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ALU 	Arithmetic-Logic Unit 
AP 	Attached Processor (AASC) 
ASM 	Autonomous Spacecraft Maintenance 
BA 	Bus Adaptor (FTBBC/BIBB) 
BB 	Building Block 
BC 	Bus Controller (FTBBC/BIBB) 
BIBB 	Bus Interface Building Block (FTBBC) 

BIU 	Bus Interface Unit (AASC) 
BCT 	Bus Control Table (FTBBC/BIBB) 
BR 	Bit Replacement 
Core-BB Core Building-Block (FTBBC) 
CP 	Command Processor (FTBBC/HLM) 
CPC 	Check Bits Parity Check 
CPDU 	Control and Power Distribution Unit (OBDH) 
CPU 	Central Processing Unit 
CRC 	Cyclic Redundancy Check 
CTU 	Central Terminal Unit (OBDH) 
DBI 	Data Bus Interface (FTBBC/MIBB) 
DB 	Data Bus 
DE 	Double error 
DMA 	Direct Memory Access 
EBI 	External' Bus Interface (FTBBC/MIBB) 
ECS 	Error Control Section (FTBBC/MIBB) 
ESA 	European Space Agency 
ESTEC 	European Space Technology and Research Centre 
FHE 	Fault Handler Element (FTBBC/Core-BB) 
FH 	Fault Handler (FTBBC/BIBB) 
FP 	Format Processor (FTBBC/HLM) 
FS 	Fault Sequencer (FTBBC/Core-BB) 
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MCU 	Memory Control Unit (AASC) 
MDR 	Memory Data Register . (FTBBC/MIBB) 
MFI 	Master Fault Indicator (FTBBC/Core-BB) 
MIBB 	Memory Interface Building Block (FTBBC) 
MIPS 	Mega Instructions Per Second 
NIU 	Network Interface Unit (AASC) 
NRZ 	Non-Return To Zero 
OBDH 	On Board Data Handling, an ESA standard for computer 

based on-board housekeeping methodology (ESA) 
PCE 	Process Check Element (FTBBC/Core-BB) 
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RAM 	Random Access Memory 
RBI 	Remote Bus Interface (ESA/OBDH) 
RTI 	Real Time Interrupt (FTBBC) 
RTU 	Remote Terminal Unit (OBDH) 
RS 	Recovery Sequencer (FTBBC/Core-BB) 
SCCM 	Self-Checking Computer Module (FTBBC) 
SE 	Single Error 
SEC/DED Single Error Correction/Double Error Detection 
SGC 	Syndrome Generator Check (FTBBC/MIBB) 
SSI 	Small Scale Integration 
TM 	Terminal Module (FTBBC) 
UDS 	Unified Data System - a JPL designation for a standard- 

ization of fault-tolerant on-board computer system. 
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1. SUMMARY 
. 	• . 	. 

The-Fault-Tolerant Building-  Block Computer (FTBBC), de-• 
Signed by the Jet'PrOpuision Laboratory (JPL) for satellite 
on-board use, incorporates extensive faulttolerant .  mechari-
.isms. An evaluation-  of these aré made in coMparison with. tWo 
systems whiCh have - similar objectives; a European- system - de-
veloped for unmanned  applications, and theipreliminary de-
sign for implementatiOn of the làtest, or imminently, avail-. 

 able technology. These.  are the European Space Agency's 
On-Board Data Handling (ESA/OBDH) system and the Advanced, 
Autonomous Spacecraft Computer (AASC). The capabilities and 
limitations of the FTBBC  are  pinpointed by reference to this 
comParisOn ànd to.recent developments in associated ' techno-
logies.. The conclusions dràwn from this comparison-point to 
the direction in which future advances should lead. 

Current research is investigated and its relevance to 
space applications is discussed. Contacts made within the 
space community are reported and information gained through 
these channels is included. 

A set of design rules which has evolved during the stu-
dy is appended. 



2. INTRODUCTION 

The Jet Propulsion Laboratory's (JPL) Fault-Tolerant 
Building-Block Computer (FTBBC) was initiated in the early 
1970s as an exercise in designing an on-board computer which 
would take advantage of current developments in the fields 
of fault-tolerance and technology. In particular, the FTBBC 
was one of the first computers to incorporate extensive 
fault-handling functions in its hardware design. As this 
study reveals, the mechanisms to detect hardware faults, and 
confine them are extensive, whilst attempts are also made to 
analyze and recover from them. The flexibility of the Cen-
tral Processing Unit (CPU) and the memory selection afforded 
by the Self-Checking Computer Module (SCCM) arrangement, for 
example, are essential features of any fault-tolerant com-
puter design. Furthermore, the Unified Data System/FTBBC is 
the first major computer system development based on micro-
computer technology that addresses issues related to fully 
distributed systems, either for space use or otherwise. A 
version of the FTBBC will be flown on Galileo (Ref.1).7 

A second computer of the building-block type, the Euro-
pean Space Agency's On-Board Data Handling (ESA/OBDH) sys-
tem, which was well defined by 1973, has been studied. This 
was also intended as a reusable, distributed system for un-
manned satellites, and contains some redundancy and 
building-block features. It was the result of combined de-
velopment by European countries. The Europeans made no ef-
fort to use available components and designed the system in 
the custom-built style traditional to the space industry. 
High costs and long development time were mitigated by dis-
tributing the responsibility for the various modules amongst 
member countries. 

Development of the FTBBC computer has now been in pro-
gress for a decade. During this time research has gone ahead 
in fields which may well have a considerable impact on 
fault-tolerant concepts and methods of implementing them. 
Aspects which have been problematical in the past are now 
being approached, and solutions are being presented to con-
cerns which were not clearly understood at the time of the 
FTBBC. This report is an attempt to understand and 
high-light these concepts, and study their relevance to the 
present stage of the FTBBC. 

A further outcome of this study has been the formula-
tion of the Fault-Tolerant Computing Design Rules. This,is a 
set of criteria which, it is felt, should be applied to the 



design of on-board spacecraft computers. These rules have 
been used as a point of reference in the comparison conta-
ined herein. 

An understanding of the present status of the FTBBC and 
current research has been gained by conducting personal and 
telephone interviews with Dr. D.A. Rennels and other JPL 
personnel and also with other active participants in the ar-
ea of on-board computing. Reference has been made to the 
open literature available from JPL, ESA and other interna-
tional institutions. 
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3. JPL'S UNIFIED DATA SYSTEM/ 
FAULT-TOLERANT BUILDING BLOCK COMPUTER 

3.0 General 

The FTBBC project grew out of an earlier study on the Uni-
fied Data System (UDS) at JPL (Ref.4) in which Dr. David Ren-
nels, the chief architect of the present system, took a leading 
part. Whereas the UDS is a system level design, the FTBBC is a 
hardware implementation of a Self-Checking Computer Module, an 
essential component of the UDS system. Since the FTBBC is best 
viewed in this context, a brief outline of the UDS is  given 
first. 

3.1 Features of the Unified Data System (UDS) 

The UDS was developed as a distributed computer network 
architecture for spacecraft on-board processing. It consists of 
a set of SCCMs connected by a redundant set of intercommunica-
tion buses. Microcomputers, utilized as High Level Modules 
(HLM) or Terminal Modules (TM), may be combined in a variety of 
different configurations, as shown in Figure 1. 

TMs are dedicated to a particular spacecraft subsystem and 
are responsible for control and data collection within it. A TM 
cannot initiate bus communications but can be commanded to 
fetch or deposit data into its memory. In addition, it actively 
supports DMA transactions and it can be accessed through sever-
al buses simultaneously. 

HLMs are responsible for coordinating processing within 
the remote TMs, for controlling the Intercommunication Bus Sys-
tem (IBS), and for high level processing such as data compres-
sion and decision making.  FILMS  contain the same internal compo-
nents as the TMs but with the addition of a Bus Interface Bu-
ilding Block (BIBB) programmed as a Bus Controller (BC). Unlike 
the TM, an HLM has no I/O  circuitry apart from the IBS and only 
communicates with other computer modules. 

Each serial bus is connected to a Bus Adaptor (BA) in each 
of its associated SCCMs (HLM or TM). It is also assigned a pri-
mary BC in its controlling HLM. Control can pass to another HLM 
if the bus is nnt powered or the processor commands release to 
a lower priority BC for , a specific time interval. Priority is 
established on a fixed basis and implemented through a 
daisy-chain structure for each bus which is shown in Figure 2. 
This, theoretically, enables spare modules to take over from a 
failed HLM or, in the event of bus failure, the BCs may share 
one bus. The buses are physically independent of each other and 
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there is no common clock. Each SCCM uses its own internal clock 
and the buses use the clock of whichever module is transmit-
ting. 

The number of 'buses is dependant on mission and redundancy 
requirementà. In  the  event of failure a mission may be recon-
figured throughout - even to the eXtent of •a single remaining 
bus supporting esSential functions. 

One HLM is designated as the system executive and issues a 
common system-wide clock, the Real Time Interrupt, (RTI)I  of 2.5 
ms. All modules receive and compare the RTI with their own 
internal clocks. On failure of an RTI generator, the computers 
will automatically switch to a backup. If an individual clock 
fails then damage will be confined to one module. Figure 2 
shows the RTI line between modules. 

Subordinate  FILMS or TMs are commanded to start specific 
programs which the timing information from the executive HLM 
will synchronize with the rest of the system. Most programs are 
self-synchronizing and timing within them is tightly regulated, 
the time count of each event being precisely specified. 

Each HLM/TM contains an identical local executive program 
for communication with user, software. Software is run in a 
foreground/background partition with well-defined segmented 
programs running . concurrently in the foreground, whilst more 
complex and lengthy programs are assigned to the background 
mode. The local executive is responsible for activating and de-
activating foreground/background programs using a scheduling 
table. A UDS Program Design Language enables a program to com-
municate with the executive and request modifications to start, 
stop, suspend or delete itself.(Ref.5) On completing the execu-
tion of available foreground programs, control is returned to 
the background program for the remainder of the time slot. 

I/0 granularity is defined by sampling inputs and holding 
them for a fixed period. Several segments of concurrent fore-
ground programs may be executing during a time period and their 
outputs collected and held for simultaneous execution at the 
end of the time period. Programs can be ..removed, added and 
re-ordered within a time interval without impacting others. 
This approach is intended to allow a great deal of visibility 
into the system and to simplify simulation, debugging and mod-
ification of software. 

Fault-tolerant aspects of the software are mainly confined 
to increased reliability and testing. Timing has been simpli-
fied at the intercommunication bus interface to obviate incom-
patibilities between user-supplied subsystems. Bus access is 
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restricted to localize the effects of software failure. Reason-
ableness checks at the HLM level can verlfy the proper func-
tioning of low level dedicated software. The HLM has little ac-
tual protection against software faults. The UDS local execu-
tive has a mechanism for software fault detection which checks 
proper return of control after execution  •of a foreground pro-
gram. In the event of a problem, a software fault is signalled 
and a user-supplied recovery routine is executed. 

Fault recovery requirements for the UDS include a dedicat-
ed "hot" spare for the system executive HLM. Cross-checking by 
the two modules at each RTI will reveal failure of either one 
and trigger recovery of the extant module. It should also have 
the ability to activate a further "hot" spare if necessary. A 
primary HLM generates output and gathers data for the spare and 
itself. Additional "hot" spares may be utilized under critical 
conditions. Other HLMs are backed-up by non-dedicated spares. 
Controlling  FILMS are responsible for polling TMs, recognizing 
failures, internal reconfiguration where possible or continuing 
operation in a degraded mode. Bus system failures are deter-
mined by rerouting suspect messages through a different HLM-bus 
configuration. Since TMs are dedicated, their spares must be 
also. Such spare TMs are assumed to be physically built into 
each subsystem. The fault-tolerant responsibility of a TM is 
detection within its associated subsystem and repairs where 
possible. Where repair is not possible the TM records error in-
formation, institutes a "safe" disabled state and notifies its 
HLM. 

3.2 Features of the FTBBC 

3.2.1 The Self-Checking Computer Module (SCCM) 

The 	FTBBC itself arose from the desire to combine 
off-the-shelf components into an SCCM (Ref.3). The appeal of 
this approach lies in the following features: 

- proven reliability of components 
- shorter development time 
- flexibility of configuration for different applications 
- easy upgrading of facilities and standards. 

The building blocks, four in number, are intended as VLSI 
fault-tolerant interfaces to the standard components. They con-
sist of the Memory Interface Building Block (MIBB), Programm-
able Bus Interface Building Block (BIBB), Core Building Block 
(Core-BB), and the I/O Building Block (IOBB). Figure 3 shows 
these building blocks as they are combined to form a 
self-checking computer module (SCCM). The SCCM can be designat-
ed either as an HLM or TM. The building blocks should be able 
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to detect faults internally and in their associated circuitry 
and give a fault indication to the Core Building Block. The 
SCCM should, additionally, be able to signal its own malfunc-
tions to other SCCMs and disable its outputs when necessary. 

3.2.2. Memory Interface Building Block (MIBB) 

The memory module consists of two parts; a set of RAM 
chips and the MIBB. Memory consists of 24 bits, separately 
packaged in order to contain circuit failure damage. Sixteen 
bits are used for storage, six for Single-error-correcting/ 
Double-error-detecting  •(SEC/DED) Hamming code and two are re-
dundant bits in case of failure. 

The BB itself is responsible fôr interfacing memory to the 
internal bus. It is capable of implementing fault detection and 
correction within memory using Hamming code and within its own 
circuits. Information transfer on the internal bus is safe-
guarded by parity generation and checking. Fault conditions are 
signalled to the Core-BB and, upon system command, up to two 
faulty bit planes in memory can be reconfigured. 

The memory module uses "memory-mapped I/O"  which avoids 
processor specific I/O  operations and also allows access to bu-
ilding blocks by internal SCCM software and Direct Memory Ac-
cess (DMA) by other SCCMs via the internal bus. This gives an 
external SCCM thé ability to load and read memory via the bus, 
sample error status information, command internal reconfigura-
tion, and even remotely control I/O  in a faulty SCCM. Optional 
configurations available to the user include variations in mem-
ory size (8K, 16K, 32K) and a choice of Ham or non-Ham mode. 
Non-Ham mode, i.e. without Hamming code, is provided for appli-
cations requiring very low power, weight, and volume. In this 
mode, error detection, correction, and bit-plane replacement 
are performed under system control, but two parity bits for er-
ror detection are retained in the MIBB. 

All circuits within the MIBB are either self-testing, 
fault-secure, or duplicated so that no single circuit failure 
will produce an undetected output error. 

The MIBB donsists of four sub-elements: Address Bus Inter-
face (ABI), Error Control Section (ECS), Data Bus-Storage Array 
Interface (DBI), and Memory Control Section (MCS). 

The ABI provides the address parity checking and decoding 
required to select a memory module. An incoming address is 
stored in the Memory Address Register (MAR) and validated be-
fore a read/write operation is performed. If no errors are de-
tected the low-order 12 bits are sent to the Storage Array 



Block for on-chip decoding. The high-order bits are detected 
and used for memory-mapping. An alternative is to associate a 
separate decoder with each bit-plane enabling the single error 
correction/double error  détection  SEC/DED data word error code 
to be used in the address decoding. The address which is cur-
rently being referenced is stored for future diagnosis in case 
a fault recurs. 

The ECS is concerned with error detection, correction, and 
analysis within the MIBB. It generates and checks Hamming code 
check bits and syndromes, and byte parity for the internal bus. 
ECS circuits are self-testing. The Error Status Register/Memory 
Error Interrupts issue two fault-detection signals: 

- a code-correction indicator, which is sent to the duplex 
processors as an interrupt indicating that a single memory 
bit is being corrected by Hamming code. This facilitates 
the processor's decision on bit replacement. 

- internal fault indicator for faults which cannot be cor-
rected within the memory system i.e., when: 

- a fault is detected within the MIBB itself 
- improperly coded information is received over the 

internal bus 
- a data error occurs within memory that cannot be cor-

rected . by  Hamming code. 

This internal fault indicator is sent to the Core-BB which 
may, in the case of a transient error, be able to resume cor-
rect operations using a rollback or reset/restart sequence. 

All circuits are self-testing. 

The DBI interfaces the Memory Data Register (MDR) with the 
internal bus. The MDR consists of two Data Bit Modules, a Check 
Bit Module for. storing Hamming codes, a Replacement Control 
Section containing the spare bit planes, and interfacing net-
works. In the event of a faulty bit plane, error decoding is 
performed on chip but the replacement decision is made by the 
system. 

The MCS generates control signals to implement operation 
and command algorithms. Read/write instructions with low-order 
addresses are treated as normal memory operations. High-order 
addresses are reserved for "memory-mapped I/O".  Certain of 
thèse out-of-range commands are recognized as pertaining to the 
MIBB. 
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3.2.3. Core Building Block (Core-BB) 

The Core-BB is responsible for: 

- synchronizing and comparing duplex CPU outputs 
- fault-handling through-out the SCCM. 
-  internai, bus arbitration 

One processor is designated as primary and the other as 
check processor. Processor faults are detected by the Processor 
Check Element (PCE) by running two synchronized units using the 
same data and executing the same programs in lock-step. Parity 
coding of incoming data is checked. Outputs to the internal bus 
are compared and outputs to address and data buses are parity 
encoded. The PCE contains self-checking parity checkers e  a du-
plex command decoder and morphic (one-out-of-two) reduction 
trees. It also samples  •various fault indicators to provide in-
formation for external computer modules. 

The Bus Arbitration Element (BAE) accepts bus request sig-
nals from the various DMA controllers throughout the SCCM and 
obtains release of the bus by the CPUs. Access is granted to 
requesting BB's on the basis of a fixed hardware priority. The 
BAE signals are duplicated and morphically compared. 

Within the Fault Handler Element (FAE), the Fault Syn-
chronizer (FS) 'accepts fault indicators from throughout the 
SCCM and morphically reduces them to produce a single clock 
synchronized morphic fault indicator, the Master Fault Indica-
tor (MFI). 

This MFI is sent to the Recovery Segment which disables 
SCCM output and resets the CPUs. A program rollback can option-
ally be caused and computation reinitialized. If no additional 
faults are detected the processors can reenable the module. 

The FS and Recovery Sequencer (RS) are duplicated and 
paired and either pair can disable SCCM output. RS outputs are 
also compared and disagreements signalled to both Fault Se-
quencers. 

There is a small circuit provided for manual or external 
modtile dontrol. This facilitates prograM restart either.'by 
front panel switches or under program control via out-of-range 
commands. 
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3.2.4. Bus Interface Building Block (BIBB) 

The BIBB enables information to be transferred between 
SCCMs via an intercommmunications bus system. It is programm-
able as either a Bus Controller, one per HLM, or a Bus Adaptor, 
one per bus in each HLM or TM. They utilize the MIL-STD-1553A 
bus format, with enhanced capabilities. 

The BC can communicate with several redundant buses. A BA 
is connected to only one bus and serves as a remote terminal. 
The Controller and Adaptors operate in a relatively autonomous 
fashion. Their enhanced capability enables them to move data 
directly between SCCM memories attached to a given data bus 
with a minimum of software support. 

When an HLM wishes to initiate a data transfer between mo-
dules on the bus it alerts the BC. This reads a Control Table 
in its host's memory, specifying the source and destination of 
information along with the length of transmission. It then 
specifies one BA as a data source and one or more remote BAs as 
data acceptors and names the data to be moved. As the 1553 for-
mat does not provide directly for multiple acceptors, addition-
al modules must be commanded to "listen in" on a 1553 
terminal-to-terminal transmission. The specified data is then 
extracted by the BA from its host's memory using cycle-stealing 
and is placed on the bus. It is removed from the bus simultane-
ously by the acceptor BA and loaded into its SCCM host's memo-
ry. The BC monitors this process and signals completion to the 
host. As many as three buses may communicate with an SCCM with-
out conflict. A BA acts only in response to a Bus Controller, 
either remotely or within its own SCCM. A BC or BA can recog-
nize several out-of-range addresses relevant to their own func-
tions. 

The internal strUcture of a BIBB is the same . for a BC or 
BA and contains the following: 

- the Mill; a small processor with ROM, RAM, internal regis-
ters, and an Arithmetic and Logic Unit (ALU). It has res-
ponsibility for generating addresses for DMA, word count-
ing, testing control words, and buffering data in transit 
between the external bus and the SCCM. 

- the External Bus Interface (EBI) which interfaces the Mill 
and the external bus. It encodes parallel commands and da-
ta words from the Mill for serial transmission over the 
bus. It also performs serial to parallel conversion on in-
coming Manchester encoded data words, making them avail-
able to the Mill, and signals their arrival to the Con-
troller. Improperly coded commands and signal/parity er- 
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rors are indicated to the Fault Handler (FH). 

- a DMA interface between the Mill and SCCM provided by the 
Internal Bus Interface (IBI). Registers in the IBI are 
used to buffer incoming and outgoing data and DMA requests 
and acknowledge control logic. The IBI also contains a 
command decoder which is used to recognize and decode 
memory-mapped commands from the host SCCM to the BIBB. 

- the Controller generates control signals for the other 
' BIBB subelements from internal or external SCCM commands 
and conditions sampled within the BIBB. It is programmed 
using a ROM and a Programmed Logic Array (PLA). 

The BIBB internal circuits use either duplication and 
self-checking comparison or error detection codes. The FH com-
bines fault signals from these circuits into a single morphic 
Internal Fault Indicator. The FH terminates any ongoing 
transmission on detecting an internal fault. BC faults are sig-
nalled to the Core-BB which disables the host SCCM in order to 
prevent damaged information from being propagated throughout 
the system. A faulty BA merely disables its own communicating 
ability. As an SCCM contains several redundant  BAS, messages 
can be rerouted via a different BA. 

3.2.5 I/O  Building Block (IOBB) 

The design for the IOBB has not been completed. However, 
certain typical requirements and functions have been specified. 

In order to retain consistency with FTBBC modules all bu-
ilding blocks must provide memory-mapped I/O. Fault tolerant 
requirements are that: 

- the IOBB must check the coding of incoming addresses and 
data, and utilize duplication or coding checks to verify 
proper functioning of its internal logic. 

- either data errors or internal faults must generate an er-
ror indicator to the Core-BB. Error indicators should be 
morphic to prevent a single point of failure. 

- incoming data must be encoded for presentation to the host 
computer's bus. 

One of the more important I/O  functions which should be 
provided by IOBB modules is synchronization of inputs and out-
puts with the RTI. This: 

- ensures synchronism in voting configurations 
- decouples I/O  timing from detailed instruction timing in 

the TM 
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- enables software to be changed without altering the I/O  
timing of unmodified programs 

- prevents I/O timing being changed as a result of the use 
of stolen memory cycles during DMA activity on the IBS 
which may cause slight variations of processor speed. 

- is expected to simplify verification and 	validation 
through restricted interaction with the host coupled with 
synchronous software. 

The circuitry for I/O  functions is not expected to be com-
plex and fault-detection implementation should be straightfor-
ward. Parity checking can be utilized where the data structure 
is preserved and control functions can be duplicated with 
morphic comparison. 

In order to achieve redundancy in TMs, • two or more modules 
can be cross-strapped, i.e. their inputs and outputs hooked to-
gether. Only one module is powered; the others are cold stand-
bys. In this usage short protection should be provided at all 
output connections to avoid deactivation of all the spares. 
IOBBs may be used redundantly within an SCCM. 

3.3 The FTBBC Features Tree 

This tree, which is shown in Table 1, is an aid to under-
standing the extent and placement of the aspects of 
fault-tolerance which are embodied in the FTBBC design. The 
tree is a means of representing a hierarchical structure and 
has been applied, in this case, to the fault-tolerance features 
distributed within the FTBBC. The level of each feature in the 
structure is indicated by its level of indentation within the 
tree. A table of functions has been included to show the pur-
pose of each feature of the module. 

The features have been classified into four areas of 
applicability: detection, containment, analysis, and recovery 
from faults. The types of fault-tolerant protection found with-
in the FTBBC are enumerated and their location indicated by the 
right-most column. 

A number in parentheses against a feature indicates the 
fixed number of units contained within the module. Flexibility 
in the quantity of units, as used for redundant spares for ex-
ample, is indicated by "(n)". 



FUNCTIONS 

- configured as HLM or TM 
- designated executive or lower HLM, 

F-T TYPES 

C,R 

- dedicated to a specific subsystem 
- interfaces redundant 
memory chips to internal bus 

- selects appropriate memory 
module 

- stores 16-bit memory 
address 

- validates address 	lbm,6,12m,D 
- decodes high-order address bits 	6,11M,12m,D, 
- stores address currently referen- 

ced 	 10,R 
- detects out-of-range commands to 	11,D 

the MIBB 
- generates Hamming code . check bits, 

analyzes errors in bus and 
interface circuits 	G,D 

- generates Hamming code check bits 
and syndromes (in Ham mode only) 	2m;G,D 

- byte-parity generation and 
checking 	 lam,lbm,G,D 

- analyzes inputs from error coding, 
parity check.ing & all self-testing 
circuits 

- records error conditions from 
SDA, gives indication of 
Correction, prevents write operation, 

• checks SDA circuits 	• 	5m,6,10;R,C, 

la,lb,5m,6,D,R,A 

• - 8-bit data storage 
- stores Hamming code.  (Ham mode) 
- interfaces 2 parity bits An non-Ham 

mode 
- on-chiP decoding 
- interfaces MDR with spare bit 

plane 
- interfaces MDR with regular bit 

plane 

- decodes replacement registers 
- used to replace faulty bits in 

DBM/CUM 
- provides control signals  for  

implementation'of operation and 

2,10D,R 

R 

4,R 

IIIIIIII MI OM 	 Mal IIIIIII MR 	 MI MI 11•11 IIIM UM MI IIIIII 

Table 1: FTBBC FEATURE TREE 

FEATURES 

• SCCM - Self Checking Computer Module (n) 
(ULM - High-level Module (n) 

or 
"UM - Terminal Module (n) 

MIBB - Memory Interface Building Block (1) 
. (Ham mode or non-Ham mode) 

AMI - Address Bus Interface 

MAR - Memory Address Register 

APC - Address Parity Checker 
SNC - Soft Name Checker 
EWAR - Error Word Address Register 

ORC 	Out-of-Range Command 
Detector 

ECS - Error Control Section ' 

SGC • - Syndrome Generators/ 
Checkers 

DPCG - Data Parity Checker/ 
Generator (Internal bus) 

SDA- - Single and Double 
Error Analyzer. 

ESR/MEI - Error Status Register/ 
Memory Error Interrupts 

DBI -.Data Bus7Storage Array Interface 
DBM 	Data Bit Modules (2) 
CBM - Check Bit Modules 

' 	Bit-Plane Interface 

Position Decoder 
. 	Spare Plane Interface 

Bit Interface Module 

RCS - Replacement Control Section 
Decoders (2) 
Replacement Registers (2) 

MCS - Memory•Control  Section 



FI-T TYPES 

• 
9,0 
8,14a,14b 
11m,D 

8,11,0 

11m,D 
12m,5,D, 

11,0 

11,D 

12m,6,D, 
12m,6,D, 
15,0 

Ibm,6,D 
11m,D 

5,10,D,A,R 

5,12,D 
I1,12m,D 

8,11m 
5,D,R 

5,8,11,12m,13 
D,C,R 

13,14a,14b,R 

NM Ma MN OM Mill MIMI MI Mal • 111111 OM NM MIMI ell 	IIIIIIII MI UM UM 

Table 1: FTBBC FEATURE TREE 

4.) 

FEATURES 

CI - Control Interface 
CPG - Clock Generator 
KG - Condition Generators (2) 
SS - State Sequencers (2) 

CSG - Control Signal Generators (2) 

CSR - Control Signal Comparator 

Core-BB - Core Building Block 

CPU (i) Master 
(11) 	Check 

PCE - Processor Check Element 

MCMP - Morphic.Comparators (1) 
(ii) 

Isolator 

MPC - Morphic Parity Check/ 
Generators (I) & (ii) 

CMD - Command Decoders -  (2) 
Status Registers (2) 

BAE - Bus Arbitration Element 

Priority Resolvers (i) 'true' 
(ii) 'false' 

FHE.- Fault Handler Element 

Fault Synchronizers (2) .  

Conieol Signal Generator 

RS - Recovery Sequencers (2) 

Manual  and  External Module Control 

BIBB - Bus Interface Building Block 
a) Bus Controller or 
b) Bus Adaptors (3)  

FUNCTIONS 

command algorithms 
- SCCM/MIBB handshaking circuits 
- system synchronization 

- implements steps of operation/ 
control algorithms 

- generate signals for register &- 
selection networks 

- reduction of control signals 

- detects CPU/bus faults, collects 
faults from other BB's, self-

: disabling 
- operates synchronously with 

redundant processor 
- compares output of processors, 

encodes/checks internal:bus parity, 
decodes commands on internai bus 

- compares address output of CPU's 
- compares CPU output with data bus 
- allows input data to be passed 
.to Check CPU 
check/generate parity (I) on 
address bus,  (ii) on data bus 

- generates 2 out-of-range addresses' 
- samples fault indicators for access 

by external SCCM 
- arbitrates internal DMA requests 

from other BB circuits 
- synchronously compared to detect 

faults, arbitrate bus requests 
- responsible for overall fault 

detécéion in SCCM & limited 
recoyery action 

- examines signals from within SCCM 
& sends MFI to RS 

.;• gener.ation of Internal control 
signals 

- disables outputs from SC-CM/ 
resets 'CPU's 

- clears fault latches/initializes 
prograM restart 

- programmed as either a or b 
- transfers information between SCCM's, 
- moves data into/out of SCCM memory 

• 



- interface between Mill/external bus 	A) 11,D, 
B) 12m,D 

- translates incoming code from 
Manchester-NEZ 4,8,D 

la,lb,D 

5,12,D 

lc,11,R 
2,D 
lb 
lb 
lbm,11,R 
lb,11,12,D. 
lb,D 

12m,5m,R 

a) 12m,D 
b) la,D 

8,D 
la,5,7,D 
12 

MR MI OMB OM MI IMO MIMI MUM MUM MIMI 111111 MI MIMI MI MI OM MIMI OM UM 
Table 1: FTBBC FEATURE TREE 

FEATURES 

The Mill 
Memory 
ALU a) 

b) 
Internal Registers (2) 

EBI - External Bus Interface A) 
B) 

MNT - Manchester/NRZ Translator 

FUNCTIONS 

responsible for BIBB processing 
requirements; sampling incoming 
data, DMA address generation, 
word counts, testing control words 

F-T TYPES 

la,lbac,1d,m,5,12m 
lc,8,D,A,R 
a) la 
b) 5m,11,12m 

BAC - Buffer and Logic Control 
BAC Control 

Command Decoder 
State Control 
M Counter 
Controller Alert Logic 

BAC Data Paths 
XFR - Transfer Register 
CDR - Command Data 

Register 
Manchester Encoder 
Parity check/generate 

circuit 
BAC Fault Detection Logic 

IBI - Internal Bus Interface 

DC Reg - Direct Command Register 
Address Register 
Data Registers (2) 
DMA Controller (2) 
Command Decoder (2) 

• Bus Assignment Latch 

Fault Handling Circuits 
CONT - the Controller . 

CS - Control Sequencer a) & b) 

PLA - Programmed Logic Array 
MLC - Microprogram Location Counter 
Status Register.  

ID compare  

- detects improperly coded commands 	5,D 
- controls input/output mode 
- counts incoming/outgoing data words 	8,D 
- alerts controller of throughput of 

data words, synchronizes A & 8 copies 

- serial/parallel conversion 
- single buffer for incoming/ 

outgoing words 
- encodes outgoing data 
- checks incoming codes, encodes . 
outgoing words 

- sends Master Fault Indicator 
to BIBB  Fil 

- DMA interface between the Mill/ 
SCCM memory 

- contains fault handling circuits 

- one each, incoming/outgoing 
- request and acknowledge control logic 
- detects memory-mapped commands 
- stores number of external bus being 

requested 
- generates single fault indicator 
- generates control signals for BIBB 

sub-eiements 
- samples circuit conditions within 

BIBB outputs: a) data b) parity bits 

- generates addresses for CROM 
- contains status word for output 
- compares hard/soft names with 
commands 
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Table 1: FTBBC FEATURE TREE 

FEATURES 

Loop counter 

TOC1 - time out counter 
TOC2 -  Lime out counter 

CROM - Control ROM 

Fil  - Fault Handler 

IBS - Intercommunication Bus System 
IOBB 	I/O  Building Block (2) 

FUNCTIONS 

- underflow signal sent to condition 
multiplexer • 

- verifies completion of DMA 
- detects non-arrival of incoming/out-

going word 
- receives addresses from CS, maps 

these into control signals 
to operate BIBB 

- terminates ongoing transmission 
when internal BIBB fault detected 
stops clock to BIBB, resets pulse 

- redundant bus system 
- proposed attributes: 

F-T TYPES 

8,0  
8,0  
8,0  
8.D 

la,lb,2,D 

5,11,12m,14b 
D,C,R 

4,R 
3,16,1b,5m,11 

KEY to types of Fault-Tolerance: 

1. a) Parity encoding (double) 
b) Parity checking 	" 
c) Parity encoding (single) 
d) Parity checking 

2. SEC/DED (Hamming) code 

3. Manchester/NRZ coding 
4. Redundant spares 
5. Fault indications 
6. Self-checking logic circuits 
7. Status codes 
8. Timers, counters 
9. Handshaking 
10. Error information storage for diagnostics 
11. Duplication 
12. Comparison/reduction of results 
13. Restart, retry 
14. Switched circuit a) manual 

b) automatic 
15. Special circuits to monitor critical elements 
16. Cross-strapping 

m 	Morphic attributes 

D - Detection 
C - Containment 
A - Analysis 
R - Recovery 



4. COMPARISONS WITH OTHER FAULT-TOLERANT ON-BOARD COMPUTERS 

4.0:Genera1 

Comparisons 	were 	made 	among 	three 	significant 
fault-tolerant on-board computing facilities: the UDS/FTBBC, 
European Space Agency's On-Board Data Handling (OBDH) System 
(Refs.7-15), and the proposed Advanced Autonomous Spacecraft 
Computer (AASC) using Intel Corporation's new iAPX 432 computer 
and its advanced fault-tolerance extensions (the detail of iAPX 
432 fault-tolerance is still restricted information). 

The purpose of the comparisons is to place the FTBBC in 
perspective and to determine its strengths and weaknesses as a 
system. Every ,  effort was taken to make the comparisons as im-
partial as possible. However, , as is always the case with com-
parisons of objects from different origins, there may be a lev-
el of disposition unknown to the authors, in the form of a bi-
ased selection of features or topics against which comparisons 
were made, or the subjective evaluation of scoring by particu-
lar system(s) in such comparisons. 

A brief outline of the OBDH and AASC follows. 

4.1 Features of the OBDH 

The OBDH ié a modular, distributed system which comprises 
a Central Unit (CTU), a Data Bus, Remote Terminal Units (maxi-
mum 31), and a Command and Power Distribution Unit (CPDU) as 
shown in Figure 4. 

The CTU is responsible for timing, internal bus traffic, 
time-shared access to the external bus, formatting data for 
telemetry purposes, command and housekeeping handling. Option-
ally, it can provide user facilities such as data collection 
from sub-systems, dedicated processing power with access to all 
OBDH data channels, and user specified pulses. (Ref.16) 

The RTUs distribute operational commands and data to other 
subsystems and acquire data from these subsystems. There are 
three versions available, for single user, multiple users and 
multiple users with limited I/O. (Ref.12) 

The Data Bus sends commands, data and an operating clock 
in a continuous, self-clocking, Litton-encoded form to the RTUs 
via the Interrogation Bus. The Response Bus is used for return 
messages either to the CTU or another RTU at the CTU's command. 
Messages are allocated according to predetermined time-slots 
under CTU control. In-flight programming can be performed via 
the Programming Bus which is controlled by the Smart-Controller 
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Fig.4 ESA—OBDH System 
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1 

within the CTU. 

• The CPDU has the following functions; demodulation and bit 
synchronization of up-link telecommand signals, frame verifica-
tion, distribution of priority commands and serial load com-
mands, and configuration control of the OBDH subsystem. 

CTUs, RTUs and the Data Bus may be duplicated as required 
to provide a redundant configuration as shown in Figure 5. 
There is internal redundancy within the RTU and the CPDU. There 
is no internal redundancy within the CTU, which must rely on a 
standby spare.(Refs.8,12,16) Software fault detection features 
include monitoring terminal status, watchdog timers, and detec-
tion of abnormal conditions. 

4.2 Features of the AASC 

The AASC is an autonomous computer system consisting of 
clusters of highly fault-tolerant computer complexes distribut-
ed along inter-cluster buses. A cluster interfaces the 
inter-cluster 	buses 	at 	one 	end and, in general, i/o 
subsystem(s) at the other, as shown in Figure 	6. 	The 
inter-cluster bus is very much like a local area network bus. 

The hardware redundancy is provided at several levels 
within the system hierarchy: every element of the system may 
exist in multiple copies to provide non-dedicated redundancy at 
hardware level. These include the following: cluster, 
inter-cluster bus, inter-cluster bus to cluster interface, 
intra-cluster processor, intra-cluster bus, intra-cluster memo-
ry control unit, and local and global memory modules. 

The inter-cluster bus is not specified in detail as its 
design is intended to be independent of available technology. 
However, a fully distributed architecture is assumed, i.e. no 
dedicated controllers on the bus and no polling scheme enforced 
over the bus, multi-drop, and a bandwidth of at least 10MBit 
per second. 

A cluster consists of three sections; the network access 
section, the FTC cbmplex, and the subsystem support section. An 
example of a typical cluster is shown in Figure 7. 

The network access section establishes contacts between 
the cluster and the rest of the system. Each of the multi-drop 
cdnnections to the intercluster bus is achieved by a Network 
Interface Unit (NIU). The NIU handles at least the first two 
layers of a multi-layer network protocol. The NIU, in turn, is 
connected to an Attached Processor (AP) which processes and de-
als with the issues associated with the network protocol in la- 
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yer 3 and upwards. The other end of an AP is connected to an 
Interface Processor (IP). This processor is responsible for 
managing address windows into the FTC complex: it maps address 
spaces defined in the AP into those in the FTC complex, or vice 
versa. 

The FTC complex is based on Intel's iAPX 432 fault toler-
ant computer. It houses the upper layers of the local intelli-
gence required for the cluster and provides most of the numeri-
cal computing power of the system. It consists of a mesh of 
packet oriented buses flanked by processors and controllers. 
The System Packet bus handles inter-processor communications, 
while the Processor Packet Bus controls distribution of infor-
mation between a processor and a number of System Packet Buses. 
The former.is  supported jointly by all processors in the com-
plex, while the latter is sponsored by a single processor - ei-
ther a General Data Processor (GDP) or an Interface Processor 
(IP). At the intersection of the processor packet buses is a 
Bus Interface Unit (BIU), which controls information transfer 
between them. The Memory Control Unit (MCU) attaches a memory 
module (RAM) to the System Packet Bus. The intelligent memory 
controller converts logical address spaces implied on the pack-
et bus into physical addresses in the memory module. 

The fault-tolerance embedded in the FTC complex hardware 
surpasses that of any known computer system. The current ver-
sion of GDP provides a throughput of approximately 0.2 MIPS - 
(Million Instructions Per Second), or :the .capability of a typi-
cal minicomputer. The multiproceàsing is performed in a manner 
completely transparent to the overlaying software structure. 
The over-all computing power of the. cluster  is determined as a 
function mainly of the number of GDPs and system-packet buses. 

The subsystem'support section handles all non-network i/o 
to and from the FTC complex. It employs the same IP-AP struc-
ture as in the Network -  Access Section. In . place of NIUs, 
however, the AP is connected to a structure that .controls an 
i/o Subsystem. The i/o subsystem in this application would be a 
satellite subsystem such as an A0cS, a temperature control sub-
system, an . uplink/downlink,channel, an on-board power manage-
ment subsystem, etc. The - fault-tolérance within the subsystems 
will be provided using known FTC techniques,  including  .the  ,use 
of multiple copies of•Such a subsystem. 

• 
The software will consist of three major module groups: 

the operating system and its support, the fault-tolerance man- - 
agement software,' and - the application software. They will be 
developed as  Ada  packages and will remain highly configurable 
to permit intense customization by the application system de-
signer. -  Together, modules from these three groups will-'estab- 
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lish and support hierarchical process structures which may dy-
namically change shape during their life according to the needs 
of the system. 

The execution of such software will be carried out under 
the protection of the data structure protection mechanism in-
herent in the FTC complex hardware. This implies the extension 
of the enforcement of Ada type-checking concepts into the exe-
cution environment (in Standard Ada, this is done only at com-
pile time). 

4.3 The Basis for Comparison 

For the UDS/FTBBC system, a system with a typical UDS configu-
ration that would employ three HLM-1553A bus pairs, each having 
several TMs is considered. For the OBDH system, a configuration 
with one CPDU, two CTUs, and two sets of OBDH buses, each sup-
porting several RTUs, is assumed and is illustrated in Figures 
4 and 5. For the AASC system a few clusters are envisaged, each 
containing several GDPs (Ref.17) and IPs, several packet buses 
and BIUs that inter-connect processors, and memory modules and 
MCUs. Each cluster is linked together by wide-band local net-
work arrangements similar to Ethernet, as shown in Figures 6 
and 7. 

While the AASC is only a hypothetical system, its detailed 
design is well underway and supporting VLSI hardware and 
software components are the subject of the manufacturer's ex-
tensive development efforts. The system is considered here as a 
reference point in order to evaluate the other two systems aga-
inst the latest technological developments in the area of 
fault-tolerant computing. 

Comparisons are made on several aspects of these systems 
including over-all system design, software, hardware, and phy-
sical characteristics. In those comparisons which are less open 
to subjective evaluations, a score is given on the scale of 0 - 
9 and a weighted score (0 - 81) is calculated in an attempt to 
establish the basis for a quantitative comparison. Such weight-
ed scàres are tabulated for each system to yield accumulated 
sums. Note that the weighting of features, individual system 
scores and hence the weighted scores themselves, may be subjec-
tive. The method is nevertheless preferrable to arbitrary, 
non-exhaustive comparisons. 

As the result of the comparison is greatly in favour of 
the AASC, the authors would emphasize that they have made every 
effort to remain unbiased. The capabilities of the AASC can be 
fully demonstrated only after the details of the fault-tolerant 
extension to iAPX 432 are made public. 
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Explanatory notes to Table 2 are tndicated under à #n"i and.,aré 
appended to the table. 



9 81 multiple mission 	9 	yes 
potential 

9. 81 . yes 981 	yes 

115 

#18 

9 72 	clean 

5 35 

5 40 	fully trans- 
parent 

9 72 

110 	9 63 

9 72 
#14 

very wide 

major project 	117 	4 20 

9 63 

9 81 

9 72 

low - automated 
#20 

very .  high - auto- 
mated 	121 
possible 	122 
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6 ,  42 

7 63 
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Table 2: COMPARISON OF FAULT-TOLERANT ON-BOARD COMPUTER SYSTEMS. 

FEATURES 

Wt. 

UDS/FTBBC 

Sc. 

ESA-OBDH 

Sc. 

AASC 

Sc. 

system hierarchy 	8 	sets of (HLM-bus- 	7 56 
TM'S) 	11  

CTU-owned buses 	5 40 	fully distributed 	9 72 

system-wide synch-
ronization 

estimated software/ 
hardware effort 
ratio for typical 
application 

One HLM as clock 
master 2.5ms 	12 

30% : 70%  

CTU generates bus-
clocks at 500KHz 

40% : 60% 

tightly synchron-
ized buses. 

80% : ,201 

mission to mission 
adaptability 

9 expected to be un- 5 45 
stable in larger 
mission 	14 

•  

limited to small to 6 54 
medium scientific 
missions 	• 85 

highly 
lléxible 

. 9 81 
16 	' 

4" • 

VD 

subsystem interface: 	- 
- clarity 	17 8 

- load.range 	7 

- system transparency 8 
Ill  

system test and 
validation. éstimates: 
- cost of setting, up 5 

test procedure 
- cost of testing and 7 

validation 
- quality of testing 9 

and validation 
- possibility of 	8 

software validatiOn 

HLM involvement 
touchy 	#8 

up to the capa- 
city of MIL-STD- 
1553A bus 

HLM-sets aNaya 
visible 	112 

average 

high 

average 

difficult 

6 48 	clean 

7 49 	multiple RTU's, 
but limited 	19 

4 32 CPDU/CTU alWays 
visible 	113 

8 40 

4 28 average 

6 54 

A 32 

low-average 	1 16 

119 
average - high 

very difficult 

comPliance to the 
-FTC rules: 	1 23 
-(11, single point 	.. 9 	HLM comprises a 	". 
'of failure 	localized, hardcore 

failure point 124 
point of failure. 
CTU, though limit- - 
ed, can create local 
paralysis if it 
fails 	125 

6 54 	CPDU is a single 	4 36 	cap remove  ail  9 81 
hardcore 	. • 126 



FEATURES UDS/FTBBC ESA-OBDII - AASC 

-[2] fixed master/ 
slave relationship 

Sc. 

5 40 

Sc. 

9 72 8 	Yes, FILM-TM's 	6 48 Yes, CTU-RTU's none fixed 	827 

Sc. Wt. 

- [ 3] fixed fault 
arbiters 

8 	fully distributed 
into hardware gates 
hardware dependence 

128 

3 24 	fully software 
controlled 	129 

9 72 6 48 CTU does it all 

- [4] module decoupl- 8 
ing 

inter-bus daisy 	• 6 48 
chaining ambiguous 

130 

multiplexed bus 
protected little 

rigid capability-
based isolation 

5 40 9 72 

-[5] module 
strength 

8 	good design 	. 	7 49 
language 

by programmer 
discipline only 

4 28 	program, language, 
compiler and 0/8, 
hardware discipline 

9 72 

9 72 7 56 by programmer 
discipline 

8 	by programmer 	7 56 

discipline only 
0/S, language 
and hardware 
encourage layeri .ng  

- [6] subsystem lay-
ering (vertical 
decoupling) 

maturity of 
technology 

9 	breadboarded 	135 G 54 in-orbit under development 
136 

9 81 6 54 

• ill IMO BIZ IMO 	MI OM Ili 11111 UM OM III UM Ili OMOM IMMI 	UM 

e••• 

FL 
o  

ground/on-board 

communications 

ASM features 

building block 
type 

not discussed 

8 	autonomous lower 
132 	level fault 

recovery  

1-mega bit/sec 
maximum 

5 40 	- entirely ground- 3 24 

.controlled 

• - block telemetry 
• a move toward on-

board processing 

as much as tech- . 

nolOgy can offer131 

- hierarchical fault 9 72 

handling strùcture .  

- hardware fully 
autonomous 

- large CPU throughput 
- most  of  ASM condi- 

tions can be-met 

non-dedicated and 
some dedicated 
redundant computers 
and their coMponents 

5 	non-dedicated but 	7 35 	dedicated computers 5 25 
pre-assigned comp- 	(xxU°s) with some 
uter units (SCCM's) 	component options 
and their components 

9 45 

building block 
granularity 	133 

data units/formats 
134 

module and submod-
ule levels 

MIL-STD-1553A frames, 
no application level 

. formats  

module level 

ESA standard 
telemetry 

submodule level 

Ada datum - packet 
bus frames 
ISO  7- layer  inter-
connect message mode): 



AASC FEATURES 	UDS/FTBBC ESA-OBDH 

Sc. 

7 63 

6 48 

Sc. 

5 45 

9 72 

4 28 
5 25 

9 45' 

9 45 

9 63 
142 

BIM Ng 11111 	 BIB NM MI 111.1 	. 	MN MI 111111 MI MI UN 

space qualifi-
cation 

processing power 
(minimum aPpli-
cation) 

Wt. 

9 	some component 
level difficulties 

8 	1.2 MIPS approx.  

now 

0.8 MIPS approx. 

Sc. 

.981 	by 1986 

4 32 	0.2n- 2.4 MIPS appr. 
n: 1 of clusters 
(0 < n < 256) 	136a 

1—n 

Operating System: 
- name 
- distributed 
- multitasking 

- layered structure 
- hierarchical struc-

ture 
- implementation 

language 
- inter-processor 

communication 
- inter-module 

protection 

i/o processing: 
- response granular- G 

ity 
- timing 
- mode 
- realtime access 

customized 0/S 
some 
limited - back 
ground/foreground 
some 
Some 	• 

restricted 	137 

violation can 	3 24 
occur 	139 

5 - 7 ms 	424 

restricted 	4 28 
polling 	5 25 
low level modules 

no 
no 

not visible 

assembler 

controlled 	138 

violation ,can occur• 4 32 
140 

500 microsec. 
approx. 
controlled 
polling 
low level modules, 
FORTRAN libraries 

iMAX432 
yes 
yes 

yes 
yes 

fully asynchronous; 
capability based 
fully protected; - 
capability based. 

fully asynchronous 
event drivén 
structured data 
access .  

7 	UDS Design Language 7 49 

G 36 	10 microsec. approx 

9 72 

9 54 .  

9 63 
9 45 

3 21 	Ada or Ada+Pascal 	9-63 

application software: 
- design language 	6 
- coding language 	6 
- modules 

- structured prog- 	8 
ramming 

process-processor 	9 
interdependence 

UDS Design Language 7 42 
UDS Design Language 7 42 
subroutines 

can be used - 	8 64 

dependent 	4 63 

flowchart 
assembler/FORTRAN 
subroutines/ 
functions 
can be used at 
design level only 
dependent 

424 	Ada 	954 .  

530 	Ada 	9 54 
subprograms, tasks 
packages 

5 40 	fully enforced 	9 72 

4 63 	independent 	. 141 	9 81 

3 .15 

5 25 

7 49 

CPU type 

CPU bits' 

number of proces-
sors in a system 

5 	TI9900, MCG8000 

5 	16 

7 	about dozen 

HARRIS 6100 

630 	12 

7 49 	about dozen 

iAPX432 

32 - 80 

up to 31 per 
cluster 

6 18 



nli 	MI BM MI 

FEATURES 

MI 	IM 

ups/FTEN3c 

11111 

ESA-OBDH 

ffl Inn M 

AASC 

Sc. Sc. 

9 54 2 12 	yes - BIU 848 	no CPU unloading 6 yes - BC 

yes yes hardware fault 
confinement 

not clear 

hardware reconfig-
uration 

8 	no - software mit-  7 56 
iated. Some cross-
strapping 

2 16 	yes - fully autom- 	9 72 
atic and transparent 

no 

	

530 	yes • 

	

'6 42 	- CPU, bus, memory, 
i/o channel 

9 54 
9 63 

1APX432 packet bus 
and a LAN bus 
parallel/serial(LAN) 

(5MHz) 

763  • npt planned yet 	3 27 	prototyped 	9 81 

processor modules: 
- system executive 

module 
- high level module 
- low level module 

8 	executive HLM 

8 	HLM 
TM 

6 48 	CPDU 

756 	CTU 
RTU 

4 32 	none 

6  48 	GDP 
IP,IPL,AP 

9 72 

146 	9 72 

	

Wt. 	Sc. 

	

6 	HCM bus-controller  742  
initiated DMA 

CTU controlled 
. DMA  

7 42 	bus-controller cont- 9 54 
rolled DMA with 
queueing 

inter-processor 
communications 

4> 

F' 

redundancy manage-
ment 
- defined 

• - elements 

- methodology 

VLSI implementation 

system bus: 
- type 

- format 
- clocking 

- speed 
- capacity 
- mode 
- adaptor 

• - isolator 
- access 
- transfer control 
- bus-CPU relation 
- max. length 
- media 
- broadcasting 
- priority control 

6 	yes 
7 	CPU, bus, memory, 

i/o channel 

hot/blank spare 

9 	being designed 

MIL-STD-1553A 

serial 
Manchester code 

BA/BC 

5 	slotted 
7 	semi-distributed 
8 	semi-fixed 	143 

twisted wire 
no 
preassigned and 
fixed 

9 54 	discussion only .  
9 63 	CPU, bus 

ESA Standard OBDH 
bus 
serial 
baseband modulation 
Litton code 
1Milz 

'full duplex 
Bus Adaptor/RBI 
transformer 

6 30 	slotted 
7 49 .centralized 
5 40 	semi-fixed - 

20 m. approx. 
twisted shielded 

535 	yes 
4 24 	preassigned 

full duplex 
BIU 
optical coupling . 
asynchronous . 	9 45 
distributed 	9 63 
séftware controlled 	9 72 
511500m. approx.145 
bàckplane/Coax cable• 
yes 	. 	9>63 
software controlled 	9 54 

7 63 	not defined yet 	- 3 21 	—"marriage concept 9 63 

6 30 
• 3 21 

144 4 32 

pair 
9 63 
9 36 



WI:.  Sc. Sc . Sc. 

WEIGHTED-SCORE 

TOTAL 3150 '3062 2179 
===. 

1835 
a==. 

M1.11311M n1111MIIMMI 

FEATURES  

BM IBM 	 MIMI 

UDS/FTBBC 	ESA-OBDH 	 AASC 

7500 cm cubed approx. 

8.2Kg approx. 

21W  

- i/o module 
- memory control 

module 
- multi-processing 

boards 

minimum packaged 
volume 

weight (minimum 
mission) 

power consumption 
(minimum mission) 

TM-IOBB 

TM-MIBB 

7 	centrally 
controlled 

customized 

RTU 
RTU 

6 42 	preassigned 

EUROCARD (?) 

AP 
MCU 

5 35 	fully transparent 
147. 

7. *Intel 432 standard 

9 63 

e- 
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. #1 	An HLM (high levelmodule) nowne: an MIL-STI>1553 bus, 
onto whieh .several TMs (terminal modules) • are attached.' 

#2 	The UDS has a 2.5 ms System-wide cloçking system called- 
RTI. The'clock is generated by one of several.high level 
modules (FILMS) deSignated as the command/centrol computer, 
or Systeffi executive HLM. The clock is used by other HLMs 
and TMs to generate . predisely time&results. 

#4 	The lack of system level consideration is evident through 
the absence of a structured and detailed discussion on 
software and system architecture in functional terms and 
will likely cause difficulty when designing a large scale 
and complex applications. 

#5 	The system can only have one or two system bus(es), each 
controlled by a control unit (CTU). The traffic capacity 
of the bus is low, and so is that of the satellite to 
ground link (Ref.13). 

#6 	The well-disciplined flexibility inherent in the design 
of the processor building blocks can be easily applied to 
give a wide range of mission adaptability. 

#7 	A measure 6f how easy and unified the method is of at- 
taching the payload to the computer system. 

#8 	The HLM tightly controls the use of a bus. A numbe'r of 
TMs can then be attached to the bus to be put under the 
control of the HLM. The scheme involves careful prepara- 
tion, taking into account various factors such as the bus 
priority, number of TMs, required response time, TM to TM 

I'

traffic volume, HLM monitoring actions, etc. Futhermore, 
this HLM-bus-TM set-up must always exist in relation to • 
other similar sets, as these sets are linked together by 
a hardware priority link. 

#9 	The capacity of the OBDH bus is fairly low (Ref.13). 

#10 	The processing, memory, bus and i/o channel capacities 
are all adjustable within a wide range to the demand im-
posed by the load. 

411 	The measure of shielding thé computer system's ideosyn7 
cracies (unnecessary details) from'the : user subsystem. 

#12 	A 'subsyStem virtually belongs to an: HLM through e TM. It  
has to be—able to issue requests to..the HIM supplying 

EXPLANATORY NOTES TO TABLE 2, 



• physical çonneCtion information 	(address, 	size 	of 
transfer) to aChieve a subsystem to subsystem: data 
transfer. 

#13 	A subsystem belongs to the CTU through the RTU(s). Every 
i/o a subsystem makes is controlled by it. CTU controls 
several subsystems. A CPDU controls all CTUs and RTUs. 
The subsystem must be aware of these facts (Refs.8,14). 

#14 	Packet-oriented inter-process (and NOT inter-processor) 
protocol and inter-cluster protocol will be the only sig-
nificant interface between subsystems, between a subsys-
tem and computer systems, or between an on-board function 
and ground functions. Such protocols are software defined 
and software controlled. 

#15 ' This would be. equivalent to the cost of setting -  up any 
other space qualification process invOlving VLSI comPo- 
nents. Some effort has already been made in this - area 
(Refs.11,18-24) 

#16 	ESA/ESTEC has started the basic hardware design with the 
anticipation of extensive validation and test require-
ments (of hardware) for each mission. (Refs.11,18,19,20) 

#17 	Because of the higher level of sophistication involved 
both in VLSI hardware and software, and the volume of 
processing capability expected on the system, the initial 
set up would be fairly expensive. However, the resulting 
test/validation facility would be highly automated. 

#18 	Most of the testing process will have to be set up anew 
each time a mission is defined because of the lack of 
designed-in testing concepts and facilities. 

#19 	The same testing procedure will be modified in accordance 
with the mission profile and applied using identical test 

- facilities. However, most of the test will be done manu-
ally. 

#20 	The 	only 	way 	to 	rationally 	test 	sophisticated 
software/hardware as complex as this would require a 
highly sophisticated automated facility. A series of ex-
tensive tests would then be possible without much human 
intervention. 

#21 	By minimizing human intervention in the validation and 
test process, the chance of including operator and other 
environmental errors would be greatly reduced. By system- 
atically executing a set of predefined test sequences 
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I.  

geared to the mission profile, the reach of such valida-
tion and tests would be phenomenal. 

#22 	Highly-structured, 	x1gidly-typed 	capability 	based 
languages (such as :Ada) and process organization (Ada 
packages, task's and procedures) supported and 'enforced bY 
the iAPX 432 architecture should provide an opportunity 
for eventUal àutomatic'softWare Validation. 

#23 	See Appendix B, Fault Tolerant Computing Design Rules. 

#24 	There will be several HLM-bus-TM(s) sets within a given 
UDS system. While distributed to a certain extent in this 
way, nevertheless, the HLM constitutes a single point of 
failure within a set. 

#25 	The CPDU is clearly a single point of failure (Ref.10). 
Under its control, the system can take up to two CTUs. 
Each CTU may in turn support several RTUs. Access to the 
bus is fully controlled by CTUs. Should one CTU fail, the 
chance of some RTUs failing is great, although in theory, 
the other CTU is supposed to take over the failed CTU. 

#26 	All five elements of the system (GDP, IPL/IP, BIU, MCU 
and AP) may be multiplied in an orderly fashion resulting 
in removal of any potential hardcore. 

#27 	From time to time the software may designate masters and 
slaves. However, such dynamic designations are not fixed 
as implemented in hardware. 

#28 	The FTBBC uses very deterministic error detection methods 
which should be sufficient for detecting simple faults. 
However, if there is an error in this detection logic, or 
if a fault involves interaction among more than one SCCM, 
this fixed detection mechanism may not always be effec-
tive. 

#29 	Any of the GDPs in the cluster can be designated as an 
arbiter from time to time, thus avoiding the establish-
ment of,a fixed arbiter-arbitee relationship. 

#30 	How are the priorities defined? What happens to a 
lower-priority HLM and its bus traffic if a high-priority 

•  HLM attempts to preempt them? What if a low-priority HLM 
loses its bus and attempts to use one which has a higher 
daisy-chain priority? The fact that buses are not 
non-dedicated spares may make the algorithm for granting 
the bus during reconfiguration extremely complicated. 
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#31 	The external communication  is 	separated 	from 	the 
inter-process, inter-processor, .or inter-cluster communi-
cation. It can be designed to meet whatever the require-
ment. 

#32 	The USAF, in conjunction with NASA and JPL, is developing 
a concept called Autonomous Spacecraft Maintenance. 
(Ref.7) It is intended to be applied to all future satel-
lites launched after 1990 by the US government. Their re-
port, "Final Report of the Autonomous Spacecraft Mainte-
nance Study Group"(Ref.25), lists conditions for a satel-
lite to become fully autonomous. Here, three candidates 
are screened against this set of conditions. 

#33 	A measure of how flexible a configuration and reconfigu- 
ration can be. 

#34 	Assuming that in a layered data-processsing system, data 
formatting occurs at several levels. 

#35 	The system level proof-of-concept breadboarding for the 
UDS was completed in 1978. The FTBBC breadboarding to•
prove the hardware viability has been partially completed 
and the testing was started in the fall of 1981. Each bu-
ilding block must be created in vLSI form for actual 
in-space use. 

#36 	Most of the submodules are now being put into VLSI - 
there are two already in that form and others coming by 
December, 1982. 

#36a A cluster may have up to 31 iAPX 432 processors., each 
having 0.2 MIPS CPU power. If we configure these into the 

• most ,  fault-tolerant configuration, the cluster will pro-
vide approximately 0.8 MIPS throughput in a virtually 
destruction-free set up. 

#37 	All inter-processor communications are governed by the 
.HLM thet owns the bus. There are three HLM-bus combina-
tions in the system. Any TM on a bus must be cleared by 
the HLM before data could be transferred. 

#38 	There are two sets of system buses in the system, each 
governed by a CTU. The CTU dictates every transaction 
that an RTU would make over the bus either to other RTUs 
or to the CTU (Ref.10). 

#39 	The .  communication is not based on a rigid layered proto- 
: CO.1. Hence  the inter-layer protection virtually does not 

exist.- That the actual transfer occurs in DMA mode even 
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increases 'a  chance of  contaminatinglarge'r memory space 
in a short time should a prOtocol error: occur. 

#40 	Same as #39, except that a relatively low traffic rate 
may lessen the damage in the event of a spillage. 

#41 	In iAPX 432, processes exist apart from processors as an 
independent abstract entity. This is the basis for the 
true user-transparent multiprocessing (for increased 
throughput) and the dynamic reconfiguration scheme (reli-
ability feature) of that computer. 

#42 	An AASC cluster can contain up to 31 processor modules 
(GDP or IP), eight packet buses, and 63 total modules in-
cluding MCUs and BIUs. 

#43 	As stated in note #39, a bus belongs to a control module 
(an HLM) and users (TMs) need its permission to access 
the bus. A TM typically is connected to more than one 
bus. 

#44 	A user module has a choice of selecting one of two buses. 
The selection is not transparent to the user or software. 

#45 	Within a cluster, parallel packet buses link processors 
and memory elements. Inter-cluster communication is achi-
eved by multiple local area network buses. 

#46 	A system executive HLM virtually controls the mode and 
extent of multi-processing. 

#47 	Because of the successful separation of processes from 
processors, multiprocessing occurs in the most desirable 
form, namely, complete transparency to the user. 
Processes are dispensed from dispatch port(s) to physical 
processors. Because of this divorce of the two objects, 
the number of processors actually available in the system 
only affects the throughput and reliability of the pro-
cess being executed and is completely transparent to the 
process as a logical entity. 



5. DISCUSSION AND ANALYSIS 

5.0 General 

It is evident that the global development plan that in-
cludes both the UDS and FTBBC has been carried out in a proper 
top-down fashion, finding its inception in the TOPS (Thermoe-
lectric Outer Planets Spacecraft) and other related projects 
conducted at the JPL in the early '70s. However, in spite of 
the great foresight in these projects, several major develop-
ments have taken place elsewhere, concurrently with the JPL ac-
tivity, which have profoundly affected the evaluation and the 
implications of JPL's efforts. These external developments are: 

- the flourishing of distributed computing and local area 
network technology in business, industrial and military 
sectors 

- substantial refinements and proliferation of structured 
design and related software engineering techniques 

- further diversification of computer architecture 

- drastic improvements in the availability of VLSI compo-
nents to system designers 

- further study into fault-tolerant computing principles and 
practices. 

The following subsections provide brief discussions and 
assessments of the impact which each of these developments 
might have made on the implications of the current FTBBC pro-
ject. 

5.1 Distributed systems and local area network. 

Since effective fault-tolerance in the UDS/FTBBC depends 
largely on dedicated and non-dedicated redundancy in the form 
of distributed processor arrangements along multiplicated 

buses, any progress in the area of distributed processing would 
have the potential for a significant contribution to the design 
of the UDS/FTBBC. This is particularly the case with the emer-
gence of local area network concepts such as Ethernet or 
IEEE802. In comparison, the MIL-STD-1553 buses (1553A and 
1553B) are in several ways overly restrictive. In retrospect, 
the restrictiveness of the 1553 bus often resulted in an 
over-all system inflexibility in reconfiguration and a system 
level vulnerability in the presence of faults. Dr. Rennels ack-
nowledges that the FTBBC bus structure is undergoing redesign 
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at his laboratories to incorporate an enhanced Ethernet-like 
bus concept. 

Another, more profound impact is felt in the emergence of 
the concept of fully non-dedicated distributed processing. 
There have been several efforts to implement this using the la-
test 16-bit mini and micro computers (SARGOS - Ree.15, C.Vmp - 
Ref.26, ARPANET IMP). In addition, movements towards establish-
ing a distinction between the physical reality of computing and 
the manifested dynamism of program execution is becoming incre-
asingly noticeable in modern computing facilities. Intel's iAPX 
432 system, for example, completely separates processes from 
processors, implementing in VLSI what the SARGOS ground station 
computer system attempted to do using conventional 16-bit mi-
croprocessors. The significance of this in the light of imple-
menting truly user-transparent multiprocessing, as well as pro-
viding a highly flexible reconfiguration mechanism, is obvious. 
When combined with hprdware supported, capability-based data 
protection mechanisms (as compared to conventional 
memory-protection mechanisms), the reliability of systems con-
structed using such components is expected to be phenomenal. 
The HLM-controlled data transfer mechanism of the FTBBC can be 
said, in comparison, to be less distributed, less specialized 
and more restrictive. 

5.2 Structured design and software engineering techniques. 

After a decade of often turbulent experiments with top-
down/structured system techniques by the data processing and 
software development industries and academia, it is now obvious 
that the methodology  .has  gained a considerable acceptance. As a 
side effect, the distinction between hardware and software be-
came of decreasing importance in system design. This leaves the 
definition of principal system function and its systematic de-
composition as the major concerns of the design process. 

Developments in semiconductor technology permitted the im-
plementation as hardware components of many increasingly higher 
level functions traditionally supported by software. This 
further blurred the boundary between hardware and software as 
seen by the system designer. The trend continued until the dis-
tinction became a convenience or an economic issue rather than 
an issue related to design principles. 

Both the UDS and FTBBC design phases were completed well 
before this revolutionary change in system design concepts hit 
the world. As a result, they did not receive some of its bene-
fits. This can be seen in  •the FTBBC, for example, in the ab-
sence of continuous high level to low level support for 
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fault-handling. In general, a given system is assumed to have 
fault potentials that form a hierarchy in terms of "levels of 
abstraction" of such faults; there are faults that may occur at 
higher as well as at lower levels in the system hierarchy. The 
difference in the diagnosis and remedy of system faults at both 
extremes could be  •as disparate •as those required for curing in-
somnia and removing a sliver from a fingertip, to give a human 
analogy. Most error handling in the UDS/FTBBC appears to be 
concentrated in the lower layers of the hierarchy, or in the 
FTBBC hardware. Concerns over fault-handling in the higher or 
software levels are mentioned in the study but are not as obvi-
ous or detailed. 

Other developments in software engineering include the 
discovery of elaborate module decomposition rules, namely G. 
Myer's "module strength" and "module decoupling" rules 
(Refs.27,28). Seen in this light, sortie of the ways in which da-
ta and control exchanges occur between HLMs and TMs may be con-
sidered questionable, although they are very much dictated by 
the MIL-STD-1553A bus protocol. For example, the extreme au-
thority given to an HLM in such a situation permits it to step 
into the data space of a subordinate TM to set up a data block 
transfer. This may result in reduced modular strength of the TM 
(in this case, a TM is a combined hardware/software entity) and 
increased modular coupling between the HLM and TM which might 
have subtle yet potentially drastic side effects. 

5.3 Advances in Computer Architecture and VLSI components 

The divergence of computer architecture has started and 
its rate ' has accelerated since microprocessors came into wider 
use. Several interesting computer architectures have been at-
tempted to suit specific application needs (minicomputer arrays 
such as C.Vmp of Carnegie-Melon University, bit-sliced micro-
computers for applications that require an extreme real-time 
response, processor arrays and pipe-lining for radar image pro-
cessing, to pick a few). Computers are no longer limited to von 
Neumann architecture. Over and above the ordinary demands for 
increased throughput and reliability, there is a general trend 
for multiprocessing to support a higher degree of process con-
currency and other dynamic requirements. Also of importance are 
the sophisticated memory access and protection schemes which 
are needed to maintain the increasingly complex data structures 
being utilized in sophisticated execution environment. 

Similar philosophical changes =  are taking place in the 
software world, as is seen in the development of the Ada pro-
gramming language and Ada program development and exécution  en-
vironment issues. Tighter data structures and procedure con- 
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trois, and a need for clearer module encapsulation are demanded 
by Ada in exchange for an added fluency- in establishing process 
ccincurrency., 

While the FTBBC's architecture is the result of a highly 
innovative design concept, it has not successfully accommodated 
many of these external conceptual developments, most of which 
became known after the UDS/FTBBC was well underway. In particu-
lar, strict data protection measures and the "liberation" of 
concurrent processes from tight synchronization requirements 
are not evident in the design. 

The FTC expansion of the above mentioned iAPX 432 archi-
tecture will witness the implementation of building block con-
cepts, similar ,  to those developed for the FTBBC, as commercial-
ly available VLSI components. There are differences between the 
two. However, the degree of similarity between the components 
in the two computers is of more importance. The BIBB, MIBB, 
IOBB, HLM and TM each has a functional counterpart in the BIU, 
MCU, AP, GDP and IPL, respectively. This can be viewed as indi-
rect but strong support for the veracity of the original 
UDS/FTBBC approach chosen by Dr. Rennels and his group. 

The advantage the designer of any on-board computing fa-
c il ity would have over the FTBBC is that all the theoretical 
and technological developments since the start of the UDS and 
FTBBC projects can be now evaluated and systematically incorpo-
rated into a new design. 

5.4 Post UDS/FTBBC fault-tolerant computing developments 

The fault-tolerant computing issues caught the attention 
of the general computing community in the early 1970s. Since 
then interest has been steadily growing mostly among research-
ers, designers, and project managers involved in aviation or 
space-related projects. The trend will not be limited to gener-
al applications but will be shared by any field where system 
reliability is of importance. It is anticipated that sophisti-
cated fault-tolerant features will become the norm rather than 
the exception in many such computing facilities. 

The Annual International Conference of Fault-Tolerant Com-
puting (FTCS) is one forum where results from on-going studies 
and experiments are exchanged. At its last meeting (FTCS-11, 
June 1981, Portland, Maine) a trend towards clearer classifica-
tion and axiomization of fault-tolerant system theories and de-
sign methodologies was noticeable. The following is a summary 
of a report, compiled by Eidetic Systems Corporation on the 
significant activities at the conference: 
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1 - J. Kuhl and S. Reddy of the University of Iowa proposed a 
revised diagnosis model that would be useful in establish-
ing a system level fault profile in a fully distributed 
system (Ref. 29). It is stressed in the study that even to 
identify a faulty unit in such an environment is not a 
trivial task. The theory also implied the uselessness of 
facilitating a centralized fault-arbiter, supporting the 
third rule of the FTC Rules (see Appendix B). 

- A similar theoretical study was made by J. McPherson et al 
of the University of Wisconsin, Madison, using the UDS as 
a model (Ref.30). They have developed a set of theorems 
that describes the correctness of the system in the pres-
ence of faults. The theorems are developed for various 
control 	structures realizable within the global UDS 
scheme. The process-oriented guardian-ward relationship, 
as they call it, also implies a support for the second 
rule of the FTC Rules, as the relationship takes processes 
rather than fixed (hardware) processing units as the com-
ponents of the control structure. 

- A remarkable development in the area of fault-tolerant da-
ta structure was presented by J. Black of the University 
of Waterloo (Ref.31). This unique study not only classi-
fied various data structures in terms of robustness aga-
inst faults; but went on to suggest algorithms for, the de-
tection and correction of faults applicable to  s'orne of the 
data structures. 

- W.G. Wood of the University of Newcastle upon Tyne reports 
an inter-process protocol model that aids the recovery 
process in a distributed system (Ref.32). His theory is 
one of the first such studies that address issues of reco-
very from higher level faults (that occur within processes 
rather than processors or other hardware elements). 

- A theoretical study by C.L. Kan and S. Toida of, the Un-
iversity of Waterloo also demonstrates the hierarchical 
nature of the fault and fault-tolerance within a system.by  
describing the application of "fault-tolerant graphs" 
(Ref.33). 

- Representing the French effort to establish a country-wide 
distributed fault-tolerant database, P. Azema of Labora-
toire d'Automatique et d'Analyse des Systemes du C.N.R.S. 
of Toulouse and his group are working on the application 
of computer networking technology to establish system lev-
el fault-tolerance (Ref.34). In particular, he described 
how they would establish a system-wide fault-tolerance us-
ing the Transport layer of the multiple-layer interconnect 
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protocol model (such as ISO's 7-layer interconnect model). 
The study represents the uniqueness of several distributed 
system studies in Europe, many of which, like this one, 
utilize a Petri-net model as a study tool. The application 
Of system wide fault-tolerance, as represented by this 
study, is essential to a successful fault-tolerant space-
craft system in its entirety. 

- A study of the topology of a distributed system to deter-
mine a highly fault-tolerant computer architecture was 
conducted by D.Pradhan of the Oakland University of Ro-
chester, Michigan and S. Reddy of the University of Iowa 
(Ref.35). A topology that permits efficient routing and 
readily distributed fault7diagnosis is proposed. 

1 
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6. CONCLUSION • 

The extent of the fault-tolerant features of the FTBBC 
was revealed in this study. The FTBBC was then compared with 
two other on-board computing facilities which have similar 
objectives; an existing European system developed for un-
manned applications (ESA/OBDH), and the preliminary design 
of a proposed system, the AASC, which would be implemented 
using the latest available technology with potential for 
utilizing future developments. 

The VLSI implementation of the FTBBC study, begun in 
1972, has been a pioneering venture in providing 
fault-tolerance combined with versatility in a spacecraft 
on-board environment and has been instrumental in pushing 
the state of the art a stage further. It  .has,  however, been 
subject to various constraints; historic and economic consi-
derations amongst them. The hardware experience of the de-
sign team has resulted in an excellent level of hardware 
fault-detection and confinement but there are ambiguities in 
its diagnosis and recovery capabilities. The enforced use of 
the MIL-STD-1553A bus has entailed restrictions in perfor-
mance and expandability. Its custom-built operating system 
also has limited future capability and there would be struc-
tural restrictions placed on applications. The software in-
terface is not clear and attention to the design of 
fault-tolerant software is lacking. Space-qualification is 
still in progress and, at the time of writing this report, 
there is some doubt as to the probability of the project be-
ing completed because of economic constraints. 

The OBDH, on the other hand, has been space-qualified 
and has good test procedures in place both for hardware and 
software. The project has been completed, although there are 
some on-going modifications. There would, however, appear to 
be limits to its operating system capabilities and in its 
adaption to future missions. Its design, too, is hardware 
oriented. The level of its hardware fault-tolerance does not 
have the same sophistication as the FTBBC and its design vi-
olates the FTC rules in some critical areas. The 
micro-electronics technology used in the OBDH is now becom-
ing partially obsolete. 

Since the inception of these two computers, there has 
been rapid progress in many pertinent areas such as system 
design methodology, advanced high-level language concepts, 
software engineering techniques, computer communications, 
VLSI technology, computer architecture study, and 



1 
fault-tolerant computing theory and practices. It is felt 
that, in view of the current trend towards greater 
fault-tolerance and increased on-board processing power, ad-
vantage must be taken of this progress in order to achieve a 
computer system capable of meeting these goals. As the de-
sign of the AASC shows, such a system is a viable concept. 
Furthermore, it would be capable of surpassing in perfor-
mance, reliability and cost-effectiveness, any existing mi-
crocomputer facilities developed for on-board use. 

• 
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APPENDIX 4 

Question and Answer Session with Dr. D.A. Rennels, of the 
JPL. 

A number of questions were generated during the study 
of the FTBBC and UDS systems. These questions were compiled 
into a list and brought up in two question and answer ses-
sions held with Dr. Rennels of JPL and both at JPL and UCLA 
in October, 1981. Several hardware-related questions were 
asked of JPL engineer Dwight Geer during the visit to the 
laboratory. "Q." in the following pages implies questions 
asked by EIDETIC and "A." answers given by Dr. Rennels or D. 
Geer. Unless otherwise marked, all answers were given or , im-
plied by Dr. Rennels. 

There were about 120 questions with a slight overlap 
among some of them. The sessions lasted five hours in total. 
Answers were obtained for some eighty questions. Thus, some 
of the questions were left unanswered due to the limit of 
available time. However, this is not likely to cause a seri-
ous impact on the evaluation process as questions were pri-
oritized beforehand in order of significance with regard to 
understanding the systems. 

Answers which are enclosed in parentheses are those 
which were implied in related conversations during the meet-
ings. 

In addition to these sessions, there were a few tele-
phone conversations with Dr. Rennels which included a few 
system level questions. 

Q. - "classes of faults", what are D. Rennel's definitions? 
(2-50) 
TRANSIENT/PERMANENT basis of classification? 

Q. - "advanced degradation-techniques" (2-52) 

Q. - Asynchronous implied in FTBBC? 

Q. - DisCuss HLM/TM separation in relation toESA system 

Q. - Prearranged message area - why not message protocol 
handling 

A. - (Received the impression Dr. Rennels, being hardware 
oriented, has not been exposed to the layered software 
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approach.) 

Q. - Traffic volume between TMs 

A. - (Applications design to do traffic volume calculation) 

Q. - Does a HLM own a bus? If so, why does it have to? 
(3-14) 

A. - MIL-STD-1553A protocol demands this. 

Q. - Commander-soldier relationship analogy. 

Q. - Inter-TM transfers as simple as described in 3-10? 

Q. - Inter-TM traffic so high as to warrant DMA? 

Q. - HLM-controlled TM reconfiguration, reality 	of 	 
(3-12) 

- Why does instantaneous detection and signaling of 
internal faults guarantee straightforward implementa-
tion of automated recovery? There doesn't seem to be 
any such guarantee. (1) 

A. - More work needed in software. However, it is a general 
rule that if fault notifications are made instanteous-
gy, there is greater chance of confining them and hence 
a greater Chance of analyzing them properly. 

Q. - How much of original architectural freedom is still 
there? (1) 

A. - The Core-BB, for example, is prototyped to take MC68000 
processor, as well as TI9900 at CPU subsystem level. 
Also there is a certain range of freedom in the selec-
tion of RAM chips for MIBB. (D. Geer) 

- Degraded mode of operation really defined? (2) 
- "degraded system state" 

Q. - Design methodology used in the 1978 study: 
were the four blocks introduced systematically or 
guts feelings? 

A. - The UDS was a highly systematic study. 

Q. - What exactly does he mean by "transient mistakes" (3L) 

Y 
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"erroneous bits in memory" accidental - fault contain-
ment issue? 

Q. - The way backup spares are provided on the bus (3L) 

A. - Dedicated "hot spare" for executive HLM, non-dedicated 
"blank spares" for other HLMs, and dedicated SCCMs for 
TMs subsystem proper. 

- Spare fire-up sequence (3L) 

A.  - Not precisely defined 	application  proper elements. 

Q. - When everything is packaged in a chip, geographical 
closeness may nullify the effectiveness of providing 
redundancy. How does he feel about this. This is a 
question with the 432/670-type system too. 

A. - Yes, a more global level of redundancy must be consi-
dered. Strategical distribution of components will be-
come necessary. 

- Any conceptual change between 78  and  80? (4L) 

A..- A few minor ones, but nothing essential. 

Q. - A source per BC, for simplicity? 
Then BC should be part of Source Terminal? 

A. - This is a restriction placed upon the design because of 
the MIL-STD-1553A bus concept: 

Q. - Hence shall Controlling SCCM become part of 	the 
Terminal? 
And if so, isn't Ethernet-type architecture the naturai 
progression? 

- fewer modules 
• - more autonomous 

- more flexible 

A. - Yes. No arguments. (He was already contemplating an 
Ethernet-like bus structure to replace current 
MIL-STD-1553A bus) 

7 leSs exposed protocol (fewer connections) 

Q. - Don't need mediator if one (source BA) can manage him- 
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self 

- also NO ARBITER as in Rule Number 3 of FTC rules. 

- also NO SINGLE POINT OF FAILURE as in Rule Number 
1. 

A. - Yes, if we adopt Ethernet-like bus architecture. 

Q. - I/O  mapped id address: again, isn't local net-like mes-
sage, imbedded-id more general? 

A. - (He agrees. He explained a modified Ethernet-like ar-
rangement in which units have multiple access to common 
channels.) 

Q. - Examples of "candidate i/o functions" 1) thro' 8): 

1) 16 bit parallel i/o 
2) 16 bit serial i/o 
3) pulse sampling .  
4) pulse counter 
5) pulse generator .  
6)- adjustable frequency generator 
7) analog multiplexor with a/d converter .  
8) high rate DMA channel. 

Q. - Recovery options 1), 2) & 3y - how are  they  derived? 

- "external Commands" to Core-BB 

Are there scenarios concerning how to use them? Just 
provided for potential future use? 	- 

A. - Yes. 

Q. - Isn't 'halt computation on recurring *faults" too 
simplistic? 

A. - Don't think so. Chances are such errors are permanent 
• errors, although debouncing problem must be handled so-
mehow. 

Q. - Whole roll-back issue - could it be that simple? (4-58) 

A. - There is a scientist in his group working on that is-
sue. He found a rule for setting proper checkpoints. 
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- Under the assumption that VLSI technology mill' advance 
at present rate, is the "BUILDING BLOCK" ,really a use-
ful approach? 

If a "unit computer" with "full" capabilities can be 
produced using advanced VLSI techniques, and if such a 
unit can be highly (software) configurable, would peo-
ple bother "building" an SCCM picking necessary build-
ing blocks? 

If an SCCM-like chip speaks Ada, or similar standard 
language; provides enough facilities for the payload, 
and has all the self-checking capability of the SCCM, 
would they need a finer breakdown? 

A. - Such development is possible. In the FTBBC, SCCM is the 
unit of redundancy. 

- High-level processing, or number crunching, is no more 
than a specific process type and does not seem to jus-
tify division of HLM/TM. 

A. - TM normally belongs to a specific subsystem. The dis-
tinction will continue to exist. 

Q. - Why would the primary unit collect input for, a "hot 
spare" unit? 

A. - To aid in the process of potential reconfiguration - 
although such reconfiguration is not clearly defined. 

Q. - Algorithm to determine "good" one is not simple. The 
mutual checking has been an important issue in fault 
detection theory. 

A. - Cross-checking between HLMs is done in UDS. More study 
is surely needed. 

- BC getting into other's memory space is a violation of 
the decoupling rule 

A.  - Dr. Rennels was unaware of the decoupling rule.. Also, 
MIL-STD-1553A protocol almost  force  this mode of opera-
tion. 

- Controversial bus-ownerhip convention: - 

 Temporary: relinquishing (loanine of bus.to .other an 
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HLM - what algorithm is used? 

A. - Hardware level considerations only. Buses are daisy 
chained providing a priority structure. 

Q. - Any priority should be made software controllable. Or, 
how is the priority assigned and on what basis? And 
what happens if contention over the access to a bus 
occurs? 

A. - Priorities are given to the HLMs and they are fixed. No 
serious considerations were were given to the implica-
tions for system or hardware level activities. 

Q. - Is the difference between "hot spare" and "blank spare" 
in distributed UDS configuration all that great? 

A. - The hot spare concurrently executes same instruction 
sequence as the SCCM (in this case the system executive 
HLM) it backs up. Blank spares are powered up but no 
execution of instruction takes place until one of them 
takes over an HLM. 

Q. - TM need not be restricted from having: 

- the capability to initiate intercommunication 

- self-check and localized reconfiguration 

A. - TM is a slàve process in the UDS design. This comes 
from the historical background of developing subsystems 
in which TMs reside, and the control structure adopted 
at JPL in the past. 

Q. - Maintaining "inventory" of available paths, and the 
system level ability to recognise the remaining topolo-
gy may not be trivial. Again, the design should have 
started from the top - including this and other reco-
very algorithms. 

(We confirmed that the planned recovery capability in 
the SCCM ends at a very localized level such as dupli-
cated CPUs and memory bit correction. The SCCM design 
is mostly aimed at effective and accurate error detec-
tion and confinement of detected errors) 

- "HLM-owned" bus necessary? Can one adopt MULTIMASTER 
type arrangements whereby bus belongs to the system as 
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a non-dedicated redundancy and is up for grabs by any-
body who needs it momentarily? 

A. - Again, MIL-STD-1553A won't allow such arrangements. 

Q. - At least, can we not avoid "ownership" which creates a 
MASTER-SLAVE relationship? 

A. - No, unfortunately. 

Q. - Broadcast methodology (4-73) 

- 7 layer issue 
- optimization obvious 

A. - Broadcasting in Ethernet is attractive. 

Q. - DMA direct to some other SCCM (4-73). Isn't it too bold 
if BC controlling? 

A. - BC's access is limited to a predefined data area and it 
was assumed safe. (If new bus becomes a reality, this 
will be all right.) 

Q. - "Master-Slave" is the issue here. We'd like to elimi-
nate this single point of failure (Master) since redun-
dancy in sync circuit would be costly and tricky. 

A. - Agreed. 

Q. - (4-56 1st paragraph) ".... which is a combination of 
all clock-synchronized morphic fault indicators" 

Is combining them all effective in planning recovery 
strategy which can be hierarchical? 

Q. - Master Fault Indicator (4-66) 

Q. - rollback - linkage to a software recovery manager, how? 

Q. - Why is "listen in" by host seen as necessary? How is it 
strategically needed in the overall system? (4-78 (2)) 

A. - When reconfiguration involving TMs may be needed, an 
HLM which understands the nature of the transaction be-
fore the fault would be in a better position to. do it. 

. - LSI-11 original target machine? (2) 
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A. - No. 	TI9900 is the one being used to build prototype 
SCCM. LSI-5 was not even the machine used for the UDS 
system. 

Q. - What do you think about recent redundant 	memory 
technology? (3) 

Q. - 1.5 times as expensive - a close figure still? (3L) 

- Why are self-checking chips more easily tested by the 
manufacturer? Would seem to be the opposite. 

Q. - Out-of-range approach to internal bus access: how does 
the . memory mapped i/o work in segmented machines such 
as Intel's 8086? (4L) 

A. - Don't have experience with such machines. Could be dif-
ficult. (D. Geer) 

Q. - BA/BC distinction 

Q. - SCCM/BC division ambiguous - isn't BC a part of SCCM? 

A. - Definition of SCCM experienced a few changes throughout 
the life of the project. 

Q. - Discrete commands: 
- how POWER ON would work? 
- how INTERRUPT used? 
- isn't RECONFIGURE same as INIT? 

Q. - Global BIBB structure - were 	there 	evolutionary 
changes? 

MANCHESTER NRZ translator 	-> 	EBI 
Microprocessor Control Unit 	-> 	MILL or CONT? 
CONTROL ROM 	-> 	CONT 
DMA control 	-> 	IBI 
Data Path Element 	-> 	MILL 
?? 	 -> 	FH 

A. - (Could not ask question specifically, but Dr. Rennels 
suggested there were revisions of structure that re-
sulted in naming confusions.) 

- Core-BB block level design: did it change since 1978 
design? 

1 



A. - No. 

Q. - Is Recovery Sequencer still an option? If so, used in 
what type of circumstances? 

A. - Most errors assumed to be transitory—One attempt Would 
. be  sufficient. 

Q. - Morphic, Hamming, parity true (4-39) Morphic pairs 
(4-55) 

- 100 pin package 

Q. - Core-BB, what will its position be after disabling fts 
own CPUs? 

- Core-BB 	recurring faults, recurrence defined how? 
(4-52) 

A. - Only once more. 

Q. - Reality of VLSI building - how to proceed from the de-
sign 

A. - (Did not ask the question but an indication was given 
that VLSI mask design is underway on some of the build-
ing blocks) 

Q. - Duplex CPU synchronization? 

A. - In precise step. 

Q. - Stop clock, for what? (4-58) 

A. - For the single step sequencing. 

Q. - On the headings "Input to DCE/Outputs from DCE." What 
is DCE? 

A. - (Did not ask but apparently a typographical error for 
PCE, or Processor Check Element.) 

- For example, is PCE going to be a portion of a VSLI? 
Items shown in Fig 4-23 (P4-60) talk about chips, but 
are they going to be included in a VLSI chip? Are all 
chip designations for current or past breadboard? 

Q. - PLA: Programming Logic Array? (4-63) 
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A. - Yes. 

Q. - Extensive 	use 	of 	Morphic-AND 	common 	in space 
applications? (4-65) 

- If HLM/TMs have their own internal clock, what is the 
use of RTI? 

A. - (I pointed out and we eventually agreed, that if the 
local clock can maintain a reasonable clock accuracy, 
the system wide synchronization may have to occur only 
to compensate the interprocessor timing skew. Hence the 
frequency of RTI signal can be as low as once every 
second or hour instead of every 2.5 ms.) 

Q. - Hardware priority assignment between BCs - not very 
clear what this means. Each BC is supposed to own only 
one bus. 

A. - This is the arrangement multiple usage of MIL-STD-1553A 
bus would force on the design. 

Q. - Four clock pulse recovery sequence - how common is the 
design? 
Why is this clocking considered effective, if not? 

Q. - Notation in Fig. 4-27 (4-67) 

Q. - What kind of faults can be corrected and system reco-
vered from by the recovery method indicated in the Re-
covery Sequencer approach (4-70) 

Q. - Control Signal Generator in FHE (4-70), which of FS and 
RS has it? 

- How precise and close are synchronization requirements? 

A. - To offset the interprocessor skew. Once a second would 
le sufficient. (As mentioned above, we discussed this 
issue a.lot.) 

Q. - Can we maintain accuracy of local timer higher  ' than  the 
combination of the propagation delay (skew) of the com-
munication bus and the variance at local oscillators? 

A. - Yes, it would be possible. 

Q. - SCCM memory size 61,440: isn't it too small for some 
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applications? 

A. - Used to be sufficient. Admit situation is changing. It 
actually is only 32KB. The Galileo project is giving us 
pressure. (D. Geer). 

Q. - BIBB/bus control table format - Is the use of Word 1, 
assigning 0 or 1 as a value, aimed at multiple linking 
of the control tables? Wouldn't a more formal 
linked-list convention be more helpful? (4-77) 

A. - (Did not ask the question but it became obvious Dr. 
Rennels did not give that much consideration to the da-
ta structure.) 

- distinction 	between 	Controller/Terminal 	and 
Terminal/Term- 
inal significant enough to warrant separate table 
formats? (4-77,78) 

Q. - Any industrial or 	other 	applications 	of 	FTBBC 
discussed? 

A. - A company in the space industry has approached us. 

Q. - Are there fault statistics in aero-space applications? 
(4-62) 

Q. - Is the UDS on Galileo spacecraft? 

A. - No. Time constraints forced them to build their own 
based on RCA1802 processor. 

- Still consider fault tolerant computer design a mature 
discipline? (2) 

A. - It depends on one's point of view:. Fault detection  and 
containment seeM to have well matured: 

Q. - Extra copy of the report? 

A. - (We obtained one.) 

Q. - Which paper at FTCS-11 most impressive? 

Q. - Future of UDS? 

A. - The project was for the system level study. The concept 
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is still alive and calls for elements to build UDS-like 
systems. The FTBBC is an answer to the hardware aspect 
of the UDS. 

Q. - VLSI modules coming? .(4-51) 

A. - Prototype being completed for Core-BB and MIBB. More - 
steps needed. (Shown breadboard of each by Dwight Geer, 
Engineer at JPL) 

Q. - AI in space? (2-52) 

A. - May be use of heuristic methods in fault diagnosis in 
the.near future. 

Q. - "UDS" a generic name for a group of SCCM, or almost a 
synonym for SCCM? 

A. - No, although there is that overtone, UDS is a system 
level exercise. 

Q. - Was the result of breadboard experiment good enough to 
proceed to VLSI design? 

A. - It is going well but not quite ready for VLSI yet. 
(When I visited there were two large scale - approxi-
mately 16" square breadboards: an MIBB and a Core-BB. 
They were both being checked out. The MIBB had about 
375 ICs excluding RAM chips and Core-BB, 170, excluding 
a removable CPU subsystem. The current CPU subsystem is 
based on two  T19 900 chips and a few ,  dozen "interface 
chips" to make the subsystem adaptable to the Core BB 
main. Their next plan is to create a CPU subsystem 
based on Motorola's MC68000 CPUs.) 

Q. - After automatic replacement, how is it indicated to the 
external world for easy maintenance access? 

A. - (There appeared to be no detailed considerations given 
to this issue.) 

Q. - Modified Ethernet issue again 

- MIT C-cube: does it have any relation to what you are 
thinking about concerning bus redeSign? 

A. - No. 
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Q. - FT layer as the transport layer in the 7-layer inter-
connect protocol hierarchy. 

A. - Interesting: sequencing and Hamming code at layer 2, 
multiple message transfer and CRC, status message capa-
bility at layer 3, retransmission potential at layer 4. 

Q. - Inter-layer clearance 

A. - (Dr. Rennels was not aware of the details of the ISO 
interconnect standard.) 

Q. - 1982 International Symposium on Fault-Tolerant Comput-
ing Systems (FTCS-12) - where and when? 

A. - 22-24 June, 1982, Santa Monica, California 

Q. - Who will be presenting papers? 

A. - Half theoretical, half practical. 

Q. - How will the contents be chosen? 

A. - Mixture of theoretical studies and real project re-
ports. Very carefully -refereed papers only. Short pa-
pers and special sessions considered. 

Q. - What is Dr. Rennel's role? 

A. - General Chairman. Dr. G. Gilley of the Aerospace Corpo-
ration will be the Program Chairman. 

Q. - Recovery machine - AI application? 

A. - (Dr. Rennels thinks most likely initial application of 
AI technology to the FTC will occur in diagnostics then 
in recovery. After all the deterministic searches are 
exhausted, heuristic steps might be used to guess 
faults. The approach seems rather conservative and uses 
AI only as supplementary means.) 

- Top-down - software heavy design of on-board processing 
applicable seems to be coming. What is your opinion on 
this with regard to the UDS system? 

A. - Local executive software design will be like that. The 
recovery issue is equated to the issues associated with 
the scheduling of processes. 
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- FTC rules (see nOte #23 of Section 5) 	• 

A. - (Dr. Rennels agreed with Rules 1,3,4,5 and 6. "Must be 
agreed." He objected' to. Rule 2, He especially liked 
Rule 6, or rule concetning levels of abstraction..) 

- History of UDS/FTBBC 

A. - UDS ran from 1972 through 1977 and completed when 
. software demonstration of the feasibility was made. The 

need for a highly'fault-tolerant computer system was 
determined early in 1970s. System level study was con-
ducted with the UDS project. FTBBC, gupported by U.S. 
Navy  and NASA,  is solely to develop hardware mechanisms 
that support fault-tolerant  computers made up of VLSI 
components. 

Q. - Hot-spare/blank-spare usage distinction. 

A. - Hot-spare is for system executive HLM only. Blank-spare 
applies to all other  •HLMs. 

Q. - Topology control - wouldn't it be an involved process? 

A. - Yes, it would be a very hard task. 

Q. - Is the USAF interested in the FTBBC? 

A. - Yes. 

Q. - Algorithm to determine good from bad SCCMs may not be 
simple. 

A. - Yes, but cross-checking should be sufficient along with 
the triplicated communication channel. 

Q. - Once more about concentration of authority in the sys-
tem. 

A. - Tree-type control hierarchy assumed. System control is 
application oriented. 

- Industry again (Aerospace Corporation only?) 

A. - The USAF is showing some interest in supporting future 
of the -FTBBC. Rockwell International is interested in 
creating MIL-STD-153A bus interface chips. 
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Q. - Once more about HLM/TM dependence? 

A. - (Dr. Rennels believes there will still be hardware 
master-slave relationship because of highly specific 
nature of subsystems.) 

Q. - Software capability at JPL. In project teams only? 

A. - Matrix organization - FTBBC project does not draw on a 
software development capability, while such capability 
is always accessible. However, I am considering involv-
ing a graduate student at UCLA on the software aspect 
of the project. Another graduate student was commissi-
oned before but he left for a computer language pro-
ject. 

Q. - Hardware Recovery Sequencer - how effective?(47-70) 

A. - Strictly roll back'. 

Q. -  Distinction  between. Controller/Terminal and Terminal/ 
Terminal tables significant enoUgh? (4-77,78) 

A. - Yes, as long as sticking to the MIL-STD-1553A (so logi-
cally not important now that Dr. Rennels is considering 
a switch to Ethernet-like bus. In the latter case 
(Terminal/Terminal) controlling HLMs "listen in" and 
provide a limited form of broadcasting.) 

Q. - Use of simulation in FTC study. Any activities? 

A. - System architecture simulation studies were done using 
Multics System through ARPA network. 

Q. - HLM relinquishes bus - then what will happens to it? 

A. - The sequence of regaining the control of the bus may be 
involved. When and how are left for software to solve. 

Q. - EXEC need not be identical, but protocol needs to be. 
all executive HLMs and TMs need to be same". 

A. - (Dr. RennelS eventually agreed that it is the protocol 
betwebn processors that needs to be common, but not the 
software that gemerates such protocol on individual 
processors.) 

- Recovery transients considered? 

A-15 



A. - YeS at the hardware level, but.not'yet at. ,software , lev-
el 

Q. - What kind of transients possible? 

Q. - Current revision 

Q. - What happens when an HLM relinquishes his bus after the 
failure? 

- Where  •does it go within the system architecture? 

- What does the other host HLM do if the bus-less HLM 
tries to use his bus? 

At this point the priority structure becomes fuzZy. 
What priority will the bus-less HLM assumé?  HoW oth-
ers reconfigured? 

- Transient issue - an HLM notices bus failure while he 
was processing a task. Will he go back to the check 
point in the task? 
Will he grab new bus before going back? 
Will he transfer the task to a new HLM while he's 
trying to reorganise? 

- Memory code-correction; which processor handles it? 
Core-BB? If Core-BB, this c an  mean inter-BB recovery 
and can get tricky. 



APPENDIX B. 

The Fault-Tolerant Computing Rules (FTC.Rules) 

Eidetic has compiled a tentative list of rules which a 
good fault-tolerant computer system should comply with. Such 
rules were proposed from time to time, by several groups and 
individuals in the fault-tolerant and space computing com-
munities, mainly on an empirical basis. Added to this exist-
ing set of findings are three further constraints (Rules 
[4], [5] & [6]) which are brought up anew by Eidetic, and 
which have been accepted among researchers and practitioners 
in the field of software sciences as system design princi-
ples considered essential in order to increase reliability 
of complicated software systems. Here, the distinction 
between the software rules and system or hardware rules is 
considered insignificant as trends towards acceptance of 
functional decomposition as the fundamental methodology of 
system design are increasing among planners and designers. 

The rules were explained to Drs. D. Rennels and G. Gil-. 
ley on separate occasions and recefved approval, except for 
Dr. Rennels' objection to Rule [2]. 

The following are the proposed fault-tolerant computing 
design rules (FTC design rules): 

[1] There shall be no, or as few as possible, single points 
of failure in the system (the hardware rule). 

• [2] There shall be no fixed master-slave relationships 
among processing units (the democracy rule). 

[3] There shall be no permanent fault arbiters or judges in 
the system (the modesty rule). 

[4] Whenever ,  a 	functfon is supported by processors, 
proceSses i. taSks, subprograms, or other form -  of sub-
functional modules, the method of inter-connecting them 
shall obey the module decoupling rules proposed by 
Glenford Myers (the module decoupling rule). 

Similarly, every subfunctional module must 	follow 
Myer's. module 'strength rules (the -module strength 
rule). 

[6] As well as the horizontal breakdown, a function must be 
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broken down vertically into layers. Levels of abstrac-
tion must be defined for each layer and independence 
between the layers must be observed (the layer rule). 

I. 

I .  
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