resources to capacity, and the
spare capacity is the difference between required resources

and the capacity.

Effects of Allocation Model

Tﬁe next step is to aliocate the individual loads to
individual Tresources. . The Design Policies from the
Architecture Selection stage place,cbnstraints on how this

allocation is done. Examples of Allocation Constraints are:

(i) One single board computer‘(SBC) may read the
| RAM of another SBC but may not write inté.it.
(ii) The private data.of a software task must be
| stored in the RAM of tﬁe SBC which exeéutes

the task.
(iii) The code. for all réliability critical _tasks

must be stored on at least two SBC's.

Further Allocation_jConstraints'_are derived from the

" Design Description. These constraints can be summarized in

an Access Graph as shown in the example in Figure 4.5. The

‘Access Graph shows the inter-task communication requirements

and the shared buffer areas.. In this example, the In TV task

receives 0.25 X byte messages from the Antenna Attitude
Control task and sends 0.10 K byte messages back. The In TV
task also requires access to the two Video Buffers. The

memofy requirements for this task are estimated as 2 K bytes

- 129 -

ROM and 1 K bytes RAM. The resource, message passing and

buffer access requirements of the other tasks are similarly

"described by the diagram.

In addition to the Allocation Constraints, the effects
on resource usage caused by the allocation of the software
tasks to hardware resources must be identified. Examples of

these Allocation Effects could be:

(i) 1If two tasks are dedicatéd to the same SBC,
‘then their inter—task messages can be.stored
in their SBC RAM. If their messages are
stored in the common memory, then a 0.0l m sec
+ 0.1 mféec'éer 1 K byte of message Willvbé
.added to the common bﬁs load.

(i1) 1If tasks exchange messages bY.éopying from one

| ~local RAM to another, then a 0.02 m sec + 0.1
m seé per K byte of message_will be added to
the common bus load. As well, RAM space on.
.both SBC's must be reserved for the message.

(iii) If a processing unit exegutes code‘from»coﬁmon
memory, then the.proceésing unit will run 25%
slower aﬁd a éommon bus load of 0.2 m sec -per
1.0 'm sec .of _pfocésSing time will be
_generated.

(iv) 1If the processing uﬁit executes code from a
local RAM instead of ROM, then the processing

unit will run 35% slower.

- 130 -

Baéed on the Allocation Constraints a?d Effects, the
Loading Description can be created. An example is shown in
Figure 4.6(a). Compared to the Loading Descriptioen in
Figure 4.4, the allocation or aésignment of tasks to

individual hardware components is shown. The requirements

for the hardware components are summed to produce the total

load on each. The Resource Description also shows more
details associatéd with the resources (Figure 4.6(b)). The
individual hardware components are idéntified and the common
bus which was not considered in the Simple Totals Mbdel is
included; _ The Resource Uéage Estimates then shbw the
utilization and spare cdpacity of each. hardware componenﬁ

(Figure 4.6(c).

Effects of Dynamic Interaction Model

Two aspects of dynamic interaction are important:

1. Process Flow - Certain actions must be taken

(or events occur) before other actions 'take
place(or events occuf). The drder ofghardwére
and . software tasks gnd' their inter—-task
commuﬂidation define thé data processing~fiow
of‘thé system.

2. Resource Scheduling - The method for

allocating resources in ' real time Dbetween
competing tasks can have a large effect on the
ability of the system to meet its real time

requirements, The interaction between

- 131 -

There are two methods for coping with the effects’

Resource Scheduling and Process Flow affect

the overall wutilization of the resources.

dynamic interaction:

(i)

Apply Rule of Thumb Utilizatioms - Because the

undesirable effects of dynamic interaction
usually only occur when one or more of the

resources are heavily wutilized, a rule of

thumb may be employed such as:

“No processing unit or shared bus may
have greater than 70% average

utilization over a system cycle”.

By avoiding high loading of any resources,
bottlenecks can be prevented. The maximum

utilization levels can also be set by a worst

case analysis of real time events and systenm

loading [MELL80]. The advantage of Rule of

Thumb Utilizations is - that they are easy +to.

apply. Given that resource requirements are

usually not known précisely until the near

completion of the system implementation stage,

comparisohs to rules of thumb’often provide as

much precision as is possible in the early

design stages.

- 132 -

of

(ii) Simulate the Dynamic Behaviour - A simulation

model of the system can be constructed and
timing and sfatistical performance meésures
obtained from it. This method of evaluéting
the resource usage is only apéropriaté when
there is accurate data on the resource
requirements for each software task. .Thus
this method 6f estiméting resource
‘requirements is most appropriately used in the
later design and implemengation‘ stageé wheﬁ
this data is available. The advantages of
simulating the dynamic behaviour are: (1)
more accuraecy is obtained imn the resource
usage estimates, and (2)A.the "ability tq'
discover hidden flaws din- the design due to
actual timing aﬁd resource écﬁeéuling

problems.

The Rules of Thumb Utilizations can be built into thé
Effects-qf_Allocation Model (Section b.4.2) to:
(i) flag (warn the designer) Wﬁen the utilization
| of a resburée exceeds fhe‘approved threshdld,
and/or
(14) .recalcﬁlate the resource utilizations base& oﬁ
first order effects of Resource Schedﬁling and

bottlenecks.

- 133 -

If more accurate information on resource wusage is
required, then a CAE tool which simulates the micro—computer
system is needed. There are two possible types of simulator
tools which could be provided to the designer:

(i) A General Purpose Simulation Language - The

designer could wuse this tool to build a
simulation model which corresponds +to ﬁis
design and then obtain the resoﬁrce usage
information from this modgl.

(ii) A Special Purpose Resource Simulator =~ .The

designer could féed“ his Design Déscriptidn
directly into this tool and then automatically
receive the resource usage information.
Because this type of CAE tool is épeéialized'
‘for a particular architecture, it can only be
built = once the archite;ture has been

selected.

Afeas for New or Improved CAE:Tools
| In this section, areas fpr the developmgnt of éompleteiy
new performance/reliability CAE tools, and the improvement of
existing ones are ideﬁtified; These tools are sepafated.int6
two categories: |
(i) tools which aré independent of any particular
'multiprocessor afcﬁitecture; and
(ii) tools which ére customized for a given multi-
processor architectural scope (Architecture

Dependent Tools).

- 134 -

. Both categories of tools are useful and it is desirable

that the designer would have access to a full complement of

tools .from both categories. The Architecture Independent
tools are particularly useful iﬁ the Architectufe Selection
stage when the compdter afchitecture and Design Policies are
being formulated. These tools can also be employed in the
Detailed Design stage to optimize the design. The
architecture independence feature means that these tools can
be re-used in wide variety of computer design projects which

employ different architectures.

The Architecture Dependent tools are useful primarily in

the Detailed Design stage. Because they are "customized" for
particular architectures, they can perform a larger portion
of the Abstraction, Interpretation and Design Change steps,;

and thus provide a more automated design environment.

4.5.1 Architecture Independent CAE Tools

4.5.1.1 ADA Based Géneral Purpose Simulation.Language

Many General Purpose Simulation.LanguagQSf GPSS, SIMULA,
SIMSCRIPT, GASP, ..., ‘already exist. Improving on these
languageS'and‘incorporating an ADA'basé could lessen the cost
and time needed to implemént specific simulation models. If
ADA is also the lénguagé used fdr sjstemASpecificatiBn and/or

software implementation, then the incorporation of the ADA

- 135 -

syntax and language constructs_into the simulation language.
would mean:
(i) 1less timé wasted oﬁ,learning a multitude of
computer languages, and
(ii) easier and more reliable translation of the
simulation results into the specifications and
implementation.
An ADA Based General Purpose Simulation Language could
also be used to construct the Dynamic Resource Usage Analysis
Tool (Section 4.5.2.3) which is useful in the later design

and implementation stages.

4.5.1.2 Exhaustion of Spares Analysis Tool

This'tool incorporates the Exhaustion of Spares Model
(Section 4.3.2) 4in an automated package. The designer
‘supplies the parameters for the model and the CAE tool

performs the calculations.

4.5.1.3 Imperfect Coverage Analysis Tool

This tool incorporates the Imperfect Coverage Model
(Section 4.3.3) 1in an automated package. "As with the
previous CAE tool, the designer supplies the parameters for

the model and the tool performs the calculations.

4.5.1.4 General Reliability Analysis Tool

This tool is a more comprehensive combination of the
previous two CAE tools. By integrating all three reliability

models, Component Reliability,"Exhaustion of Spares, and

- 136 -

)

4.5.1.5

Iméerfect Coverage, this tool can provide a'lmére complete
serﬁicg to the designer. In particular, the designer is
relieved of the chore of transferring data between CAE tools
for the individual models. ‘As before, the designgr supplies
the éarameters for the models and .the tool vperforms the

calculations.

Resource Allocation Analysis Tool

The Simple Totals Model (Section 4.4.1) and the Effects

"of Allocation Model (Section 4.5.1) are automated in this

tool. One of the main purposes of this tool is the

generation of up-to-date management reports on the expected

usage of the micro-computer resources. This information is

crucial to the resource management decisions [LARH77].Whiéh
must be made as the hardware and software development teams

progress'throﬁgh the design and implementation phases.-

The Resource Allocation .Analysis Tool automates the

production of the tables shown in Figufeé b.4 and 4.6. The

user first enters a list of software tasks and'buffefs, and
another ligt of hardware resources. The CAE toolvtheﬁ;builds
the tébles for Loading and Resource Descriptions and prompts
the uéer‘for the data entries. From this data, the.tool
performs the mathematical calculations and ﬁutputs a table
showing thel Resource Usage Estimates. As the project
progresses from the Architecture ,Selection» stage throggh

Initial and Detailed Design to implementation, the user can

- 137 -

update the 1lists of software +tasks, buffers and hardware

resources as well as the entries in the tables. The tool

then produces up-to-date summaries of the resource usage.

Two types of summaries are produced: (1) a simple comparison
of total requirements compared to total capacity (Figure
4,4), and (2) a detailed analysis of the loading of each

hardware component (Figure 4.6).

Architecture Dependent CAE Tools

?

Hardware’Reliébility Analysis Tool
With. this tool, thé designer assembles a hardware model
'froﬁ a database of prg—defined componénts such as processing
units, memories, majority. voting circuits, aﬁd | bus
structures., The tooi can then use ;he pre—defingd relia-
bility characterisfics éf the-comﬁdnents to:
(1) calculate the overall;irEliability of the
hardware, or |
(ii) select the number pf redundant modules.which
are necessary to meet the overall hardware
reiigbility épgcificatidns, o; |
(iii) calculate how reliable the modules must be to
meet the 6verall.hardware reiiability specifi-

cations.

A major feature of the Hardware Reliability Analysis

‘Tool is the support - of Structure/Behaviour Design

Partitioning. The Structure is the éomponent and module

- 138 -

interconnections specified by the designer. In Figure

4.7(a), the Structure is illustrated in a "bottom-up" order.

The lowest level of detail, the Processing Unit, ROM, and RAM
Modules are descriﬁed first in Secfions (a), (b) and (c).
These modules then are configu;ed into the Single Board
Computer Module in Section (d) (Figuré 4,7(b)). Finally, the

top level view of the Structure is shown in Section (e)

(Figure 4.7(c)). In a "top-down" design approach, the order .

of the previous design sections is reversed. The top-level
section (e) is drawn first and is subsequently decomposed

into the lower level sections.

The Behaviour, which is ahalysed by this CAE tool, is

the reliability characteristic of the componehts, modules and

.system configurations. - The Behaviours of the componénts and

modules are stored in the CAE tool's data base, By combining

the system structure specified by the designer with the

‘component,. and module Behaviours from the data base, the tool

formulates (by a pre-programmed algbrithm) the parameters of

the reliability models (from Section 4.3). = The tool then

- computes the reliability characteristics of the complete

system,

The most powerful version of this tool would also adjust
the Structure (such as the number of redundant processing
units), or calculate the component reliabilities (Behaviour)

which are necessary . to meet the overall system reliability

.= 139 -

~4.5.2.2

specification. The modelling power of the tool can be ex-
panded by adding more components and modules to the data

base.

Static Resource Usage Analysis Tool

This tool automates the Simple Totals Model

(Section 4,4,1) and the Effects of Allocation Model

(Section 4.4.2). The major enhancement of the tool over the

Resource Allocation Anainis Tool (Section 4.5.1.5) 1is the

"automatic production of the Loading and Resource Descriptions

from the Design Description. Since the calculation of the

data.entries in the Loading Dgécription (Figure 4.6) is fhe
mést -iaboriOus step 1in- analysing the reQOurce usage, its
automation is a- significant _improvement. When'_using the
Static RQSOurce_ Usage Anél&sis Tool, the user- inputs the
Design Description and receivgs from the tool the Loading and
Résource ﬂDesériptions as &ell as fhe ReSOurce ‘Usage

Estimates.

The.moqt powerful Version‘of this tool would also:
(i) optimize thé'"allocation of the load to the
individual resoufces,_ | |
(ii) flag fesource utilizations which exceed speci-
fied thresholds,
(1iii) refine the Rééource Usage Estimates bésed<qn

the first order effects of Resource Scheduling'

and bottlenecks, and:

- l4g -

4.5.2.3

1

'(iv) select the amount of each resource type which
is required to meet the resource usage speci-

fications.

As the project progresses from the Architecture.

Selection stage through Detailed Design to implementation,

the user can update the lists of software tasks, buffers and

hardware resources as well as input new Design Descriptions.

The tool then produces up—-to-date summaries of the resource
usage. Two types of éummaries are produced: (1) a simple
éémparison of total requifements compared to total capacity
(Figure 4.4), and (2) a detailed analysis of the‘loading of

each hardware component (Figure 4.6).

Dynamic Resource Usage Analysis Tool

The purpose of this tool is to estimate the resource

usage by simulating the dynamic interactions of the software

"tasks and hardware resources. It automatically constructs

the simulation model from theiDesign Description provided by

the désigner. Based on the results 6f executing the model,
the tool estimates:
(i) the utilization of" individual resources,
(ii) the timing diagram which sﬁows when each hafd—
| ware resource 'is used by each éoftware task,
(iii) the unused resource capacity caused by tasks
holding onto some resources whiie Waiting for
other résources,

. (iv) the location of system.bottlenecks.

T- 141 -

The most powerful Versien of this.tool would also:

(i) optimize the allocation of the. load to the
.resources, and

(ii) select the amount of each resource type which

is required to meet the resource usage speci-

fications.

-In order to produce accurate and useful results, this

tool requires that the user provide accurate estimates of the

‘resource requirements of individual software tasks, as well

as a moderately detailed Design Description. Since this
information is mnot normally available wuntil later in the

design process, this tool is primarily useful in the Detailed

vDesign Stage.

»Summerz

When choosing a CAE tool or.a package of CAE tools for
the evaluation of performance and reliability, the major
fectors‘to be considered are the:

(i) Selectivity and the

(ii) Degree of Automation of the tool(s).

The Selectivity refers. ﬁo.~raﬁge of multi-processors
designs for which the tool can be‘used. Tools which are
architecture deéendent are specialized for a small range of
multi-précessor archifectures while tools which are
architecture'iedependent are useful in a wide range of com-

puter designs. The Degree of Automation refers to the amount

.of the design process which is performed by the tool.

In this section, the proposed CAE tools (Section 4.5)

were classified as either Architecture Dependent or

Architecture Independent, The classification was not in-
tended to imply a sharp boundary. Quite the contrary 1is
true, The tools of both classifications are built on the

same fundamental performance/reliability modelsv(Sections 4.3
and 4.4), The difference between the two classifications is
the amount of abstraction, interpretation, and design'changes
performed by the tool. | When these steps are performed
ptimarily by the designer, an Architecture Independent tool
is defined. The amount of architecture dependency and thus

the - level of ' Selectivity can be changed by varying the

~responsibility for performing the abstraction, dinterpre-

tation, and design change Steps between the designer and the

CAE tool.

In 4 complete CAE tool package, the performance/relia-

~bility tools would be integrated with the specification and

verification tools., The-point of integration is the design
deécriotion g documentation which is =~ produced by the
specification tool and used - by .the; perfotmance and
reliability tools. ‘Tnere'must be enough information in the
design descripoion documentéoto perform the Abstraction and-
parameter estimation'for‘the petformance/reliability models,
If the Abstraction step is performed manually,< then the
pteCiee contents of the design description documents is not

N

critical so long as they are clear and easy to read. But if

- 143 -

the -Abstraction step 1is performed automatically by the
performance/reliability tool, then the accuracy and
completeness of the design description is critical to the

integration of the CAE tool package.

ST -

i ’ : Performanc
Design Abstraction ~ formance/
Description > Reliability
’ -1 Models :
0 | Il
o ' V
V Results
W _ A
WV : ,
Lo . Interpretation
Design ‘
Changes o - \J .
\ .
A Conclusions
AN \\) : . .
~ - ' .
__ 7 7
\\\ ~~~~~ ///

FIGURE 4.1 - PERFORMANCE/RELIABILITY DESIGN METHODOLOGY

. (b) Performanice Model

(a) Design Description

0.4 M3 A Time
<« O u.ﬁfcess Time ~\\\m

ROM #3. RAM #3 | | 1/0

Common Bus

0.2 MS Cycle Time 1 _ ‘ . 0.2 MS Cycle Time
PrQCessing- ' Bus Bus Processing
Unit #1 Interface Interface Unit #2

. 0.1 MS Delay —
Local Bus ‘ Local Bus
" ROM #1 RAM #1 | moM #2 RAM #2
0.4 MS Access Time , 0.4 MS Access Time

_ . ' Abstraction-
30‘4 o TSO%
30% 40%; , fO% 10%)
Common - -
: Bus
) Proge§81ng — Queue Proqess;ng Local
ocal Uniti#l A : Unit #2 _
. . Memory
ry 0.2:.MS _ Common 0.2 MS 0.4 MS
MS : Memory :
0.5MS
e 4 . : "
: . s —, o
Processing Unit #1 Processing Unit #2
Execution Path Execution Path

(<) Interpretation

Results:s Processing Unit #l executes 2.0 million cycles/sec
«Processing Unit #2 executes 1.3 million cycles/sec
s Average Common Bus Queue length = 0.6 ‘

‘Back to : . \l" - ' : '
b De?lzP Conclusions: 1. More proceséing throughput'ié needed.
escription 2. Too much time is wasted accessing common memory.

"U"

Design Changes: Decrease the Access Time of ROM #3, RAM #3 and I/0
to 0.2 MS.

FIGURE 4.2 - HARDWARE PERFORMANCE DESIGN-METHODOLOGY- EXAMPLE

' - Modelling
Design Loading & Resource
Déscription > Resource iy > - Usage
Descriptions : Model
A : , .
N LL
W Resource
WY U
e _ A sage
 Design ’ : ' Estimates
Changes -
'\\\\g .| Interpretation
\ ~
! N N ' :
NN .
: ~ \‘\ . Conclusions
= ~ ~ p !
~ ~ 7/
~ \\\ s 7/
™ - e - - 7/
-~ —

FIGURE 4.3 - RESOURCE USAGE DESIGN METHODOLOGY

(a) Loading Description:

8%1

Task or Buffer ‘ . Processing Time " ROM RAM
1. Antenna Attitude Control . ' 6_msed/cycle 6.0K 2.0K
2. In Radio ’ o , ‘10 10.0 5.0
3. Out Calib ‘ 2 2.0 1.0
4. Out Actuate 1 0.5 0.5
5. In Sensor 2 0.5 0.5
6. In TV 8 2.0 1.0
7. Out Radio 4 1.5 2.0
8. Messages 2.75
9. Video Buffers 24.0

33 msec/cycle 22.5K 38.75K note: 1 cycle = 25 msec
(b) Resource Description:

Resource Type Number Total Resource
Processing Unit 2 ‘ 50 msec/cycle processing time
8K ROM Module : : ‘ 3 24K |

16K RAM Module 3 48K
(c) Resburée Usage Estimates

Resource Type - Utilization Spare Capacity
Processing Units .%%‘X 100 = 663 50 - 33‘= 17 msec/cycle
ROM - 22.5 . 100 = 933 24 - 22.5 = 1.5K

. ' 24 .
RAM : 32é75 X 100 = 812 48 - 38.75 = 9.25K

FIGURE 4.4 - EXAMPLE SIMPLE TOTALS MODEL

Out Actuate
.5K ROM

.5K RAM

In Sensor
. 5K ROM
.5K RAM

Out Calib
2K ROM
1K RAM
1 ;
Video 12K Byte
= Buffer
B~
O
i
id .
. video 12K Byte
.50 Kbyte Mssg Buffer
| :

A . A
.10 Kbyte Mssg ﬁ\\\;///025AKbyte Mssg
' . ' ' Out Radio

In Radio

10K ROM iitizgge 1.5K ROM
oK Control X :
6K ROM
2K RAM -

FIGURE 4.5 - _EXAMPLE ACCESS GRAPH

06T

(a) Loading Description

Task oxr Buffer Processing Unit _ ROM .Module ' RAM Module - Common
noo o #H 2 # # #2 42 Bus
1. Antenna Attitude 6 L 6.0 2.0
Control ' ‘

2. In Radio ' 10 | 8.0 2.0 4.0 1.0 1.5

3. out Calib 2 2.0 1.0

4. Out Actuate . 1 0.5 0.5 0.5

5. In Sensox 2 0.5 0.5 . 1.0

6. In TV 8 2.0 _ 1.0 8.0

7. Out Radio ‘, a4 | | 1.5 2.0 6.0

8. Messages ' o .75 2.0 3.0

9. Video Buffers 5 ' : , 12.0 12.0
13 msec/ 20 msec/ 8.0K . 8.0K 6.5K 6.75K 16.0K 16.0K 20.0 msec/
cycle cycle E) : cycle

Figure 4.6(a) - EXAMPLE EFFECTS OF LOADING MODEL

(b) Resource Description

ROM #3 RAM #3 1/0

Common Bus

Processing _ Bus 5 - Bus . Processing
Unit #1 Interface Interface - Unit #2
Local Bus - , Local Bus
| : .)
— " ROM #1 RAM #1 - ROM #2 RAM #2
U R
I
‘Resource Unit Amount of Resource
Processing Unit #1 25 m.sec/cycle
Processing Unit #2 25 m.sec/cycle
ROM 1 ' 8K . S
ROM #2 - 8K
ROM #3 8K -
RAM #1 o) 16K
RAM #2 o 16K
RAM #3 16K -
Common Bus 25 m.sec/cycle

Figureb4.6(blA- EXAMPLE EFFECTS OF LOADING MODEL

ZST

'(c) Resource UsagevEstimates

Resource Unit

Processing Unit #1

Processing‘Unit #2

ROM #1
ROM #2
ROM #3
RAM #1
RAM #2
RAM #3

Common Bus

Utilization
13/25 X 100 = 52%
20/25 X 100 = 80%

= 100%

8.0/8.0 X 100
8.0/8.0 X 100 = 100%
6.5/8.0 X 100 = 81%

'6.75/16.0 X 100 = 42%

16.0/16.0 X 100 = 100%
16.0/16.0 X 100 = 100%
20.0/25.0 X 100 = 80%

Figure 4.6(c) - EXAMPLE EFFECTS OF ALLOCATION MODEL

Spare Capaéity

12 m.sec/cycle

25 - 13 =
25 - 20 = 5
8.0 - 8.0 =
8.0 - 8.0 =
8.0 - 6.5 =
16.0 ~ 6.75
16.0 - 16.0
16.0 - 16.0

0

25.0 - 20.

m.sec/cycle

0

0

.5K
9.25K
0
0]

5.0 m.sec/cycle

) ’ ' - K]

€6l

(b)

(c) RAM Module

(a) Prdcessing Unit Module
1 Clock
A & h ‘J
Processing Processing Processing
Unit "A" Unit "B" Unit "C"
Majority Voter
Bus Connection
ROM Module
8K Bytes - 8K X 3 Bits
Main ROM o Redundancy
' ROM ‘

Error Corrector

T

Bus Connection

Figure 4.7(a) - HARDWARE RELIABILITY ANALYSIS TOOL

.

. 16 K Bytes

Main RAM

- 16K X 3 Bits

Redundancy
i RAM

Error Corrector

EXAMPLE

||

Bus Connection

¥GT

(& Sihgle Board Computer (SBC) Module

Processing
Unit
Module

Bus Interface

External Bus Connections

I

Bus Intérface

Local Bus "A"

Local Bus "B"

Bus Interxface

1

ROM o
Module

- " Clock Input

Bus Interface

Module

‘Figure 4.7(b)‘ - HARDWARE RELIABILITY ANALYSIS TOOL EXAMPLE

(e) Multi-Microcomputer System

rROM | - ram
Module ' : Module
Clock ——— , , T . - — \\\\\$,
‘ 1/0
Bus Interface Module .

‘Bus Interface

—_—

Common Bus "A"

Common Bus "B".

g1 -

Common Bus "C"

SBC
Module

—

SBC
Module’

/

Figure 4,7(c) - HARDWARE RELIABILITY ANALYSIS TOOL EXAMPLE

INTEGRATION WITH EXISTING TOOLS

Introduction

As ipdicated eaflier, the deveiopment of a fully
integrated set of CAE tools requires significant effort and
can be accomplished in a reasonable period of time only if
built over a solid foundation. of existing tools. This
section examines closely the basic characteristics of
existing tools at the architecture design 1level and the

levels below it. The main objectives are:

- to determine the suitability of one or more of the

existing btools for possible integfation with the
high level specificationé tool;

- to determine the necessary procedures and
interfaces for integréting’these tools; and

- to sgiect one or more.of'the exisfiﬁg CAE tools, if

possible, for procurement and implémentation.

The use of existing tools to build a foundation for the

fintegrated set of tools would provide two significant

advantages., First, they would shorten the development cycle
of the CAE tools, perhaps by‘as much as half of the total
anticipafed four or five yearé required for complefe system
devel@pment.' Segond, tﬂe use of these tools would ﬁfovide
signiéicant inpﬁt_into_the design of higher level tools by

broadening the knowledge base of those systems.

- 156 -

Transition between Different Tools

Once a design engineer has completed his functional

specification using the tool proposed in Chapter 3 and is

satisfied with the simulation and performance results, as

discussed in Chapter 4, he must then refine his design to a

lower level of detail: the ardhitécture level. At this

'level, the engineer will have to use one of the existing

tools that were defined in a previous report [MAHM82]. Given
a specific tool, the engineer must rewrite the definition of
his_designiin the language of the new tool; in particular, he
ﬁust: | | |

- rethinkvhis design in terms‘ofvthe concepts used-

_by the tool; for example, some tools are based
on state -models,. others. oﬁ' data. flo& models,
etd.;

- augﬁent ‘the dESign~ by ﬁhe”‘specifying fo thé
level required; i.e.;‘if_progre3sing~from the
functional to the architectural levels, the
dgsigner'must now specify some of the‘hardwaré
components and their interconnections; |

- Trewrite ﬁhé design in the language of the tool;

- re-simulate and re—evaluate this design.,

This conversion effort from one tool to another could

perhaps be automated. As an example, program translators

exist that allow almost fully automatic conversion of

programs from RPGII to COBOL or COBOL to PL/I. 1In our case,

- 157 -

the objective will be to fiﬁd a translator that accepts the
ADA specification and translates it into the input.language
oflan existing tool. This transiator would be feasibleiif:
- the language of the second tool is sufficiently
close to ADA (i.e., Pascal);
- the definition concepts or the second tool is
sufficiently close to the hyBrid data flow/top
down decompdsition approach used in the.

specification level.

There are a number of pitfalls fo these .trangition

efforts which cannot be fully avoided. These are:

- the overall design effort is multipliéd by thé
necessitf of learning several énviroﬁﬁents énd
of recoding the definition of the design for
edch tool; |

- translation errors can be introduced in between
levels during the. conversion process; these
errors may be difficult to notice sin¢e there
are no mechanisms to measufg the correctness of
the translatioﬁ;

- it may be difficult to deterﬁine the sourﬁe.of
errors detected during: the .evaluation- of the. -
architecture level, for examﬁle, if the errors
were caused by an improper tfanslation or by an:
incorrect architecture design featuré'added at

that level;

- 158 -

results of simulations performed in each tool
may - be difficult to coﬁpare sinée_ simulation
measurements may be based on. a different
approach; this would make tracking the design

from top to bottom difficult.

Selection of Existing Tools

Various existing tools are described at length

[MAHMSZI and will be reviewed hefe in order to

integrated design environment.

in

select the
-best tools possible for the implementation of a - cémpleté

Our aim is to select tools

that will be useful at all the levels of design in order to

complement the specification tool described in Section 3.

Tables 5.1 and 5.2 .outline“some of the characteristics of

each tool while Table 5.3_summariies_the comparison.

The functional characteristics of each tool is reviewed

in Table 5.1. The characteristics of concern are:

the aim of the tool: these existing tools were
designed for specific pufposes: the closer that
purﬁose is to ours, the likelier the tool will

be useful;

.the level of usage: tools can cover omne or more

levels of design; obviously wider. ranging tools
are preferred since they minimize the transition

efforts;

= 159 -

multi-level capability: tools that span more

‘than one level are especially wuseful i1f the

The

detailed in Table 5.2. The characteristics of concern are:

designer 1is not forced to define all system:
components at the same time, i.e., he should be
aBle to work_out some portions of.the design
to lower levels while leaving other segments at
a higher level.

performance evaluétion: a good tool should

include performance evaluation mechanisms.
implementation characteristics of ~each tool

design specification. lénguagé: the language
used to épecify the design;-

tqol implementation languége: the language used
to~prograﬁ thé tools; |
operating systém and processor type under‘which
the tool operates;

developer: the organizatién_where the tool is
available from;

availability: whether the tool can be bbtained

or not.

- 160 -

is

Finally, in order »tq‘ select a tool, three primary
,cfiteriavwe;e chosen: TaBle‘S,B rates the tools with respect
to each criteria. The selection criteria is based upon the
characteristics described earlier and are:

1. Completeness: a good tool should Aoffef a
complete working environment. Therefore, it
should cover as many levels of design as
poésible, it . should provide multi-level
capability and it should: provide pe;formance
evaluation mechanism.

2. Ease of Interface: a good tool shoui&~provide
fdr'an easy transition between the functional -
specification level and the. other levels.
Therefore, ' the tool should have been deéigﬁed
for architectural modelling and 'simulation. It
is‘alsb desirable thaf the‘lénguage in which the
tool is written be compatible with Adav as- an -
implementation language.

3. Implementation Potential:. the tooi should be
relatively easy to install bﬁ the same coﬁputer~
as. the one.seiected for the developﬁent of the
functional. spécification téol, (e.g., DEC's
VAX A-11/780). ‘Ideally, the tool sho'uld_ also be
Weli docﬁmented aﬁd ‘fully .sgpported by the

vendor.

.= 161 -

A review of Table 5.3 shows that the AIDE package

represents the best choice. However, the Bell Laboratories

"have decided not to release 1t at this time. The next

atfréctiée alternative is the ADLIB/SABLE. facility which
will be available commercially in the near futu:e and will be
run on the VAX minicomputer. Once augmented by somé of the
performance and reliability tools discussed in-Secﬁion 4, the

ADLIB/SABLE will provide system engineers with an excellent

~environment to pursue the design efforts after the functional

specification phase is completed.

Table 5.1

- 163 -~

AIM OF LEVEL OF MULTILEVEL PERFORMANCE
TOOL TOOL " USAGE CAPABLE EVALUATION
AIDE modeling and architectural Yes Yes
simulation for and lower
development of
computer
architectures
CASL " design and register No No
documentation transfer
for VSLI
implementation
N.mPc multi-processor register " No Some
design and transfer
-evaluation
ADLIB/ multi-level architectural Yes Some -
SABLE - design and lower '
Existing Tool Functional Characteristics

DESIGN TOOL
~ SPECIFICATION |IMPLEMENTATION|OPERATING AVAIL-
TOOL LANGUAGE LANGUAGE SYSTEM CPU DEVELOPER ABILITY
AIDE C augmented C UNIX VAX11/780{Bell
Laboratories| No
CASL CASL - - B1800 U. of Utah No
N.mPc |ISP' and C UNIX PDP 11/70|Case Western| Unknown
assembler [
ADLIB/ |Pascal Pascal TOPS DEC 20 Stanford U. | Yes
SABLE |augmented and or or . or
SDL © VMS VAX11/780|Commercial
' ' Company
- 164 -

Completeness

Ease of
Interface

Implementation
Potential

AIDE

CASL -

N.mPc

ADLIB/

"SABLE -

Table 5.3

Excellent
Poor
Medium

Good

Existing

Good Medium
Poor Poor
Medium Unknown
Good : : "Good

Tool Selection Evaluation

- 165 -

Summary and Further Work

Summary

"The study reported here examined the role of existing
computer assisted engineering tools in supporting‘ the
application of current design methodologies wused din the
development of multiprocessor isystems. Specifically, the
study * focused én the 'issue of .augmenting and enhancing
existing toois to generate an integrated set of multi-
proceséor design and simulation tools that can be useful
throughout the various phases of the design. The following

is a summary of the major results and conclusions of the

stu&y.

The design process of‘ multiprocessor sysfems ~can . be
described, in a top-down approach, as éonsisting_ of six
phases:. .

1. The Requirements Specification phase,

-2, The Functional Components Definition pﬁaée,
- 3. The Architectural Désign phase,
4. The Sysﬁem Model pﬁase,
5. The ProcessingAElemént Partitioning (Register
Transfer Lgvel phase), and |

"6+ The Logic Design (hardware) phése.

A survey of existing tools indicated‘the availability of

many design and simulation tools which satisfy different

design needs, depending on the design level (or levels) for.

which it is developed. Unfortunately, no one simulator was
found to be useful throughout all specification and design
phases. This multiple simulator‘approach‘has two advantages
and several diéadvantages. The advantages are:
l. Each simulation can be written in a language
tuned for one particular level, and
2, Each simulation tool can optimize its‘run;ime
organization for one particﬁlar task.
'fﬁé disadssntaées include the following:
l. The des1gn effort is multiplied by the necessi—
| ?ty of~learn1ng several simulator systems and
writing a design in each.
2. The possibility of error is increased as more
hﬁmsn manipulation.is involved.
3. As the'desigﬂbbecomes increasingly fragmsnted,
it Dbecomes iﬁpossible to simulate an -enfirs
multiprocessor system at a low -ieyel of
abstraction. . Therefore; only small f;agments~
can be simulated at'sny one tiﬁé.
4. Each fragment needs to be driven by a sﬁpply of
'realistic _ dasa and = its -output must be
interpreted. This :may: make the software

written to serve these needs extremely costly.

Several tools have been developed to overcome the above

difficulties and provide the .designer with a uniform simu-—

- 167 -

lation approach starfing at the architecture dgsign level and
going down to the régister-trénsfer simulation level. Our
study indicated that the wutility of these tools can be
imprdved substantially by augmenting them with a high levei
specification package which allows the designer fo describe-
the‘functional componenté bf the system being designed and to
interface this high level description to existing tools at

\
the architectural level. In addition, two design aspects

-were addressed in augmenting existing tools:

1. Analysis of redundancy and fault—-tolerance charac—

teristics must be provided -at the architectural
levels if the tools are to be-useful ip-the design -
of spacecraft multiprocéssbr* systems. Sevefal
performance analysis models were introduced to éérve
as basis for reliability and resource scheduling
evaluation both at the end> of the fuqctional
specification level and during the architecture.
seléction phase.
2. A high level specification'and,verification tool was
" introduced to bridge the gap bétWeen the requirement
specification phase and the architecture design and
‘éimulation phase. It is proposed that the iﬁplé-
mentation. of this tool .be based on the ADAV
language. The selection of ADA Wés made for several
reasons: it séems to gain wide acceptance and
support in the programming community; it supports

top-down design aﬁd.implementation procedures; and

- 168 -

it is capable of descfibing' concurrenty and
multitasking through a set of designated constructs.
The main. results of our study -ofv the high level
specification and verification tool are: |

- The process of obtaining specification was

described and guidelines ‘were provided.
Decomposition techniques, such as d#tafiﬁw
analysis and functional decoﬁposition were
introduced. A&a specification blocks were used

to brovide a stricf formalism.
-~ The spécificatioﬁs ~ obtained with =~ Ada
‘speéification blocks éan be transformed naturallyv
into an implementaﬁién. ~ This transfdrmafionvis
done in various_steps;.with ea@ﬁ steb béing a
refinement of- the previous one.
~ Validation techniques. were . investigated with
respect to theif applicability to the deSign_
methodoloéy. Although no concrete 'valiaation
system was _speéified, preliminafy~‘validation
capabilities were outlined. A mére powerful
validation system Was ~also suggested as a

desirable goal in future research.
The methodology pfoposed here should be experimented with

in the context of a large example. This would assist in

improving the methodology itself and would also.provide the

- 169 -

necessary framework for the development .of computer aided
tools such as:

- A graphical aid to decomposition (outlined

previously).

- A simulation testbed for the preliminary

simulation phase.

- A verifier which could be wused on selected

sections of the system.

It was also pointed out that in view of the.complex
nature of the verificatidn pfbcess; it Would-bé.desirable to
gain experience with an ‘already' existing system, such as
Gypsy. Theory would thenv be substantiated by practical
experience.- “ |

Finally, the interface between the arOPOSed high levai

design tool and existing tools at the architectural level was

examined. Several ekisting tools were investigated in the

process of selecting a candidate = tool which .can be

implemented and used later to support thé»development-of an

integrated set of.tools. ' The selection was based on several

criteria dincluding the ease of interface, completeness,

~run-time environment and availability and supportvvby the

vendor. A design and simulation tool, developed by Stanford
University and known as SABLE/ADLIB was identified as a
feasible candidate' to be used at the. architecture and

register transfer levels of the design;

- 170 -

Further Work

The ultimate objective of the work in this érea is to

- assimilate an integrated set of CAE tools which can be

utilized in all specificatioﬁs and deéign stages of multi-
processor Systems, with particular emphasis placed on
spaéecraft applications. This objective can be achieved
through the utilization of existing>tools, provided that tﬁey
are augmented by a high level functional.specification tool
and a set of performance evaluation packages.. To achieve the

stated objective, we propose the following work as a logical

next step to the definition and specification study reported

" here:

1. Based on breliminafy analysié, a paqkage
developed by Stanford.Univervsit'y (s.ABL‘_E)ADLIB).
and used as a design and Simﬁlétion‘tool‘for
general purpose_proéessdr§ at the Architecture.
énd Register Iransfef.lévels was selected. .A-
,detailed study is. néeded to determine 1its
suitability and utility.as a design toql,ih the
‘'special apﬁlication . of ‘ spacecraft
multiprocessors. -_If selected folléwing the
detailed study, the>packagé ﬁust'be instalied
and checked out. - Lt should be noted that the
use of this package has been limited so far to
résegrch ‘and development applications. The
package will be availaﬁle.commercially in the

near future.

- 171 -

Design of the functional -component specifi-
cation tool defined in this study must be
completed in detail priér to the implementation
of the tool. The generai‘design will be based
on ADA constructs and will follow a general
tpp-down specification approach; The output of
this tool must. be sfructured to permit the
definition of hardware/softﬁare boundaries of

the architecture. Initially, the results of
this phase will ,Be manually _intefpreted andl
used to generate the inpuﬁ to‘the architecture;
deéign and simulationé'todl.

Design of.reliability'and'resource‘utilization

- analysis modules to be used with the high level

specification tool (at- the stage where the
hardware/sofﬁware boundaries are defined),‘ A
mofe refined form of these ﬁodules will also be
used to augment the design and-simulation‘tool

at the architecture selection stage.

- 172 -

[AFFI79]

[AMBL77]

[BERG81]

[BOYE79]

[CHEHBIT
[COMP81]

[CORY80]

[CORY81]

[DIJKR75]

[DIJK76]

[Dobsoi‘

REFERENCES

"The Affirm Reference Library"”, Gerhart, S.,
Editor, ISI Program Verification Group,
International Science ~Institute, Marina Del
Rey, California, 1979,

Ambler, A.L. et al "GYPSY: A Language for
Specification and Implementation of Verifiable

Programs"”, Proceedings of an ACM Conference on

Language Design for Reliable Software, SIGPLAN
Notices, vol. 12, no. 3, pp. 1-9, March 1977.

Bergland, G.D. "A Guided Tour of Program Design

Methodologies", IEEE Computer, vol. l4, no. 10,

pp. 13-37, October 1981.

Boyer, R.S. and Moofe,A J.S, "A Computational‘
- Logic", Academic Press, New York, 1979. '

Cheheyl,iM.H. et al "Verifying Secufity", ACM
Computing Surveys, vol. 13, no. 3, pp. 279-340,
September 1981, ' »

IEEE Gomputer, Special issue on Ada "Ada
Programming in the 80's", IEEE Computer, vol.
14, no. 6, June 1981.

Cory, W.E._andQVanCieemput, W.M. "Deveiopments’

in Verification of Design Correctness: A

Tutorial”, Design Automation Conference, pp.
156-164, 1980. :

Cory, W.E. "Symbélié Simulation for Functional
Verification with ADLIB and SDL", Design
Automation Conference, pp. 82-89, 1981.

Dykstra, E.W. "Guarded " Commands,,
Non-Determinancy and 'a Calculus for the
Derivation of Programs", Proceedings of the
1975 International . Conference on Reliable
Software, pp. 2.0-2.13, 1975, (also in CACM,

. vol. 18, no. 8, 1975),

Dykstra, E.W. “A Discipline of Programming”,
Prentice~-Hall, Englewood Cliffs, New Jersey,:

1976.
United States Department of Defense "Ada

Programming - Language"”, Military Standard,
MIL-STD-1815, Decembre 1980, '

- 173 -

[FLOY67]

[FRAN77]

[GoOD77]

[GOOD78]

[GORD75]

[GRIE76]

[HANT76]

[HILL79]

[HOAR69]

[HOAR73]

[HEND77]

Floyd, R.W. "Assigning Meaning to Programs",
Proceedings of the American Mathematical
Society Symposium in Applied Mathematics, vol.

~ 19, .Providence, R.I., American Mathematical

Society, pp. 19-31, 1967.

W.R.‘Franta; "The Process View of Simulation“,
North-Holland, N.Y. 1977,

‘Goodenough, J.B. and Gerhart, S.L. "Toward a

Theory of Testing: Data Selection Criteria”,
in "Current Trends in Programming Methodology",
Vol. 1II, -Yeh, R,T. (Editor), Prentice-Hall,
Englewood Cliffs, New Jersey, 1977.

Good, D.I., Cohen, R.M. and Hunter, L.W. "A
Report on the Development of Gypsy"”, Technical
Report ICSCA-CMP-13, University of Texas at
Austin, October 1978. '

G. Gordon, "The Application of GPSS V to
Discrete . System Simulation”, Prentice-Hall,:
N.J. 1975.

Gries, D. "An Illustration of Current Ideas on
the Derivation of Correctness Proofs and

- Correct . Programs”, ~~ LEEE Transactions on

Software Engineering, vol. SE-2, no. 4, pp.

238-244, December 1976.

~ Hantler, S.L. and King, J.C. "An Introduction

to Proving the Correctness of Programs", ACM
Computing Surveys, vol. 8, no. 3, pp. 331-353,
September 1976, _ o

Henderson, P. "Structured Program Testing"”, in

- "Current Trends 'in Programming Methodology",

Vol. II, Yeh, R.T. (Editor), Prentice-Hall,
Englewood Cliffs, New Jersey, 1977.

Hi1l, D.D. "ADLIB: ‘A Modular, Strongly Typed
Computer Design Language", Proceedings of the

16th Annual Design Automation Conference, pp.
75-81, 1979. :

‘Hoare, C.A.R. "An Axiomatic Basis for Computer:

Programming”, CACM, .wvol. 12, no. 10, PP -
576-583, October 1969. o

Hoare, C.A.R. and Wirth, N. "An Axiomatic

Definition of the Programming Language Pascal”,
Acta Informatica, vol. 2, pp. 335-344, 1973,

- 174 -

[JENS74]
[JENS78]

[KEMM8O]

[KINGS8O]

[KNUT68]
[LAFES1]
[LAMP77]
[LARM771

- [LOND77]"

[LUCK79]

[MAHJS81]

[MAHM82]

. Jensen, K. and Wirth, N. "Pascal: User Manual

and Report"”, 2nd edition, Springer-Verlag,
New York, 1974. :

E.D. Jensen, "The Homneywell experimental
distributed processor - An overview", Computer,
pp. 28-37, Jan. 1978.

Kemmerer, R. "FDM-A Specification and
Verification Methodology"”, Proceedings of the
Third Seminar on the Department of Defense
Computer Security Initiative Program, Natiomnal
Bureau of Standards, Gaithersburg, Maryland,
November 1980. : '

' King, J.C. "Program Correctness: On Inductive .
Assertion Methods", IEEE Transactions on
Software Engineering, . vol. SE-6, no. - 5,

pp. 465-479, September 1980.

‘Knuth, D.E. "The Art of Computer Programming",

Vol. I, Addisson-Wesley, Reading, Mass., 1968..

Laferriere, C, and Mahmoud, " S.A. "Ada and
Euclid as _Programming ‘"Languages for
Communications Systems", Intellitech Technical
Report, Decembre 1981. :

Lampson, B.W., Horning,-J.J. et al "Report on
the Programming Language Euclid"”, SIGPLAN
Notices, vol. 12, February 1977. : '

B.T. Larman,. “Spacecraft Computer Resource
Margin Management”, AIAA Computers in Aerospace
I11 Conference, pp. 97-103, 1981, o

London, R.L. "Perspectives. on - Program
Verification", in "Current Trends in
Programming Methodology", Vol. 1II, Yeh, R.T.

(editor), Prentice—Hall, "Englewood Cliffs,
New Jersey, 1977. ‘ o .

Luckham, D. et al "Sténdard Pascal " Verifier
User Manual”, Stanford University Technical
Report, STAN-CS-79-731, 1979. : '

- Mahjoub, A. "Some GComments on Ada -as a

Real-Time Programming -Language™, . SIGPLAN
Notices, vol. 16, mno. 2, pp. 89-95, February.
1981. ' - ,

S.A. Mahmoud et. al, "A Survey - of
Computer—-Aided Engineering (CAE) Tools for. the
Design and Simulation of Multiprocessor

Systems", Report #INT-82-15, Intellitech Canada .
Ltd., Ottawa, 1982. . _

=175 -

[MELL8O0]

[MORI79]

[MORR77]

[OKADSO]

[PARN72]

[POLA79]

[PYLE81] .

[RAMASB1]

[REYN76]

[ROBI77]

[ROBI79]

P.M. Mellian-Smith "Permissable Processor
Loadings for Various Scheduling Algorithms",
Computer Science Lab, SRI International.

Moriconi, M.S. YA Designer/Verifier's
Assistant", IEEE Transactions on Software
Engineering, vol. SE-5, no. &4, pp. 387-401,
July 1979.

Morris, J.H,. and Wegbreit, B. "Program
Verification by Sub~Goal Induction”, in
"Current Trends in Programming Methodology",
Vol. II, Yeh, R.T. (editor), Prentice-Hall,
Englewood Cliffs, New Jersey, 1977.

Okada, K., Futatsugi, K., and Toru, K. "Reliable
Program Derivation in Functional Languages by
Applying Jackson's Design Method", . IEEE
Fault-Tolerant Computing, pp. 91-96, 1980,

Parnas, D.L. "A. Technique for Module
Specification with Examples", CACM, vol. 15,
Nno. S, ppo 330"‘336, 19720 .

Polak, W. "An Exercise .in Automatic Program

" Verification", IEEE Transactions on Software:

Engineering, vol. SE-5, no. 5, pp. 453-457,
Septembre 1979, S

Pyle, 1I.C. "The Ada Programming Language",

‘Prentice-Hall International, London, 1981, .

Ramamoorthy, 'C.V. et al “Application of a
Methodology for the Development and Validation
of Reliable Process Control Software", IEEE
Transactions on Software Engineering, vol.

'SE-7, no. 6, pp. 537-555, November 1981.

Reynolds, C. and Yeh, R.T. "Induction as ‘the
Basis for Program Verification”, - IEEE
Transactions - on Software Engineering, vol.
SE-2, no. 4, pp. 244-252, December 1976.

Robinson, L. and Levitt;-K.N.v"Proof Techniques
for Hierarchically Structured Programs", .in
"Current Trends in Programming Methodology",

~Vol. II, Yeh, R.T. <(editor), Prentice-Hall,
Englewood Cliffs, New Jersey, 1977. (also in.

CACM, vol. 20, no. 4, pp. 271-283, April 1977).

Robinson, L., Silverberg, B.A. and Levitt, K.N.
"The HDM Handbooks", vol. 1-3, Computer Science
Lab, SRI International, Menlo Park, California,
June 1979,

- 176 -

-[ROSS77al Ross, D.T. and Schoman, K.E. "Structured
' - -Analysis for . Requirements Definition", IEEE
Transactions on Software Engineering, vol.

SE-3, no. 1, pp. 6-15, January 1977. ‘

[ROSS77b] - Ross, D.T. "Structured Analysis (SA): A
: Language for Communicating Ideas”, = IEEE
Transactions on Software. Engineering, vol.
SE-3, no. 1, pp. 16-34, January 1977.

[SILB81] Silberschatz, A. - "On ~ ‘the Synchronization
: : Mechanism -~ of the Ada Language”, SIGPLAN
Notices, vol. 16, no. 2, pp. 96-103, February

01981,
[sU77] . S.Y.H. Su, "Cdmputér' ‘Hardware Description
: Languages and Their Applications: -.an

Introduction and Prognosis™, Computer, Vol. 10,
‘No. 6, pp. 10-13, June 1977. :

[WEGNBO] . Wegner, P, "Programmith with Ada: An:

‘ S Introduction by Means of Graduated Examples",
Prentice-Hall, Englewood Cliffs, New :Jersey,
1973. B

[WIRT7371. .Wirth, N. "Systematic Programming: - An
L Introduction”, Prentice~Hall, Englewood Cliffs,
New Jersey, 1973. '

“[YEH77] Yeh, R.T. "Verification of Programs ' by
. Predicate Transformation”, in "Current Trends
in Programming Methodology", Vol. 1II,. -Yeh, .
R.T. (editor), Prentice-Hall, Englewood Clifs,
New Jersey, 1977. S : :

[Younsol Young, W.D. and Good, D.I. "Steelman and the- .
- Verifiability of (Preliminary) Ada",. SIGPLAN
Notices, vol. 16, no. 12, pp, 113-119, December.
1980, S : ‘

§

f:[YOUR75] Yourdon, E. and Constantine, L.L._"Structuredv
L ’ Design", Yourdon Press, New York, 1975.

- 177 -

N OEE W N NN NN NN NN NN SN N RN B A e A B W

- e Ew n
,.lt..,.dv‘ : - '

¢ o

g 7 T e e

Iiﬁ'.ch

Intelitech Gonada Ltd
352 Macloren Street,
Ottawo, Ontario

K2POM6
GI3235-5126

[R R
\

l

E

l

\

|

|

v :

13

|

k\

?

|
P

