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1.0 	118/1EI 0EECTILO11Th ,  

This report constitutes deliverable 4.2 of work done (under 

contract #0ER 82-05067) for the Federal Department of Communications, 

Communications Research Centre, Ottawa, entitled "Computer Aided 

Engineering (CAE) Tools for Spacecraft Multiprocessor Systems". 

The report describes: 

I. 	The computer aided engineering tool NbmPc purchased under this 
contract. 

2. 	The utility of the purchased CAE tool in the design of 

multiprocessor systems for spacecraft applications. 

As such, the report describes the work done under tasks 3.2 and 3.3 

'of the contract. 	The installation of N+.mPc was described in an earlier 

report, 	[LAFE82b]. 	Detailed program listings of the simulations 

implemented using N.mPc are contained in [LAFE83]. 

The report is divided into four main sections which are described 

below: 

1. Section 1, is a general introduction which includes background 

materfal, a brief discussion of multiprocessor architectures 
for spacecraft applications, a description of N.mPc and an 
overview of the work accomplished in fulfillment of tasks 3.2 
and 3.3. 

2. Section 2 is a description of the technical work done with 

N4mPc. 	It describes the initial installation and testing of 
NuiPc followed by the simulations implemented. 	This work 
includes some preliminary simulations done to gain familiarity 
with the N.mPc tool followed by more advanced multiprocessor 
work. Also documented is the complete simulation of the 
Ferranti F100-L micro processor and its support chips. 

3. Section 3 	contains comments on the utility of N.mPc for 

spacecraft applications. Attention is paid to each of the 
components of NgmPc, and comments on the utility and the 
limitations of the current implementation of N.mPc are 
provided in the last two sub-sections. 

4. Section 4 describes suggested directions for further work with 
'N.mPc within an integrated computer aided engineering design 
environment involving complementary tools. 
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1.1 BACKGROUND AND  REVIEW OF DESIGN METHODOLOGY  

The work reported here is in fact part of a greater effort 

whose primary goal is to develop an integrated set of computer 

aided tools to assist and automate the design of multiprocessor 

systems and which is aimed primarily at spacecraft applications. 

A general design methodology and a set of computer aided tools to 

support this methodology are described in earlier reports 

[MAHM82a], 	[LAFE82a]. 	As illustrated in Figure 1.1 : this 

methodology can be divided into two general stages: 

a) The high level design stage, which is concerned with high 

level requirements, 	correctness of the design and 
functional decomposition. 

b) The low-level design stage, which constitutes the work 

remaining after software/hardware boundaries have been 

defined. 	This 	low level work also 	includes 

implementation and testing. 

The present contract involves the selection, purchase and 

application of a suitable computer aided design package to support 

the low level design stages and the definition of a set of suitable 

Ada* constructs which would be used in the high level design stages 

to facilitate the top down design and development of multiprocessor 

systems. The latter part of this contract work is the definition 

of the necessary mechanisms to interface high level design tools to 

the low level design environment. This report is concerned only 

with the former effort, namely the description and utility of the 

low level design tool N.mPc for simulating multiprocessor 

architectures. 

* Ada is a trademark of the U.S. Department of Defence. 
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1.2 MULTIPROCESSOR ARCHITECTURES  FOR SPACECRAFT APPLICATIONS  

A survey of various multiprocessor configurations currently 

used in spacecraft applications is to be found in [OUIM82] and it 

may be worthwhile to review the rationale behind multiprocessor 

systems for spacecraft applications. For a few years already, the 

trend has been towards cheaper, more flexible and more powerful 

processors. As well, spacecraft designers are now more inclined to 

put advanced application programs on spacecraft 	"on-board" 

computers. 	Having computers and programs where they are needed 

relieves earth stations from the burden of having to support 

expensive systems. Furthermore, responsiveness of programs such as 

control monitors from on-board equipment is improved. When 

processing capabilities are to be put aboard a spacecraft, several 

difficulties have to be solved two of which are of great 

importance: 

1. The first point deals with the processing power required, 

combined with the final size and weight of the on board 

computer. 	This 	suggests the use of microprocessors which 

happen to be cheap and lightweight but are unfortunately 
somewhat slow(*). This relative lack of speed can be obviated 

by using multiple processors in a suitable arrangement. 

2. The second difficulty is concerned with reliability. 	When a 

spacecraft is in orbit, reliable operation of all its parts is 

of paramount importance. 	Several techniques can be used to 

achieve this goal, such as the use of redundant components 

(e.g. standby processors), the use of a serial bus to minimize 

the number of lines, etc. 

The European designed L-SAT exemplifies some of the above 

techniques. 	L-SAT supports two serial busses, and uses a multiple 

processor arrangement to increase reliability. 	Modelling such a 

(*) Although faster and more powerful processors are always 
continuously being developed. 
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system had tentatively been set as a goal. Several factors such as 

lack of time, host processor limitations etc., have prevented a 

complete simulation of L-SAT. Efforts were directed towards 

multiprocessor simulation with processors being interconnected by a 

"Multibus"# structure. In this fashion; issues such as processor 

behaviour and especially processor co-ordination were investigated. 

In particular, two methods of processor co-ordination were 

simulated, namely busy waiting by polling a global structure and 

interprocessor interrupts. 

The vehicle to carry out those tests was the N.mPc system 

developed at Case Western Reserve University, Cleveland, Ohio. 

N.mPc and the reasons for choosing it have already been described 

in earlier reports [LAFE82b] (deliverable 4.1) [MAHM82] (August 

Progress Report). 	The multiprocessor system simulations 	were 

built 	using the N.mPc system and run using N.mPc 	runtime 

environment. 

1.3 DESCRIPTION OF N.mPc  

N.mPc ([PARK79a], [PARK79b], [ROSE79], and [ORDY79b]) is an 

interactive environment 	for the design and evaluation of 

multiprocessor systems. 	It is composed of the following software 

modules; (shown in figure 1.2 and 1.3): 

1. Metamicro assembler, which is a programmable assembler to be 
used in program development for target processors. 

2. Linking Loader, which complements the programmable assembler 
and whose main purpose is to resolve addressing conflicts so 
as to produce a loadable object file. 

Ti) Multibus is a trademark of Intel Corporation. 
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3. ISP Compiler which is used to compile an ISK description of 
the hardware to be simulated. 	The out-put of the computer is 
executable PDP-11 code. 

4. Ecologist which is used to build the simulation according to a 

topology file describing the various hardware modules 
(compiled ISK files) to be used in the simulations. 	The 
topology file also describes the 	memory modules and 
the interconnections of  all modules in the simulation. 

5. Simulated Memory Processor which prepares memory files (i.e. 
containing executable programs) for use by the runtime 
package. 

6. Runtime package which consists of the simulation itself, the 

memory manager and the command interpreter. This last 
component (i.e. the command interpreter) is the interface with 

the user and the means by which the user can control the 
simulation. 

Looking back at Figure 1.1, it is possible to link certain 

stages of the design methodology with the components of N.mPc. The 

software implementation stage corresponds, albeit partially, to the 

combination of the metamicro assembler and the linking loader. 

Hardware design and implementation are done by the ISP' language 

description facility and its associated compiler. 

Hardware/Software integration, testing and evaluation tasks are 

performed by the ecologist, simulted memory manager and run-time 

environment. 

In fact, at the integration and testing stage, N.mPc can be 

thought of as a software  logic state analyzer and a software In 

Circuit Emulator. Based on those capabilities, N.mPc proved to be 

a suitable system to support the simulation activities outlined in 

the next section. 
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1.4 OVERVIEW OF THE SIMULATION WORK 

Simulation work began with an attempt to gain familiarity with 

N:mPc. Consequently, very simple simulations were undertaken; such 

simulations typically involved a single processor (e.g. RCA 1802, 

Intel 8085) and a simple program. 

Once a reasonable proficiency was achieved, multiprocessor 

simulations were designed around the Intel 8085 processor. At 

first, a simple interconnection structure was used, but eventually 

a better engineered simulation was produced in which each processor 

had its own private memory and processors were interconnected by a 

multibus structure. 

The next goal was to develop a new processor description and 

to program the metamicro assembler/linking loader combination to 

accept the assembly language of this processor. The target 

processor was the Ferranti F100-L 16 bit bipolar microprocessor. 

Besides the F100-L, the associated support chip set was also 

defined using N.mPc. 

Finally, the F100-L, was used as processor 	in a multibus 

based multiprocessor simulation. 	Processor co-ordination achieved 

through interprocessor interrupts. 

9 
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DESCRIPYION(10E TECHNICAL WORK 

2.1 INSTALLATION OF N.mPc 

N.mPc is distributed on a magnetic tape, 	recorded in the 

UNIX*  ':tar': format. The system is distributed in source form and 

installation consists of compiling and assembling various modules. 

The directory organization of Intellitech's N.mPc system is exactly 

that suggested in the Nuec installation manual [ORDY80] for 

Release 2. This directory organization is shown in Figure 2.1. 

tan 

FIGURE 2.1: N4mPc Directory Organization 

Each sub directory of nmpc contains a particular type of file 

and 	furthermore, 	the 	system expects this particular 	file 

classification. 	The contents of each 	subdirectory are 	as 

follows: 

1. 	The "bin" directory contains executable N:mPc programs 	in 

the 	same fashion as root/bin contains executable 	UNIX 

programs. 

(*) UNIX is a trademark of Western Electric Co. 
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2. The man directory contains an on-line manual for the N.mPc 

System, which is very similar to the UNIX on-line manual (also 
called "man"). 

3. As its name indicates, the "iclib" directory is a library of 
ISK hardware descriptions for various microprocessors. This 
directory can be automatically searched by the "ec" program if 
so desired. 

4. The software counterparts to the ISP 	hardware descriptions 
are to be found in "softgen". 	In that directory, two 
subdirectories are present: 	"11cf" and "mmpd". Metamicro 
assembler description files for a given processor assembly 
language reside in "mmpd", whereas linking loader command 
files are in 1.1cf". 

5. The UiK directory is comprised of several subdirectories, 
one for each target processor type. Subdirectory "i8085, for 
example; contains the ISP' description of the 8085 hardware', 
the meta micro descriptor of the 8085'assembly language and a 
linking loader command file 	for the 8085. 	The "lib" 
directory 'does not present new processors or features, but re- 
organizes information already contained in "iclib", 	and 
"softgen". 	The overhead thus introduced is small since UNIX 
uses file links. 

N.mPc comes supplied with a library of processor descriptions 

which covers the most popular 8 and 16-bit devices. Processors 

such as the Intel 8080, 8085, 8086 , the Motorola 6800, 68000, the 

Zilog Z80, Z 8000, are supported in terms of both hardware and 

software. Unfortunately, peripheral chips such as bus controllers, 

programmable interrupt controllers, DMA controllers, etc.,  are 

 notably absent from the NomPc libraries. It is therefore left to 

the users to develop those modules. 

Another implementation detail is the speed of execution and 

the maximum size of a simulation. It becomes obvious fairly 

quickly that simulating a fast processor on a slow machine is not 

the most desirable situation, although the usefulness of the 

simulation is not diminished. Of greater importance is whether the 

host PDP-11 supports separate Instruction and Data spaces or not 

1 1  



(Intellitech's 11/23 does not). 	Not having separate I/D spaces 

reduces the size of the simulation but also reduces the maximum 

size of dynamically created tables used by N‘mPc system programs. 

The ISK compiler, for example, had to be processed by a special 

program 	called  "23f ix"  which performs a partial mapping of the 

Data space. 	The compiler thus becomes able to process larger 

processor descriptions. It is worthwhile mentioning that any ISP' 

description more complicated than that of an 8085 cannot be 

compiled using the standard compiler. The "23fix" proved very 

yaluable. 

2.2 PRELIMINARY SIMULATION  

The N.mPc library includes hardware and software descriptions 

for many popular microprocessors such as the Intel 8085/86, 

Motorola 6800/68000, RCA 1802, Zilog 80, etc. Also included in the 

library are a number of simulation examples. Two of the examples 

were built and run and their immediate benefit was twofold: 

Firstly, they proved that the simulation package had been properly 

installed, and secondly, they allowed familiarity and experience to 

be gained with the simulation package. 

The first example involves an RCA/1802 processor with internal 

memory which runs a program that sorts a list of numbers. 	It is a 

simple simulation as 	the processor does not have any port to 

interface to other hardware. 	The topology that describes the 

hardware connections is very simple and consists of only three 

lines. 	Files related to these two examples can be found in 

Appendix I of [LAFE83]. 	The ISP hardware description of the RCA 

1802 as well as that of the Intel 8085 are also included. 
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The second example simulates eight Intel 8085 microprocessors 

connected to a distributed pipe system. This example is more 

complex than the previous one as it involves three types of 

hardware devices: Intel 8085, Memory and First In First Out (FIFO) 

Memory. The Simulation diagram is shown in Figure 2.2. The Source 

and Sink are only the special cases of FIFO memory: they are 

output only and input only FIFOs. 

An identical program is loaded into all memory modules and 

executed by the 8085s. The program simply reads from the incoming 

FIFO memory and writes its contents into the outgoing FIFO memory. 

Eventually the data generated by the Source will arrive at the 

Sink. This is a trivial example of a pipe system. In a real 

system, the data read from the incoming FIFO would be processed 

before being written to the outgoing FIFO. 

2.3 MULTIPROCESSOR SIMULATION I  

Having successfully completed the simulation examples, a 

target was set to simulate a multiprocessor system related to a 

spacecraft application. An example of the multiprocessor system 

is shown in figure 2.3, in which.the single board computers are 

indentical and each of them ib capable of replacing the other in 

case of a failure. A common bus is needed to establish a 

communication link among the single board computers and other 

electronic devices. 

The Intel 8085s were used in the simulation since the 

description of this processor was available from  the N.mPc 

library. An Intel designed bus known as "Multibus" was also chosen 

for the common bus. It is a parallel bus with a well defined 

1 3 
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architecutre and is documented in the literature [BART80]. 

In the simulation, five Intel 8085 based computer modules and 

a global memory module are connected to the Multibus system, as 

shown in Figure 2.4. A simulated terminal using the ISP "raw 

memory" ,structure is connected to the private bus of the first 

simulated computer module. This module executes a program that 

reads a pair of numbers from the terminal, converts the numbers 

from ASCII to binary values and writes the values to the global 

memory. The other computer modules read the two numbers, process 

them and store the sum, difference, product and quotient into the 

global memory. Meanwhile, the first processor is waiting for the 

completion of those operations so that it can display the results 

on the terminal once they are available. 	Listings related to the 

Simulation I can be found in Appendix II of [LAFE83]. 	The 

following sections describe the simulation in details. 

2.3.1 INTERPROCESSOR CO-ORDINATION 

Two versions of the simulation have been developed using 

different co-ordination methods: Polling and Interrupt. In the 

Polling version, the four processors handling arithmetic operations 

poll the status word and read the numbers from the global memory 

after the status word is set by the first processor. The first 

then  poils the "result ready" status word of each of the four 

processors and reads the results from the global memory into its 

own private memory. 

In the interrupt version, the processors wait for an interrupt 

instead of continuously polling. In the present architecture, the 

advantages of this method are not so important since the processors 

16  
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required. 

improved. 

instructions and local data from their private memories. The 

rd 
wr 

wait 

are 	lightly loaded and the common bus is only used 	for 

synchronizatioU. It remains, however, that co-ordination through 

interprocessor interrupts reduces the traffic on the common bus and 

if so also allows the waiting processors to do other tasks 

In most systems, the overall performance would be 

Incidentally; 	from a simulations standpoint, co- 

ordinating processors by interrupts has the extra advantage of 

reducing the size of the "ready to run" queue, thus affording 

faster execution to the other processors. 

2.3.2 PRIVATE BUS DEFINITION 

fetch The 8085 processors use their private bus 	to 

private bus also serves as a communication link between the 

processor, its own I/O devices and the bus coupler. The private bus 

signal definition are as follows: 

higher order address 
multiplexed lower address and data 

status signals, 01 = write, 10 = read 
addressing memory (high) or I/O  (low) 
address latch enable. To indicate that 
address in the bus is stable 

: set on completion of a read command 

: set as data is stable on the multiplexed 

bus lines 
: to halt the processor 

2.3.3 MULTIBUS OPERATIONS 

In a Multibus system, there are two types of modules that are 

ah0 - ah7 : 
ad0 - ad7 : 

stO - stl : 
iolm 	• 
ale 	• 

connected to the bus: Master and Slave. 	A computer module is an 

example of a bus master and a memory module that of a bus slave. 

The bus master makes a bus request, waits ùntil it is granted, 

addresses a bus slave and commands the bus slave to provide a 
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service. 	The slave replies with an acknowledgement when the task 

is done and the bus master then releases the bus. 	A multibus 

system may have more than one bus master connected to it and a bus 

arbitration scheme is required. This arbitration is carried out by 

the bus coupler. 

Two priority resolution techniques are used in multibus 

systems [BART80] : 	Serial and Parallel Priority techniques. 	In 

the 	Serial Priority technique, 	the priority resolution is 

accomplished with a daisy chain scheme. 	Each bus coupler has a 

priority input and a priority output pin. 	In the daisy chain 

scheme, the input of a bus coupler is connected to the priority 

output pin of the previous bus coupler. When a bus request is 

initiated by the processor, the bus coupler waits until a bus grant 

signal is received from the priority input pin. Meanwhile the 

processor has to wait until an acknowledgement from the bus coupler 

is received. If no bus request is pending and the bus coupler 

receives a bus grant signal, it simply sends the signal through 

the priority output pin, passing the bus grant to the 

coupler. 

In the parallel priority, the priority output and input pins 

are tied to a Priority Encoder/Decoder Circuit. The circuit sends 

the bus grant signal starting with the bus coupler of highest 

priority, waits for the bus grant signal to be returned and sends 

it to the next highest priority. This process is repeated. 

The serial priority scheme is simple although not the most 

efficient. The parallel scheme requires extra hardware circuit and 

is more complex. For this simulation, the serial scheme was used. 

next bus 
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2.3.4 MULTIBUS COUPLER 

The bus coupler interfaces the processor to the multibus. 	It 

can recognize a bus request made by the processor and sends the 

data and commands to the common bus once they becomes available. 

The ISE'', hardware description of the bus coupler can be found 

in Appendix II of [LAFE83]. As far as the processor is 

concerned, the bus coupler is a memory module that responds to 

addresses in a pre-defined range. Read and Write operations are 

possible and the bus coupler will delay the processor when a 

request is still pending. 

The simulated bus coupler is unrealistic since it needs more 

than 60 pins to interface to a multibus. 	In reality, several 

integrated circuits are required. 	For example, a bus coupler 

implementing a daisy chain scheme would require a Bus Arbiter 

(Intel 8289), a Bus Controller (Intel 8288), an Address Latch 

(Intel 8283/8282), and a Data Tranceiver 8286/8287 [BART80]. 

2.3.5 MULTIBUS SIGNAL DEFINITION 

The Multibus is responsible to carry data and commands 

slave. originating from a bus master and destined to a bus 

The simulated bus consists of the following signals: 

Address 0 - 15 : 
Databus 0 - 8 : 
Read 

• Write 
Ale 
Xack 

int 	0 - 7 : 

address 
data 
high true read command 
high true write command 
address latch enable 
transfer acknowledge. Signal emitted 
by a bus slave to indicate completion 
of a service. 
interrupt lines 
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During a Read operation, the read signal is set to true and 

the address is loaded onto the Address bus. 	At the same time, a 

strobe is sent down the Ale line. 	The bus slave recognizes the 

address and the command. 	It then loads the memory contents of the 

addressed location onto the Databus. 	An acknowledgement is then 

sent through the Xack. 

The Write operation is similar in principle. 	The write 

interrupt line operation simply sets any of the eight interrupt 

lines and there is no acknowledgement. 

Using those three mechanisms, 	communication between bus 

components is achieved. 	Furthermore, interrupts can be used 

between bus masters to provide better co-ordination of data (or 

control) transfer. 

2.4 DEFINITION OF NEW HARDWARE/SOFTWARE STRUCTURES  

2.4.1 INTRODUCTION 

This sub-section describes the N.mPc implementation of a new 

processing element, the Ferranti F100-L. This work was undertaken 

for several reasons: Firstly, defining processors and instruction 

sets is one of the great advantages of N.mPc. It allows a designer 

to use a combination of existing microprocessors, special purpose 

microprocessors and other special devices implemented as 

programmable logic arrays. Secondly ., by implementing new 

structures, it becomes possible to test some special features of 

N.mPc which would otherwise not have been used. For example, the 

resulting size of certain simulations required careful treatment. 

Thirdly, implementing a new processor yields a complete development 
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system, ready to be put to use. Such a development system includes 

an assembler/linker, and a total environment for testing programs. 

The Ferranti F100-L was chosen as the processor to be 

implemented for two reasons: 

1. It is a 16 bit processor built using bipolar technology. 
Because of this fabrication process, the F100-L is 
radiation hardened and thus suitable for a spacecraft 
environment. 

2. The F100-L is also the processor chosen for the European 

Large Satellite (L-Sat) program. 

A. full N.mPc implementation of the F100-L involves command 

files for the metamicro assembler and the linking loader, an ISP' 

description of the F100-L itself as well as of the necessary 

support chips (F113 memory interface, interrupt controller, etc.). 

The following two sections will describe each of those items 

in detail. The hardware aspects of the implementation will be 

treated first, with descriptions of the processor and of a system 

based upon it. In the second part, the software aspect, more 

precisely issues of syntax, addressing modes, address resolution, 

etc. will be dealt with. 

2.4.2 HARDWARE ASPECTS OF THE F100 -L 

2.4.2.1 PROCESSOR DESCRIPTION 

As mentioned previously, the F100-L is a 16 bit processor 

[FERR81a] with a multiplexed data and address bus, .referred to as 

the system "highway". The total address space of the F100-L is 64 

kilo bytes, addressed as 32k 16 bit words. Incidentally, the F100- 

L does not have byte addressing capability. A block diagram of the 

internal organization of the F100-L is shown in figure 2.5. From 

that block diagram, it can be observed that the F100-L does not 
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possess a bank of general purpose on-chip registers. 	Instead, the 

F100-L has a 16 bit accumulator and an operand register to be used 

in data manipulation and testing. A seven bit condition .code 

register can also be used in a similar fashion although its primary 

function is to record the status of arithmetic and logical 

operations. 

On the control side, the F100-L possesses a program counter 

used in the traditional way and an instruction register which holds 

the instruction to be decoded. There is no on-chip stack pointer, 

but instead the stack pointer is stored in location 0 and is used 

in subroutine calls and interrupt processing. Figure 2.5 also shows 

other control structures which are necessary to proper hardware 

operations and whose functions will be emulated by the ISK 

description of the processor. 

The F100-L also possesses the necessary interface to support 

architecturally compatible co-processors. One such co-processor is 

the floating point processor which performs floating point 

multiplications and divisions in hardware. Using co-processors is 

very advantageous as they are usually fast because of their special 

purpose nature, and also easy to integrate into the system. In the 

N.mPc implementation of the F100-L, co-processor were not to be 

implemented and, consequently, the necessary hardware features to 

support them were not included. However, incorporating them in 

future implementation should be relatively easy. 

The Ferranti microprocessor manual [FERR81a] describes most 

of the features of the F100-L. Some of the F100-L's 

characteristics, however, deserve special mentions, especially in 

the context of the current implementation. Of particular interest 
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are the memory access mechanisms, the Direct Memory Access (DMA) 

arbitration and the interrupt mechanism. The memory access 

mechanisms will be covered first, since they are the lowest level 

of implementation detail to be discussed. 

There are three basic mechanisms for accessing memory in an 

F100-L system: Read, Write, and Read Modify Write. The timing 

diagrams for all three mechanisms can be found in Figure 2.6. Co-

ordinating memory processor interaction is carried out through 

the use of four lines: JACV, KACV, JPAS and KPAS. The suffix ACV 

indicates a signal line originating from the F100-L whereas PAS 

indicates a signal line destined to it. 

Usually, the F100-L does not interact directly with memory 

modules, but rather with a memory interface module. Details of such 

a module will be covered later in the description of the system. 

An interesting feature of the F100-L is that, unlike 

microprocessors such as the Intel 8085 which only have Read and 

Write cycles, The F100-L has a Read Modify Write (RMW) facility. 

Using this RMW feature saves the time necessary to send the address 

a second time for the Write portion of the cycle. RMW is very 

useful when pointer operations with auto increment or decrement are 

being done. On the negative side, because of the need to maintain 

the address between the Read and the Write portions of the 

transfer, DMA (to be discussed next) cannot be allowed. 

The F100-L has "built in" facility for the handling of DMA 

requests (DMARq) and grants (DMAAccept). DMA processing has 

been implemented as an autonomous activity, triggered by the 

action of the DMA request line. Figure 2.7 shows the timing 
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diagram for DMA requests and grants. 	The memory access mechanisms 

(i.e. Read, Write, RMW) and the DMA process compete with each other 

for the utilization, or more precisely for the ownership of the 

highway. Mutual exclusion on the use of the bus is, of course, 

mandatory, since the bus is a unique physical resource which cannot 

support more than one user. In other words, should a CPU 

originated memory access occurr concurrently with a DMA device 

accessing memory: unpredictable effects would result. 	Mutual 

exclusion is therefore provided by two pairs of procedures (one 

pair for memory accesses, another for DMA) implementing DEKKER:s 

algorithm. The algorithm guarantees that race condition will not 

happen and that starvation of one of the requesters will be 

avoided. 	It is interesting to note that DMA processing is 

essentially 	asynchronous and is used in the vectoring of 

interrupts which is the next item to be discussed. 

Interrupt processing is a higher level function than both DMA 

arbitration and memory accesses. 	Two types of interrupts can be 

handled by the F100-L, vectored and non-vectored. 	A non-vectored 

interrrupt, will be triggered by the activation of the Program 

Interrupt Request line (PgItRq) which is scanned by the processor 

at the end of each instruction. If the interrupts were not 

specifically disabled by the program, the processor will grant the 

interrupt, thereby activating the Program Interrupt Acknowledge 

(PgItAccept) line in response to prior activity on PgItRq. The 

current status of the interrupted program is saved and a jump to 

the location of the interrupt service routine is executed. (In 

actual fact, the program counter gets 2050 and the interrupt 

service routine may reside there, or, as is more common, 2050 
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contains a jump instruction to the beginning of the routine). 

Non-vectored interrupts have several drawbacks. The source of 

the interrupts has to be determined by polling the devices, a task 

which is usually done in software. The response time of non-

vectored interrupts is thus slowed down by the software polling. 

The F100-L supports vectored interrupt provided that either the 

device interrupting or an interrupt controller is capable of 

requesting DMA, putting a channel number on the highway and 

strobing it (with ExtLdPgCt). The timing diagram of a vectored 

interrupt sequence is shown in Figure 2.8. 

Strictly speaking, the device sends twice its pre-assigned 

channel number to the F100-L. The F100-L, after having saved the 

status of the interrupted program, will load the program counter 

with 2050 offset by the channel number of the device. Therefore, 

to each channel is assigned a couple of words which contain a jump 

to the appropriate interrupt service routine. 

2.4.2.2 SYSTEM DESCRIPTION 

In order to obtain a working system that can be used in a 

simulation, the F100-L has to be connected with support chips. The 

tasks performed by those chips are as follows: 

1. Memory Interface. This kind of support chip is essential 
to decode the signals for Read, Write, Read Modify Write 
and to demultiplex the data/address highway. 

2. Interrupt Controller. 	This support chip(s) is necessary 

if vectored interrupts are required. The controller may 

be a distributed entity (e.g. F111 + F112) or a single 

central controller chip (e.g. the interrupt controller in 

the listings). 
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3. 	Direct Memory Access (DMA) Controller. 	If this function 
is desired in the system, a DMA controller is necessary. 

As in the previous case, control can be distributed (e.g. 
F111 + F112 again) or centralized. DMA by itself was 
not needed in the multiprocessing examples and, 

although the implementation of the F100-L supports DMA, a 

DMA controller was not provided. 

In the early stages of system design, two possible ways to 

design a system were considered: 

1. A simple approach was to use an F113 memory interface 
chip and implement it in ISK. The F113, to be described 
shortly, is a passive device (i.e.it does not initiate 
DMA transfer) and is used solely to interface the F100-L 
to some memory modules. 	Interrupts-being an essential 

feature, 	the simple approach proposed building an 
interrupt controller in ISK. 	The design of 	the 
controller was to be similar to that of an Intel 8259. 

2. A more complicated approach, albeit more versatile, was 
to use the standard Ferranti interface set, which is made 

out of one F111 control chip and two F112 data chips. 

This interface set is very powerful; it can handle 

interrupt and DMA requests, and it supports a daisy chain 

priority scheme for interrupt and DMA requests. 	Higher 
priority is given to interrupting devices which are 
closer to the processor. Finally, it can function as a 
multimode device with all the modes supported by the 
interface 	set 	being described in 	[FERR81c]. 	Of 
particular interest, is the fact that this standard 
Ferranti 	interface 	set 	can also be 	used in 
multiprocessing systems. 

The second 'approach is clearly more flexible in general 

purpose systems. 	However, spacecraft systems are of a special 

purpose nature and furthermore, the F111 + F112 interface 	set is 

very' complex due to its multimode functionality. 	For these 

reasons, and also because of the limited time available, the simple 

approach was chosen. 

A complete F100-L based system using the F113 	memory 

interface, à special memory module, and an interrupt controller, is 

shown in figure 2.9. In that system, the co-ordination between the 

F100-L and the F113 is as described in the discussion of memory' 
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timing. 

The F113 memory interface 'SP 	implementation is slightly 

different from the real F113. 	The difference is that in systems 

where the F113 is normally used, an address register demultiplexes 

and holds the address selected by the processor. This register is 

external to the F113 but, for ease of implementation and also to 

simplify the interconnection of system elements, the register and 

its functions were incorporated in the F113. 

Another characteristics of the F113 is the provision for two 

external RC circuits to serve as timing indicators. Usually, 

interaction between a memory interface and a memory module is 

accomplished by an "enable" signal from the interface and a "done" 

signal from the memory module. In the case of the F113, an 

"enable" signal is used to trigger the memory module but the "done" 

signal from the memory is absent. Instead, the F113 uses an RC 

circuit timer to produce the equivalent of a "done" signal from 

memory. There are two such circuit connections on the F113, one 

for each of the two memory channels supported by the interface. 

The current implementation of the F113 does not use RC timing 

circuit equivalent. Instead, it uses the more traditional 

enable/done arrangement described previously, thus making memory 

access co-ordination easier to visualize. When the system is part 

of a multiprocessor simulation, a bus coupler/arbiter is used and 

the bus coupler has to be able to delay the interface and the 

processor. This is so because global memory is accessed through 

the bus coupler/arbiter and the access time is dependent upon the 

amount of contention on the global bus. If RC timing circuits iere 

used, an upperbound on global memory access time would have to be 
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chosen with a corresponding decrease in performance. 

The memory modules used in the F100-L based system are of a 

straightforward design. They respond to an "enable" signal from 

the memory interface, read the read/write line to determine which 

operation to perform and signal completion of read or write by a 

"done" signal. The address selected by the processor is available 

directly from the memory interface and is stable throughout the 

operation. In the case of a Read Modify Write cycle, the address is 

stable from the beginning of the Read to the end of the Write. (Of 

course, the memory modules would not know whether a Read Modify 

Write is in progress or not, since they only see Reads or Writes). 

The last component of the system is the Interrupt controller. 

The internal architecture of the controller is shown in Figure 2.10 

and is, in fact, quite simple. A pair of registers is used to 

notify the controller of the occurrence of an interrupt, 

(Interrupt Request Register) and to "double buffer" those same 

requests (In Service Register). The controller supports eight 

independent request lines and implements a line scanning sche'me 

whicn emulates the daisy chaining of request lines. 	Line 0 has 

the highest priority and line 8 the lowest. 	The controller uses 

DMA to transmit the channel number (in fact, twice the channel 

number) to the F100-L over the highway. 	The controller meets all 

F100-L timing requirements for interrupt processing. 	It is 

interesting to point out that, following an interrupt request and, 

grant, the F100-L will wait for a few clock cycles for a DMA 

request to occur. This expected DMA request should be from the 

controller as a first step to sending the device channel number. 

1 



0 IRQO 

1 IRQI 

2 IRQ2 

3 IRQ3 

4 IRQ4 

5 IRQ5 

6 IRQ6 

7 IRQ7 

In 
Service 

Register 

0 

2 

3 

4 

5 

6 

7 

PRIORITY 

MECHANISMS 

CONTROL & DMA 

LOGIC 

îl 

INTERRUPT 
REQUEST 
REGISTER 

IRR ISR 

cr 	L., 	 G- 	 LI 	 Li 
N 	 0... CI.: 	 C. 	U 
U 	 W 	 W 	 W 

F-4 	 () C.) 	P.-. 
ce 	Cl 	 C..'5 C1 	M 

C., 
Û 	 ..---. 	..-.1 

4.-1 
H  .....-. 	l‹: 
CIC 	 0 	W 

C.-. 

FIGURE 2.10 	'internal Architecture of Interr,upt Controiler 

37  
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Incidentally; the channel number is strobed by the controller by 

activating the ExtLdPgCt line. 

In the case of a system where vectoring of interrupts is not 

necessary, no DMA request should be made following an interrupt 

acknowledge. The F100-L, noticing the absence of DMA request, will 

assume that no vectorry will take place and will simply load 2050 

into the program counter. 

It is obvious that following an interrupt acknowledge, no DMA 

request other than that of the interrupt controller should be 

allowed until the end of the interrupt processing sequence (as 

signified by PgItRq going to inactive followed by PgIt Accept). If 

it were not so, it could happen that another device would make a 

DMA request which would be interpreted by the processor as being 

from the interrupt controller. The processor would then mistakenly 

wait forever on the strobe (ExtLdPgCt) signal from the controller. 

In the system of Figure 2.9, the interrupt controller is the 

only device using DMA. If some DMA devices were incorporated in 

the design: the interrupt controller would have to be modified to 

take care of this potential deadlock problem. In the standard 

Ferranti interface set (F111 + F112) the problem is handled by 

daisy chaining all DMA and interrupt requests through the same 

chips and by disabling the DMA request chain as soon as an 

interrupt request is posted. This arrangement is shown in Figure 

2.11. The F111 control chip is the only part of the interface set 

involved in the daisy chain and its functionl description does not 

cover the difficulty with DMA request timing. 
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As mentioned before, modifications should be made to the 

controller if other controllers or purely DMA devices are used in 

the system. 	In fact, an arrangement very similar to that of the 

standard Ferranti should be adopted. 	Two possibilities come to 

mind: 

1. Coupling of. DMA and interrupt request lines can be 

achieved in exactly the same fashion as the F111 + F112 
interface set. 	This means that all controllers (DMA and 
interrupt are daisy chained together. 

2. Alternatively, a central DMA/interrupt super controller 

could be designed and implemented in ISP'. This super 
controller would perform DMA and interrupt requests 

arbitration. 

2.4.2.3 ISE'. PROGRAM LISTINGS 

This section introduces and comments on the ISP program 

listings which are to be found in Appendix III of [LAFE83]. The 

listings are, in order of appearance: 

1. Ferranti F100-L 

2. Ferranti F113 

3. Memory Module  

ISP' description, 

ISP' description, 

ISP' description, 

4. Interrupt Controller ISP' description. 

The ISP' programs are all extensively documented, and their 

purpose and functions should be readily understood. ISP' is not, 

however, a traditional language but rather a register transfer 

language. 	Differences and peculiarities exist which make ISE< 

programs look strange in some instances. 	For example, the 

statement "next" is required to make previous assignments take 

place. 	As well, a call by value structure forces the use of 

functions instead of procedures. 	The inability of ISP' to accept 

the value of bit field as parameters results in awkward constructs 
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as found in the functions "bit-assign" and "bit-test" in the F100-L 

program. 

2.4.3 METAMICRO ASSEMBLER 

, The metamicro assembler is a programmable assembler that 

allows users to define an assembler for a target machine. Using the 

meta micro, an assembler for the Ferranti F100 was developed. To 

use the assembler, a user writes his program in the target assembly 

language, concatenates his program to the F100 metamicro 

description file using the "include" statement and invokes 	the 

metamicro assembler. 	The output of the assembler is a nodal file 

that contains the machine code representation of the assembly 

language memonics and the data constants. 

Label addresses are not resolved during the assembly and 

spaces for those labels are reserved by the metamicro. 	The task 

of address resolution is left'to the linking/loader. 	A user's 

guide for the F100 metamicro assembler can be found in Appendix 

III of [LAFE83]. The guide contains a detailed description of the 

assembler syntax. 

Due to some limitations of the metamicro and also partly to 

the fact that the F100 assembler [FERR81b] includes some features 

that  are  not standard in North American made assemblers, 

entire syntax compatibility can not be achieved. However, the UNIX 

operating system provides a tool called YACC (Yet Another Compiler 

Compiler) which is suitable for writing a pre-processor. This pre-

processor could be used to modify the syntax of F100 source 

programs written for the special purpose F100 assembler, and to 

make it compatible with the F100 metamicro assembler. 
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2.4.4 LINKING LOADER 

The main function of the linking loader is to allocate and 

resolve addresses that are found in the nodal files. The output of 

the linking loader is a loadable memory module for a target machine 

and this loadable memory module may include more than one nodal 

file. Assembly listings for each source file are also produced by 

the linking loader. 

The linking loader requires a description file supplying 

information on how to resolve different addressing modes. For 

example, some F100 assembly instructions have four modes to address 

their operand(s): 

1. 	Short Direct Addressing Mode: The address of 

is the lower order 10 bits of the instruction 

2. 	Long Direct Addressing Mode: 	The address of 

is in the memory location next to that of the 
word. 

3. 	Immediate Addressing Mode: The operand is located in the 

memory location next to the instruction word. 

4. 	Indirect Pointer Mode: 	The lower 8 bits of 	the 

instruction word form an address to a pointer that points 

to the operand. The pointer can optionally be auto 

incremented or decremented. 

The linking loader must be able to recognize each addressing 

mode, check for the proper address values and produce an error 

message if any address value overwrites the op-code of the 

instruction. 

The simulated memory where the program is to be loaded does 

not have to be contiguous. List of memory ranges can be defined in 

the linking loader description file and jump instructions 

other available memory regions are automatically inserted by the 

linking loader. 	If the program requires more memory that is 
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defined in the description file, an error message is produced. 

Listing of the linking loader description file can be found in 

Appendix III of [LAFE83]. 

2.5 MULTIPROCESSOR SIMULATION II  

The simulation described in section 2.3 is repeated with 

Ferranti F100-L processors replacing the Intel 8085s 	used 

previously. 	Some modifications have been made to the bus coupler 

and 	other supporting devices because of the FlOO's 16 bit 

architecture and its different memory cycles. 

Listings of the simulation include the topology file and the 

source programs for each processor. Here again, two types of 

simulation were carried out, one performing co-ordination by 

polling, the other by interrupt. It was found in the simulation 

with interrupt that the simulation program grew too large and went 

beyond the 64K bytes memory limit imposed by the PDP-11 

architecture and the UNIX operating system. The number of 

processors in the simulation had to be reduced by eliminating one 

processor and combining the sum and difference functions into one 

program. 

As mentioned earlier, the F100 uses different memory access 

cycles, and therefore requires a special memory interface circuit. 

The block diagram of a F100 based computer module is shown in 

figure 2.9. It consists of the F100 micro processor a F113 memory 

interface, a programable interrupt controller and a memory module. 

Also present in the system but not shown in the diagram, is the bus 

coupler. 	The F113 was modified to accommodate a third channel so 

that "raw memory" could be used as well. 	For the polling version, 
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the interrupt circuit is redundant. 	A block of the simulation is 

shown in figure 2.12. 
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3.0 turrILITy OF IN-aft 

3.1 COMMENTS ON INDIVIDUAL COMPONENTS 

3.1.1 METAMICRO ASSEMBLER AND LINKING LOADER [ROGE80] 

The assembler developed using the metamicro has some 

limitations. It does not allow arithmetic expressions in the 

operand field of a mnemonic, which is a standard feature in many 

other special purpose assemblers. The assembler is not, therefore, 

as powerful as those special purpose assemblers . , 

Another minor limitation is that the metamicro assembler 

requires that the operand field of a mnemonic be enclosed in 

parentheses. This limitation, as well as others, make it 

difficult to develop an assembler that achieves full syntax 

compatibility. However, it is relatively easy to use the metamicro 

to develop an assembler for a new machine and the development time 

varies from a few man days to produce a basic working version, to a 

few weeks if comprehensive error detection and full compatibility 

(e.g. using YACC) are required. 

3.1.2 ISP" COMPILER [STRA78] 

Various features of the ISP". hardware description language and 

its N.mPc compiler have been commented upon previously. It may be 

worthwhile at this point to review them and see how they impact the 

building of simulations. 

L. 	ISP' is very versatile and allows a designer to implement 
existing hardware structures and invent his/her own 
special purpose devices. 

2. 	The use of ISP is relatively straightforward, albeit 
slightly disconcerting at first, due to its register 
transfer nature. The parameter passing mechanism also 
requires some care. 
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3. ISP offers facilities for a module to communicate with 
the outside through "ports" and to keep track of its 

execution through control variables stored in internal 

"states". 

4. ISK provides for the asynchronous triggering of some 
pre—determined processes when certain events occur. The 
occurence of those events can be detected through ports 
connected to devices generating the events. 

Hardware models can also be easily debugged using the trace 

option. Although very useful, this option should be used sparingly 

since it drastically affects the overall size of the simulation. 

3.1.3 ECOLOGIST AND RUN TIME KERNEL [ORDY78],[0RDY79a] 

The Ecologist together with the simulated memory manager are 

used to build a simulation, that is to produce a set of processes 

and data that, when loaded, will execute the simulation. The 

ecologist and simulated memory processor combination works well, 

although a few minor irritants should be mentioned: 

1. The page option determines the size of the actual 

physical pages containing the programs in object code. 
Two of those pages are present within the simulation, 

with the rest being held in one of two simulated memory 
managers. 	The recommended page size is 256 bytes and 
when overall simulation size problems were encountered, 
varying the size of those pages did not produce anything 
significant. 

2. As mentioned in item 1, there are two simulated memory 

managers. 	Each of them can hold up to 50K bytes of 
memory space and they communicate with the simulation 

over UNIX "pipes". 	The total size of the simulated 
memory is therefore 100K bytes. 	This total size is not 

program size but rather the size of the various memory 

structures supported by the simulation components: For 

example, if an Intel 8080 is simulated with a full house 
of memory, the corresponding memory module is 64K byte 

long. The program to be run by the 8080 may only be 20K 
byte long, but the whole 64K structure has to be 
available to the procesàor (i.e. 8080) should it decide 
to access it. In other words a simulation of two 8080 -,s 
with full memory totaliiag 128K bytes cannot be done. 

3. The size of the memory structure of a given processor is 

defined in the linking/loader command file for that 



particular processor. 	A common mistake is to define the 
memory as the total address space of the processor. This 

results in a simulation program that is too large to run. 

The run time kernel oversees the simulation currently running. 

Et  has been found very flexible especially the way monitors (i.e. 

probes), breakpoints and other facilities are implemented. On the 

negative side, however, it happened that some simulations suffered 

abnormal termination. This situation was narrowed down to the 

case of simulations whose size was very close to the maximum 

permissible 	size. Since communications between simulation 

components is over UNIX pipe, it happened that not enough memory 

could be allocated to buffer space for pipes. It ensued that 

during a simulation, UNIX took over with the "Read Over Empty Pipe" 

diagnostic. UNIX then proceeded to do a core dump. 

Another minor point is that the run time kernel assigns a 

monitor number to commands such as display, states, break point, 

etc. Those monitor numbers are not re-used and even though the 

upper limit is a large number, it could happen that the user would 

run out. 

3.1.4 POST PROCESSOR 

The run time kernel can be instructed to gather statistics on 

the simulation. In this fashion several variables (states, ports, 

simulated memory location) can be monitored and their history 

traced. 	The run time kernel puts all this information in trace 

files, in a format compatible with the post processor. 	The 

functions of the post processor are to read these files and to 

present the results in a readable form. 
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Unfortunately, the post processor and its utility cannot be 

commented upon since it is not working on UNIX V7 running on PDP-11 

without separate I/D spaces. The N.mPc people are supposed to 

rectify the situation. 

3.2 USEFULNESS OF N.mPc  

Several advantages result from the use of N.mPc in system 

design and development. The most obvious one is the capability of 

designing complex hardware and software structures totally in 

software. In fact, with N.mPc, it is possible to design, 

implement, test and completely debug a system prior to hardware 

implementation. This is of great importance since it allows the 

designer to assess the correctness of a design through simulation. 

Following the initial design and implementation phase, 

alternatives and/or refinements can be considered. Here again, 

N.mPc provides a suitable environment for implementing those 

alternatives and/or changes and also, N.mPc makes possible the 

comparing of different versions of a system in order to evaluate 

performance. Performance evaluation can be done according to two 

criteria: 

1. It can be based upon probabilistic performance, or in 
other words, it can study bus loading, processor(s) 
utilization, 	etc., 	which 	are phenomena that 	are 
probabilistic in nature. To this end, N‘mPc incorporates 
facilities to interpret trace data gathered at run time. 
These facilities take the form of a "Post-Processor". 

2. The evaluation can also be based upon deterministic 

performance, that is correctnes. Correctness encompases 
many levels among which: 	correctness of hardware 
connections, 	correctness of robust/reliable schemes, 
correctness of software etc. 	It should be stressed, 
however, that in the present context, correctness does 
not imply any mathematical proofs but rather some form of 

- correctness evaluation gained through testing. 
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The use of N.mPc in those stages of development brings extra 

benefits in terms of the software that is written to drive the 

simulations. The simulation software is either the real software 

that will be used in the target system or a skeletal software which 

roughly follows the same algorithmic steps as the real software. 

In the latter case, it may be possible to expand and modify the 

skeletal software so that it meets operational criteria (i.e. 

becomes application software). Therefore, when N.mPc serves as a 

development system, it allows various design and development 

activities to run concurrently. 

Within the framework of a complete design methodology, the 

usefulness of N.mPc is limited by its inability to go beyond the 

processor/memory/bus level. If a design methodology using Ada in 

the higher level design stages is desired, interface mechanisms 

will have to be designed and put in place so that a link—up with 

N.mPc is achieved. 	The lack of extensive software capabilities in 

N.mPc hinders the design process. 	N.mPc does not provide any high 

level language programming facilities. 	The metamicro assembler 

supplied with N.mPc only allows programming in asembly language 

and does not support advanced features usually found in dedicated 

Macro Assemblers. 	Programming in assembler is fine for system 

dependent, time critical portion of the code. 	Otherwise, the use 

of a high level language is preferable. 	At present, the only 

solution to this problem is to use existing compilers or cross 

compilers for the desired target machine and load the object code 

produced by the compilers into simulated memory(ies). This would 

be an adequate solution although it involves obtaining a suitable 
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compiler for a given target processor and will also require some 
- 

system programming work in order to effect the loading of simulated 

memories. 
In conculsion, it can be said that NLmPc is not without 

shortcomings or limitations (see next section for description of 

shortcomings), but on the whole, the concept of computer assisted 

design as implemented by N.mPc gives a designer a tremendous help 

in the design of systems, be they for spacecraft applications or•

for general purpose systems. The two investigators on this 

contract felt that N.mPc was easy to use and at the same time very 

powerful in handling simulation testing and debugging. 

3.3 LIMITATIONS  OF  N‘mPc  

N..mPc suffers from two important limitations. 	The first one 

is N.mPc's inability to support high level languages. 	The effects 

of this limitation were discussed in the preceding section. 

Of a more serious nature is the second limitation which is 

concerned with the practical details of execution speed, maximum 

simulation size, etc. 	The version of N.MPc currently in use is 

running on Digital Equipment Corporation LSI 11/23. 	This machine 

being relatively slow, 	execution speed of certain simulation 

suffers greatly. Moving to a faster PDP-11 (or a VAX) would really 

help. 

Besides execution speed, there is a problem of simulation size 

which is common to all PDP-11's. 	The total address space of a 

task on a PDP-11 cannot exceed 64K bytes. 	Complex systems such as 

N.mPc solve this problem by breaking up the components of the 

" simulation into smaller chunks and by setting up interprocess 

communication through UNIX pipes. 	There is a limit to how much 
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decomposition can be done, however, since pipes introduce memory 

overhead and slow down execution appreciably. 

The size of the simulation itself without run time environment 

is restricted to 64K bytes on PDP-11 without split I/D spaces. The 

size of the simulated processor's memory space is also limited to 

100K bytes which is what the two simulated memory managers can 

hold. Going to a split I/D machine (e.g. PDP 11/70, 11/45) 

alleviates the problem somewhat, but real relief from memory 

constraints can only come from the use of a VAX. In fact, for any 

serious work such as simulation of a multiprocessor system for 

spacecraft, the use of a VAX-11 is highly recommended, especially 

in the later phases of development. 
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4.0 SUGGESTIONS FOR FUTURE WORK 

Investigating computer assisted design tools is ofsgreat importance 

in view of the impact those methods have on the design of general 

purpose multi-processor systems and also of specialized hardware. NtmPc 

is at the present time the only such system in existence at the 

processor/memory/bus level. 	A new version of N.mPc is currently under 

preparation and is expected to be released soon. 	This new version runs 

on a VAX-11 and is free from the limitations of speed and memory size 

that plagued the PDP-11 version. The ecologist will be of a new design 

and the metamicro assembler/linking loader combination will be greatly 

enhanced. It would be advantageous to use the new version of N.mPc and 

it would also be important to have a working version of the "post-

processor". 

With the above tools, a complete simulation of a real satellite 

multiprocessor system could be done in detail.  Ail input sensors, 

output activators and various processing systems could be simulated 

using adequate software. Performance evaluation could be done as well 

as testing of some recovery schemes for fail safe operations. 

Irrespective of the choice of hardware/software development tool, 

interface constructs will be necessary in order to achieve proper link 

up with the Ada based high level design stages. Work in that area will 

be done under the present contract. 
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