
91
C655
C6666
1983

-.1111080.^ -

IIIMMEMEN

intellitech 	The Intelligent Use of
Technology

N.mPc AND ITS UTILITY

FOR SPACECRAFT APPLICATIONS,'

INT-83-47/1

NœmPc LAND ITS UTILITY

FOR SPACECRAFT APPLICATIONS/

Computer Aided Engineering Tools for

Spacecraft Multiprocessor Systems

(Contract #0ER82 - 05067) 	Libram

Jbul_.- 2 0 1998

Industrie Cr,zn^,
BibliotheouF, ("),

AUTHORS: Dr.! C./Laferriere
Mr' A. Lam

APPROVED BY: Dr. S.A. Mahmoud

DATE: 17, January, 1983

INTELLITECH CANADA LIMITED
352 MacLaren Street,

Ottawa, Ontario
K2P 0M6

Government Gouvernement
of Canada 	du Canada

Department of Communications

DOC CONTRACTOR REPORT 	DOC-CR-SP -83-059

DEPARTMENT OF COMMUNICATIONS - OTTAWA - CANADA

SPACE PROGRAM

TITLE: N.mPc AND ITS UTILITY

FOR SPACECRAFT APPLICATIONS

AUTHOR(S): Dr. C. Laferriere

Mr. A. Lam

ISSUED BY CONTRACTOR AS REPORT NO: INT-83-47/1

PREPARED BY: Intellitech Canada Ltd.

352 MacLaren St.

Ottawa, Ontario

K2P 0M6

DEPARTMENT OF SUPPLY AND SERVICES CONTRACT NO: 36001-2-0560

SER NO. 0ER82-05067

DOC SCIENTIFIC AUTHORITY: R. A. Millar

CLASSIFICATION: Unclassified

This report presents the views of the author(s). Publication
of this report does not constitute DOC approval of the reports
findings or conclusions. This report is available outside the
department by special arrangement.

DATE: January 17, 1983

1

S I

TABLE OF CONTENTS
Page

1.0 	Introduction 	1

1.1 Background and Review of Design Methodology 	2
1.2 Multiprocessor Architectures for Spacecraft

Applications 	4
1.3 Description of N.mPc 	5
1.4 Overview of the Simulation Work 	9

2.0 Description of Technical Work 	 10

2.1 Installation of N.mPc 	 10

2.2 Preliminary Simulation 	 12
2.3 Multiprocessor Simulation i 	 13

2.3.1 Interprocessor Co-ordination 	 16
2.3.2 Private Bus Definition 	 18
2.3.3 Multibus Operations • 	 18
2.3.4 Multibus Coupler 	 20
2.3.5 Multibus Signal Definition 	 20

2.4 Definition of New Hardware/Software Structures ... 21

2.4.1 Introduction 	 21
2.4.2 Hardware Aspects of the F100-L 	 22

2.4.2.1 Processor Description 	 22

2.4.2.2 System Description 	 31
2.4.2.3 'SP" Program Listings 	 40

2.4.3 Metamicro Assembler 	 41
2.4.4 Linking/Loader 	 42

2.5 Multiprocessor Simulation II 	 43

3.0 	Utility of N.mPc 	 46

3.1 Comments on Individual Components 	 46

3.1.1 Metamicro Assembler and Linking/Loader 	 46
3.1.2 ISP" Complier 	 46
3.1.3 Ecologist and Runtime Kernel 	 47
3.1.4 Post Processor 	 48

3.2 Usefulness of N.mPc 	 49
3.3 Limitations of N.mPc 	 51

4.0 Suggestion for Future Work 	 53

REFERENCES 	 54

1

LISE OF FIGURES

Page

FIGURE 1.1 	General Design Methodology 	3

FIGURE 1.2 	Main Components of the N.mPc System 	6

FIGURE 1.3 	Detailed Block Diagram of N.mPc 	7

FIGURE 2.1 	N.mPc Directory Organization 	 10

FIGURE 2.2 	Simulation Block Diagram for Distributed Pipe
System 	 14

FIGURE 2.3 	Example of Spacecraft Multiprocessor System 	 15

FIGURE 2.4 	Block Diagram of Multiprocessor Simulation I 	 17

FIGURE 2.5 	Block Diagram of F100-L 	 23

FIGURE 2.6 (a) Timing Diagram of Read Cycle 	 26

FIGURE 2.6 (b) Timing Diagram of Write Cycle 	 27

FIGURE 2.6 (c) Timing Diagram of Read/Modify/Write Cycle 	 28

FIGURE 2.7 	Timing Diagram for Direct Memory Access 	 29

FIGURE 2.8 	Timing Diagram of Vectored Interrupt 	 32

FIGURE 2.9 	Basic F100-L Based System 	 34

FIGURE 2.10 	Internal Architecture of Interrupt Controller 	 37

FIGURE 2.11 	Daisy Chaining in Standard Interface Set 	 39

FIGURE 2.12 	Block Diagram of Multiprocessor Simulation II 	 45

1

1.0 	118/1EI 0EECTILO11Th ,

This report constitutes deliverable 4.2 of work done (under

contract #0ER 82-05067) for the Federal Department of Communications,

Communications Research Centre, Ottawa, entitled "Computer Aided

Engineering (CAE) Tools for Spacecraft Multiprocessor Systems".

The report describes:

I. 	The computer aided engineering tool NbmPc purchased under this
contract.

2. 	The utility of the purchased CAE tool in the design of

multiprocessor systems for spacecraft applications.

As such, the report describes the work done under tasks 3.2 and 3.3

'of the contract. 	The installation of N+.mPc was described in an earlier

report, 	[LAFE82b]. 	Detailed program listings of the simulations

implemented using N.mPc are contained in [LAFE83].

The report is divided into four main sections which are described

below:

1. Section 1, is a general introduction which includes background

materfal, a brief discussion of multiprocessor architectures
for spacecraft applications, a description of N.mPc and an
overview of the work accomplished in fulfillment of tasks 3.2
and 3.3.

2. Section 2 is a description of the technical work done with

N4mPc. 	It describes the initial installation and testing of
NuiPc followed by the simulations implemented. 	This work
includes some preliminary simulations done to gain familiarity
with the N.mPc tool followed by more advanced multiprocessor
work. Also documented is the complete simulation of the
Ferranti F100-L micro processor and its support chips.

3. Section 3 	contains comments on the utility of N.mPc for

spacecraft applications. Attention is paid to each of the
components of NgmPc, and comments on the utility and the
limitations of the current implementation of N.mPc are
provided in the last two sub-sections.

4. Section 4 describes suggested directions for further work with
'N.mPc within an integrated computer aided engineering design
environment involving complementary tools.

1

1.1 BACKGROUND AND REVIEW OF DESIGN METHODOLOGY

The work reported here is in fact part of a greater effort

whose primary goal is to develop an integrated set of computer

aided tools to assist and automate the design of multiprocessor

systems and which is aimed primarily at spacecraft applications.

A general design methodology and a set of computer aided tools to

support this methodology are described in earlier reports

[MAHM82a], 	[LAFE82a]. 	As illustrated in Figure 1.1 : this

methodology can be divided into two general stages:

a) The high level design stage, which is concerned with high

level requirements, 	correctness of the design and
functional decomposition.

b) The low-level design stage, which constitutes the work

remaining after software/hardware boundaries have been

defined. 	This 	low level work also 	includes

implementation and testing.

The present contract involves the selection, purchase and

application of a suitable computer aided design package to support

the low level design stages and the definition of a set of suitable

Ada* constructs which would be used in the high level design stages

to facilitate the top down design and development of multiprocessor

systems. The latter part of this contract work is the definition

of the necessary mechanisms to interface high level design tools to

the low level design environment. This report is concerned only

with the former effort, namely the description and utility of the

low level design tool N.mPc for simulating multiprocessor

architectures.

* Ada is a trademark of the U.S. Department of Defence.

2

"DONE"

FIGURE 1.1 	General Design Methodology
1

LOW LEVEL
SOFTWARE

IMPLEMENTATION

HARDWARE
IMPLE:ŒNTATION

EVALUATION
OF SYSTEM

PERFORMANCE

SYSTEM
DESIGN
CYCLE

SPECIFICATION
OF SYSTEM

(FUucrloos.
pueoRmANŒ. ...)

1

1
1

é

ADA

High. Level
Design Stages DE FINITION

OF HARDWARE/
SOFTWARE
BOUNDARY

-

1

MICH LEVEL
SOFTWARE

DESIGN

n

L.

HARDWARE
DESIGN

HARDWARE/
SOFTWARE

INTEGRATION
E. TESTING

Low Level
Design Stages

1

• 1

1.2 MULTIPROCESSOR ARCHITECTURES FOR SPACECRAFT APPLICATIONS

A survey of various multiprocessor configurations currently

used in spacecraft applications is to be found in [OUIM82] and it

may be worthwhile to review the rationale behind multiprocessor

systems for spacecraft applications. For a few years already, the

trend has been towards cheaper, more flexible and more powerful

processors. As well, spacecraft designers are now more inclined to

put advanced application programs on spacecraft 	"on-board"

computers. 	Having computers and programs where they are needed

relieves earth stations from the burden of having to support

expensive systems. Furthermore, responsiveness of programs such as

control monitors from on-board equipment is improved. When

processing capabilities are to be put aboard a spacecraft, several

difficulties have to be solved two of which are of great

importance:

1. The first point deals with the processing power required,

combined with the final size and weight of the on board

computer. 	This 	suggests the use of microprocessors which

happen to be cheap and lightweight but are unfortunately
somewhat slow(*). This relative lack of speed can be obviated

by using multiple processors in a suitable arrangement.

2. The second difficulty is concerned with reliability. 	When a

spacecraft is in orbit, reliable operation of all its parts is

of paramount importance. 	Several techniques can be used to

achieve this goal, such as the use of redundant components

(e.g. standby processors), the use of a serial bus to minimize

the number of lines, etc.

The European designed L-SAT exemplifies some of the above

techniques. 	L-SAT supports two serial busses, and uses a multiple

processor arrangement to increase reliability. 	Modelling such a

(*) Although faster and more powerful processors are always
continuously being developed.

4

system had tentatively been set as a goal. Several factors such as

lack of time, host processor limitations etc., have prevented a

complete simulation of L-SAT. Efforts were directed towards

multiprocessor simulation with processors being interconnected by a

"Multibus"# structure. In this fashion; issues such as processor

behaviour and especially processor co-ordination were investigated.

In particular, two methods of processor co-ordination were

simulated, namely busy waiting by polling a global structure and

interprocessor interrupts.

The vehicle to carry out those tests was the N.mPc system

developed at Case Western Reserve University, Cleveland, Ohio.

N.mPc and the reasons for choosing it have already been described

in earlier reports [LAFE82b] (deliverable 4.1) [MAHM82] (August

Progress Report). 	The multiprocessor system simulations 	were

built 	using the N.mPc system and run using N.mPc 	runtime

environment.

1.3 DESCRIPTION OF N.mPc

N.mPc ([PARK79a], [PARK79b], [ROSE79], and [ORDY79b]) is an

interactive environment 	for the design and evaluation of

multiprocessor systems. 	It is composed of the following software

modules; (shown in figure 1.2 and 1.3):

1. Metamicro assembler, which is a programmable assembler to be
used in program development for target processors.

2. Linking Loader, which complements the programmable assembler
and whose main purpose is to resolve addressing conflicts so
as to produce a loadable object file.

Ti) Multibus is a trademark of Intel Corporation.

5

Target
System

Topology

MetaMicro

Assembler

Linking
Loader

Simulations
Output

RUNTIME PACKAGE
Simulation Program
Command Interpreter
Simulated Memory Manager

r>i Ecologist
Es P

Compiler
ISP

Source

Memory
List

Machine
Descriptions

Simulated
Memory
Processor

'User

Commands

MetaMicro

Source

FIGURE 1.2 	Main Components of the N.mPc System

6

Rue I FE

SYFiet.S

USER

COMNIDS • j

--` 	• 	'

1(:›1
RU(F WE PACYA.CE 	- i TRACE

5111.1..ATICri PROGRNI 1—>
I ()MIR ' S I h'LLA-

T 1 Cri

PROGRAm

. CCr-rWil)
I tflERPRETER

~S !FLUTED FeVRY
tWeGER

/K

wyoRy . I 	IPROCESSEtl ...

SYMECtS I 	F'Et.CRY

KERNEL

OBJECT

FEFIDRY

LIST

PRCCESSED.

PEPURY •

LIUKItG

LOADEP.

COrilvaD

FILE

• SIMILATED

hEYORY

PIIKESSOR

roont. -

OUTPUT

1
rIDDA1_

CCITRIT

f-E r 	c.Ro

Ass El.13LE R

M11M111111111111111111111111111111111• 11111111111111111111111111 ' ----11111111..1•11.1111111

1 rAO-IIIIE L r
I CESCR P- :

rE
I
I 	1

SOuRCE I

i ISP' 	
1--

.)‹ COPILER

I.
i SCUPŒ !

FIGURE 1.3 .Detailed Block Diagram of N.mPc

3. ISP Compiler which is used to compile an ISK description of
the hardware to be simulated. 	The out-put of the computer is
executable PDP-11 code.

4. Ecologist which is used to build the simulation according to a

topology file describing the various hardware modules
(compiled ISK files) to be used in the simulations. 	The
topology file also describes the 	memory modules and
the interconnections of all modules in the simulation.

5. Simulated Memory Processor which prepares memory files (i.e.
containing executable programs) for use by the runtime
package.

6. Runtime package which consists of the simulation itself, the

memory manager and the command interpreter. This last
component (i.e. the command interpreter) is the interface with

the user and the means by which the user can control the
simulation.

Looking back at Figure 1.1, it is possible to link certain

stages of the design methodology with the components of N.mPc. The

software implementation stage corresponds, albeit partially, to the

combination of the metamicro assembler and the linking loader.

Hardware design and implementation are done by the ISP' language

description facility and its associated compiler.

Hardware/Software integration, testing and evaluation tasks are

performed by the ecologist, simulted memory manager and run-time

environment.

In fact, at the integration and testing stage, N.mPc can be

thought of as a software logic state analyzer and a software In

Circuit Emulator. Based on those capabilities, N.mPc proved to be

a suitable system to support the simulation activities outlined in

the next section.

8

1.4 OVERVIEW OF THE SIMULATION WORK

Simulation work began with an attempt to gain familiarity with

N:mPc. Consequently, very simple simulations were undertaken; such

simulations typically involved a single processor (e.g. RCA 1802,

Intel 8085) and a simple program.

Once a reasonable proficiency was achieved, multiprocessor

simulations were designed around the Intel 8085 processor. At

first, a simple interconnection structure was used, but eventually

a better engineered simulation was produced in which each processor

had its own private memory and processors were interconnected by a

multibus structure.

The next goal was to develop a new processor description and

to program the metamicro assembler/linking loader combination to

accept the assembly language of this processor. The target

processor was the Ferranti F100-L 16 bit bipolar microprocessor.

Besides the F100-L, the associated support chip set was also

defined using N.mPc.

Finally, the F100-L, was used as processor 	in a multibus

based multiprocessor simulation. 	Processor co-ordination achieved

through interprocessor interrupts.

9

lief
mmpd

----p
z80
i8086
r1802
i8086
m6800
m68000
	 z8000

lib
/ nmpc

bin

man

iclib

softgen 	

DESCRIPYION(10E TECHNICAL WORK

2.1 INSTALLATION OF N.mPc

N.mPc is distributed on a magnetic tape, 	recorded in the

UNIX* ':tar': format. The system is distributed in source form and

installation consists of compiling and assembling various modules.

The directory organization of Intellitech's N.mPc system is exactly

that suggested in the Nuec installation manual [ORDY80] for

Release 2. This directory organization is shown in Figure 2.1.

tan

FIGURE 2.1: N4mPc Directory Organization

Each sub directory of nmpc contains a particular type of file

and 	furthermore, 	the 	system expects this particular 	file

classification. 	The contents of each 	subdirectory are 	as

follows:

1. 	The "bin" directory contains executable N:mPc programs 	in

the 	same fashion as root/bin contains executable 	UNIX

programs.

(*) UNIX is a trademark of Western Electric Co.

1 0

2. The man directory contains an on-line manual for the N.mPc

System, which is very similar to the UNIX on-line manual (also
called "man").

3. As its name indicates, the "iclib" directory is a library of
ISK hardware descriptions for various microprocessors. This
directory can be automatically searched by the "ec" program if
so desired.

4. The software counterparts to the ISP 	hardware descriptions
are to be found in "softgen". 	In that directory, two
subdirectories are present: 	"11cf" and "mmpd". Metamicro
assembler description files for a given processor assembly
language reside in "mmpd", whereas linking loader command
files are in 1.1cf".

5. The UiK directory is comprised of several subdirectories,
one for each target processor type. Subdirectory "i8085, for
example; contains the ISP' description of the 8085 hardware',
the meta micro descriptor of the 8085'assembly language and a
linking loader command file 	for the 8085. 	The "lib"
directory 'does not present new processors or features, but re-
organizes information already contained in "iclib", 	and
"softgen". 	The overhead thus introduced is small since UNIX
uses file links.

N.mPc comes supplied with a library of processor descriptions

which covers the most popular 8 and 16-bit devices. Processors

such as the Intel 8080, 8085, 8086 , the Motorola 6800, 68000, the

Zilog Z80, Z 8000, are supported in terms of both hardware and

software. Unfortunately, peripheral chips such as bus controllers,

programmable interrupt controllers, DMA controllers, etc., are

 notably absent from the NomPc libraries. It is therefore left to

the users to develop those modules.

Another implementation detail is the speed of execution and

the maximum size of a simulation. It becomes obvious fairly

quickly that simulating a fast processor on a slow machine is not

the most desirable situation, although the usefulness of the

simulation is not diminished. Of greater importance is whether the

host PDP-11 supports separate Instruction and Data spaces or not

1 1

(Intellitech's 11/23 does not). 	Not having separate I/D spaces

reduces the size of the simulation but also reduces the maximum

size of dynamically created tables used by N‘mPc system programs.

The ISK compiler, for example, had to be processed by a special

program 	called "23f ix" which performs a partial mapping of the

Data space. 	The compiler thus becomes able to process larger

processor descriptions. It is worthwhile mentioning that any ISP'

description more complicated than that of an 8085 cannot be

compiled using the standard compiler. The "23fix" proved very

yaluable.

2.2 PRELIMINARY SIMULATION

The N.mPc library includes hardware and software descriptions

for many popular microprocessors such as the Intel 8085/86,

Motorola 6800/68000, RCA 1802, Zilog 80, etc. Also included in the

library are a number of simulation examples. Two of the examples

were built and run and their immediate benefit was twofold:

Firstly, they proved that the simulation package had been properly

installed, and secondly, they allowed familiarity and experience to

be gained with the simulation package.

The first example involves an RCA/1802 processor with internal

memory which runs a program that sorts a list of numbers. 	It is a

simple simulation as 	the processor does not have any port to

interface to other hardware. 	The topology that describes the

hardware connections is very simple and consists of only three

lines. 	Files related to these two examples can be found in

Appendix I of [LAFE83]. 	The ISP hardware description of the RCA

1802 as well as that of the Intel 8085 are also included.

12

The second example simulates eight Intel 8085 microprocessors

connected to a distributed pipe system. This example is more

complex than the previous one as it involves three types of

hardware devices: Intel 8085, Memory and First In First Out (FIFO)

Memory. The Simulation diagram is shown in Figure 2.2. The Source

and Sink are only the special cases of FIFO memory: they are

output only and input only FIFOs.

An identical program is loaded into all memory modules and

executed by the 8085s. The program simply reads from the incoming

FIFO memory and writes its contents into the outgoing FIFO memory.

Eventually the data generated by the Source will arrive at the

Sink. This is a trivial example of a pipe system. In a real

system, the data read from the incoming FIFO would be processed

before being written to the outgoing FIFO.

2.3 MULTIPROCESSOR SIMULATION I

Having successfully completed the simulation examples, a

target was set to simulate a multiprocessor system related to a

spacecraft application. An example of the multiprocessor system

is shown in figure 2.3, in which.the single board computers are

indentical and each of them ib capable of replacing the other in

case of a failure. A common bus is needed to establish a

communication link among the single board computers and other

electronic devices.

The Intel 8085s were used in the simulation since the

description of this processor was available from the N.mPc

library. An Intel designed bus known as "Multibus" was also chosen

for the common bus. It is a parallel bus with a well defined

1 3

18085
1

18085
2

f8085
3

12 23

Fi F0
34

MEMORY

•n1

MEMORY

•

i8085
MEMORY

MEMORY i8(5
5

FI F0
56

MEMORY

t.

MEMORY

i8085 FI F0 FIFO SINK
6 78 67

i8085
8

i8085
7 MEMORY

Fi F0
SOURCE

it

FIFO .
MEMORY

PI F0
45

Figure 2.2 SIMULATION BLOCK DIAGRAM FOR DISTRIBUTED PIPE SYSTEM

14

MICRO-
PROCESSOR

MEMORY

COMMON
BUS

INTERFACE
A r.

PRIVATE BUS

SBCH 3

rn /1

SBCM 1

N V

COMMON BUS

SBGM 2

v

GROUND
LINK
CIRCUIT

v

ELECTRONIC
CIRCUIT

v

POWER
CONTROL

& OTHER

Figure 2.3 EXAMPLE OF SPACECRAFT MULTIPROCESSOR SYSTEM

15

architecutre and is documented in the literature [BART80].

In the simulation, five Intel 8085 based computer modules and

a global memory module are connected to the Multibus system, as

shown in Figure 2.4. A simulated terminal using the ISP "raw

memory" ,structure is connected to the private bus of the first

simulated computer module. This module executes a program that

reads a pair of numbers from the terminal, converts the numbers

from ASCII to binary values and writes the values to the global

memory. The other computer modules read the two numbers, process

them and store the sum, difference, product and quotient into the

global memory. Meanwhile, the first processor is waiting for the

completion of those operations so that it can display the results

on the terminal once they are available. 	Listings related to the

Simulation I can be found in Appendix II of [LAFE83]. 	The

following sections describe the simulation in details.

2.3.1 INTERPROCESSOR CO-ORDINATION

Two versions of the simulation have been developed using

different co-ordination methods: Polling and Interrupt. In the

Polling version, the four processors handling arithmetic operations

poll the status word and read the numbers from the global memory

after the status word is set by the first processor. The first

then poils the "result ready" status word of each of the four

processors and reads the results from the global memory into its

own private memory.

In the interrupt version, the processors wait for an interrupt

instead of continuously polling. In the present architecture, the

advantages of this method are not so important since the processors

16

KTTY sMEM

7

ME M 2
us con

2
b us con

4

4 V

M 4

A

A Z-1N

MEN 5 bus co n
5

7 N

b us co n
3

7'

gmem

b us con

A

MEM 3

MULTIBUS-

Figure 2 . 4 BLOCK DIAGRAM OF MULTIPROCESSOR SIMULATION I

required.

improved.

instructions and local data from their private memories. The

rd
wr

wait

are 	lightly loaded and the common bus is only used 	for

synchronizatioU. It remains, however, that co-ordination through

interprocessor interrupts reduces the traffic on the common bus and

if so also allows the waiting processors to do other tasks

In most systems, the overall performance would be

Incidentally; 	from a simulations standpoint, co-

ordinating processors by interrupts has the extra advantage of

reducing the size of the "ready to run" queue, thus affording

faster execution to the other processors.

2.3.2 PRIVATE BUS DEFINITION

fetch The 8085 processors use their private bus 	to

private bus also serves as a communication link between the

processor, its own I/O devices and the bus coupler. The private bus

signal definition are as follows:

higher order address
multiplexed lower address and data

status signals, 01 = write, 10 = read
addressing memory (high) or I/O (low)
address latch enable. To indicate that
address in the bus is stable

: set on completion of a read command

: set as data is stable on the multiplexed

bus lines
: to halt the processor

2.3.3 MULTIBUS OPERATIONS

In a Multibus system, there are two types of modules that are

ah0 - ah7 :
ad0 - ad7 :

stO - stl :
iolm 	•
ale 	•

connected to the bus: Master and Slave. 	A computer module is an

example of a bus master and a memory module that of a bus slave.

The bus master makes a bus request, waits ùntil it is granted,

addresses a bus slave and commands the bus slave to provide a

1 8

service. 	The slave replies with an acknowledgement when the task

is done and the bus master then releases the bus. 	A multibus

system may have more than one bus master connected to it and a bus

arbitration scheme is required. This arbitration is carried out by

the bus coupler.

Two priority resolution techniques are used in multibus

systems [BART80] : 	Serial and Parallel Priority techniques. 	In

the 	Serial Priority technique, 	the priority resolution is

accomplished with a daisy chain scheme. 	Each bus coupler has a

priority input and a priority output pin. 	In the daisy chain

scheme, the input of a bus coupler is connected to the priority

output pin of the previous bus coupler. When a bus request is

initiated by the processor, the bus coupler waits until a bus grant

signal is received from the priority input pin. Meanwhile the

processor has to wait until an acknowledgement from the bus coupler

is received. If no bus request is pending and the bus coupler

receives a bus grant signal, it simply sends the signal through

the priority output pin, passing the bus grant to the

coupler.

In the parallel priority, the priority output and input pins

are tied to a Priority Encoder/Decoder Circuit. The circuit sends

the bus grant signal starting with the bus coupler of highest

priority, waits for the bus grant signal to be returned and sends

it to the next highest priority. This process is repeated.

The serial priority scheme is simple although not the most

efficient. The parallel scheme requires extra hardware circuit and

is more complex. For this simulation, the serial scheme was used.

next bus

19

2.3.4 MULTIBUS COUPLER

The bus coupler interfaces the processor to the multibus. 	It

can recognize a bus request made by the processor and sends the

data and commands to the common bus once they becomes available.

The ISE'', hardware description of the bus coupler can be found

in Appendix II of [LAFE83]. As far as the processor is

concerned, the bus coupler is a memory module that responds to

addresses in a pre-defined range. Read and Write operations are

possible and the bus coupler will delay the processor when a

request is still pending.

The simulated bus coupler is unrealistic since it needs more

than 60 pins to interface to a multibus. 	In reality, several

integrated circuits are required. 	For example, a bus coupler

implementing a daisy chain scheme would require a Bus Arbiter

(Intel 8289), a Bus Controller (Intel 8288), an Address Latch

(Intel 8283/8282), and a Data Tranceiver 8286/8287 [BART80].

2.3.5 MULTIBUS SIGNAL DEFINITION

The Multibus is responsible to carry data and commands

slave. originating from a bus master and destined to a bus

The simulated bus consists of the following signals:

Address 0 - 15 :
Databus 0 - 8 :
Read

• Write
Ale
Xack

int 	0 - 7 :

address
data
high true read command
high true write command
address latch enable
transfer acknowledge. Signal emitted
by a bus slave to indicate completion
of a service.
interrupt lines

20

During a Read operation, the read signal is set to true and

the address is loaded onto the Address bus. 	At the same time, a

strobe is sent down the Ale line. 	The bus slave recognizes the

address and the command. 	It then loads the memory contents of the

addressed location onto the Databus. 	An acknowledgement is then

sent through the Xack.

The Write operation is similar in principle. 	The write

interrupt line operation simply sets any of the eight interrupt

lines and there is no acknowledgement.

Using those three mechanisms, 	communication between bus

components is achieved. 	Furthermore, interrupts can be used

between bus masters to provide better co-ordination of data (or

control) transfer.

2.4 DEFINITION OF NEW HARDWARE/SOFTWARE STRUCTURES

2.4.1 INTRODUCTION

This sub-section describes the N.mPc implementation of a new

processing element, the Ferranti F100-L. This work was undertaken

for several reasons: Firstly, defining processors and instruction

sets is one of the great advantages of N.mPc. It allows a designer

to use a combination of existing microprocessors, special purpose

microprocessors and other special devices implemented as

programmable logic arrays. Secondly ., by implementing new

structures, it becomes possible to test some special features of

N.mPc which would otherwise not have been used. For example, the

resulting size of certain simulations required careful treatment.

Thirdly, implementing a new processor yields a complete development

2 	1.

system, ready to be put to use. Such a development system includes

an assembler/linker, and a total environment for testing programs.

The Ferranti F100-L was chosen as the processor to be

implemented for two reasons:

1. It is a 16 bit processor built using bipolar technology.
Because of this fabrication process, the F100-L is
radiation hardened and thus suitable for a spacecraft
environment.

2. The F100-L is also the processor chosen for the European

Large Satellite (L-Sat) program.

A. full N.mPc implementation of the F100-L involves command

files for the metamicro assembler and the linking loader, an ISP'

description of the F100-L itself as well as of the necessary

support chips (F113 memory interface, interrupt controller, etc.).

The following two sections will describe each of those items

in detail. The hardware aspects of the implementation will be

treated first, with descriptions of the processor and of a system

based upon it. In the second part, the software aspect, more

precisely issues of syntax, addressing modes, address resolution,

etc. will be dealt with.

2.4.2 HARDWARE ASPECTS OF THE F100 -L

2.4.2.1 PROCESSOR DESCRIPTION

As mentioned previously, the F100-L is a 16 bit processor

[FERR81a] with a multiplexed data and address bus, .referred to as

the system "highway". The total address space of the F100-L is 64

kilo bytes, addressed as 32k 16 bit words. Incidentally, the F100-

L does not have byte addressing capability. A block diagram of the

internal organization of the F100-L is shown in figure 2.5. From

that block diagram, it can be observed that the F100-L does not

22

CLOCK

OPERAND REGISTER

aft

REGISTER
& FUNCTION

UNIT CONTROL

4-

INTERNAL

DATA

PATH
F

CONDITION REGISTER

CONTROL TRI -S TATE
BUS DRIVER

I NSTRUCTION REGISTER

ACCUMULATOR FUNCTION
UNIT

<1->

•

•

FUNCTION LATCHES

P ROGRAM COUNTER

CONTROL

LINES

FIGURE 2.5 	Block Diagram of F100-L

23

possess a bank of general purpose on-chip registers. 	Instead, the

F100-L has a 16 bit accumulator and an operand register to be used

in data manipulation and testing. A seven bit condition .code

register can also be used in a similar fashion although its primary

function is to record the status of arithmetic and logical

operations.

On the control side, the F100-L possesses a program counter

used in the traditional way and an instruction register which holds

the instruction to be decoded. There is no on-chip stack pointer,

but instead the stack pointer is stored in location 0 and is used

in subroutine calls and interrupt processing. Figure 2.5 also shows

other control structures which are necessary to proper hardware

operations and whose functions will be emulated by the ISK

description of the processor.

The F100-L also possesses the necessary interface to support

architecturally compatible co-processors. One such co-processor is

the floating point processor which performs floating point

multiplications and divisions in hardware. Using co-processors is

very advantageous as they are usually fast because of their special

purpose nature, and also easy to integrate into the system. In the

N.mPc implementation of the F100-L, co-processor were not to be

implemented and, consequently, the necessary hardware features to

support them were not included. However, incorporating them in

future implementation should be relatively easy.

The Ferranti microprocessor manual [FERR81a] describes most

of the features of the F100-L. Some of the F100-L's

characteristics, however, deserve special mentions, especially in

the context of the current implementation. Of particular interest

24

are the memory access mechanisms, the Direct Memory Access (DMA)

arbitration and the interrupt mechanism. The memory access

mechanisms will be covered first, since they are the lowest level

of implementation detail to be discussed.

There are three basic mechanisms for accessing memory in an

F100-L system: Read, Write, and Read Modify Write. The timing

diagrams for all three mechanisms can be found in Figure 2.6. Co-

ordinating memory processor interaction is carried out through

the use of four lines: JACV, KACV, JPAS and KPAS. The suffix ACV

indicates a signal line originating from the F100-L whereas PAS

indicates a signal line destined to it.

Usually, the F100-L does not interact directly with memory

modules, but rather with a memory interface module. Details of such

a module will be covered later in the description of the system.

An interesting feature of the F100-L is that, unlike

microprocessors such as the Intel 8085 which only have Read and

Write cycles, The F100-L has a Read Modify Write (RMW) facility.

Using this RMW feature saves the time necessary to send the address

a second time for the Write portion of the cycle. RMW is very

useful when pointer operations with auto increment or decrement are

being done. On the negative side, because of the need to maintain

the address between the Read and the Write portions of the

transfer, DMA (to be discussed next) cannot be allowed.

The F100-L has "built in" facility for the handling of DMA

requests (DMARq) and grants (DMAAccept). DMA processing has

been implemented as an autonomous activity, triggered by the

action of the DMA request line. Figure 2.7 shows the timing

25

MI UM MI O . MI MI MS MI Ina MS OM 1•111 IBM MI MN 	MS WS MI Inn

JACV

KPAS

KACV

JpAS

HIGHWAY

\<N \ DATA TO HIGHWAY ADDRESS

MEMORY
ENABLE

(as seen from memory side)

FIGURE 2.6 (a) 	Timing Diagram of Read Cycle

ts.)

w t

DATA FROM HIGHWAY ADDRÉSS

MI URI MI 	111M11 all 	 MI OM MI MI MI MI UM

JACV

KPAS

HIGHWAY

MEMORY
ENABLE

Wt

(as seen from memory side)

FIGURE 2.6 (h) 	Timing Diagram of Write Cycle

DATA FROM HIGHWAY
HIGHWAY

DATA TO HIGHWAY ADDRESS

CO

MIN11111111111111111111111111•111111111111MIIIIIIMMI•111111111111111IIIIIIIIIIIIIIIIIIIIIIIII

JPAS

JACV

KPAS

KACV

MEMORY
ENABLE

W t

(as seen from memory side)

FIGURE 2.6 (c) 	Timing Diagram of Read/Modify/Write Cycle

F100 -L

BUS CYCLES
EXTERNAL DEVICE USES BUS F100 -L

BUS CYCLES

DMARq

DMAAccept

F100-L EXECUTES
NON-BUS FUNCTIONS

F100-L WAITS
FOR USE OF BUS

FIGURE 2.7 	Timing Diagram For Direct Memory Access

29

diagram for DMA requests and grants. 	The memory access mechanisms

(i.e. Read, Write, RMW) and the DMA process compete with each other

for the utilization, or more precisely for the ownership of the

highway. Mutual exclusion on the use of the bus is, of course,

mandatory, since the bus is a unique physical resource which cannot

support more than one user. In other words, should a CPU

originated memory access occurr concurrently with a DMA device

accessing memory: unpredictable effects would result. 	Mutual

exclusion is therefore provided by two pairs of procedures (one

pair for memory accesses, another for DMA) implementing DEKKER:s

algorithm. The algorithm guarantees that race condition will not

happen and that starvation of one of the requesters will be

avoided. 	It is interesting to note that DMA processing is

essentially 	asynchronous and is used in the vectoring of

interrupts which is the next item to be discussed.

Interrupt processing is a higher level function than both DMA

arbitration and memory accesses. 	Two types of interrupts can be

handled by the F100-L, vectored and non-vectored. 	A non-vectored

interrrupt, will be triggered by the activation of the Program

Interrupt Request line (PgItRq) which is scanned by the processor

at the end of each instruction. If the interrupts were not

specifically disabled by the program, the processor will grant the

interrupt, thereby activating the Program Interrupt Acknowledge

(PgItAccept) line in response to prior activity on PgItRq. The

current status of the interrupted program is saved and a jump to

the location of the interrupt service routine is executed. (In

actual fact, the program counter gets 2050 and the interrupt

service routine may reside there, or, as is more common, 2050

30

contains a jump instruction to the beginning of the routine).

Non-vectored interrupts have several drawbacks. The source of

the interrupts has to be determined by polling the devices, a task

which is usually done in software. The response time of non-

vectored interrupts is thus slowed down by the software polling.

The F100-L supports vectored interrupt provided that either the

device interrupting or an interrupt controller is capable of

requesting DMA, putting a channel number on the highway and

strobing it (with ExtLdPgCt). The timing diagram of a vectored

interrupt sequence is shown in Figure 2.8.

Strictly speaking, the device sends twice its pre-assigned

channel number to the F100-L. The F100-L, after having saved the

status of the interrupted program, will load the program counter

with 2050 offset by the channel number of the device. Therefore,

to each channel is assigned a couple of words which contain a jump

to the appropriate interrupt service routine.

2.4.2.2 SYSTEM DESCRIPTION

In order to obtain a working system that can be used in a

simulation, the F100-L has to be connected with support chips. The

tasks performed by those chips are as follows:

1. Memory Interface. This kind of support chip is essential
to decode the signals for Read, Write, Read Modify Write
and to demultiplex the data/address highway.

2. Interrupt Controller. 	This support chip(s) is necessary

if vectored interrupts are required. The controller may

be a distributed entity (e.g. F111 + F112) or a single

central controller chip (e.g. the interrupt controller in

the listings).

31

PgItRq

F100-L 	FORCED 	F100-L IS IDLE, 	PROGRAM 	F100-L EXEI
JUMP

XE CUTES 	
COUNTER IS LOADED WITH 	INTERRUPT :

, 	- 	STORE 	2k/16k + (2x CHANNEL 	ROUTINE
WRMALLY LINK 	' 	NUMBER)

UTES
ERVICE

PgItAccept

DMARq

DMAAccept

ExtLdPgCt

FIGURE 2.8 	Timing Diagram of Vectored Interrupt

3. 	Direct Memory Access (DMA) Controller. 	If this function
is desired in the system, a DMA controller is necessary.

As in the previous case, control can be distributed (e.g.
F111 + F112 again) or centralized. DMA by itself was
not needed in the multiprocessing examples and,

although the implementation of the F100-L supports DMA, a

DMA controller was not provided.

In the early stages of system design, two possible ways to

design a system were considered:

1. A simple approach was to use an F113 memory interface
chip and implement it in ISK. The F113, to be described
shortly, is a passive device (i.e.it does not initiate
DMA transfer) and is used solely to interface the F100-L
to some memory modules. 	Interrupts-being an essential

feature, 	the simple approach proposed building an
interrupt controller in ISK. 	The design of 	the
controller was to be similar to that of an Intel 8259.

2. A more complicated approach, albeit more versatile, was
to use the standard Ferranti interface set, which is made

out of one F111 control chip and two F112 data chips.

This interface set is very powerful; it can handle

interrupt and DMA requests, and it supports a daisy chain

priority scheme for interrupt and DMA requests. 	Higher
priority is given to interrupting devices which are
closer to the processor. Finally, it can function as a
multimode device with all the modes supported by the
interface 	set 	being described in 	[FERR81c]. 	Of
particular interest, is the fact that this standard
Ferranti 	interface 	set 	can also be 	used in
multiprocessing systems.

The second 'approach is clearly more flexible in general

purpose systems. 	However, spacecraft systems are of a special

purpose nature and furthermore, the F111 + F112 interface 	set is

very' complex due to its multimode functionality. 	For these

reasons, and also because of the limited time available, the simple

approach was chosen.

A complete F100-L based system using the F113 	memory

interface, à special memory module, and an interrupt controller, is

shown in figure 2.9. In that system, the co-ordination between the

F100-L and the F113 is as described in the discussion of memory'

33

ENABLE

DOM:

MEMORY

• MODULE

It

I RQO

IRQI

I RQ2

1 RQ3

LRQ4

t. RQ5

I RQ6

I RQ 7

34

F100-L

JPAS

KPAS

JACV

KACV

WtExt

PgItRq

PgI tAccept

DMARq

DMAAccep t

ExtLdPgCt

4

PIC

READ/WRITE

HIGHWAY (DATA & ADDRESS)

FII3 ADDRESS

W
< <
C.,1 0 Z

r\-1\

REMÔRY

MODULE

A

N VN

czt

FIGURE 2.9 	Basic F100-L Based System

timing.

The F113 memory interface 'SP 	implementation is slightly

different from the real F113. 	The difference is that in systems

where the F113 is normally used, an address register demultiplexes

and holds the address selected by the processor. This register is

external to the F113 but, for ease of implementation and also to

simplify the interconnection of system elements, the register and

its functions were incorporated in the F113.

Another characteristics of the F113 is the provision for two

external RC circuits to serve as timing indicators. Usually,

interaction between a memory interface and a memory module is

accomplished by an "enable" signal from the interface and a "done"

signal from the memory module. In the case of the F113, an

"enable" signal is used to trigger the memory module but the "done"

signal from the memory is absent. Instead, the F113 uses an RC

circuit timer to produce the equivalent of a "done" signal from

memory. There are two such circuit connections on the F113, one

for each of the two memory channels supported by the interface.

The current implementation of the F113 does not use RC timing

circuit equivalent. Instead, it uses the more traditional

enable/done arrangement described previously, thus making memory

access co-ordination easier to visualize. When the system is part

of a multiprocessor simulation, a bus coupler/arbiter is used and

the bus coupler has to be able to delay the interface and the

processor. This is so because global memory is accessed through

the bus coupler/arbiter and the access time is dependent upon the

amount of contention on the global bus. If RC timing circuits iere

used, an upperbound on global memory access time would have to be

3 5

chosen with a corresponding decrease in performance.

The memory modules used in the F100-L based system are of a

straightforward design. They respond to an "enable" signal from

the memory interface, read the read/write line to determine which

operation to perform and signal completion of read or write by a

"done" signal. The address selected by the processor is available

directly from the memory interface and is stable throughout the

operation. In the case of a Read Modify Write cycle, the address is

stable from the beginning of the Read to the end of the Write. (Of

course, the memory modules would not know whether a Read Modify

Write is in progress or not, since they only see Reads or Writes).

The last component of the system is the Interrupt controller.

The internal architecture of the controller is shown in Figure 2.10

and is, in fact, quite simple. A pair of registers is used to

notify the controller of the occurrence of an interrupt,

(Interrupt Request Register) and to "double buffer" those same

requests (In Service Register). The controller supports eight

independent request lines and implements a line scanning sche'me

whicn emulates the daisy chaining of request lines. 	Line 0 has

the highest priority and line 8 the lowest. 	The controller uses

DMA to transmit the channel number (in fact, twice the channel

number) to the F100-L over the highway. 	The controller meets all

F100-L timing requirements for interrupt processing. 	It is

interesting to point out that, following an interrupt request and,

grant, the F100-L will wait for a few clock cycles for a DMA

request to occur. This expected DMA request should be from the

controller as a first step to sending the device channel number.

1

0 IRQO

1 IRQI

2 IRQ2

3 IRQ3

4 IRQ4

5 IRQ5

6 IRQ6

7 IRQ7

In
Service

Register

0

2

3

4

5

6

7

PRIORITY

MECHANISMS

CONTROL & DMA

LOGIC

îl

INTERRUPT
REQUEST
REGISTER

IRR ISR

cr 	L., 	 G- 	 LI 	 Li
N 	 0... CI.: 	 C. 	U
U 	 W 	 W 	 W

F-4 	 () C.) 	P.-.
ce 	Cl 	 C..'5 C1 	M

C.,
Û 	 ..---. 	..-.1

4.-1
H -. 	l‹:
CIC 	 0 	W

C.-.

FIGURE 2.10 	'internal Architecture of Interr,upt Controiler

37

I

Incidentally; the channel number is strobed by the controller by

activating the ExtLdPgCt line.

In the case of a system where vectoring of interrupts is not

necessary, no DMA request should be made following an interrupt

acknowledge. The F100-L, noticing the absence of DMA request, will

assume that no vectorry will take place and will simply load 2050

into the program counter.

It is obvious that following an interrupt acknowledge, no DMA

request other than that of the interrupt controller should be

allowed until the end of the interrupt processing sequence (as

signified by PgItRq going to inactive followed by PgIt Accept). If

it were not so, it could happen that another device would make a

DMA request which would be interpreted by the processor as being

from the interrupt controller. The processor would then mistakenly

wait forever on the strobe (ExtLdPgCt) signal from the controller.

In the system of Figure 2.9, the interrupt controller is the

only device using DMA. If some DMA devices were incorporated in

the design: the interrupt controller would have to be modified to

take care of this potential deadlock problem. In the standard

Ferranti interface set (F111 + F112) the problem is handled by

daisy chaining all DMA and interrupt requests through the same

chips and by disabling the DMA request chain as soon as an

interrupt request is posted. This arrangement is shown in Figure

2.11. The F111 control chip is the only part of the interface set

involved in the daisy chain and its functionl description does not

cover the difficulty with DMA request timing.

1

F100-L
PgItRq

PgItAccept

DMARq

DMAAccept

F111

DEVICE
1

F111

DEVICE
2

•011

4
F111

DEVICE
A

F111

DEVICE

INTERRUPTING
DEVICES

DMA
DEVICES

FIGURE 2.11 	Daisy Chaining in Standard Interface Set

39

As mentioned before, modifications should be made to the

controller if other controllers or purely DMA devices are used in

the system. 	In fact, an arrangement very similar to that of the

standard Ferranti should be adopted. 	Two possibilities come to

mind:

1. Coupling of. DMA and interrupt request lines can be

achieved in exactly the same fashion as the F111 + F112
interface set. 	This means that all controllers (DMA and
interrupt are daisy chained together.

2. Alternatively, a central DMA/interrupt super controller

could be designed and implemented in ISP'. This super
controller would perform DMA and interrupt requests

arbitration.

2.4.2.3 ISE'. PROGRAM LISTINGS

This section introduces and comments on the ISP program

listings which are to be found in Appendix III of [LAFE83]. The

listings are, in order of appearance:

1. Ferranti F100-L

2. Ferranti F113

3. Memory Module

ISP' description,

ISP' description,

ISP' description,

4. Interrupt Controller ISP' description.

The ISP' programs are all extensively documented, and their

purpose and functions should be readily understood. ISP' is not,

however, a traditional language but rather a register transfer

language. 	Differences and peculiarities exist which make ISE<

programs look strange in some instances. 	For example, the

statement "next" is required to make previous assignments take

place. 	As well, a call by value structure forces the use of

functions instead of procedures. 	The inability of ISP' to accept

the value of bit field as parameters results in awkward constructs

40

as found in the functions "bit-assign" and "bit-test" in the F100-L

program.

2.4.3 METAMICRO ASSEMBLER

, The metamicro assembler is a programmable assembler that

allows users to define an assembler for a target machine. Using the

meta micro, an assembler for the Ferranti F100 was developed. To

use the assembler, a user writes his program in the target assembly

language, concatenates his program to the F100 metamicro

description file using the "include" statement and invokes 	the

metamicro assembler. 	The output of the assembler is a nodal file

that contains the machine code representation of the assembly

language memonics and the data constants.

Label addresses are not resolved during the assembly and

spaces for those labels are reserved by the metamicro. 	The task

of address resolution is left'to the linking/loader. 	A user's

guide for the F100 metamicro assembler can be found in Appendix

III of [LAFE83]. The guide contains a detailed description of the

assembler syntax.

Due to some limitations of the metamicro and also partly to

the fact that the F100 assembler [FERR81b] includes some features

that are not standard in North American made assemblers,

entire syntax compatibility can not be achieved. However, the UNIX

operating system provides a tool called YACC (Yet Another Compiler

Compiler) which is suitable for writing a pre-processor. This pre-

processor could be used to modify the syntax of F100 source

programs written for the special purpose F100 assembler, and to

make it compatible with the F100 metamicro assembler.

41

the operand

word.

the operand
instruction

2.4.4 LINKING LOADER

The main function of the linking loader is to allocate and

resolve addresses that are found in the nodal files. The output of

the linking loader is a loadable memory module for a target machine

and this loadable memory module may include more than one nodal

file. Assembly listings for each source file are also produced by

the linking loader.

The linking loader requires a description file supplying

information on how to resolve different addressing modes. For

example, some F100 assembly instructions have four modes to address

their operand(s):

1. 	Short Direct Addressing Mode: The address of

is the lower order 10 bits of the instruction

2. 	Long Direct Addressing Mode: 	The address of

is in the memory location next to that of the
word.

3. 	Immediate Addressing Mode: The operand is located in the

memory location next to the instruction word.

4. 	Indirect Pointer Mode: 	The lower 8 bits of 	the

instruction word form an address to a pointer that points

to the operand. The pointer can optionally be auto

incremented or decremented.

The linking loader must be able to recognize each addressing

mode, check for the proper address values and produce an error

message if any address value overwrites the op-code of the

instruction.

The simulated memory where the program is to be loaded does

not have to be contiguous. List of memory ranges can be defined in

the linking loader description file and jump instructions

other available memory regions are automatically inserted by the

linking loader. 	If the program requires more memory that is

t o

defined in the description file, an error message is produced.

Listing of the linking loader description file can be found in

Appendix III of [LAFE83].

2.5 MULTIPROCESSOR SIMULATION II

The simulation described in section 2.3 is repeated with

Ferranti F100-L processors replacing the Intel 8085s 	used

previously. 	Some modifications have been made to the bus coupler

and 	other supporting devices because of the FlOO's 16 bit

architecture and its different memory cycles.

Listings of the simulation include the topology file and the

source programs for each processor. Here again, two types of

simulation were carried out, one performing co-ordination by

polling, the other by interrupt. It was found in the simulation

with interrupt that the simulation program grew too large and went

beyond the 64K bytes memory limit imposed by the PDP-11

architecture and the UNIX operating system. The number of

processors in the simulation had to be reduced by eliminating one

processor and combining the sum and difference functions into one

program.

As mentioned earlier, the F100 uses different memory access

cycles, and therefore requires a special memory interface circuit.

The block diagram of a F100 based computer module is shown in

figure 2.9. It consists of the F100 micro processor a F113 memory

interface, a programable interrupt controller and a memory module.

Also present in the system but not shown in the diagram, is the bus

coupler. 	The F113 was modified to accommodate a third channel so

that "raw memory" could be used as well. 	For the polling version,

43 ,

the interrupt circuit is redundant. 	A block of the simulation is

shown in figure 2.12.

44

/1 N

V

gmem

S[NC,LE BOARD COMPUTER MODULE (SBCM)

HIGHWAY

F100

A

memory

PIC

F113 TTY

(op -
tional)

Bus con

MULTIBUS

‘,

Figure 2.12 BLOCK DIAGRAM OF MULTIPROCESSOR SIMULATION IL

45

3.0 turrILITy OF IN-aft

3.1 COMMENTS ON INDIVIDUAL COMPONENTS

3.1.1 METAMICRO ASSEMBLER AND LINKING LOADER [ROGE80]

The assembler developed using the metamicro has some

limitations. It does not allow arithmetic expressions in the

operand field of a mnemonic, which is a standard feature in many

other special purpose assemblers. The assembler is not, therefore,

as powerful as those special purpose assemblers . ,

Another minor limitation is that the metamicro assembler

requires that the operand field of a mnemonic be enclosed in

parentheses. This limitation, as well as others, make it

difficult to develop an assembler that achieves full syntax

compatibility. However, it is relatively easy to use the metamicro

to develop an assembler for a new machine and the development time

varies from a few man days to produce a basic working version, to a

few weeks if comprehensive error detection and full compatibility

(e.g. using YACC) are required.

3.1.2 ISP" COMPILER [STRA78]

Various features of the ISP". hardware description language and

its N.mPc compiler have been commented upon previously. It may be

worthwhile at this point to review them and see how they impact the

building of simulations.

L. 	ISP' is very versatile and allows a designer to implement
existing hardware structures and invent his/her own
special purpose devices.

2. 	The use of ISP is relatively straightforward, albeit
slightly disconcerting at first, due to its register
transfer nature. The parameter passing mechanism also
requires some care.

46

3. ISP offers facilities for a module to communicate with
the outside through "ports" and to keep track of its

execution through control variables stored in internal

"states".

4. ISK provides for the asynchronous triggering of some
pre—determined processes when certain events occur. The
occurence of those events can be detected through ports
connected to devices generating the events.

Hardware models can also be easily debugged using the trace

option. Although very useful, this option should be used sparingly

since it drastically affects the overall size of the simulation.

3.1.3 ECOLOGIST AND RUN TIME KERNEL [ORDY78],[0RDY79a]

The Ecologist together with the simulated memory manager are

used to build a simulation, that is to produce a set of processes

and data that, when loaded, will execute the simulation. The

ecologist and simulated memory processor combination works well,

although a few minor irritants should be mentioned:

1. The page option determines the size of the actual

physical pages containing the programs in object code.
Two of those pages are present within the simulation,

with the rest being held in one of two simulated memory
managers. 	The recommended page size is 256 bytes and
when overall simulation size problems were encountered,
varying the size of those pages did not produce anything
significant.

2. As mentioned in item 1, there are two simulated memory

managers. 	Each of them can hold up to 50K bytes of
memory space and they communicate with the simulation

over UNIX "pipes". 	The total size of the simulated
memory is therefore 100K bytes. 	This total size is not

program size but rather the size of the various memory

structures supported by the simulation components: For

example, if an Intel 8080 is simulated with a full house
of memory, the corresponding memory module is 64K byte

long. The program to be run by the 8080 may only be 20K
byte long, but the whole 64K structure has to be
available to the procesàor (i.e. 8080) should it decide
to access it. In other words a simulation of two 8080 -,s
with full memory totaliiag 128K bytes cannot be done.

3. The size of the memory structure of a given processor is

defined in the linking/loader command file for that

particular processor. 	A common mistake is to define the
memory as the total address space of the processor. This

results in a simulation program that is too large to run.

The run time kernel oversees the simulation currently running.

Et has been found very flexible especially the way monitors (i.e.

probes), breakpoints and other facilities are implemented. On the

negative side, however, it happened that some simulations suffered

abnormal termination. This situation was narrowed down to the

case of simulations whose size was very close to the maximum

permissible 	size. Since communications between simulation

components is over UNIX pipe, it happened that not enough memory

could be allocated to buffer space for pipes. It ensued that

during a simulation, UNIX took over with the "Read Over Empty Pipe"

diagnostic. UNIX then proceeded to do a core dump.

Another minor point is that the run time kernel assigns a

monitor number to commands such as display, states, break point,

etc. Those monitor numbers are not re-used and even though the

upper limit is a large number, it could happen that the user would

run out.

3.1.4 POST PROCESSOR

The run time kernel can be instructed to gather statistics on

the simulation. In this fashion several variables (states, ports,

simulated memory location) can be monitored and their history

traced. 	The run time kernel puts all this information in trace

files, in a format compatible with the post processor. 	The

functions of the post processor are to read these files and to

present the results in a readable form.

48

Unfortunately, the post processor and its utility cannot be

commented upon since it is not working on UNIX V7 running on PDP-11

without separate I/D spaces. The N.mPc people are supposed to

rectify the situation.

3.2 USEFULNESS OF N.mPc

Several advantages result from the use of N.mPc in system

design and development. The most obvious one is the capability of

designing complex hardware and software structures totally in

software. In fact, with N.mPc, it is possible to design,

implement, test and completely debug a system prior to hardware

implementation. This is of great importance since it allows the

designer to assess the correctness of a design through simulation.

Following the initial design and implementation phase,

alternatives and/or refinements can be considered. Here again,

N.mPc provides a suitable environment for implementing those

alternatives and/or changes and also, N.mPc makes possible the

comparing of different versions of a system in order to evaluate

performance. Performance evaluation can be done according to two

criteria:

1. It can be based upon probabilistic performance, or in
other words, it can study bus loading, processor(s)
utilization, 	etc., 	which 	are phenomena that 	are
probabilistic in nature. To this end, N‘mPc incorporates
facilities to interpret trace data gathered at run time.
These facilities take the form of a "Post-Processor".

2. The evaluation can also be based upon deterministic

performance, that is correctnes. Correctness encompases
many levels among which: 	correctness of hardware
connections, 	correctness of robust/reliable schemes,
correctness of software etc. 	It should be stressed,
however, that in the present context, correctness does
not imply any mathematical proofs but rather some form of

- correctness evaluation gained through testing.

49

The use of N.mPc in those stages of development brings extra

benefits in terms of the software that is written to drive the

simulations. The simulation software is either the real software

that will be used in the target system or a skeletal software which

roughly follows the same algorithmic steps as the real software.

In the latter case, it may be possible to expand and modify the

skeletal software so that it meets operational criteria (i.e.

becomes application software). Therefore, when N.mPc serves as a

development system, it allows various design and development

activities to run concurrently.

Within the framework of a complete design methodology, the

usefulness of N.mPc is limited by its inability to go beyond the

processor/memory/bus level. If a design methodology using Ada in

the higher level design stages is desired, interface mechanisms

will have to be designed and put in place so that a link—up with

N.mPc is achieved. 	The lack of extensive software capabilities in

N.mPc hinders the design process. 	N.mPc does not provide any high

level language programming facilities. 	The metamicro assembler

supplied with N.mPc only allows programming in asembly language

and does not support advanced features usually found in dedicated

Macro Assemblers. 	Programming in assembler is fine for system

dependent, time critical portion of the code. 	Otherwise, the use

of a high level language is preferable. 	At present, the only

solution to this problem is to use existing compilers or cross

compilers for the desired target machine and load the object code

produced by the compilers into simulated memory(ies). This would

be an adequate solution although it involves obtaining a suitable

50

compiler for a given target processor and will also require some
-

system programming work in order to effect the loading of simulated

memories.
In conculsion, it can be said that NLmPc is not without

shortcomings or limitations (see next section for description of

shortcomings), but on the whole, the concept of computer assisted

design as implemented by N.mPc gives a designer a tremendous help

in the design of systems, be they for spacecraft applications or•

for general purpose systems. The two investigators on this

contract felt that N.mPc was easy to use and at the same time very

powerful in handling simulation testing and debugging.

3.3 LIMITATIONS OF N‘mPc

N..mPc suffers from two important limitations. 	The first one

is N.mPc's inability to support high level languages. 	The effects

of this limitation were discussed in the preceding section.

Of a more serious nature is the second limitation which is

concerned with the practical details of execution speed, maximum

simulation size, etc. 	The version of N.MPc currently in use is

running on Digital Equipment Corporation LSI 11/23. 	This machine

being relatively slow, 	execution speed of certain simulation

suffers greatly. Moving to a faster PDP-11 (or a VAX) would really

help.

Besides execution speed, there is a problem of simulation size

which is common to all PDP-11's. 	The total address space of a

task on a PDP-11 cannot exceed 64K bytes. 	Complex systems such as

N.mPc solve this problem by breaking up the components of the

" simulation into smaller chunks and by setting up interprocess

communication through UNIX pipes. 	There is a limit to how much

51

decomposition can be done, however, since pipes introduce memory

overhead and slow down execution appreciably.

The size of the simulation itself without run time environment

is restricted to 64K bytes on PDP-11 without split I/D spaces. The

size of the simulated processor's memory space is also limited to

100K bytes which is what the two simulated memory managers can

hold. Going to a split I/D machine (e.g. PDP 11/70, 11/45)

alleviates the problem somewhat, but real relief from memory

constraints can only come from the use of a VAX. In fact, for any

serious work such as simulation of a multiprocessor system for

spacecraft, the use of a VAX-11 is highly recommended, especially

in the later phases of development.

52

4.0 SUGGESTIONS FOR FUTURE WORK

Investigating computer assisted design tools is ofsgreat importance

in view of the impact those methods have on the design of general

purpose multi-processor systems and also of specialized hardware. NtmPc

is at the present time the only such system in existence at the

processor/memory/bus level. 	A new version of N.mPc is currently under

preparation and is expected to be released soon. 	This new version runs

on a VAX-11 and is free from the limitations of speed and memory size

that plagued the PDP-11 version. The ecologist will be of a new design

and the metamicro assembler/linking loader combination will be greatly

enhanced. It would be advantageous to use the new version of N.mPc and

it would also be important to have a working version of the "post-

processor".

With the above tools, a complete simulation of a real satellite

multiprocessor system could be done in detail. Ail input sensors,

output activators and various processing systems could be simulated

using adequate software. Performance evaluation could be done as well

as testing of some recovery schemes for fail safe operations.

Irrespective of the choice of hardware/software development tool,

interface constructs will be necessary in order to achieve proper link

up with the Ada based high level design stages. Work in that area will

be done under the present contract.

53

[BART81]

[FERR81a]

[FERR81b]

[FERR81c]

[LAFE82a]

REFERENCES

J.Barthmaier, "Intel Multibus Interfacing", ISBC
Applications Handbook, Intel Corporation,
September 1981.

"F100-L Micro Processor Specification", Ferranti
Computer Systems, September 1981.

"F100-L Assembly Language Programming", Ferranti,
Computer Systems, September 1981.

"F100-L Interface Set Specification", Ferranti
Comuputer Systems, June 1981.

C. Laferriere, W.T. Brown, J.G. Ouimet, S.A.

Mahmoud, "The Definition and Specification of an
Integrated Set of CAE Tools for Spacecraft
Multiprocessor System Design", Report No. INT-82-

Intellitech Canada Limited, March 1982.

[LAFE82b] 	C. Laferriere and S.A. Mahmoud, "Trade-Off Study
Report", Intellitech Canada Limited, August 1982.

[LAFE83]

[MAHM82a]

[MAHM82b]

[ORDY78]

[ORDY79a]

[ORDY79b]

C. Laferriere and A. Lam, "Program Listings of
Simulations Implemented Using N.mPc", Technical

Report INT-83-47/2, Intellitech Canada Limited,

January 1983.

S.A. Mahmoud, J.G. Ouimet, C. Laferriere, W.T.

Brown, "A Survey of Computer Aided Engineering
tools for the Design and Simulation of Multi

Processor Systems", Technical Report No. INT-82-
15, Intellitech Canada Limited, March 1982.

S.A. Mahmoud and C. Laferriere, "CAE Tools for
Spacecraft Multi Processor Design: Progress
Report", Intellitech Canada Limited, September

1982.

G.M. Ordy, "N.mPc Ecologist User's Manual", Dep't

of Computer Engineering, Case Western Reserve
University, Cleveland, Ohio, Spring 1978.

G.M. Ordy, "N.mPc Runtime Users Manual", Dep".t of

Computer Engineering, Case Western Reserve
University, Cleveland, Ohio, Spring 1979.

G.M. Ordy and F.I. Parke, "An evaluation of the
N.mPc Design System", Proceedings of the 16th
Design Automation Conference (IEEE), pp. 537-541,
June 1979.

54

[ORDY80]

[OUIM82]

[PARK79a]

[PARK79b]

[ROGE80]

.[ROSE79]

[STRA78]

G.M. 	Ordy, 	"N.mPc 	Release 2 Installation",

Department of Computer Engineering', Case Western
Reserve University, Cleveland, Ohio, November
1980.

J.G. Ouimet, C. Laferriere, S.A. Mahmoud, T.F.
Martin;" Review of Multiprocessor Systems and
Their Spacecraft Applications"; Report No. INT-82-

Intellitech Canada Limited, March 82.

F.I. Parke: "An Introduction to the N‘mPc Design
Environment", Proceedings of the 16th Design

Automation Conference (IEEE), pp. 513-519, June
1979.

F.I. 	Parke 	et 	al., 	"The 	N.mPc 	Runtime
Environment", Proceedings of the 16th Design
Automation Conference, (IEEE), pp.529-536, June
1979.

L.R. Rogers and G.M. Ordy, "N.mPc 	MetaMicro
User";s Manual, 	version 3.1"; 	Department 	of
Computer engineering, 	Case Western Reserve
University, Cleveland, Ohio, July 1980.

C.W. Rose et al., "The N.mPc System Description
Facility", Proceedings of the 16th Design

Automation conference (IEEE), pp. 520-528, June
1979.

R. Straubs: "N‘mPc ISP User's Manual", Dep"t of
computer Engineering, Case Western Reserve
University, Cleveland, Ohio, 1978.

I .

intellifech
Intellitech Canada Ltd
352 MacLaren Street,
Ottawa, Ontario

 K2P0M6
(613)235-5 26

