
A review of spacecraft

fault-tolerant computer

design concepts

I T. Gomi, M. Inwood

Industry (r.."..;EJ-ifida
Library . Qu.:40 •

Hc. 2 0 1990 	'
•

Iriduatrie•GaR3dà.
•Bibliothque.• • 01.1. E.-:.en

1 Govemtnent • Gouvernement
of Canada 	du Canada

Department of • Communications •

REPORT 	 DOC-CR-SP-82-049

DEPARTMENT OF COMMUNICATIONS - OTTAWA - CANADA

SPACE PROGRAM,

,TITLE: A,Reviéw Of:Spageoraft Yault-Tolgrant Computer ;

•)Design COnCéptà

AUTHOR(S):, T. Gomi., 11. - Inwnod

ISSUED BY CONTRACTOR AS REPORT NO: 82-001

PREPARED BY: Eidetic Systems Corporation

P.O. Box 13440

• Kanata, Ontario.

K2K 1X7

DEPARTMENT OF SUPPLY AND SERVICES CONTRACT NO: 3ER.36100-1-0274

SN: OER81-03138

DOC,SCIENTIFIC AUTHORITY: R.A. Millar

CLASSIFICATION: Unclassified

This report presents the views of the author(s). Publication
of this report does not constitute DOC approval of the reports
findings or conclusions. This report is available outside the
department by special arrangement.

DATE:March 3,: 1982

A REVIEW OF SPACECRAFT FAULTTOLERANT COMPUTER DESIGN CONCEPTS/

Technical Report No. 82-001

) I (I)
(T.L.gomi 1
M. Inwood

Eidetic Systems Corporation

march 3, 1982.

r.

F(-Ï
()_
ccp,55-
G

n c«

CONTENTS

I I

1
I.

I .

. Page
Acknowledgements 	 i•

Acronyms ' ii

1. Summa .r.y

2. Introduction 	 • 	2-1

3. JPL's Uni fi ed Data:System/Fault-Tolerant
Building Block Computer 	. 	2'. 3-1

3.0 General 	 3-1
3.1 UDS Design Concepts 	 3-1
3.2 FTBBC Components 	 3-5
3.3 FTBBC Features Tree 	 3-12

4. Comparisons with other Fault-Tolerant
On-Board Computers 	 4-1

4.0 General 	 4-1
4.1 Features of the OBDH 	 4-1
4.2 Features of the AASC 	 4-3
4.3 The Basis of the Comparison 	4-7

5. Discussion of Relevant Technology
• Developments 	 5-1

5.0 - General 	 5-1
5.1 Distributed Systems and Local Area Network 5-1
5.2 Structured Design and Software

Engineering techniques 	 5-2
5.3 Advances in Computer Architecture

and,VLSI components' 	 5-3
5.4« Post IJDS/FTBBC fault-tolerant 	. •

Computing Developments 	• 	5-4

Conclusion 	 6-1

References

Appendix- A.- D.A. Rennels Interview. 	A-1

Appendix B - FTC Design Rules (Eidetic) 	H-1

I.

ACKNOWLEDGEMENTS

This study was performed for the Department of . Communica-
tions, Communications Research Centre, Shirley Bay, Ottawa, On-
tario, Canada under DSS Contract OER 81-03138.

Eidetic Systems Corporation would like to acknowledge the
support of Dr. D.A. Rennels of the Jet Propulsion Laboratory of
the California Institute of Technology and Dr. George C. Gilley
of The Aerospace Corporation, Los Angeles, California, for
their comments and cooperation obtained during the course of
the study.

The authors are also indebted to R. Millar, of the Commun-
ications Research Centre, ottawa for his guidance and support.

ACRONYMS

AASC 	Advanced Autonomous Spacecraft Computer
ABI 	Address Bus Interface (FTBBC/MIBB)

Ada 	DoD defined Ada programming language
AE 	Access Element (FTBBC/MIBB)
ALU 	Arithmetic-Logic Unit
AP 	Attached Processor (AASC)
ASM 	Autonomous Spacecraft Maintenance
BA 	Bus Adaptor (FTBBC/BIBB)
BB 	Building Block
BC 	Bus Controller (FTBBC/BIBB)
BIBB 	Bus Interface Building Block (FTBBC)

BIU 	Bus Interface Unit (AASC)
BCT 	Bus Control Table (FTBBC/BIBB)
BR 	Bit Replacement
Core-BB Core Building-Block (FTBBC)
CP 	Command Processor (FTBBC/HLM)
CPC 	Check Bits Parity Check
CPDU 	Control and Power Distribution Unit (OBDH)
CPU 	Central Processing Unit
CRC 	Cyclic Redundancy Check
CTU 	Central Terminal Unit (OBDH)
DBI 	Data Bus Interface (FTBBC/MIBB)
DB 	Data Bus
DE 	Double error
DMA 	Direct Memory Access
EBI 	External' Bus Interface (FTBBC/MIBB)
ECS 	Error Control Section (FTBBC/MIBB)
ESA 	European Space Agency
ESTEC 	European Space Technology and Research Centre
FHE 	Fault Handler Element (FTBBC/Core-BB)
FH 	Fault Handler (FTBBC/BIBB)
FP 	Format Processor (FTBBC/HLM)
FS 	Fault Sequencer (FTBBC/Core-BB)
FTBBC 	Fault-Tolerant Building Block Computer
FTC 	Fault-Tolerant Computing
GDP 	General Data Processor (AASC)
HLM 	High-level Module (FTBBC)
IBI 	Internal Bus Interface (FTBBC/BIBB)
IBS 	Intercommunications Bus System (FTBBC)
IOBB 	Input/Output Building Block (FTBBC)
IOP 	Input/Output Processor (AASC)
IP 	Interface Processor (AASC)
JPL 	Jet Propulsion Laboratory
LAN 	Local Area Network
LSI 	Large Scale Integration
MCS 	Memory Control Section (FTBBC/MIBB)

MCU 	Memory Control Unit (AASC)
MDR 	Memory Data Register . (FTBBC/MIBB)
MFI 	Master Fault Indicator (FTBBC/Core-BB)
MIBB 	Memory Interface Building Block (FTBBC)
MIPS 	Mega Instructions Per Second
NIU 	Network Interface Unit (AASC)
NRZ 	Non-Return To Zero
OBDH 	On Board Data Handling, an ESA standard for computer

based on-board housekeeping methodology (ESA)
PCE 	Process Check Element (FTBBC/Core-BB)
PLA 	Programmed Logic Array
RAM 	Random Access Memory
RBI 	Remote Bus Interface (ESA/OBDH)
RTI 	Real Time Interrupt (FTBBC)
RTU 	Remote Terminal Unit (OBDH)
RS 	Recovery Sequencer (FTBBC/Core-BB)
SCCM 	Self-Checking Computer Module (FTBBC)
SE 	Single Error
SEC/DED Single Error Correction/Double Error Detection
SGC 	Syndrome Generator Check (FTBBC/MIBB)
SSI 	Small Scale Integration
TM 	Terminal Module (FTBBC)
UDS 	Unified Data System - a JPL designation for a standard-

ization of fault-tolerant on-board computer system.
VLSI 	Very Large Scale Integration

1. SUMMARY
. 	• . 	.

The-Fault-Tolerant Building- Block Computer (FTBBC), de-•
Signed by the Jet'PrOpuision Laboratory (JPL) for satellite
on-board use, incorporates extensive faulttolerant . mechari-
.isms. An evaluation- of these aré made in coMparison with. tWo
systems whiCh have - similar objectives; a European- system - de-
veloped for unmanned applications, and theipreliminary de-
sign for implementatiOn of the làtest, or imminently, avail-.

 able technology. These. are the European Space Agency's
On-Board Data Handling (ESA/OBDH) system and the Advanced,
Autonomous Spacecraft Computer (AASC). The capabilities and
limitations of the FTBBC are pinpointed by reference to this
comParisOn ànd to.recent developments in associated ' techno-
logies.. The conclusions dràwn from this comparison-point to
the direction in which future advances should lead.

Current research is investigated and its relevance to
space applications is discussed. Contacts made within the
space community are reported and information gained through
these channels is included.

A set of design rules which has evolved during the stu-
dy is appended.

2. INTRODUCTION

The Jet Propulsion Laboratory's (JPL) Fault-Tolerant
Building-Block Computer (FTBBC) was initiated in the early
1970s as an exercise in designing an on-board computer which
would take advantage of current developments in the fields
of fault-tolerance and technology. In particular, the FTBBC
was one of the first computers to incorporate extensive
fault-handling functions in its hardware design. As this
study reveals, the mechanisms to detect hardware faults, and
confine them are extensive, whilst attempts are also made to
analyze and recover from them. The flexibility of the Cen-
tral Processing Unit (CPU) and the memory selection afforded
by the Self-Checking Computer Module (SCCM) arrangement, for
example, are essential features of any fault-tolerant com-
puter design. Furthermore, the Unified Data System/FTBBC is
the first major computer system development based on micro-
computer technology that addresses issues related to fully
distributed systems, either for space use or otherwise. A
version of the FTBBC will be flown on Galileo (Ref.1).7

A second computer of the building-block type, the Euro-
pean Space Agency's On-Board Data Handling (ESA/OBDH) sys-
tem, which was well defined by 1973, has been studied. This
was also intended as a reusable, distributed system for un-
manned satellites, and contains some redundancy and
building-block features. It was the result of combined de-
velopment by European countries. The Europeans made no ef-
fort to use available components and designed the system in
the custom-built style traditional to the space industry.
High costs and long development time were mitigated by dis-
tributing the responsibility for the various modules amongst
member countries.

Development of the FTBBC computer has now been in pro-
gress for a decade. During this time research has gone ahead
in fields which may well have a considerable impact on
fault-tolerant concepts and methods of implementing them.
Aspects which have been problematical in the past are now
being approached, and solutions are being presented to con-
cerns which were not clearly understood at the time of the
FTBBC. This report is an attempt to understand and
high-light these concepts, and study their relevance to the
present stage of the FTBBC.

A further outcome of this study has been the formula-
tion of the Fault-Tolerant Computing Design Rules. This,is a
set of criteria which, it is felt, should be applied to the

design of on-board spacecraft computers. These rules have
been used as a point of reference in the comparison conta-
ined herein.

An understanding of the present status of the FTBBC and
current research has been gained by conducting personal and
telephone interviews with Dr. D.A. Rennels and other JPL
personnel and also with other active participants in the ar-
ea of on-board computing. Reference has been made to the
open literature available from JPL, ESA and other interna-
tional institutions.

2-2

3. JPL'S UNIFIED DATA SYSTEM/
FAULT-TOLERANT BUILDING BLOCK COMPUTER

3.0 General

The FTBBC project grew out of an earlier study on the Uni-
fied Data System (UDS) at JPL (Ref.4) in which Dr. David Ren-
nels, the chief architect of the present system, took a leading
part. Whereas the UDS is a system level design, the FTBBC is a
hardware implementation of a Self-Checking Computer Module, an
essential component of the UDS system. Since the FTBBC is best
viewed in this context, a brief outline of the UDS is given
first.

3.1 Features of the Unified Data System (UDS)

The UDS was developed as a distributed computer network
architecture for spacecraft on-board processing. It consists of
a set of SCCMs connected by a redundant set of intercommunica-
tion buses. Microcomputers, utilized as High Level Modules
(HLM) or Terminal Modules (TM), may be combined in a variety of
different configurations, as shown in Figure 1.

TMs are dedicated to a particular spacecraft subsystem and
are responsible for control and data collection within it. A TM
cannot initiate bus communications but can be commanded to
fetch or deposit data into its memory. In addition, it actively
supports DMA transactions and it can be accessed through sever-
al buses simultaneously.

HLMs are responsible for coordinating processing within
the remote TMs, for controlling the Intercommunication Bus Sys-
tem (IBS), and for high level processing such as data compres-
sion and decision making. FILMS contain the same internal compo-
nents as the TMs but with the addition of a Bus Interface Bu-
ilding Block (BIBB) programmed as a Bus Controller (BC). Unlike
the TM, an HLM has no I/O circuitry apart from the IBS and only
communicates with other computer modules.

Each serial bus is connected to a Bus Adaptor (BA) in each
of its associated SCCMs (HLM or TM). It is also assigned a pri-
mary BC in its controlling HLM. Control can pass to another HLM
if the bus is nnt powered or the processor commands release to
a lower priority BC for , a specific time interval. Priority is
established on a fixed basis and implemented through a
daisy-chain structure for each bus which is shown in Figure 2.
This, theoretically, enables spare modules to take over from a
failed HLM or, in the event of bus failure, the BCs may share
one bus. The buses are physically independent of each other and

3-1

I/0

Voted Configuration b)

SCCM

(S)

SCCM

(S)

SCCM
SCCM
(S)

SCCM

q

SCCM

HLM

SCCM
(S)

1 	1

SCCM

SCCM

SCCM

SCCM

(S)
SSM

I/0

.a.) Standby Redundant.

I/0

Distributed Computer Network

I/O 	 I/O

IDEMS 111 Intercommunications Bus
HLM- High Level Module

SSM - SCCMs in Subsystems

(S) - Spar-e Module

Fig.1 Fault-Tolerant SCCM Configurations

3-2

RTI P2 Pl

3 P3

RAM RAM RAM

0
Il

II

II

II
1,21

BA BA BA BA BA BA

• • •

RAm _ RAM

1111•1 MI MI II•11 	 MI 	imip.2 or NM UM MI MI BIM MI MI MI

High

Level
Modules

BC BA BA BA1 BC BA BA BA BA BA

it
BA

- Microprocessors
BC - Bus Controller .
BA - Bus Adaptor

Terminal 	•RTI - Real-Time Interrupt
Modules 	Pi - Priority Chain for

ith Bus
===== - BC connection for Bus-

sharing

- 7 -

Bus

*1

*2

*3

I/0

•Fig.2 RTI and Daisy-Chain Priority
in SCCM Distributed Network ,

s
I/0 1 -ir

0

there is no common clock. Each SCCM uses its own internal clock
and the buses use the clock of whichever module is transmit-
ting.

The number of 'buses is dependant on mission and redundancy
requirementà. In the event of failure a mission may be recon-
figured throughout - even to the eXtent of •a single remaining
bus supporting esSential functions.

One HLM is designated as the system executive and issues a
common system-wide clock, the Real Time Interrupt, (RTI)I of 2.5
ms. All modules receive and compare the RTI with their own
internal clocks. On failure of an RTI generator, the computers
will automatically switch to a backup. If an individual clock
fails then damage will be confined to one module. Figure 2
shows the RTI line between modules.

Subordinate FILMS or TMs are commanded to start specific
programs which the timing information from the executive HLM
will synchronize with the rest of the system. Most programs are
self-synchronizing and timing within them is tightly regulated,
the time count of each event being precisely specified.

Each HLM/TM contains an identical local executive program
for communication with user, software. Software is run in a
foreground/background partition with well-defined segmented
programs running . concurrently in the foreground, whilst more
complex and lengthy programs are assigned to the background
mode. The local executive is responsible for activating and de-
activating foreground/background programs using a scheduling
table. A UDS Program Design Language enables a program to com-
municate with the executive and request modifications to start,
stop, suspend or delete itself.(Ref.5) On completing the execu-
tion of available foreground programs, control is returned to
the background program for the remainder of the time slot.

I/0 granularity is defined by sampling inputs and holding
them for a fixed period. Several segments of concurrent fore-
ground programs may be executing during a time period and their
outputs collected and held for simultaneous execution at the
end of the time period. Programs can be ..removed, added and
re-ordered within a time interval without impacting others.
This approach is intended to allow a great deal of visibility
into the system and to simplify simulation, debugging and mod-
ification of software.

Fault-tolerant aspects of the software are mainly confined
to increased reliability and testing. Timing has been simpli-
fied at the intercommunication bus interface to obviate incom-
patibilities between user-supplied subsystems. Bus access is

3-4

restricted to localize the effects of software failure. Reason-
ableness checks at the HLM level can verlfy the proper func-
tioning of low level dedicated software. The HLM has little ac-
tual protection against software faults. The UDS local execu-
tive has a mechanism for software fault detection which checks
proper return of control after execution •of a foreground pro-
gram. In the event of a problem, a software fault is signalled
and a user-supplied recovery routine is executed.

Fault recovery requirements for the UDS include a dedicat-
ed "hot" spare for the system executive HLM. Cross-checking by
the two modules at each RTI will reveal failure of either one
and trigger recovery of the extant module. It should also have
the ability to activate a further "hot" spare if necessary. A
primary HLM generates output and gathers data for the spare and
itself. Additional "hot" spares may be utilized under critical
conditions. Other HLMs are backed-up by non-dedicated spares.
Controlling FILMS are responsible for polling TMs, recognizing
failures, internal reconfiguration where possible or continuing
operation in a degraded mode. Bus system failures are deter-
mined by rerouting suspect messages through a different HLM-bus
configuration. Since TMs are dedicated, their spares must be
also. Such spare TMs are assumed to be physically built into
each subsystem. The fault-tolerant responsibility of a TM is
detection within its associated subsystem and repairs where
possible. Where repair is not possible the TM records error in-
formation, institutes a "safe" disabled state and notifies its
HLM.

3.2 Features of the FTBBC

3.2.1 The Self-Checking Computer Module (SCCM)

The 	FTBBC itself arose from the desire to combine
off-the-shelf components into an SCCM (Ref.3). The appeal of
this approach lies in the following features:

- proven reliability of components
- shorter development time
- flexibility of configuration for different applications
- easy upgrading of facilities and standards.

The building blocks, four in number, are intended as VLSI
fault-tolerant interfaces to the standard components. They con-
sist of the Memory Interface Building Block (MIBB), Programm-
able Bus Interface Building Block (BIBB), Core Building Block
(Core-BB), and the I/O Building Block (IOBB). Figure 3 shows
these building blocks as they are combined to form a
self-checking computer module (SCCM). The SCCM can be designat-
ed either as an HLM or TM. The building blocks should be able

3-5

EXTERNAL INTERCOMMUNICATIONS
BUSES (1553A)

REDUNDANT MEmORy

Dm.A
REQUEST

BUS INTERFACE
- BUILDING BLOCKS

(X4)

Fig.3 The Self-Checking Computer Module (SCCM)

I À

DMA GP.ANT

• - 	.
.INTERNAL
TRI-STATE
BUS

1
OUTPUT INHIBIT r ON ERROR)

BUS CHECK .
BUS 	 RESET/
ARBITOR 	ROLLBACK

PROCESSOR
COMPARE

CORE
BUILDING
BLOCK

C P

I/0

1.4D-BB

• INT

I FA.JLT

mEmO2Y INTERFACE
BUILDING-BLOCK

16 BITS

C U

HAMM 1 N G
22, CORRECTION

INTERRUPT

8 BITS

6

INTERNAL
FAULT
INDICATORS

2

6 BITS HAmmtNG
2 BITS SPA1E

-

INT FAULT

BA - BUS ADAPTOR

BC - BUS CONTROLLER

P - BUS ASSIGNmENT
PRIORITY SIGNALS

D/R - DRIWRiRECEIVER

CIM - CONTROLLER -
INTERFACE MODULE

MN BM OM AIN MI 	MI OM 	• • BM 	 IBM 	: 	MI IIIIII

3-7

to detect faults internally and in their associated circuitry
and give a fault indication to the Core Building Block. The
SCCM should, additionally, be able to signal its own malfunc-
tions to other SCCMs and disable its outputs when necessary.

3.2.2. Memory Interface Building Block (MIBB)

The memory module consists of two parts; a set of RAM
chips and the MIBB. Memory consists of 24 bits, separately
packaged in order to contain circuit failure damage. Sixteen
bits are used for storage, six for Single-error-correcting/
Double-error-detecting •(SEC/DED) Hamming code and two are re-
dundant bits in case of failure.

The BB itself is responsible fôr interfacing memory to the
internal bus. It is capable of implementing fault detection and
correction within memory using Hamming code and within its own
circuits. Information transfer on the internal bus is safe-
guarded by parity generation and checking. Fault conditions are
signalled to the Core-BB and, upon system command, up to two
faulty bit planes in memory can be reconfigured.

The memory module uses "memory-mapped I/O" which avoids
processor specific I/O operations and also allows access to bu-
ilding blocks by internal SCCM software and Direct Memory Ac-
cess (DMA) by other SCCMs via the internal bus. This gives an
external SCCM thé ability to load and read memory via the bus,
sample error status information, command internal reconfigura-
tion, and even remotely control I/O in a faulty SCCM. Optional
configurations available to the user include variations in mem-
ory size (8K, 16K, 32K) and a choice of Ham or non-Ham mode.
Non-Ham mode, i.e. without Hamming code, is provided for appli-
cations requiring very low power, weight, and volume. In this
mode, error detection, correction, and bit-plane replacement
are performed under system control, but two parity bits for er-
ror detection are retained in the MIBB.

All circuits within the MIBB are either self-testing,
fault-secure, or duplicated so that no single circuit failure
will produce an undetected output error.

The MIBB donsists of four sub-elements: Address Bus Inter-
face (ABI), Error Control Section (ECS), Data Bus-Storage Array
Interface (DBI), and Memory Control Section (MCS).

The ABI provides the address parity checking and decoding
required to select a memory module. An incoming address is
stored in the Memory Address Register (MAR) and validated be-
fore a read/write operation is performed. If no errors are de-
tected the low-order 12 bits are sent to the Storage Array

Block for on-chip decoding. The high-order bits are detected
and used for memory-mapping. An alternative is to associate a
separate decoder with each bit-plane enabling the single error
correction/double error détection SEC/DED data word error code
to be used in the address decoding. The address which is cur-
rently being referenced is stored for future diagnosis in case
a fault recurs.

The ECS is concerned with error detection, correction, and
analysis within the MIBB. It generates and checks Hamming code
check bits and syndromes, and byte parity for the internal bus.
ECS circuits are self-testing. The Error Status Register/Memory
Error Interrupts issue two fault-detection signals:

- a code-correction indicator, which is sent to the duplex
processors as an interrupt indicating that a single memory
bit is being corrected by Hamming code. This facilitates
the processor's decision on bit replacement.

- internal fault indicator for faults which cannot be cor-
rected within the memory system i.e., when:

- a fault is detected within the MIBB itself
- improperly coded information is received over the

internal bus
- a data error occurs within memory that cannot be cor-

rected . by Hamming code.

This internal fault indicator is sent to the Core-BB which
may, in the case of a transient error, be able to resume cor-
rect operations using a rollback or reset/restart sequence.

All circuits are self-testing.

The DBI interfaces the Memory Data Register (MDR) with the
internal bus. The MDR consists of two Data Bit Modules, a Check
Bit Module for. storing Hamming codes, a Replacement Control
Section containing the spare bit planes, and interfacing net-
works. In the event of a faulty bit plane, error decoding is
performed on chip but the replacement decision is made by the
system.

The MCS generates control signals to implement operation
and command algorithms. Read/write instructions with low-order
addresses are treated as normal memory operations. High-order
addresses are reserved for "memory-mapped I/O". Certain of
thèse out-of-range commands are recognized as pertaining to the
MIBB.

3-8

3.2.3. Core Building Block (Core-BB)

The Core-BB is responsible for:

- synchronizing and comparing duplex CPU outputs
- fault-handling through-out the SCCM.
- internai, bus arbitration

One processor is designated as primary and the other as
check processor. Processor faults are detected by the Processor
Check Element (PCE) by running two synchronized units using the
same data and executing the same programs in lock-step. Parity
coding of incoming data is checked. Outputs to the internal bus
are compared and outputs to address and data buses are parity
encoded. The PCE contains self-checking parity checkers e a du-
plex command decoder and morphic (one-out-of-two) reduction
trees. It also samples •various fault indicators to provide in-
formation for external computer modules.

The Bus Arbitration Element (BAE) accepts bus request sig-
nals from the various DMA controllers throughout the SCCM and
obtains release of the bus by the CPUs. Access is granted to
requesting BB's on the basis of a fixed hardware priority. The
BAE signals are duplicated and morphically compared.

Within the Fault Handler Element (FAE), the Fault Syn-
chronizer (FS) 'accepts fault indicators from throughout the
SCCM and morphically reduces them to produce a single clock
synchronized morphic fault indicator, the Master Fault Indica-
tor (MFI).

This MFI is sent to the Recovery Segment which disables
SCCM output and resets the CPUs. A program rollback can option-
ally be caused and computation reinitialized. If no additional
faults are detected the processors can reenable the module.

The FS and Recovery Sequencer (RS) are duplicated and
paired and either pair can disable SCCM output. RS outputs are
also compared and disagreements signalled to both Fault Se-
quencers.

There is a small circuit provided for manual or external
modtile dontrol. This facilitates prograM restart either.'by
front panel switches or under program control via out-of-range
commands.

37 9

3.2.4. Bus Interface Building Block (BIBB)

The BIBB enables information to be transferred between
SCCMs via an intercommmunications bus system. It is programm-
able as either a Bus Controller, one per HLM, or a Bus Adaptor,
one per bus in each HLM or TM. They utilize the MIL-STD-1553A
bus format, with enhanced capabilities.

The BC can communicate with several redundant buses. A BA
is connected to only one bus and serves as a remote terminal.
The Controller and Adaptors operate in a relatively autonomous
fashion. Their enhanced capability enables them to move data
directly between SCCM memories attached to a given data bus
with a minimum of software support.

When an HLM wishes to initiate a data transfer between mo-
dules on the bus it alerts the BC. This reads a Control Table
in its host's memory, specifying the source and destination of
information along with the length of transmission. It then
specifies one BA as a data source and one or more remote BAs as
data acceptors and names the data to be moved. As the 1553 for-
mat does not provide directly for multiple acceptors, addition-
al modules must be commanded to "listen in" on a 1553
terminal-to-terminal transmission. The specified data is then
extracted by the BA from its host's memory using cycle-stealing
and is placed on the bus. It is removed from the bus simultane-
ously by the acceptor BA and loaded into its SCCM host's memo-
ry. The BC monitors this process and signals completion to the
host. As many as three buses may communicate with an SCCM with-
out conflict. A BA acts only in response to a Bus Controller,
either remotely or within its own SCCM. A BC or BA can recog-
nize several out-of-range addresses relevant to their own func-
tions.

The internal strUcture of a BIBB is the same . for a BC or
BA and contains the following:

- the Mill; a small processor with ROM, RAM, internal regis-
ters, and an Arithmetic and Logic Unit (ALU). It has res-
ponsibility for generating addresses for DMA, word count-
ing, testing control words, and buffering data in transit
between the external bus and the SCCM.

- the External Bus Interface (EBI) which interfaces the Mill
and the external bus. It encodes parallel commands and da-
ta words from the Mill for serial transmission over the
bus. It also performs serial to parallel conversion on in-
coming Manchester encoded data words, making them avail-
able to the Mill, and signals their arrival to the Con-
troller. Improperly coded commands and signal/parity er-

3-10

rors are indicated to the Fault Handler (FH).

- a DMA interface between the Mill and SCCM provided by the
Internal Bus Interface (IBI). Registers in the IBI are
used to buffer incoming and outgoing data and DMA requests
and acknowledge control logic. The IBI also contains a
command decoder which is used to recognize and decode
memory-mapped commands from the host SCCM to the BIBB.

- the Controller generates control signals for the other
' BIBB subelements from internal or external SCCM commands
and conditions sampled within the BIBB. It is programmed
using a ROM and a Programmed Logic Array (PLA).

The BIBB internal circuits use either duplication and
self-checking comparison or error detection codes. The FH com-
bines fault signals from these circuits into a single morphic
Internal Fault Indicator. The FH terminates any ongoing
transmission on detecting an internal fault. BC faults are sig-
nalled to the Core-BB which disables the host SCCM in order to
prevent damaged information from being propagated throughout
the system. A faulty BA merely disables its own communicating
ability. As an SCCM contains several redundant BAS, messages
can be rerouted via a different BA.

3.2.5 I/O Building Block (IOBB)

The design for the IOBB has not been completed. However,
certain typical requirements and functions have been specified.

In order to retain consistency with FTBBC modules all bu-
ilding blocks must provide memory-mapped I/O. Fault tolerant
requirements are that:

- the IOBB must check the coding of incoming addresses and
data, and utilize duplication or coding checks to verify
proper functioning of its internal logic.

- either data errors or internal faults must generate an er-
ror indicator to the Core-BB. Error indicators should be
morphic to prevent a single point of failure.

- incoming data must be encoded for presentation to the host
computer's bus.

One of the more important I/O functions which should be
provided by IOBB modules is synchronization of inputs and out-
puts with the RTI. This:

- ensures synchronism in voting configurations
- decouples I/O timing from detailed instruction timing in

the TM

3-11

- enables software to be changed without altering the I/O
timing of unmodified programs

- prevents I/O timing being changed as a result of the use
of stolen memory cycles during DMA activity on the IBS
which may cause slight variations of processor speed.

- is expected to simplify verification and 	validation
through restricted interaction with the host coupled with
synchronous software.

The circuitry for I/O functions is not expected to be com-
plex and fault-detection implementation should be straightfor-
ward. Parity checking can be utilized where the data structure
is preserved and control functions can be duplicated with
morphic comparison.

In order to achieve redundancy in TMs, • two or more modules
can be cross-strapped, i.e. their inputs and outputs hooked to-
gether. Only one module is powered; the others are cold stand-
bys. In this usage short protection should be provided at all
output connections to avoid deactivation of all the spares.
IOBBs may be used redundantly within an SCCM.

3.3 The FTBBC Features Tree

This tree, which is shown in Table 1, is an aid to under-
standing the extent and placement of the aspects of
fault-tolerance which are embodied in the FTBBC design. The
tree is a means of representing a hierarchical structure and
has been applied, in this case, to the fault-tolerance features
distributed within the FTBBC. The level of each feature in the
structure is indicated by its level of indentation within the
tree. A table of functions has been included to show the pur-
pose of each feature of the module.

The features have been classified into four areas of
applicability: detection, containment, analysis, and recovery
from faults. The types of fault-tolerant protection found with-
in the FTBBC are enumerated and their location indicated by the
right-most column.

A number in parentheses against a feature indicates the
fixed number of units contained within the module. Flexibility
in the quantity of units, as used for redundant spares for ex-
ample, is indicated by "(n)".

FUNCTIONS

- configured as HLM or TM
- designated executive or lower HLM,

F-T TYPES

C,R

- dedicated to a specific subsystem
- interfaces redundant
memory chips to internal bus

- selects appropriate memory
module

- stores 16-bit memory
address

- validates address 	lbm,6,12m,D
- decodes high-order address bits 	6,11M,12m,D,
- stores address currently referen-

ced 	 10,R
- detects out-of-range commands to 	11,D

the MIBB
- generates Hamming code . check bits,

analyzes errors in bus and
interface circuits 	G,D

- generates Hamming code check bits
and syndromes (in Ham mode only) 	2m;G,D

- byte-parity generation and
checking 	 lam,lbm,G,D

- analyzes inputs from error coding,
parity check.ing & all self-testing
circuits

- records error conditions from
SDA, gives indication of
Correction, prevents write operation,

• checks SDA circuits 	• 	5m,6,10;R,C,

la,lb,5m,6,D,R,A

• - 8-bit data storage
- stores Hamming code. (Ham mode)
- interfaces 2 parity bits An non-Ham

mode
- on-chiP decoding
- interfaces MDR with spare bit

plane
- interfaces MDR with regular bit

plane

- decodes replacement registers
- used to replace faulty bits in

DBM/CUM
- provides control signals for

implementation'of operation and

2,10D,R

R

4,R

IIIIIIII MI OM 	 Mal IIIIIII MR 	 MI MI 11•11 IIIM UM MI IIIIII

Table 1: FTBBC FEATURE TREE

FEATURES

• SCCM - Self Checking Computer Module (n)
(ULM - High-level Module (n)

or
"UM - Terminal Module (n)

MIBB - Memory Interface Building Block (1)
. (Ham mode or non-Ham mode)

AMI - Address Bus Interface

MAR - Memory Address Register

APC - Address Parity Checker
SNC - Soft Name Checker
EWAR - Error Word Address Register

ORC 	Out-of-Range Command
Detector

ECS - Error Control Section '

SGC • - Syndrome Generators/
Checkers

DPCG - Data Parity Checker/
Generator (Internal bus)

SDA- - Single and Double
Error Analyzer.

ESR/MEI - Error Status Register/
Memory Error Interrupts

DBI -.Data Bus7Storage Array Interface
DBM 	Data Bit Modules (2)
CBM - Check Bit Modules

' 	Bit-Plane Interface

Position Decoder
. 	Spare Plane Interface

Bit Interface Module

RCS - Replacement Control Section
Decoders (2)
Replacement Registers (2)

MCS - Memory•Control Section

FI-T TYPES

•
9,0
8,14a,14b
11m,D

8,11,0

11m,D
12m,5,D,

11,0

11,D

12m,6,D,
12m,6,D,
15,0

Ibm,6,D
11m,D

5,10,D,A,R

5,12,D
I1,12m,D

8,11m
5,D,R

5,8,11,12m,13
D,C,R

13,14a,14b,R

NM Ma MN OM Mill MIMI MI Mal • 111111 OM NM MIMI ell 	IIIIIIII MI UM UM

Table 1: FTBBC FEATURE TREE

4.)

FEATURES

CI - Control Interface
CPG - Clock Generator
KG - Condition Generators (2)
SS - State Sequencers (2)

CSG - Control Signal Generators (2)

CSR - Control Signal Comparator

Core-BB - Core Building Block

CPU (i) Master
(11) 	Check

PCE - Processor Check Element

MCMP - Morphic.Comparators (1)
(ii)

Isolator

MPC - Morphic Parity Check/
Generators (I) & (ii)

CMD - Command Decoders - (2)
Status Registers (2)

BAE - Bus Arbitration Element

Priority Resolvers (i) 'true'
(ii) 'false'

FHE.- Fault Handler Element

Fault Synchronizers (2) .

Conieol Signal Generator

RS - Recovery Sequencers (2)

Manual and External Module Control

BIBB - Bus Interface Building Block
a) Bus Controller or
b) Bus Adaptors (3)

FUNCTIONS

command algorithms
- SCCM/MIBB handshaking circuits
- system synchronization

- implements steps of operation/
control algorithms

- generate signals for register &-
selection networks

- reduction of control signals

- detects CPU/bus faults, collects
faults from other BB's, self-

: disabling
- operates synchronously with

redundant processor
- compares output of processors,

encodes/checks internal:bus parity,
decodes commands on internai bus

- compares address output of CPU's
- compares CPU output with data bus
- allows input data to be passed
.to Check CPU
check/generate parity (I) on
address bus, (ii) on data bus

- generates 2 out-of-range addresses'
- samples fault indicators for access

by external SCCM
- arbitrates internal DMA requests

from other BB circuits
- synchronously compared to detect

faults, arbitrate bus requests
- responsible for overall fault

detécéion in SCCM & limited
recoyery action

- examines signals from within SCCM
& sends MFI to RS

.;• gener.ation of Internal control
signals

- disables outputs from SC-CM/
resets 'CPU's

- clears fault latches/initializes
prograM restart

- programmed as either a or b
- transfers information between SCCM's,
- moves data into/out of SCCM memory

•

- interface between Mill/external bus 	A) 11,D,
B) 12m,D

- translates incoming code from
Manchester-NEZ 4,8,D

la,lb,D

5,12,D

lc,11,R
2,D
lb
lb
lbm,11,R
lb,11,12,D.
lb,D

12m,5m,R

a) 12m,D
b) la,D

8,D
la,5,7,D
12

MR MI OMB OM MI IMO MIMI MUM MUM MIMI 111111 MI MIMI MI MI OM MIMI OM UM
Table 1: FTBBC FEATURE TREE

FEATURES

The Mill
Memory
ALU a)

b)
Internal Registers (2)

EBI - External Bus Interface A)
B)

MNT - Manchester/NRZ Translator

FUNCTIONS

responsible for BIBB processing
requirements; sampling incoming
data, DMA address generation,
word counts, testing control words

F-T TYPES

la,lbac,1d,m,5,12m
lc,8,D,A,R
a) la
b) 5m,11,12m

BAC - Buffer and Logic Control
BAC Control

Command Decoder
State Control
M Counter
Controller Alert Logic

BAC Data Paths
XFR - Transfer Register
CDR - Command Data

Register
Manchester Encoder
Parity check/generate

circuit
BAC Fault Detection Logic

IBI - Internal Bus Interface

DC Reg - Direct Command Register
Address Register
Data Registers (2)
DMA Controller (2)
Command Decoder (2)

• Bus Assignment Latch

Fault Handling Circuits
CONT - the Controller .

CS - Control Sequencer a) & b)

PLA - Programmed Logic Array
MLC - Microprogram Location Counter
Status Register.

ID compare

- detects improperly coded commands 	5,D
- controls input/output mode
- counts incoming/outgoing data words 	8,D
- alerts controller of throughput of

data words, synchronizes A & 8 copies

- serial/parallel conversion
- single buffer for incoming/

outgoing words
- encodes outgoing data
- checks incoming codes, encodes .
outgoing words

- sends Master Fault Indicator
to BIBB Fil

- DMA interface between the Mill/
SCCM memory

- contains fault handling circuits

- one each, incoming/outgoing
- request and acknowledge control logic
- detects memory-mapped commands
- stores number of external bus being

requested
- generates single fault indicator
- generates control signals for BIBB

sub-eiements
- samples circuit conditions within

BIBB outputs: a) data b) parity bits

- generates addresses for CROM
- contains status word for output
- compares hard/soft names with
commands

UM MI IMO I» BM 	IM 	MI MI 	MI Me 	 MI MI MIMI

Table 1: FTBBC FEATURE TREE

FEATURES

Loop counter

TOC1 - time out counter
TOC2 - Lime out counter

CROM - Control ROM

Fil - Fault Handler

IBS - Intercommunication Bus System
IOBB 	I/O Building Block (2)

FUNCTIONS

- underflow signal sent to condition
multiplexer •

- verifies completion of DMA
- detects non-arrival of incoming/out-

going word
- receives addresses from CS, maps

these into control signals
to operate BIBB

- terminates ongoing transmission
when internal BIBB fault detected
stops clock to BIBB, resets pulse

- redundant bus system
- proposed attributes:

F-T TYPES

8,0
8,0
8,0
8.D

la,lb,2,D

5,11,12m,14b
D,C,R

4,R
3,16,1b,5m,11

KEY to types of Fault-Tolerance:

1. a) Parity encoding (double)
b) Parity checking 	"
c) Parity encoding (single)
d) Parity checking

2. SEC/DED (Hamming) code

3. Manchester/NRZ coding
4. Redundant spares
5. Fault indications
6. Self-checking logic circuits
7. Status codes
8. Timers, counters
9. Handshaking
10. Error information storage for diagnostics
11. Duplication
12. Comparison/reduction of results
13. Restart, retry
14. Switched circuit a) manual

b) automatic
15. Special circuits to monitor critical elements
16. Cross-strapping

m 	Morphic attributes

D - Detection
C - Containment
A - Analysis
R - Recovery

4. COMPARISONS WITH OTHER FAULT-TOLERANT ON-BOARD COMPUTERS

4.0:Genera1

Comparisons 	were 	made 	among 	three 	significant
fault-tolerant on-board computing facilities: the UDS/FTBBC,
European Space Agency's On-Board Data Handling (OBDH) System
(Refs.7-15), and the proposed Advanced Autonomous Spacecraft
Computer (AASC) using Intel Corporation's new iAPX 432 computer
and its advanced fault-tolerance extensions (the detail of iAPX
432 fault-tolerance is still restricted information).

The purpose of the comparisons is to place the FTBBC in
perspective and to determine its strengths and weaknesses as a
system. Every , effort was taken to make the comparisons as im-
partial as possible. However, , as is always the case with com-
parisons of objects from different origins, there may be a lev-
el of disposition unknown to the authors, in the form of a bi-
ased selection of features or topics against which comparisons
were made, or the subjective evaluation of scoring by particu-
lar system(s) in such comparisons.

A brief outline of the OBDH and AASC follows.

4.1 Features of the OBDH

The OBDH ié a modular, distributed system which comprises
a Central Unit (CTU), a Data Bus, Remote Terminal Units (maxi-
mum 31), and a Command and Power Distribution Unit (CPDU) as
shown in Figure 4.

The CTU is responsible for timing, internal bus traffic,
time-shared access to the external bus, formatting data for
telemetry purposes, command and housekeeping handling. Option-
ally, it can provide user facilities such as data collection
from sub-systems, dedicated processing power with access to all
OBDH data channels, and user specified pulses. (Ref.16)

The RTUs distribute operational commands and data to other
subsystems and acquire data from these subsystems. There are
three versions available, for single user, multiple users and
multiple users with limited I/O. (Ref.12)

The Data Bus sends commands, data and an operating clock
in a continuous, self-clocking, Litton-encoded form to the RTUs
via the Interrogation Bus. The Response Bus is used for return
messages either to the CTU or another RTU at the CTU's command.
Messages are allocated according to predetermined time-slots
under CTU control. In-flight programming can be performed via
the Programming Bus which is controlled by the Smart-Controller

471.

Fig.4 ESA—OBDH System

4.1.1(4.3

P.Sx•lt ..1

Fig.5 OBDR bus, CPUU, CTU, and RTU

4-2

03 Fe (I.SeetS CASee etSer

JI 1
Jet/.

era

p.
mvem

etommtâ
weiwAry

IPeruu

JMWdAil

ile
reario

fe.s.ach‘se 444

11Me

tI.See

eP.OU

••n etU orIl/

laS ADAM' Bus 9£1.4.a_t

maNit
P"I nMire •

f
eA3 AIPF

kIld1/ eta
01.

rrià RTU

ni 	ni
RTU RTU

lin .

TU

PAYLOAD MCOULE

R1
rn

, 1

OliDli
interface

USER UNITS
SPACECRAFT

switched* - C;71i: power to OBDO

CPt)U F. . 	*

Ix 11111C
CIU

spacecraft
interface

lu

Rx

1

within the CTU.

• The CPDU has the following functions; demodulation and bit
synchronization of up-link telecommand signals, frame verifica-
tion, distribution of priority commands and serial load com-
mands, and configuration control of the OBDH subsystem.

CTUs, RTUs and the Data Bus may be duplicated as required
to provide a redundant configuration as shown in Figure 5.
There is internal redundancy within the RTU and the CPDU. There
is no internal redundancy within the CTU, which must rely on a
standby spare.(Refs.8,12,16) Software fault detection features
include monitoring terminal status, watchdog timers, and detec-
tion of abnormal conditions.

4.2 Features of the AASC

The AASC is an autonomous computer system consisting of
clusters of highly fault-tolerant computer complexes distribut-
ed along inter-cluster buses. A cluster interfaces the
inter-cluster 	buses 	at 	one 	end and, in general, i/o
subsystem(s) at the other, as shown in Figure 	6. 	The
inter-cluster bus is very much like a local area network bus.

The hardware redundancy is provided at several levels
within the system hierarchy: every element of the system may
exist in multiple copies to provide non-dedicated redundancy at
hardware level. These include the following: cluster,
inter-cluster bus, inter-cluster bus to cluster interface,
intra-cluster processor, intra-cluster bus, intra-cluster memo-
ry control unit, and local and global memory modules.

The inter-cluster bus is not specified in detail as its
design is intended to be independent of available technology.
However, a fully distributed architecture is assumed, i.e. no
dedicated controllers on the bus and no polling scheme enforced
over the bus, multi-drop, and a bandwidth of at least 10MBit
per second.

A cluster consists of three sections; the network access
section, the FTC cbmplex, and the subsystem support section. An
example of a typical cluster is shown in Figure 7.

The network access section establishes contacts between
the cluster and the rest of the system. Each of the multi-drop
cdnnections to the intercluster bus is achieved by a Network
Interface Unit (NIU). The NIU handles at least the first two
layers of a multi-layer network protocol. The NIU, in turn, is
connected to an Attached Processor (AP) which processes and de-
als with the issues associated with the network protocol in la-

4-3 •

subsystem
i/o

subsystem
i/o

Loçal'Aren Network Bus

FTC
cluster

FTC
cluster

FTC
cluster

CM:

subsystem
i/o

Figure 6. 	AASC On-Board System

AtiLl

Ap 	CI AP 	04p

LAN BUS

LAN BUS

LAN 13 US

% g
a.
›2

P eep op 1 ete 	__fil'''‘ i
IY. LI C4
CL.

GDP cep

RAM
L4

5Y1 FKT OU-5

S PKT Cus

•SY PO" BUS

Pr 3u5 a--

tr) v•I
•

o ea

• .à

ce.

RAM

k AM

um

— —
1 I qPIP AP

C
li

Js
17.1

VIS

il

11
„ L

‘\7
sm -B.sy TEM

i. S-EbISoRS
AND

I A ert4A--roRS
J

Su r3 s ysTEm

g I

cià e
IP

/)
I/0

Fig...7. A 432FTC cluster and spacecraft subsystems

47-5

yer 3 and upwards. The other end of an AP is connected to an
Interface Processor (IP). This processor is responsible for
managing address windows into the FTC complex: it maps address
spaces defined in the AP into those in the FTC complex, or vice
versa.

The FTC complex is based on Intel's iAPX 432 fault toler-
ant computer. It houses the upper layers of the local intelli-
gence required for the cluster and provides most of the numeri-
cal computing power of the system. It consists of a mesh of
packet oriented buses flanked by processors and controllers.
The System Packet bus handles inter-processor communications,
while the Processor Packet Bus controls distribution of infor-
mation between a processor and a number of System Packet Buses.
The former.is supported jointly by all processors in the com-
plex, while the latter is sponsored by a single processor - ei-
ther a General Data Processor (GDP) or an Interface Processor
(IP). At the intersection of the processor packet buses is a
Bus Interface Unit (BIU), which controls information transfer
between them. The Memory Control Unit (MCU) attaches a memory
module (RAM) to the System Packet Bus. The intelligent memory
controller converts logical address spaces implied on the pack-
et bus into physical addresses in the memory module.

The fault-tolerance embedded in the FTC complex hardware
surpasses that of any known computer system. The current ver-
sion of GDP provides a throughput of approximately 0.2 MIPS -
(Million Instructions Per Second), or :the .capability of a typi-
cal minicomputer. The multiproceàsing is performed in a manner
completely transparent to the overlaying software structure.
The over-all computing power of the. cluster is determined as a
function mainly of the number of GDPs and system-packet buses.

The subsystem'support section handles all non-network i/o
to and from the FTC complex. It employs the same IP-AP struc-
ture as in the Network - Access Section. In . place of NIUs,
however, the AP is connected to a structure that .controls an
i/o Subsystem. The i/o subsystem in this application would be a
satellite subsystem such as an A0cS, a temperature control sub-
system, an . uplink/downlink,channel, an on-board power manage-
ment subsystem, etc. The - fault-tolérance within the subsystems
will be provided using known FTC techniques, including .the ,use
of multiple copies of•Such a subsystem.

•
The software will consist of three major module groups:

the operating system and its support, the fault-tolerance man- -
agement software,' and - the application software. They will be
developed as Ada packages and will remain highly configurable
to permit intense customization by the application system de-
signer. - Together, modules from these three groups will-'estab-

4-6

lish and support hierarchical process structures which may dy-
namically change shape during their life according to the needs
of the system.

The execution of such software will be carried out under
the protection of the data structure protection mechanism in-
herent in the FTC complex hardware. This implies the extension
of the enforcement of Ada type-checking concepts into the exe-
cution environment (in Standard Ada, this is done only at com-
pile time).

4.3 The Basis for Comparison

For the UDS/FTBBC system, a system with a typical UDS configu-
ration that would employ three HLM-1553A bus pairs, each having
several TMs is considered. For the OBDH system, a configuration
with one CPDU, two CTUs, and two sets of OBDH buses, each sup-
porting several RTUs, is assumed and is illustrated in Figures
4 and 5. For the AASC system a few clusters are envisaged, each
containing several GDPs (Ref.17) and IPs, several packet buses
and BIUs that inter-connect processors, and memory modules and
MCUs. Each cluster is linked together by wide-band local net-
work arrangements similar to Ethernet, as shown in Figures 6
and 7.

While the AASC is only a hypothetical system, its detailed
design is well underway and supporting VLSI hardware and
software components are the subject of the manufacturer's ex-
tensive development efforts. The system is considered here as a
reference point in order to evaluate the other two systems aga-
inst the latest technological developments in the area of
fault-tolerant computing.

Comparisons are made on several aspects of these systems
including over-all system design, software, hardware, and phy-
sical characteristics. In those comparisons which are less open
to subjective evaluations, a score is given on the scale of 0 -
9 and a weighted score (0 - 81) is calculated in an attempt to
establish the basis for a quantitative comparison. Such weight-
ed scàres are tabulated for each system to yield accumulated
sums. Note that the weighting of features, individual system
scores and hence the weighted scores themselves, may be subjec-
tive. The method is nevertheless preferrable to arbitrary,
non-exhaustive comparisons.

As the result of the comparison is greatly in favour of
the AASC, the authors would emphasize that they have made every
effort to remain unbiased. The capabilities of the AASC can be
fully demonstrated only after the details of the fault-tolerant
extension to iAPX 432 are made public.

4-7

Explanatory notes to Table 2 are tndicated under à #n"i and.,aré
appended to the table.

9 81 multiple mission 	9 	yes
potential

9. 81 . yes 981 	yes

115

#18

9 72 	clean

5 35

5 40 	fully trans-
parent

9 72

110 	9 63

9 72
#14

very wide

major project 	117 	4 20

9 63

9 81

9 72

low - automated
#20

very . high - auto-
mated 	121
possible 	122

9 A5

6 , 42

7 63

3 24

IMMI MI MIMI MIMI MI MU OMMI MI IMO IIMMI 	IMMI IMMI MIMI OM MUM OMB NMI MIMI•

Table 2: COMPARISON OF FAULT-TOLERANT ON-BOARD COMPUTER SYSTEMS.

FEATURES

Wt.

UDS/FTBBC

Sc.

ESA-OBDH

Sc.

AASC

Sc.

system hierarchy 	8 	sets of (HLM-bus- 	7 56
TM'S) 	11

CTU-owned buses 	5 40 	fully distributed 	9 72

system-wide synch-
ronization

estimated software/
hardware effort
ratio for typical
application

One HLM as clock
master 2.5ms 	12

30% : 70%

CTU generates bus-
clocks at 500KHz

40% : 60%

tightly synchron-
ized buses.

80% : ,201

mission to mission
adaptability

9 expected to be un- 5 45
stable in larger
mission 	14

•

limited to small to 6 54
medium scientific
missions 	• 85

highly
lléxible

. 9 81
16 	'

4" •

VD

subsystem interface: 	-
- clarity 	17 8

- load.range 	7

- system transparency 8
Ill

system test and
validation. éstimates:
- cost of setting, up 5

test procedure
- cost of testing and 7

validation
- quality of testing 9

and validation
- possibility of 	8

software validatiOn

HLM involvement
touchy 	#8

up to the capa-
city of MIL-STD-
1553A bus

HLM-sets aNaya
visible 	112

average

high

average

difficult

6 48 	clean

7 49 	multiple RTU's,
but limited 	19

4 32 CPDU/CTU alWays
visible 	113

8 40

4 28 average

6 54

A 32

low-average 	1 16

119
average - high

very difficult

comPliance to the
-FTC rules: 	1 23
-(11, single point 	.. 9 	HLM comprises a 	".
'of failure 	localized, hardcore

failure point 124
point of failure.
CTU, though limit- -
ed, can create local
paralysis if it
fails 	125

6 54 	CPDU is a single 	4 36 	cap remove ail 9 81
hardcore 	. • 126

FEATURES UDS/FTBBC ESA-OBDII - AASC

-[2] fixed master/
slave relationship

Sc.

5 40

Sc.

9 72 8 	Yes, FILM-TM's 	6 48 Yes, CTU-RTU's none fixed 	827

Sc. Wt.

- [3] fixed fault
arbiters

8 	fully distributed
into hardware gates
hardware dependence

128

3 24 	fully software
controlled 	129

9 72 6 48 CTU does it all

- [4] module decoupl- 8
ing

inter-bus daisy 	• 6 48
chaining ambiguous

130

multiplexed bus
protected little

rigid capability-
based isolation

5 40 9 72

-[5] module
strength

8 	good design 	. 	7 49
language

by programmer
discipline only

4 28 	program, language,
compiler and 0/8,
hardware discipline

9 72

9 72 7 56 by programmer
discipline

8 	by programmer 	7 56

discipline only
0/S, language
and hardware
encourage layeri .ng

- [6] subsystem lay-
ering (vertical
decoupling)

maturity of
technology

9 	breadboarded 	135 G 54 in-orbit under development
136

9 81 6 54

• ill IMO BIZ IMO 	MI OM Ili 11111 UM OM III UM Ili OMOM IMMI 	UM

e•••

FL
o

ground/on-board

communications

ASM features

building block
type

not discussed

8 	autonomous lower
132 	level fault

recovery

1-mega bit/sec
maximum

5 40 	- entirely ground- 3 24

.controlled

• - block telemetry
• a move toward on-

board processing

as much as tech- .

nolOgy can offer131

- hierarchical fault 9 72

handling strùcture .

- hardware fully
autonomous

- large CPU throughput
- most of ASM condi-

tions can be-met

non-dedicated and
some dedicated
redundant computers
and their coMponents

5 	non-dedicated but 	7 35 	dedicated computers 5 25
pre-assigned comp- 	(xxU°s) with some
uter units (SCCM's) 	component options
and their components

9 45

building block
granularity 	133

data units/formats
134

module and submod-
ule levels

MIL-STD-1553A frames,
no application level

. formats

module level

ESA standard
telemetry

submodule level

Ada datum - packet
bus frames
ISO 7- layer inter-
connect message mode):

AASC FEATURES 	UDS/FTBBC ESA-OBDH

Sc.

7 63

6 48

Sc.

5 45

9 72

4 28
5 25

9 45'

9 45

9 63
142

BIM Ng 11111 	 BIB NM MI 111.1 	. 	MN MI 111111 MI MI UN

space qualifi-
cation

processing power
(minimum aPpli-
cation)

Wt.

9 	some component
level difficulties

8 	1.2 MIPS approx.

now

0.8 MIPS approx.

Sc.

.981 	by 1986

4 32 	0.2n- 2.4 MIPS appr.
n: 1 of clusters
(0 < n < 256) 	136a

1—n

Operating System:
- name
- distributed
- multitasking

- layered structure
- hierarchical struc-

ture
- implementation

language
- inter-processor

communication
- inter-module

protection

i/o processing:
- response granular- G

ity
- timing
- mode
- realtime access

customized 0/S
some
limited - back
ground/foreground
some
Some 	•

restricted 	137

violation can 	3 24
occur 	139

5 - 7 ms 	424

restricted 	4 28
polling 	5 25
low level modules

no
no

not visible

assembler

controlled 	138

violation ,can occur• 4 32
140

500 microsec.
approx.
controlled
polling
low level modules,
FORTRAN libraries

iMAX432
yes
yes

yes
yes

fully asynchronous;
capability based
fully protected; -
capability based.

fully asynchronous
event drivén
structured data
access .

7 	UDS Design Language 7 49

G 36 	10 microsec. approx

9 72

9 54 .

9 63
9 45

3 21 	Ada or Ada+Pascal 	9-63

application software:
- design language 	6
- coding language 	6
- modules

- structured prog- 	8
ramming

process-processor 	9
interdependence

UDS Design Language 7 42
UDS Design Language 7 42
subroutines

can be used - 	8 64

dependent 	4 63

flowchart
assembler/FORTRAN
subroutines/
functions
can be used at
design level only
dependent

424 	Ada 	954 .

530 	Ada 	9 54
subprograms, tasks
packages

5 40 	fully enforced 	9 72

4 63 	independent 	. 141 	9 81

3 .15

5 25

7 49

CPU type

CPU bits'

number of proces-
sors in a system

5 	TI9900, MCG8000

5 	16

7 	about dozen

HARRIS 6100

630 	12

7 49 	about dozen

iAPX432

32 - 80

up to 31 per
cluster

6 18

nli 	MI BM MI

FEATURES

MI 	IM

ups/FTEN3c

11111

ESA-OBDH

ffl Inn M

AASC

Sc. Sc.

9 54 2 12 	yes - BIU 848 	no CPU unloading 6 yes - BC

yes yes hardware fault
confinement

not clear

hardware reconfig-
uration

8 	no - software mit- 7 56
iated. Some cross-
strapping

2 16 	yes - fully autom- 	9 72
atic and transparent

no

	

530 	yes •

	

'6 42 	- CPU, bus, memory,
i/o channel

9 54
9 63

1APX432 packet bus
and a LAN bus
parallel/serial(LAN)

(5MHz)

763 • npt planned yet 	3 27 	prototyped 	9 81

processor modules:
- system executive

module
- high level module
- low level module

8 	executive HLM

8 	HLM
TM

6 48 	CPDU

756 	CTU
RTU

4 32 	none

6 48 	GDP
IP,IPL,AP

9 72

146 	9 72

	

Wt. 	Sc.

	

6 	HCM bus-controller 742
initiated DMA

CTU controlled
. DMA

7 42 	bus-controller cont- 9 54
rolled DMA with
queueing

inter-processor
communications

4>

F'

redundancy manage-
ment
- defined

• - elements

- methodology

VLSI implementation

system bus:
- type

- format
- clocking

- speed
- capacity
- mode
- adaptor

• - isolator
- access
- transfer control
- bus-CPU relation
- max. length
- media
- broadcasting
- priority control

6 	yes
7 	CPU, bus, memory,

i/o channel

hot/blank spare

9 	being designed

MIL-STD-1553A

serial
Manchester code

BA/BC

5 	slotted
7 	semi-distributed
8 	semi-fixed 	143

twisted wire
no
preassigned and
fixed

9 54 	discussion only .
9 63 	CPU, bus

ESA Standard OBDH
bus
serial
baseband modulation
Litton code
1Milz

'full duplex
Bus Adaptor/RBI
transformer

6 30 	slotted
7 49 .centralized
5 40 	semi-fixed -

20 m. approx.
twisted shielded

535 	yes
4 24 	preassigned

full duplex
BIU
optical coupling .
asynchronous . 	9 45
distributed 	9 63
séftware controlled 	9 72
511500m. approx.145
bàckplane/Coax cable•
yes 	. 	9>63
software controlled 	9 54

7 63 	not defined yet 	- 3 21 	—"marriage concept 9 63

6 30
• 3 21

144 4 32

pair
9 63
9 36

WI:. Sc. Sc . Sc.

WEIGHTED-SCORE

TOTAL 3150 '3062 2179
===.

1835
a==.

M1.11311M n1111MIIMMI

FEATURES

BM IBM 	 MIMI

UDS/FTBBC 	ESA-OBDH 	 AASC

7500 cm cubed approx.

8.2Kg approx.

21W

- i/o module
- memory control

module
- multi-processing

boards

minimum packaged
volume

weight (minimum
mission)

power consumption
(minimum mission)

TM-IOBB

TM-MIBB

7 	centrally
controlled

customized

RTU
RTU

6 42 	preassigned

EUROCARD (?)

AP
MCU

5 35 	fully transparent
147.

7. *Intel 432 standard

9 63

e-

4-14

. #1 	An HLM (high levelmodule) nowne: an MIL-STI>1553 bus,
onto whieh .several TMs (terminal modules) • are attached.'

#2 	The UDS has a 2.5 ms System-wide cloçking system called-
RTI. The'clock is generated by one of several.high level
modules (FILMS) deSignated as the command/centrol computer,
or Systeffi executive HLM. The clock is used by other HLMs
and TMs to generate . predisely time&results.

#4 	The lack of system level consideration is evident through
the absence of a structured and detailed discussion on
software and system architecture in functional terms and
will likely cause difficulty when designing a large scale
and complex applications.

#5 	The system can only have one or two system bus(es), each
controlled by a control unit (CTU). The traffic capacity
of the bus is low, and so is that of the satellite to
ground link (Ref.13).

#6 	The well-disciplined flexibility inherent in the design
of the processor building blocks can be easily applied to
give a wide range of mission adaptability.

#7 	A measure 6f how easy and unified the method is of at-
taching the payload to the computer system.

#8 	The HLM tightly controls the use of a bus. A numbe'r of
TMs can then be attached to the bus to be put under the
control of the HLM. The scheme involves careful prepara-
tion, taking into account various factors such as the bus
priority, number of TMs, required response time, TM to TM

I'

traffic volume, HLM monitoring actions, etc. Futhermore,
this HLM-bus-TM set-up must always exist in relation to •
other similar sets, as these sets are linked together by
a hardware priority link.

#9 	The capacity of the OBDH bus is fairly low (Ref.13).

#10 	The processing, memory, bus and i/o channel capacities
are all adjustable within a wide range to the demand im-
posed by the load.

411 	The measure of shielding thé computer system's ideosyn7
cracies (unnecessary details) from'the : user subsystem.

#12 	A 'subsyStem virtually belongs to an: HLM through e TM. It
has to be—able to issue requests to..the HIM supplying

EXPLANATORY NOTES TO TABLE 2,

• physical çonneCtion information 	(address, 	size 	of
transfer) to aChieve a subsystem to subsystem: data
transfer.

#13 	A subsystem belongs to the CTU through the RTU(s). Every
i/o a subsystem makes is controlled by it. CTU controls
several subsystems. A CPDU controls all CTUs and RTUs.
The subsystem must be aware of these facts (Refs.8,14).

#14 	Packet-oriented inter-process (and NOT inter-processor)
protocol and inter-cluster protocol will be the only sig-
nificant interface between subsystems, between a subsys-
tem and computer systems, or between an on-board function
and ground functions. Such protocols are software defined
and software controlled.

#15 ' This would be. equivalent to the cost of setting - up any
other space qualification process invOlving VLSI comPo-
nents. Some effort has already been made in this - area
(Refs.11,18-24)

#16 	ESA/ESTEC has started the basic hardware design with the
anticipation of extensive validation and test require-
ments (of hardware) for each mission. (Refs.11,18,19,20)

#17 	Because of the higher level of sophistication involved
both in VLSI hardware and software, and the volume of
processing capability expected on the system, the initial
set up would be fairly expensive. However, the resulting
test/validation facility would be highly automated.

#18 	Most of the testing process will have to be set up anew
each time a mission is defined because of the lack of
designed-in testing concepts and facilities.

#19 	The same testing procedure will be modified in accordance
with the mission profile and applied using identical test

- facilities. However, most of the test will be done manu-
ally.

#20 	The 	only 	way 	to 	rationally 	test 	sophisticated
software/hardware as complex as this would require a
highly sophisticated automated facility. A series of ex-
tensive tests would then be possible without much human
intervention.

#21 	By minimizing human intervention in the validation and
test process, the chance of including operator and other
environmental errors would be greatly reduced. By system-
atically executing a set of predefined test sequences

4-15

1

I.

geared to the mission profile, the reach of such valida-
tion and tests would be phenomenal.

#22 	Highly-structured, 	x1gidly-typed 	capability 	based
languages (such as :Ada) and process organization (Ada
packages, task's and procedures) supported and 'enforced bY
the iAPX 432 architecture should provide an opportunity
for eventUal àutomatic'softWare Validation.

#23 	See Appendix B, Fault Tolerant Computing Design Rules.

#24 	There will be several HLM-bus-TM(s) sets within a given
UDS system. While distributed to a certain extent in this
way, nevertheless, the HLM constitutes a single point of
failure within a set.

#25 	The CPDU is clearly a single point of failure (Ref.10).
Under its control, the system can take up to two CTUs.
Each CTU may in turn support several RTUs. Access to the
bus is fully controlled by CTUs. Should one CTU fail, the
chance of some RTUs failing is great, although in theory,
the other CTU is supposed to take over the failed CTU.

#26 	All five elements of the system (GDP, IPL/IP, BIU, MCU
and AP) may be multiplied in an orderly fashion resulting
in removal of any potential hardcore.

#27 	From time to time the software may designate masters and
slaves. However, such dynamic designations are not fixed
as implemented in hardware.

#28 	The FTBBC uses very deterministic error detection methods
which should be sufficient for detecting simple faults.
However, if there is an error in this detection logic, or
if a fault involves interaction among more than one SCCM,
this fixed detection mechanism may not always be effec-
tive.

#29 	Any of the GDPs in the cluster can be designated as an
arbiter from time to time, thus avoiding the establish-
ment of,a fixed arbiter-arbitee relationship.

#30 	How are the priorities defined? What happens to a
lower-priority HLM and its bus traffic if a high-priority

• HLM attempts to preempt them? What if a low-priority HLM
loses its bus and attempts to use one which has a higher
daisy-chain priority? The fact that buses are not
non-dedicated spares may make the algorithm for granting
the bus during reconfiguration extremely complicated.

4-16

#31 	The external communication is 	separated 	from 	the
inter-process, inter-processor, .or inter-cluster communi-
cation. It can be designed to meet whatever the require-
ment.

#32 	The USAF, in conjunction with NASA and JPL, is developing
a concept called Autonomous Spacecraft Maintenance.
(Ref.7) It is intended to be applied to all future satel-
lites launched after 1990 by the US government. Their re-
port, "Final Report of the Autonomous Spacecraft Mainte-
nance Study Group"(Ref.25), lists conditions for a satel-
lite to become fully autonomous. Here, three candidates
are screened against this set of conditions.

#33 	A measure of how flexible a configuration and reconfigu-
ration can be.

#34 	Assuming that in a layered data-processsing system, data
formatting occurs at several levels.

#35 	The system level proof-of-concept breadboarding for the
UDS was completed in 1978. The FTBBC breadboarding to•
prove the hardware viability has been partially completed
and the testing was started in the fall of 1981. Each bu-
ilding block must be created in vLSI form for actual
in-space use.

#36 	Most of the submodules are now being put into VLSI -
there are two already in that form and others coming by
December, 1982.

#36a A cluster may have up to 31 iAPX 432 processors., each
having 0.2 MIPS CPU power. If we configure these into the

• most , fault-tolerant configuration, the cluster will pro-
vide approximately 0.8 MIPS throughput in a virtually
destruction-free set up.

#37 	All inter-processor communications are governed by the
.HLM thet owns the bus. There are three HLM-bus combina-
tions in the system. Any TM on a bus must be cleared by
the HLM before data could be transferred.

#38 	There are two sets of system buses in the system, each
governed by a CTU. The CTU dictates every transaction
that an RTU would make over the bus either to other RTUs
or to the CTU (Ref.10).

#39 	The . communication is not based on a rigid layered proto-
: CO.1. Hence the inter-layer protection virtually does not

exist.- That the actual transfer occurs in DMA mode even

4-17

increases 'a chance of contaminatinglarge'r memory space
in a short time should a prOtocol error: occur.

#40 	Same as #39, except that a relatively low traffic rate
may lessen the damage in the event of a spillage.

#41 	In iAPX 432, processes exist apart from processors as an
independent abstract entity. This is the basis for the
true user-transparent multiprocessing (for increased
throughput) and the dynamic reconfiguration scheme (reli-
ability feature) of that computer.

#42 	An AASC cluster can contain up to 31 processor modules
(GDP or IP), eight packet buses, and 63 total modules in-
cluding MCUs and BIUs.

#43 	As stated in note #39, a bus belongs to a control module
(an HLM) and users (TMs) need its permission to access
the bus. A TM typically is connected to more than one
bus.

#44 	A user module has a choice of selecting one of two buses.
The selection is not transparent to the user or software.

#45 	Within a cluster, parallel packet buses link processors
and memory elements. Inter-cluster communication is achi-
eved by multiple local area network buses.

#46 	A system executive HLM virtually controls the mode and
extent of multi-processing.

#47 	Because of the successful separation of processes from
processors, multiprocessing occurs in the most desirable
form, namely, complete transparency to the user.
Processes are dispensed from dispatch port(s) to physical
processors. Because of this divorce of the two objects,
the number of processors actually available in the system
only affects the throughput and reliability of the pro-
cess being executed and is completely transparent to the
process as a logical entity.

5. DISCUSSION AND ANALYSIS

5.0 General

It is evident that the global development plan that in-
cludes both the UDS and FTBBC has been carried out in a proper
top-down fashion, finding its inception in the TOPS (Thermoe-
lectric Outer Planets Spacecraft) and other related projects
conducted at the JPL in the early '70s. However, in spite of
the great foresight in these projects, several major develop-
ments have taken place elsewhere, concurrently with the JPL ac-
tivity, which have profoundly affected the evaluation and the
implications of JPL's efforts. These external developments are:

- the flourishing of distributed computing and local area
network technology in business, industrial and military
sectors

- substantial refinements and proliferation of structured
design and related software engineering techniques

- further diversification of computer architecture

- drastic improvements in the availability of VLSI compo-
nents to system designers

- further study into fault-tolerant computing principles and
practices.

The following subsections provide brief discussions and
assessments of the impact which each of these developments
might have made on the implications of the current FTBBC pro-
ject.

5.1 Distributed systems and local area network.

Since effective fault-tolerance in the UDS/FTBBC depends
largely on dedicated and non-dedicated redundancy in the form
of distributed processor arrangements along multiplicated

buses, any progress in the area of distributed processing would
have the potential for a significant contribution to the design
of the UDS/FTBBC. This is particularly the case with the emer-
gence of local area network concepts such as Ethernet or
IEEE802. In comparison, the MIL-STD-1553 buses (1553A and
1553B) are in several ways overly restrictive. In retrospect,
the restrictiveness of the 1553 bus often resulted in an
over-all system inflexibility in reconfiguration and a system
level vulnerability in the presence of faults. Dr. Rennels ack-
nowledges that the FTBBC bus structure is undergoing redesign

5-1

at his laboratories to incorporate an enhanced Ethernet-like
bus concept.

Another, more profound impact is felt in the emergence of
the concept of fully non-dedicated distributed processing.
There have been several efforts to implement this using the la-
test 16-bit mini and micro computers (SARGOS - Ree.15, C.Vmp -
Ref.26, ARPANET IMP). In addition, movements towards establish-
ing a distinction between the physical reality of computing and
the manifested dynamism of program execution is becoming incre-
asingly noticeable in modern computing facilities. Intel's iAPX
432 system, for example, completely separates processes from
processors, implementing in VLSI what the SARGOS ground station
computer system attempted to do using conventional 16-bit mi-
croprocessors. The significance of this in the light of imple-
menting truly user-transparent multiprocessing, as well as pro-
viding a highly flexible reconfiguration mechanism, is obvious.
When combined with hprdware supported, capability-based data
protection mechanisms (as compared to conventional
memory-protection mechanisms), the reliability of systems con-
structed using such components is expected to be phenomenal.
The HLM-controlled data transfer mechanism of the FTBBC can be
said, in comparison, to be less distributed, less specialized
and more restrictive.

5.2 Structured design and software engineering techniques.

After a decade of often turbulent experiments with top-
down/structured system techniques by the data processing and
software development industries and academia, it is now obvious
that the methodology .has gained a considerable acceptance. As a
side effect, the distinction between hardware and software be-
came of decreasing importance in system design. This leaves the
definition of principal system function and its systematic de-
composition as the major concerns of the design process.

Developments in semiconductor technology permitted the im-
plementation as hardware components of many increasingly higher
level functions traditionally supported by software. This
further blurred the boundary between hardware and software as
seen by the system designer. The trend continued until the dis-
tinction became a convenience or an economic issue rather than
an issue related to design principles.

Both the UDS and FTBBC design phases were completed well
before this revolutionary change in system design concepts hit
the world. As a result, they did not receive some of its bene-
fits. This can be seen in •the FTBBC, for example, in the ab-
sence of continuous high level to low level support for

5-2

fault-handling. In general, a given system is assumed to have
fault potentials that form a hierarchy in terms of "levels of
abstraction" of such faults; there are faults that may occur at
higher as well as at lower levels in the system hierarchy. The
difference in the diagnosis and remedy of system faults at both
extremes could be •as disparate •as those required for curing in-
somnia and removing a sliver from a fingertip, to give a human
analogy. Most error handling in the UDS/FTBBC appears to be
concentrated in the lower layers of the hierarchy, or in the
FTBBC hardware. Concerns over fault-handling in the higher or
software levels are mentioned in the study but are not as obvi-
ous or detailed.

Other developments in software engineering include the
discovery of elaborate module decomposition rules, namely G.
Myer's "module strength" and "module decoupling" rules
(Refs.27,28). Seen in this light, sortie of the ways in which da-
ta and control exchanges occur between HLMs and TMs may be con-
sidered questionable, although they are very much dictated by
the MIL-STD-1553A bus protocol. For example, the extreme au-
thority given to an HLM in such a situation permits it to step
into the data space of a subordinate TM to set up a data block
transfer. This may result in reduced modular strength of the TM
(in this case, a TM is a combined hardware/software entity) and
increased modular coupling between the HLM and TM which might
have subtle yet potentially drastic side effects.

5.3 Advances in Computer Architecture and VLSI components

The divergence of computer architecture has started and
its rate ' has accelerated since microprocessors came into wider
use. Several interesting computer architectures have been at-
tempted to suit specific application needs (minicomputer arrays
such as C.Vmp of Carnegie-Melon University, bit-sliced micro-
computers for applications that require an extreme real-time
response, processor arrays and pipe-lining for radar image pro-
cessing, to pick a few). Computers are no longer limited to von
Neumann architecture. Over and above the ordinary demands for
increased throughput and reliability, there is a general trend
for multiprocessing to support a higher degree of process con-
currency and other dynamic requirements. Also of importance are
the sophisticated memory access and protection schemes which
are needed to maintain the increasingly complex data structures
being utilized in sophisticated execution environment.

Similar philosophical changes = are taking place in the
software world, as is seen in the development of the Ada pro-
gramming language and Ada program development and exécution en-
vironment issues. Tighter data structures and procedure con-

5-3

trois, and a need for clearer module encapsulation are demanded
by Ada in exchange for an added fluency- in establishing process
ccincurrency.,

While the FTBBC's architecture is the result of a highly
innovative design concept, it has not successfully accommodated
many of these external conceptual developments, most of which
became known after the UDS/FTBBC was well underway. In particu-
lar, strict data protection measures and the "liberation" of
concurrent processes from tight synchronization requirements
are not evident in the design.

The FTC expansion of the above mentioned iAPX 432 archi-
tecture will witness the implementation of building block con-
cepts, similar , to those developed for the FTBBC, as commercial-
ly available VLSI components. There are differences between the
two. However, the degree of similarity between the components
in the two computers is of more importance. The BIBB, MIBB,
IOBB, HLM and TM each has a functional counterpart in the BIU,
MCU, AP, GDP and IPL, respectively. This can be viewed as indi-
rect but strong support for the veracity of the original
UDS/FTBBC approach chosen by Dr. Rennels and his group.

The advantage the designer of any on-board computing fa-
c il ity would have over the FTBBC is that all the theoretical
and technological developments since the start of the UDS and
FTBBC projects can be now evaluated and systematically incorpo-
rated into a new design.

5.4 Post UDS/FTBBC fault-tolerant computing developments

The fault-tolerant computing issues caught the attention
of the general computing community in the early 1970s. Since
then interest has been steadily growing mostly among research-
ers, designers, and project managers involved in aviation or
space-related projects. The trend will not be limited to gener-
al applications but will be shared by any field where system
reliability is of importance. It is anticipated that sophisti-
cated fault-tolerant features will become the norm rather than
the exception in many such computing facilities.

The Annual International Conference of Fault-Tolerant Com-
puting (FTCS) is one forum where results from on-going studies
and experiments are exchanged. At its last meeting (FTCS-11,
June 1981, Portland, Maine) a trend towards clearer classifica-
tion and axiomization of fault-tolerant system theories and de-
sign methodologies was noticeable. The following is a summary
of a report, compiled by Eidetic Systems Corporation on the
significant activities at the conference:

5-4

1

1

1 - J. Kuhl and S. Reddy of the University of Iowa proposed a
revised diagnosis model that would be useful in establish-
ing a system level fault profile in a fully distributed
system (Ref. 29). It is stressed in the study that even to
identify a faulty unit in such an environment is not a
trivial task. The theory also implied the uselessness of
facilitating a centralized fault-arbiter, supporting the
third rule of the FTC Rules (see Appendix B).

- A similar theoretical study was made by J. McPherson et al
of the University of Wisconsin, Madison, using the UDS as
a model (Ref.30). They have developed a set of theorems
that describes the correctness of the system in the pres-
ence of faults. The theorems are developed for various
control 	structures realizable within the global UDS
scheme. The process-oriented guardian-ward relationship,
as they call it, also implies a support for the second
rule of the FTC Rules, as the relationship takes processes
rather than fixed (hardware) processing units as the com-
ponents of the control structure.

- A remarkable development in the area of fault-tolerant da-
ta structure was presented by J. Black of the University
of Waterloo (Ref.31). This unique study not only classi-
fied various data structures in terms of robustness aga-
inst faults; but went on to suggest algorithms for, the de-
tection and correction of faults applicable to s'orne of the
data structures.

- W.G. Wood of the University of Newcastle upon Tyne reports
an inter-process protocol model that aids the recovery
process in a distributed system (Ref.32). His theory is
one of the first such studies that address issues of reco-
very from higher level faults (that occur within processes
rather than processors or other hardware elements).

- A theoretical study by C.L. Kan and S. Toida of, the Un-
iversity of Waterloo also demonstrates the hierarchical
nature of the fault and fault-tolerance within a system.by
describing the application of "fault-tolerant graphs"
(Ref.33).

- Representing the French effort to establish a country-wide
distributed fault-tolerant database, P. Azema of Labora-
toire d'Automatique et d'Analyse des Systemes du C.N.R.S.
of Toulouse and his group are working on the application
of computer networking technology to establish system lev-
el fault-tolerance (Ref.34). In particular, he described
how they would establish a system-wide fault-tolerance us-
ing the Transport layer of the multiple-layer interconnect

5-5

1

protocol model (such as ISO's 7-layer interconnect model).
The study represents the uniqueness of several distributed
system studies in Europe, many of which, like this one,
utilize a Petri-net model as a study tool. The application
Of system wide fault-tolerance, as represented by this
study, is essential to a successful fault-tolerant space-
craft system in its entirety.

- A study of the topology of a distributed system to deter-
mine a highly fault-tolerant computer architecture was
conducted by D.Pradhan of the Oakland University of Ro-
chester, Michigan and S. Reddy of the University of Iowa
(Ref.35). A topology that permits efficient routing and
readily distributed fault7diagnosis is proposed.

1

5-6

6. CONCLUSION •

The extent of the fault-tolerant features of the FTBBC
was revealed in this study. The FTBBC was then compared with
two other on-board computing facilities which have similar
objectives; an existing European system developed for un-
manned applications (ESA/OBDH), and the preliminary design
of a proposed system, the AASC, which would be implemented
using the latest available technology with potential for
utilizing future developments.

The VLSI implementation of the FTBBC study, begun in
1972, has been a pioneering venture in providing
fault-tolerance combined with versatility in a spacecraft
on-board environment and has been instrumental in pushing
the state of the art a stage further. It .has, however, been
subject to various constraints; historic and economic consi-
derations amongst them. The hardware experience of the de-
sign team has resulted in an excellent level of hardware
fault-detection and confinement but there are ambiguities in
its diagnosis and recovery capabilities. The enforced use of
the MIL-STD-1553A bus has entailed restrictions in perfor-
mance and expandability. Its custom-built operating system
also has limited future capability and there would be struc-
tural restrictions placed on applications. The software in-
terface is not clear and attention to the design of
fault-tolerant software is lacking. Space-qualification is
still in progress and, at the time of writing this report,
there is some doubt as to the probability of the project be-
ing completed because of economic constraints.

The OBDH, on the other hand, has been space-qualified
and has good test procedures in place both for hardware and
software. The project has been completed, although there are
some on-going modifications. There would, however, appear to
be limits to its operating system capabilities and in its
adaption to future missions. Its design, too, is hardware
oriented. The level of its hardware fault-tolerance does not
have the same sophistication as the FTBBC and its design vi-
olates the FTC rules in some critical areas. The
micro-electronics technology used in the OBDH is now becom-
ing partially obsolete.

Since the inception of these two computers, there has
been rapid progress in many pertinent areas such as system
design methodology, advanced high-level language concepts,
software engineering techniques, computer communications,
VLSI technology, computer architecture study, and

1
fault-tolerant computing theory and practices. It is felt
that, in view of the current trend towards greater
fault-tolerance and increased on-board processing power, ad-
vantage must be taken of this progress in order to achieve a
computer system capable of meeting these goals. As the de-
sign of the AASC shows, such a system is a viable concept.
Furthermore, it would be capable of surpassing in perfor-
mance, reliability and cost-effectiveness, any existing mi-
crocomputer facilities developed for on-board use.

•

6-2

REFERENCES

1. George Gilley, "Digital Hardware for Use in Spacecraft
Control Applications" AAS 80-031.

2. David A. Rennels, JPL, "Fault-Tolerant Building Block
Computer Study" JPL Publication 78-67, July 15, 1978.

3. David A. Rennels, Algirdas A. Avizienis, Milos D. Erce-
govac, "Fault-Tolerant Computer Study - Final Report"
JPL Publication 80-73

4. David A. Rennels, B. Riis-Vestergaard, Tyree, "The Uni-
fied Data System: A Distributed Processing Network for
Control and Data Handling on a Spacecraft" NAECON '76
Record. p.283-289.

5. Fred Lesh, Paul Lecoq, JPL, "Software Techniques for a
Distributed Real- Time Processing System", Proc. IEEE
National Aerospace Electronics Conference, NAECON '76
Record.

6. Eidetid Systems Corp. "Towards Autonomy in Spacecraft
Computer Systems", ESC-SP-001, July 1981.

7. G.C. Gilley,. " Fault-Tolerant Design and Autonomous
Spacecraft", Aerospace Corporation, Los Angeles, Calif.

8. P. Lo Galbo, "ESA On-Board Data Handling System Con-
cept." Proc. of Internat. Conf. on Spacecraft OBDM, Oct.
1978.

9. E. Mattson, "Signal Processing on Board Scientific Sa-
tellites" Proc. of Internat. Conference on Spacecraft
OBDM, Oct. 1978.

10. P. May,(ESA/ESTEC), Noordwijk, "ESA Approach to OBDH
Technology" Ptoc. of Internat. Conf. on Spacecraft OBDM,
Oct. 1978.

11. Des Deaney (ESTEC) "Major Influences in the Development
of Overall Chedkout Equipment (OCOE)" Proc. of Internat.
Conference on Spacecraft OBDM, Oct. 1978,

12. A. Beretta, "The ESA Standard Remote Terminal Units
(Part 1)" PrOc..of Internat-. Conf. on:Spacecraft OBDM,
Oct. 1978

7-1

13. B. Fritsch, R. Gunzenhauser, "The ESA Standard Data
- Bus", Proc. of Internat. Conf. on Spacecraft OBDM, Oct.

1978.

14. D.C. Chaturvedi, "Typical Applications of the ESA OBDH
Subsystem" Proc. of Internat. Conf. on Spacecraft OBDM,
Oct. 1978.

15. Y.Deswarte et al. "A Fault-Tolerant Multi-microprocessor
Architecture for SARGOS" Fault-Tolerant Computing Sympo-
sium (FTCS-11) June 1981.

16. A. Lucas, "The ESA Standard Central Terminal Unit" Proc.
of Internat. Conf. on Spacecraft OBDM, Oct. 1978.

17. Introduction to 432 Architecture - Intel 1981 171821-001

18. J.B. Rowles, "ESA Satellite Checkout and Test Philoso-
phy" ESA/ESTEC, Noordwijk, ESA SP-141.

19. G. Buroni & M. Pascucci, "The OBDH Test Equipment and
its Goals", Laben, Milan, ESA SP-141.

20. B.E. Melton, 	"Software 	for 	Checkout 	Equipment",
ESA/ESTEC, Noorwijk, ESA SP-141.

21. C.Kurvin & J.Luther, "Use of Checkout Equipment for Sci-
entific Satellite Testing", MBB, Ottobrunn, ESA SP-141.

22. S.P. Chellingsworth, -"Spacelab Integration & Checkout",
Bell Telephone, Antwerp, ESA SP-141.

23. G.W.Holmes & V.Stenning, "The Impact of New Technology
on Checkout",. Systems Designers, Camberley, ESA SP-141.

24. J.B. Rowles & al, "Appendix: Trends in the Development
of Satellite Checkout Equipment", ESA/ESTEC, Noordwijk,
ESA SP-14I

25. Michael H. Marshall, G. David Low, "Final Report Of the
Autonomous Spacecraft Maintenance Study Group" JPL Pub-
lication 80-88

26. Daniel P. Siewiorek & Stephen McConnel, "C.Vmp: - The Im-
plementation, Performance and Reliability of a Fault To-
lerant Multiprocessor" 3rd USA-Japan Computer Confer-
ence, 1978.

7-2

27. Glenford Myers, "Software Development by Composite De-
sign", 1975

28. Glenford Myers, "Software Reliability", 1978.

29. J.G. Kuhl and S.M. Reddy, Division of Information En-
gineering, Univ. of Iowa, "Fault-Diagnosis in Fully Dis-
tributed Systems", proceedings of The llth Annual Sympo-
sium on Fault-Tolerant Computing.

30. J.A. McPherson and Charles R. Kime, Dept. of Electrical
and Computer Engineering, Univ. of Wisconsin, Madison,
"A Model for Fault-Tolerant Process Maintenance", procs.
of The llth Annual Symposium on Fault-Tolérant. Comput-
ing.

31. J.P. Black and D.J.Taylor, Dept. Of Computer Science and
Computer Communications Network Group, Univ. of Water-
loo, Ont. "A Compendium of Robust Data Structures",
procs. of The llth . Annual Symposium on Fault-Tolerant
Computing.

32. W. Graham Wood, Computing Laboratory, Univ. of Newcastle
upon Tyne, England, "A Decentralised Recovery Control
Protocol", procs. of The llth Annual Symposium on
Fault-Tolerant Computing.

33. C.L. Kwan and S. Toida, Dept. of Systems Design, Univ.
of Waterloo, Ont. "Optimal Fault-Tolerant Realizations
of Some Classes of Hierarchical Tree Systems", procs. of
The llth Annual Symposium on Fault-Tolerant Computing.

34. Pierre 	Azema, 	et al, Labratoire d'Automatique at
d"Analyse des Systemes du C.N.R.S., Toulouse, France,
"Virtual Ring Protection in Distributed Systems", procs.
of The llth Annual Symposium on Fault-Tolerant Comput-
ing.

35. D.K. Pradhan & S.M. Reddy, "A Fault-Tolérant Communica-
tion' Architecturé for Distri.buted Systems", procs-. of
The'llth Annual Symposium on Fault-Tolerant Computing.

APPENDIX 4

Question and Answer Session with Dr. D.A. Rennels, of the
JPL.

A number of questions were generated during the study
of the FTBBC and UDS systems. These questions were compiled
into a list and brought up in two question and answer ses-
sions held with Dr. Rennels of JPL and both at JPL and UCLA
in October, 1981. Several hardware-related questions were
asked of JPL engineer Dwight Geer during the visit to the
laboratory. "Q." in the following pages implies questions
asked by EIDETIC and "A." answers given by Dr. Rennels or D.
Geer. Unless otherwise marked, all answers were given or , im-
plied by Dr. Rennels.

There were about 120 questions with a slight overlap
among some of them. The sessions lasted five hours in total.
Answers were obtained for some eighty questions. Thus, some
of the questions were left unanswered due to the limit of
available time. However, this is not likely to cause a seri-
ous impact on the evaluation process as questions were pri-
oritized beforehand in order of significance with regard to
understanding the systems.

Answers which are enclosed in parentheses are those
which were implied in related conversations during the meet-
ings.

In addition to these sessions, there were a few tele-
phone conversations with Dr. Rennels which included a few
system level questions.

Q. - "classes of faults", what are D. Rennel's definitions?
(2-50)
TRANSIENT/PERMANENT basis of classification?

Q. - "advanced degradation-techniques" (2-52)

Q. - Asynchronous implied in FTBBC?

Q. - DisCuss HLM/TM separation in relation toESA system

Q. - Prearranged message area - why not message protocol
handling

A. - (Received the impression Dr. Rennels, being hardware
oriented, has not been exposed to the layered software

A-1

approach.)

Q. - Traffic volume between TMs

A. - (Applications design to do traffic volume calculation)

Q. - Does a HLM own a bus? If so, why does it have to?
(3-14)

A. - MIL-STD-1553A protocol demands this.

Q. - Commander-soldier relationship analogy.

Q. - Inter-TM transfers as simple as described in 3-10?

Q. - Inter-TM traffic so high as to warrant DMA?

Q. - HLM-controlled TM reconfiguration, reality 	of 	
(3-12)

- Why does instantaneous detection and signaling of
internal faults guarantee straightforward implementa-
tion of automated recovery? There doesn't seem to be
any such guarantee. (1)

A. - More work needed in software. However, it is a general
rule that if fault notifications are made instanteous-
gy, there is greater chance of confining them and hence
a greater Chance of analyzing them properly.

Q. - How much of original architectural freedom is still
there? (1)

A. - The Core-BB, for example, is prototyped to take MC68000
processor, as well as TI9900 at CPU subsystem level.
Also there is a certain range of freedom in the selec-
tion of RAM chips for MIBB. (D. Geer)

- Degraded mode of operation really defined? (2)
- "degraded system state"

Q. - Design methodology used in the 1978 study:
were the four blocks introduced systematically or
guts feelings?

A. - The UDS was a highly systematic study.

Q. - What exactly does he mean by "transient mistakes" (3L)

Y

A-2

"erroneous bits in memory" accidental - fault contain-
ment issue?

Q. - The way backup spares are provided on the bus (3L)

A. - Dedicated "hot spare" for executive HLM, non-dedicated
"blank spares" for other HLMs, and dedicated SCCMs for
TMs subsystem proper.

- Spare fire-up sequence (3L)

A. - Not precisely defined 	application proper elements.

Q. - When everything is packaged in a chip, geographical
closeness may nullify the effectiveness of providing
redundancy. How does he feel about this. This is a
question with the 432/670-type system too.

A. - Yes, a more global level of redundancy must be consi-
dered. Strategical distribution of components will be-
come necessary.

- Any conceptual change between 78 and 80? (4L)

A..- A few minor ones, but nothing essential.

Q. - A source per BC, for simplicity?
Then BC should be part of Source Terminal?

A. - This is a restriction placed upon the design because of
the MIL-STD-1553A bus concept:

Q. - Hence shall Controlling SCCM become part of 	the
Terminal?
And if so, isn't Ethernet-type architecture the naturai
progression?

- fewer modules
• - more autonomous

- more flexible

A. - Yes. No arguments. (He was already contemplating an
Ethernet-like bus structure to replace current
MIL-STD-1553A bus)

7 leSs exposed protocol (fewer connections)

Q. - Don't need mediator if one (source BA) can manage him-

A-3

1
1

1
1

1
1
1
1
1
1

self

- also NO ARBITER as in Rule Number 3 of FTC rules.

- also NO SINGLE POINT OF FAILURE as in Rule Number
1.

A. - Yes, if we adopt Ethernet-like bus architecture.

Q. - I/O mapped id address: again, isn't local net-like mes-
sage, imbedded-id more general?

A. - (He agrees. He explained a modified Ethernet-like ar-
rangement in which units have multiple access to common
channels.)

Q. - Examples of "candidate i/o functions" 1) thro' 8):

1) 16 bit parallel i/o
2) 16 bit serial i/o
3) pulse sampling .
4) pulse counter
5) pulse generator .
6)- adjustable frequency generator
7) analog multiplexor with a/d converter .
8) high rate DMA channel.

Q. - Recovery options 1), 2) & 3y - how are they derived?

- "external Commands" to Core-BB

Are there scenarios concerning how to use them? Just
provided for potential future use? 	-

A. - Yes.

Q. - Isn't 'halt computation on recurring *faults" too
simplistic?

A. - Don't think so. Chances are such errors are permanent
• errors, although debouncing problem must be handled so-
mehow.

Q. - Whole roll-back issue - could it be that simple? (4-58)

A. - There is a scientist in his group working on that is-
sue. He found a rule for setting proper checkpoints.

A-4

1
1

- Under the assumption that VLSI technology mill' advance
at present rate, is the "BUILDING BLOCK" ,really a use-
ful approach?

If a "unit computer" with "full" capabilities can be
produced using advanced VLSI techniques, and if such a
unit can be highly (software) configurable, would peo-
ple bother "building" an SCCM picking necessary build-
ing blocks?

If an SCCM-like chip speaks Ada, or similar standard
language; provides enough facilities for the payload,
and has all the self-checking capability of the SCCM,
would they need a finer breakdown?

A. - Such development is possible. In the FTBBC, SCCM is the
unit of redundancy.

- High-level processing, or number crunching, is no more
than a specific process type and does not seem to jus-
tify division of HLM/TM.

A. - TM normally belongs to a specific subsystem. The dis-
tinction will continue to exist.

Q. - Why would the primary unit collect input for, a "hot
spare" unit?

A. - To aid in the process of potential reconfiguration -
although such reconfiguration is not clearly defined.

Q. - Algorithm to determine "good" one is not simple. The
mutual checking has been an important issue in fault
detection theory.

A. - Cross-checking between HLMs is done in UDS. More study
is surely needed.

- BC getting into other's memory space is a violation of
the decoupling rule

A. - Dr. Rennels was unaware of the decoupling rule.. Also,
MIL-STD-1553A protocol almost force this mode of opera-
tion.

- Controversial bus-ownerhip convention: -

 Temporary: relinquishing (loanine of bus.to .other an

A-5

HLM - what algorithm is used?

A. - Hardware level considerations only. Buses are daisy
chained providing a priority structure.

Q. - Any priority should be made software controllable. Or,
how is the priority assigned and on what basis? And
what happens if contention over the access to a bus
occurs?

A. - Priorities are given to the HLMs and they are fixed. No
serious considerations were were given to the implica-
tions for system or hardware level activities.

Q. - Is the difference between "hot spare" and "blank spare"
in distributed UDS configuration all that great?

A. - The hot spare concurrently executes same instruction
sequence as the SCCM (in this case the system executive
HLM) it backs up. Blank spares are powered up but no
execution of instruction takes place until one of them
takes over an HLM.

Q. - TM need not be restricted from having:

- the capability to initiate intercommunication

- self-check and localized reconfiguration

A. - TM is a slàve process in the UDS design. This comes
from the historical background of developing subsystems
in which TMs reside, and the control structure adopted
at JPL in the past.

Q. - Maintaining "inventory" of available paths, and the
system level ability to recognise the remaining topolo-
gy may not be trivial. Again, the design should have
started from the top - including this and other reco-
very algorithms.

(We confirmed that the planned recovery capability in
the SCCM ends at a very localized level such as dupli-
cated CPUs and memory bit correction. The SCCM design
is mostly aimed at effective and accurate error detec-
tion and confinement of detected errors)

- "HLM-owned" bus necessary? Can one adopt MULTIMASTER
type arrangements whereby bus belongs to the system as

A-6

A-7

a non-dedicated redundancy and is up for grabs by any-
body who needs it momentarily?

A. - Again, MIL-STD-1553A won't allow such arrangements.

Q. - At least, can we not avoid "ownership" which creates a
MASTER-SLAVE relationship?

A. - No, unfortunately.

Q. - Broadcast methodology (4-73)

- 7 layer issue
- optimization obvious

A. - Broadcasting in Ethernet is attractive.

Q. - DMA direct to some other SCCM (4-73). Isn't it too bold
if BC controlling?

A. - BC's access is limited to a predefined data area and it
was assumed safe. (If new bus becomes a reality, this
will be all right.)

Q. - "Master-Slave" is the issue here. We'd like to elimi-
nate this single point of failure (Master) since redun-
dancy in sync circuit would be costly and tricky.

A. - Agreed.

Q. - (4-56 1st paragraph) ".... which is a combination of
all clock-synchronized morphic fault indicators"

Is combining them all effective in planning recovery
strategy which can be hierarchical?

Q. - Master Fault Indicator (4-66)

Q. - rollback - linkage to a software recovery manager, how?

Q. - Why is "listen in" by host seen as necessary? How is it
strategically needed in the overall system? (4-78 (2))

A. - When reconfiguration involving TMs may be needed, an
HLM which understands the nature of the transaction be-
fore the fault would be in a better position to. do it.

. - LSI-11 original target machine? (2)

1

1
1

1
1
1

1

1
1

1 •

1 A-8

1

A. - No. 	TI9900 is the one being used to build prototype
SCCM. LSI-5 was not even the machine used for the UDS
system.

Q. - What do you think about recent redundant 	memory
technology? (3)

Q. - 1.5 times as expensive - a close figure still? (3L)

- Why are self-checking chips more easily tested by the
manufacturer? Would seem to be the opposite.

Q. - Out-of-range approach to internal bus access: how does
the . memory mapped i/o work in segmented machines such
as Intel's 8086? (4L)

A. - Don't have experience with such machines. Could be dif-
ficult. (D. Geer)

Q. - BA/BC distinction

Q. - SCCM/BC division ambiguous - isn't BC a part of SCCM?

A. - Definition of SCCM experienced a few changes throughout
the life of the project.

Q. - Discrete commands:
- how POWER ON would work?
- how INTERRUPT used?
- isn't RECONFIGURE same as INIT?

Q. - Global BIBB structure - were 	there 	evolutionary
changes?

MANCHESTER NRZ translator 	-> 	EBI
Microprocessor Control Unit 	-> 	MILL or CONT?
CONTROL ROM 	-> 	CONT
DMA control 	-> 	IBI
Data Path Element 	-> 	MILL
?? 	 -> 	FH

A. - (Could not ask question specifically, but Dr. Rennels
suggested there were revisions of structure that re-
sulted in naming confusions.)

- Core-BB block level design: did it change since 1978
design?

1

A. - No.

Q. - Is Recovery Sequencer still an option? If so, used in
what type of circumstances?

A. - Most errors assumed to be transitory—One attempt Would
. be sufficient.

Q. - Morphic, Hamming, parity true (4-39) Morphic pairs
(4-55)

- 100 pin package

Q. - Core-BB, what will its position be after disabling fts
own CPUs?

- Core-BB 	recurring faults, recurrence defined how?
(4-52)

A. - Only once more.

Q. - Reality of VLSI building - how to proceed from the de-
sign

A. - (Did not ask the question but an indication was given
that VLSI mask design is underway on some of the build-
ing blocks)

Q. - Duplex CPU synchronization?

A. - In precise step.

Q. - Stop clock, for what? (4-58)

A. - For the single step sequencing.

Q. - On the headings "Input to DCE/Outputs from DCE." What
is DCE?

A. - (Did not ask but apparently a typographical error for
PCE, or Processor Check Element.)

- For example, is PCE going to be a portion of a VSLI?
Items shown in Fig 4-23 (P4-60) talk about chips, but
are they going to be included in a VLSI chip? Are all
chip designations for current or past breadboard?

Q. - PLA: Programming Logic Array? (4-63)

A-9

A. - Yes.

Q. - Extensive 	use 	of 	Morphic-AND 	common 	in space
applications? (4-65)

- If HLM/TMs have their own internal clock, what is the
use of RTI?

A. - (I pointed out and we eventually agreed, that if the
local clock can maintain a reasonable clock accuracy,
the system wide synchronization may have to occur only
to compensate the interprocessor timing skew. Hence the
frequency of RTI signal can be as low as once every
second or hour instead of every 2.5 ms.)

Q. - Hardware priority assignment between BCs - not very
clear what this means. Each BC is supposed to own only
one bus.

A. - This is the arrangement multiple usage of MIL-STD-1553A
bus would force on the design.

Q. - Four clock pulse recovery sequence - how common is the
design?
Why is this clocking considered effective, if not?

Q. - Notation in Fig. 4-27 (4-67)

Q. - What kind of faults can be corrected and system reco-
vered from by the recovery method indicated in the Re-
covery Sequencer approach (4-70)

Q. - Control Signal Generator in FHE (4-70), which of FS and
RS has it?

- How precise and close are synchronization requirements?

A. - To offset the interprocessor skew. Once a second would
le sufficient. (As mentioned above, we discussed this
issue a.lot.)

Q. - Can we maintain accuracy of local timer higher ' than the
combination of the propagation delay (skew) of the com-
munication bus and the variance at local oscillators?

A. - Yes, it would be possible.

Q. - SCCM memory size 61,440: isn't it too small for some

A-10

applications?

A. - Used to be sufficient. Admit situation is changing. It
actually is only 32KB. The Galileo project is giving us
pressure. (D. Geer).

Q. - BIBB/bus control table format - Is the use of Word 1,
assigning 0 or 1 as a value, aimed at multiple linking
of the control tables? Wouldn't a more formal
linked-list convention be more helpful? (4-77)

A. - (Did not ask the question but it became obvious Dr.
Rennels did not give that much consideration to the da-
ta structure.)

- distinction 	between 	Controller/Terminal 	and
Terminal/Term-
inal significant enough to warrant separate table
formats? (4-77,78)

Q. - Any industrial or 	other 	applications 	of 	FTBBC
discussed?

A. - A company in the space industry has approached us.

Q. - Are there fault statistics in aero-space applications?
(4-62)

Q. - Is the UDS on Galileo spacecraft?

A. - No. Time constraints forced them to build their own
based on RCA1802 processor.

- Still consider fault tolerant computer design a mature
discipline? (2)

A. - It depends on one's point of view:. Fault detection and
containment seeM to have well matured:

Q. - Extra copy of the report?

A. - (We obtained one.)

Q. - Which paper at FTCS-11 most impressive?

Q. - Future of UDS?

A. - The project was for the system level study. The concept

A-11

is still alive and calls for elements to build UDS-like
systems. The FTBBC is an answer to the hardware aspect
of the UDS.

Q. - VLSI modules coming? .(4-51)

A. - Prototype being completed for Core-BB and MIBB. More -
steps needed. (Shown breadboard of each by Dwight Geer,
Engineer at JPL)

Q. - AI in space? (2-52)

A. - May be use of heuristic methods in fault diagnosis in
the.near future.

Q. - "UDS" a generic name for a group of SCCM, or almost a
synonym for SCCM?

A. - No, although there is that overtone, UDS is a system
level exercise.

Q. - Was the result of breadboard experiment good enough to
proceed to VLSI design?

A. - It is going well but not quite ready for VLSI yet.
(When I visited there were two large scale - approxi-
mately 16" square breadboards: an MIBB and a Core-BB.
They were both being checked out. The MIBB had about
375 ICs excluding RAM chips and Core-BB, 170, excluding
a removable CPU subsystem. The current CPU subsystem is
based on two T19 900 chips and a few , dozen "interface
chips" to make the subsystem adaptable to the Core BB
main. Their next plan is to create a CPU subsystem
based on Motorola's MC68000 CPUs.)

Q. - After automatic replacement, how is it indicated to the
external world for easy maintenance access?

A. - (There appeared to be no detailed considerations given
to this issue.)

Q. - Modified Ethernet issue again

- MIT C-cube: does it have any relation to what you are
thinking about concerning bus redeSign?

A. - No.

_A712

Q. - FT layer as the transport layer in the 7-layer inter-
connect protocol hierarchy.

A. - Interesting: sequencing and Hamming code at layer 2,
multiple message transfer and CRC, status message capa-
bility at layer 3, retransmission potential at layer 4.

Q. - Inter-layer clearance

A. - (Dr. Rennels was not aware of the details of the ISO
interconnect standard.)

Q. - 1982 International Symposium on Fault-Tolerant Comput-
ing Systems (FTCS-12) - where and when?

A. - 22-24 June, 1982, Santa Monica, California

Q. - Who will be presenting papers?

A. - Half theoretical, half practical.

Q. - How will the contents be chosen?

A. - Mixture of theoretical studies and real project re-
ports. Very carefully -refereed papers only. Short pa-
pers and special sessions considered.

Q. - What is Dr. Rennel's role?

A. - General Chairman. Dr. G. Gilley of the Aerospace Corpo-
ration will be the Program Chairman.

Q. - Recovery machine - AI application?

A. - (Dr. Rennels thinks most likely initial application of
AI technology to the FTC will occur in diagnostics then
in recovery. After all the deterministic searches are
exhausted, heuristic steps might be used to guess
faults. The approach seems rather conservative and uses
AI only as supplementary means.)

- Top-down - software heavy design of on-board processing
applicable seems to be coming. What is your opinion on
this with regard to the UDS system?

A. - Local executive software design will be like that. The
recovery issue is equated to the issues associated with
the scheduling of processes.

A-13

- FTC rules (see nOte #23 of Section 5) 	•

A. - (Dr. Rennels agreed with Rules 1,3,4,5 and 6. "Must be
agreed." He objected' to. Rule 2, He especially liked
Rule 6, or rule concetning levels of abstraction..)

- History of UDS/FTBBC

A. - UDS ran from 1972 through 1977 and completed when
. software demonstration of the feasibility was made. The

need for a highly'fault-tolerant computer system was
determined early in 1970s. System level study was con-
ducted with the UDS project. FTBBC, gupported by U.S.
Navy and NASA, is solely to develop hardware mechanisms
that support fault-tolerant computers made up of VLSI
components.

Q. - Hot-spare/blank-spare usage distinction.

A. - Hot-spare is for system executive HLM only. Blank-spare
applies to all other •HLMs.

Q. - Topology control - wouldn't it be an involved process?

A. - Yes, it would be a very hard task.

Q. - Is the USAF interested in the FTBBC?

A. - Yes.

Q. - Algorithm to determine good from bad SCCMs may not be
simple.

A. - Yes, but cross-checking should be sufficient along with
the triplicated communication channel.

Q. - Once more about concentration of authority in the sys-
tem.

A. - Tree-type control hierarchy assumed. System control is
application oriented.

- Industry again (Aerospace Corporation only?)

A. - The USAF is showing some interest in supporting future
of the -FTBBC. Rockwell International is interested in
creating MIL-STD-153A bus interface chips.

A-14

Q. - Once more about HLM/TM dependence?

A. - (Dr. Rennels believes there will still be hardware
master-slave relationship because of highly specific
nature of subsystems.)

Q. - Software capability at JPL. In project teams only?

A. - Matrix organization - FTBBC project does not draw on a
software development capability, while such capability
is always accessible. However, I am considering involv-
ing a graduate student at UCLA on the software aspect
of the project. Another graduate student was commissi-
oned before but he left for a computer language pro-
ject.

Q. - Hardware Recovery Sequencer - how effective?(47-70)

A. - Strictly roll back'.

Q. - Distinction between. Controller/Terminal and Terminal/
Terminal tables significant enoUgh? (4-77,78)

A. - Yes, as long as sticking to the MIL-STD-1553A (so logi-
cally not important now that Dr. Rennels is considering
a switch to Ethernet-like bus. In the latter case
(Terminal/Terminal) controlling HLMs "listen in" and
provide a limited form of broadcasting.)

Q. - Use of simulation in FTC study. Any activities?

A. - System architecture simulation studies were done using
Multics System through ARPA network.

Q. - HLM relinquishes bus - then what will happens to it?

A. - The sequence of regaining the control of the bus may be
involved. When and how are left for software to solve.

Q. - EXEC need not be identical, but protocol needs to be.
all executive HLMs and TMs need to be same".

A. - (Dr. RennelS eventually agreed that it is the protocol
betwebn processors that needs to be common, but not the
software that gemerates such protocol on individual
processors.)

- Recovery transients considered?

A-15

A. - YeS at the hardware level, but.not'yet at. ,software , lev-
el

Q. - What kind of transients possible?

Q. - Current revision

Q. - What happens when an HLM relinquishes his bus after the
failure?

- Where •does it go within the system architecture?

- What does the other host HLM do if the bus-less HLM
tries to use his bus?

At this point the priority structure becomes fuzZy.
What priority will the bus-less HLM assumé? HoW oth-
ers reconfigured?

- Transient issue - an HLM notices bus failure while he
was processing a task. Will he go back to the check
point in the task?
Will he grab new bus before going back?
Will he transfer the task to a new HLM while he's
trying to reorganise?

- Memory code-correction; which processor handles it?
Core-BB? If Core-BB, this c an mean inter-BB recovery
and can get tricky.

APPENDIX B.

The Fault-Tolerant Computing Rules (FTC.Rules)

Eidetic has compiled a tentative list of rules which a
good fault-tolerant computer system should comply with. Such
rules were proposed from time to time, by several groups and
individuals in the fault-tolerant and space computing com-
munities, mainly on an empirical basis. Added to this exist-
ing set of findings are three further constraints (Rules
[4], [5] & [6]) which are brought up anew by Eidetic, and
which have been accepted among researchers and practitioners
in the field of software sciences as system design princi-
ples considered essential in order to increase reliability
of complicated software systems. Here, the distinction
between the software rules and system or hardware rules is
considered insignificant as trends towards acceptance of
functional decomposition as the fundamental methodology of
system design are increasing among planners and designers.

The rules were explained to Drs. D. Rennels and G. Gil-.
ley on separate occasions and recefved approval, except for
Dr. Rennels' objection to Rule [2].

The following are the proposed fault-tolerant computing
design rules (FTC design rules):

[1] There shall be no, or as few as possible, single points
of failure in the system (the hardware rule).

• [2] There shall be no fixed master-slave relationships
among processing units (the democracy rule).

[3] There shall be no permanent fault arbiters or judges in
the system (the modesty rule).

[4] Whenever , a 	functfon is supported by processors,
proceSses i. taSks, subprograms, or other form - of sub-
functional modules, the method of inter-connecting them
shall obey the module decoupling rules proposed by
Glenford Myers (the module decoupling rule).

Similarly, every subfunctional module must 	follow
Myer's. module 'strength rules (the -module strength
rule).

[6] As well as the horizontal breakdown, a function must be

B-1

broken down vertically into layers. Levels of abstrac-
tion must be defined for each layer and independence
between the layers must be observed (the layer rule).

I.

I .

B-2

r---

r--

LI

GOMI, T.
A review of qpeecraft fault-toler-

ant computer de:aign concepte

91

C655

G64

1982

DATE DUE
DATE DE RETOUR

1 9 1984

111111111111111111111
11111111111n11

11111111111n11111111111111 .11111n111111n
111111111.1111n
MIIIIII11311111111111111 1111111111111111111111 111111111111111111 11111111111111111111 111111111111111.1111111111111111111111 111111111n111111111111111111111111 111111111111111111111111111111.11

1111111111111111111111111111111111111 1111111111111111111n11111111111111 1111111111111111111111111111n1111 "111111,11n11,1111111111111111111111111

