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1.6 INTRODUCICION 

In recent years, there has been a considerable improvement in the 

performance of computer systems. Faster circuits and devices, 

miniaturization and better design techniques have all contributed to an 

increase in computing power and to an overall reduction in size and 

power consumption. 	This, in turn, has made possible the use of 

computers in applications which had hitherto been too complex. 	Such an 

application is the control of a spacecraft by an on-board computer 

system. 

A spacecraft computer system normally performs several functions 

such as : processing of data obtained from various sensors, house 

keeping functions (e.g. monitoring temperature, power supply output, 

etc.), telemetry and support of remote re-programming of the computer 

system. Previous reports [LAFE82], [0UIM82] investigated the use of 

computers aboard spacecraft, as opposed to using ground based computers. 

The results of this investigation show that an increasing number of 

functions have been (or are being) taken over by on-board computers 

[CARN83], [THEJ83]. Of course, the computing power at the spacecraft 

designer':s disposal is limited, especially in the uniprocessor case. It 

is now obvious that multiprocessor systems are a solution to the need 

for more processing power. Unfortunately, however, the design of special 

purpose, let alone general purpose, multiprocessor systems is still not 

well understood. Several difficulties are encountered in the design of 

multiprocessors: 

Their complexity can be quite high. Consider, for example the 
various types of processors that are available, the numerous 
interconnection schemes that can be used, etc. and soon, the 
complexity of the design makes itself felt. 

1. 
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2. The software that will  rua on multiprocessor systems has to be 
designed carefully if full advantage of the multiprocessor 
hardware is to be taken. 

3. Since high reliability is a necessity, both the hardware and 
the software have to incorporate some reliability mechanisms. 

For the hardware, this requirement translates into replication 

techniques and radiation hardening. 	On the software side, 
special recovery algorithms and fault detection routines have 
to be designed and coded. 

4. Design contraints are quite stringent especially because of 

the space qualification requirements imposed on the hardware 
components. 	Software quality has not been emphasized as one 

would have expected although formal verification of certain 

modules is likely to be mandatory on some future spacecraft. 

In view of these difficulties, the design of multiprocessor systems 

for spacecraft applications was studied to derive some guidelines to 

help the designers of such systems. The findings of that study and 

other related work are reported here. 

The most important factor determining the overall success of the 

design operation is whether or not a suitable design methodology, 

complemented with appropriate computer aided engineering tools, exist. 

Such a methodology was developed [LAFE82] and is based upon a top down 

approach. With this methodology a designer would express the design in 

a set of functional sepcifications capturing the essence of the 

spacecraft operations. This functionality would be refined and 

expressed as a network of data flow elements. Physical or 

implementation constraints would also be listed carefully; timing 

constraints, such as maximum permissible time to perform a given 

operation would be applied to the data flow net. All these, the data 

flow net, timing information and constàints are inputs to the next 

stage: Hardware/Software Partitioning. 
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Hardware/Software partitioning requires as a stating point a series 

of guidelines, preferences or arbitrary choices from the designer. 

Based upon those choices, the number of processors can be determined as 

a function of the computational load of the software which has to be 

executed. Additionally, that stage may determine  chat certain primitive 

functions cannot be implementd by any combination of hardware/software 

and that the only other alternative is the use of dedicated hardware. 

The next stage of the methodology supports two concurrent but 

complementary activities. 	On one hand, special CAE tools are employed 

to define the necessary hardware structures. 	This work is done in 

"software 	only, 	thereby relieving 	the designer of the task of 

breadboarding and testing. In fact, powerful software packages (e.g. 

N.mPc, N.2) are used to simulate the functionality of the hardware, 

completely in software. On the other hand, the software is developed 

using a multi-tasking language such as Ada and is based to a great 

extent upon the system functional description obtained previously. In 

this fashion, the development of the software should flow naturally from 

the high level downwards. 

When both the software and hardware are ready, it is possible to 

integrate them and to test them fully. This is done using N.mPc/N.2 

which support the integration of software (in load modules) with target 

machines; also included are dedicated hardware devices. 	Using this 

flexible testbed, final acceptance tests can be carried out. 	Further 

modifications, if needed, can be incorporated into the design. 

The use of computer aided engineering (CAE) tools with this 

methodology is quite important. 	Already mentioned in this connection 

were N.mPc and N.2. 	Other tools will likely have to be developed and 
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integrated in the methodology. 	Of special concern are the areas of 

functional specification and of hardware/software partitioning. 	These 

areas will be investigated in more details in subsequent chapters. This 

will also 	be supplemented by examples from actual spacecraft 

applications such as Attitude and Orbit Control Systems (AOSC). 	the 

examples themeselves are not extremely involved but serve to illustrate 

important points. 	The design of spacecrafé on board software is still 

largely a new field and such application software is proprietory. 

Developing it for this study would have been impossible due to its 

and complexity. 

The present document being a report on the design methodology for 

spacecraft multiprocessor systems, its structure follows closely the 

introduction in its treatment of various tôpics. Following the 

introduction (Chapter 1), Chapter 2 deals with the design methodology in 

detail. Concepts and techniques related to the design of multiprocessor 

systems are explained. The methodology encompasses several levels: 

high level specification, hardware/software partitioning, implemenation 

(hardware, software and their integration). 	These are dealt witn in 

Chapters 3,4,5 respectively. 	Finally conclusions .can be found in 

Chapter 6. 

size 
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MULTIMOCESSEK DESIGN BUGGY* re1 ,3 rue 

- As explained briefly in the introduction, the design methodology 

attempts to translate functions into implementation. In doing so,' it 

assumes that functions can be described in such a way as to allow this 

high level representation to become, usually, a combination of software 

and hardware. The software, in this case, would represent the required 

functionality while the hardware would support the execution of the 

software. 

The systems functionality can be characterized by a structure and 

a behaviour. 	A behaviour is the series of actions carried out by a 

given module. 	These actions are in turn supported by a structure of 

lower level elements (or modules). 	This notion is very important to 

understand the methodology and the way it works. 	Figure 2.1 sheds some 

light on the structure — behaviours concepts. 	In that figure, a given 

set of functions (behaviour) are implemented by a module which is itself 

made out of lower level modules (perhaps primitive operations such as 

add, substract, in software and/or, or gates in hardware). Those lower 

level elements have to be connected in a very particular fashion if the 

behaviour of their combination is to be desired one. This 

interconnection pattern is the structure component of the module. 

It is also important to realize that the structure behaviour 

concepts apply equally to hardware and software. 	Referring to Figure 

2.1, the Input(s) can be electrical signals or numerical data. 	The 

functions inside the box could be, . as mentioned before, gates, 

arithmetic operations, or abstract operations still at high level. This 

duality of structure—behaviour in both hardware and software is what 

makes possible the top down design methodology. 

5 



MODULE 

Function F 

Output  = F(Input) Input 

f i 
 

FIGURE 2.1 	Structure/Behaviour Example 



The next item of importance in the elaboration of a design 

methodology is the nature of the end product. In this case, the 

methodology aims at producing spacecraft onboard multiprocessor systems 

for onboard processing of collected data, housekeeping chores, etc. By 

the very nature of the tasks involved, it becomes apparent that the 

functions of a spacecraft computer system are modelled by an 

Input/Output representation. 	This means that data of various nature 

flow into the computer system, are processed, and are fed to the output 

data sinks. More precisely, the input data originate from various 

sensors on request from a processor or simply at given intervals. Those 

values  * can be collected by interrupting the program running at the time 

the value became available (asynchronous) or by sampling the device:s 

ports at regular intervals (synchronous). Another characteristic of the 

input data is its flow over time which can be regarded as a lower level 

concern at this point in the methodology. The next step is the 

processing of the data items obtained from the sensors functions are 

called into play to process the input data, and although During that 

step, the functional level does not convey any idea of time, other . 

levels do. Consequently, the input data flow rate becomes important 

since it determines, to a great extent, how fast the functions will have 

to be executed. 	This information is central to the hardware software 

partitioning stage. 	Finally, the output of the processing step is fed 

to various activators, such as thrusters, etc. 	It should be realized 

that those actuators have a maximum permissible input rate; data cannot 

be entered faster than the device can accept. 

Figure 	2.2 	shows a data flow representation of a 	simple 

input/output system. 	The preceding description applies to the input 

sensors, output activators and processing functions. 	Obtaining this 
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representation will be the first basic step of the methodology. 

The data flow model is very well suited to describing the functions 

of on board computer systems. Figure 2.3 depicts an Attitude Control 

Systems (ACS) which will be used as an example throughout this report 

[DUSI83]. The complete loop through the spacecraft dynamics in space is 

also shown in Figure 2.3. It is a reminder that the spacecraft control 

system is working in a closed loop system since the changes effected by 

the computer system are then refelected in the input data from the 

sensors. 	Incidentally, that the ACS was shown in Figure 2.3 was chosen 

arbitrarily; an orbit control system (OCS) or a combined attitude and 

orbit control system (AOCS) could have equally been chosen. The ACS 

example was judged sufficient to illustrate  the important  points. 

The top down design methodology for multiprocessor systems is shown 

in Figure 2.4. 	The top three boxes cover the functional description of 

the multiprocessor system. 	As outlined before, the purpose of this 

stage (shown here. as three separate sub stages), is to obtain a 

representation,. of the.system like the one shown in Figure 2.3. That 

representation can be further refined by a more complete data flow 

decomposition [Y011R75] and/or a hierarchical decomposition [DIJK76]. 

The basic representation of Figure 2.3, or something more refined, 

serves as the basic input to a ':Data Flow Analysis': stage. Data flow 

analysis is concerned with the flow of data into and out of the system. 

In other words, this stage tries to determine how  fast  should certain 

function's perform their task so that the computational load associated 

with them can be assessed. 
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Data flow analysis is elaborated on later but it should be 

emphasized that: 

1. Its 	purpose is to establish the computational load of 
functions; 

2. It is made possible by the input/output nature of a spacecraft 
control system and the fact that all those functions are 
periodic. 

The computational load estimate tries to be a measure of the 

computations that have to be done per unit of time. The unit of time 

can be arbitrarily chosen but should be smaller than the smallest . 

service cycle in the system. The Computational load is not an extremely 

accurate figure, but rather a guideline. The reason for the lack of 

accuracy lies with the functional description and the difficulty in 

determining the algorithms to be used. Obviously, there is not question 

of software implementation at this level but nevertheless, several 

algdrithms can potentially be used for moderately complex functions thus 

introducing variations in computational load. 

There are two methods of obtaining the computational load of the 

functions of the system. The first one, termed "Data Flow Analysis", 

relies on an analysis of the data flow paths and the data flow carried 

along those paths. The data flow is characterized by an average and a 

peak flow rates from the sensors and by a maximum permissible rate into 

the actuators. Based on these rates, it is possible to arrive at a set 

of upper bounds for the time taken by each function to process the data. 

The time alloted to each function (during a given cycle) together with 

the complexity of the tasks to be performed constitute the measure of 

computational load for that function. 

1 1. 
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The second method of obtaining the computational load of a function 

is based on a functional simulation. 	That route is shown on the right 

hand side of Figure 2.4. 	This method requires that the functional 

description of the system be mapped into a set of Ada constructs, 

hereafter referred to as simulation blocks. 	The system representation 

with simulation blocks can be compiled and executed. 	The benefits are 

twofold: 

1. An inconsistencies can be revealed, thanks to the diagnostics 

from the compiler. 

2. Upper bounds for the time allocated to each function to 

perform its tasks can be ascertained. 	This can be done, 

especially in Ada, by not coding the functions algorithms and 

by replacing it with a ':delay'; statement. Various iterations 

may prove necessary before the right set of delay durations is 

found. 

When computational load indications have been obtained for all the 

functions of the system description', the next step, hardware-software 

partition, can be undertaken. The purpose of this step is to take as 

inputs the computational guidelines add other assorted constraints, and 

map the system:s functional description into possible implementations. 

There exists a wide range of acceptable implementations at this stage 

and it is necessary to narrow down the choices further. This is 

accomplished by tightening the constraints and especially by introducing 

the concept of reliability. As pointed out before, one of the most 

important characteristics of a spacecraft onboard processing system is 

its reliability. The reliability of a system depends on many factors 

such as architectural configuration, 	fault detection 	facilities, 

software recovery algorithms: etc. Some of those factors have yet to be 

determined, e.g. software algorithms, while others are in relatively 

final  forts, e.g. architecture; components selection (major chips). By 

critically examining the proposed implementations with those criteria in 
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mind, it should be possible to eliminate unsuitable alternatives and 

thus concentrate on a few promising ones. If it turns out that none of 

the proposed implementations is suitable, a loop back to the higher 

levels of the methodology is necessary. Usually, what is entailed is a 

further refining of the functional decomposition allowing the use of 

more processors or special purpose devices. 	This will result in more 

spare processing power for recovery algorithms 	for example. 

Additionally, direct choices can be made by the designer, in an 

interactive fashion, in order to guide the methodology towards a 

suitable implementation. 

Once a suitable configuration is selected, presumably from the set 

of potentially suitable configurations: three major tasks remain: 

hardware implementation, software implementation, and integration and 

testing. These steps are shown in Figure 2.5. 

The output of the hardware/software partitioning stage is made out 

of two parts: 

1. A set of hardware general purpose processors and optionally of 
special purpose processors. Various constraints are also 
given, such as minimum execution speed, type(s) of bus 
interconnection, I/O  transfer rate(s) etc. 

2. A complete functional description of the tasks to be performed 
by the system. This description differs from the functional 
description used by the hardware/software partitioning stage 
in that it does not include functions that will be implemented 
completely in hardwre on the account of faster execution 
speed. 

The hardware development path uses the information listed above and - 

endevours to create a suitable hardware structure to support the 

software. 	In the first stage, a design is arrived at in an iterative 

fashion, although that is not explicitely shown in Figure 2.5. 	Hardware 

implementation follows to create a system at the VLSI building block 

14 
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level. 	In other words, the system  Chus  created makes use of either 

Processor/Memory/Bus 	structures 	or 	of 	Microprocessor/Memory/Bus 

Tranceivers/Interrupt Controller, etc. chips, all connected as in a real 

physical system. 	There is no hardware building as the N.mPc system is 

used. 	The use of N.mPc in such an environment has been the subject of 

an investigation within the framework of the current work. 	Relevant 

information can be found in [LAFE83a], [LAFE83b]. 

On the software side, 	the functional specification is used 

extensively as it would usually have been translated into Ada simulation 

blocks or other suitable constructs. Using the simulation blocks, it is 

'possible to decompose the functions into a hierarchy of subprograms and 

thus implement the functionality of the system. At this stage, 

verification assertion can be used if formal software verification is 

desired. 

Having completed the hardware and software design and 

implementation, the next step in the methodology is the integration of 

hardware and software and final testing. N.mPc run-time environment is 

used to accomplish the integration and the testing of the system. it is 

interesting to note that not a single piece of hardware had to be built, 

but, if needed, the actual implementation of it would be relatively 

straightforward. 

The final testing stage is concerned with the performance of the 

target system. This can be ascertained using the N.mPc runtime 

environment as long as proper allowances are made for the difference 

between simulation time and physical time; simulation time is a linear 

expansion of physical time and b4mPc handles various timing cycles in a 

consistent fashion. 	The final test will doubtless reveal inadequacies 

in the design of the target system. 	Those in adequacies can be 
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corrected by looping back to an earlier stage, making the correction and 

re-doing the part of the design/implementation work that is affected by 

the change. How far back to loop is a difficult question to resolve; 

going too far back into the design work entails a considerable amount of 

changes to take care of. However, if the uncovered inadequacies are 

precisely indentified, it should be possible to locate where that 

particular design decision was made and effect corrections with a 

minimum of overhead. 

This concludes the description of the design methodology for 

multiprocessor systems for spacecraft. The next three chapters will in 

turn take a look at special aspects of the methodology such as high 

level specification, hardware/software partioning and hardware/software 

implementation. 
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3.0 MGR LEVEL SPECIFICNTION TOOLS TCIINJLIIIES  

This section addresses the difficulties arising from the derivation 

of high level specifications of the system. From the previous section 

on the design methodology, it is possible to identify two requirements 

which any specification tool must satisfy if it is to be of any use at 

all in the current context. These two requirements are: 

1. The ability to capture the input/output nature of the system. 
In other words, the ability to describe a system similar to 
the block diagram characterization of Figure 3.1 (a). 

2. The ability to take a description of an input/output system 
and expand it into a more accurate specification using methods 
that highlight the hierarchy of actions or the timing 
sequences of those actions. 	Such methods usually produce 
hierarchical decomposition: yielding results similar to those 
of Figure 3.1 (b). 

For the purpose of this work, three such methods will be discussed: 

1. Graphical methods; 

2. Algebraic description; 

3. Programming language description. 

Before studying those methods further: it is important to realize 

the importance of this step as the obtaining of high level-specification 

is of crucial importance to the rest of the methodology work. 

Furthermore, an important factor in the choice of the method to be used 

is how well will this method and its results integrate with the 

subsequent steps of the methodology. It may happen, therefore, that 

ease of interfacing of one method makes it more suitable than another 

one with greater power of specification but of difficult handling. 
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3.1 GRAPHICAL METHODS  

Dataflow diagrams and hierarchical diagrams as shown in Figures 

3.1. (a) and 3.1 (b) are good examples of graphical methods. Those 

methods are the most natural at a high level and are usually quite good 

as a first attempt at system description. However, they suffer greatly 

from: 

1. Lack of formalism. 	In fact: it is difficult to spot errors 
and inconsistencies using such tools. 

2. Difficult interfaciag. 	By their visual nature, graphical 

representations are quite good at enhancing human 
communications but are not suited to human/machine 
communications and they do not lend themselves well to 
automated processing. 

Consequently, it is advisable that, in using the methodology, 

preliminary specifications be obtained by graphical means and 

transformed into a more powerful form later. 

3.2 ALGEBRAIC SPECIFICATION  

Algebraic specification methods have been used in a few systems 

already; albeit in a somewhat restricted fashion. One notable exception 

is the SIFT fault tolerant flight control system which was described 

entirely using algebraic methods. 

The SIFT system [MELL82] was also partially verified by means of 

input and output assertions coupled with an automated verification 

condition generator. The verification aspect which prompted the need 

for algebraic specification is not  of  concern here, although future work 

should no doubt investigate hardware verification. 

The algebraic specification method which will be described shortly 

is dependent upon the notation of levels, or hierarchy as illustrated in 

Figure 3.2. 

20  



Abstraction of 
next lower level 

More Abstract 

Primitive Operations 

each level is characterized 

by a given set of functions by a given set of functions 

FIGURE 3.2 Multi Level Specification  

21  



As indicated in Figure 3.2, each level is composed of functions 

which are abstractions of more primitive functions existing at lower 

levels. Thus; a system can be described using high level functions and 

then, in turn, each of those functions can be decomposed into more 

primitive ones. 	It is also possible to mix high level and lower level 

functions in a same description providing that proper interfaces are 

included. 

Figure 3.3 describes a very simple example to illustrate the 

concept of algebraic specification. It shows three tasks, A, B, and C 

with task C processing the output of tasks A and B. Those two tasks had 

got their input from other tasks (or input devices) although that is not 

shown on the diagram. In the SIFT system description, periodicity of 

functions is handled by letting each function correspond to a task and 

each task being also characÉerized by a particular iteration. 

Therefore; a given task A; as in Figure 3.3, could perform the 

transformation: 

function (A). 

The result of such a function upon a set of input data, say 

would be 

result (A, i) = apply (A; (x1 : x2 : x3 )) 

x2 , x3  are input data to the 

ith iteration. 	Obviously, x l , x2 , x3  are values related to the ith .  

iteration since they are .of the form: 

xi  = result (Xi, ki); that is resulting from the kth iteration of task X 

X2,  x3 

where i denotes the ith iteration and  
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The resulting output produced by task C during its jth iteration can be 

expressed as follows: 

result (C, j) = apply [C, (result(A,i), result(B,k))]. 

Here again, the input data is characterized by an origin, i.e. a 

task, and an iteration during which it was produced. The concept of 

iteration is therefore very useful to model the flow of data from 

sensors to activators in a spacecraft environment. It is interesting to 

note, however, that strictly speaking the notion of physical time is 

still absent. 

In the example above; the function (C) still has to be defined in 

terms of how it transforms its inputs into suitable outputs. In the 

SIFT system, an important restriction is that a task can have many 

inputs but can only produce one output. 	This is so in order to 

facilitate the formal verification of the system. 	The definition of a 

function can be given in terms of how it transforms the data, or in 

other words, by specifying: 

1) the input data set, (domain) 

2) the output data set, (range) 

3) the function itself, i.e. how it relates individual input data 
items to output data items. 

It should be pointed out that the sets of input and output values 

can be decomposed further, as is expected in multi-level specification 

work. 	In this fashion, a more precise description of the system can be 

obtained. 	In going to lower levels, considerations will have to be 

given to important factors such as: 

1. Timing; at lower levels, the concept of task iteration is 
reduced to the notion of timing. 

2. Scheduling; since timing Is considered and that tasks are 
periodic; proper thought has to be given to the scheduling of 
those tasks. 
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Absent from these factors is the actual shape and nature of the target 

hardware/software system. This will only be specified at much lower 

levels. 

Another aspect of algebraic specification methods of the SIFT 

category is the way in which they handle reliability. In the SIFT 

system, high reliability is achieved through replication of tasks and 

voting on the output of each. Algebraic specification can handle this 

description task adequately if the concept of physical processor is 

introduced. Figure 3.4 depicts a part of the simple system of Figure 

3.3 with replication of tasks. 

In Figure 3.4, the output of each task is sent to voting mechanisms 

at all sites that should participate on the voting. Consequently, in 

the example of Figure 3.4, three instances of task A send their 

output to three voters (voting. mechanisms) !, with a voter on each 

.processor. The output of a voter is obviously the correct (at least 

perceived to be so) result of that function at that site. The notion of 

task iteration is of importance in the example of Figure 3.4, and more 

so than before since the voters have to await results from different 

processes on different processors. 

As mentioned before, going to a lower level often entails the 

introduction of other functions. In fact, these are necessary to ensure 

the completeness of the description. Therefore, other task 

characteristics will then have to be described and in turn their 

descriptions will bring the system description to a lower level. In 

this fashion, a complete multilevel specification of the system can be 

obtained. 
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3.3 PROGRAMMING LANGUAGE SPECIFICATION  

Programming Language specifications: as the name indicates, specify 

systems by using a high level programming language. It therefore 

requires a powerful language capable of supporting flexible data 

structure description and of handling concurrency. The fist 

requirement, flexible data structuring, is necessary to represent the 

various data present in the system, at the various levels of 

decomposition to be encountered. The second requirement, support of 

coacurrency, is required by the need to represent functions processing 

their data seemingly at the same time, or at least; during the same 

« period. [A period can be defined to be the length of time during two 

invocations of the slowest recurring task]. 

For the purpose of this section, and also for the methodology 

itself, Ada*  was chosen as the programming language to be used in the 

specification task. Ada supports flexible concurrency, has powerful 

data structuring facility, and provides for separate compilation and 

static protected variables through packages. With Ada , two types of 

mechanisms can be used to represent the high level description of a 

system: 

1. 	Package with "Input"/"Output"/"Compute" tasks. 

This mechanism was outlined in an earlier report [LAFE82] and 

refiaed in [LAFE83c]. 	Figure 3.5 depicts a simulation block which 

uses three tasks, "Input", "Output" and "Compute", and is contained 

in a package. 

(*) Ada is a trademark of the U.S. Department of Defence 
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The "input" task is an independent Ada task whose funetion is 

to accept data from various other modules (sources or output tasks) 

and store it in an input buffer. 	The input task can be 

interrogated by the compute task as to the availability of the 

• data. 

The ':Compute': task receives data upon request from the ':Input" 

task. With the data in its local data area, the "Compute" task 

will perform the processing associated with the functionality of 

the module which is being specified. This functionality is 

implemented by the program of the compute task and by all the 

procedures it uses during its execution. 

The results of the "Compute" task are passed onto the "Output 7 

task for transmission outside the module. The data is first 

obtained from the "Compute" task, stored in an output buffer and 

sent to other modules (sinks or input tasks). 

As can bé seen from the diagram of Figure 3.5; the simulation  

block can also accommodate source and sink modules. A sink module 

consists  of a simulation block with just an "Input" task/input 

buffer arrangement and similarly for a source module. 	For 

simulation purposes, these input/output tasks can be modified so 

that their behaviour emulates that of the real devices. 

As far as the compute task is concerned, it should be pointed 

out.that the task draws upon the resources of another package, the 

.:functionality .: package. That package contains the procedures that 

implement the functionality of the module, and eaCh of those 

procedures can be subjected to further hierarchical decomposition. 

The purpose of the .:functionality': package is to allow easy 

manipulation of the procedures and data while, at the same time, 
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presenting a consistent interface to the compute task and other 

modules. It is interesting to note that simulation blocks can form 

a network thus representing data flow decomposition. At the same 

time, hierarchical decomposition can be carried out by breaking 

down the main taks into a set of procedures, which can, themselves, 

be decomposed in the same fashion. One of the main advantages of 

this particular technique is the fact that every component is 

enclosed in a common package and has a pré-determined role to play. 

2. 	Network of Tasks. 

There exists an alternative to simulation blocks as outlined 

previously. This alternative is to dispense with the package 

constructs, the input and output tasks and to represent the 

function to be described as a single task. This task and tasks 

describing other functions can be linked in the same fashion as the 

output task of a simulation block was linked to the input task of 

another block. This arrangement is shown in Figure 3.6. A few 

words of explanation are in order about that figure. The top half .  

of it depicts an Ada task whose behaviour is that of the function 

to model. The task is called and calls other tasks, thus effecting 

data transfers. The diagram cannot show, however, the hierarchy of 

procedures within the task. For this purpose a hypothetical 

hierarchy of functions is shown in the lower half of Figure 3.6. 
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FIGURE 3.6 Example of Task Description  
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The representation of the lower half of Figure 3.6 in a programming 

language notation is to be found in Figure 3.8. 	Figure 3.7 

introduces the necessary background material to Figure 3.8. 	That 

material is the Ada formal definition of a task. The first part of 

the task definition is concerned with entries and rendevous which 

will be used for linking tasks together. This topic will be dealt 

with next. 
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task declaration 	= task specification 

task specification :: = 

task [type] identifier [is 

{entry declaration} 
{representation specification} 

end [identifier]]; 

task body 	= 

task body identifier is 

[declarative part] 

begin 

sequence of statements 

[exception 

{exception handler}] 

end 	[identifier]; 

FIGURE 3.7 Ada Task Specifications And Body 

(From [DOD80], p. 9-1) 
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task Functionl is 

-- to be determined later 

end Functionl; 

task body  Functionl is 

-- declarative part of functionl 

procedure SubFunctionl 
-- declarative part of SF1 

procedure SubSubFunctionl 
-- declarative part of SSF1 
-- local variables, etc. 

begin 

-- statements of procedure SSF1 

end SubSubFunctionl; 

procedure SubSubFunction2 
-- declarative part of SSF2 
-- local variables, etc. 

begin 

-- statements of procedure SSF2 

end SubSubFunction2; 

procedure SubSubFunction3 
-- declarative part of SSF3 
-- local variables, etc. 

begin 

. -- statements of procedure SSF3 

end SubSubFunction3; 

-- local variables of SubFunctionl 

begin -- this begin corresponds to procedure SubFunctionl 

• 
• -- statements making use of local 
• variables of SubFunctionl 
• -- calling the sub programs 
. SubSubFunction 1,2 and 3 

end SubFunctionl; 

procedure SubFunction2 
-- declarative part 
-- similar to procedure SubFunctionl 

(continued on next page), 
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procedure SubSubFunctionl 
-- note that SubSubFunctionl relates 
-- to SubFunction2 
-- declarative part of SSF1 

begin 

. -- statements of procedure of SSF1 

end SubSubFunctionl; 

procedure SubSubFunction2 
-- declarative part of SSF2 

begin  

. -- statements of procedure SSF2 

end SubSubFunction2; 

-- local variables of SubFunction2 

begin 
• -- statements making use of local variables 
• of SubFunction2 and calling the sub programs . 
• SubSubFunctionl and 2 

end SubFunction2; 

procedure SubFunction3 
declarative part 

-- similar to procedure SubFunctionl 

procedure SubSubFunctionl 

procedure SubSubFunction2 

procedure SubSubFunction3 --------- 

-- local variables for procedure SubFunction3 

begin 
• -- statements making use of local variables of 
• SubFunction3 and calling the sub programs 
• SubSubFunctionl, 2 and 3 

end SubFunction3; 

-- local variables of task Functionl 
-- end of the declarative part of task Functionl 

(continued on next page) 
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begin -- beginning of task Functionl 
• -- statements making use of local variables 
• -- of task Functionl and calling the 
• -- subprograms SubFunction 1, 2 and 3. 
• -- use of entry calls and accepts is also in 
• -- here 

end Functionl; 

FIGURE 3.8 Specification of Functionl  
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Figure 3.8 showed how the hierarchical decomposition of a function 

can be expressed using a high level language like Ada. In the previous 

section, high level description tools were described as needing the 

above mentioned hierarchical description capability and, also 	the 

capability of describing network of functions. 	When the specification 

is being done using a high level language (i.e. Ada), the tool used is 

the Rendezvous. The Rendezvous is a synchronization primitive of the 

Ada language and is fully described in [DOD80] and [PYLE81]. It is used 

by independent tasks wishing to co-ordinate their actions or force a 

pre-determined execution sequence despite their parallel execution. The 

Rendezvous mechanism is illustrated in Figure 3.9 for the case of a 

task, "Device", emulating a source of data and of a task:  "INPUT": 

receiving the data and processing it further or simply storing it. 

From the examination of Figure 3.9, several points become obvious: 

1. The Rendezvous mechanism is undirectional. 	There is a task 

which is the active party and does the calling and another 

task which is passive and accept or delays acceptance of a 
call. 

2. When bi-directional cb-ordination is desired, two Rendezvous 
have to be set up. Care has to be exercised to prevent cycles 

and the ensuing possibility of deadlock. 

3. The body of the procedure which will be executed as a result 

of a successful Rendezvous is in the called task and is 
enclosed by the do end delimiters. 

4. Data can be exchanged during the Rendezvous, and the exchange 
is not restricted to only one direction. The parameter list 
with the Rendezvous .procedure will determine thé type of 
parameters and whether they are read-only , read-write, and 
write only. 
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f 	
. 

Periodically 

Scheduled 

Rendezvous - 
rocedure  Give Data 

task Device is 
-- no incoming entry calls 

end; 

task Input is 
entry GiveData (X:in item); 

--any other entries if any.. 
end- 

taskbody  Device is 
declarJtive part 

-- e.g. procedure Generate 
Data 

begin -- of task Device 

task body Input is 
-- declarative part 
-- local procedures. and variables 

begin -- of task Input 

loop 	 loop 

x: = Generate/Data; 	accept GiveData (X: in item) do 
Give Data (x); --potential wait 	. -- statements of rendezvoud--  

• . -- procedure 

• end GiveData; 
end loop; 

-- operations on 
-- input data 
-- followed bY 
-- transmission to 
-- other tasks 

Sendllata ( 
end loop; 
endInput; 

FIGURE .3.9 	Example of Rendezvous 

end device; 

); 
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5. 	The language definition foresees the possiblity of a task 
waiting on another. 	It could either be the calling task 
waiting on the called task or vice versa. 	Facilities are 
provided in the language  for a conditional call, that is the 
caller is not committed to the call if the called task is not 
yet ready to accept it, and for selective accept, that is the 
called task can choose whichever entry is active. 

The tasks have an independent execution and, for functional 

specification, this translates into the benefit of having the system 

exercised completely at the functional level. Procedures can be left 

blank, or with simply a delay statement and as long as parameters and 

Rendezvous match properly, compilation is possible. If delay statements 

have been used in procedures, execution is also possible. Interestingly 

.enough, by varying those delay durations one can obtain a good idea of 

execution time: hence computational load guidelines. 

As a further example of how a network of tasks (or simulation 

blocks) can represent a system, a part of the Attitude Control System, 

shown in Figure 2.3, has been specified. This specification is depicted 

in Figure 3.10. A careful look at Figure 3.10 will reveal some 

important differences between specification using simulation block and 

specifications using a network of tasks. These differences are 

summarized below: 

1. 	The Simulation Block Construct (SBC) uses an Input and Output tasks 

besides the "Computational" tasks; the Network of Task Approach 

(NT) does not. It is interesting to note, however, that the code 

for the input task of an SBC is found in the Rendezvous related 

procedure for any given call in the NT method. In other words, 

SBC's input and output tasks have been absorded into a task of the 

NT variety and the associated overhead has been dispensed with. 

The gain in simplicity is offset by a corresponding loss in 

generality. In the NT approach; a custom made design has to be 
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obtained; no short cuts are possible such as templates for 

interconnections. 

[It may be argued that some form of short cut is possible in 

the NT method, as regards templates. Although it is true in a 

strict sense: the preparation of such templates produces an equally 

considerable overhead than the one it  cas  to alleviate.] 
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Horizon Sensor 

Inputdatal 

outdatal 

Output 

Input 

horizon in 

Re ad 

 Sensors 

Calculat 
Changes 

Read 

Sensors 
Deviation 

) ; 

task HorizonSensor is 
end; 

task  Inputl is 
entry  Inputdatal ( 

accept  Inputdatal( 	)do 

Thruster 

Sun Sensor 

Inputdata2 

Input \\ 
 Sun  in >1 

2  

Spin Precession 

Function correctionsout 

This is a hierarchical decomr 
position of the function "Spin 
Precession". The decomposition 
does not claim accuracy, it is 
simply an example. Figure 3.8 
showed how such decomposition 
can be specified in Ada. 

Current 
position 

Deviation Cnrrection s 

end 

task body  Horizon Sensor is - 
begin 	 task body  Input 1.  is 

-- declarative part, i.e. data, procedures 
begin  

Inputdacal ( 	); 

end Horizon Sensor; .:Rendezvous': 

end Inputdatal; 

• 
Horizon ( 

end Input 1. ; 

(continued on next page) 

"Rendezvous" 
(to spin Precession) 
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task Input2 is — 
entry Inputdata2 ( 	); 

end. 

.:Rendezvous" 

Accept Inputdata2; ( 

end Inputdata2; 

Sunin ( 	); 

.) 
do 

Inputdata2 ( 
); 

end SunSensor; 

task  Spin Precession is 

end Input2; 

• 
• 
• 

Accept Horizonin ( 
• 

do  	end Horizonin; 

task SunSensor is 
end; 

task body SunSensor is 
-- 

begin  
task body  Input2 is 
-- declarative part, i.e. data, procedures 
begin 

..:Rendezvous'.: entry Horizonin ( 
entry Sunin 

); 

); 

task body  Spin Precession is 
-- declarative part for local data and procedures 
-- Current Position; Deviation, Correction, with their 
- subprocedures in their own declarative parts. 

begin  

Accept Sunin ( 	) do 	 end Sunin; 

-- necessary computations calling procedures in 
-- declarative part 

correctionsout ( 	);--- .:Rendezvous': (to Outputl) 
(continued on next page) 
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task Thruster is 
— 

entry Outdatal 
end; 

task  body Thruster is 
-- declarative part 

begin  
• 

) do . 	Accept Outdatal ( 

) ; 

end Corrections out; 

Oucdatal ( 	); 

end Outputl; 

end Outdatal; 

"Rendezvoue end Thruster; 

end Spin Precession; 

task Outputl is 
entry Correctionsout ( 

end; 

task body  Outputl is 

I --  declarative  part 

accept Correctionsout ( ir."-----------  
"Rendezvous" 

Il (from Spin Precession) 

FIGURE  3.10 ACS Example With Rendezvous 
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2. 	The functionality that the specification exercise tries to 
capture is expressed in both cases by procedures or more 
precisely, by a hierarchy of procedures. 	The packaging of 
those procedures differs between SBC and NT. 	In SBC, 
procedures, subprocedures, etc., are contained in a special 
package called the .:Functionaliti: package. In the NT 
approach, procedures are located in the declarative part of 
the task representing the functions being currently 
specified. 	In the task declarative part, one would also find 
all the data variables local to that task. 	Procedures can 
also call on procedures of their own; those subprocedures are 
declared and elaborated in the declarative part of their 
parent procedure. 

3. 	Finally, the most obvious difference is that an entire package 
surrounds the SBC whereas there is no such thing in the NT 
case. The reasons for the package construct in the SBC were 
twofold: 

a) 	It provides a relative amount of protection and procedure 
grouping; 

b) 	It allows certain data structure to be static at execute 
cime, i.e. during a functional simulation. 

Whenever that latter need is not essential, network of tasks 
can be used advantageously. 

3.4 EVALUATION OF THE DESCRIPTION(TOOLS  

The suitability of any description tool shoùld be assessed with 

respect  to the following criteria: 

1. 	Functionality and Expressive Power. 

The functionality of a given system can be expressed well by 

all three methods. The graphical method is good at the early 

stages of the design but soon suffers from being cumbersome as the 

function/boxes proliferate. It appears that the task model has the 

extra advantage of lending itself well to describing hierarchical 

decomposition. 



2. 	Timing and Scheduling 

Concerns about timing are usually absent from any high level 

specification. Timing does play a role however when the transition 

to a lower level description is done. 	In fact; timing is vital 

for data flow analysis and hardware software partitioning. 	Two 

types of timing caa be described: synchronous and asynchronous. 

In a satellite system, most (if not all) housekeeping tasks 

are of a periodic nature. This translates into a "Demand" or 

..:Event .: driven system which can be described by asynchronous 

timing. 	These system work well provided that there is enough 

computing capacity. 	A network of tasks, each independently 

scheduled by a suitable Ada run time environment can specify those 

systems quite well. The scheduling enables the description of a 

system driven by data sources whose rates are also dependent upon 

the scheduling of tasks by the run time executive. 

Synchronous timing is a lower level technique to remove the 

randomness or uncertainty associated with event driven systems. 

The loose scheduling characterizing event driven systems is 

replaced by a rigid and tight scheduling based on a common clock 

reference. There are two reasons for migrating from asynchronous 

to synchronous timing: 

a) to facilitate  formai  verification of the system; 

b) to make debugging easier. 

In most situation, however, demand driven systems will be 

specified using the network of tasks method. 
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the system entirely, the input, output data and the i•e • 

3. 	Correctness 

Design correctness is an important concern in spacecraft 

systems. 	A design can be verified by means of assertions based on 

predicate 	calculus. 	These assertions are inserted in the 

description and are used to generate the verification conditions 

and to prove the resulting theorems. 	The assertions characterize 

transformations applied to the input to get the output. Assertions 

can also accommodate multi-level specification and they 

characterize the interface between levels as well. 

The algebraic description tools are ideally suited for this 

task although programming language based descriptions can handle 

assertions equally well. 

From the preceeding discussion, it turns out that a Network of task 

is an adequate description tool and is the best suited for the task at 

hand. Simulation block contructs could be used if special applications 

warrant the extra overhead introduced by the simulation blocks. 
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/4 .0 IMBitiedifEl SOMA« 

The purpose of this stage is to transform a high level functional 

description into hardware-software modules. 	This stage is, at best, a 

very difficult one to perform; the difficulties will be evident when the 

stage is defined. 

A block diagram of the hardware/software partition stage is to be 

found in Figure 4.1. 	In that figure, there are three main parts: the 

input blocks: the partitioning step and the output blocks. 	There are 

three input blocks; and each will be.examined separately: 

1. 	High Level Specification. 	• 

This input is from the upper levels and is in the form of 

functions, linked by data flow arcs. 	The functions may be 

decomposed into a hierarchy. 	The function itself will become the 

basis for implementation, that is will correspond to a processor. 

It is possible of course to - combine more than one function per 

processor just as it is possible to break down a function into more 

sub functions when the target processor is not fast enough. Figure 

4.2 depicts these two situations. In the top half of Figure 4.2, a 

system is shown to be composed of seven functions. A partitioning 

is  doue and it turns out that several functions can be amalgamated 

to rua under one processor, (e.g.  F1  F
3
; F

4
) It may happen, 

however, that the computational load imposed by a function will not 

be satisfied by the target processor and in that case the function 

will have to be broken down. This is illustrated in the bottom 

half of Figure 4.2 where the function F is decomposed into three 

sub functions A', B',  C. 	Those sub functions were previously 

procedures in a hierarchical decomposition of Function F. 	The 
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FIGURE 4.1 Hardware/Software Partition 
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diagram also shows the extra intelligence that had to be added to 

the original A, B, C to enable them to emulate correctly the 

Function F. 

Incidentally, 	the 	top half of Figure 4.2 also 	shows 

interprocessor 	boundaries 	resulting 	from the 	partitioning 

operation. These boundaries are analogous to a cut into a graph 

and can give an indication of message traffic or data flow between 

processors. The type of interprocessor communication support is 

greatly influenced by the amount of traffic to be handled. 

2. Constraints. 

Under this heading are grouped all factors contributing to 

reduce the size of the solution space. Constraints should be 

evaluated and precisely tabulated to facilitate and enhance the 

design exercise. Examples of constraints would be: upper limit on 

power consumption, 	requirement for radiation hardened parts, 

mandatory use of a particular component  on a 	particular 

architecture, etc.. The hardware/software partitioning stage makes 

use of the constraints to restrict its attention to feasible 

configurations only. 

3. Computational Load Estimates  

Besides constraints; computational load estimates are the 

other parameters used in the partitioning process. A computational 

estimate for a given function is an indication of how fast the 

function should be performed. 	This estimate can be established 

in two ways. 	One possibility is to look at the aggregate rate of 

data flow into the function and to determine the . length of time at 

the functions disposal to perform its work. 	This processing time 
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is an upper bound and serves as an estimate of the computational 

load. Another way of calculating this load is by compiling the Ada 

high 	level 	specification 	of 	the 	system, 	replacing 

procedures/functions by delays and adjusting the delay parameters 

to have a consistent system. In both cases errors are unavoidable 

and can only be corrected by iterating several times through this 

part of the methodology. 

4.1 PARTITIONING  

Looking back at Figure 4.1: the next part to describe is the 

partitioning activity itself. At the onset of partitioning, there 

exists a great deal of fluidity since neither processors nor algorithms 

have been determined. The process of partitioning will be described 

using two diagrams; the first of those diagrams; Figure 4.3, depicts the 

whole process graphically for a Function F. In a first step, the 

computational load of F is estimated. Then, according to constraints, a 

basic processor is chosen and, according to the complexity of F, several 

hardware/software ratios are possible. For example, it is possible to 

perform a Fast Fourier Transform using software or using dedicated 

hardware. Having determined the hardware/software ratio, it is possible 

to obtain an indication of the performance level of the tentative 

configuration. Coupling this performance level indication with the 

software  algorithms likely to be used, it is possible to obtain an 

estimate of the execution speed of the function which can be compared 

with the computational load obtained previously. If the execution speed 

of the function is such that the permissible execution time would not be 

sufficient; a different partitioning has to be used. 
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A different view of the partitioning process is presented in Figure 

4.4. 	In that Figure, there is a diagram plotting computational load 

versus Hardware/Software ratio. 	Several curves,  Cs, are plotted and 

each represents the domain of feasible implementation. 	For example, if 

curve Ci  is considered, and the computational load is X then the 

rectangle delimited by the dashed lines represents the allowable ratios. 

As it stands, a ratio of about 42/58 (42% hardware, 58% software) is the 

ratio with the most software. If a higher ratio of software is 

required, then one should move to different curves. 

The curves differ because each represent a different set of 

characteristics. Those characteristics are as follows: 

Basic hardware used, e.g. technology, speed, architecture, 
instruction set, memory/bus cycle time, I/0 transfer rate, 
etc. 

2. 	Software 	algorithms 	used, 	e.g. 	type 	of 	algorithm, 
' implementation language; compatibility between high level 

languages and the hardware, effieciency of the compiler; 
efficiency of the implementation; etc. 

In other words, each curve represents different basic choices and 

the graph is used to illustrate the basic choices and resulting trade-

offs the designer has to reckon with. 

It is also interesting to note that, in the diagram of Figure 4.4, 

a minimum computational load is indicated. This corresponds to basic 

operating services which are always necessary, irrespective of the 

functions being partitioned. Besides this overhead, there also exist 

two other types, namely the overhead imposed by distributed 0/S and that 

originating in attempts to satisfy the reliability requirements. 

1. 
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4.2 OVERHEAD  

There are two areas which are going to introduce overhead which 

will have to be taken into account when choosing hardware/software ratio 

and power. Those two areas are: reliability and distributed - operating 

services. 

Reliability is an important concern in satellite design. 	The 

equipment has to operate reliably for long periods of time and no repair 

work can be undertaken after launch. Satellite building and launching 

being such an expensive business, it makes sense to endeavour to 

increase overall reliability. This can be achived as follows: 

1. By the use of better construction techniques for board level 

assembly and, 	especially, 	high quality radiation hardened 

components which have been thoroughly tested. 	This approach is 

common to all important hardware development projects. 

2. By providing hardware redundancy (double, 	triple: etc.) for 

all major components such as processors; memory, bus drivers, 

busses, 	etc. 	This results in greater hardware complexity, 

inclusion of special purpose circuits (e.g. for reconfiguration, 

failure detection, etc.), greater power consumption  and  sometimes; 

reduced processing power. Furthermore, more sophisticated hardware 

design techniques are usually required. 

3. In addition to hardware reliability enhancements, software recovery 

algorithms are also necessary to provide for fault-isolation, 

reconfiguration, and recovery. These algorithms will introduce an 

extra computational load which may be considerable, especially when 

the system is experiencing failures. 
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Operating system support also introduces overhead, as mentioned 

before in connection with the diagram of Figure 4.4. 	In that diagram 

the overhead was associated with local 0/S support. This includes 

support for interprocess communications (when multitasking is used), 

scheduling of processes, Input/Output services for sensors, activators 

and communication with ground control. Besides these local Ca 

services, distributed 0/S services will likely have to be provided 

because of the multiprocessor nature of the target architectures. Those 

distrinuted services include: interprocessor communication, monitoring 

of other processors and of their performance, taking part in majority 

voting (if necessary) and distributed co-ordination. 

The overhead introduced by reliability concerns and 0/S support has 

Co  be designed into the system. 	In practical terms, for a given curve 

Ci , this translates into a shift (See Figure 4.5) upwards, to a point 

where the proportion of hardware is greater. Alternatively, one may see 

the effect of overhead as jumping to another curve, but keeping the 

hardware software ratio the same. 	Going to another curve (higher curve 

C.) has the effect of altering some basic implemenation parameters. 	In 

this case, this could mean adopting a faster hardware processor: a new 

architecture, faster memory chips, better software alorithms, etc. 

4.3 OUTPUT OF PARTITIONING STAGE  

The outputs of the hardware/software partitioning stage are a set 

of implementation guidelines for both the hardware and the software. 

This is shown in Figure 4.1. It should be pointed out, that this does 

not constitute a unique solution but, rather, a multitude of possible, 

feasible and acceptable solutions. 
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The software implementation rules are derived: in most part, from 

the functional specifications written in Ada. In those specifications, 

there are a number of functions which were subjected to partitioning and 

which can be represented as independent tasks. The hierarchical 

decomposition of those tasks into procedure is of further help. Not all 

the functions will have to be processed that way; some functions will be 

implemented exclusively in hardware. 

The hardware implementation rules will obviously include those 

functions that are to be realized in hardware and also guidelines as to 

how to implement the general purpose hardware responsible for the 

.execution of the software. This relates to the parameters associated 

with each of the curves in the implemenation diagram of Figure 4.4. 
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5.0 IMPLEHENTAXION 

Following hardware/software partitioning stage, the methodology 

calls for the independent development of the hardware and the software. 

The main idea behind this stage is to avoid building physical processors 

and instead concentrate on a "soft" implementation of the system which 

can be easitly tested and modified. 

5.1 HARDWARE IMPLEMENTATION  

The inputs to the hardware implementation stage will be: 

1. A list of processing elements and other architectural choices 
related to the given implementation curve(s) worked with. 

2. Some 	extra constraints pertaining only to the hardware 
implemenation stage. 	• 

3. Some 	operator/designer directives • to guide in 	choosing 
starting configuration. This capability is quite important in 
a Computer Aided design exercise since it allows the designer 
to direct the computer along the way which he/she deems 
desirable and promising. 

It is proposed in the methodology to implement the processing 

elements and support circuitry using a hardware development tool such as 

N‘mPc. NouPc [PARK79a], [PARK79b], [ORDY79], [R08E79], is a facility 

that permits the development of neW hardware structures and of their 

software totally in software. A simple block diagram of N.mPc is shown 

in Figure 5.1 

N.mPc can be divided into three logical sections, the hardware 

compiler, the software assembler/linker and the runtime environment. 
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1. The Hardware Compiler  

In N.mPc, a hardware structure is defined by an ISE program. 

As mentioned before, hardware exhibits both a structure and a 

behaviour. The hardware behaviour is written into the program, the 

execution of which will faithfully emulate'the real hardware. The 

structure is defined by means of "port" contructs which determine 

how the hardware component interact with the outside. In addition, 

the connections of various devices is done by the ecologist as 

instructed by a topology file. 

2. The Software Assembler/Linker  

The hardware description is compiled by the ISP compiler and 

an executable module is produced. The software on the other hand 

is written in assembler and is assembled and linked by the meta 

micro assembler and the linking loader respectively. Both those 

facilities are programmable, that is to say, gan be made to 

accommodate any programmable hardware device defined in ISP": 

Programming of the meta micro assembler and Linking Loader is by 

means of special command files; as indicated in the diagram of 

Figure 5.1. 

3. The Run Time Environment 

The run—time environment provides for integration of the 

various hardware modules through a topology description file. It 

also links the programs written for the programmable devices with 

the hardware emulation of those devices. Finally; it provides a 

run time environment for chose  programs as well as a user 

interface. 	The user controls the simulation entirely and the user 

monitor the execution of the software 	and of the hardware 

exeduting the software. 
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The above description of N.mPc and of its approach to system design 

is unfortunately sketchy. It does however give the flavour of the 

intended course of hardware design. 

5.2 SOFTWARE IMPLEMENTATION  

The software implemenation stage receives as inputs the high level 

functional specifications in which functions roughly correspond to 

tasks. Of course this correspondence is not binding as it may very well 

happen that a function assigned to a task which is in turn assigned to a 

processor will find that the task in question has to be broken down 

. into several subtasks. What really matters,though, is that the combined 

behaviour of those sub tasks is equal to that of the original task. 

These functions/tasks are going to be refined and decomposed 

further, as indicated in the diagram of Figure 5.2. Coding is the next 

step and should follow naturally from the high level Ada description. 

The Ada code thus produced is compiled by an Ada compiler and a multi 

tasking application is created. This application is  ready to execute on 

the target hardware, provided that a suitable Ada run time executive 

exists. 

The Ada run  Lime eXecutive (or Ada run time environment) is a 

collection of the necessary support services which are of a distributed 

as well as a local nature. It is interesting here to note that the 

processing elements indicated in Figure 5.2 may be of a different nature 

totally incompatible at the machine level. 	The software 

development stage assumes the existence of an Ada run time environment 

on each of ,the processing element (denoted as "Local 0/S .: in Figure 

5.2). 	The nature of the Ada language requires the existence of certain 

standard features such as coucurrency. 	Since each local 0/S supports 

and 
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concurrency and all other Ada prerequisites, it is reasonable to assume 

that a physically distributed but logically centralized Ada run time 

environment can be created on top of the local 0/S. It remains 

nevertheless that those [potentially different] local 0/S have to be 

produced and that job is likely to be done in assembly language using 

the features of the mata micro assembler. Should a bare bone Ada 

comiler exist for the target machine, the job would be made easier as 

part of the executive could be written in Ada. 

In most cases, the choice of processing elements will boil down to 

a few space qualified processors for which, Ada compilers and Ada run 

time environments will be available. The main difficulty would then be 

to construct a distributed executive out of the local 0/S available. 

With the availability of a complete Ada run time environment for the 

target system, it will be possible to execute the application program. 

5.3 HARDWARE/SOFTWARE INTEGRATION 

The integration stage will take place when the hardware and 

. software development is completed. For the integration,  •N.mPc will be 

used to mix the software emulation of the target hardware with the 

software code produced by the compilation of the source code together 

with the run time executive. 

In the above fashion, the whole system can be exercised: the input 

sensors can be substituted by files containing test values; the actual 

code is executed by the simulated hardware. The .values would be 

processed in simulated time but, otherwise, the functionality of the 

code would not be altered. 
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The output could be redirected to files and thus an input/output 

comparison with the results of actual tests or analytical model could 

help assess the correctness of the hardware/software system. 

Furthermore, if one makes allowances for the scaling factor between 

simulated time and real time, it could be possible to determine the 

performance of the system. Reliability could also be thoroughly tested 

by introducing various failure conditions into the system. 

It is obvious that the integration stage is also a testing stage 

and that final acceptance of the system depends on its performing 

properly during those tests. 	If the system does not perform well it 

should be easy to isolate the problem and -correct it. 	The correction 

can be achieved by going back to an earlier step of the methodology. 

The solution to a given defieciency will not be unique and it is 

expected that the designer will come, up with a set of modifications. 
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6.0 CONCLUSIONS AND DIRECTIONS FOR FMIDIERVOIDI 

This report has presented a comprehensive design methodology for 

multi-processor systems destined to be used as on-board processors for 

spacecraft. The motivating factor behind the effort to develop the 

methodology was the need for more intelligence and information 

processing aboard modern spacecraft. This need can only be fulfilled by 

the use of advanced computers such as multiprocessor systems. 

Fortunately, it is now possible to implement multiprocessor systems with 

cheap, microprocessor based processing elements. 

The use of multiple processor systems is indicated because of their 

'greater processing power and of their inherent potential for 

reliability. The greater processing power of multiprocessors is based 

on the assumption that the tasks can be given to individual processors 

thus achieving greater execution speed and it also requires the 

necessary distributed executive services. Multi-processors can be made 

more reliable than their uniprocessor counterparts by adding more 

processors and support subsystems and by executing tasks redundantly. 

To bring all the advantages of ,multiprocessors to bear, advanced 

techniques and tools ate necessary for the design, implementation, 

building and testing phases. Furthermore, it would seem appropriate to 

re-use as much as possible any high level work that has continutity in 

lower levels. The design methodology presented herein and all its 

associated computer aided tools is an attempt at creating those tools 

and techniques. The questions that immediately comes to mind is: how 

feasible and practical is this methodology? The answer is in two parts, 

each addressing a specific set of issues. 
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I. 	In terms of tools, used in conjunction with the methodology, 

N.mPc .",s primary function is in the hardware design phase and the 

Ada language serves both as a functional specification language and 

as a software development language. N.mPc is  an  established 

technology although very recent and still undergoing changes and 

improvements. 	Ada is fast emerging as the standard language  for 

embedded systems. 	No Ada compilers are available at the present 

time although it is expected that several will be released in the 

short term future. 

2. 	The methodology itself is made out of. several parts and there are 

still some undefined areas. 	The functional decomposition stage is 

relatively easy to visualize, and similarly for the software 

development and implementation which is based on the functional 

decomposition. 	The most difficult stage is the hardware/software 

partitioning. 	The difficult areas in that stage are the data flow 

analysis, the obtaining of the implemenation curves and the 

estimation of the overhead introduced by the necessary 0/S support 

services and by the reliability techniques. The last stage, 

integration and testing is straight forward in that it uses N.mPc 

almost entirely. 

In view of the above remarks, it would appear that further work 

should concentrate on the hardware/software partitioning in general and 

on overhead estimation in particular. As mentioned before, the 

partitioning 	stage includes data flow analysis, 	derivation 	of 

implemenation curves and estimation of overhead. It is suggested to 

concentrate on the last item, estimation of overhead, as it is necessary 

for proper use of the former two components of the partitioning. 
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There are two main concerns within the estimation of overhead 

activity: 0/S support overhead and reliability overhead. The former, 

0/S support, will be determined by the Ada run time environment either 

distributed or local and will be available when the executive is 

implemented. The latter, reliability, is of great importance and it is 

desirable to investigate futher the following issues: 

1. Design techniques for reliable systems; 

2. Estimation of overhead introduced by several reliability 
techniques and how the overhead relates to the resulting 

system robustness; 

3. Selection of an adequate configuration to satisfy 	the 
reliability requirements (and other related requirements); 

4. Determination 	of the impact of reliability on software 
especially as software recovery algorithms are to be used in 
reliable systems. 
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