3 |n'l'z||"|'Q¢h " The Intelligent Use of
\ - Technology

=i

o .

_“SIMULATION OF THE SBP 9989
MICROPROCESSOR
USING THE CAE TOOL
N.mPc ON A VAX 11/780

Sy
91
C655 .
C66691 |

|
INT-83-651 1984

@

SIMULATION OF THE SBP 9989
MICROPROCESSOR ‘
USING THE CAE TOOL
N.mPc ON A VAX 11/78?////

’-}TRM
! n.Ct'uS{‘i'y C,EE‘%E?"’“‘“‘T
Librg ry QUSenq

IE 2.0 199

[

SEPTEMBER 1984 Industrie a
. 2ibliothe Canada

9e_Queen

phe

D R
/ | i

Prepared By: axZ?treit x<M2¥ };ﬁﬂgﬁs

COMMUNICATIONS CANADN

Approved By: Dr. S.A. Mahmoud . Jﬁff .
Dr. C. Laferriere LlBRARY - BfB[lﬂIHEHUf'\\\\\

-

INTELLITECH CANADA LIMITED

352 MacLaren Street
Ottawa, Ontario
K2P OM6

R NN R

o fey Bl L@

T e - p P P "
. d - .. 30 v R e A 1. s PRCSITIN . pCma Py o . - .
. - < et , - . . P
.

Govemment Gouvemement
of Canada du Canada

Department of Communications

DOC CONTRACTOR REPORT . DOC-CR-SP -84-023
DEPARTMENT OF COMMUNICATIONS - OTTAWA - CANADA

SPACE PROGRAM -

TITLE: Simulation of the SBP 9989 Microprocessor Using the Computer Aided
Engineering Tool N.mPc on a VAX 11/780

AUTHOR(S): Max Streit
INTELLITECH CANADA LIMITED
352 MaclLaren Street
Ottawa, Ontario
K2P OM6

ISSUED BY CONTRACTOR AS REPORT NO: INT-83-65i

PREPARED BY: Max Streit

DEPARTMENT OF SUPPLY AND SERVICES CONTRACT NO: OER 83-05075

DOC SCIENTIFIC AUTHORITY: Michel Savoie
: o COMMUNLCATIONS RESEARCH CENTRE

Ottawa, Ontario

CLASSIFICATION: wunclassified

This report presents the views of the author(s). Publication
of this report does not constitute DOC approval of the reports
findings or conclusions. This report is available outside the
department by special arrangement.

~ ') DATE: SEPTEMBER 1984

SUMMARY

This report describes the simulation of the Texas Instrument SBP
9989 microprocessor using the computer aided engineering design and
development tool N.mPc, developed by Case Western University. The

simulation was developed and run on the VAX 11/780 System of the

Analysis and Simulation Laboratory, Communications Research Centre. The

simulation includes a hardware description, a command file for the
programmable assembler and a command file for the programmable
linking/loader. A test program is also included. Taken together, these
components constitute a software implementation of the SBP 9989 as well
as a complete software development system for the SBP 9989 on the VAX
11/780. The architecture of SBP 9989 is discussed, its implementation
in N.mPc and a test simulation are described. Comments based on the
experience gained during the hardware and software simulation of the SBP
9989 processor are provided. This report describes part of the work
done under contract O0ER83-05075 for the Communications Research Centre

of the Department of Communications, Government of Canada.

FOREWORD

This report describes work involving processor hardware description
and simulation using the Computer Aided Engineering (CAE) tool N.mPc
which runs on the VAX 11/780 of the Analysis and Simulation Laboratory,
CRC. As in all new fields of endeavour, CAE design activities
introduce new concepts, hence a new vocabulary. particularly confusing
at first is the general tendency of re-using terminology which may have
a different meaning in other engineering fields. The purpose of this
foreword 1is, therefore, to provide a common point of reference with
regard to the various terms used in the report. This will be achieved
by briefly describing the use of the CAE tool N.mPc.

Traditionally, microcomputer based products have been designed in
the following fashion:

1. The necessary hardware components are built. This wusually
includes the microcomputer itself which is build wusing a
microprocessor and other peripheral components.

2. The software programs are written for the target machine.

3. Software and hardware components are integrated and tested.
Very frequently, the software is produced on a host machine
using a cross development package (if ayailable).

The development‘process usually involves many time consuming and
costly iterations. A CAE tool such as N.mPc improves the situation by
providing a simulation enviromment which is suitable for testing many
design alternatives in a short period of time. The implications of

using N.mPc are as follows:

1. It is no longer necessary to build the hardware components at
the beginning of the design work. Instead, N.mPc provides
what amounts to a micro—programmable, register transfer level
machine which can be programmed to emulate the target hardware
completely. In other words, a designer working on a'VAX host
for example, could create a VAX executable program which, when
run, would emulate the target hardware.

2. N.mPc provides a cross development package for the software to
be written. The cross development facilities are, however,
totally programmable. Programming the cross development
facilities of N.mPc 1is part of the preparatory work which
needs be done only once for a given type of hardware.

3. Facilities - exist in N.mPc to take the user A written,
application software produced by the cross development package
and to incorporate it into the hardware emulation module. The
result thus becomes the execution of the application software
by the target hardware which in turn is an emulation rum by
the host computer.

4. The rationale for wusing a tool such as N.mPc 1is that
programmability implies flexibility. Given that a Dbase
exists, i.e. most of the hardware emulation is available as
well as the cross development package, a designer can alter
the design parameters with ease and test various alternatives
without committing to any hardware choice.

N.mPc introduces new activities and redefines some traditional

concepts. The hardware building stage which is to result in- a host
executable emulation involves programming the register transfer level

machine provided by N.mPc. This programming is done in the ISP~

language and is referred to as "implementing"” the hardware or preparing
the hardware description. Similarly, the programming of the cross—
development ?ackage involves the preparation of various command files
and is considered part of the "implementation" of the target hardware.

A complete N.mPc simulation is the execution of a complete
simulation module which includes the hardware emulation and the
application programs which have been developed by the cross development
package. The fact that the hardware is also simulated may lead to
confusion. Therefore, the hardware simulation is usually referred to as
emulation whereas fhe term simulation is reserved for the execution of
user programs on the emulated hardware.

This brief foreword, however, falls short of explaiﬁing the
complexities of a system like N.mPc. Its main purpose was to warn
prospective readers that some terms such as simulation, emulation and
implementation have a very special meaning in the N.mPc context. The
interested reader will find many references to work reporting
applications of N.mPc in the field of processor design. A 1list of

references is included at the end of this report.

1.0

2.0

3.0

4.0

TABLE OF CONTENTS

INTRODUCTION. cceceosccecssceevseancnscsccscssscscsccsoscsccsssne
1.1 Background.eeeeeenceeeesceesscscesasssscsssscssncosaons
1.2 Simulation — The Modern Approach to Microprocessor
System Designececssceecseceseresvsasesvosscrsncsescasnae
1.3 Structure of the RepOrteceiceceseccccsscacsssecsensnce

TMS 9900 AND SBP 9989 MICRopROCESSORS' ® 9 ¢ @0 SO 00 POV
2.1 Architecture of the TMS 9900.cccesceccrscesscsncessnses
2.2 Architecture of the SBP 9980 .ccceceensescasscsccnananse

IMPLEMENTATION OF TMS 9900 AND SBP 9989 ON N.tiPCesecevocnes
3.1 N.mPc File Naming ConventionSe.ecceeceseccecsccscssncsece
3.2 TImplementation of the ™S 9900 on NemPCevceveoveonevsne
3.3 TImplementation of the SBP 9989 on NemPCicveereronnonan

DISCU8310NI'.OI'.II..'..O.."'.'0"..........;..'..II..‘...

REFERENCES

APPENDIX A:

APPENDIX B:
APPENDIX C:
APPENDIX D:
APPENDIX E:

APPENDIX F:

The Hardware Modules

A.1 The SBP9989 Description (t9989.1isp)
A.2 The Memory Module (timem.isp)

The Topology File (test.t)

The Linking Loader Description (t9989.1)

The "Meta-Micro" Assembler Description (t9989%.m)
A Test Program (test.mjtest.l; test.L)

A Test Simulation

w N

(oIS Y, |

12
12
14
21

23

1.1

2.1

2.2

2'3

2.4

3.2

3.3

3.4

3‘5

TABLE OF FIGURES

Main Components of the N.mPc System eecececesccscscscscnns

Memory Formats of the ™S 9900 (from TI Data manual) se.ese

The TMS 9900 Workspace Concept (from TI Data manual) «c....

TS 9900 Addressing Modes (from TI Data Manual) eseeceassne

Hardware Block Diagram of the SBP 9989 (from TI Data Manual)

File Naming Conventions in the N.mPc System ecececcccscvess

Workspace Register Indirect Auto—increment Addressing .es..

The Debugged "op 5" Procedure .seevecesscocsssscoscassnsasas

Different Address Formats (incorrectly) used in the TMS
9900 Library Description esececscecceccccecccscsssssaanccssas

The Debugged "src opr"” Procedure

13

16

17

19

20

1.0 INTRODUCTION
1.1 Background

The Texas Instruments TMS 9900 was one of the first 16-bit
microprocessors. Introduced i1in 1977, the TMS 9900 is produced wusing
NMOS technology. Its "memory-to—-memory” architecture uses blocks of
external memory, designated as "workspace", instead of internal hardware
reglsters; this speeds up context switches associated with interrrupts,
subroutine calls, etc. The ™S 9900 has 69 instructions and 64K bytes of
memory addressed as 32K 16-bit words.

The SBP 9989 1is an upgraded military version of the TS 9900
microprocessor. The SBP9989 differs from its civilian version mainly in
the wuse of Integrated Injection Logic (IZL) technology which provides
better reliability in.extreme temperature conditions and 1in fadiaﬁion
environments. The instruction set of the SBP 9989 includes all of the
™S 9900 instructions plus four additional instructions which dimprove
performance in numerical applications and multiprocessor configurations.

Because I2L based components are inherently radiation hard the SBP
9989 not only conforms to military standards (MIL 883B) but also 1is
space qualified. It is the main processing unit in the "Attitude and
Orbit Control System (AOCS) of the European Space Agency (ESA) Large
Satellite (LSAT) developed by British Aerospace.

Initially the Ferranti F100L processor had been chosen fof the LSAT
AOCS. The need for additional processing capacity led to the decision
to switch to the SBP 9989 processor for the LSAT program. An
independent investigation [2] carried out by Intellitech Canada Limited
in the fall of 1983, for the Analysis and Simulation Laboratory of the
Communications Research Centre, came to the same conclusions with

regard, to the relative performance of the two processors.

1.2 Simulation — The Modern Approach To Microcomputer System Design

The traditional approach to microcomputer system design usually
tries to build a prototype of the system to be developed. This
prototype will consist of a number of hardware boards assembled wusing
wire wrap techniques. This approach makes design changes difficult and
becomes costly for the case of large, complex systems (e.g.
multiprocessor systems). The designer also faces problems related to
the implementation of his hardware design while he is, at the same time,
trying to debug the system software. The traditional approach makes it
difficult to determine whether the software design or the hardware
design are responsible for certain failures and/or inadequacies in the
system.

The modern approach attempts first to simulate a design on a host
computer using a "computer aided engineering (CAE) tool such as N.mPc.
This allows easy development and verification of both hardware and
software designs because the simulation is easy to change. Complex
systems are handled by using modular simulation software. Once the new
design 1is verified, the hardware is built and the software that
previously ran on the simulated hardware can now be reassembled an&
loaded to be run on the actual hardware.

Figure 1.1 shows the main components of N.mPc, a CAE tool capable
of simulating complex systems by modelling the hardware at the register
transfer level. The user defines the hardware modules of his system (in
ISP~ source) and their configuration (Topology) and then assembles,
links and loads the microprocessor software to be run. Thg N.mPc system
processes all qhis information and forms a simulation that 1is easily
controlled by the user. Changes and reconfiguration of the hardware

modules 1is a matter of executing a few commands. Fault insertion,

1

mathematicél and graphical post processing of the simulation results are
also features of N.mPc. The N.mPc system used for this work ram on a
VAX 11/780 under the VMS oper;ting system.

This work started with a description of the TMS 9900 from the N.mPc
library. Although this 9900 module did compile correctly, a fair amount
of work had to be done to check, verify and debug the 9900 module in
order to get a test simulation running properly. As the SBP 9989
constitutes a superset of instructions and signals of the TMS 9900, an
SBP 9989 implementation in N.mPc was created by adding the appropriate
instructions and signals to the 9900 module. Finally the SBP 9989

module was also checked in a test simulation.

1.3 Structure of the Report

Following this introduction, section 2 presents the salient
features of TMS 9900 and the SBP 9989 architectures.

Section 3 gives some general information about the CAE tool N.mPc,
making references to previous work and the existing N.mPc documentation.
The main part of Section 3 outlines the debugging of the TS 9900
hardware description provided in the N.mPc library, its upgrading to an
SBP 9989 module and the addition of the new SBP 9989 instructions to the
Metamicro assembler. Section &4 contains a discussion of Ehe results
obtained and conclusions reached concerning the 9900 and 9989. The
appendices contain 1listings of an N.mPc test simulation and of wvarilous

files needed to run it, as well as the protocol of a test simulation.

V\\
User Simulations
Commands Output

v 7

ISP’ Isp'’ ™ .
: L . Ecologist RUNTIME PACKAGE
Source Compiler -
Simulation Progress
Command Interpreter
Simulated Memory Manager
Target
Sys tem
Topology
Machine
Descriptions
MetaMicro Linking . Simulated
—
Assembler Loader Memory
; ' . Processor
i
MetaMi cro
Source
Figure 1.1 Main Components of the N.mPc System

2.0 TMS 9900 AND SBP 9989 MICROPROCESSORS

2.1 Architecture of the TMS 9900

The main features of the TS 9900 are:

16 bit Instruction Word

- 64k Bytes of memory (om two pages to be swapped)

- 3.3 MHz speed

- Memory to Memory Architecture (Blocks of externmal memory
designated as “work spaces" replace internal hardware
registers)

- 16 general registers

- 16 prioritized interrupts

- DMA and programmed I/0 facilities

N-Channel Silicon-Gate Techmology (NMOS)

The architecture of the 9900 relies on a 16 bit long memory word,
thus consisting of two bytes which may be individually addressed by
instructions. This situation is shown in Figure 2.1.

The 32K memory words (16 bits) are always addressed by even
addresses while the 64K bytes may have odd or even addresses. The TMS
9900 and the SBP 9989 perform task switching very efficiently. This is
due, din part, to their "memory-to-memory" architecture which dispenses
with on—chip hardware registers and, instead, uses a contiguous block of
16 memory words. A workspace pointer is alﬁays pointing to the first of
the 16 workspace registers which replace the processor internal hardware
registers. A context switch, generated either by a program request or
an interrupt, can be done quickly and easily since it is only a matter
of exchanging the workspace pointer, the on-chip program counter and the
on—chip status register. This feature of the 9900/9989 processors is

depicted in Figure 2.2.

MS8 Ls8

o | 1 2|3} a}s] e 7] 8 9 0 | n 12 | 3 14 | s
SIGN
BIT
N _/

MEMORY WORD (EVEN AODRESS)

MSB LSB MSB Ls8

o] 1 2] 3 s| 6| 7] 8] 9 1w | n 12] 1314 s
SIGN SIGN

8IT 8IT
N /O \/ Y
EVEN ADDRESS BYTE 00D ADDRESS BYTE

WORD AND BYTE FORMATS
Figure 2_;1 Memory Formats of the TMS 9900 (from TI Data Manual)

/

WORKSP‘ACE POINTER

wP) —_——

MICROPAOCESSDR ADDS

WP TO TWO TIMES THE

WOHKSPACE FOINTER <

AREGISTER NUMBER TD
DEVISE ACTUAL
REGISTER ADDAESS

WORKSPACE
ADDRESS

[wr 00
WP e 0246
WP s Odyg
WP ¢ 064¢
we . 08¢
WP e 0Ayg
WP+ 0Cy6
WP« OF 16
wWF e 1046
WPt
WP e 1446

WP s 1646

CLERY: 17
WP s 1A g

WP e Gy,

CVEN

WORKSPACE.POINTER AND REGISTERS

| l
NDTL ALL MEMONY wDRD
ADDRESSES ang

WP 1Eg

Figure 2.2

AEGISTEARS

REYURN
ADDAESS

CIlU HASE

we

rC

St

1]

GENERAL MEMORY

PROGRAM A

<

<

WORKSPACE REGISTER O

T

WORKSPACE A

WORKSPACE REGISTER 15

<

<

PROGRAM B

WORKSPACE B

TMS 93900
PC a1
we (A}

ST (a) I

The TMS 9900 Workspace Concept (from TI Data

The first 64 words of the TMS 9900 memory space are reserved for
interrupt and extended operation trap vectors. The rest of the 32K word
general memory area is free for programs and "workspaces". The ™S 9900
can service up to sixteen different interrupts according to their
priorities and supports direct memory access via extended operation
instructions. A command driven, serial I/0 unit (CRU) is also provided.
Many of the ™S 99007"s 69 instructions have the choice of five main
addressing modes for their source and destination operands. Figure 2.3

shows the different ways the 9900”s instructions access their operands.

¢

2.2 Architecture of the SBP 9989

The SBP 9989 microprocessor is a military standard, upgraded
version of the TI9900. The SBP 9989 has all the features of the 9900
plus four more instructions, 4 new signals, higher speed and 1is
implemented in "integrated —-injection circuit logic" technology. This
"I2L" technology gives the 9989 its high reliability, radiation
hardness, temperature range and the low power consumption which make it
suitable for spacecraft applications. The new features of the SBP 9989
as compared to the 9900 are listed below:

L) An instruction set that includes all the 69 instructions
of the 9900 plus signed multiply, signed divide, 1load
workspace pointer (LWP) and load stack pointer (LST).
IWP and LST allow the 9989 to load a complete software
context from an external source.

2) A new output signal on the SBP 9989 called "Memory Map
Engble" (MPEN) can be used to double the effective
address space. The SBP 9989 can therefore address 128

Kbytes of memory using MPEN in a bank switching mode.

- ' 8

WORKSPACE REGISTER AOORESSING 0

Workspace Register R containg the operandd

Regittee A
WORKSPACE REGISTER INDIRECT ADDRESSING *R

Workspace Register iR contains the address of the operand.

Register A

IPCl—O-{ Instruction HWPl'ZR-b{ Address]—"L Operand]

WORKSPACE REGISTER INDIRECT AUTO INCREMENY ADDRESSING "R+

Workspace Register R contains the address of the operand. After acquiting the operand, the contents of workspace

tegister R are incremented.

Regitter R
(PCI---I tagtruction FHWPI'ZR——[—Addlﬂi ‘I]"{(Opetand I
- /A
3]

1 (bytel

oe 2 hwoed|

SYMBOLIC (OIRECT) ADDRESSING @ LABEL

The woud (ollowing the instruction contains the address ol the operand,

(PCl— o tniteuction

(PCle2 Labet ————-0—' Operand I

INDEXED ADDRESSING @ TABLE (R}

The word lollowing the instruction contains the base address, Workspace register R containg the index value. The
sum of the base address and the index value results in the elfective address of the operand.

Register R

Effective

(PC'—P{ Ingteuction }—(WP"N‘ -
chloz-o-rl Table I,

V{ Operand l

Figure 2.3 TMS 9900 Addressing Modes (from TI Data Manual)

This arrangement is not as convenient as a single linear
spade of the same size.

3) A "Multiprocessor Interlock" (MPILCK) allows coordination
of the use of system resources by several processors.

4) “Interrupt Acknowledge" (INTACK) allows the 9989 to
acknowledge an interrupt signal even at times when it
does not have control of the system resources (bus,
memory, etc.).

5) The "Extended Instruction Processor Present" (XIPP) Input
Signal establishes a protocol for transfer of bus control
between "host"™ and "slave" processors sharing the. same
memory.

6) The SBP 9989 may be driven by a 4.4 MHz clock (compared
to 3.3 MHz of the 9900) and its instructions use 15-20%
less microcycles than its "civilian" version. Texas
Instruments claims that the throughput of the 9989 is
twice that of the 9900. In view of the previous
comments, that claim would appear quite optimistic.

The hardware block diagram in Figure 2.4 presents the MPEN, MPILCK,
XIPP and INTACK signals. Memory architecture, addressing .modes, I/O
facilities, interrupt structure and memory map are identical .in the TMS
9900 and SBP 9989 microprocessors. The SBP 9989 is a fully compatible
version of the TS 9900. It is faster, more reliable and better at

number crunching and multiprocessing than the TMS 9900.

Figure 2.4 Hardware Block Diagram of the SBP 9989 (from TI Data
: Manual)

010 - 19)
CAUIN crugury
16 ‘ A{Q . t4)
IS :
16
16 16 s
INSTRUCTION SHIFT REG
REGISTER (IR) (31 2 MA
J:aF +6]r 16 16 s
N
6 16
16
STATUS constants | v¢ [we | PC
(s7)
I
CONTROL
ROM . 16 16
8
C
0 ALU
l ?‘
R i
o
L
16
— — 4
I HOLD -
woron wrsarury suer on,
(GAD - ECISTER 8
WE — ! 6]
READY >
WAIT =t CONTROL
_WAIT = . .
MEMEN —¢ LoGic l¢—— GND
OBIN —=¢ SHIFT
RESET - COUNTER [t INJ
1AQ =&
CVCEND —¢ cto-3)
CRUCLK —¢
MPILCK ¢ INTREQ
XiPP -
INTACK —¢ N —_
= MPEN
l J
CLK

3.0 IMPLEMENTATION OF TMS 9900 AND SBP 9989 ON N.mPc

3.1 N.mPc File Naming Conventions

This " section will be a brief reminder of the naming conventions in

the N.mPc System. The files used in an N.mPc simulation are identified

by a name which is chosen by the user and a compulsory suffix. Figure

3.1 shows the N.mPc System and the names of the files produced by the

various elements of N.mPc. The followlng list describes the function of

each fille.

pgmname.m:

pgmname.n:

Lname.i:

Lname.a:
l.out

iname.isp
iname.obj
tname. t -
tname.s

tname.f .

A ".m" -file 1s the source input file (= user program) to
the metamicro assembler. A successful assembly produces
a corresponding "pgmname.n" file.

The intermediate fille produced by the Metamicro
assembler. Used by the Linking/Loader Allocator.

The source 1nput to the Linking/Loader Interpreter.
Contains the specification of the address resolution
process for a given machine (stored in
[.ompc.softgen.llcf]).

The output of the Linking/Loader Interpreter. This file
is used by the Allocator to direct the address resolution
process.)

The output of the Allocator. Contalns a real machine
core i1mage, sultable for simulatlion after processing by
the "Simulated Memory Processor".

The input of the ISP” compiler, contains ISP” source
code describing a simulated piece of hardware.

The output of the ISP” compiler, corresponds to. the
iname.isp source input.

The topology file, the ecologist will bulld a program

called "tname", which will be the executable simulation.

- A symbol table file created by the ecologist, used by the

runtime package. "“tname" 1s the simulation name.
The memory list file, produced by the ecologist, and

used by the simulated memory processor. Contains the
names of all memories used in a simulation.

12

User Simulations
Commands Output
“iname.isp iname.obj tname.s & /
ISP ! Isp ! ™
D i ; RUNTIME PACKAGE
Source [™ Compiler Ecologist

’ B + Simulation Progress

tname.exe | .- Command Interpreter
- Simulated Memory Manager

Target
System 1
Topology
) Trace
tname. f Output
tname. t
tname.d
iname.m newname.p
tname. X
Machine
Descriptions
pgnname.n
l.out .
MetaMicro Linking N Simulated
Assembler [™] Loader newname. : Memory
? Processor
-V
Me taMicro lname.?
Iname.i
Source

pgmname. m

Figure 3.1 File Naming Conventions in the N.mPc System

newname.P A processed file created by "smp". Corresponds to a

previous Linking/Loader output file which has been
renamed . Used by the simulation program and the
Simulated Memory Editor.

newname. i The contents of L.out are overwritten by each creation of

a simulation. To share a "ready to run" set of files
without going through the whole creation process the
contents of l.out have to be saved into another file
(e.g. by doing Rename l.out newname). The new file has
to be declared in the topology file.

tname.x Another smp output, containing global symbols from the

Meta Micro; one per simulationm.

tname.d The simulation data file contains data to be processed by

the post processor. This is a new feature of the VAX/VMS
version of N.mPc.

tname.exe The executable simulation program.

iname.m The user programmed description of the (meta micro)

assembler for the microprocessor being simulated; it has
to be stored in the usual N.mPc directory structure (and
can be reached by the path [.mmpc.softgen.mmpd]).

The N.mPc system seems quite complicated at first sight but all
that i1s necessary to build a simulation is a hardware description
(iname.isp), a topology file (tname.t), an assembler description
(iname.m), the 1linking loader description (Lname.i) and some user
program (pgnmname.m). These inputs are processed to form an executable
simulation, which is controlled by "user commands”. The N.mPc system
has been used extensively by Intellitech, ‘at first on PDP-~11/UNIX and

later on VAX/VMS. Interested readers are referred to the relevant

reports [2,3], and the original N.mPc documentation [1, 8-16].

3.2 TImplementation of the TMS 9900 on N.mPc

The success‘of an N.mPc simulation depends to a great extent on the
quality of the descriptions of the various hardware modules required by
the simulation. Ideally, one should be able to use existing hardware

descriptions from an N.mPc library and concentrate on the simulation

14

. ks o <

building aspects.

The starting point for the implementation of the ™S 9900 on N.mPc
was an ISP~ library description of that microprocessor provided with the
N.mPc package. Several bugs, some of_them of a subtle nature, existed
in the ISP~ description and had to be corrected. The following
paragraphs describe the nature of some of those bugs and the corrections
that were subsequently made.

A test program designed to check the correct execution of the add
instruction using all the five different addressing modes for source and
destination operand showed a malfunction of the autoincrement indirect
addressing mode. Instead of acquiring the source operand, the add
procedure only took the address of the source operand in the addressing
mode depicted in Figure 3.2.

The problem was clearly a logical bug in the corresponding
procedure (op 5) mixing up the destination operand and its address in
the case of auto increment addressing. Figure 3.3 shows the procedure
"op 5", a part of the TS 9900 description. The missing ‘'read from
memory"” ‘operation had to be added not only in the A (=add opcodes)
instruction but also in the SZC (set zeroes corresponding; opcode 2) the
S(=subtrack, opcode 3), the MOV (=move, opcode 6) and SOC.(= set ones
corresponding) instructions.

On the third line, only the address of the destination operand is
read from a register (rreg) which was specified in the instruction. The
reading of the operand from memory (using its address) is omitted. The
improved A"0p 5" procedure now performs correct .additions because (the
changed) 1line 3:and (the new) line 4 read the destination operand from

memory.

15

Register R

(PCl—»

{nstruction }~—HWP)+2R——7—4 Address

Operand

Figure 3.2 Workspace Register Indirect Auto-increment Addressing

e
T

1 (bytel
or 2 (word}

/4333332333333 3¢3333233333333333433333323334924233%4% %94

/X X/
/% Executes orcode S drour of instructionc. X/
/X Instructions ¢ AsAR srcrdst X/
/% X/
/2333243223332 3332T3¢33333333333333333333335333¢39249 94
or_5 =

(.

S1 = src-orr(SnsSmoderSize) . tdet first orerand

if Imode ecql 3 ! 3uto inmcrement

(
2 = 2%rred(DrrSize) .+ %
1 = bus_read(02:Size)
) .
else

1 = src_orr(lnrylmode,ySize) . ! Alsca dest.addr..
if Imode eal 2 !' 50 vead last

FC = FC - 2 ,
02 = RC(ULsS1lsacdd:Size) . lcomrute the sum

det_orr(U2,UnrmodesrSizeryse f1) .o tstaore it dst

0 = (5140 eql [10*) and (02<0> nec DI1:0H) . ‘set

.

delav(2) tALU cycles

if Size eql K

F = paritu(t2<{oyter)

Figure 3.3 The Debugged "op 5" Procedure

The second major error in the ™S 9900 library description was the
reading/writing to/from incorrect addresses in memory. In depth
analysis of the problem showed that there was a difference in the
address format generated by the "effective address calculation”
procedure and the one assumed by the memory read/write procedures.
Figure 3.4 shows the difference between these two address formats.

Once aware of this situation, corrective action was taken by
changing the address recognition for source and destination operands.
The stripping of the "least significant bit" of an addresss by the bus
read/write procedures (assuming that the LSB is always zero) produced
wrong addresses as the effective address provided was not in the assumed
format.

To put the operand addresses in the appropriate format they are
multiplied by two (equivalent to a “shift left" for binary numbers)
prior to bus reading /writing of operands. To achieve this, only the
address recognition in the "src-opr" and "dst-opr" procedures had to be
changed by introducing a factor of two into the address recognition
("eff-addr" becomes "2* eff-addr"), as it is shown in Figure 3.5. The
same problem as above was fixed in a similar fashion for the BWLP
instruction. After the changes to tﬁe ™S 9900 library .AescriptiOns
mentioned above, the test program documented in Appendix F began to

execute properly.

18

address format expected by the
memory read/write procedures
of the TMS 9900

MSB I.SB

O 1.... R A 15

L o]

_ J
N

interpre ted as:

\

address format provided by the
effective address calculation
procedure of the TMS 9900

MSB LSH
0 1.... R4 15
ol]
C ~ _

interpreted as:

word-address(decimal)

word-address(decimal)
0 0
2 l
4 2
6 h)

(memory)

Figure 3.4 . Different Address Formats (incorrectly) used in the
"TMS 9900 Library Description

23333333333 333333333223337333333233333333333333333333 394

/% X/
/% Fetches source orerand. X/
/% Ieoput parameoters! redister aumber nibbler X/
/% eddressingd made erairy X/
/X " orerand size bit. X/
/¥ OQutsut par3ameters! source orerand word. x/
/% X/

V2333333333333 33833333233338¢333FITTISIFTTSTLLSSFLLEL S 94

¢
.« =

src.orr(rndnib>rmode<rair>rsizelbiit>)<uard>

(
case mode
0 ¢ ! predister
(.
src_orr = rred(rnrsize)
)
1¢2,3 /X
indirect redisters
direct address:
indexed:
3autoincrement
x/
(/)
A2 = 2%Xeff_addr(rnrmodercsize). tget the address
src_orr = bus_.read(A2rcixe) lread from memory
) s
esac

Figure 3.5 The Debugged "src opr' Procedure

3.3 Implementatioﬂ\of the SBP 9989 on N.mPc

As the SBP 9989 is an upgraded TMS 9900 microprocessor, 1its
implementation on N.mPc involved an wupgrading of the TS 9900
description mentioned in Section 3.2.

In programming design terms, four new instructions and four new

signals (“"ports") have to be added to the TMS 9900 description to make
it an SBP 9989 module.

The added instructions are:

= signed multiply, performed by a procedure named “mpys"

- signed divide, performed by a procedure named "divs"

- load workspace pointer ("LWP") and load status register
("LST") enable the SBP 9989 to capture a complete
software context from an external source

Three of the added system features ("ports") serve multiprocessing

purposes:

- "multiprocessor interlock™ (MPILCK), an output signal used to
avoid access contention in resource sharing multiprocessing
systems

- "interrup; acknowledge” (INTACK) enables the processor to
acknowledge interrupts even while it is not in control of the
system resources

- "Extended Instruction Processor Present" (XIPP) is an input
signal needed for bus control transfer between the SBP 9989
and a co-processor.

The new output signal "MPEN" can either be manipulated to double

the address space to 128 K bytes or be used (with a Memory Mapper) to
allow access to 16 megabytes of memory. All these new signals and

instructions are found in the listing of the SBP 9989 description in

21

Appendix A.1l. Appendix A.2 contains the listing of the external memory
description used with the SBP 9989. Appendices B, C, D contain 1iétings
of the topology, 1linking loader, and metamicro assembier description
files needed to build an SBP 9989 simulation. Appendix E shows listings
of the program (in different formats) used to test the SBP _9989
description. This test simulation is described in detail in Appendix F.

Following the conversion of the ™S 9900 ISP” description into a
workable SBP 9989, testing activities began. Instructions from all
opcode-groups were executed in short test programs, checking for
correct contents of memory and/or registers before and after the
execution of the instruction being tested. The initial situation was
that a test program (test.m) could not be run because of bugs in the
initial 9900 description. Upgrading of the ™S9900 description to an
SBP9989 description along with the debugging mentioned above finally
resulted in an SBP 9989 simulation on which the test.m program could be

t

run successfully.

At this point it is important to stress that a working description

of the SBP 9989 has been obtained. This description coupled with the
appropriate meta micro assembler command files enables the N.mPc system

to be used as a TMS 9900/SBP9989 development system. N.mPc is truly a

programmable microprocessor development system.

22

4.0 DISCﬁSSION

The implementation of an SBP 9989 development system on N.mPc has
been successfully accomplished and resulted in descriptions of the TMS
9900/SBP 9989 processors in the N.mPc hardware description language
(ISP"), a programmable metamicro assembler for both processors and a
test simulation.

Major portions of the SBP 9989 such as its decoding loop, Iits
read/write procedures, and a number of its instructions were thoroughly
checked, debugged and their functionality proven in actual test
simulations. Due to lack of time however, mnot all the instructions of
the SBP 9989 could be checked. In the event of future work with this
processor description, further testing would have to be completed hy
checking the following components of the 9989 ISP~ description.

a) the "INTERRUPT" procedure; |

b) the I/0 procedures ("CRU;pLOCK,""CRU;?RANSFER");

c) the "LOAD", "RESET", "OVERFLOW TRAF", "SHIFT", "MPYS"' and

"DIVS" procedures;

d) most of the opcode 0 and opcode 1 instructions.

23

As in all ©N.mPc implementation activities, there 1is an extra
benefit resulting from the careful study of the hardware to be
implemented. In this case, the benefit is a thorough understanding of
the workings of the SBP 9989 microprocessor. Based upon that
understanding, the SBP 9989 can be compared with other microprocessors
that are 1likely to be used in sﬁace applications. Examples of such
processors include the Ferranti F100-L and the CMOS version of the Intel
8086. "

The Ferranti F100-L is a 16 bit microprocessor implemented in
bipolar 1logic for a high immunity to noise and radiation. This is an
essential characteristic of any space qualified wmicroprocessor. The
F100-L does suffer, however, from a relative lack of advanced
architectural features and powerful instructions. The memory map of the
F100-L is elso fairly non-standard and its handling of pointers can lead
to confusion. The Ferranti F100-L was the subject of earlier work at
Intellitech and the interested reader is referred to reference [2].

Recently, Harris announced a CMOS version of the Intel 8086
microprocessor. This | new version would be suitable for space
qualification and would then open the way for the use of the 8086 1in
spacecraft applications. The 8086 is a 16 bit microprocessor with a
powerful instruction set and is compatible with 1Intel”s family of
peripheral device controllers. The 8086 is capable of a high throughput
due, in part, to its speed and also to its pipelined bus unit/execution
unit architecture. Other co-processors can be incorporated in an 8086
based system easily and they operate concurrently with the 8086. More
information can be obtained from the relevant Intel 1literature and

product description.

24

The SBP 9989 is also a 16 bit processor with a somewhat smaller
address space than the 8086 (128 Kbytes vs 1Mbyte). In terms of
instruction set, the 9989 fares better than the F100-L but does not
offer the same versatility as the 8086. Furthermore, it does mnot
feature a separate bus unit and execution unit architecture as the 8086.
Speedwise, however, the 9989, although not as fast as the 8086,
outperforms the Ferranti F100-L. This fact is substantiated by the
recent switch of processors (i.e. from the F100-L to the 9989) in the
British Aerospace L—-Sat AOCS design. British Aerospace apparently found
that the throughput of the F100-L was not sufficient to handle the load
of a Spacecraft Microcomputer Module (SMM).

Having established the 9989 as a better altermative to the F100-L
one may wish to compare the 9989 to the 8086. Apart from the fact that
those two processors are of a 16 bit design, their respective
architectures are quite different. Some of those differences are
outlined in the four points below:

1. The SBP 9989 does not have on—chip general purpose registers.

This slows down operations but facilitates task switching.
Both the 9989 and the 8086 have flexible interrupt facilities
reminiscent of those of the PDP-11l. Interrupt service
routines can be linked easily and priorities can be assigned
with relative ease. (An 8086 would require a 8259
programmable interrupt coﬁtroller). In the final analysis,
the task switching advantage of the 9989 over the 8086 is
offset by the latter”s greater speed and by the fact that most
interrupt service routines only save one or two on-chip

registers in any case.

25

2. The 1Intel 8086 supports a segmented 1 Mbyte address space and
a separate 64 Kbyte I/0 space. This is vastly superior to the
9989°s 128 Kbyte combined address énd 1/0 space. To the 9989
defence, however, it must be added that in typical satellite
applications, only a fraction of the 8086 address space would
be used. Nevertheless, the 1large address space 1is there
should modifications and enhancements be required at a later
date.

3. Both processors provide mechanisms for the smooth integration
of co-processors. An arithmetic co-processor is available for
the SBP 9989; a wider choice of co—processors exists for the
8086 such as a numeric co—-processor (8087), and an I/0 co-
processor (8089). Those co—processors are not currently space
qualified but their usefulness in future spacecraft missions
is easy to visualize.

4, The number and type of available support chips is much greater
for the 8086 processor. This is due in part to the existing
support chips for the 8 bit processors from Intel and to the
greater popularity that the 8086 has enjoyed commercially.

While the SBP 9989 is a good processor in its own right; it appears

that the coming availability of the 8086 in a CMOS version will make
the 8086 the preferred choice in future implementations of on—board
spacecraft control systems. In addition, software development utilities
and packages are far more numerous for the 8086 than for the 9989. This
software factor should be weighed very carefully when evaluating a given

microprocessor.

26

It should be clear that due to rapid technology advances better
processors are continually emerging. Therein lies the real advantage of
using N.mPc in a design environment. | Ré—designs are easier and new
processors can be incorporated and tested with greater ease than with
traditional bread-boarding approaches. The development system for the

SBP 9989 created using N.mPc is in keeping with that philosophy.

27

[1]

[2]

[3]

[4]
(51
[6]
(7]
(81
(9]
[10]
(11]
[12]

[13]

[14]

REFERENCES

C.W. Rose, F.I. Parke, G.M. Ordy; "N.mPc: A Retrospective"” and

"The N.2 System" Case Western Reserve University, Cleveland, Ohio,
June 1983.

C. Laferriere, A. Lam; "N.mPc and its Utility for Spacecraft
Applications" Report No. INT-83-47/1, Intellitech Canada Limited,
January 1983.

C. lLaferriere, W.T. Brown, J.G. Ouimet, S.A. Mahmoud, "The
Definition and Specification of an Integrated Set of CAE Tools for
Spacecraft Multiprocessor System Design”, Report No. INT-82-16,
Intellitech Canada Limited, March 1982.

Texas Instruments Semiconductor Products ; Master Selection Guide,
1982.

TMS 9900 Microprocessor; Data Manual; August 1982.
SBP 9989 Microprocessor, Data Manual, 1982.
Texas Instruments; Software Development Handbook; 1981.

G.M. Ordy, "N.mPc Release 2 Imstallation”, Department of Computer
Engineering, Case Western Reserve University, Cleveland, Ohio,
November 1980.

L.R. Rogers and G.M. Ordy, "N.mPc Metamicro User”s Manual, version
3.1, Department of Computer engineering, Case Western Reserve
University, Cleveland, Ohio, July 1980.

C.W. Rose et al., "The N.mPc System Description Facility",
Procedings of the 16th Design Automation conference (IEEE), pp.
520-528, June 1979.

F.I. Parke et al., "The N.mPc Runtime Environment", Procedings of
the 16th Design Automation Conference, (IEEE), pp. 529-536, June
1979.

F.I. Parke , "An Introduction to the N.mPc Design Enviroument",
Proceedings of the 16th Design Automation Conferemce (IEEE), pp.
513-519, June 1979.

G.M. Ordy, "N.mPc Runtime User”s Manual" Dep”’t of Computer
Engineering, Case Western Reserve University, Cleveland, Ohio,
Spring 1979.

G.M. Ordy and F.I. Parke, "An Evaluation of the N.mPc Design
System” Proceedings of the 16th Design Automation Conference
(IEEE), pp. 537-541, June 1979.

4

[15] G.M.

Ordy,

Engineering,
Spring 1978.

[16] R.

Straubs,

Engineering,

1978.

"N.mPc
Case

Ecologist

User”s Manual",

Western Reserve University,

“N.mPc ISP~
Western Reserve University,

Case

User”s Manual",

Dep”t of Computer
Cleveland, Ohio,

Dep”t of Computer
Cleveland, Ohio,

. - -

APPENDIX A: The Hardware Modules

A.1 The SBP9989 - Description (t9989.isp)

b

1

pr t9989.isp

Dec 31 15:52 1983 t9989.isp Page 1

Version 2.0

%

%

%

%

%

%

% This ISP description is obtained by upgrading

% the description for the TMS 9900. It includes
% all port definitions, external memory and bus

% interface, full DMA and interrupt capabilities.
R R PR L R S R R R P R R P R R R E R T R SRR TR EE R L 2 2
% To make read/write-operations of words from/to
% memory function src_opr, dst_opr and the BLWP-
% instruction had to be changed(factor 2 in front
% of "eff_addr").Proper execution of the auto-in-
% crement addressing-mode was achieved by correc-
% ting op_2, op_3, op_5, op_6 and op_7.

% .

% Max Streit

% December 83

% Intellitech Canada Limited
%

%

AO
AO
NN NN NN NN XN NN N NN NN NN NN NN

N
N
o
i)
N
&
Ao
o0
AD
AD
Ao
)
)
o
20
oe
o
X
20
o
o
)
&0
A
Aﬂ
o
o
a0
a0
2
o
o
o
Aﬁ
Aﬂ
3
&0
o
o
o
0
0\0
a\ﬂ
o
o0
ks
&0
o
o
Ao
@0
AD
*

[AARARARARAAAAAARAARAAAAAAAAAAAAAARARAAAAAAAAAKARAKAKAKA/

/% */
/% Symbolic names for register lengths. A~/
/% */

[AAkAkAARAARAAAARAARAAAAAAAAAAAAAARARAAAARAAAAKAAAAKAA/

bit

pair
nib

byte
word
lobyte
addr = O0:

[AAkARAARAAAARAARARRAAAAARAARAARAARAAAARAARAAAAAAKRAAKRAKX/
/[*/

/% Constants for size of operands. ~/

/% */
[ARAARAAAKARAARAAAAAAAARAARARARRAAARARARRARAAKRAAAAAKAK/

W
B

0 &, ! Word
1 &, ! Byte

[ARARKRARAAARARAARARAARARANARAARAARAAAAARARKAKRARARARARAK/

/% */
/% Constants for addressing modes. */
/% */

o
A

Dec 31 15:52 1983 t9989.isp Page 2

[RARARARARARARAARAAAAAARAAAAAAAAAAAAARAAAAAAAARAAAAAKAK/

r =0 &, ! register

ir = 1 &, | indirect register
da = 2 &, | direct address

x = 2 &, | indexed

[RARARAARAAAAARAARKRARAAARARAARRAARARAAARARARAARARARARAAARAKRAK/

/ ~/
/* Logic levels to select an option in a procedure. */
/% */

[RARARAARAARRAAAAAAAAAAAARKARRARAAARAARAAARAARAARRAARAAKX/

sub = 0 &, ! operation was a subtraction

add = 1 &, ! operation was an addition

de_fl = 0 &, ! deselect changing flags

se_fl =1 &, ! select changing flags
/kkkk*kk**kk*k*k**kkkkkkkkkkkkkkkkkkk*kkkkkkkkkk*kk*kk/
/% */
/* Symbolic names for logic levels. */
/* */

[RARRARARAAAAAARKAAAARAAAAARAAARAAAAARAAARAARARAAARARKRAAAAK/

false 0 &,

true = 1 &,

clear = 0 &,

set =1 &,

high = 1&,

low = 0&,
[RRAARKRAAARAAAARKRRAKRAKRAARAKARARKKAAKARAKAARKRAAAKRKAAAKAKK /
/* *~/
/% Delay units for clock and timing. ~/
/% ~/

[RAAARAARAARAAAAAAARARRRAARKARARAAAAAARAARKARAAKRRAKRKAK/

clk = 1&,
pulse = 2&,
phase = 1&,

[RARAAAAARAARAAARARRAAAAARAAAARAARAAARRARAARAARAAAAAAAAAAA/

/* *~/
/* Enforces sequential execution. */
/* ' *~/

[RARARAAARAARAAAARAAARAAAAKRKARRAAAAAAARKAAAAAAAKRKRAAKRKK /
. = j;next &;
state

[AARARRAARAAAARAARAARARAARAARAARAAARARARARARARRAAAARAAAAAKRAKRAKA/

/* */
/* Declaration of registers. *~/
/* ‘ *~/

[RARKRAARARRAAAAAAAKRKAAAARAAAARKARAARAARAAARARAARARRAARAARRAKRA/

e
<

i A
- “ T a

Dec 31 15:52 1983 t9989.isp Page 3

PC<word> , ! Program Counter
WP<{word> , | Workspace Pointer
ST<word>(0x0000), ! STatus register

[ARARAAAAARARARAAAAAARAAAAAAAAAAARARARARAKRAKRAKAKAKARAKKA/

/* */
/* Temporary registers. ~/
/% *~/

[Rk Rk ke ko kAokk Ak Ak ok Ak kdk ok dkkkAkhkhkhhkkhhkrrrhhdhrdkdikihkk/

Al<word>, Address register 1
A2<{word>, Address register 2
D1l<{word>, Destination register

N =

!
!
!
D2<{word>, ! Destination register
!
|
!

Il<{word>, Instruction register

I2<{word>, Instruction register

XR<{word>, Extra Instr. register for X Remote instr.
Sl<{word>, ! Source register 1

mbr{word>,! Holds word last read from memory.
in_vec{word>,! Holds addr. vect. for interrupt routin

Load<bit>, | Flag set on load function
Reset<(bit>, ! Flag set on reset function

- Xipp<bit>, | Flag set on extended processor function
Illop<bit)>; { Flag set on illegal opcode fetch

format

[RAKRAARAAAAAKRAAAAARRARAAARAAAAARAAARAAAAARARAARAKAKRARK/

/* ~ */
/% Instruction register subfields. *~/
/* */

[RAARARAAAKRARARARAARAARARAARAAARARAAARAAAARAAAAAARKAKA/

Opcode = I1<0:2)>, | instruction set Opcode

Size = I1<3>, ! operand Size

Dmode = I1<{4:5)>, ! Destination mode

Dn = I1<6:9)>, | Destination register number

Smode = I1<10:11>, ! Source mode

Sn = I1<¢12:15>, ! Source register number
[Ak A AkkhkA kAR AAAKAAAARAAAAAAAAAARAARRARARAAAAAARAKR ALK/
[*/
/* Status register subfields. ~/
/% A */

[RARARAARARAAARAKRARRARARRARARKRARAAAAAARAAARAAAARAAAAAARA/

LGT = STKO0>, ! Logical Greater Than
AGT = STKL>,; | Arithmatic Greater Than
EQL = STK2>, { -EQual

C = 8T<(3>, i Carry

0] = ST<C4, | Overflow

P = 8IS, | Parity

X = ST(6>, I XOP

;:' B4

Dec 31 15:52 1983 t9989.isp Page 4

IM = ST<12:15>; | Interrupt Mask

port

[ARk kkARAAAAAAAAKRAAAAKARAAAAAAAAAAAAAAAAAAAAAAAKK/
Iz ~/
/% Chip pin description */
/* ~/

[RAARARARARARAAAAAAARAAAARAAAAAARAAKARAAARAAAAAARAKAK/

! Data and address bus signals

abus<{(0:14>, | address bus b
dbus<0:15>, I data bus

{ Bus control signals

dbin, | data bus in signal. high true
memen(high), | memory enable. low true.

we (high), { write enable. low true
cruclk, { CRU clock signal from processor
cruin, ! CRU data in port for serial I/O
cruout, | CRU data out port for serial I/0

! Memory control signals

hold(high),
holda(low) ,
ready,

pwait(low),
mpen(high) ,

low true hold signal

hold acknowledge. high true

ready signal from memory

wait signal for memory operation

memory map enable output signal. low true

b e gaan g pam

! Timing and control signals

iaq, | instruction acquisition signal. high true

load(high), { low true load signal to processor

reset (high), | reset signal to processor. low true

mpilck, | multiprocessor interlock output signal
xipp(high), | extended instruction input signal. low true

{ Interrupt control signals

intreq(high), | low true interrupt request signal
intcode<{nib>, | interrupt priority code
intack; { interrupt acknowledge output signal

[hhAkhkAAAAAAAAAAAAAARAAAARAAAAAAAAAARAAARARAAAAAARAKAA/

/% - A/
(% Reads addressed word from memory ~/
/% Input parameters: 15 bit word address */
/* Output parameters: data word. */
/% ’ */

[RAARAARAARAAAARRAAAAARAARAAARARAAARAARRAAAAAAAAARAAAAA/

%

Dec 31 15:52 1983 t9989.isp Page 5

M_read(address<addr>)<{word> :=
(

if hold eql low Ibuses busy, ie. DMA active
(
holda = high; Ilprocessor in hold state
abus = clear; dbus = clear; Imake sure buses are clean
while hold eql low delay(clk); lwait until buses become available
delay(clk);
holda = low lrelease from hold
) .

abus = address<addr>; lload the address hus

dbin = high . ldata bus in and disable output

memen = low; laddress bus valid

delay(clk);

i1f not ready Imemory not ready
(
.delay(phase) ;
pwait = high; Ilprocessor in wait state because of a
delay(34phase); inot ready condition from memory.
while not ready delay(clk); Iwait until memory is ready

delay(2*4phase) ;
pwait = low
)

else delay(phase) .

M_read = dbus . lread data bus
wait(ready:trail)

dbin = low . lclear output signals
abus = low .

memen = high laddress bus idle

)

[ARARAARARAAAAAAAAAAAAAAAARAAAAARAAAAAAAAAAAAAAAAAAALRA/

/% ~/
/% Writes a word to memory ~/
/% Input parameters: 15 bit word address, ~/
/% data word */
/* ~/

/ RAkAARAAAAAAAAAAAAAARKAAAAAAAAAAAAAARARRAAARAAAAAAAKXAA/

M_write(datalword> ,address<addr>) :=
(

if hold eql low ibus not available
(* +
holda = high; ~“lprocessor in hold state
abus = clear; dbus = clear; imake sure buses are clean

while hold eql low delay(clk); !wait until buses available
delay(clk);

holda = low

) .

dbus = data; lload data bus
abus = address;: {load address bus
dbin = low . lenable output
memen = low; laddress bus valid
delay(clk);

we = low;’ lwrite mode

Dec 31 15:52 1983 t9989.isp Page 6

if not ready
(
delay(phase);
pwait = high;
delay(3%phase);
while not ready delay(clk):;
delay(24phase);
pwait = low
)
else delay(phase) .
we = high;
walt(ready:trail)
abus = low;
dbus = low .
memen = high
)

Imemory not ready

Iprocessor in wait state

tuntil memory becomes ready

lclean output signals

laddress bus idle

[RRARRARRRRRARRAAKRARARARAARARARARARARKRAARKRARARARARKRAARK/

/x */
/% Handles bus interface to read from memotry. &/
/% Input parameters: address word, x/
/% data size bit. */
/* OQutput parameters: data word. */
/% */

[RARRRRAKRARARKAKRAKRARARAKRAKRARAKRARAAKRARKAKRARKARKRARARKAKAK /

bus_read(address<{word),sizec{bit))<{word) :=
(

mbr = M_read(address<addr>).
case size
W - !
(
bus_read = mbr{word>
)

tlast bit of address is striped
Word operation

freturn the word

B : | Byte operation
(
case address<{1l5>
0 : | even address
(
bus_read<(byte)> = mbr<{byte> ireturn <0:7> of word
)
1l : | odd address
(
bus_read<byte> = mbr{lobyte> lreturn <{8:15> of word
)
esac
)
esac

)

[RRARARRARARAAKRARRRAARARKRAAARARKRAARAAARAAARRARARARAKRARAARA/

/x ~/
/* Handles bus interface to write to memory. ~/
/% Input parameters: data word, VA
/* address word, */

Dec 31 15:52 1983 t9989.isp Page 7

/% data size bit. x/
/% x/
1 A A Ak e Aok A e ok A ok T Ao Ao Ao e ok e Ao e ke Ao ke ok e ke Ak e ke e ke e ke A ek Ak Ak Ak Ak Ak ok /

bus_write(data<word),address<{word),size<bit)) :=
(
case size
W : ! Word operation
(
M_write(data,address<addr>) iwrite to memory. Last bit striped

| Byte operation

toe]

case address<1l5> lcheck the striped bit

0 : | even address
(
mbr<{bhyte> = data<byte>. Iwrite only <0:7> of data word
M_write(mbr,address<addr>) iwill overwrite <8:15> of word
)
1l : | odd address
(

mbr{lobyte> = data<byte). lwrite only <8:15> of data word]
M_write(mbr,address<addr>) lwill overwrite <0:7> of word

) .

esac

esac
)

[AAAAAAKRAAAAAAAARAAAAAARAARAAAAARAAAAAAAAAARAARALAAKAA/

/* */
/* Reads a register. */
/* Input parameters: register number nibble, */
/% data size bit. */
/* OQutput parameter: register value word. */
/% */

[AhAAAkAAAAhAAkAkAkAkARAAkAhhhArkArrkhAkAArAARAAAAAAAAAAA/

rreg(rn<nib’ ,sizecbit))<word) :=
(

state mar<word>; | temp reg. for address
mar = WP + (2*4(rn ext 8)) . !get address of register
mbr = M_read(mar<addr>) . lread from memory and store temporarily
case size
W : { Word
(rreg = mbr
B): ! Byte
(rreg<byte> = mbr<(byte> treturn only bit <0:7>
esac

{\.

R 3 o . . .

Dec 31 15:52 1983 t9989.1isp Page 8

)

[RARARKAAARAAARKRARAARAAAARAAAKRARAAAAAAAARARAKRARAAAAAAAA/

/x x/
/% Writes a regilster. &/
/% Input parameters: data word, ~/
/% register number nibble, ~/
/% data size bit. */
/% ~/

[RAKRKRARKARKARAAARAARARARAARAARAARARAARAARARAAARAARAKRAA /S

wreg(datadword> ,rn{nib> ,sizecbit?>) :=
(
state mar<word> ; ! temp. reg. for address

mar = WP + (2%(rn ext 8)) . I!get address of reg in memory

case size
W : | Word
(
M write(data,mar<addr>) Iwrite into memory
)
B : | Byte
(
nmbr<byte> = data<byte> . !write byte into memory
M write(mbr,mar<addr>) .
)
esac;
)

[ARARARARARAAAAARARAARARAAAARAARARARARAARAAAAAAKRAARAKA/

VES ~/
/% Calculates effective address. ~/
/* Effective address is derived depending on the &/
/% the addressing modes : indirect, direct, indexed */
/* and autoincrement. ~/
/* Input parameters: register number nibble, */
/% addressing mode pair, ~/
/% data size bit. ~/
/* Output parameters: effective address word. */
/% : */

[RARKAAKRAARARKRAAARKARAAAAAAAAAAAARAARARKRARARAARAARARAX/

eff _addr(rn<nib>,mode{pair> ,sizecbit))<{word> :=
(.
delay(clk) .

case mode laddressing modes
1 : ! indirect register
(:
"eff_addr = rreg(rn,l) lrn contains the address

)
2 : | direct address, indexed
(\

Al = bus_read(PC,W) . lget address pointed by PC
PC = PC + 2 . . lincrement PC
case rn lindexed registers

<
’

.

Dec 31 15:52 1983

0 s
(
eff_addr = Al
)
default
(

t9989.1isp Page 9

{zero means direct address

lany register can be used as index

eff_addr = rreg(rn,W) + Al .

delay(clk)
)
esac
)
3 : ! autoincrement
(
Al = rreg(rn,W)
eff_addr = Al .

delay(clk)
Al = size =>
Al + 1
else
Al + 2
wreg(Al,rn,W)

)
esac
)

lregister contains the address
ireturn the address

lincrement by one for byte operation

by two for word operation.
lrestore the new value of register

[R AAKAAAAAAAARARAAAAARAAARAAAAARAAARRARARARRAAARAAAAKRA/

/* A/
/% Fetches source operand. */
/% Input parameters: register number nibble, */
/% addressing mode pair, ~/
/* operand size bit. */
/* Qutput parameters: source operand word. 7/
/% */

] AARAAARARKAAAKARRARAARAAKARAARAAAAAARAARAARRAARKARKRAKA/

src_opr(rn<nib> ,modedpair>,sizelbit))(word> :=

case mode

lget the address
lread from memory

0 : ! register
«
src_opr = rreg(rn,size)
)
1,2,3 /%
indirect register,
direct address,
indexed,
autoincrement
*/
(
A2 = 2%xeff_addr(rn,mode,size).
src_opr = bus_read(A2,size)
)
esac

)

. A

Dec 31 15:52 1983 t9989.isp Page 10

[RARAARAARAAAAARAARAAAARAAARAAARARAARAARAARARAAAAAAKAK/

[
/* Changes LGT,AGT and EQL flags.
/* Input parameters: data word,

/& data size bit.
/.

*/

*/
&/
*~/
*x/

[RRARARAARAAARRAAARAAARAAAARARARAAAAARARARAAARKAARAKAKX/

LAE(datadword>.,sizecbit?>) :=
(
case size

W : ! Word

o
LGT = datadword?> neq 0 . {ST<CO>
AGT = (data<0> eql 0) and (datadword’> neq 0)
EQL =.datadword> eql 0 . 1STC2>
)

B : ! Byte
(
LGT = data<byte?> neq 0 . 1STCO>
AGT = (data<0> eql 0) and (data<byte> neq 0)
EQL = data<byte> eql 0 . 1STC2?
) :

esac

-

[RRARARAKRAAAAARAAAAAARAAAAAAAAARAARAARARRAAAARARAAAKAL/

/%

/* Stores destination operand. Optionally changes

/* LGT,AGT and EQL flags.

/* Input parameters: destination operand word,

/* register number nibble,

/% addressing mode pair,

/* operand size bit,

/% flag changing selection bit.
/*

~/
*/
*/
*/
*/
*/
*/
*/

A/

[RARARARAAARARAAARAAARARAARARARAAARAARARARARAAAARAAAAKRA/

dst_opr(datadword?,rn<{nib> ,mode<pair>
sizedbit>,f1l_chang<bit>) :=
(
if fl_chang eql se_fl
(
LAE(data,size)
) .
case mode
0 : | register
(.
wreg(data,rn,size)
) .

1,2,3 : /4% indirect register,
direct address,
indexed,
autoincrement

A/

r

1STCLY

{STCL?

o o o r S
Y . . 5
¥ N .. N ‘o,

Dec 31 15:52 1983 t9989.isp Page 1l

A2 = 2%eff_addr(rn,mode,size) .
bus_write(data,A2,size)
)

esac;

)

[ARAAAAARARAARKAAAARAAARARARAAARRARARKEAARAARARAAARARAK/

/% */
/% Fetches second instruction word. x/
/* */

[RAARKARKARAARAARAARKAAARAARARAARARAAKRARKARKARAAKRAKARK/

fetch_2 :=
(
I2 = bus_read(PC,W).
PC = PC + 2
)

[RAAKRKRARKARARARARARARARARKARARARAAAARARARARAAAAARAAKRAKRA/

/% ~/
/%~ Determines truth of a condition code. */
/% Input parameters: condition code nibble. */
/% Output parameters: condition code true/false bit. */
/% ~/

[ARARARKARRARKRARAARKARARARAAARARRAARKRARARAAKRAARARAAARKAKA/

condi_code(rn<nib))<bit)> :=
(

condi_code = case r¢n
0 : true
1 : (not AGT) and (not EQL)
2 : (not LGT) or (EQL)
3 :« EQL
4 : (LGT) or (EQL)
S ¢ AGT
6 : not EQL
7 : not C
8 :C
9 :not O
10 : (not LGT) and (not EQL)
11 : (LGT) and (not EQL)"
12 «+ P
esac

)

[RAARARARAAARARARARARAARARARARARAARARARARAARAARARARARALK/

/% ~/
/* Gets Result of an operation and changes C flag. */
/* Handles two operation : add & sub. */
/% Input parameters: operandl word, */
/. operand?2 word, x/
/% add/sub mode selection bit. */
/% OQutput parameter: result word. */
/* ~/

[ARKARAKRAARAARAARAKRARARAARARARARARAARAAAARAARAARARAAKRARA/

Dec 31 15:52 1983 t9989.isp Page 12

RC(opl<word> ,op2<{word> ,operation<bit>,
size<bit))<{word> :=
(
state 0P1<0:16>,
0P2<0:16>,
RESULT<C0:16>;
0P1<0:16> = o0pl<0:15> ext 17 .
0P2<0:16> = o0p2<0:15> ext 17 .
case operation
sub : { subtraction
(
case size
B : | Byte
(
RESULT<0:8> = 0OP1<0:8> - 0P2<(0:8>
)
W : | Word
(
RESULT{0:16> = 0P1<0:16> - 0P2<0:16>
) :
esac
)
add : ! addition
(
case size
B : t Byte
(
RESULT<0:8> = 0P1<0:8> + 0P2<0:8>
)
W : ! Hord
(
"RESULT<0:16> = OP1<0:16> + 0P2<0:16>
)
esac
)
esac .
RC = RESULT<1l:16> .
C = RESULTKO0>
)

[K FoA dedede A e de Ao e A Ak Ak A A A A Ak ko ok ok Ak ok dok ko kA A A AR A Ak A hkkkikk/
/% */
/* Does a context switch by fetching new WP and PC */
/>~ while saving the present WP, PC, and status (ST) #*/

/* in the new workspace. &/
/* Input parameters: Address for context switch */
/& */

/ kkkk;’c;’ck;’ckkk*k*k*;’ck:k;’c;’c;’c;’c;’ckkkkkkkkkkkkkkkkk*k*k*k*kk*k;k'k/

context_switch(address<(word>) :=
(

delay(5) . tALU cycles
Dl = WP ; S1 = PC ; D2 = ST . istore temporarily
WP = bus_read(address,W) . lassign new values

4

’

Dec 31 15:52 1983 t9989.isp Page 13

PC = bus_read(address+2,H) .

wreg(D1,13,W) . lstore in menory
wreg(S1l,14,W)

wreg(D2,15,H)

)

[RARAARAAARARARAAAAAAAAARAAAAAARAARAAAARAAARAKRAKRAAIAAL/

/% x/
/% Executes the context switch on a load signal */
/% by loading WP with vector FFFC and PC with */
/% FFFE.Also. sets interrupt mask in ST to zero, *~/
/% clears status bit 7 to 11 */
/& and clears the load signal flag(Load). */
/& . A/

[RkAkARkAAAAkAAkRkhkAkAhkARARAARARARRARAAARAAAARAARAKRAKRAKKRA/

LOAD :=
(
delay(5) . IALU cycles
intack=set . ldisable interrupt before context switch
- context_switch(0Oxfffc)
intack=low . lenable
IM = 0 ., 14 bit interrupt mask

ST<7:11>= 0 .
mpen = hot ST<8>.
Load clear; lreset load indicator

[Rk kAkARAARAAAAARARAARAARAAAAAARAARAARARARAAAAARARAAAKRK/

/% *x/
1% Executes reset signal context switch using &/
/% vectors 0000 for WP and 0002 for PC */
/* Interrupt mask in ST set to zero.The reset */
/% signal flag(Reset) is also cleared. ~/
/% */

[Rk hkkhkkkARrkrkrkAkrhkkhrkkkikikhhkkirrhkhikhkhkihhikhkrhkhhkik/

RESET :=
(
delay(5) . : IALU cycles
intack = set . !disable interrupt
context_switch(0x0000) .
intack = low . lenable
ST=0 .
mpen = not STK8>. lclear interrupt mask
Reset = clear iclear reset indicator

[RAARARAAAAAAAAAAAAAAAARARAARAARNARAARARAARARAAAAARAKAKRA/

/& */
A Executes overflow trap context switch using ~/
1% vectors 0008 for WP and 000a. *x/
/% Interrupt mask in ST set to one. */
/% ST<(7:11> is also cleared. */

Dec 31 15:52 1983 t9989.isp Page 14

A /.

[RARRRRARARARKRAAARKRAAARKARRAAAARKRAARARRAKRAAARKARAAAKRAARAAA/

OVERFLOW_TRAP :=

(

intack=set . lenable interrupt
context_switch(0x0008) .

intack=low . - ldisable interrupt

IM=1 . lset interrupt mask to 1

STC7:11>=0 .
mpen=not ST(8>

[RRRARRRARAARAAAAARKAARAARAAARRAAAARARARAAARRKARAAARAKAAKK/
{* . Y
/% This is the context switch at the start of ~x/
/% interrupt service by the processor.The service */
/* routine vectors are calculated using the value ~/

A of the interrupt code at the intcode port. */

/% x/
[RRARKRKRAAKRAAKRKRAAARRARKRARARRARKARKAARRARRARRAAAAARKAKKAKA/

INTERRUPT :=
(
in_vec = (4 % (intcode ext 16)) .
intack=set .
context_switch(in_vec) .
intack = low .
ST<7:11>=0 .
mpen=not ST(8)> .
if intcode eql 0

IM = 0
else
IM = intcode - 1 lset interrupt mask

)

[REARKRARARAAAAARARAAARAARRARARARRARAARARAAAAAAAAAARARKRARKAAA/

/% */
/% Provides clock pulses from processor for all */
/s required CRU operations and for user defined ~/
/% instructions like CKON,CKOFF,LREX etc */
/* Clock pulse output is from cruclk port */
/% */

[AAKRAAAKRAARAARRKARKARKRAAAARKARAARARAARRAAAAAARARAAAKAARA/

CRU_CLOCK :=
(
delay(clk) .
cruclk = high .
delay(pulse)
cruclk = low .
delay(clk-pulse)

o -

‘Dec 31 15:52 1983 t9989.isp Page 15

[AARkAAkAARAARAAAAAAARAAAAARAAAARAAAARARAAAARAARNAKRAAN/

/&
/%
/%
/x
/&
/*~
/&
/&

Transfers one bit of data from processor
through cruout line for serial transfer

‘of data. Input parameters: Register with,

bit count
shift start loc.
Data assumed to be in register D1

*/
*/
*/
*/
~/
~/

~/

~/

/ RAKKAAAAARARAARAAAAARAAAAARARAAAAAAAAAARARKAAAARKAKAAA/

cru_transfer(bicnt_reg{nib),starti{nib’) :=

do

(memen = high;
if (start ext 8) eql 7 | byte transfer
(cruout = D1<7>
elée ! word transfer
(cruout
CRG_&LOCK .

D1<155

bicnt_reg bicnt_reg - 1;

delay(clk)

if bicnt_reg neq 0
(
DL = D1 /: logical 1 ;
abus = abus + 1
)
)

until (bicnt_reg eql 0) .
cruout = low

] RARAAAAARAKRAARAAAAAAARAAARARAARAARRAAAAARRARAAAARAAAAAK/

/*~
/k
/*~
/%
/&
/&
/s
/%

Procedure to perform shift operations of

processor. '

Input parameters: Data to be shifted must
be in register Dl.
Register with shift cnt.
Shift function code.

~/
~/
~/
*/
*/
*/
*/
*/

[RARKAAANAAAAKRAARARAAARAAAAARAAAAAANARARKAAAAAARAARAAAKK/

SHIFT(count_reg<nib>,functni{pair>) :=

(
case functn

’

Dec 31 15:52 1983 t9989.isp Page 1o

0 : { SRA src,count
(
do
(
, C = DIK15> .
' DL = D1l /: arith 1 .
count_reg = count_reg - 1
)
until (count_reg eql 0) .
dst_opr(Dl,Sn,r,W,se_£f1l)
)

1 : Il SRL src,count

(

do
(
C = D1<15> .
Dl = Dl /: logical 1 .
count_reg = count_reg - 1
)

until (count_reg eql 0) .

dst_opr(D1l,Sn,r,W,se_f1l)

2 i SLA src,count

C = D1<0O> .
D1 = Dl %: arith 1 .
count_reg = count_reg - 1
)
until (count_reg eql 0) .
dst_opr(Dl,Sn,r,WH,se_£f1l)
)

3 : I SRC src,count
(
if count_reg eql O
D2 = D1 /: rotate 16

else
D2 = D1 /: rotate (count_reg ext 8) .
C = D1<0> .
dst_opr(D2,5n,r,W,se_f1l)
)
esac .
delay(3) . {ALU cycles

)

[AARAARAAAARAAAAAAARAAAARAARAAAAARAAAANARAAARAAAAAAAAAAA/

/% </
/%~ Signed multiplication of two 16 bit integers ~/
/& reg 0,1 = reg 0 & S1 , a4

k]

Dec 31 15:52 1983 t9989.isp Page 17

[RARARARAAAKRKAAARAAARAAAAAAAARRAAARRARARRAARAAARKARAAAK/

npys :=
A
state temp32¢0:31>, templ6<0:15>;

Sl= src_opr(Sn, Smode, W)
templé=rreg(0,W) .
temp32 = S1 * templ6 .

wreg(temp32<0:15>, 0 , W) . ireg 0 contains MSD
wreg(temp32<l6:31>, 1, W) . - lreg 1 contains LSD

if temp32 eql 0 ST (2>=set .

if temp32 gtr 0 ST(l)=set .

if temp32 neq 0 ST<0>=set .

delay(23) . IALU cycles
)

[ARAARAARAARKARRARAAAAAAAAARAARAARARAAAARAAARARAAAAAAKA/

A* */
/% Signed division of two integers ~/
/& Dividen is in reg 0,1 and is 32 bits */
/% Divisor is in any of the reg, 16 bits */
/% quotient is stored in reg O : */
/% remainder is stored in reg 1 */

[AARARAAKRAAARARARAAAAAARAAKRARARKAAARARAAAAAAAARAARAKAAA/

state temp32<0:31>, templ6<0:15)>;

S1 = src_opr(Sn, Smode, W) . lget the divisor
temp32<0:15> = rreg(0,W) . lreg 0 contains MSD of dividend
temp32<16:31> = rreg(l,W) . lreg 1 contains LSD of dividend

if (temp32<0> neq S1<0>) and (abs (S1432767) 'leq temp32)

ST<C4> = set .
if S1 eql O
(
ST<4> = set .
delay(6) . 1ALU cycles
) .

if ST<4)> eql O
(
templo=temp32/S1 .
wreg(temple,0,W) . 1Quotient
if templ6 eql 0 ST(2)=set .
if templée gtr 0 ST(l>=set .
if templé neq 0 ST<0>=set

templé = temp32 mod S1 .
wreg(templs, 1, W) . lremiander)
delay(23) . LALU cycles

Dec 31 15:52 1983 t9989.isp Page 18

[Rk ARAAAAAAAAAAKAAKAAARAAAAAARAAAAAARAKARARAAKRARAAAKAL/

/% A/
/* Executes opcode 0 group of instructions. *~/
/* Instructions ¢ LI r,const BLWP src A/
/% Al r,const B src ~/
/% ANDI r,const X src */
/s ORI r,const CLR src x/
/% CI r,const NEG src */
/% STWP r INV src A/
/% ' STST ¢ INC src A/
/% LWPI const INCT src x/
/% LIMI const DEC src */
/% IDLE DECT src */
/% RSET BL src */
/* RTWP SWPB src ~/
/% CKON SET0 src ~/
/% , CKOF ABS src A/
/% LREX TB disp x/
/% SBO disp SBZ disp A/
/% Static and dynamic shifts: x/
/% SRA src,count SLA src,count x/
/* SRL, src,count SRC src,count x/
/% All Jump instructions */
/% ~/

[RAARARAARAARARAARAAAAAARARAKRARKRAAARARARAAARAARKARAARAL/

op_0 :=
(‘
state cnt<0:3>; | counter for shift count
case Size
0 :
(
case Dmode
0 :
(
case I1<7:10>
0 : ! LI r,const
(
fetch 2 .
dst_opr(I12,5n,r,W,se_fl).
delay(3)
)
-1 : ! AI r,const
(
fetch_2 .
Dl = src_opr(Sn,r,W) .
D2 RC(D1,12,add , W) .
0 = (D1<0> eql I2<0>) and
(D2<0> neq D1<0>);
delay(3) .
dst_opr(D2,5n,r ,W,se_f1)
)
2 : ' ANDI r,const
(

IALU cycles

IALU cycles

.

’

Dec 31 15:52 1983 t9989.isp Page 19

fetch_2 .

Dl = src_opr(Sn,r,W) .
D2 = D1 and I2 .
delay(3) .
dst_opr(D2,5n,r ,W,se_f1l)
)

3 i
(
fetch_2 .

Dl = src_opr(Sn,r,W) .
D2 = D1 or 12

delay(3) .
dst_opr(D2,Sn,r,W,se_f1)

ORI r,const

)
4
(

{ CI r,const LST ¢
case I1<6> _
0: ' CI r,const
(

fetch_2 .

D1 = src_opr(Sn,r

D2 = D1 - I2 .

delay(3) .

LGT = ((D1K0> eql
((D1K0> eql
((D1<0> eql
((D1<0> eql
(D2 eql 0)

AGT
EQL

{ LST r and LWP ¢

-
~ s

I1<11>
LST r

case
0 : i

ST =

mpen=not
delay(3)

1 : ¢ LWP VY

delay(3)

WP =

esac
)
esac
)

5 ¢t
(:
delay(2)
dst_opr(WP,Sn,r,W,de_f1)
)

6 !
(
delay(2) .
dst_opr(ST,Sn,r,W,de_f1)

STHWP r

STST r

lALU cycles

IALU cycles

LWP r

L)

{ALU cycles
1) and (I2<0> egql 0)) or
I2<0>) and (D2<0> eql 1)) .
0) and (I2<0> eql 1)) or
I2<0>) and (D2<0> eql 1)) .

rreg(Sn,W) .

ST(8> . :
. IALU cycles

. {ALU cycles

rreg(Sn,W)

IALU cycles

{ALU cycles

Dec 31 15:52 1983 t9989.isp Page 20

)

7 :+ { LWPI
(
fetch_2 .
delay(4)
WP = I2
)

8 ¢ ! LIMI
(
fetch_2 .
delay(4) .
IM = I2<12:15>
)

10 : ¢ IDLE

abus<0:2>
delay(3)
CRU_CLOCK

1
N

11 : ! RSET

IM = 0;
abus<0:2> = 3
CRU_CLOCK
)

12 : ! RTWP and DIVS
(

case 116>
0 :
(
divs
) :
1 : ' RTWP

(
ST = src_opr(l5,r,W)
mpen=not ST(8> :
delay(4) .
PC = src_opr(l4,r,W)
WP src_opr(1l3,r W)

)
esac
)
13 : | CKON and DIVS
(

case I1<6>
0 :
(
divs
)
1l :
(
abus<0:2> =5
delay(3)

CRU_CLOCK
y -
esac

lALU cycles

{ALU cycles

{ALU cycles

IALU cycles

'ALU cycles

4

’

Dec 31 15:52 1983 t9989.isp Page

)
14 : |
(

CKOF and MPYS

case 11<¢(6>
0 :
(
npys

abus<0:2>
delay(3) .
CRU_CLOCK
)
esac

15 : |

case 11<6>
0 :
(
mpys
)
1l .
(
abus<0:2>
delay(3).
CRU_CLOCK

esac

esac
)
l :
(
case Dn
' 0 !
(
A2 =
delay(6) .
context_switch(A2)
)
1 1
(
if Smode eql 0 !
PC =
else
PC =
delay(3)
)
2 1
(
XR
I1L = XR ; XR =
delay(l) .
)

BLWP src

B src

X src

I

Il

21

=6 .

1ALU cycles

LREX and MPYS

= 7.

|ALU cycles

2 & eff_addr(Sn,Smode,W) .

{ALU cycles

register addressing
WP + (2 % (Sn ext 8))

2 % eff_addr(Sn,Smode,W) ;

: {ALU cycles

src_opr(Sn,Smode,W) .

TALU cycles

Dec 31 15:52 1983 t9989.isp Page 22

3 : | CLR src

(
delay(2) . {ALU
dst_opr(0,5n,Smode,W,de_f1)
)

4 : | NEG src
(
D1l = src_opr(Sn,Smode,W) .
D2 = RC(0,Dl,sub,W) .
dst_opr(D2,S8n,Smode ,W,se_fl)
delay(3) . {ALU
0 = (D2 eql 0x8000)
) ,

5 : | INV src
(
D2 = src_opr(Sn,Smode,W) .
delay(2) . , {ALU
dst_opr(not D2,Sn,Smode,W,se_fl)
)

6 : | INC src
(
D1l = src_opr(Sn,Smode,W) .
D2 = RC(D1l,1,add,W) .
dst_opr(D2,8n,Smode ,W,se_£f1l) .
delay(2) . , {ALU
0 = (D1<0> eql 0) and (D2<0> eql 1)
)

7 : | INCT src
(,
D1l = src_opr(Sn,Smode,W) .
D2 = RC(D1,2,add,W)
dst_opr(D2,8n,Smode ,W,se_fl) .
delay(2) . {ALU
0 = (D1<0> eql 0) and (D2<0> eql 1)
)

8 : | DEC src
(
Dl = src_opr(Sn,Smode,W) .
D2 = RC(D1,1,sub,H) .
dst_opr(D2,5n,Smode,W,se_£f1l) .
delay(2) . ALU
0 = (D1<0> eql 1) and (D2<0> eqgql 0)
)

9 :+ | DECT src
(.
D1 = src_opr(Sn,Smode,W) .
D2 = RC(D2,2,sub,W) .
dst_.opr(D2,5n,Smode,W,se_f1l)
delay(2) . LALU
0 = (D1<0> eql 1) and (D2<0> eql 0)
)

10 : | BL src
(
dst_opr(PC,11l,r,H,de_f1l) .
if Smode eql 0 ! register addressing

PC = WP + (2 & (Sn ext 8))

cycles

cycles

cycles

cycles

cycles

cycles

cycles

Dec 31 15:52 1983 t9989.isp Page 23

else
PC = eff_addr(Sn,Smode,W) ;
delay(3) . ’ {ALU cycles

)
11 : | SWPB src-

(
D1 = src_opr(Sn,Smode,W) .
D2<0:7> = D1<8:15> .
D2<7:15> = D1<0:7> .
delay(2) . {ALU cycles
dst_opr(D2,5n,Smode ,W,de_f1)

)

12 : ! SETO src
(
delay(2) . IALU cycles
dst_opr(0xffff,Sn,Smode,W,de_f1l)
)
13 : | ABS src
(
mpilck= set
D1 = src_opr(Sn,Smode,W) .
D2 = case D1<0O»
0 : RC(0,Dl,add,W)
1 : RC(0,D1,sub,W)
esac .
dst_opr(D2,8n,Smode,W,de_f1l) .
LGT = (D1 neq 0) .
g AGT = (D1<0> eql 0) and (Dl neq 0) .
. EQL = (D1 eql 0) .

mpilck = low .
0 = (D1 eql 0x8000);

else delay(3) ;

case Il<8:11>
0 : | dynamic shifts
(
S1 = rreg(0,HW) .
cnt = S1<12:15> .
Dl = src_opr(Sn,r,W) .
delay(3) . IALU cycles

SHIFT(cnt,I1<6:7>)
) .
default : | static shifts
(
cnt = Il1<8:11>
D1l = src_opr(Sn,r,W) .

. SHIFT(cnt,11<6:7))
))
esac

if D1<0) eql 1 delay(4) IALU cycles

Dec 31 15:52 1983 t9989.isp Page 24

case Il<4:7>
13 s | SBO disp
(
Dl = rreg(l2,H).
D2<0:2> = 0;
D2<3:14> = D1<3:14)> + I1<8:15>.
cruout = high; memen = high;
abus = D2<addr>.
CRU_CLOCK;
abus = low;
delay(3) . {ALU cycles
cruout = low

14 : | SBZ disp

Dl = rreg(l2,W).

D2<0:2> = 0;

D2<3:14> = D1<(3:14> + I1<8:15>.

cruout = low; memen high;

abus = D2<addr>.

CRU_CLOCK;

abus = low;

delay(3). {ALU cycles

15 : ¢ TB disp

Dl = rreg(l2,W).
D2<0:2> = 0;
D2<¢3:14> = D1<3:14> + I1<(B8:15>.
memen = high;
abus = D2<addr>.
delay(clk + (3*phase));
ST<(2> = cruin . -
delay(3) . IALU cycles
abus = low .
)
default : | Jcond disp
(
if condi_code(Il<4:7>)
PC = PC + (24(I1<(8:15> sxt 16)) ;

delay(3) . IALU cycles
)

esac

)

esac
)

[AAKRAAARAARKRAAARAAKRARKAAAAAAAAARAAAAARARAARKRAARAARRAAK/

/* x/
/% Executes opcode 1 group of instructions. */
/% Instructions : COC src,r *~/

Dec 31 15:52 1983 t9989.isp Page 25

/% CzZC src,r ~/
/% XOR src,r . */
/% XOP src,r */
/% LDCR src,count */
/% STCR src,count ~/
/% MPY srec¢,r */
/% DIV src,r X/
Sl K */

[AARAXARKAAKAXAAKAAAKAAAARAAKARAAKAARAARARAARAKRAARAKAK/

op_l :=
(
state temp<0:15>,templ<0:32>,tenp2<0:16>,tenp3<0:16>,
cnt<0:3>;

case (Size concat Dmode)

0 ¢« | COC src,r
(
Dl src_opr(Dn,r,H) .
Sl src_opr(Sn,r,W)
delay(3) . {ALU cycles
EQL = ((Dl and Sl) egql Dl)
)

1 ¢+ | CZC src,r
(
D1 = src_opr(Dn,r,H)
81 = src_opr(Sn,r,W) A
delay(3) . {ALU cycles
EQL = ((D1 and S1l) egql S1l)
)

2 :+ 1 XOR src,r
(

Dl = src_opr(Dn,r,W) .

S1 = src_opr(Sn,r,W) .

D2 = D1 xor Sl .

delay(2) . ALU cycles

dst_opr(D2,Dn,r ,W,se_£f1l)
)
3 : I XOP src,r
(
ST<C6> = high;
temp = (4%Dn + 0x40) .
context_switch(temp)
delay(7) . . {ALU cycles
"wreg((eff_addr(Sn,Smode,W)),11,W)
)
4 : | LDCR src,count
(H
temp = rreg(l2,W) . temp<0:2> = low .
cnt = I1<6:9>.

if ((ent ext 8) leq 8) and ((cnt ext 8) gtr 0)
(
D2
Al

eff addr(Sn,Smode,B).
src_opr(Sn,Smode,B).

nou

hld

s

Dec 31 15:52 1983 t9989.isp Page 26

if D2<15> eql 1
(
D1<{lobyte> = Al<byte>.
LAE(Al,B); P = parity(Al<(byte’) .
abus = temp(0:14> .
cru_transfer(cnt,15)
)

else
(
Dl<(byte> = Al<(byte>.
LAE(AL,B); P = parity(Al<byte>).
abus = temp(0:14> .
cru_transfer(cnt,7)
)

)

else
(
D2 = eff_addr(Sn,Smode,W).
D1 = src_opr(Sn,Smode,W).

LAE(D1 ,W).
abus = temp<0:14> .
cru_transfer(cnt,15)
):
delay(5) . IALU cycles
)
5 ¢« | STCR src,count
(
temp = rreg(l2,W) . temp<0:2> = clear
cnt = I1<6:9>

if ((cnt ext 8) leq 8) and ((cnt ext 8) gtr 0)
(
if Smode eql 3 | auto increment
D2 = rreg(Sn,Size)

else
D2 = src_opr(Sn,Smode,W). | read destination
if Smode eql 2 I before storing

PC = PC - 2 .
abus = temp<0:14> .

do
(
memen = high .
delay(clk +(3%phase));
D1<0> = cruin .
delay(phase)

cnt = cnt - 1 .

delay(clk)
if cnt neq 0
(
D1 = DL /: logical 1 ;
abus = abus + 1
)

Dec 31 15:52 1983 t9989.isp Page 27

)
until (cnt eql 0).

if (I1<(6:9> ext 8) neq 8
D1 = D1 /: logical (8 - (Il<6:9> ext 8)).
dst_opr(Dl,Sn,3mode,B,se_fl);
P = parity(Dl<(byte>)
)
else
(
abus = temp<0:14> .

do
(
memen = high .
delay(clk+(34phase));
D1<0> = cruin .
delay(phase)

cnt = cnt - 1

delay(clk)
if cnt neq O
(
DL = D1 /: logical 1 ;
abus = abus + 1
)
)
until (cnt eql 0).
if (IL<6:9> neq 0)
DL = DL /: logical (16 - (IlL<6:9> ext 8)) .
dst_opr(Dl,Sn,Smode ,W,se_f1)
);
-delay(8) . lALU cycles
)
6 : | MPY src,r
(

Sl = src_opr(Sn,Smode,W) . lget first operand

D1 = rreg(Dn,W) . lget second operand

templ<0:16> = 0; temp2<0> = 0; templ<l7:32> = Sl;!clean scratch reg
temp2<1:16> = D1 .

templ = templ & temp2 . !compute product for unsigned multiplication

if (Dn ext 8) eql 15 Ispecial case if reg 15 is used
(
wreg(templ<l:16>, 15, W) . lmost significant word
M write(templ<17:32>, (WP+(2%x16))) . !Least significant word
) !in memory next to reg

’

)

| else

| (_

| wreg(templ<l:16>, Dn, W) . Imost significant word

| wreg(templ<l7:32>, (Dn+l), W) . lleast significant word
)

delay(21) . ’ IALU cycles

. 5 B =

Dec 31 15:52 1983 t9989.isp Page 28

7 s+ t DIV src,r
A
S1 = src_opr(Sn,Smode,W) . lget first operand
templ<0> = 0; temp2<0> = 0; temp3<0> = 0; lclean scratch spaces
temp2<(l:16> = Sl; templ<l:16> = rreg(Dn,W) . tcopy & get operands
temp3<l:16> = templ<l:16>.
if temp2 leq temp3 ldivisor is leq than msd of dividend
(
delay(6) . IALU cycles
ST(4> = set lset overflow flag
)
else

(
if (Dn ext 8) eql 15 !special case if reg 15 is used

(

templ<1l7:32> = M _read(HWP + 2%16) . lget 1lsd of dividend

temp3 = templ / temp2 .

wreg(temp3<l:16>, 15, W) . Istore quotient in reg 15
tenp3 = templ mod temp2 . lcompute remainder

M write(temp3<l:16>, (WP + (2%16))) . Istore in next memory

temp3 = templ / temp2 .

wreg(temp3<l:16>, Dn, W) . Istore quotient
temp3 = templ mod temp2
wreg(temp3<l:16>,Dn+l, W) . Istore remainder
)
)i
delay(23) . 'ALU cycles

esac
)

[R AAAAAAARARARKRAARAAAAARAAAAAAAAAAARAAARAAAAARAAARAAAKR/

; |
/% *x/ 1
/% Executes opcode 2 group of instructions. . *x/
/% Instructions : S2C,SZCB src,dst */
/* x/

[RRARAARARARAAAAAARAAAAAAAAAAARAARARARAAAAAAAAAARAKAAKX/

op_2 :=
(
S1 = src_opr(Sn,Smode,Size) . lget first operand

if Dmode.eql 3 { auto increment
(
D2 = 2%rreg(Dn,Size) .;

D1l = bus_read(D2,5ize)

)

<

Dec 31 15:52 1983 £9989.1isp Page 29

else

D1 = src_opr(Dn,Dmode,Size) . | Also dest. address,
if Dmode eql 2 | so read last

PC = PC - 2 .

D2 = D1l and (not S1) . lcompute set zero corresponding
dst_opr(D2,Dn,Dmode,Size,se_fl) . Istore result D2 in dst
delay(2) . IALU cycles
if Size eql B

P = parity(D2<byte>)
)

[RARAAAAAAKRAAARAAAAAAAAAAAAAAAAAAAAAAAAAAAAARAAAKARAAA/

/% ~x/
/% Executes opcode 3 group of instructions. */
/* Instructions : S,8B src,dst */
/% ~/

[RAKRAARAARAARARAAARAAAARAAAAAAARAAAARAAAAAAAARAARARAAX/

op_3 3=
(,
Sl = src_opr(Sn,Smode,Size) . tget first operand
if Dmode eql 3 | auto increment
(
D2 = 24%rreg(Dn,Size) .:
D1 = bus_read(D2,5ize)
)
else
D1 = src_opr(Dn,Dmode,Size) . ! Also dest.addr.,
if Dmode eql 2 | so read last
pPC = pPC - 2 .,
D2 = RC(D1,S1l,sub,Size) . tcompute the difference
dst_opr(D2,Dn,Dmode,Size,se_fl) . tstore in dst
0 = (81<0> neq D1<0>) and (D2<0> neq D1<0>) . Iset status bits
delay(2) . {ALU cycles

if Size eql B
P = parity(D2<{byte>)
)

[ARKRAKRKAKRAAAAAKRAAKARAARRAAAAAKRRARAARARAAAARAARARARAARA/

/% ~/
/* Executes opcode 4 group of instructions. a4
/* Instructions : C,CB src,dst ~/
RS ~/

/kk*kkkkkkk#kkkkkkkkkkkkkkkkkkkk*kkkkkkkkkkkkk*kkkkkkk/

op_4 :=
(
S1 = src_opr(Sn,Smode,Size) . lget first operand
D1 = src_opr(Dn,Dmode,Size) . tget second operand
D2 = D1~ S1 . lget the difference
LGT = ((S1<0> eql 1) and (D1<0> eql 0)) or 1ST<0>

((S1<0> eql D1<0>) and (D2<0> eql 1)) .

AGT = ((S1<0> eql 0) and (D1l<0> eql 1)) or 1ST<1>

<

.

Dec 31 15:52 1983 t9989.1isp Page 30

((S1<0> eql D1<0>) and (D2<0> eql 1))
EQL = case Size
B : D2<(byte> eql O
W : D2<¢word> eql O
esac .
delay(3) . IALU cycles
if Size eql B
P = parity(Sl<byte>)
)

[RAAAAKRKAARARARARAAARARAARAKRAAARARAARAAAARARAAAAAAAAAA/

/* ~/
_/* Executes opcode 5 group of instructions. &/
/* Instructions : A,AB src,dst */
/% : *x/

T RARKRAARKRAAARARAARKAAAAAAAAAARARARAAARRARAAKRAAAAKKKRAK/

op 5 :=
(
Sl

i

src_opr(Sn,Smode,Size) .

if Dmode eql 3 | auto increment
(
D2 = 2*%rreg(Dn,Size) . ;
Dl = bus_read(D2,Size)
) .

else :
D1 = src_opr(Dn,Dmode,Size) . ! Also dest.addr.,
if Dmode eql 2 | so read last

pC = PC - 2 .

D2 = RC(D1,S81,add,Size) .

dst_opr(D2,Dn,Dmode,Size,se_fl) . istore in dst
0 = (S1<0> eql D1<0>) and (D2<0> neq D1<0>) .
delay(2) . IALU cycles

if Size eql B
P = parity(D2<{byte>)
)

[RARAKRARARARAAAAAAARRRARAARARARARAARAARARAAIARARAAKAKRAA/

/% */
/* Executes opcode 6 group of instructions. *x/
/*% Instructions : MOV,MOVB src,dst */
/x ~/

[KAAAAAAARRARKARARAARAARAAAARAAAAAARAARAAAAAAAAARAARAA/
op_6 :=

(

D2 = src_opr(Sn,Smode,Size) .-

if Dmode eql 3 ! auto increment
(

S1 = 24rreg(Dn,Size) .;
D1 = bus_read(Sl1l,Size)
) .

else

lcompute the sum

{3TC2>

lget first operand

iset status bit

iget the source operand

Dec 31 15:52 1983 t£9989.isp Page 31

D1 = src_opr(Dn, Dmode, Size) .! Read destination
if Dmode eql 2 ! before writing
PC = PC - 2 .
dst_opr(D2,Dn,Dmode,Size,se_fl) . lstore src in dst
delay(2) . ALU cycles
if Size eql B
P = parity(D2<byte>)
)

[AAAAAAAAARARAAAARAAAAAAAAAAARAARAARAAAAAARAAAAAAAAAKAKRA/

/* */
/* Executes opcode 7 group of instructions. */
/% Instructions : S0C,S0CB src,dst */
/% *x/
[RkkokkhkkhhkkhkhhhhhhhARAAAAAAAAAAAAAAAAAAARAAAAAAAAAAAK/
op_7 :=
(
S1 = src_opr(Sn,Smode,Size) . lget first operand

if Dmode eql 3 ! auto increment
(

D2 = 24%rreg(Dn,Size) .;

D1 = bus_read(D2,Size)

)
else

Dl = src_opr(Dn,Dmode,Size) . ! Also destination
if Dmode eql 2 ! address, so

PC = pPC - 2 . | read last
D2 = D1 or S1 . lcompute set one corresponding
dst_opr(D2,Dn,Dmode,Size,se_£f1) . lstore result in dst
delay(2) . ALU cycles

if Size eql B
P = parity(D2<byte>)

[ARk ARARAAAAAAAARAAAAAAAAARAAAAARARARAAAARAAAAAAAAAAAK/

/% */
/* Illegal Opcode check. ~/
/* &/

[AAhAkAkAAhrkAhkhhhrhAAAAAAAAAAAAAAAARAAAAARAAAAAAAAAARAAKRAAA/

ILLOP_CHECK :=
(
Illop=0 . tif illegal opcode is detected it will be set
if (Il geq 0x0000 and Il leq 0x007f) Illop=set .
if (Il geq 0x00a0 and Il leq 0x017f) Illop=set .
if (Il geq 0x0320 and Il leq 0x033f) Illop=set .
if (Il geq. 0x0780 and Il leq 0x07ff) Illop=set .
if (Il geq 0x0c00 and Il leq O0xO0fff) Illop=set .

)
[AhAAkArkAAhAAAAkhkAAAAARAAAAAARAAAAAAAAAAAAAAAAAAARAAAKRA/

/% ~/
/% Fetches first instruction word. x/

P .

Dec 31 15:52 1983 t9989.isp Page 32

/% */
[RRAARARARAARAAARAAAAAAARAAAAAARKAAAAAAAAAAAARARAAAAAAAAAAA/

fetch_1 :=
(
iaq = high; lindicate processor is fetching instruction
Il = bus_read(PC,W) . lfetch instruction pointed by PC
iaq =low;
ILLOP_CHECK . Icheck for illegal opcode
PC = PC + 2 lincrement PC

)

[AARARAAAAKRAAKKAAKAAKAAKRAAARARAAAAAAKAAAARAAAKRAARAAKAKRA/

/& ~/
/% Decodes instructions. ~/
/x */

[AARARAAARARAAAARARAARAARARAAAAAAAAARAAAARAAAARAAARAAAALRAAA/

decode :=

(

delay(l) . I1ALU cycles

case Opcode
0 : op_O0 .
1 : op 1
2 : op_2
3 : op_3
4 : op_4
S : op_5
6 : op_b
7 : op_7

esac

[RAARAAKKAAARAARAAARARKARAAAAAAAAAAAAAARAAAAARAKAAAARAAA/

/* ~/
/% Decodes instruction fully and executes it. */
/% ~/

[RARAAKAAAAAAAKAAAAAAAAAAAAKRAAAAAAAAAAARAAAAAAAAAAAAAA/

execute :=

(

decode .

if XR<0:9> eql 18 | Execute remote instruction
(
decode .
I1l = XR ; XR = I1 .
)

)
[RAKRAARAAAAARAARRARRARAAARAAARARAAAAAAAAARARRAAARKRAAAAA/

/& */
/* Execution of Extended Processor Instruction. */
/& &/

/k*kkkkk**k*k*k*k*k*kkkkkkk*kkkkkkkkkkk*kkkkkkkkkkkkk*/

s

l Dec 31 15:52 1983 t9989.isp Page 33

| I XIPACT :=
(

context_switch(0x0008) . lreserve the environment
delay(6) . 'ALU cycles
I Illop = low . lreset illegal opcode indicator
holda = high . . lprocessor is in hold state
wait (xipp : lead) . lwait until external processor is done
holda = low . texit from hold state .
WP = rreg (13,W) . lrestore the environment
PC = rreg (14,W)

ST = rreg (15,0) .
mpen = not ST(8>
)

] AARAKRAAARARARAAAAAARARAAAAARKAAARARAAARRAAARRRAAAAAKRA/

/% : \ x/
/* Main Processing Loop. ~/
/% x/

/% 1- interrupt is recognized through intreq signal */
/% 2- load,xipp and reset signals are processed by */

/*x the when processors. &/
/* 3- if illegal opcode is detected but xipp is not %/
/* set, the process resumes normal operation. ~/
/% 4- if overflow trap is enable and no interrupt *x/
/* request is pending, the overflow trap is */
/% executed. ~/
/* 5- if idle instruction is executed, the processor */
/* remains idle until either load, reset or */
/% interrupt event happens. */
/* ~/

[RARAARAARARAARAAARARAAARAAARAAAAAAAARAAAAARAARAAAAKAAA/

when(reset : trail) := lto recognize a reset signal
(
wait(reset : lead)
Reset = set
)
when(load : trail) := tto recognize a load signal
. (
wait(load : lead)

Load = set
) |
|
when(xipp :trail) := lto recognize extended instruction processor
(!present signal
Xipp=set
)
main :=
(.
fetch_1 . Ifetch instruction from memory
if (Illop neq set and Xipp neq set) execute ldecode and execute
else
(.
if Xipp XIPACT lexternal processor takes over buses

EA

.

Dec 31 15:52 1983 t9989.isp Page 34

else
(
delay(6) . IALU cycles
if TIllop 1illegal opcode but no Xipp
(
Tllop=low . lreset illegal opcode indicator
context_switch(0x000a) .
11<0:9>=0x010 iso to skip the checking below

)

)
)
if Load LOAD
else
(
if (I1<0:9> neq 0x010) and (I1<0:5> neq 0x0b) ! not BLWP or XOP
(
if (intreq eql low) and (intcode leq IM) INTERRUPT
else
(

if (8T¢4> eql set) and (ST<10> eql set) OVERFLOW_TRAP

else

(

if I1<0:10> eql 26 | IDLE instruction, wait for an event
(
while ((load and reset) eql high) and (intreq eql high)
(
if (intcode ext 8) leq (IM ext 8) INTERRUPT
else CRU_CLOCK
)y .

)
if Reset RESET .
if Load LOAD

)

APPENDIX A: The Hardware Modules

A.2 The Memory Module (timem.isp)

.

cat timem.isp

[ARAAARAARAARRAAAAAAAAARAAARAAAAAAAAAAAARAARAAAAAAARAAKRAAAAK/

*~/
*/
*~/
*/
*~/
*/
*{
*~/
*/
*~/
*/

/%
/* MEMORY MODULE
/%
/% Designed to work with the Texas Instrument
/% TMS 9989 processor.
/* This memory Module does not support byte write
/% operations.
/%
/% Albert Lam
/% "Intellitech Canada Limited September 1983
/%
[RAAARAKAAARARARKAARAAAAAAAKARAAAAAARAARAAAAAARARAAARAARARAAA/
macro HIGH = 1&,
LOW = 0&,
WORD = 16&;

port adbus(15>,
dbus<{WORD> ,
memen,
ready,
dbin,

we;

state =~ ald(lsS>:
mnem nel0:2553<WORD> ;

when (memen:trail dbin eql HIGH)

|
!
!
!
!
!

address bus

data bus

low true memory enable
memory ready

data bus input signal

low true write enable

address latch

I 16 bit wide memory

[}

(al = adbus ; next

ready = HIGH ;

next

dbus = melall; next

delay(3);
ready = LOW ;
dbus = 0;

)

when (memen:trail dbin eql LOW)

(al = adbus ; next

ready = HIGH ;
melall = dbus
delay(3);

ready = LOW ;

.
r

next

next

APPENDIX B:

The Topology File (test.t)

¥

.

-

%

/kkkkkkkkkkkkkkk*kkak/
/& &/
/% Topology file for initial test of TMS 9989 + memory ./ */
I &
/& Albert Lam */
/% Intellitech Canada Limited 09-SEP-83 , */
/% *
[RAKARAAARARARAAAKKAAKARARKAAARKAARKARAARRAAARARAARAKARKAAKKAAKAA/
%
signal
adresbh(15), { address bus
datab(16), | data bus
dbinb, | data bus in signal. high true
memenb, | memory enable. low true.
web, { write enable. low true
cruclb, | CRU clock signal from processor
cruinb, ! CRU data in port -for serial I/O
cruoub, ! CRU data out port for serial I/O
holdb, -1 low true hold signal
holdab, ! hold acknowledge. high true
readyb, ! ready signal from menory
pwaitb, | wait signal for memory operation
mpenb, | memory map enable output signal. low true
iagb, | instruction acquisition signal. high true
loadb, | low true load signal to processor
resetb, | reset signal to processor. low true
npilch, | multiprocessor interlock output signal
xippb, | extended instruction input signal. low true
intreb, | low true interrupt request signal
intcob(4), | interrupt priority code
. intach; { interrupt acknowledge output signal
[RARAAAAKARAAARAAKARAAARAAKAAAAARAARAAAARAAKAAAAKKARAAKAAAAAAKRAAK/
/% &/
l* Processor descriptions ’ */
1% ~/
1% " pl = TMS 9989 ~/
/& mem= memory module,initial max.core ~/
/% ~/

[hAAkkARAARRARAAAAAAARAARKAARKAAKRKARAAAKRAARAAKAARKARKAAAKAKAAKAA/
X
! TEXAS INSTRUMENT TMS-9989

processor pl = “t9989.sim";
time delay S ns;
connections abus = adresb,

dbus = datab,
dbin = dbinb,
memen = menenb,
we = web,
cruclk = cruclb,
cruin = cruinb,
cruout = cruoub,
hold = holdb,
holda = holdab,
ready = readyb,
pwait = pwaltb,
mpen = mpenb,
laq = iaqgb,
load = loadb,
reset = resetb,
mpilck = mpilch,
xipp = xippb,
intreq = intreb,
intcode = intcob,
intack = intacb;
{MEMORY MODULE

processor mem = “timem.sim";

time delay Sns;

connections adbus = adresb,
dbus = datab,
memen = memenb,

ready = readyb,
dbin = dbinb,
we = web;
initial me = “max.core";

$

APPENDIX C:

The Linking Loader Description (t9989.1)

5

. .

pr t9989.1

Sep 16 15:50 1983 t£9989.1i Page 1

| AAAARAARAAARAARAAAAKAAAAAAAAAAAKAAKAAAAARARAAKAAAAAAA]

R A
1% £9900.1. A1
I*% Linking Loader description for Texas Instruments !
i* 9900 microprocessor. al!
I* No input requirements. A1
{4 Generates t9900.a on compilation. ik
% Use "inter" to compile. *1
{* A1
I 4 Author : Samir S. Shah. *1
l% Date : Summer 1980. ~1
|~ Modified :+ Samir 5. Shah. * |
i~ Modification : The previous version addressed a3
LA memory by 16-bit words. It is Al
R changed to byte addressing in A1
L% this version. A1
1%~ Date : Sept 1980. ¥
1A : A1

!kkkkkkk*kkkkkkkkkkkkkkkkkkk*kkkkkk*kkk*kkkkkkkk*kkk*k1

[Ak A khAkhhhhikhiikrhikiihkhkrhkhirhhhhhirhhbhhhihhhkirrril

LA A1
I The memory is addressed in bytes. The default A1
l* instruction length is two bytes. The maximum A
% instruction length is six bytes. ol
I & A1

| Aokkk Aok Ak ok Ak ok k Ak kA hrkikkAkrkhhrrkrrhhrrkikrkihhkhrrirrk]

instr

IC3,13<1628
DAk Ak dokok ok ok kA Ak Ak A Aok k kA h A hAkkhhkdkAhrhhrkikiisk|
LA : . ' x|
Ix Alternative shorter names for instruction bytes. #*!
LA il

!kkkkkkkk*k***kk*kkk*k*kkkkkkkkkkk***k*k*k**kkkk*kkkkkl

format

I0 = IC03<15:0>,

I1 = IC131<15:0>,

I2 = IC23<15:0>,
e Ak ke ko e e ke ke e A ok ok ok etk ke s e Ak sk e e ook ke ok ek ek ok ek Aok ek ok ok |
LA ol
A Subfields of instruction bytes.]!
LA A1

| Aok kkok Ak Ak kA kkkh ik hkrhhkrrkkhhhkkrhhrrrrtrhrkhhrrtkhikrhix]

IC03<15:13>,

Opcode =

BT = IC01<12>,
D = IC0J1<11:10>,
DRO = ICL01<9:8>,
DR1 = IC01<7:6>,
TS = IC03<5:4>,
SR = IC01<3:0>,

A

Sep 16 15:50 1983 t9989.1i Page 2

P AKRAKRAKRARKARAKRAKRAAAAAKRKAAARKRRARAARARAARARAARRAKRARAAKAAKXL

1k B!
l4~ 8-bit extended opcode. *\
LA Al

| AAARAKAKAKRARKAKAAAKAKRAAAKRAKAAAARARARAAKAAARARKAARAKKX]

extop = ILC01<7:0>,
disp = IL01K7:0>,
xtion = ICL01<7:5>,
count = IC01<7:4>%

| ARAAAAAARAKRAAAAAKRKAAAKRARAARAARKARAARAAKRKAAARAAKRARAARKL

1 & * 1
I~ Memory space declaration. x|
| x|

L AAKRAAKRAAARARKARKAARAARKAKRKAARAARAARARAAKRAARAARAKRAKKAKL

space
CO:0xSEFEYS

L AKARAKRARAAKRAAAARAAAARARAAAARAAAKRAAARARARARKAAAAAKRARAKRK]

LA *1
'% Unconditional Jump instruction for non-contiguous *!
4 memory allocation. A1
L& ol

1kkkkkkkkkk*kkkk*kkkk*%k*kkk*k*kk*kkkkkkkkkkkkkkkkkkkk!

transfer
£
new
Opcode = 0 ¢
BT = 0§
TD =1 s
DRO = 1 ~ -2 §
DRl = 1 s
TS = 2 8
SR = 0 ¢
Il = address $
length = 2 ¢
3
mode

!kkkkkkkkkk**kkkkkk*kkkkkkkkkkkkkk*kkkkkkkkkkkkkk*kkkk!

(R A\
I~ Resolve one or both addresses. x|
LA : * 1

| AAARAKRAKRKARAKRAKKAARKAARKARAKAAAARAAARAAAARARAAARAAKRKRA]

case (length eql 3) :
if I1 eql O then { Il = addressCll § 3} s
if I2 eql 0 then { I2 = addressC21 § 1} s

break $.

esac,

case ((labelcnt eql 1) and

»

.

Sep 16 15:50 1983 t9989.i Page 3

(field eql Il1)) :
Il = address $
break $
esac,
case ((labelcnt eql 1) and
(field eql 12))
I2 = address $
break $
esac,
case (field eql disp) :
disp = (address + disp - . - 1)
break $
esac,
default :
I0 = address $

‘esac $

APPENDIX D: The "Meta Micro Assemblér Description (t9989.m)"

pr t9989%.m

Sep 16 15:41 1983 t9989.m Page 1

| AAKRAARAARARARAARARAARARAAAARAARKRARAAARAAKARAARAAAAAAKAL

R ol
A £9900.m. ~ 1
i metaMicro description file for Texas instruments !
% 9900 microprocessor. A
4 Thig file is included in the first line of Al
% agssembler source code file. say source.m. Al
I* It generates output file source.n if "micro" is Al
% used. If "mas" is used than it generates the Al
4 following output files. A1
i4 source.n : nodal output file. Al
I4 source.l : assembler listing, logical addresses. *!
I% source.lL : assembler listing, both logical and A |
L& physical addresses and assembled A4
I % object code listings. AL
% 1l.out : assmbled object code core image. A1
% Use "micro" with "cater" and “merge" or use "mas".*!
L& : Al
% Author : Samir S. Shah. A\
1% Date : Summer 1980. Al
% Modified : Samir S. Shah. A4
l* Modification : The previous version addressed ol
L& memory in 1l6-bit words. It is A1
L& addressed in bytes in this version.*!
1% Date : Sept 1980. Al
l% Modification : Converted to TMS9989. 4 more * 1
I instructions are added to reflect %I
P& this change.

I4 Modified : by Albert Lam, July 1983 * |

Ikkkkkk*kkkkkkkkkkkkkkkk*k*k*k**k*k*k*k*k*k*k*kkkkkkk*l

| AAAAKRARAAAAAAAAAARARAARKARAAKRAAARKAAAARAAAAAARAAAAKAK]

LA A4
l* The memory is addressed in bytes. The default A1
I instruction length is two bytes and the maximum Al
i4 instruction length is six bytes. ol
LA x|

| AAAAKRAAKARAARAAAARRAAAKRAAAAAKRKAAARAARARAARKAAARARAAKA]L

instr

IC3,13<16>%
L ARAAAKRAAKRAAAAAAAAKAAAKAAKAAARAAAARAAARAARARAAAAAAAKAK]
[A1
ix Alternative shorter names for instruction bytes. *!
LA A1

| AAAAKRAAAAAAAARAAAARKARAARKAARAAKRAAAAARKAAARAAAAAKKAKA]

format
I0 = IC01<15:0>,
I1 = IC11<15:0>,
I2 = IC€23<15:0>,

!kkk*kkkkk**k*k*k*k*k**kk*k*kkkk****k*khkkkkkkkkk*kk*kl
| & 1

Kl
P

Sep 16 15:41 1983 t9989.m Page 2

i4 Subfields of instruction bytes. Al
LA AR
| AAAAAAAAAARAARAAAAKAAARAAAAAARAAAARARAAARAAARKKRAARRAA]

IC0J<C15:135,

Opcode =

BT = ICO0JC12>,

TD = IC0J<11:10>,

DRO = IC01<9:8>,

DR1 = IC01<7:6>,

TS = IC01<(5:4>,

SR = IC01<3:0>,
| AAARARKRRAAAAAARKARAAAAAARAAAAARAAAARARRAAAAAAAARARAAKAK]
L ~ 1
lx 8-bit extended opcode. w1l
1 ~1

[kkkkkkkkkkkkkkkk*kkkkkkk*kkkkkkkkkkkkkkkkkkkkkkkkkkkk!

extop = ICO01<(15:8>,

disp = IL01<7:0>,

xtion = ICO0J<(7:5>,

count = IC01<7:4>%
macro

| RAAAARAARKARARKRAAARAAAAAAARARAARKARAARAARARARAAKRAKRAKRAK]

14 *1
14 Register name macros. Al
[. A1

| ARRAAKRRAAARARAAARKAAAAAARARARARRAARAAARAAAAAARARAAARKA]L

RO =0 &,

RL =1 &,

R2 =2 &,

R3I =3 &,

R4 =4 &,

RS =5 &,

R6 =6 &,

R7 =7 &,

RB =8 &,

R9 =9 &,

R10 = 10 &,

R11 = 11 &,

R12 = 12 &,

R13 = 13 &,

R14 = 14 &,

R15 = 15 &,
| Ak ARAARAAAAAAAARAAAARARARAARAAAARAAARARAAARKRAAAAAARAX]
1A A1
i Addressing mode management. B!
i~ Abbreviations : RG = ReGister Al
] RI = Register Indirect i
(B SM = SyMbolic a8
A IX = IndeXed x|
| % Al = Autolncrement *1

.

Sep 16 15:41 1983 t9989.m Page 3

L & A
| AAAAAAAAAAAAAAAAAAAAAAAAAAARAAAARAAAAAAARAAAARAAAAKRAKRA]

DRG (Rn) =

T™D = 0;

DRO = Rn »~ -2;

DR1 = Rn &,
DRI (Rn) =

T™D = 1;

DRO = Rn ~ -2;

DR1 = Rn &,
DSM (Ad) =

™D = 2;

DRO = 0;

DR1 = 0;

if length neq 2 then { I1 = Ad 3}
else { 12 = Ad I;
length = length + 1 &,

DIX (X,Rn)
™D = 2;
DRO = Rn ~ -2;

DRl = Rn;
"if (length neq 2) then
{
I1 = X
3
else
{
I2 = X
};
length

length + 1 &,

DAI (Rn)

™ = 3;
DRO Rn
DR1 Rn

SRG (Rn) =
TS = 0;
SR = Rn &,

"SRI (Rn) =
1;
Rn &,

+3
un
non

da

n
0
=
IIHII;

)
2;
0;
Ad;
length = length + 1 &,

SIX (X,Rn) =
TS = 2:

, .

Sep 16 15:41 1983 t9989.m Page 4

SR = Rn;

Il = X;

length = length + 1 &,
SAI (Rn) =

TS = 3;

SR = Rn &,
I ARARAAARKARAAARARAAAAAAARKARARAAAARAAARAARKARARAAAARAA]
S A
% src and dst concatenation macros. g
L& A1

L AAKRARKARARRARAAAAAAARAAAARAAARAARAAAARAAAAAAARARAAAAKRAKAA]

macS (src) =
if 1 then {Si}src &,

macD (dst) =
if 1 then {D}dst &,

L ARAAAAAAAAAARARARAAARAAARARAAAARAAARARAAAARARAARRAAAAK]

I &]|
4 Format 1 instructions. *1
(R 1

P RAAARARRRAAAAAAAAAAARAAAAARARAAAAAARARARARARAAARARRARAAA]

maclW (src,dst)
BT = 0;
macS (src);
macD (dst) &,

maclB (src,dst)
BT = 1;
macS (src);
macD (dst) &,

A (src,dst) =
Opcode = 5;
maclW (src,dst) s &,

AB (src,dst) =
Opcode = 5;
maclB (src,dst) g &,

C (src,dst) =
Opcode = ‘4;
maclW (src,dst) $ &,

CB (src,dst) =
Opcode = 4;
maclB (src,dst) 8§ &,

S (src,dst) =
" Opcode = 3;
maclW (src,dst) $§ &,

’

Sep 16 15:41 1983

SB (src,dst) =
Opcode = 3;
maclB (src,dst)

S0C (src,dst) =
Qpcode = 7;
maclW (src,dst)

SOCB (src,dst) =
Opcode = 7;
maclB (src,dst)

SZC (src,dst) =
Opcode = 2;
maclW (src,dst)

SZCB (src,dst) =
Opcode = 2;
maclB (src,dst)

MOV (src,dst) =
Opcode = 6;
maclW (src,dst)

MOVB (src¢,dst) =
Opcode = 6;
maclB (src,dst)

t9989.m Page 5

$ &,

[k*k*********************kkkk*k*k*k*k*k*k*k**k*k******!

A

{4 Format 2 instructions.

| &

1
* 1
* 1

| kA kA kAARAARkAKARKAARAAKkAAARAARAARAARARAARAKRARKRAKkAAKAKX|

mac2 (src,dstreqg)
Opcode = 1;
macS (src);
DRO =
DR1 = dstreg &,

COC (src,dstreqg) =
BT = 0;
D = 0;

dstreg ~ -2;

mac2 (src,dstreg) § &,

CZC (src,dstreq) =
BT = 0;
™ = 1;

mac2 (src,dstreq)

XOR (src,dstreqg) =
BT = 0;
™ = 2;

mac2 (src,dstreq)

MPY (src,dstreg) =

$ &,

$ &,

.

Sep 16 15:41 1983 t£9989.m Page 6

BT = 1;
™ = 2;
mac?2 (src,dstreg) s &,

DIV (src,dstreqg) =
BT = 1;
™ = 3;
mac?2 (src,dstreqg) § &,

| ARAKRARKAARAARAARAAARRARAAAARARRARAARAAAARAAARARAAARAKEAL

R * |
{4 Format 3 instruction. ~1
LA A1

| AAAARRARAARKAAKRRAARAARARAAAARAARAAARARAAAAARARRARARARKAKX]

mac3 (src) =

Opcode=0;

BT=0;

TD=0;

macS{(scr) &,
MPYS (src) =

DRO = 7 ~ -2;

DRl = 7;

mac3(src) $ &,
DIVS (src) =

DRO = 6 ~ -2;

DRl = 6;

mac3(src) $ &,

!kkkkkkkkkkkkkkk*k*kkk*k#k*kkkkkkkkkkkkkkkkkkkkkk#kk*k!

(& * |
% Format 4 instructions.) |
L& ~ 1

| AAAAAAAAAAAAAARAARAARRAAAAARAAAAARARAAAARAARARAKAAKAK]

mac4d (src) =
Opcode = 0;
BT = 0;
D = 1;
macS (src) &,

B (src)
DRO =
DR1 =

macéd (

1 ~ ~-2;
1;
src) $§ &,
BL (src) =
DRO = 10 ~ -2;
DR1 = 10;
mac4 (src) $ &,

BLWP (src) =

Sep 16 15:41 1983 t9989.m Page 7

DRO 0;
DR1 0;
mac4 (src) $ &,

inon

CLR (src)
DRO = 3

DR1 = 3;

macd (src) $ &,

SETO (src) =
DRO 12 ~ -2;
DR1 12;
mac4d (src) $§ &,

NEG (src)
DRO = 4
DRl = 4;
mac4d (src) $ &,
ABS (src) =
DRO 13 ~ -2;

DR1 13;
macd (src) $ &,

SWPB (src) =
DRO 11 ~ -2;
DR1 11;
mac4 (src) $ &,

INC (src)
DRO = 6
DRl = 6;
macd (s

INCT (src) =
DRO 7~ -2;
DR1 7;
mac4 (src) S &,

i u

DEC (srxc)

DRO = 8
DRl = 8;
mac4 (src) $ &,

DECT (src) =
DRO = 9 ~ ~-2;
DRl = 9;
mac4d (src) $ &,

X (src) =
DRO = 2 ~ -2;

.

Sep 16 15:41 1983 t9989.m Page 8

DR1 = 2;
mac4 (src) § &,

L ARAARARAAAAAAAARAARARARAARARARARARAAAAAAAARAARAAAAALAL

i & * i
i* Format S instructions. !
| A A1

[AAAARARAAARAAAAAARAAAARAAAAARAARAAAARARAAARRRAAAARAAAA]

macS (src,bits)
Opcode = 1;
BT = 1;
macS (src);
DRO bits ~ ~2;
"DR1 bits &,

LDCR (src,bits)
TD = 0;
macS (src,bits) § &,

STCR (src,bits) =
TD = 1;
macS (src,bits) s &,

L ARAAAARARAARKAAAAAAARAAARRRAAAAARAAAAARAAARAAARARAAAKA]

t A * 4
% Format 6 instructions. X1
{ A At

| AAAAAAAARAAAAARAARAAAAAARAARAKRAAAAAARAAKRAAAKRAAAAAAAAA L

SBO (displ) =
extop = 0xld;
disp = displ § &,

SBZ (displ) =
extop = 0Oxle;
disp = displ § &,

TB (displ) =
extop = Oxlf;
disp = displ s§ &,

PAAAAARARARAARARKRARAAAAAAAAAAAAAARARARARARRARARAAAARAKRAL

| & * |
i4% Format 7 instructions. * |
L X |

[AAAAAAAAARAARARRARRARAARARAAAAARAAAARAAAAARRAAAARAAAAK]

JEQ (displ) =
extop = 0x13;
disp = displ § &,

JGT (displ) =
extop = 0x15;
disp = displ § &,

vé

’

Sep 16 15:41 1983 t9989.m Page 9

JH (displ) =
extop = 0xlb;
disp = displ $ &,

JHE (displ) =
extop = 0xl4;
disp = displ $ &,

JL (displ) =
extop = 0xla;
disp = displ 8 &,

JLE (displ) =
extop = 0x12;
disp = displ § &,

JLT (displ) =
extop = 0xll;
disp = displ $ &,

JMP (displ) =
extop = 0xl0;
disp = displ $ &,

JNC (displ) =
extop = 0xl1l7;
disp = displ $ &,

JNE (displ) =
extop = 0x16;
disp = displ $ &,

JNO (displ) =
extop = 0x19;
disp = displ s &,

JOC (displ) =
extop = 0x18;
disp = displ s &,

JOP (displ) =
extop = 0xlc;
disp = displ s &,

P AARKARAARAAKRAARAAAARAAAAAAAAAAAARAARAAARAARRAARAAAAAAAAAAAL

it A A1
I% Format 8 instructions. Al
1A : Al

P ARAARARAARAAARARAAARARARRAAAAAAAARAAAAARAARARARRRRAAAAAANAAAAAL]

SLA (srcreg,cnt) =
extop = 0x0a;
SR = srcreqg;
count = cnt $ &,

SRA (srcreg,cnt) =

’

Sep 16

extop
SR =
count

SRC (sr
extop
SR =

15:41 1983

= 0x08;
srcreqg;
= cnt § &,

creg,cnt) =
= Qx0b;
srcreg;

t9989.m Page 10

count = cnt ¢ &,

SRL (srcreg,cnt) =
extop = 0x09;
SR = srcreg;
count = cnt ¢ &,

LARARAARAARARARAAAARAAAAAARAAAAARAAAARAAAARARAAAAAAAAAAAAL

LA * 1
1% Format 9 instructions. *1
A& - A1

| AAARAAAAAAAAARKRARAAARRAARAAARAAAAAAAAAAAAARAAAKAAAAAKRA]

mac9 (srcreg,operand) =
extop = 0x02;
SR = srcreqg;
Il = operand;
length = 2 &,

Al (srcreg,operand) =
xtion = 1;
mac9 (srcreg,operand) $ &,

ANDI (srcreg,operand) =
Xtion = 2;
mac9 (srcreg,operand) $ &,

CI (srcreg,operand) =
xtion = 4;
macY9 (srcreg,operand) $ &,

LI (srcreg,operand) =
xtion = 0;
mac9 (srcreg,operand) $ &,

ORI (srcreg,operand) =

xtion = 3;
mac9 (srcreqg,operand) $ &,

| ARARARARAAAARARAAAARAAARAAARARARARKRAAARAARRAAAAARAKAL]

t A : |
4 Format 10 instructions. x1
A * 1

| AAAARRKAAAARARKRAAAAAAAAARKAARAANARKRRAAARAAARAAAAAARKAAK]

LWPI (operand) =
extop = 0x02;
xtion = 7;

I1 = operand;

’

Sep 16 15:41 1983 t9989.m Page 11

length = 2 § &,

LIMI (operand) =
extop = 0x03;
xtion = 0;

Il = operand;
length = 2 § &,

L AAAAKRAARARARAAAARARARAAAAAAAAAAARKAARRAAAAKRAAKRKRAAKRAAAA]

LA L
1% Format 11 instructions. * |
L& *

L AARARAAAAKAARAAAAAAAAAAAAAAAAAARAAARKARARKAAKRAARKARAKXL

STST (srcreg) =
extop = 0x02;
xtion = 6;

SR = srcreg $ &,

STWP (srcreg) =
extop = 0x02;
xtion = 5;

SR = srcreg §$§ &,

LST (srcreg) =
extop = 0;
count=8;

SR = srcreg $ &,

LWP (srcreg) =
extop = 0;
count = 9 ;
SR = srcreqg $ &,

L R AR ARARARKAARKARRAARAARARRAARAAARAAAAARKARRAAAAAAKAKKAK]

LA * 1
4 Format 12 instruction. *|
LA * |

LA ARAAAARAARAARAKAAARRARAARAARKARAAAARAARAAAAAAAAARAAAL

RTWP =
extop = 0x03;
xtion = 4 § &,

X0P (src,xopconst) :=
BT = 0;
™D = 1;
mac?2 (src,xopconst) § &,

A A ARAAAKRAAAAARAAKRAARAARRAARARAAAARAAAARAAARAAKRAAAARAKR]
LA * |
l4 Format 13 instructions. tal|

* T =
s

Sep 16 15:41 1983 t9989.m Page 12

LA 1
| AAAAAAAAAAAAAAAAAAAAAAAAARAAARAAAAAARAAAAAAAAAAAAAAAKX]

macl3 = .
extop = 0x03 &,
IDLE =
xtion = 2;
macl3 $ &,
RSET =
xtion = 3;
macl3d § &,
CKOF =
xtion = 6;
macl3 $ &,
CKON =
xtion = 5;
macl3 s &,
LREX =
Xtion = 7;
macl3 ¢ &,
| ARAAARARKAKRAKAAAAAAARAAAAARAARAAAARAAAAAAAAARARAAKRARK |
A *
. !'*% Define Word psuedo-instruction. 1
Ik A1

| ARAAAKAAAAARAARARKRAAARARAARAAARARAAAAAARRARAAAARARAKRKK]

DW (Word) =
I0 = Word; s &s

APPENDIX E:

A Test Program (test.m; test.l, test.L)

cat test.m
include /nnpc/softgen/mmpd/t9989.m §

begin
.=0 §
BLWP (SM(128))
=128 ¢ -
gegwpx DW (260) lpointing to register area
getpc: DW (292) Ilpointing to program area
tart .%146. % lreserve spaces for registers
start: MOV (SM(n20) ,RG(RO)) IR0 is number of loop
L CLR (RG(R1)) lreg # L {5 a counter
oopt A (SM(n3),SM(sum)) ladd number to sum
INC (RG(RL)) :
C (RG(R1) ,RG(RO)) lcompare number of loop with counter
JNE (loop)
B (SM(start))
sums DW (0)
n20: DW (20)
n3: DW (3)
end
$
L}
test.l:
1. include /nmpc/softgen/mrpd/t9989.m §
2.
3. begin
LEVEL;:
4. (0)
5. (0) .=0 %
6. 0} BLAP (SH(128}))
7. (2) .=128 §
8. (2) getup: DH 1260} tpointing to register area
9. (3} getpc: DH (292} tpointing to program area
10, (4} =146 § lreaerve spaces for registecrs
11, (4) start:s MOV (SH(n20} ,RG(RO}} tRO {s number of laop
12. (6) CLR (RG(RY}) tceg # 1 i{s a counter
13, (7) loop1 A (SH{n3},SH{sun)) fadd number to sum
14, (1o} INC (RG(RL}) .
15, (11) c (RG(R1} ,RG(RO)} lcompare number of loop with counter
16. (12) JNE {loop!
17. (1) B (SH(start})
18. (15} sumi 241 (o)
19. (16) n20: 23] (20}
20. (17) nd: 23] (3)
21. (18) end .
LEVEL: 1 Syntax Pass Completed.
Hacnings: 0
Nonfatal ercors: 0
Fatal eccrocs: 0
H
test.L:
1. fnclude /nmpc/softgen/mmpd/t9989.m §
2.
3. begin
LEVEL: 1
4. (0)
S. (0) . .=0 § .
6, (0) (0) C002040 000200] BLWP (SM(l128))
7. (2) .=128 $
8. (21 { 200) C000404) getup: DX (260} tpointing to registec acea
9. (3 (- 201) CO00444) getpc: DR (292) tpointing to program acea
10. (4) .*146 $ tresecve spaces (or cegisters
11, (4) (222) C140040 000236 3 stact: HOV (SM{n20) ,RG(RO)) RO {s numbec of loop-
12, (6) ¢ 224) C002301 b] CLR (RG{R1)) treq ¢ 1 {s a counter
13. (7 ¢ 225) C124040 000237 00023S) loop: A (gg(aigisﬂ(sumtl tadd numbec to sum
14, (10} (230) 002601 b} INC (RG(
15. (1) (2311 Cl00001 3 [{RG(R1) ,RG({RO)}?)Jcompare number of loop with countec
16. (12) (2)2) COLrL3I72 3 JNE (loop)
17. (3 [233) C002140 000222 J 8 (SH(start))
18, (1s) (235) C000000 J suamt 2.1 (0
19. (16} ¢ 236) C000024 J n20: 03] (201
20. (1n 4 237) C000001 J ndt B (3)
21. (181 end
LEVEL: 1 Syntax Pass Completed.
Harningst

Non(atal eccors:
Fatal ecrors:

$

[}

0
0
0

APPENDIX F:

A Test Simulation

«, This part of the appendix presents a test simulation for the SBP
9989 implementation on N.mPc. To recall the configuration of the
elements see Figure 3.1 (Chapter 3.1). The "test.m"” program first
establishes a "workspace" starting at memory location 128, initializes
the registers RO, Rl and increases Rl, "sum" till RO equals R1l. The
program works in an endless loop. The function of the test program is
illustrated by the flowchart in Figure F.l. The linking of the test
program is shown in Figure F.2.

RQ, Rl are the first two of the sixteen workspace registers of the
SBP 9989; “loop", "start”, "sum" are labels.

The initialization procedure performs a context switch to spare the
memory locations before 128 for later use by interrupt and extended
operation trap vectors. Therefore the actual program is stored iﬁ
memory locations 128 through 159.

The following shows how a test program is rum on the SBP 9989,
thereby checking the correct execution of all instructions used in the
program.

The simulation is controlled by setting a breakpoint everytime a
new instruction is loaded into the instruction register. By looking at
the contents of the memory locations in question, we can check the

correct execution of instructions.

Include Meotamicra-hesceription

Initialization of the TI-

Memory
start: RO := 20
Rl := 0
loop: sum := sum -+ 3
R1 = Rl + 1
yes
no
Figure F.1 Flowchart of the Test Program

cat test.m
include /nmrc/softden/mnerd/ t?298%2.m $

bedin
=0 ¢
RLWF (SH(128)7) ,
=128 ¢ '

detur? nw (260) lrointing to redister area

detrct [OUW (292) lrointing to rrodram 3ceas
=146 §% tresevrve sraces far redgisters

start? MOV (SM(n20) 1 RG(RO)) {RO Ls numb=ar of loor
CLR (RG(R1)) tred € 1 is o counter

loor! 4] (SM(n3) rSU(suum)) tadd number to swum
INC (RG(R1))
C (RG(R1)RG(RO)) lcomrare number of loor with counter
JNE (loor)
B (SH(start))

St . ou (G

20 ou (20)

na. (1] (3

anaq

T %

Figure FE2 Listing of the Test Program

TESL SLIMULALILUN rnuluuuUL
I AR
/rimec/usr /L9989 ! the working directory
$
I $ ls ! files contained in the working-
maK.core ! directory
: Max . COore.,
l 1998%,.ism
t?298%2..s1m
test
test L
l test.d
test.of
test.]
l Lestom
Lest.n
test,s
Llest ot
' test . i
‘ Limem,ise
"timem.sim
I N
¥ .
¥ test ! puts the simulation in the
I '\I:*"'F'f-‘: test ! runtime-mode(different prompt-sign)
F omemory memime ¢ 4 ! examines contents of memory-locations
(038 1056
\ l Clie LZ8 'y in given limits; (0), (1) contain
f%?f 0 ! the initialization(context-switch)
(3311 3
l (471 0
F memors memine 130 160 ! (130) to (145) contain the workspace-
X (1302 0 ! registers(RO - R15)
(1318 ¢
l 13201 0
(133 ¢ 0
(L&A 8 0
I CL3T s 0
(13467 O
{137y 0O
I (L3E)1 9
{13921 ¢
CLAD) O
clalae i
I 14y 9
{1 i O
(fc :)
II (L4 H Q
fl : ! (146) to (159) contain the user-
l : ! program
1 :
II H
l :
: .
LY
: 20
| L3

-

¥
I states

¥
#
+ rorts

P orerseat blet H
breaskroint numbe
T ocdiawlaw Il o
monitor mumber -2
it

FC O
WF 0
5T QO
Al ¢
A2 0
i O
L2 0
Il 0
I2 0
xR Q
51 0
mor O
in_vec 0
Load 0
Reset O
Kipw Q
Illow 9]

a2bhua v
0ous Q)
o Q
memer Q
Wi O
crucll O
cruin Q
cruout 0O
hold {
holda U
ready {
Fuwalt ¥,
My en G
laa 0
load Q
reset 0
meilek O
WL Q
intrea O
intocode O
intack &

Il cnande
r 1

narise

- b= b= b b=

shows the state(= value contained in)
of all the temporary registers

shows current values of all the
communicating-elements(busses, con-
trol lines)

stops the simulation after every
change of the instruction-register
displays the instruction-register
after every change without stopping
the simulation

2 disrlaw {11 chandge
simulabion halted by hhet 1

{rerest bhket 111 chandge)
1

i

I v

L 185
2 disslay

simulation nalted by

tI1 chandge
bloet L

(rereet ket +I1 change)

stetes
FC 292
WE 2460
eT 0
Al 128
A2 296
i QO
nz 0
It 49184
2 0
LR ¢
1 4
mior 449184
in.vee 0
Laad {
Resetl 0
Ky ¢
Illow O

i

A

- memorw memine 130 131
(13000 0
(13103 Q

oderosit 22 nemimell31)

B omemore memine 131

(131 22

El8
I
= ovrun
Ly 280

"

S oniselaw +I1 chandge
nal bed okt 1
¢I1 chandge)

L3Q

(136G

silmualalion oy
(rereat ohket
omenmory memme

20

+ l

2 disrlaw s 11 ohange
simulabion halbed st 1
{roerest olket t11 chande)

T memory memime 131
1310 ¢]

e

I omem memime 157

(1u7 03 Q

(a8

1217

- 22474

-

starts simulated execution of the
program

initial context-switch(BLWP) to
memory-location 128

RO := 20(MOV...)
tion to be executed

the context-switch has been executed

shows a different number than display

because display interprets (binary)
numbers as signed numbers while

all other examination-commands treat
numbers as absolute values

initial contents of RO, Rl

is the next instruc-

contents of Rl changed
value to check correct
"clear RO" in the next

"CLEAR RO" is the next
executed

20 was correctly moved

sum := sum + 3 is the
in assembly-language:

to a non—-zero
function of
instruction

instruction to be

into RO

next instruction
A(SM(n3) ,SM(sum))

Rl has correctly been clared

contents of "sum'" before addition(of 3)

Forun
L 446G
2 disrlayg tI1 chande = 1409
simulalbion hoelted by blet 1
(rereatl Dhket tI1 cnande)
T omwen memimng 1957

CLS7y» 3
i
¥ wewm memime 131

{131y 0O
#
¥ orun

Ly 920
2 disrlay
simulabion nhalted by blet 1
{rerezt bhet 111 chande)
#
F mem memime 131
(L1310t 1

YT
5Q
b

*
Ty
ti

o
O J

4}
m
o
3

2 disrlay 111 change =
simulatvion halted bue blet 1
{(rereat oket (Il change)
¥ orun :
L1 620

2 disrlaw
csimulation halted by hlet 1
(rerezst bhket 111 change)
Forun
L1 754

digelaw 111 chande = 1409
simulation malted bua oke
{rerest nket tI1 chianged

kit
¥ omem mem fme L&7
(187) ¢ &
f v
L B1S
2 disslaw ‘Il change = =327

simulation nalted oo hlet 1
(rereatl Dlet 111 chande)
F wmem memime 13X

(L3408 2

{11 chandge = 327§

1TL chande = -224964

~4

-~ ta bow t=w ew aa

"INCREMENT Rl is the next instruc-
tion

1" "

3 has correctly been added to ''sum

verification of the contents of RI1
before incrementation

"COMPARE R1,R0" is the next

instruction

Rl has correctly been incremented by
one

"jump to loop if R1,RO not equal"
is the next

the program-counter jumps back to
"loop" as Rl=1l is not equal to RO=20.
the program therefore will go through
the loop twenty times and then branch
to "start", resetting Rl to O

"increment R1" is the next instruction

3 correctly added to "sum'" in the se-
cond passage through the loop

"compare R1,R0 is the next instruc-

tion

Rl correctly incremented

F whatis

1
o

A

all
1 resest bhet 1L chansge
2 disrlay

I

‘11 change

ecl 49134

bregkroint number 3

F.rem
T remn
*
ot
i
Forun

simulation

(oket
* mem

T mem

¥ rereat bDhet

nalted
tI1 ewl 49184)
memsme 130 131

memime 157

(1306)¢ 20
(131ixy 20
(137)8 &0

Il chande

bhreakroint number 4

Forun

simulation 2
{rereat oket cTL chanse)

Fomenm memine 130

Iorumn

simulation
{rereat blet
I mem memime

¥ oauit

nalted by

131
(L3002
(L31y:s 20

nNnalted v nket
¢I1 ensnsge)
130 131
(L300 20
L3ty G

oy oket 3

——

s tem b e s

shows all previously defined break-
points and monitors

removal of the presemt.breakpoints and
and monitors

next simulation-stop only when it gets
to "start'"(= MOV = 49184) which means
after passing the loop twenty times

Rl = 20 means that the loop has been
passed twenty times before jumping
to "start"; 3 has been added to "sum"
twenty times as well, so the 60

in "sum"(= memory(1l57)) are correct

the "clear Rl"-instruction has been
executed correctly , resetting the
"loop-counter"Rl to 0 after 20 loops

the simulation has been exited(the
$-prompt is used again)

Intelitech Canada Ltd
: 352 Moclafen Street,
| Ottawo, (Jntano

| K2P O

| BI3235-5126

L]

[_J

- .

-

—

-

-

S—

€1 C

-

)

[

