
///)

...../.1.
SPACECRAFT MULTIPROCESSOR

DESIGN METHODOLOGY:

SPECIFICATION AND

HARDWARE! SOFTWARE PARTITIONING

1111111

1

eOMMUNICATIONS ,CANADA ..„
,

,OCE.\12 19811

,LiBRARY 	1311311ÈIIÈQUE •

INT783-52

/.

//SPACECRAFT MULTIPROCESSOR

DESIGN METHODOLOGY:

SPECIFICATION AND

HARDWARE! SOFTWARE PARTITIONING
T—Th uSt r y" Canada

 Librarv Queen

JUL `HMI" 2 0 1998

i Industrie Canada 	I
Bibliothèque Queen I

Computer Aided Engineering Tools for

Spacecraft Multiprocessor Systems

(Contract # OER 82-05067)

L
af(i)

AUTHOR: Dr./4. Lerriere

APPROVED BY: Dr. S.A. Mahmoud

INTELLITECH CANADA LIMITED

352 MacLaren Street
Ottawa, Ontario

K2P 0M6

JULY 1983

1
Government Gouvernement
of Canada 	du Canada

Department of Communications

DOC CONTRACTOR REPORT 	DOC-CR-SP -83-060

DEPARTMENT OF COMMUNICATIONS - OTTAWA - CANADA

SPACE PROGRAM

TITLE: SPACECRAFT MULTIPROCESSOR DESIGN METHODOLOGY:

SPECIFICATION AND HARDWARE/SOFTWARE PARTITIONING

AUTHOR(S): Dr. C. Laferriere

C2>

ISSUED BY CONTRACTOR AS REPORT NO: INT-83-52

PREPARED BY: Intellitech Canada Ltd.

352 MacLaren St.

Ottawa, Ontario

K2P 0M6

DEPARTMENT OF SUPPLY AND SERVICES CONTRACT NO: 36001-2-0560

SER NO. 0ER82-05067

DOC SCIENTIFIC AUTHORITY: R. A. Millar

CLASSIFICATION: Unclassified

This report presents the views of the author(s). Publication
of this report does not constitute DOC approval of the reports
findings or conclusions. This report is available outside the
department by special arrangement.

DATE: July 1983

FORIEGIXIMD

This document is the final report on tasks 3.4, 3.5 and 3.6 of the

"Computer Aided Engineering Tools for Spacecraft Multiprocessor Systems"

contract. As such, it constitutes deliverables 4.3 and 4.4. This work

was done for the Federal Department of Communications, Communications

Research Centre, Shirley Bay, Ottawa, Ontario.

TABLE OF CONTENTS

PAGE

FOREWORD 	

TABLE OF CONTENTS 	ii

LIST OF FIGURES 	 iii

1.0 Introduction 	1

2.0 Multiprocessor Design Methodology 	5

3.0 High Level Specification Tools and Techniques 	 18

3.1 Graphical Methods 	 20

3.2 Algebraic Specification 	 20
3.3 Programming Language Specification 	 27
3.4 Evaluation of the Description Tools 	 44

4.0 Hardware/Software Partitioning 	 47

4.1 Partitioning 	 51
4.2 Overhead 	 55
4.3 Output of Partitioning Stage 	 56

5.0 Implementation 	 59

5.1 Hardware Implementation 	 59
5.2 Software Implementation 	 62
5.3 Hardware/Software Integration 	 63

6.0 Conclusions and Directions For Further Work 	 66

REFERENCES 	 69

ii

PAGE

6

9

10

12

FIGURE 2.1

FIGURE 2.2

FIGURE 2.3

FIGURE 2.4

LIST OF FIGURES

Structure/Behaviour Example 	

Data Flow Representation 	

Attitude Control System of a Spacecraft

Design Methodology 	

FIGURE 2.5 	Lower Levels of the Design Methodology 	15

	

FIGURE 3.1 (a) Input/Output System Characterization 	19

	

(b) Hierarchical System Characterization 	19

FIGURE 3.2 	Multilevel Specification 	21

FIGURE 3.3 	Example of Algebraic Specification 	23

FIGURE 3.4 	Reliability and the Algebraic Specification 	26

FIGURE 3.5 	Simulation Block 	28

FIGURE 3.6 	Example of Task Description 	31

FIGURE 3.7 	Ada Task Specification And Body 	33

FIGURE 3.8 	Specification of Function I 	 34,35,36

FIGURE 3.9 	Example of Rendezvous 	38

FIGURE 3.10 	ACS Example with Rendezvous 	 41,42,43

FIGURE 4.1 	Hardware/Software Partition 	48

FIGURE 4.2 	Function vs. Processor 	49

FIGURE 4.3 	Partitioning Process 	52

FIGURE 4.4 	Implementation Curves 	54

FIGURE 4.5 	Overhead and Implementation Curves 	57

FIGURE 5.1 	N.mPc System 	60

FIGURE 5.2 	Software Implementation 	64

1

1.6 INTRODUCICION

In recent years, there has been a considerable improvement in the

performance of computer systems. Faster circuits and devices,

miniaturization and better design techniques have all contributed to an

increase in computing power and to an overall reduction in size and

power consumption. 	This, in turn, has made possible the use of

computers in applications which had hitherto been too complex. 	Such an

application is the control of a spacecraft by an on-board computer

system.

A spacecraft computer system normally performs several functions

such as : processing of data obtained from various sensors, house

keeping functions (e.g. monitoring temperature, power supply output,

etc.), telemetry and support of remote re-programming of the computer

system. Previous reports [LAFE82], [0UIM82] investigated the use of

computers aboard spacecraft, as opposed to using ground based computers.

The results of this investigation show that an increasing number of

functions have been (or are being) taken over by on-board computers

[CARN83], [THEJ83]. Of course, the computing power at the spacecraft

designer':s disposal is limited, especially in the uniprocessor case. It

is now obvious that multiprocessor systems are a solution to the need

for more processing power. Unfortunately, however, the design of special

purpose, let alone general purpose, multiprocessor systems is still not

well understood. Several difficulties are encountered in the design of

multiprocessors:

Their complexity can be quite high. Consider, for example the
various types of processors that are available, the numerous
interconnection schemes that can be used, etc. and soon, the
complexity of the design makes itself felt.

1.

1

2. The software that will rua on multiprocessor systems has to be
designed carefully if full advantage of the multiprocessor
hardware is to be taken.

3. Since high reliability is a necessity, both the hardware and
the software have to incorporate some reliability mechanisms.

For the hardware, this requirement translates into replication

techniques and radiation hardening. 	On the software side,
special recovery algorithms and fault detection routines have
to be designed and coded.

4. Design contraints are quite stringent especially because of

the space qualification requirements imposed on the hardware
components. 	Software quality has not been emphasized as one

would have expected although formal verification of certain

modules is likely to be mandatory on some future spacecraft.

In view of these difficulties, the design of multiprocessor systems

for spacecraft applications was studied to derive some guidelines to

help the designers of such systems. The findings of that study and

other related work are reported here.

The most important factor determining the overall success of the

design operation is whether or not a suitable design methodology,

complemented with appropriate computer aided engineering tools, exist.

Such a methodology was developed [LAFE82] and is based upon a top down

approach. With this methodology a designer would express the design in

a set of functional sepcifications capturing the essence of the

spacecraft operations. This functionality would be refined and

expressed as a network of data flow elements. Physical or

implementation constraints would also be listed carefully; timing

constraints, such as maximum permissible time to perform a given

operation would be applied to the data flow net. All these, the data

flow net, timing information and constàints are inputs to the next

stage: Hardware/Software Partitioning.

2

Hardware/Software partitioning requires as a stating point a series

of guidelines, preferences or arbitrary choices from the designer.

Based upon those choices, the number of processors can be determined as

a function of the computational load of the software which has to be

executed. Additionally, that stage may determine chat certain primitive

functions cannot be implementd by any combination of hardware/software

and that the only other alternative is the use of dedicated hardware.

The next stage of the methodology supports two concurrent but

complementary activities. 	On one hand, special CAE tools are employed

to define the necessary hardware structures. 	This work is done in

"software 	only, 	thereby relieving 	the designer of the task of

breadboarding and testing. In fact, powerful software packages (e.g.

N.mPc, N.2) are used to simulate the functionality of the hardware,

completely in software. On the other hand, the software is developed

using a multi-tasking language such as Ada and is based to a great

extent upon the system functional description obtained previously. In

this fashion, the development of the software should flow naturally from

the high level downwards.

When both the software and hardware are ready, it is possible to

integrate them and to test them fully. This is done using N.mPc/N.2

which support the integration of software (in load modules) with target

machines; also included are dedicated hardware devices. 	Using this

flexible testbed, final acceptance tests can be carried out. 	Further

modifications, if needed, can be incorporated into the design.

The use of computer aided engineering (CAE) tools with this

methodology is quite important. 	Already mentioned in this connection

were N.mPc and N.2. 	Other tools will likely have to be developed and

3

integrated in the methodology. 	Of special concern are the areas of

functional specification and of hardware/software partitioning. 	These

areas will be investigated in more details in subsequent chapters. This

will also 	be supplemented by examples from actual spacecraft

applications such as Attitude and Orbit Control Systems (AOSC). 	the

examples themeselves are not extremely involved but serve to illustrate

important points. 	The design of spacecrafé on board software is still

largely a new field and such application software is proprietory.

Developing it for this study would have been impossible due to its

and complexity.

The present document being a report on the design methodology for

spacecraft multiprocessor systems, its structure follows closely the

introduction in its treatment of various tôpics. Following the

introduction (Chapter 1), Chapter 2 deals with the design methodology in

detail. Concepts and techniques related to the design of multiprocessor

systems are explained. The methodology encompasses several levels:

high level specification, hardware/software partitioning, implemenation

(hardware, software and their integration). 	These are dealt witn in

Chapters 3,4,5 respectively. 	Finally conclusions .can be found in

Chapter 6.

size

4

MULTIMOCESSEK DESIGN BUGGY* re1 ,3 rue

- As explained briefly in the introduction, the design methodology

attempts to translate functions into implementation. In doing so,' it

assumes that functions can be described in such a way as to allow this

high level representation to become, usually, a combination of software

and hardware. The software, in this case, would represent the required

functionality while the hardware would support the execution of the

software.

The systems functionality can be characterized by a structure and

a behaviour. 	A behaviour is the series of actions carried out by a

given module. 	These actions are in turn supported by a structure of

lower level elements (or modules). 	This notion is very important to

understand the methodology and the way it works. 	Figure 2.1 sheds some

light on the structure — behaviours concepts. 	In that figure, a given

set of functions (behaviour) are implemented by a module which is itself

made out of lower level modules (perhaps primitive operations such as

add, substract, in software and/or, or gates in hardware). Those lower

level elements have to be connected in a very particular fashion if the

behaviour of their combination is to be desired one. This

interconnection pattern is the structure component of the module.

It is also important to realize that the structure behaviour

concepts apply equally to hardware and software. 	Referring to Figure

2.1, the Input(s) can be electrical signals or numerical data. 	The

functions inside the box could be, . as mentioned before, gates,

arithmetic operations, or abstract operations still at high level. This

duality of structure—behaviour in both hardware and software is what

makes possible the top down design methodology.

5

MODULE

Function F

Output = F(Input) Input

f i

FIGURE 2.1 	Structure/Behaviour Example

The next item of importance in the elaboration of a design

methodology is the nature of the end product. In this case, the

methodology aims at producing spacecraft onboard multiprocessor systems

for onboard processing of collected data, housekeeping chores, etc. By

the very nature of the tasks involved, it becomes apparent that the

functions of a spacecraft computer system are modelled by an

Input/Output representation. 	This means that data of various nature

flow into the computer system, are processed, and are fed to the output

data sinks. More precisely, the input data originate from various

sensors on request from a processor or simply at given intervals. Those

values * can be collected by interrupting the program running at the time

the value became available (asynchronous) or by sampling the device:s

ports at regular intervals (synchronous). Another characteristic of the

input data is its flow over time which can be regarded as a lower level

concern at this point in the methodology. The next step is the

processing of the data items obtained from the sensors functions are

called into play to process the input data, and although During that

step, the functional level does not convey any idea of time, other .

levels do. Consequently, the input data flow rate becomes important

since it determines, to a great extent, how fast the functions will have

to be executed. 	This information is central to the hardware software

partitioning stage. 	Finally, the output of the processing step is fed

to various activators, such as thrusters, etc. 	It should be realized

that those actuators have a maximum permissible input rate; data cannot

be entered faster than the device can accept.

Figure 	2.2 	shows a data flow representation of a 	simple

input/output system. 	The preceding description applies to the input

sensors, output activators and processing functions. 	Obtaining this

1

representation will be the first basic step of the methodology.

The data flow model is very well suited to describing the functions

of on board computer systems. Figure 2.3 depicts an Attitude Control

Systems (ACS) which will be used as an example throughout this report

[DUSI83]. The complete loop through the spacecraft dynamics in space is

also shown in Figure 2.3. It is a reminder that the spacecraft control

system is working in a closed loop system since the changes effected by

the computer system are then refelected in the input data from the

sensors. 	Incidentally, that the ACS was shown in Figure 2.3 was chosen

arbitrarily; an orbit control system (OCS) or a combined attitude and

orbit control system (AOCS) could have equally been chosen. The ACS

example was judged sufficient to illustrate the important points.

The top down design methodology for multiprocessor systems is shown

in Figure 2.4. 	The top three boxes cover the functional description of

the multiprocessor system. 	As outlined before, the purpose of this

stage (shown here. as three separate sub stages), is to obtain a

representation,. of the.system like the one shown in Figure 2.3. That

representation can be further refined by a more complete data flow

decomposition [Y011R75] and/or a hierarchical decomposition [DIJK76].

The basic representation of Figure 2.3, or something more refined,

serves as the basic input to a ':Data Flow Analysis': stage. Data flow

analysis is concerned with the flow of data into and out of the system.

In other words, this stage tries to determine how fast should certain

function's perform their task so that the computational load associated

with them can be assessed.

' I

S
2

4

e
8

Activators

e
10

•

a

a

O

Processing Functions

1

F
2

S.: sensor i
e

F.: function j

Ak : activator k

E
1

: edge 1
9

NOTE: An edge e
1

is characterized by a peak flow rate PFR(e
1
) and an average

flow rate AFR (e). Similarly for sensors, there are a Peak data rate
1

PDR(S.)andaveragedatarateADR(SJ. Activators have a maximum

permissible rate MPR (Ak).

Sensors

e
1

FIGURE 2.2 	Data Flow Representation

9

Processing Functions

Earth Sensor el• F
1

Pitch
Control

10
Momentum

Wheels

Gyros F
2

Roll/Yaw
Control

F 11
Magne tic

 Coils

7 Horizon Sensor
Station
Keeping

1
Thrusters H--eR0•1

Sun Sensor ""---111•1 F4
Nutation

Damping

Output
Functions

Input
Functions Torque

Commands Spin
Precession

Attitude
And Rate
Information

FIGURE 2.3: 	Attitude Control System of a Spacecraft
(NOTE: For Example purposes only)

1 0

Data flow analysis is elaborated on later but it should be

emphasized that:

1. Its 	purpose is to establish the computational load of
functions;

2. It is made possible by the input/output nature of a spacecraft
control system and the fact that all those functions are
periodic.

The computational load estimate tries to be a measure of the

computations that have to be done per unit of time. The unit of time

can be arbitrarily chosen but should be smaller than the smallest .

service cycle in the system. The Computational load is not an extremely

accurate figure, but rather a guideline. The reason for the lack of

accuracy lies with the functional description and the difficulty in

determining the algorithms to be used. Obviously, there is not question

of software implementation at this level but nevertheless, several

algdrithms can potentially be used for moderately complex functions thus

introducing variations in computational load.

There are two methods of obtaining the computational load of the

functions of the system. The first one, termed "Data Flow Analysis",

relies on an analysis of the data flow paths and the data flow carried

along those paths. The data flow is characterized by an average and a

peak flow rates from the sensors and by a maximum permissible rate into

the actuators. Based on these rates, it is possible to arrive at a set

of upper bounds for the time taken by each function to process the data.

The time alloted to each function (during a given cycle) together with

the complexity of the tasks to be performed constitute the measure of

computational load for that function.

1 1.

Requirements

Definition

Data Flow
 Decompositio

Hierarchical

Decompositio

0

Y

Data Flow
Analysis

Mapping to
Simulation
Blocks

Compilation

Processing
Power
Guidelines

Diagnostics

Simulation

Design
Evaluation

Hardware/
Software
Partition

\77 To lower levels
FIGURE 2.4 	Design Methodology

12

The second method of obtaining the computational load of a function

is based on a functional simulation. 	That route is shown on the right

hand side of Figure 2.4. 	This method requires that the functional

description of the system be mapped into a set of Ada constructs,

hereafter referred to as simulation blocks. 	The system representation

with simulation blocks can be compiled and executed. 	The benefits are

twofold:

1. An inconsistencies can be revealed, thanks to the diagnostics

from the compiler.

2. Upper bounds for the time allocated to each function to

perform its tasks can be ascertained. 	This can be done,

especially in Ada, by not coding the functions algorithms and

by replacing it with a ':delay'; statement. Various iterations

may prove necessary before the right set of delay durations is

found.

When computational load indications have been obtained for all the

functions of the system description', the next step, hardware-software

partition, can be undertaken. The purpose of this step is to take as

inputs the computational guidelines add other assorted constraints, and

map the system:s functional description into possible implementations.

There exists a wide range of acceptable implementations at this stage

and it is necessary to narrow down the choices further. This is

accomplished by tightening the constraints and especially by introducing

the concept of reliability. As pointed out before, one of the most

important characteristics of a spacecraft onboard processing system is

its reliability. The reliability of a system depends on many factors

such as architectural configuration, 	fault detection 	facilities,

software recovery algorithms: etc. Some of those factors have yet to be

determined, e.g. software algorithms, while others are in relatively

final forts, e.g. architecture; components selection (major chips). By

critically examining the proposed implementations with those criteria in

13

mind, it should be possible to eliminate unsuitable alternatives and

thus concentrate on a few promising ones. If it turns out that none of

the proposed implementations is suitable, a loop back to the higher

levels of the methodology is necessary. Usually, what is entailed is a

further refining of the functional decomposition allowing the use of

more processors or special purpose devices. 	This will result in more

spare processing power for recovery algorithms 	for example.

Additionally, direct choices can be made by the designer, in an

interactive fashion, in order to guide the methodology towards a

suitable implementation.

Once a suitable configuration is selected, presumably from the set

of potentially suitable configurations: three major tasks remain:

hardware implementation, software implementation, and integration and

testing. These steps are shown in Figure 2.5.

The output of the hardware/software partitioning stage is made out

of two parts:

1. A set of hardware general purpose processors and optionally of
special purpose processors. Various constraints are also
given, such as minimum execution speed, type(s) of bus
interconnection, I/O transfer rate(s) etc.

2. A complete functional description of the tasks to be performed
by the system. This description differs from the functional
description used by the hardware/software partitioning stage
in that it does not include functions that will be implemented
completely in hardwre on the account of faster execution
speed.

The hardware development path uses the information listed above and -

endevours to create a suitable hardware structure to support the

software. 	In the first stage, a design is arrived at in an iterative

fashion, although that is not explicitely shown in Figure 2.5. 	Hardware

implementation follows to create a system at the VLSI building block

14

Testing

System has to
be modified

Hardware/Software Partitioning

(

Hardware

Hardware Design

from

Ada
Simulation
Blocks

Software Design

Software

N. mP c •

Optional
Verification

Software Coding
Hardware

Implementation

N.mPc Runtime Environment •

Hardware/So f tware Integration

Modify

System is Acceptable

FIGURE 2.5: Lower Levels of the Design Methodology

15

level. 	In other words, the system Chus created makes use of either

Processor/Memory/Bus 	structures 	or 	of 	Microprocessor/Memory/Bus

Tranceivers/Interrupt Controller, etc. chips, all connected as in a real

physical system. 	There is no hardware building as the N.mPc system is

used. 	The use of N.mPc in such an environment has been the subject of

an investigation within the framework of the current work. 	Relevant

information can be found in [LAFE83a], [LAFE83b].

On the software side, 	the functional specification is used

extensively as it would usually have been translated into Ada simulation

blocks or other suitable constructs. Using the simulation blocks, it is

'possible to decompose the functions into a hierarchy of subprograms and

thus implement the functionality of the system. At this stage,

verification assertion can be used if formal software verification is

desired.

Having completed the hardware and software design and

implementation, the next step in the methodology is the integration of

hardware and software and final testing. N.mPc run-time environment is

used to accomplish the integration and the testing of the system. it is

interesting to note that not a single piece of hardware had to be built,

but, if needed, the actual implementation of it would be relatively

straightforward.

The final testing stage is concerned with the performance of the

target system. This can be ascertained using the N.mPc runtime

environment as long as proper allowances are made for the difference

between simulation time and physical time; simulation time is a linear

expansion of physical time and b4mPc handles various timing cycles in a

consistent fashion. 	The final test will doubtless reveal inadequacies

in the design of the target system. 	Those in adequacies can be

16

corrected by looping back to an earlier stage, making the correction and

re-doing the part of the design/implementation work that is affected by

the change. How far back to loop is a difficult question to resolve;

going too far back into the design work entails a considerable amount of

changes to take care of. However, if the uncovered inadequacies are

precisely indentified, it should be possible to locate where that

particular design decision was made and effect corrections with a

minimum of overhead.

This concludes the description of the design methodology for

multiprocessor systems for spacecraft. The next three chapters will in

turn take a look at special aspects of the methodology such as high

level specification, hardware/software partioning and hardware/software

implementation.

17

3.0 MGR LEVEL SPECIFICNTION TOOLS TCIINJLIIIES

This section addresses the difficulties arising from the derivation

of high level specifications of the system. From the previous section

on the design methodology, it is possible to identify two requirements

which any specification tool must satisfy if it is to be of any use at

all in the current context. These two requirements are:

1. The ability to capture the input/output nature of the system.
In other words, the ability to describe a system similar to
the block diagram characterization of Figure 3.1 (a).

2. The ability to take a description of an input/output system
and expand it into a more accurate specification using methods
that highlight the hierarchy of actions or the timing
sequences of those actions. 	Such methods usually produce
hierarchical decomposition: yielding results similar to those
of Figure 3.1 (b).

For the purpose of this work, three such methods will be discussed:

1. Graphical methods;

2. Algebraic description;

3. Programming language description.

Before studying those methods further: it is important to realize

the importance of this step as the obtaining of high level-specification

is of crucial importance to the rest of the methodology work.

Furthermore, an important factor in the choice of the method to be used

is how well will this method and its results integrate with the

subsequent steps of the methodology. It may happen, therefore, that

ease of interfacing of one method makes it more suitable than another

one with greater power of specification but of difficult handling.

18

10-1

FIGURE 3.1 (a) Input/Output System Characterization

I.

1--111N

ri u 	

[II 	- [1]
FIGURE 3.1 (b) Hierarchical System Characterization

19

3.1 GRAPHICAL METHODS

Dataflow diagrams and hierarchical diagrams as shown in Figures

3.1. (a) and 3.1 (b) are good examples of graphical methods. Those

methods are the most natural at a high level and are usually quite good

as a first attempt at system description. However, they suffer greatly

from:

1. Lack of formalism. 	In fact: it is difficult to spot errors
and inconsistencies using such tools.

2. Difficult interfaciag. 	By their visual nature, graphical

representations are quite good at enhancing human
communications but are not suited to human/machine
communications and they do not lend themselves well to
automated processing.

Consequently, it is advisable that, in using the methodology,

preliminary specifications be obtained by graphical means and

transformed into a more powerful form later.

3.2 ALGEBRAIC SPECIFICATION

Algebraic specification methods have been used in a few systems

already; albeit in a somewhat restricted fashion. One notable exception

is the SIFT fault tolerant flight control system which was described

entirely using algebraic methods.

The SIFT system [MELL82] was also partially verified by means of

input and output assertions coupled with an automated verification

condition generator. The verification aspect which prompted the need

for algebraic specification is not of concern here, although future work

should no doubt investigate hardware verification.

The algebraic specification method which will be described shortly

is dependent upon the notation of levels, or hierarchy as illustrated in

Figure 3.2.

20

Abstraction of
next lower level

More Abstract

Primitive Operations

each level is characterized

by a given set of functions by a given set of functions

FIGURE 3.2 Multi Level Specification

21

As indicated in Figure 3.2, each level is composed of functions

which are abstractions of more primitive functions existing at lower

levels. Thus; a system can be described using high level functions and

then, in turn, each of those functions can be decomposed into more

primitive ones. 	It is also possible to mix high level and lower level

functions in a same description providing that proper interfaces are

included.

Figure 3.3 describes a very simple example to illustrate the

concept of algebraic specification. It shows three tasks, A, B, and C

with task C processing the output of tasks A and B. Those two tasks had

got their input from other tasks (or input devices) although that is not

shown on the diagram. In the SIFT system description, periodicity of

functions is handled by letting each function correspond to a task and

each task being also characÉerized by a particular iteration.

Therefore; a given task A; as in Figure 3.3, could perform the

transformation:

function (A).

The result of such a function upon a set of input data, say

would be

result (A, i) = apply (A; (x1 : x2 : x3))

x2 , x3 are input data to the

ith iteration. 	Obviously, x l , x2 , x3 are values related to the ith .

iteration since they are .of the form:

xi = result (Xi, ki); that is resulting from the kth iteration of task X

X2, x3

where i denotes the ith iteration and

A Inputs

11To A result (C, j)

iteration of C
iteration of A

th

result (A, i)

Inputs (C) = (A,B)

result (B,k)

Inputs to

kth
iteration of B

1

1

1

a
1

1

1

• 1

1

1

1

FIGURE 3.3 Example of Algebraic Specification

23

The resulting output produced by task C during its jth iteration can be

expressed as follows:

result (C, j) = apply [C, (result(A,i), result(B,k))].

Here again, the input data is characterized by an origin, i.e. a

task, and an iteration during which it was produced. The concept of

iteration is therefore very useful to model the flow of data from

sensors to activators in a spacecraft environment. It is interesting to

note, however, that strictly speaking the notion of physical time is

still absent.

In the example above; the function (C) still has to be defined in

terms of how it transforms its inputs into suitable outputs. In the

SIFT system, an important restriction is that a task can have many

inputs but can only produce one output. 	This is so in order to

facilitate the formal verification of the system. 	The definition of a

function can be given in terms of how it transforms the data, or in

other words, by specifying:

1) the input data set, (domain)

2) the output data set, (range)

3) the function itself, i.e. how it relates individual input data
items to output data items.

It should be pointed out that the sets of input and output values

can be decomposed further, as is expected in multi-level specification

work. 	In this fashion, a more precise description of the system can be

obtained. 	In going to lower levels, considerations will have to be

given to important factors such as:

1. Timing; at lower levels, the concept of task iteration is
reduced to the notion of timing.

2. Scheduling; since timing Is considered and that tasks are
periodic; proper thought has to be given to the scheduling of
those tasks.

24

Absent from these factors is the actual shape and nature of the target

hardware/software system. This will only be specified at much lower

levels.

Another aspect of algebraic specification methods of the SIFT

category is the way in which they handle reliability. In the SIFT

system, high reliability is achieved through replication of tasks and

voting on the output of each. Algebraic specification can handle this

description task adequately if the concept of physical processor is

introduced. Figure 3.4 depicts a part of the simple system of Figure

3.3 with replication of tasks.

In Figure 3.4, the output of each task is sent to voting mechanisms

at all sites that should participate on the voting. Consequently, in

the example of Figure 3.4, three instances of task A send their

output to three voters (voting. mechanisms) !, with a voter on each

.processor. The output of a voter is obviously the correct (at least

perceived to be so) result of that function at that site. The notion of

task iteration is of importance in the example of Figure 3.4, and more

so than before since the voters have to await results from different

processes on different processors.

As mentioned before, going to a lower level often entails the

introduction of other functions. In fact, these are necessary to ensure

the completeness of the description. Therefore, other task

characteristics will then have to be described and in turn their

descriptions will bring the system description to a lower level. In

this fashion, a complete multilevel specification of the system can be

obtained.

25

f

I 	/
/

1

I 	/ /
/

/
1/1

/1/
1 (/
1/

/
1 	I
I 	I

VOTE Procesor
1

To voter

Processor
2

To voter

Processor

3
To voter

i 	iteration
th

of A
j th iteration

of B

k
th iteration

of C

FIGURE 3.4 Reliability and the.Algebraic Specification

26

3.3 PROGRAMMING LANGUAGE SPECIFICATION

Programming Language specifications: as the name indicates, specify

systems by using a high level programming language. It therefore

requires a powerful language capable of supporting flexible data

structure description and of handling concurrency. The fist

requirement, flexible data structuring, is necessary to represent the

various data present in the system, at the various levels of

decomposition to be encountered. The second requirement, support of

coacurrency, is required by the need to represent functions processing

their data seemingly at the same time, or at least; during the same

« period. [A period can be defined to be the length of time during two

invocations of the slowest recurring task].

For the purpose of this section, and also for the methodology

itself, Ada* was chosen as the programming language to be used in the

specification task. Ada supports flexible concurrency, has powerful

data structuring facility, and provides for separate compilation and

static protected variables through packages. With Ada , two types of

mechanisms can be used to represent the high level description of a

system:

1. 	Package with "Input"/"Output"/"Compute" tasks.

This mechanism was outlined in an earlier report [LAFE82] and

refiaed in [LAFE83c]. 	Figure 3.5 depicts a simulation block which

uses three tasks, "Input", "Output" and "Compute", and is contained

in a package.

(*) Ada is a trademark of the U.S. Department of Defence

2 1

INCOMING DATA

INPUT

TASK
o

SIMULATION BLOCK PACKAGE

OUTPUT

TASK

OUTGOING DATA

COMPUTE

TASK
o

o
o

INPUT

BUFFER

OUTPUT

BUFFER

PROCEDURE 1

PROCEDURE 2

PROCEDURE 3

•
•
•

LOCAL DATA
AREA

1,_ FUNCTIONALITY PACKAGE

*: ADA RENDEZVOUS

Ni

co 	 FIGURE 3:5 ' Simulation Block

The "input" task is an independent Ada task whose funetion is

to accept data from various other modules (sources or output tasks)

and store it in an input buffer. 	The input task can be

interrogated by the compute task as to the availability of the

• data.

The ':Compute': task receives data upon request from the ':Input"

task. With the data in its local data area, the "Compute" task

will perform the processing associated with the functionality of

the module which is being specified. This functionality is

implemented by the program of the compute task and by all the

procedures it uses during its execution.

The results of the "Compute" task are passed onto the "Output 7

task for transmission outside the module. The data is first

obtained from the "Compute" task, stored in an output buffer and

sent to other modules (sinks or input tasks).

As can bé seen from the diagram of Figure 3.5; the simulation

block can also accommodate source and sink modules. A sink module

consists of a simulation block with just an "Input" task/input

buffer arrangement and similarly for a source module. 	For

simulation purposes, these input/output tasks can be modified so

that their behaviour emulates that of the real devices.

As far as the compute task is concerned, it should be pointed

out.that the task draws upon the resources of another package, the

.:functionality .: package. That package contains the procedures that

implement the functionality of the module, and eaCh of those

procedures can be subjected to further hierarchical decomposition.

The purpose of the .:functionality': package is to allow easy

manipulation of the procedures and data while, at the same time,

29

presenting a consistent interface to the compute task and other

modules. It is interesting to note that simulation blocks can form

a network thus representing data flow decomposition. At the same

time, hierarchical decomposition can be carried out by breaking

down the main taks into a set of procedures, which can, themselves,

be decomposed in the same fashion. One of the main advantages of

this particular technique is the fact that every component is

enclosed in a common package and has a pré-determined role to play.

2. 	Network of Tasks.

There exists an alternative to simulation blocks as outlined

previously. This alternative is to dispense with the package

constructs, the input and output tasks and to represent the

function to be described as a single task. This task and tasks

describing other functions can be linked in the same fashion as the

output task of a simulation block was linked to the input task of

another block. This arrangement is shown in Figure 3.6. A few

words of explanation are in order about that figure. The top half .

of it depicts an Ada task whose behaviour is that of the function

to model. The task is called and calls other tasks, thus effecting

data transfers. The diagram cannot show, however, the hierarchy of

procedures within the task. For this purpose a hypothetical

hierarchy of functions is shown in the lower half of Figure 3.6.

30

/i\/\ /
Function 1 	2 	3 	1 	2

(SSF
3 1 	2

Calls from other

functions (tasks)

Function 1 (F) ;I..: Task (above)

Sub Function 1 	Sub Function 2
Sub Function:3 	(SF)

FIGURE 3.6 Example of Task Description

31

The representation of the lower half of Figure 3.6 in a programming

language notation is to be found in Figure 3.8. 	Figure 3.7

introduces the necessary background material to Figure 3.8. 	That

material is the Ada formal definition of a task. The first part of

the task definition is concerned with entries and rendevous which

will be used for linking tasks together. This topic will be dealt

with next.

32

task declaration 	= task specification

task specification :: =

task [type] identifier [is

{entry declaration}
{representation specification}

end [identifier]];

task body 	=

task body identifier is

[declarative part]

begin

sequence of statements

[exception

{exception handler}]

end 	[identifier];

FIGURE 3.7 Ada Task Specifications And Body

(From [DOD80], p. 9-1)

33

task Functionl is

-- to be determined later

end Functionl;

task body Functionl is

-- declarative part of functionl

procedure SubFunctionl
-- declarative part of SF1

procedure SubSubFunctionl
-- declarative part of SSF1
-- local variables, etc.

begin

-- statements of procedure SSF1

end SubSubFunctionl;

procedure SubSubFunction2
-- declarative part of SSF2
-- local variables, etc.

begin

-- statements of procedure SSF2

end SubSubFunction2;

procedure SubSubFunction3
-- declarative part of SSF3
-- local variables, etc.

begin

. -- statements of procedure SSF3

end SubSubFunction3;

-- local variables of SubFunctionl

begin -- this begin corresponds to procedure SubFunctionl

•
• -- statements making use of local
• variables of SubFunctionl
• -- calling the sub programs
. SubSubFunction 1,2 and 3

end SubFunctionl;

procedure SubFunction2
-- declarative part
-- similar to procedure SubFunctionl

(continued on next page),

34

procedure SubSubFunctionl
-- note that SubSubFunctionl relates
-- to SubFunction2
-- declarative part of SSF1

begin

. -- statements of procedure of SSF1

end SubSubFunctionl;

procedure SubSubFunction2
-- declarative part of SSF2

begin

. -- statements of procedure SSF2

end SubSubFunction2;

-- local variables of SubFunction2

begin
• -- statements making use of local variables
• of SubFunction2 and calling the sub programs .
• SubSubFunctionl and 2

end SubFunction2;

procedure SubFunction3
declarative part

-- similar to procedure SubFunctionl

procedure SubSubFunctionl

procedure SubSubFunction2

procedure SubSubFunction3 ---------

-- local variables for procedure SubFunction3

begin
• -- statements making use of local variables of
• SubFunction3 and calling the sub programs
• SubSubFunctionl, 2 and 3

end SubFunction3;

-- local variables of task Functionl
-- end of the declarative part of task Functionl

(continued on next page)

35

begin -- beginning of task Functionl
• -- statements making use of local variables
• -- of task Functionl and calling the
• -- subprograms SubFunction 1, 2 and 3.
• -- use of entry calls and accepts is also in
• -- here

end Functionl;

FIGURE 3.8 Specification of Functionl

36

Figure 3.8 showed how the hierarchical decomposition of a function

can be expressed using a high level language like Ada. In the previous

section, high level description tools were described as needing the

above mentioned hierarchical description capability and, also 	the

capability of describing network of functions. 	When the specification

is being done using a high level language (i.e. Ada), the tool used is

the Rendezvous. The Rendezvous is a synchronization primitive of the

Ada language and is fully described in [DOD80] and [PYLE81]. It is used

by independent tasks wishing to co-ordinate their actions or force a

pre-determined execution sequence despite their parallel execution. The

Rendezvous mechanism is illustrated in Figure 3.9 for the case of a

task, "Device", emulating a source of data and of a task: "INPUT":

receiving the data and processing it further or simply storing it.

From the examination of Figure 3.9, several points become obvious:

1. The Rendezvous mechanism is undirectional. 	There is a task

which is the active party and does the calling and another

task which is passive and accept or delays acceptance of a
call.

2. When bi-directional cb-ordination is desired, two Rendezvous
have to be set up. Care has to be exercised to prevent cycles

and the ensuing possibility of deadlock.

3. The body of the procedure which will be executed as a result

of a successful Rendezvous is in the called task and is
enclosed by the do end delimiters.

4. Data can be exchanged during the Rendezvous, and the exchange
is not restricted to only one direction. The parameter list
with the Rendezvous .procedure will determine thé type of
parameters and whether they are read-only , read-write, and
write only.

37

f 	
.

Periodically

Scheduled

Rendezvous -
rocedure Give Data

task Device is
-- no incoming entry calls

end;

task Input is
entry GiveData (X:in item);

--any other entries if any..
end-

taskbody Device is
declarJtive part

-- e.g. procedure Generate
Data

begin -- of task Device

task body Input is
-- declarative part
-- local procedures. and variables

begin -- of task Input

loop 	 loop

x: = Generate/Data; 	accept GiveData (X: in item) do
Give Data (x); --potential wait 	. -- statements of rendezvoud--

• . -- procedure

• end GiveData;
end loop;

-- operations on
-- input data
-- followed bY
-- transmission to
-- other tasks

Sendllata (
end loop;
endInput;

FIGURE .3.9 	Example of Rendezvous

end device;

);

38

5. 	The language definition foresees the possiblity of a task
waiting on another. 	It could either be the calling task
waiting on the called task or vice versa. 	Facilities are
provided in the language for a conditional call, that is the
caller is not committed to the call if the called task is not
yet ready to accept it, and for selective accept, that is the
called task can choose whichever entry is active.

The tasks have an independent execution and, for functional

specification, this translates into the benefit of having the system

exercised completely at the functional level. Procedures can be left

blank, or with simply a delay statement and as long as parameters and

Rendezvous match properly, compilation is possible. If delay statements

have been used in procedures, execution is also possible. Interestingly

.enough, by varying those delay durations one can obtain a good idea of

execution time: hence computational load guidelines.

As a further example of how a network of tasks (or simulation

blocks) can represent a system, a part of the Attitude Control System,

shown in Figure 2.3, has been specified. This specification is depicted

in Figure 3.10. A careful look at Figure 3.10 will reveal some

important differences between specification using simulation block and

specifications using a network of tasks. These differences are

summarized below:

1. 	The Simulation Block Construct (SBC) uses an Input and Output tasks

besides the "Computational" tasks; the Network of Task Approach

(NT) does not. It is interesting to note, however, that the code

for the input task of an SBC is found in the Rendezvous related

procedure for any given call in the NT method. In other words,

SBC's input and output tasks have been absorded into a task of the

NT variety and the associated overhead has been dispensed with.

The gain in simplicity is offset by a corresponding loss in

generality. In the NT approach; a custom made design has to be

39

obtained; no short cuts are possible such as templates for

interconnections.

[It may be argued that some form of short cut is possible in

the NT method, as regards templates. Although it is true in a

strict sense: the preparation of such templates produces an equally

considerable overhead than the one it cas to alleviate.]

I

1

1
4 0

Horizon Sensor

Inputdatal

outdatal

Output

Input

horizon in

Re ad

 Sensors

Calculat
Changes

Read

Sensors
Deviation

) ;

task HorizonSensor is
end;

task Inputl is
entry Inputdatal (

accept Inputdatal()do

Thruster

Sun Sensor

Inputdata2

Input \\
 Sun in >1

2

Spin Precession

Function correctionsout

This is a hierarchical decomr
position of the function "Spin
Precession". The decomposition
does not claim accuracy, it is
simply an example. Figure 3.8
showed how such decomposition
can be specified in Ada.

Current
position

Deviation Cnrrection s

end

task body Horizon Sensor is -
begin 	 task body Input 1. is

-- declarative part, i.e. data, procedures
begin

Inputdacal ();

end Horizon Sensor; .:Rendezvous':

end Inputdatal;

•
Horizon (

end Input 1. ;

(continued on next page)

"Rendezvous"
(to spin Precession)

4 I

task Input2 is —
entry Inputdata2 ();

end.

.:Rendezvous"

Accept Inputdata2; (

end Inputdata2;

Sunin ();

.)
do

Inputdata2 (
);

end SunSensor;

task Spin Precession is

end Input2;

•
•
•

Accept Horizonin (
•

do 	end Horizonin;

task SunSensor is
end;

task body SunSensor is
--

begin
task body Input2 is
-- declarative part, i.e. data, procedures
begin

..:Rendezvous'.: entry Horizonin (
entry Sunin

);

);

task body Spin Precession is
-- declarative part for local data and procedures
-- Current Position; Deviation, Correction, with their
- subprocedures in their own declarative parts.

begin

Accept Sunin () do 	 end Sunin;

-- necessary computations calling procedures in
-- declarative part

correctionsout ();--- .:Rendezvous': (to Outputl)
(continued on next page)

42

task Thruster is
—

entry Outdatal
end;

task body Thruster is
-- declarative part

begin
•

) do . 	Accept Outdatal (

) ;

end Corrections out;

Oucdatal ();

end Outputl;

end Outdatal;

"Rendezvoue end Thruster;

end Spin Precession;

task Outputl is
entry Correctionsout (

end;

task body Outputl is

I -- declarative part

accept Correctionsout (ir."-----------
"Rendezvous"

Il (from Spin Precession)

FIGURE 3.10 ACS Example With Rendezvous

43

2. 	The functionality that the specification exercise tries to
capture is expressed in both cases by procedures or more
precisely, by a hierarchy of procedures. 	The packaging of
those procedures differs between SBC and NT. 	In SBC,
procedures, subprocedures, etc., are contained in a special
package called the .:Functionaliti: package. In the NT
approach, procedures are located in the declarative part of
the task representing the functions being currently
specified. 	In the task declarative part, one would also find
all the data variables local to that task. 	Procedures can
also call on procedures of their own; those subprocedures are
declared and elaborated in the declarative part of their
parent procedure.

3. 	Finally, the most obvious difference is that an entire package
surrounds the SBC whereas there is no such thing in the NT
case. The reasons for the package construct in the SBC were
twofold:

a) 	It provides a relative amount of protection and procedure
grouping;

b) 	It allows certain data structure to be static at execute
cime, i.e. during a functional simulation.

Whenever that latter need is not essential, network of tasks
can be used advantageously.

3.4 EVALUATION OF THE DESCRIPTION(TOOLS

The suitability of any description tool shoùld be assessed with

respect to the following criteria:

1. 	Functionality and Expressive Power.

The functionality of a given system can be expressed well by

all three methods. The graphical method is good at the early

stages of the design but soon suffers from being cumbersome as the

function/boxes proliferate. It appears that the task model has the

extra advantage of lending itself well to describing hierarchical

decomposition.

2. 	Timing and Scheduling

Concerns about timing are usually absent from any high level

specification. Timing does play a role however when the transition

to a lower level description is done. 	In fact; timing is vital

for data flow analysis and hardware software partitioning. 	Two

types of timing caa be described: synchronous and asynchronous.

In a satellite system, most (if not all) housekeeping tasks

are of a periodic nature. This translates into a "Demand" or

..:Event .: driven system which can be described by asynchronous

timing. 	These system work well provided that there is enough

computing capacity. 	A network of tasks, each independently

scheduled by a suitable Ada run time environment can specify those

systems quite well. The scheduling enables the description of a

system driven by data sources whose rates are also dependent upon

the scheduling of tasks by the run time executive.

Synchronous timing is a lower level technique to remove the

randomness or uncertainty associated with event driven systems.

The loose scheduling characterizing event driven systems is

replaced by a rigid and tight scheduling based on a common clock

reference. There are two reasons for migrating from asynchronous

to synchronous timing:

a) to facilitate formai verification of the system;

b) to make debugging easier.

In most situation, however, demand driven systems will be

specified using the network of tasks method.

4 5

the system entirely, the input, output data and the i•e •

3. 	Correctness

Design correctness is an important concern in spacecraft

systems. 	A design can be verified by means of assertions based on

predicate 	calculus. 	These assertions are inserted in the

description and are used to generate the verification conditions

and to prove the resulting theorems. 	The assertions characterize

transformations applied to the input to get the output. Assertions

can also accommodate multi-level specification and they

characterize the interface between levels as well.

The algebraic description tools are ideally suited for this

task although programming language based descriptions can handle

assertions equally well.

From the preceeding discussion, it turns out that a Network of task

is an adequate description tool and is the best suited for the task at

hand. Simulation block contructs could be used if special applications

warrant the extra overhead introduced by the simulation blocks.

46

/4 .0 IMBitiedifEl SOMA«

The purpose of this stage is to transform a high level functional

description into hardware-software modules. 	This stage is, at best, a

very difficult one to perform; the difficulties will be evident when the

stage is defined.

A block diagram of the hardware/software partition stage is to be

found in Figure 4.1. 	In that figure, there are three main parts: the

input blocks: the partitioning step and the output blocks. 	There are

three input blocks; and each will be.examined separately:

1. 	High Level Specification. 	•

This input is from the upper levels and is in the form of

functions, linked by data flow arcs. 	The functions may be

decomposed into a hierarchy. 	The function itself will become the

basis for implementation, that is will correspond to a processor.

It is possible of course to - combine more than one function per

processor just as it is possible to break down a function into more

sub functions when the target processor is not fast enough. Figure

4.2 depicts these two situations. In the top half of Figure 4.2, a

system is shown to be composed of seven functions. A partitioning

is doue and it turns out that several functions can be amalgamated

to rua under one processor, (e.g. F1 F
3
; F

4
) It may happen,

however, that the computational load imposed by a function will not

be satisfied by the target processor and in that case the function

will have to be broken down. This is illustrated in the bottom

half of Figure 4.2 where the function F is decomposed into three

sub functions A', B', C. 	Those sub functions were previously

procedures in a hierarchical decomposition of Function F. 	The

47

î
SOFTWARE

IMPLEMENTATION

GUI DELINES

from high levels

HIGH LEVEL

SPECIFICATION

CONSTRAINTS
COMPUTATIONAL

LOAD

ESTIMATES

HARDWARE/

SOFTWARE

PARTITION

Towards 	 Towards
hardware 	 software
implementation 	implementation

HARDWARE

IMPLEMENTATION

GUIDELINES

FIGURE 4.1 Hardware/Software Partition

48

Partitioning

1

1

qP

1

I /i P 3

1-1- 111>

*

I 	10-1

— --

I___-110›p
2

* = interprocessor boundaries

110-1

—10-1 A C ,

Ivv

1 c

'[4\\ 	

A' B

7// 	/I /

= A +
B' = B +
C' = C +

extra intelligence
needed to implement
F. In other words,
F was distributed
over A, B, C.

FIGURE 4.2 Function vs. Processor

49

diagram also shows the extra intelligence that had to be added to

the original A, B, C to enable them to emulate correctly the

Function F.

Incidentally, 	the 	top half of Figure 4.2 also 	shows

interprocessor 	boundaries 	resulting 	from the 	partitioning

operation. These boundaries are analogous to a cut into a graph

and can give an indication of message traffic or data flow between

processors. The type of interprocessor communication support is

greatly influenced by the amount of traffic to be handled.

2. Constraints.

Under this heading are grouped all factors contributing to

reduce the size of the solution space. Constraints should be

evaluated and precisely tabulated to facilitate and enhance the

design exercise. Examples of constraints would be: upper limit on

power consumption, 	requirement for radiation hardened parts,

mandatory use of a particular component on a 	particular

architecture, etc.. The hardware/software partitioning stage makes

use of the constraints to restrict its attention to feasible

configurations only.

3. Computational Load Estimates

Besides constraints; computational load estimates are the

other parameters used in the partitioning process. A computational

estimate for a given function is an indication of how fast the

function should be performed. 	This estimate can be established

in two ways. 	One possibility is to look at the aggregate rate of

data flow into the function and to determine the . length of time at

the functions disposal to perform its work. 	This processing time

50

is an upper bound and serves as an estimate of the computational

load. Another way of calculating this load is by compiling the Ada

high 	level 	specification 	of 	the 	system, 	replacing

procedures/functions by delays and adjusting the delay parameters

to have a consistent system. In both cases errors are unavoidable

and can only be corrected by iterating several times through this

part of the methodology.

4.1 PARTITIONING

Looking back at Figure 4.1: the next part to describe is the

partitioning activity itself. At the onset of partitioning, there

exists a great deal of fluidity since neither processors nor algorithms

have been determined. The process of partitioning will be described

using two diagrams; the first of those diagrams; Figure 4.3, depicts the

whole process graphically for a Function F. In a first step, the

computational load of F is estimated. Then, according to constraints, a

basic processor is chosen and, according to the complexity of F, several

hardware/software ratios are possible. For example, it is possible to

perform a Fast Fourier Transform using software or using dedicated

hardware. Having determined the hardware/software ratio, it is possible

to obtain an indication of the performance level of the tentative

configuration. Coupling this performance level indication with the

software algorithms likely to be used, it is possible to obtain an

estimate of the execution speed of the function which can be compared

with the computational load obtained previously. If the execution speed

of the function is such that the permissible execution time would not be

sufficient; a different partitioning has to be used.

51

Flow

output

data

derivation of Computational
load required

Basic
Hardware

50

% of
hard-
Ware

For a gIven function

50 	100 	% of
software

Execution Speed

of Function

Algorithms

Function's
Computational Loa.È

Comparator

Flow

of input

data

[I Acceptable or not acceptable
FIGURE 4.3 Partitioning Process

52

A different view of the partitioning process is presented in Figure

4.4. 	In that Figure, there is a diagram plotting computational load

versus Hardware/Software ratio. 	Several curves, Cs, are plotted and

each represents the domain of feasible implementation. 	For example, if

curve Ci is considered, and the computational load is X then the

rectangle delimited by the dashed lines represents the allowable ratios.

As it stands, a ratio of about 42/58 (42% hardware, 58% software) is the

ratio with the most software. If a higher ratio of software is

required, then one should move to different curves.

The curves differ because each represent a different set of

characteristics. Those characteristics are as follows:

Basic hardware used, e.g. technology, speed, architecture,
instruction set, memory/bus cycle time, I/0 transfer rate,
etc.

2. 	Software 	algorithms 	used, 	e.g. 	type 	of 	algorithm,
' implementation language; compatibility between high level

languages and the hardware, effieciency of the compiler;
efficiency of the implementation; etc.

In other words, each curve represents different basic choices and

the graph is used to illustrate the basic choices and resulting trade-

offs the designer has to reckon with.

It is also interesting to note that, in the diagram of Figure 4.4,

a minimum computational load is indicated. This corresponds to basic

operating services which are always necessary, irrespective of the

functions being partitioned. Besides this overhead, there also exist

two other types, namely the overhead imposed by distributed 0/S and that

originating in attempts to satisfy the reliability requirements.

1.

53

1
1
1

Computational
Load

1
Note: Arbitrary Shapes

1

II 	 1
i

	

1 	.

\ \

1 I

I/ 	

1
1

Il -- '
1 	1 	i 	I 	I,

I
1
1

l 	1 	1

Minimum 	 1 	1 	1

equireq 	 1

	100/0 	80/20 	6040 	40/60 	20/80 	0100 Hardware/
. 	90/10 	70/30 	50/50 	30/70 	10/90 	. Software ratio

Il 	
U.)

Note:EachC.has a corresponding set of parameters,

Ci (p11' Pi2' P 1 3')'
which uniquely characterize the implementation curve.
For further explanation, see text.

Figure 4.4: Implementation Curves

1

1\)1\

54

1

4.2 OVERHEAD

There are two areas which are going to introduce overhead which

will have to be taken into account when choosing hardware/software ratio

and power. Those two areas are: reliability and distributed - operating

services.

Reliability is an important concern in satellite design. 	The

equipment has to operate reliably for long periods of time and no repair

work can be undertaken after launch. Satellite building and launching

being such an expensive business, it makes sense to endeavour to

increase overall reliability. This can be achived as follows:

1. By the use of better construction techniques for board level

assembly and, 	especially, 	high quality radiation hardened

components which have been thoroughly tested. 	This approach is

common to all important hardware development projects.

2. By providing hardware redundancy (double, 	triple: etc.) for

all major components such as processors; memory, bus drivers,

busses, 	etc. 	This results in greater hardware complexity,

inclusion of special purpose circuits (e.g. for reconfiguration,

failure detection, etc.), greater power consumption and sometimes;

reduced processing power. Furthermore, more sophisticated hardware

design techniques are usually required.

3. In addition to hardware reliability enhancements, software recovery

algorithms are also necessary to provide for fault-isolation,

reconfiguration, and recovery. These algorithms will introduce an

extra computational load which may be considerable, especially when

the system is experiencing failures.

55

1

1

j

Operating system support also introduces overhead, as mentioned

before in connection with the diagram of Figure 4.4. 	In that diagram

the overhead was associated with local 0/S support. This includes

support for interprocess communications (when multitasking is used),

scheduling of processes, Input/Output services for sensors, activators

and communication with ground control. Besides these local Ca

services, distributed 0/S services will likely have to be provided

because of the multiprocessor nature of the target architectures. Those

distrinuted services include: interprocessor communication, monitoring

of other processors and of their performance, taking part in majority

voting (if necessary) and distributed co-ordination.

The overhead introduced by reliability concerns and 0/S support has

Co be designed into the system. 	In practical terms, for a given curve

Ci , this translates into a shift (See Figure 4.5) upwards, to a point

where the proportion of hardware is greater. Alternatively, one may see

the effect of overhead as jumping to another curve, but keeping the

hardware software ratio the same. 	Going to another curve (higher curve

C.) has the effect of altering some basic implemenation parameters. 	In

this case, this could mean adopting a faster hardware processor: a new

architecture, faster memory chips, better software alorithms, etc.

4.3 OUTPUT OF PARTITIONING STAGE

The outputs of the hardware/software partitioning stage are a set

of implementation guidelines for both the hardware and the software.

This is shown in Figure 4.1. It should be pointed out, that this does

not constitute a unique solution but, rather, a multitude of possible,

feasible and acceptable solutions.

Computational
load

1

X+Y

X

100/0 	80/ZO 	60/40 	40/60 	20/80

90/10 	70/30 	50/50 	30/70 	10/90
0/100 Hardware/

Software ratio

(7)

Figure 4.5: Overhead and Implementation Curves

57

The software implementation rules are derived: in most part, from

the functional specifications written in Ada. In those specifications,

there are a number of functions which were subjected to partitioning and

which can be represented as independent tasks. The hierarchical

decomposition of those tasks into procedure is of further help. Not all

the functions will have to be processed that way; some functions will be

implemented exclusively in hardware.

The hardware implementation rules will obviously include those

functions that are to be realized in hardware and also guidelines as to

how to implement the general purpose hardware responsible for the

.execution of the software. This relates to the parameters associated

with each of the curves in the implemenation diagram of Figure 4.4.

58

5.0 IMPLEHENTAXION

Following hardware/software partitioning stage, the methodology

calls for the independent development of the hardware and the software.

The main idea behind this stage is to avoid building physical processors

and instead concentrate on a "soft" implementation of the system which

can be easitly tested and modified.

5.1 HARDWARE IMPLEMENTATION

The inputs to the hardware implementation stage will be:

1. A list of processing elements and other architectural choices
related to the given implementation curve(s) worked with.

2. Some 	extra constraints pertaining only to the hardware
implemenation stage. 	•

3. Some 	operator/designer directives • to guide in 	choosing
starting configuration. This capability is quite important in
a Computer Aided design exercise since it allows the designer
to direct the computer along the way which he/she deems
desirable and promising.

It is proposed in the methodology to implement the processing

elements and support circuitry using a hardware development tool such as

N‘mPc. NouPc [PARK79a], [PARK79b], [ORDY79], [R08E79], is a facility

that permits the development of neW hardware structures and of their

software totally in software. A simple block diagram of N.mPc is shown

in Figure 5.1

N.mPc can be divided into three logical sections, the hardware

compiler, the software assembler/linker and the runtime environment.

59

Software
Code

Programmable
Assembler
Linker/Loader

Executable
Programs

t). User
Interface

Run time
Envi ronmen t

n•n•nn•

Hardware
Description

Hardware
Emulation
Code

Compiler 	>I

Command
Files

Figure 5.1: N.mPc System

60

1. The Hardware Compiler

In N.mPc, a hardware structure is defined by an ISE program.

As mentioned before, hardware exhibits both a structure and a

behaviour. The hardware behaviour is written into the program, the

execution of which will faithfully emulate'the real hardware. The

structure is defined by means of "port" contructs which determine

how the hardware component interact with the outside. In addition,

the connections of various devices is done by the ecologist as

instructed by a topology file.

2. The Software Assembler/Linker

The hardware description is compiled by the ISP compiler and

an executable module is produced. The software on the other hand

is written in assembler and is assembled and linked by the meta

micro assembler and the linking loader respectively. Both those

facilities are programmable, that is to say, gan be made to

accommodate any programmable hardware device defined in ISP":

Programming of the meta micro assembler and Linking Loader is by

means of special command files; as indicated in the diagram of

Figure 5.1.

3. The Run Time Environment

The run—time environment provides for integration of the

various hardware modules through a topology description file. It

also links the programs written for the programmable devices with

the hardware emulation of those devices. Finally; it provides a

run time environment for chose programs as well as a user

interface. 	The user controls the simulation entirely and the user

monitor the execution of the software 	and of the hardware

exeduting the software.

61

The above description of N.mPc and of its approach to system design

is unfortunately sketchy. It does however give the flavour of the

intended course of hardware design.

5.2 SOFTWARE IMPLEMENTATION

The software implemenation stage receives as inputs the high level

functional specifications in which functions roughly correspond to

tasks. Of course this correspondence is not binding as it may very well

happen that a function assigned to a task which is in turn assigned to a

processor will find that the task in question has to be broken down

. into several subtasks. What really matters,though, is that the combined

behaviour of those sub tasks is equal to that of the original task.

These functions/tasks are going to be refined and decomposed

further, as indicated in the diagram of Figure 5.2. Coding is the next

step and should follow naturally from the high level Ada description.

The Ada code thus produced is compiled by an Ada compiler and a multi

tasking application is created. This application is ready to execute on

the target hardware, provided that a suitable Ada run time executive

exists.

The Ada run Lime eXecutive (or Ada run time environment) is a

collection of the necessary support services which are of a distributed

as well as a local nature. It is interesting here to note that the

processing elements indicated in Figure 5.2 may be of a different nature

totally incompatible at the machine level. 	The software

development stage assumes the existence of an Ada run time environment

on each of ,the processing element (denoted as "Local 0/S .: in Figure

5.2). 	The nature of the Ada language requires the existence of certain

standard features such as coucurrency. 	Since each local 0/S supports

and

2

63

concurrency and all other Ada prerequisites, it is reasonable to assume

that a physically distributed but logically centralized Ada run time

environment can be created on top of the local 0/S. It remains

nevertheless that those [potentially different] local 0/S have to be

produced and that job is likely to be done in assembly language using

the features of the mata micro assembler. Should a bare bone Ada

comiler exist for the target machine, the job would be made easier as

part of the executive could be written in Ada.

In most cases, the choice of processing elements will boil down to

a few space qualified processors for which, Ada compilers and Ada run

time environments will be available. The main difficulty would then be

to construct a distributed executive out of the local 0/S available.

With the availability of a complete Ada run time environment for the

target system, it will be possible to execute the application program.

5.3 HARDWARE/SOFTWARE INTEGRATION

The integration stage will take place when the hardware and

. software development is completed. For the integration, •N.mPc will be

used to mix the software emulation of the target hardware with the

software code produced by the compilation of the source code together

with the run time executive.

In the above fashion, the whole system can be exercised: the input

sensors can be substituted by files containing test values; the actual

code is executed by the simulated hardware. The .values would be

processed in simulated time but, otherwise, the functionality of the

code would not be altered.

Compilation

(C:

Ada
› Compiler
Database

Distributed Operating System (0/S)

O 00 Local 0/S Local 0/S Local 0/S

Decomposition

Refinement

Coding

Ada Compiler

Application 	Program (multitasking)

• *. 	• 	0 _

Processing 	Processing 	Processing
Element 	Element 	Element • 0

64

I Ada
1 Runtime
1 Environment

Functional Description
in Ada

(less functions to be
implemented in hardware

Figure 5:2: Software Implementation

The output could be redirected to files and thus an input/output

comparison with the results of actual tests or analytical model could

help assess the correctness of the hardware/software system.

Furthermore, if one makes allowances for the scaling factor between

simulated time and real time, it could be possible to determine the

performance of the system. Reliability could also be thoroughly tested

by introducing various failure conditions into the system.

It is obvious that the integration stage is also a testing stage

and that final acceptance of the system depends on its performing

properly during those tests. 	If the system does not perform well it

should be easy to isolate the problem and -correct it. 	The correction

can be achieved by going back to an earlier step of the methodology.

The solution to a given defieciency will not be unique and it is

expected that the designer will come, up with a set of modifications.

65

6.0 CONCLUSIONS AND DIRECTIONS FOR FMIDIERVOIDI

This report has presented a comprehensive design methodology for

multi-processor systems destined to be used as on-board processors for

spacecraft. The motivating factor behind the effort to develop the

methodology was the need for more intelligence and information

processing aboard modern spacecraft. This need can only be fulfilled by

the use of advanced computers such as multiprocessor systems.

Fortunately, it is now possible to implement multiprocessor systems with

cheap, microprocessor based processing elements.

The use of multiple processor systems is indicated because of their

'greater processing power and of their inherent potential for

reliability. The greater processing power of multiprocessors is based

on the assumption that the tasks can be given to individual processors

thus achieving greater execution speed and it also requires the

necessary distributed executive services. Multi-processors can be made

more reliable than their uniprocessor counterparts by adding more

processors and support subsystems and by executing tasks redundantly.

To bring all the advantages of ,multiprocessors to bear, advanced

techniques and tools ate necessary for the design, implementation,

building and testing phases. Furthermore, it would seem appropriate to

re-use as much as possible any high level work that has continutity in

lower levels. The design methodology presented herein and all its

associated computer aided tools is an attempt at creating those tools

and techniques. The questions that immediately comes to mind is: how

feasible and practical is this methodology? The answer is in two parts,

each addressing a specific set of issues.

66

I. 	In terms of tools, used in conjunction with the methodology,

N.mPc .",s primary function is in the hardware design phase and the

Ada language serves both as a functional specification language and

as a software development language. N.mPc is an established

technology although very recent and still undergoing changes and

improvements. 	Ada is fast emerging as the standard language for

embedded systems. 	No Ada compilers are available at the present

time although it is expected that several will be released in the

short term future.

2. 	The methodology itself is made out of. several parts and there are

still some undefined areas. 	The functional decomposition stage is

relatively easy to visualize, and similarly for the software

development and implementation which is based on the functional

decomposition. 	The most difficult stage is the hardware/software

partitioning. 	The difficult areas in that stage are the data flow

analysis, the obtaining of the implemenation curves and the

estimation of the overhead introduced by the necessary 0/S support

services and by the reliability techniques. The last stage,

integration and testing is straight forward in that it uses N.mPc

almost entirely.

In view of the above remarks, it would appear that further work

should concentrate on the hardware/software partitioning in general and

on overhead estimation in particular. As mentioned before, the

partitioning 	stage includes data flow analysis, 	derivation 	of

implemenation curves and estimation of overhead. It is suggested to

concentrate on the last item, estimation of overhead, as it is necessary

for proper use of the former two components of the partitioning.

67

There are two main concerns within the estimation of overhead

activity: 0/S support overhead and reliability overhead. The former,

0/S support, will be determined by the Ada run time environment either

distributed or local and will be available when the executive is

implemented. The latter, reliability, is of great importance and it is

desirable to investigate futher the following issues:

1. Design techniques for reliable systems;

2. Estimation of overhead introduced by several reliability
techniques and how the overhead relates to the resulting

system robustness;

3. Selection of an adequate configuration to satisfy 	the
reliability requirements (and other related requirements);

4. Determination 	of the impact of reliability on software
especially as software recovery algorithms are to be used in
reliable systems.

68

REFERENCES

[CARN83] P.C. Carney "Selecting On-Board Computer Systems .:, IEEE

Computer; pp. 35-42; April 1983.
•

[DIJK76] E.W. Dykstra, "A discipline of Programming", Prentice Hall;

Englewood Cliffs; New Jersey; 1976.

[DOD80] 	United 	States Department of Defence, 	':Ada 	Programming
Language", Military Standard, MIL-STD-1815, December 1980.

[DUSI83] E.W. Dusio, T.P. Murphy and W.F. Cashman', .:Communications
Satellite Software: A Tutorial", IEEE Computer; pp. 21-34:
April 1983.

[LAFE821 C. Laferriere, W.T. Brown, J.G. Ouimet and S.A. Mahmoud, "The

Definition and Specification of an Integrated Set of CAE Tools

for Spacecraft Multiprocessor System Design', Technical Report

No. INT-82-16, Intellitech Canada Limited, Ottawa, Canada,

March 1982.

[LAFE83a] C. 	Laferriere and A. Lam, "N..mPc and its Utility for

Spacecraft Applications':, Technical Report, Intellitech Canada

Limited, Ottawa, Canada, 1983.

[LAFE83b] C. 	Laferriere and A. Lam, 'N.mPc and its Utility for

Spacecraft Applications: N.mPc Simulation Listings",

Technical Report, Intellitech Canada Limited, Ottawa, Canada,
1983.

[LAFE83c] C. 	Laferriere, 	"Computer 	Aided Engineering Tools 	for

Spacecraft Multiprocessor System: 	Status Report for January
1

1983, Intellitech Canada Limited; Ottawa, Canada; January
1983.

[ORDY79] G.M. Ordy and F.I. Parke, "An Evaluation of the N.mPc Design

Environment", Proceedings of the 16th Design Automation

Conference, pp. 537-541, June 1979.

[0UIM82] J.G. Ouimet, et al, "Review of Multiprocessor Systems and

their Spacecraft Applications", Technical Report, Intellitech
Canada Limited, Ottawa; Canada, March 1982.

[PARK79a] F.J. Parke, ':An Introduction to the N.mPc Design Environment",

Proceedings of the 16th Design Automation Conference, pp. 513-
519, June 1979.

[PARK796] F.J. 	Parke, 	et al; "The N.mPC Run Time Environment",

Proceedings of the 16th Design Automation Conference, pp. 529-

536, June 1919.

69

[PYLE81] I.C. 	Pyle, 	"The Ada Programming Language", Prentice Hall

International, London, 1981.

[ROSE79] C.W. Rose, et al, "The N.mPc System Description Facility",
Proceedings of the 16th Design Automation Conference, pp. 520-
528, June 1979.

[T11EI83] D.J. Theis, "Spacecraft Computers: State of the Art Survey",
IEEE Computer, pp. 85-97, April 1983.

[YOUR75] E. Yourdon and L. L. Constantine, 'Structured Design", Yourdon
Press, New York, 1975.

70

I

inteJlite_cli
Intel litech Canada Ltd
352 Mac Loran Street,
Ottawa, Ontario
K2P 0M6
(613)235-5126

r-

_

L_

t-

r
1-J

