
Il

I

I .

:

-0 1111‘
1

FM..., amain

SIMULATION OF THE SBP 9989
MICROPROCESSOR
USING THE CAE TOOL

N.mPc ON A VAX 11/780

INT -83 -65i

u_niv
P .
91
C655
C66691
1984

SEPTEMBER 1984 Indust-no Canada
Bibliothèque

Queen

/Streit

Approved By: Dr. S.A. Mahmoud
Dr. C. Laferriere

Prepared By:

UNIN1UNICA1IONS ChNhor

mr isi›-19,65

1.1.13RAlli''.--.B1131.10THÈQUE

/IMULATION OF THE SBP 9989
MICROPROCESSOR
USING THE CAE TOOL
N.mPc ON A VAX 11/780 ,

CiUStrTI fl

Library Qu.,en

dun- 20 1998

INTELLITECH CANADA LIMITED

352 MacLaren Street
Ottawa, Ontario

K2P 0M6

1 1+ .

Government
of Canada

Gouvernement
du Canada

Department of Communications

DOC CONTRACTOR REPORT

DEPARTMENT OF COMMUNICATIONS - OTTAWA - CANADA

SPACE PROGRAM -

DOC-CR-SP -84-023

TITLE:

AUTHOR(S):

Simulation of the SBP 9989 Microprocessor Using the Computer Aided

Engineering Tool N.mPc on a VAX 11/780

Max Streit
INTELLITECH CANADA LIMITED
352 MacLaren Street
Ottawa, Ontario
K2P 0M6

ISSUED BY CONTRACTOR AS REPORT NO: 	INT-83-65i

PREPARED BY: Max Streit

DEPARTMENT OF SUPPLY AND SERVICES CONTRACT NO: OER 83-05075

DOC SCIENTIFIC AUTHORITY: Michel Savoie
COMMUNICATIONS RESEARCH CENTRE
Ottawa, Ontario

CLASSIFICATION: unclassified

This report presents the views of the author(s). Publication
of this report does not constitute DOC approval of the reports
findings or conclusions. This report is available outside the
department by special arrangement.

DATE: SEPTEMBER 1984

SUMMARY

This report describes the simulation of the Texas Instrument SBP

9989 microprocessor using the computer aided engineering design and

development tool N.mPc, developed by Case Western University. The

simulation was developed and run on the VAX 11/780 System of the

Analysis and Simulation Laboratory, Communications Research Centre. The

simulation includes a hardware description, a command file for the

programmable assembler and a command file for the programmable

linking/loader. A test program is also included. Taken together, these

components constitute a software implementation of the SBP 9989 as well

as a complete software development system for the SBP 9989 on the VAX

11/780. 	The architecture of SBP 9989 is discussed, its implementation

in N.mPc and a test simulation are described. 	Comments based on the

experience gained during the hardware and software simulation of the SBP

9989 processor are provided. This report describes part of the work

done under contract 0ER83-05075 for the Communications Research Centre

of the Department of Communications, Government of Canada.

FOREWORD

This report describes work involving processor hardware description

and simulation using the Computer Aided Engineering (CAE) tool N.mPc

which runs on the VAX 11/780 of the Analysis and Simulation Laboratory,

CRC. As in all new fields of endeavour, CAE design activities

introduce new concepts, hence a new vocabulary, particularly confusing

at first is the general tendency of re-using terminology which may have

a different meaning in other engineering fields. The purpose of this

foreword is, therefore, to provide a common point of reference with

regard to the various terms used in the report. This will be achieved

by briefly describing the use of the CAE tool N.mPc.

Traditionally, microcomputer based products have been designed in

the following fashion:

1. The netessary hardware components are built. 	This usually

includes the microcomputer itself which is build using a

microprocessor and other peripheral components.

2. The software programs are written for the target machine.

3. Software and hardware components are integrated and tested.

Very frequently, the software is produced on a host machine

using a cross development package (if available). .

The development process usually involves many time consuming and

costly iterations. A CAE tool such as N.mPc improves the situation by

providing a simulation environment which is suitable for testing many

design alternatives in a short period of time. The implications of

using N.mPc are as follows:

1. It is no longer necessary to build the hardware components at

the beginning of the design work. 	Instead, N.mPc provides

what amounts to a micro-programmable, register transfer level

machine which can be programmed to emulate the target hardware

campletely. In other words, a designer working on a VAX host

for example, could create a VAX executable program which, when

run, would emulate the target hardware.

2. N.mPc provides a cross development package for the software to

be written. 	The cross development facilities are, however,

totally programmable. 	Programming the cross development

facilities of N.mPc is part of the preparatory work which

needs be done only once for a given type of hardware.

3. Facilities exist in N.mPc to take the user written,

application software produced by the cross development package

and to incorporate it into the hardware emulation module. The

result thus becomes the execution of the application software

by the target hardware which in turn is an emulation run by

the host computer.

4. The rationale for using a tool such as N.mPc is that

programmability implies flexibility. 	Given that a base

exists, i.e. most of the hardware emulation is available as

well as the cross development package, a designer can alter

the design parameters with ease and test various alternatives

without committing to any hardware choice.

N.mPc introduces new activities and redefines some traditional

concepts. 	The hardware building stage which is to result in a host

executable emulation involves programming the register transfer level

machine provided by N.mPc. 	This programming is done in the ISP'

language and is referred to as "implementing" the hardware or preparing

the hardware description. Similarly, the programming of the cross-

development package involves the preparation of various command files

and is considered part of the "implementation" of the target hardware.

A complete N.mPc simulation is the execution of a complete

simulation module which includes the hardware emulation and the

application programs which have been developed by the cross development

package. The fact that the hardware is also simulated may lead to

confusion. Therefore, the hardware simulation is usually referred to as

emulation whereas the terni simulation is reserved for the execution of

user programs on the emulated hardware.

This brief foreword, however, falls short of explaining the

complexities of a system like N.mPc. Its main purpose was to warn

prospective readers that some ternis such as simulation, emulation and

implementation have a very special meaning in the N.mPc context. The

interested reader will find many references to work reporting

applications of N.mPc in the field of processor design. A list of

references is included at the end of this report.

TABLE OF CONTENTS

1.0 INTRODUCTION 	1
1.1 Background 	1
1.2 Simulation - The Modern Approach to Microprocessor

System Design 	2
1.3 StruCture of the Report 	3

2.0 THS 9900 AND SBP 9989 MICROPROCESSORS 	5
2.1 Architecture of the TMS 9900 	5
2.2 Architecture of the SBP 9989 	8

3.0 IMPLEMENTATION OF TMS 9900 AND SBP 9989 ON N.mPc 	12

3.1 N.mPc File Naning Conventions 	12
3.2 Implementation of the TMS 9900 on N.mPc 	14
3.3 Implementation of the SBP 9989 on N.mPc 	21

4.0 DISCUSSION 	23

REFERENCES

APPENDIX A:

APPENDIX B:

APPENDIX C:

APPENDIX D:

APPENDIX E:

APPENDIX F:

The Hardware Modules

A.1 The SBP9989 Description (t9989.isp)
A.2 The Memory Module (timem.isp)

The Topology File (test.t)

The Linking Loader Description (t9989.i)

The "Meta-Micro" Assembler Description (t9989.m)

A Test Program (test.m;test.1; test.L) 	'

A Test Simulation

TABLE OF FIGURES

1.1 Main Components of the N.mPc System 	4

2.1 Memory Formats of the THS 9900 (from TI Data manual) 	6

2.2 The TMS 9900 Workspace Concept (from TI Data manual) 	7

2.3 TMS 9900 Addressing Modes (from TI Data Manual) 	9

2.4 Hardware Block Diagram of the SBP 9989 (from TI Data Manual) 	12

3.1 File Naming Conventions in the N.mPc System 	13

3.2 Workspace Register Indirect Auto—increment Addressing 	16

3.3 , The Debugged "op 5" Procedure 	17

3.4 Different Address Formats (incorrectly) used in the THS
9900 Library Description 	19

3.5 The Debugged "src opr" Procedure 	20

1.0 INTRODUCTION

1.1 Background

The Texas Instruments 'EMS 9900 was one of the first 16-bit

microprocessors. 	Introduced in 1977, the TMS 9900 is produced using

NMOS technology. 	Its "memory-to-memory" architecture uses blocks of

external memory, designated as "workspace", instead of internal hardware

registers; this speeds up context switches associated with interrrupts,

subroutine calls, etc. The THS 9900 has 69 instructions and 64K bytes of

memory addressed as 32K 16-bit words.

The SBP 9989 is an upgraded military version of the 1MS 9900

microprocessor. The SBP9989 differs from its civilian version mainly in

the use of Integrated Injection Logic (I 2L) technology which provides

better reliability in extreme temperature conditions and in radiation

environments. The instruction set of the SBP 9989 includes all of the

TMS 9900 instructions plus four additional instructions which improve

performance in numerical applications and multiprocessor configurations.

Because I2L based components are inherently radiation hard the SBP

9989 not only conforms to military standards (MIL 883B) but also is

space qualified. It is the main processing unit in the "Attitude and

Orbit Control System (AOCS) of the European Space Agency (ESA) Large

Satellite (LSAT) developed by British Aerospace.

Initially the Ferranti FlOOL processor had been chosen for the LSAT

AOCS. 	The need for additional processing capacity led to the decision

to switch to the SBP 9989 processor for the LSAT program. 	An

independent investigation [2] carried out by Intellitech Canada Limited

in the fall of 1983, for the Analysis and Simulation Laboratory of the

Communications Research Centre, came to the same conclusions with

regard, to the relative performance of the two processors.

1

1.2 Simulation - The Modern Approach To Microcomputer System Design

The traditional approach to microcomputer system design usually

tries to build a prototype of the system to be developed. This

prototype will consist of a number of hardware boards assembled using

wire wrap techniques. This approach makes design changes difficult and

becomes 	costly for the case of large, 	complex systems 	(e.g.

multiprocessor systems). 	The designer also faces problems related

the implementation of his hardware design while he is, at the same time,

trying to debug the system software. 	The traditional approach makes it

difficult to determine whether the software design or the hardware

design are responsible for certain failures and/or inadequacies in the

system.

The modern approach attempts first to simulate a design on a host

computer using a "computer aided engineering (CAE) tool such as N.mPc.

This allows easy development and verification of both hardware and

software designs because the simulation is easy to change. Complex

systems are handled by using modular simulation software. Once the new

design is verified, the hardware is built and the software that

previously ran on the simulated hardware can now be reassembled and

loaded to be run on the actual hardware.

Figure 1.1 shows the main components of N.mPc, a CAE tool capable

of simulating complex systems by modelling the hardware at the register

transfer level. The user defines the hardware modules of his system (in

ISP source) and their configuration (Topology) and then assembles,

links and loads the microprocessor software to be run. The N.mPc system

processes all this information and forms a simulation that is easily

controlled by the user. 	Changes and reconfiguration of the hardware

modules is a matter of executing a few commands. 	Fault insertion,

2

mathematical and graphical post processing of the simulation results are

also features of N.mPc. The N.mPc system used for this work ran on a

VAX 11/780 under the VMS operating system.

This work started with a description of the 'MS 9900 from the N.mPc

library. Although this 9900 module did compile correctly, a fair amount

of work had to be done to check, verify and debug the 9900 module in

order to get a test simulation running properly. As the SBP 9989

constitutes a superset of instructions and signals of the TMS 9900, an

SBP 9989 implementation in N.mPc was created by adding the appropriate

instructions and signals to the 9900 module. Finally the SBP 9989

module was also checked in a test simulation.

1.3 Structure of the Report

Following this introduction, 	section 2 presents the salient

features of TMS 9900 and the SBP 9989 architectures.

Section 3 gives some general information about the CAE tool N.mPc,

making references to previous work and the existing N.mPc documentation.

The main part of Section 3 outlines the debugging of the IMS 9900

hardware description provided in the N.mPc library, its upgrading to an

SBP 9989 module and the addition of the new SBP 9989 instructions to the

Metamicro assembler. 	Section 4 contains a discussion of the results

obtained and conclusions reached concerning the 9900 and 9989. 	The

appendices contain listings of an N.mPc test simulation and of various

files needed to run it, as well as the protocol of a test simulation.

User
Commands

'

Simulations
Output

ISP
Source

,FUNTIME PACKAGE
ISP '

411 Compiler
• Simulation Progress
• Command Interpreter
• Simulated Memory Manager

Target
System
Topology

Machine
Descriptions

MetaMicro
Assembler 100.

Linking
Loader

Simulated
Memory
Processor

MetaMicro
Source

Figure 1.1 Main Components of the N.mPc System

2.0 THS 9900 AND SBP 9989 MICROPROCESSORS

2.1 Architecture of the TES 9900

The main features of the TIMS 9900 are:

- 	16 bit Instruction Word

- 64k Bytes of memory (on two pages to be swapped)

- 	3.3 MHz speed

- Memory to Memory Architecture (Blocks of external memory

designated as "work spaces" replace internal hardware

registers)

- 16 general registers

- 16 prioritized interrupts

DMA and programmed I/O facilities

- N-Channel Silicon-Gate Technology (NMOS)

The architecture of the 9900 relies on a 16 bit long memory word,

thus consisting of two bytes which may be individually addressed by

instructions. This situation is shown in Figure 2.1.

The 32K memory words (16 bits) are always addressed by even

addresses while the 64K bytes may have odd or even addresses. 	The TMS

9900 and the SBP 9989 perform task switching very efficiently. 	This is

due, in part, to their "memory-to-memory" architecture which dispenses

with on-chip hardware registers and, instead, uses a contiguous block of

16 memory words. A workspace pointer is always pointing to the first of

the 16 workspace registers which replace the processor internal hardware

registers. A context switch, generated either by a program request or

an interrupt, can be done quickly and easily since it is only a matter

of exchanging the workspace pointer, the on-chip program counter and the

on-chip status register. This feature of the 9900/9989 processors is

depicted in Figure 2.2.

5

MSO LSEI

14 11 0 4 1 10 12 13 8 6 2 5 7 15 9 3

MSB LSB MSB LSB

13 11 • 14 12 8 10 15 9 7 1 6 0 4 3 5

SIGN

BIT

SIGN

BIT

\WM•n••n•n•••••nn••••n••n••n111V \••n•••n•nnn\r,••••nnnn•n•n•n••n1 J

EVEN ADDRESS BYTE ODD ADDRESS BYTE

SIGN

BIT

MEMORY WORD (EVEN ADDRESS)

WORD AND BYTE FORMATS

Figure 2:1 Memory Formats of the TPS 9900 (from TI Data Manual)

3

10

GENERAL MEMORY

PROGRAM A

wORKS•ACE

A001.1ESS

WI. • 00 16

gm. • 0216

WP • 04,6

wi• • 06 16

We • 00 16

wP • 0A16

vvP • OC 16

va• • 0E16

4•41• • 1016

WP • 17i6

WI. • 14 1 6

we • 1616

WI. • 11316

we • lA t 6

we • eCi6

wP • 1E16

REGISTERS

WORKSPACE REGISTER 0

WORKSPACE A

WORKSPACE REGISTER 15

TMS 9900

PC 	IA1

WP

ST 	IA)

RE TuRN

AOONESS

CHU BASE

WI.

rc

St

PROGRAM El

WORKSPACE

wOMKSPACE POINTER

IWP1

miCROPROCESSOF1 ADOS

1
 wORKS•ACE POINTER

IwPI TO TWO THAES THE

REGISTER NumBeR TO

DEVISE ACTUAL

FtEGISTER woonEss

I NOIE Att MEMOOY W0.10

..00"(SSES A11(

Eve' N

WORKSPACE.POINTER ANO REGISTERS

• Figure 2.2 The TES 9900 Workspace Concept (from TI Data
Manual)

The first 64 words of the IMS 9900 memory space are reserved for

interrupt and extended operation trap vectors. The rest of the 32K word

general memory area is free for programs and "workspaces". The 1MS 9900

can service up to sixteen different interrupts according to their

priorities and supports direct memory access via extended operation

instructions. A command driven, serial I/O unit (CRU) is also provided.

Many of the IMS 9900's 69 instructions have the choice of five main

addressing modes for their source and destination operands. Figure 2.3

shows the different ways the 9900's instructions access their operands.

r

2.2 Architecture of the SBP 9989

The SBP 9989 microprocessor is a military standard, upgraded

version of the TI9900. The SBP 9989 has all the features of the 9900

plus four more instructions, 4 new signals, higher speed and is

implemented in "integrated —injection circuit logic" technology. 	This

"I2L" technology gives the 9989 its high reliability, 	radiation

hardness, temperature range and the low power consumption which make it

suitable for spacecraft applications. The new features of the SBP 9989

as compared to the 9900 are listed below:

1) An instruction set that includes all the 69 instructions

of the 9900 plus signed multiply, signed divide, load

workspace pointer (LWP) and load stack pointer (LST).

LWP and LST allow the 9989 to load a complete software

context from an external source.

2) A new output signal on the SBP 9989 called "Memory Map

Enable" (MPEN) can be used to double the effective

address space. 	The SBP 9989 can therefore address 128

Kbytes of memory using MPEN in a bank switching mode.

fPC1-1.1 	Instruction 1- e-4WP1•2R - sv-{ Address Operand

1 (byta)

o 2 I.vordl

Od.t..cg

(PC I-e-FIn str uc tion 	1---(VVPI•2f1 	 Ind e e V ir tue

(PC1•2-•--r-

Effective

Ad.:Ines

Svi Op• I' and

wongsrAcc REGISTER ADDRESSING fi

Workspace Register R contains the operand

Register rt

(PC I 	Instruction 	1- 4,--(WPI•2R- sH

WORKSPACE REGISTER INDIRECT ADDRESSING •R

WorksPace Register R contains the address of the operand.

Register R

Idttruction fe-itiVP1•2R -H

WORKSPACE REGISTER INDIRECT AUTO INCREMENT ADDRESSING

WorksPace Register R contains the address of the operand. Alter acquiring the operand. the contents of workspace

register R are incremented.

Register R

SYMBOLIC (DIRECT ADDRESSING f LABEL

The word following the instruction contains the address of the operand.

Instruction

Operand

Address

•R•

(POI .2 	 Label

INDEXED ADDRESSING E, TABLE (RI

Operand 	I

The word follovving the instruction contains the base address. Workspace register R contains the index value. The

sum of the hase address and the index value results in the effective address of the operand.

Register R

Figure 2.3 T146 9900 Addressing Modes (from TI Data Manual)

This arrangement is not as convenient as a single linear

space of the same size.

3) A "Multiprocessor Interlock" (MPILCK) allows coordination

of the use of system resources by several processors.

4) "Interrupt Acknowledge" (INTACK) allows the 9989 to

acknowledge an interrupt signal even at times when it

does not have control of the system resources (bus,

memory, etc.).

5) The "Extended Instruction Processor Present" (XIPP) Input

Signal establishes a protocol for transfer of bus control

between "host" and "slave" processors sharing the. same

memory.

6) The SBP 9989 may be driven by a 4.4 MHz clock (compared

to 3.3 MHz of the 9900) and its instructions use 15-20%

less microcycles than its "civilian" version. Texas

Instruments claims that the throughput of the 9989 is

twice that of the 9900. 	In view of the previous

comments, that claim would appear quite optimistic.

The hardware block diagram in Figure 2.4 presents the MPEN, MPILCK,

XIPP and INTACK signals. 	Memory architecture, addressing mmdes, I/O

facilities, interrupt structure and memory map are identical in the TMS

9900 and SBP 9989 microprocessors. 	The SBP 9989 is a fully compatible

version of the TMS 9900. 	It is faster, more reliable 	and better at

number crunching and multiprocessing than the THS 9900.

10

WO • IS)

CRUIN 	 CRUOUT J.6 L 	1 	 M0.141

CLK

INTERRUPT

REGISTER

SHIFT OR

BYTE SWAP

CONTROL

LOGIC

SHIFT

COUNTER

NS TRUC TION
REGISTER (1R1

16

-7.16er

SHIFT REG
(T3I

165. 16

16

PC WP Ti

16

16

16

12

16

16

ire
STATUS

(STI

icoNsTANrsi

6›-

CONTROL

ROM

LJ

q1,6r

	 A

ALU 0

O

HOLD

HOLDA

LOAD

READY

WAIT

mEMEN
013IN

RESET

IAO

 CYCEND
CRUCLK

MPILCK
XIPP

INTACK

J161 	

GNO

INJ

IC(0 • 31

INTREO

MPEN

MA

IS

Figure 2.4 Hardware Block Diagram of the SBP 9989 (from TI Data
Manual)

Lname.i:

Lname.a:

1.out

iname.isp

iname.obj

tname.t

tname.s

tname'.f

3.0 IMPLEMENTATION OF TMS 9900 AND SBP 9989 ON N.mPc

3.1 N.mPc File Naming Conventions

This section will be a brief reminder of the naming conventions in

the N.mPc System. 	The files used in an N.mPc simulation are identified

by a name which is chosen by the user and a compulsory suffix. 	Figure

3.1 shows the N.mPc System and the names of the files produced by the

various elements of N.mPc. The following list describes the function of

each file.

pgmname.m: 	A ".m" -file is the source input file (= user program) to
. . . 	the metamicro assembler. 	A successful assembly produces

a corresponding "pgmname.n" file.

pgmname.n: 	The intermediate file produced by the Metamicro
assembler. Used by the Linking/Loader Allocator.

The source input to the Linking/Loader Interpreter.
Contains the specification of the address resolution
process for a given machine (stored in
[.nmpc.softgen.11cf]).

The output of the Linking/Loader Interpreter. 	This file
is used by the Allocator to direct the address resolution
process.

The output of the Allocator. 	Contains a real machine
core image, suitable for simulation after processing by
the "Stnulated Memory Processor".

The input of the ISP compiler, contains ISP' source
code describing a simulated piece of hardware.

The output of the ISP' compiler, corresponds to the
iname.isp source input.

The topology file, the ecologist will build a program
called "tname", which will be the executable simulation.

A symbol table file created by the ecologist, used by the
runtime package. "tname" is the simulation name.

The memory list file, produced by the ecologist, and
used by the simulated memory processor. Contains the

names of all memories used in a simulation.

Machine
Descriptions

.4bJ 1. out
Linking
Loader newname.;

Target
System
Topology

lname.a
lname.i

iname.obj 	tname.s

Ecologist

tnâme.exe

RUNTIME PACKAGE

• Simulation Progress

• Command Interpreter
• Simulated Memory Manager

ISP '
Compiler

iname.isp

ISP
Source

//—

Trace

\\
Output

tname.d

newname.p
tname.x

MetaMicro
Assembler

Simulated
Memory
Processor

Me taMi c ro

Source

tname.f

tname.t

iname.m

pgmname.n

Simulations
Output

User
Commands

pgmname.m

Figure 3.1 File Naming Conventions in the N.mPc System

newname.P A processed file created by "smp". 	Corresponds to a
previous Linking/Loader output file which has been
renamed. Used by the simulation program and the
Simulated Memory Editor.

The contents of L.out are overwritten by each creation of
a simulation. To share a "ready to run" set of files
without going through the whole creation process the
contents of 1.out have to be saved into another file
(e.g. by doing Rename 1.out newname). The new file has
to be declared in the topology file.

newname.i

tname.x 	Another smp output, containing global symbols from the
Meta Micro; one per simulation.

The simulation data file contains data to be processed by
the post processor. This is a new feature of the VAX/VMS

version of N.mPc.

tname.d

tname.exe 	The executable simulation program.

iname.m 	The user programmed description of the (meta micro)
assembler for the microprocessor being simulated; it has
to be stored in the usual N.mPc directory structure (and
can be reached by the path [.nmpc.softgen.mmpd]).

The N.mPc system seems quite complicated at first sight but all

that is necessary to build a simulation is a hardware description

(iname.isp), a topology file (tname.t), an assembler description

(iname.m), the linking loader description (Lname.i) and some user

program (pgnmname.m). 	These inputs are processed to form an executable

simulation, which is controlled by "user commands". 	The N.mPc system

has been used extensively by Intellitech, at first on PDP-11/UNIX and

later on VAX/VMS. Interested readers are referred to the relevant

reports [2,3], and the original N.mPc documentation [1, 8-16].

3.2 Implementation of the TNS 9900 on N.mPc

The success of an N.mPc simulation depends to a great extent on the

quality of the descriptions of the various hardware modules required by

the simulation. Ideally, one should be able to use existing hardware

descriptions from an N.mPc library and concentrate on the simulation

14

building aspects.

The starting point for the implementation of the TMS 9900 on N.mPc

was an ISP library description of that microprocessor provided with the

N.mPc package. 	Several bugs, some of them of a subtle nature, existed

in the ISP' description and had to be corrected. 	The following

paragraphs describe the nature of some of those bugs and the corrections

that were subsequently made.

A test program designed to check the correct execution of the add

instruction using all the five different addressing modes for source and

destination operand showed a malfunction of the autoincrement indirect

addressing mode. Instead of acquiring the source operand, the add

procedure only took the address of the source operand in the addressing

mode depicted in Figure 3.2.

The problem was clearly a logical bug in the corresponding

procedure (op 5) mixing up the destination operand and its address in

the case of auto increment addressing. 	Figure 3.3 shows the procedure

"op 5", a part of the TMS 9900 description. 	The missing "read from

memory" operation had to be added not only in the A (=add opcodes)

instruction but also in the SZC (set zeroes corresponding; opcode 2) the

S(=subtrack, opcode 3), the MOV (=move, opcode 6) and SOC (= set ones

corresponding) instructions.

On the third line, only the address of the destination operand is

read from a register (rreg) which was specified in the instruction. The

reading of the operand from memory (using its address) is omitted. The

Improved "op 5" procedure now performs correct additions because (the

changed) line 3 and (the new) line 4 read the destination operand from

memory.

15

Instruction 1--->-{WP +2 R

Register R

Address

1
Operand

1

1

1

1 (byte)

or 2 (word)

1

1
Figure 3.2 Workspace Register Indirect Auto—increment Addressing

1

1
1

/***/
/* 	 */
/* Executes oPcode 5 grouP of instructions. 	*/
/* Instructions : ArAB srcrdst
/* 	 */
/*** * ***** ******* *** **** ** * ** ****** * ******************/
o p_ 5 :=

Si = src_oPr(Sn.SmoderSize) • 	!et first operand

if Dmode eal 3 ! auto increment

02 = 2*rreg(DnrSize) •
01 = bus_read(02.Size)

else
01 = src_opr(Dn.ElmoderSize) • ! Also dest.addr..

if [(mode eel 2 	! so read last
PC = PC - 2 .

*/

02'= RC(01.SlraddrSize) • 	!comPute the sum
dst_opr(02.0nrOmode.Size.•.7;e_fl) • 	!store in :fist
0 = (S10). eal Ell<O>) and (02.(0 > neG 	. !set

delav(2) .

if Size eal B

P = Parity(02<bvte>)

!ALU cvcles

Figure 3.3 	The Debugged "op 5" Procedure

The second major error in the TMS 9900 library description was the

reading/writing to/from incorrect addresses in memory. In depth

analysis of the problem showed that there was a difference in the

address format generated by the "effective address calculation"

procedure and the one assumed by the memory read/write procedures.

Figure 3.4 shows the difference between these two address formats.

Once aware of this situation, corrective action was taken by

changing the address recognition for source and destination operands.

The stripping of the "least significant bit" of an addresss by the bus

read/write procedures (assuming that the LSB is always zero) produced

wrong addresses as the effective address provided was not in the assumed

format.

To put the operand addresses in the appropriate format they are

multiplied by two (equivalent to a "shift left" for binary numbers)

prior to bus reading /writing of operands. To achieve this, only the

address recognition in the "src-opr" and "dst-opr" procedures had to be

changed by introducing a factor of two into the address recognition

("eff-addr" becomes "2* eff-addr"), as it is shown in Figure 3.5. The

same problem as above was fixed in a similar fashion for the BWLP

instruction. 	After the changes to the THS 9900 library descriptions

mentioned above, the test program documented in Appendix F began to

execute properly.

18

interpreted as: interpreted as:

word-address(decimal) word-address(docimal)

address format expected by the
memory read/write procedures
of the TES 9900

address format provided by the
effective address calculation
procedure of the TMS 9900

LSB
15

MS

o 	I....
LSB

....14 	15

101

MSB

0 	1....

0
2
4
6

(memory)

Figure 3.4 	Different Address Formats (incorrectly) used in the
'TMS 9900 Library Description

o

3

src_oPr rreg(rn+size)

/***/
/*
/* Fetches source operand.
/* InPut parampAers: register number nibble+
/* 	addressind mode pair
/* 	operand size bit.
/* Out:›ut Parameters: source ope rand word.
/*
/* * * * *** ** ******** * ** * *** *** ******* ** ** * *** ** ** * ** * ***/

src_oPr(rn<nib>pmode<Pair>psize<bit>)<word> :=

case mode

0 	! register

*/
*/
*/
*/
*/
*/
*/

1,2,3 :/*
indirect register+
direct address+
indexed+
autoincrement

*/ 	*

A2 = 2*eff_addr(rnrmode+size).
src_opr = bus_read(A2lize)

esac

!let the address
!read front memcm-m

Figure 3.5 The Debugged "src opr" Procedure

3.3 Implementation of the SBP 9989 on N.mPc

As the SBP 9989 is an upgraded TMS 9900 microprocessor, its

implementation on N.mPc involved an upgrading of the TMS 9900

description mentioned in Section 3.2.

In programming design terms, four new instructions and four new

signals ("ports") have to be added to the TMS 9900 description to make

it an SBP 9989 module.

The added instructions are:

- signed multiply, performed by a procedure named "mpys"

- signed divide, performed by a procedure named "divs"

- load workspace pointer ("LWP") and load status register

("LST") enable the SBP 9989 to capture a complete

software context from an external source

Three of the added system features ("ports") serve multiprocessing

purposes:

- "multiprocessor interlock" (MPILCK), an output signal used to

avoid access contention in resource sharing multiprocessing

systems

"interrupt acknowledge" (INTACK) enables the processor to

acknowledge interrupts even while it is not in control of the

system resources

- "Extended Instruction Processor Present" (XIPP) is an input

signal needed for bus control transfer between the SBP 9989

and a co-processor.

The new output signal "MPEN" can either be manipulated to double

the address space to 128 K bytes or be used (with a Memory Mapper) to

allow access to 16 megabytes of memory. All these new signals and

instructions are found in the listing of the SBP 9989 description in

21

Appendix A.1. 	Appendix A.2 contains the listing of the external memory

description used with the SBP 9989. Appendices B, C, D contain listings

of the topology, linking loader, and metamicro assembler description

files needed to build an SBP 9989 simulation. Appendix E shows listings

of the program (in different formats) used to test the SBP 9989

description. This test simulation is described in detail in Appendix F.

Following the conversion of the TMS 9900 ISP description into a

workable SBP 9989, testing activities began. 	Instructions from all

opcode-groups were executed in short 	test programs, checking for

correct contents of memory and/or registers before and after the

execution of the instruction being tested. The initial situation was

that a test program (test.m) could not be run because of bugs in the

initial 9900 description. Upgrading of the TMS9900 description to

SBP9989 description along with the debugging mentioned above finally

resulted in an SBP 9989 simulation on which the test.m program could be

run successfully.

At this point it is important to stress that a working description

of the SBP 9989 has been obtained. This description coupled with the

appropriate meta micro assembler command files enables the N.mPc system

to be used as a TMS 9900/SBP9989 development system. N.mPc is truly a

programmable microprocessor development system.

22

4.0 DISCUSSION

• 	The implementation of an SBP 9989 development systèm on N.mPc has

been successfully accomplished and resulted in descriptions of the TMS

9900/SBP 9989 processors in the N.mPc hardware description language

(ISP'), a programmable metamicro assembler for both processors and a

test simulation.

Major portions of the SBP 9989 such as its decoding loop, its

read/write procedures, and a number of its instructions were thoroughly

checked, 	debugged and their functionality proven in actual test

simulations. 	Due to lack of time however, not all the instructions of

the SBP 9989 could be checked. 	In the event of future work with this

processor' description, further testing would have to be completed by

checking the following components of the 9989 ISP description.

a) the "INTERRUPT" procedure;

b) the I/O procedures ("CRU CLOCK,""CRU TRANSFER");

c) the "LOAD", "RESET", "OVERFLOW TRAF", "SHIFT", "MPYS"* and

"DIVS" procedures;

d) most of the opcode 0 and opcode 1 instructions.

23

As in all N.mPc implementation activities, there is an extra

benefit resulting from the careful study of the hardware to be

implemented. 	In this case, the benefit is a thorough understanding of

the workings of the SBP 9989 microprocessor. 	Based upon that

understanding, the SBP 9989 can be compared with other microprocessors

that are likely to be used in sPace applications. Examples of such

processors include the Ferranti F100-L and the CMOS version of the Intel

8086.

The Ferranti F100-L is a 16 bit microprocessor implemented in

bipolar logic for a high immunity to noise and radiation. 	This is an

essential characteristic of any space qualified microprocessor. 	The

F100-L does suffer, however, from a relative lack of advanced

architectural features and powerful instructions. The memory map of the

F100-L is also fairly non-standard and its handling of pointers can lead

to confusion. The Ferranti F100-L was the subject of earlier work at

Intellitech and the interested reader is referred to reference [2].

Recently, Harris announced a CMOS version of the Intel 8086

microprocessor. This new version would be suitable for space

qualification and would then open the way for the use of the 8086 in

spacecraft applications. The 8086 is a 16 bit microprocessor with a

powerful instruction set and is compatible with Intel's family of

peripheral device controllers. The 8086 is capable of a high throughput

due, in part, to its speed and also to its pipelined bus unit/execution

unit architecture. 	Other co-processors can be incorporated in an 8086

based system easily and they operate concurrently with the 8086. 	More

information can be obtained from the relevant Intel literature and

product description.

24

The SBP 9989 is also a 16 bit processor with a somewhat smaller

address space than the 8086 (128 Kbytes vs 1Mbyte). In terms of

instruction set, the 9989 fares better than the F100-L but does not

offer the same versatility as the 8086. Furthermore, it does not

feature a separate bus unit and execution unit architecture as the 8086.

Speedwise, however, the 9989, although not as fast as the 8086,

outperforms the Ferranti F100-L. This fact is substantiated by the

recent switch of processors (i.e. from the F100-L to the 9989) in the

British Aerospace L-Sat AOCS design. British Aerospace apparently found

that the throughput of the F100-L was not sufficient to handle the load

of a Spacecraft Microcomputer Module (SMM).

Having established the 9989 as'a better alternative to the F100-L

one may wish to compare the 9989 to the 8086. 	Apart from the fact that

those two processors are of a 16 bit design, 	their respective

architectures are quite different. 	Some of those differences are

outlined in the four points below:

1. 	The SBP 9989 does not have on-chip general purpose registers.

This slows down operations but facilitates task switching.

Both the 9989 and the 8086 have flexible interrupt facilities

reminiscent of those of the PDP-11. Interrupt service

routines can be linked easily and priorities can be assigned

with relative ease. (An 8086 would require a 8259

programmable interrupt controller). In the final analysis,

the task switching advantage of the 9989 over the 8086 is

offset by the latter's greater speed and by the fact that most

interrupt service routines only save one or two on-chip

registers in any case.

25

2. The Intel 8086 supports a segmented 1 Mbyte address space and

a separate 64 Kbyte I/O space. This is vastly superior to the

9989s 128 Kbyte combined address and I/O space. 	To the 9989

defence, however, it must be added that in typical satellite

applications, only a fraction of the 8086 address space would

be used. 	Nevertheless, the large address space is there

should modifications and enhancements be required at a later

date.

3. Both processors provide mechanisms for the smooth integration

of co-processors. An arithmetic co-processor is available for

the SBP 9989; a wider choice of co-processors exists for the

8086 such as a numeric co-processor (8087), and an I/O co-

processor (8089). Those co-processors are not currently space

qualified but their usefulness in future spacecraft missions

is easy to visualize.

4. The number and type of available support chips is much greater

for the 8086 processor. 	This is due in part to the existing

support chips for the 8 bit processors from Intel and to the

greater popularity that the 8086 has enjoyed commercially.

While the SBP 9989 is a good processor in its own right, it appears

that the coming availability of the 8086 in a CMOS version will make

the 8086 the preferred choice in future implementations of on-board

spacecraft control systems. In addition, software development utilities

and packages are far more numerous for the 8086 than for the 9989. This

software factor should be weighed very carefully when evaluating a given

microprocessor.

26

It should be clear that due to rapid technology advances better

processors are continually emerging. Therein lies the real advantage of

using N.mPc in a design environment. Re-designs are easier and new

processors can be incorporated and tested with greater ease than with

traditional bread-boarding approaches. The development system for the

SBP 9989 created using N.mPc is in keeping with that philosophy.

27

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

REFERENCES

C.W. Rose, F.I. Parke, G.M. Ordy; "N.mPc: 	A Retrospective" and
"The N.2 System" Case Western Reserve University, Cleveland, Ohio,
June 1983.

C. Laferriere, A. Lam; "N.mPc and its Utility for Spacecraft
Applications" Report No. INT-83-47/1, Intellitech Canada Limited,
January 1983.

C. 	Laferriere, W.T. Brown, J.G. Ouimet, S.A. Mahmoud, "The
Definition and Specification of an Integrated Set of CAE Tools for
Spacecraft Multiprocessor System Design", Report No. INT-82-16,
Intellitech Canada Limited, March 1982.

Texas Instruments Semiconductor Products ; Master Selection Guide,
1982.

THS 9900 Microprocessor; Data Manual; August 1982.

SBP 9989 Microprocessor, Data Manual, 1982.

Texas Instruments; Software Development Handbook; 1981.

G.M. Ordy, "N.mPc Release 2 Installation", Department of Computer
Engineering, Case Western Reserve University, Cleveland, Ohio,
November 1980.

[9] L.R. Rogers and G.M. Ordy, "N.mPc Metamicro User's Manual, version
3.1, Department of Computer engineering, Case Western Reserve
University, Cleveland, Ohio, July 1980.

[10] C.W. 	Rose et al., "The N.mPc System Description Facility",
Procedings of the 16th Design Automation conference (IEEE), pp.
520-528, June 1979.

Procedings of
529-536, June

[11]F.I. Parke et al., "The N.mPc Runtime Environment",
the 16th Design Automation Conference, (IEEE), pp.
1979.

[12] F.I. Parke , "An Introduction to the N.mPc Design
Proceedings of the 16th Design Automation Conference
513-519, June 1979.

Environment",
(IEEE), pp.

[13] G.M. 	Ordy, "N.mPc Runtime User's Manual" Dep't of Computer
Engineering, Case Western Reserve University, Cleveland, Ohio,
Spring 1979.

[14]G.M. Ordy and F.I. Parke, "An Evaluation of the N.mPc Design
System" Proceedings of the 16th Design Automation Conference
(IEEE), pp. 537-541, June 1979.

Dep't of Computer
Cleveland, Ohio,

[15] G.M. Ordy, "N.mPc Ecologist User's Manual",
Engineering, Case Western Reserve University,
Spring 1978.

Dep't of Computer
Cleveland, Ohio,

[16] R. 	Straubs, 	"N.mPc ISP 	User's Manual",
Engineering, Case Western Reserve University,

1978.

APPENDIX A: The Hardware Modules

A.1 The SBP9989 - Description (t9989.isp)

/ A/

pr tY989.isp

Dec 31 15:52 1983 t9989.isp Page 1

,/ *%%%

TEXAS INSTRUMENT

S B P - 9 9 8 9

Version 2.0

% This ISP description is obtained by upgrading
% the description for the TMS 9900. It includes
% all port definitions, external memory and bus
% interface, full DMA and interrupt capabilities.

% To make read/write-operations of words from/to
% memory function src_opr, dst_opr and the BLWP-
% instruction had to be changed(factor 2 in front %
% of neff_addr").Proper execution of the auto-in- 	%
% crament addressing-mode was achieved by correc- %
% ting op_2, op_3, op_5, op_6 and op_7.

% Max Streit
% December 83
% Intellitech Canada Limited

%%%*/

macro

/**AA**********AAAAAAAAA*********A*******A************/
/* 	 A/

/* Symbolic names for register lengths. 	A/

/A 	 */
/AAAAAA****AAAAAA******AAAAAAAAA*******A****AAAAAAA***/

bit = 0:0 &,
pair = 0:1 &,
nib = 0:3 &,
byte = 0:7 &,
word = 0:15 &,
lobyte = 8:15 &,
addr = 0:14 &,

/AAAAAAAAAA******AAAAAAAAAAAAA***A**********A****A***A/

/* Constants for size of operands. 	*/
/A 	 A/

/***AAA*****AAAAAAA********A*****AAAA********A*****A**/

W = 0 &, ! Word
B = 1 &, ! Byte

/AAA/
• 	/A 	 */

/A Constants for addressing modes. 	A/

/ 	 A/

Dec 31 15:52 1983 t9989.isp Page 2

/**A****AA/

r = 0 &, 1 register
ir = 1 &, ! indirect register
da = 2 &, ! direct address
x = 2 &, ! indexed

/AAA/

/A 	 */

/* Logic levels to select an option in a procedure. A/

/71/4
/AAAAAAAAAAAAAAA*******AAA***A***AAAA*A.A*****AAAAAAAAA/

sub 	= 0 &, ! operation was a subtraction
add = 1 &, ! operation was an addition
de_fl = 0 &, ! deselect changing flags
se_fl = 1 &, ! select 	changing flags

/*AAAAAAAAAAA*AAAAAAAAAAAAAAAAAAA*****AAAAAAAAAAAAAAAA/

/* 	 A/

/* Symbolic names for logic levels. 	*/
/ A 	 A/

/AAAAAAAAAAAAAAAAA****AAAAA*************A*****AAAAAAAA/

false = 0 &,
true = 1 &,
clear = 0 &,
set = 1 &,
high = 1&,
low = 0&,

/**AAA**/

/A 	 A/

/* 	Delay units for clock and timing. 	*/
/* 	 A/

/AAAAAAAAAAAAAA*****AkAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA/

clk = 1&,
pulse = 2&,
phase = 1&,

/AAAAAAAAAAAAAAAAAAA****AAAAAAAAAAA****AAAA****AAAA***/

/* 	 A /

/A Enforces sequential execution. 	A/

/A 	 */

/AAAAAAAAAAAAAAAAAAAAAAAAAAAA**************AAAAAAAAA**/

. = ;next &;

state

/AAAAAAAAAAAAAA*****AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA/

/A 	 */

/A Declaration of registers 	 A/

/* 	 A/

/****AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA*****AAAAAAAA/

A /

/* e1/4/

ri1/4 /

Dec 31 15:52 1983 t9989.isp Page 3

PC<word>, 	! Program Counter
WP<word>, 	! Workspace Pointer
ST<word>(0x0000), I STatus register

/***/

/A Temporary registers. 	 */
/A 	 */
/***/

Al<word>, ! Address register 1
A2<word>, I Address register 2
Dl<word>, ! Destination register 1
D2<word>, ! Destination register 2
Il<word>, ! Instruction register 1
I2<word>, ! Instruction register 2
XR<word>, ! Extra Instr. register for X Remote instr.

Sl<word>, ! Source register 1
mbr<word>,1 Holds word last read from memory.
in_vec<word>,1 Holds addr. vect. for interrupt routin

Load<bit>, ! Flag set on load function
Reset<bit>, ! Flag set on reset function
Xipp<bit>, I Flag set on extended processor function
Illop<bit›; ! Flag set on illegal opcode fetch

format

/***/
/ A 	 */
/* Instruction register subfields. 	*/
/* 	 */
/***/

Opcode = I1<0:2>, 	! instruction set Opcode
Size 	= I 1<3>, 	! operand Size
Dmode = I1<4:5>, 	! Destination mode
Dn 	= I1<6:9>, 	! Destination register number
Smode = I 1<10:11>, ! Source mode
Sn 	= I1<12:15>, ! Source register number

/***/

/* Status register subfields. 	 */
/A 	 A/

/***/

LGT = ST<O>,
AGT = STU>,
EQL = ST<2>,
C 	= ST<3>,
0 	= ST<4>,
P 	= ST(5>,
X 	= ST<6>,

! Logical Greater Than
! Arithmatic Greater Than
! EQuaL
! Carry
I Overflow
! Parity
! XOP

Dec 31 15:52 1983 t9989.isp Page 4

IM = ST<12:15>; ! Interrupt Mask

port

/**/

I 	

/A

/A 	Chip pin description 	
*/
*/

/A 	 */
/**/

I 1 Data and address bus signals

I 	
abus<0:14>,
dbus<0:15>, 	

! address bus
! data bus

I
L . Bus control signals

dbin, 	1 data bus in signal. high true
memen(high), 	! memory enable. low true.

II 	
we(high), 	! write enable. low true
cruclk, 	! CRU clock signal from processor
cruin, 	! CRU data in port for serial I/O

II cruout, 	! CRU data out port for serial I/O

! Memory control signals

hold(high), 	! low true hold signal
holda(low), 	! hold acknowledge. high true
ready, 	! ready signal from memory

mpen(high), 	1 memory map enable output signal. low true
! wait signal for memory operation

II 	
pwait(low), 	 '

I L Timing and control signals

iaq, 	1 instruction acquisition signal. high true
load(high), 	! low true load signal to processor

II 	
reset(high), ! reset signal to processor. low true
mpilck, 	! multiprocessor interlock output signal
xipp(high), 	! extended instruction input signal. low true

I ! Interrupt control signals

I 	

intreq(high), ! low true interrupt request signal
intcode<nib>, 	! interrupt priority code
intack; 	! interrupt acknowledge output signal

II /***/
/A 	 A/

I 	

/A Reads addressed word from memory
/A 	Input parameters: 15 bit word address 	

*/
*/

/A 	Output parameters: data word. 	*/
/A 	 A/

II /
***/

!load the address bus
!data bus in and disable output
!address bus valid

!memory not ready

!processor in wait state because of a
!not ready condition from memory.

!wait until memory is ready delay(c1k);

else delay(phase)
M_read = dbus .
wait(ready:trail)
dbin = low .
abus = low .
memen = high

!read data bus

!clear output signals

!address bus idle

!load data bus
!load address bus
!enable output
!address bus valid

!write mode

Li

Dec 31 15:52 1983 t9989.isp Page 5

M_read(address<addrfl<word> :=

if hold eql low 	!buses busy, ie. DMA active

holda = high; 	!processor in hold state
abus = clear; dbus = clear; 	!make sure buses are clean
while hold eql low delay(c1k); 	!wait until buses become available
delay(c1k);
holda = low 	!release from hold

) 	.
abus = address<addr›;
dbin = high .
memen = low;
delay(c1k);
if not ready

.delay(phase);
pwait = high;
de1ay(3Aphase);
while not ready
de1ay(27phase);
pwait = low

/AAAAAAA*A7kA*AA*AAAAA**74AA***AAAAAAA**74*AA*AA**AÀ* 74,4 **/

/* 	 A/

/* 	Writes a word to memory 	*/

/A 	Input parameters: 15 bit word address, 	A/

/A 	 data word 	*/

/A 	 */
/*AA*AAAAAA***AAAAA*AAAAA*A****AA*A*AA**A**74A71/4*A***AAA/

M write(data<word>,address<addr>) :=

if hold eql low 	!bus not available
(
holda = high; Aprocessor in hold state
abus = clear; dbus = clear; 	!make sure buses are clean
while hold eql low delay(c1k); !wait until buses available
delay(c1k);
holda = low

) 	.
dbus = data;
abus = address;
dbin = low .
memen . low;
delay(c1k);
we = low;'

Dec 31 15:52 1983 t9989.isp Page 6

if not ready 	!memory not ready

delay(phase);
pwait = high; 	!processor in wait state
delay(3*phase);
while not ready delay(c1k); 	!until memory becomes ready
delay(2*phase);
pwait = low

)
else delay(phase) .
we = high; 	!clean output signals
wait(ready:trail)
abus = low;
dbus = low .
memen = high 	!address bus idle

/AAA/

/* 	 */

/A Handles bus interface to read from memory. 	A/

/* Input parameters: address word, 	A/

/A 	 data size bit. 	*/
/A Output parameters: data word. 	 A/

/A 	 A/

/AAAAAAAAAAAAAAAAAAAAA*******AAAAAAAAAAAAAAAAAAAAAAAAA/

bus_read(address<word>,size<bit>)<word> :=

!last bit of address is striped mbr = M_read(address<addr›).
case size
W 	! Word operation

bus_read = mbr<word>

! Byte operation

case address<15>
0 : ! even address

)
B:

!return the word

bus_read<byte> = mbr<byte> 	!return <0:7> of word

1 : ! odd address

bus_read<byte> = mbr<lobyte>

esac
)

esac

!return <8:15> of word

/AAA/

/* 	 A/

/* Handles bus interface to write to memory. 	A/

/A Input parameters: data word, 	 A/

/A 	 address word, 	 A/

Dec 31 15:52 1983 t9989.isp Page 7

/A 	 data size bit. 	h/

11 	

/hechhhhheichhhiehhhhhhhhhhhhhhhhhichhhhhhhhhhhhhhhy1/4747471/47 1chich/

bus_write(data<word>,address<word>,size<bit>) :=

case size
W : I Word operation

M_write(data,address<addr>) 	!write to memory. Last bit striped
)

B : ! Byte operation

case address<15>
0 : ! even address

!check the striped bit

HI

•

mbr<byte> = data<byte>. 	!write only <0:7> of data word
M_write(mbr,address<addr>) 	twill overwrite <8:15> of word

1 : ! odd address

mbr<lobyte> = data<byte>. !write only <8:15> of data word
M_write(mbr,address<addr>) 	twill overwrite <0:7> of word

esac
)

esac

/AhhhhhhhhArk*A*******AhhhhhhhechAA****AhhhhhhhhhhAA***A/

/A 	 A/

/* Reads a register. 	 */
/A Input parameters: register number nibble, 	*/
/A 	 data size bit. 	*/
/* Output parameter: register value word. 	*/
/A 	 A/

/***A********AAAAAAAAAAAA******AAAAAAAAAAAAAAAAAA*****/

rreg(rn<nib>,size<bit>)<word> :=

state mar<word›; 	! temp reg. for address

mar = WP + (2*(rn ext 8)) . !get address of register

mbr = M_read(mar(addr>) . 	!read from memory and store temporarily

case size
W : I Word

rreg = mbr

B : ! Byte

rreg<byte> = mbr<byte> 	!return only bit <0:7>

esac

Dec 31 15:52 1983 t9989.isp Page 8

/*
/A Writes a register.
/A Input parameters: data word,
/* 	register number nibble,
/* 	data size bit.
/A
/*AA*****AA****AhhAAAAA*********************A********/

wreg(data<word>,rn<nib>,size<bit>) :=

state mar<word> ; t temp. reg. for address

mar = WP 	(2*(rn ext 8)) . !get address of reg in memory

case size
W : ! Word

il_write(data,mar<addr>) !write into memory

B : 	Byte

mbr<byte> = data<byte> . !write byte into memory
M_write(mbr,mar<addr>)

esac;

/*********AA***A**********************************AA**/

/A Calculates effective address. 	 A/

/A Effective address is derived depending on the 	*/
/* the addressing modes : indirect, direct, indexed */
/A and autoincrement. 	 Ai

/* Input parameters: register number nibble, 	*/
/* 	addressing mode pair, 	*/

/* 	data size bit. 	*/

/* Output parameters: effective address word. 	*/
/A 	 */
/*************************AA**************************/

eff_addr(rn<nib>,mode<pair),size<bit>)<word> :=

delay(c1k) .
case mode 	!addressing modes

1 : I indirect register

eff_addr = rreg(rn,W) 	Irn contains the address

2 : I direct address, indexed

Al = bus_read(PC,W) . 	!get address pointed by PC
PC = PC 	2 . 	!increment PC
case mn 	!indexed registers

A/
*/
h/
A/
A/
A/

I Dec 31 15:52 1983 t9989.isp Page 9

0 	•

II

(

!zero means direct address

eff_addr = Al
)

I 	default :
(

!any register can be used as index

eff_addr = rreg(rn,W) + Al .

111 	
)delay(c1k)

esac

II 	

)
3 : ! autoincrement

(
Al = rreg(rn,W) . 	!register contains the address

I 	
eff_addr = Al .
delay(c1k) . 	

!return the address

I 	

Al = size =>
Al + 1 	!increment by one for byte operation

else
Al + 2 . 	Iby two for word operation.

I) wreg(Al,rn,W) 	!restore the new value of register

esac

)

/*AA*AAA***AAAA****AAA***AhhhhAA*****AAA**AA**A*******/

1
 /A */

/A Fetches source operand. */
/* Input parameters: register number nibble, */
/* addressing mode pair, */

I 	
/A 	 operand size bit.
/A Output parameters: source operand word. 	

h/

A/

/A 	 h/

I /A*****AhhAAA**AAA**Ahhhhhhhhhhhhhhh****Ahhhhichhh*****/

src_opr(rn<nib>,mode<pair>,size<bit>)<word> :=

I 	

(
case mode

0 	: I register
(

I
) src opr = rreg(rn,size) _

1,2,3 :/A

I 	indirect register,
direct address,
indexed,
autoincrement

I 	(
*/

A2 = 2Aeff_addr(rn,mode,size). 	Iget the address

•I
src _opr = bus_read(A2,size) 	!read from memory

)
• esac

I)

1

1

Dec 31 15:52 1983 t9989.isp Page 10

/A 	 A/

/A Changes LGT,AGT and EQL flags. 	*/

/A Input parameters: data word, 	*/
/A 	 data size bit. 	A/

/A 	 */
/**A************/

LAE(data<word>,size<bit>) :=

case size
W: ! Word

LGT = data<word> neq 0 . 	!ST<O>
AGT = (data<O> eql 0) and (data<word> neq 0) . 	IST<l>
EQL =-data<word> eql 0 . 	IST<2>

B.: t Byte

LGT = data<byte> neq 0 . 	IST<O>
AGT = (data<O> eql 0) and (data<byte> neq 0) . 	!STU>
EQL = data<byte> eql 0 . 	IST<2>

esac

/*
/* Stores destination operand. Optionally changes
/A LGT,AGT and EQL flags.
/* Input parameters: destination operand word, .
/* 	register number nibble,
/A 	 addressing mode pair,
/* 	operand size bit,
/A 	 flag changing selection bit.

/***/

dst_opr(data<word>,rn<nib>,mode<pair>,
size(bit>,fl_chang<bit>) :=

if fl_chang eql se_fl

LAE(data,size)
) 	.

case mode
0 	: ! register

wreg(data,rn,size) .

1,2,3 : /A indirect register,
direct address,
indexed,
autoincrement

*/

*/
*/
A/

*/
*/
*/
*/
*/
*/

/

Dec 31 15:52 1983 t9989.isp Page 11

A2 = 2*eff_addr(rn,mode,size) .
bus_write(data,A2,size)

esac;

/
/A 	 A/

/A Fetches second instruction word. 	*/
/A 	 */
/***/

fetch_2 :=

12 = bus_read(PC,W).
PC = PC + 2

/***/
/A 	 h/

/A Determines truth of a condition code. 	A/

/* Input parameters: condition code nibble. 	A/

/A Output parameters: condition code true/false bit. A/

/* 	 A/

/***/

condi_code(rn<nibMbit> :=

condi_code = case rn
0 : true
1 : (not AGT) and (not EQL)
2 : (not LGT) or (EQL)
3 : EQL
4 : (LGT) or (EQL)
5 : AGT
6 : not EQL
7 : not C
8 :C
9 : not 0
10 : (not LGT) and (not EQL)
11 : (LGT) and (not EQL) .
12 : P

esac

/***/

/A Gets Result of an operation and changes C flag. 	*/
/* Handles two operation : add & sub. 	*/
/* Input parameters: operandl word, 	*/

/A 	 operand2 word, 	A/

/A 	 add/sub mode selection bit. 	A/
/* Output parameter: result word. 	*/

/A 	 */
/***/

case size
B ! Byte

W ! Word

RESULT<0 RESULT<0:8> = °PICO:8> + 0P2<0:8>

Dec 31 15:52 1983 t9989.isp Page 12

RC(opl<word>,op2<word>,operation<bit>,
size<bit>)<word> :=

state OP1<0:16>,
OP2<0:16>,
RESULT<0:16>;

OP1<0:16> = opl<0:15> ext 17 .
0P2<0:16> = op2<0:15> ext 17 .
case operation

sub : ! subtraction

case size
B : ! Byte

RESULT<0:8> = OP1<0:8> - 0P2<0:8>

W 	! Word

RESULT<0:16> = OP1<0:16> - 0P2<0:16>

esac
)

add : ! addition

RESULT<0:16> = OP1<0:16> + 0P2<0:16>

esac
)

esac .
RC = RESULT<1:16> .
C = RESULT<O>

)

II context_switch(address<word>) :=

/AAAAAAAAAAAAAAA********AAAAA****AAAAA*********AA******/

/A 	 A/

/A Does a context switch by fetching new WI? and PC A/

/* while saving the present WI?, PC, and status (ST) */
/* in the new workspace. 	 */
/A Input parameters: Address for context switch 	*/

/* 	 A/

/A***AAAAAAAAAA****AAAAAAAAAAAAAAAAAAAAAAAA*********AAA/

delay(5) .
D1 = WP ; S1 = PC ; D2 = ST .
WP = bus_read(address,W) .

!ALU cycles
!store temporarily
!assign new values

1

I Dec 31 15:52 1983 t9989.isp Page 13

II 	

PC = bus read(address+2,W) .
wreg(D1,13,W) .

. 	
!store in memory

wreg(S1,14,W)
 wreg(D2,15,W) .

1
/A 	 A/

II /A Executes the context switch on a load signal 	*/
/A by loading WP with vector FFFC and PC with 	A/

/* 	'eeE.Also.sets interrupt mask in ST to zero, 	*/
I 	/A 	

I.

clears status bit 7 to 11 	 */
/* 	and clears the load signal flag(Load). 	*/
/A 	 . 	 */

II
LOAD :=

(

Al 	
delay(5) . 	!ALU cycles
intack=set . 	!disable interrupt before context switch
context_switch(Oxfffc) .

II 	
intack=low .
1M = 0 .
	tenable

!4 bit interrupt mask 	

.

ST<7:11>= 0 .

II 	
mpen = not ST<S>.
Load = clear; 	!reset load indicator

)

, 1 /AAAAAAAA***A**********AA******A*****AAAAAAAAA******A**/
/A 	 A/ I 	/A Executes reset signal context switch using 	*/
/* 	vectors 0000 for WP and 0002 for PC 	A/

/A 	Interrupt mask in ST set to zero.The reset 	*/
Il 	/A 	signal flag(Reset) is also cleared. 	A/

/A 	 */
/AAAAAAAAAAAAA********AAA****A*****AAAAAAAAAA**********/

RESET :=

delay(5) . 	 !ALU cycles
intack = set . 	!disable interrupt
context_switch(0x0000) .
intack = low . 	tenable
ST=0 .
mpen = not ST<8>. 	!clear interrupt mask
Reset = clear 	!clear reset indicator

/AAAAAAAA**********************A***************A*****AA/
ic 	 A/

/A Executes overflow trap context switch using
/A 	vectors 0008 for WP and 000a.
/A 	Interrupt mask in ST set to one.
/A 	ST<7:11> is also cleared.

*/
A/
A/
A/

Dec 31 15:52 1983 t9989.isp Page 14

A/

/*AAA/

OVERFLOW_TRAP :=

intack=set .
context_switch(0x0008)
intack=low .
IM=1 .
ST<7:11>=0 .
mpen=not ST<8>

!enable interrupt

!disable interrupt
!set interrupt mask to 1

/AA/

/* 	 hi

/* This is the context switch at the start of 	A/

/h 	interrupt service by the processor.The service 	A/

/* routine vectors are calculated using the value A/

/A 	of the interrupt code at the intcode port. 	*/
/A 	 A/

/**AAAAAAAAAAAAAAAAAAAAAAAA********AAAAAAAAAAAAAAAAAAAA/

INTERRUPT :=

in_vec = (4 * (intcode ext 16)) .
intack=set .
context_switch(in_vec) .
intack = low .
ST<7:11>=0 .
mpen=not ST<8> .
if intcode eql 0

IM = 0
else

IM = intcode - 1

/AA/

/* 	 A/

/* 	Provides clock pulses from processor for all 	A/

/A 	required CRU operations and for user defined 	A/

/* 	instructions like CKON,CKOFF,LREX etc 	*/
/* 	Clock pulse output is from cruclk port 	*/
/* 	 */
/A*****A****AAAAAAAAAAAAAAAA*******AA****AAAAAAAAAAAAAA/

CRU_CLOCK :=

delay(c1k) .
cruclk = high .
delay(pulse) .
cruclk = low .
delay(clk-pulse)

!set interrupt mask

1

1
II Dec 31 15:52 1983 t9989.isp Page 15

/Ahhh***AAAAAAhhhhAAAAAAAAAAAAhhhhhhhhhhhhhhhh****Ahh/

I l'1/4 	
A/

/* 	Transfers one bit of data from processor 	A/

lh 	through cruout line for serial transfer 	A/

I /* /A 	
of data. Input parameters: Register with, 	*/

bit count 	A/

/* 	 shift start loc. 	*/

II 	/* /* 	
Data assumed to be in register D1 	A/

*/
hichhhhhh****Ahh/

II 	cru_transfer(bicnt_reg<nib>,start<nib>) :=
(
do

I 	
(
memen = high;
if (start ext 8) eql 7 	1 byte transfer

II 	

(
cruout = Dl<7>

)

II

else 	1 word transfer
(
cruout = Dl<15>

) 	.

I CRU_CLOCK .

bicnt_reg = bicnt_reg - 1;

I delay(c1k)

if bicnt_reg neq 0

II 	
(
D1 = D1 /: logical 1 ;
abus = abus + 1

II) 	
)

until (bicnt_reg eql 0) .
cruout = low

II 	/*Ah***AAAAAAAAhhhhhhhhhhhhhhhhhhAAAAAAAAAAAAAAhhhAhh*/

/* 	 */

/* 	Procedure to perform shift operations of 	A/

/A 	processor. 	 h/

/* 	Input parameters: Data to be shifted must 	A/

/* 	 be in register Dl. 	*/
/A 	 Register with shift cnt. 	A/

/* 	Shift function code. 	*/
/ 	 A/

/h***Ahhhhhh****hhhhhhhhhhhhhhhhhhhhhh*******Ahhhhhhh*/

1
SHIFT(count_reg<nib>,functn<pair>) :=

case functn 1

Dec 31 15:52 1983 t9989.isp Page 16

II 	0 : 	1 SPA src,count
(
do

I 	, 	
(
C = D 1 <15> .
D1 = D1 /: arith 1 .

I) count _reg = count_reg - 1

until (count_reg eql 0) .

11)
dst_oor(D1 I Sn I r I W I sefl) ,,

	

1 : 	! SRL src,count

II 	
(
do

(

11 	

C = D 1 <15> .
D1 = D1 /: logical 1 .
count_reg = count_reg - 1 .

until (count_reg eql 0) .
dst_opr(D1,Sn,r,W,se_fl)

2 : 	t SLA src,count

do

C = Dl<O> .
D1 = D1 A: arith 1 .

)

count_reg = count_reg - 1

until (count_reg eql 0) .

)

dst opr(D1 Sn r W se fl)

3 : SRC src,count

if count reg eql 0
D2 = Di /: 	rotate 16

else
D2 = D1 /: rotate (count_reg ext 8) .

C = Dl<O> .

)

dst o r(D2 Sn r W se fl) P

esac .
) delay(3) . 	!ALU cycles

/***AAAAA*AAAAAAAAAAAAAAAAAAAAAAAAAAAA***A****AA**AA**/

/* 	 A/

/* Signed multiplication of two 16 bit integers
/A 	reg 0,1 = reg 0 A Si 	

*/
A/

Dec 31 15:52 1983 t9989.isp Page 17

/AAA/

mpys :=

state temp32<0:31>, templ6<0:15>;

Sl= src_opr(Sn, Smode, W) .
templ6=rreg(0,W) .
temp32 = Si A templ6 .
wreg(temp32<0:15>, 0 , W) .
wreg(temp32<16:31>, 1, W) .

if temp32 eql 0 ST<2>=set .
if temp32 gtr 0 ST<D=set .
if temp32 neq 0 ST<O>=set .
delay(23) .

(reg 0 contains MSD
(reg 1 contains LSD

!ALU cycles

/AAA/

/A 	 A/

/A Signed division of two integers 	*/
/A 	Dividen is in reg 0,1 and is 32 bits 	A/

/A 	Divisor is in any of the reg, 16 bits 	A/

/A 	quotient is stored in reg 0 	A/

/* 	remainder is stored in reg 1 	A/

/AAAAAAAAAAAAAAAAAAAAAAAAA******AAAAAAAAAAAAAAAAAAAAAA/

divs :=

state temp32<0:31>, templ6<0:15);

Si = src_opr(Sn, Smode, W) .
temp32<0:15> = rreg(0,W) .
temp32<16:31> = rreg(1,W) .

Iget the divisor
(reg 0 contains MSD of dividend
(reg 1 contains LSD of dividend

if (temp32<0> neq Sl<O>) and (abs (S1*32767) leg temp32)
ST<4> = set .

if Si eql 0

ST<4> = set .
delay(6) . 	IALU cycles

) 	 .

if ST<4> eql 0

templ6=temp32/S1 .
wreg(temp16,0,W) . 	!Quotient
if templ6 eql 0 ST<2>=set .
if templ6 gtr 0 ST<D=set .
if templ6 neq 0 ST<O>=set .

templ6 = temp32 mod Si .
wreg(temp16, 1, W) . 	Iremiander
delay(23) . 	IALU cycles

Dec 31 15:52 1983 t9989.isp Page 18

/***/
/A 	 */
/A Executes opcode 0 group of instructions. 	*/
/* Instructions : LI r,const 	BLWP src 	*/

/A 	AI r,const 	B 	src 	*/
/A 	ANDI r,const 	X 	src 	A/

/* 	ORI r,const 	CLR src 	A/

/A 	CI r,const 	MEG src 	A/

/A 	STWP r 	INV src 	A/

/A 	STST r 	INC src 	*/
/A 	LWPI const 	INCT src 	*/
/A 	LIMI const 	DEC src 	A/

/A 	IDLE 	DECT src 	A/

/* 	RSET 	BL 	src 	A/
/A 	RTWP 	SWPB src 	A/

/A 	CKON 	SETO src 	*/
/A 	CKOF 	ABS src 	*/
/A 	LREX 	TB disp 	*/
/A 	SBO disp 	SBZ disp 	*/

/A 	Static and dynamic shifts: 	A/

/*

SPA src,count SLA src,count 	*/
/A 	 SRL src,count SRC src,count 	*/

/* 	All Jump instructions 	A/

/A 	 A/

/***/

op_O :=

state cnt<0:3>; ! counter for shift count

case Size
0:

case Dmode
O:

case I1<7:10>
0 : ! LI r,const

fetch_2 .
dst_opr(I2,Sn,r,W,se_f1).
delay(3) .

1 : t AI r,const

fetch_2 .
Dl = src_opr(Sn,r,W)
D2 = RC(D1,I2,add,W) .
0 = (Dl<O> eql I2<0>) and

(D2<0> neq D1<0>);
delay(3) .
dst_opr(D2,Sn,r,W,se_fl)

2 : ! ANDI r,const

1ALU cycles

1ALU cycles

Il Dec 31 15:52 1983 t9989.isp Page 19 	.

I 	

fetch_2 .
D1 = src_opr(Sn,r,W) .
D2 = Dl and 12 .
delay(3) . 	 1ALU cycles

I)
dst_omr(D2 Sn r W se fl) ... 	, 	,,, 	_

3 : 1 ORI r,const

I 	

(
fetch_2 .
Dl = src_opr(Sn,r,W) .
D2 = Dl or 12.

I 	
delay(3) . 	 !ALU cycles
dst_opr(D2,Sn,r,W,se_f 1)

)
4 : 1 CI r,const 	LST r LWP r

case Il<6>

	

I I 	
0: ! CI r,const

fetch_2 .
Dl = src_opr(Sn,r,W) .
D2 = Dl - 12 .
delay(3) . 	 1ALU cycles
LGT = ((Dl<O> eql 1) and (I2<0> eql 0)) or

AGT = ((Dl<O> eql 0) and (I2<0> eql 1)) or
((Dl<O> eql I2<0>) and (D2<0> eql 1)) .

((Dl<O> eql I2<0>) and (D2<0) eql 1)) .
EQL = (D2 eql 0)

)
1 : ! LST r and LWP r

•

case 11<11>
0: ! LST r

mpn=not ST<8>e 	.
ST = rreg(Sn,W)

delay(3) . 	 !ALU cycles

	

1 	
)

delay(3) . 	 1ALU cycles
WP = rreg(Sn,W)

esac
)

esac 	
•

5 : ! STWP r

delay(2) . 	 1ALU cycles
dst_opr(WP,Sn,r,W,de_fl)

6 : ! STST r

delay(2) .
dst_opr(ST,Sn,r,W,de_fl) 	

1ALU cycles

1: t LWP r

IALU cycles

1ALU cycles

!ALU cycles

!ALU cycles

1:

divs

abus<0:2> = 5 .
delay(3) .
CRUSLOCK

1ALU cycles

II Dec 31 15:52 1983 t9989.isp Page 20

)
7 : ! LWPI

fetch_2 .
delay(4) .
WP = 12

)
8 	! LIMI

fetch_2 .
delay(4) .
IM = 12<12:15>

)
10 : ! IDLE

abus<0:2> = 2 .
delay(3) .
CRU_CLOCK

)
11 : 1 RSET

IM = 0;
abus<0:2> = 3 .
CRU_CLOCK

)
12 : t RTWP and DIVS

case Il<6>
0:

divs

1 : ! RTWP

ST = src_opr(15,r,W) .
mpen=not ST<8> .
delay(4) .
PC = src_opr(14,r,W) .
WP = src_opr(13,r,W)

esa.c
)

13 : 1 CKON and DIVS

case Il<6>
0:

esac

1:

1)

esac

abus<0:2> = 7.
delay(3).
CRU_CLOCK

IALU cycles

I Dec 31 15: 52 1983 t9989.isp Page 21

)
14 : ! CKOF and MPYS

case Il<6>
O:

mpys

1)

abus<0:2> = 6 .
delay(3) .
CRU_CLOCK

esac

!ALU cycles

15 : ! LREX and MPYS

case Il<6>
O:

InPYs

1 :

)
esac

1:

case Dn
0 : I BLWP src

A2 = 2 * eff_addr(Sn,Smode,W) .
delay(6) .
context_switch(A2)

)
1 	: ! B src

!ALU cycles

if Smode eql 0 ! register addressing
PC = WP + (2 A (Sn ext 8))

else
PC = 2 A eff_addr(Sn,Smode,W) ;

delay(3) . 	 !ALU cycles
)

2 :1 X src

XR = src_opr(Sn,Smode,W) .
Il = XR ; XR = Il .
delay(l) .

)
!ALU cycles

Dec 31 15:52 1983 t9989.isp Page 22

3 : ! CLR src

delay(2) . 	 !ALU cycles
dst_opr(0,Sn,Smode,W,de_fl)

)
4 : ! NEG src

D1 = src opr(Sn,Smode,W) .
D2 = RC(U,D1,sub,W) .
dst_opr(D2,Sn,Smode,W,se_fl)
delay(3) .
0 = (D2 eql 0x8000)

)
5 :1 INV src

D2 = src_opr(Sn,Smode,W) .
delay(2) .
dst_opr(not D2,Sn,Smode,W,se_fl)

)
6 : ! INC src

!ALU cycles

IALU cycles

D1 = src_opr(Sn,Smode,W) .
D2 = RC(D1,1,add,W) .
dst_opr(D2,Sn,Smode,W,se_fl) .
delay(2) . 	 !ALU cycles
0 = (Dl<O> eql 0) and (D2<0> eql 1)

)
7 :1 INCT src

D1 = src_opr(Sn,Smode,W) .
D2 = RC(D1,2,add,W) .
dst_opr(D2,Sn,Smode,W,se_fl) .
delay(2) . 	 !ALU cycles
0 = (Dl<O> eql 0) and (D2 (0 > eql 1)

)
8 : ! DEC src

D1 = src_opr(Sn,Smode,W) .
D2 = RC(D1,1,sub,W) .
dst_opr(D2,Sn,Smode,W,se_f1) .
delay(2) . 	 !ALU cycles
0 = (Dl<O> eql 1) and (D2 (0> eql 0)

)
9 : ! DECT src

D1 = src opr(Sn,Smode,W) .
D2 = RC(52,2,sub,W) .
dstopr(D2,Sn,Smode,W,se_fl) .
delay(2) . 	 !ALU cycles
0 = (Dl<O> eql 1) and (D2 (0> eql 0)

)
10 : I BL src

dst_opr(PC,11,r,W,de_fl) .
if Smode eql 0 I register addressing

PC = WP + (2 A (Sn ext 8))

IALU cycles

IALU cycles

1

I Dec 31 15:52 1983 t9989.isp Page 23

else
PC = eff_addr(Sn,Smode,W) ;

delay(3) .
)

11 : I SWPB src

D1 = src_opr(Sn,Smode,W) .
D2<0:7> = D1<8:15> .
D2<7:15> = D1<0:7> .
delay(2) .
dst_opr(D2,Sn,Smode,W,de_f1)

)
12 : I SETO src

delay(2) . 	 (ALU cycles
dst_opr(Oxffff,Sn,Smode,W,de_fl)

)
13: I ABS src

mpilck= set .
D1 = src_opr(Sn,Smode,W) .
D2 = case Dl<O>

0 : RC(0,D1 y add,W)
1 : RC(0,D1,sub,W)

esac .
dst_opr(D2,Sn,Smode,W,de_f1) .
LGT = (D1 neq 0) .
AGT = (Dl<O> eql 0) and (D1 neq 0) .
EQL = (D1 eql 0) .
mpilck = low .
0 = (D1 eql 0x8000);
if D1<0> eql 1 	delay(4) 	IALU cycles
else delay(3) ;

)
esac

2:

case I1<8:11>
0 	: I dynamic shifts

Si = rreg(0,W) .
cnt = S 1<12:15> .
D1 = src_opr(Sn,r,W) .
delay(3) .

SHIFT(cnt,I1<6:7>)
)

default : t static shifts

cnt = I 1<8:11> .
D1 = src_opr(Sn,r,W) .

SHIFT(cnt,I1<6:7>)
)

esac

IALU cycles

Dec 31 15:52 1983 t9989.isp Page 24

esa.c

1:

case I1<4:7>
13 	: 1 SBO disp

D1 = rreg(12,W).
D2<0:2> = 0;
02<3:14> = 01(3:14> + I1<8:15>.
cruout = high; memen = high;
abus = D2<addr>.
CRU_CLOCK;
abus = low;
delay(3) . 	1ALU cycles
cruout = low

14 	: t SBZ disp

D1 = rreg(12,W).
D2<0:2> = 0;
D2<3:14> = D 1<3:14> + I1<8:15>.
cruout = low; memen = high;
abus = D2<addr>.
CRU_CLOCK;
abus = low;
delay(3). 	!ALU cycles

15 	: t TB disp

D1 = rreg(12,W).
02<0:2> = 0;
02<3:14> = 01<3:14> + I1<8:15>.
memen = high;
abus = 02<addr>.
delay(clk + (3*phase));
ST<2> = cruin .
delay(3) . 	1ALU cycles
abus = low

default : ! Jcond disp

if condi_code(I1<4:7>)
PC = PC + (2*(11(8:15> sxt 16)) ;

delay(3) . 	1ALU cycles

esac

esac

/AAA/

/* 	 */

/* Executes opcode 1 group of instructions. 	A/

/* Instructions : COC src,r 	 A/

Dec 31 15:52 1983 t9989.isp Page 25

/A 	 CZC src,r 	 A/

/* 	XOR src,r 	 A/

/A 	 XOP src,r 	 A/

/A 	 LDCR src,count 	 A/

/* 	STCR src,count 	 A/

/* 	MPY src,r 	 */
/* 	DIV src,r 	 */
/* 	 */
/AAA/

op_l :=

state temp<0:15>,templ<0:32>,temp2<0:16>,temp3<0:16>,
cnt<0:3>;

case (Size concat Dmode)
0 : ! COC src,r

D1 = src_opr(Dn,r,W) .
Si = src_opr(Sn,r,W) .
delay(3) .
EQL = ((D1 and Si) eql D1)

1 : ! CZC src,r

D1 = src_opr(Dn,r,W) .
Si = src_opr(Sn,r,W) .
delay(3) .
EQL = ((D1 and Si) eql Si)

2 : ! XOR src,r

D1 = src_opr(Dn,r,W) .
Si = src_opr(Sn,r,W) .
D2 = D1 xor Si .
delay(2) .
dst_opr(D2,Dn,r,W,se_fl)

3 : ! XOP src,r

IALU cycles

!ALU cycles

!ALU cycles

ST<6> = high;
temp = (4*Dn + 0x40) .
context switch(temp) .
delay(77 . 	 !ALU cycles
wreg((eff_addr(Sn,Smode,W)),11,W)

4 : t LDCR src,count

temp = rreg(12,W) . temp<0:2> = low .
cnt = I1<6:9>.

if ((cnt ext 8) leq 8) and ((cnt ext 8) gtr 0)

D2 = eff_addr(Sn,Smode,B).
Al = src_opr(Sn,Smode,B).

Dec 31 15:52 1983 t9989.isp Page 26

if 02<15> eql 1
(
Dl<lobyte> = Al<byte>.
LAE(A1,B); P = parity(Al<byte>)
abus = temp<0:14> .
cru_transfer(cnt,15)

)
else

(
Dl<byte> = Al<byte>.
LAE(A1,B); P = parity(Al<byte›).
abus = temp<0:14> .
cru_transfer(cnt,7)

)

)
else

(
02 = eff_addr(Sn,Smode,W).
D1 = src opr(Sn,Smode,W).
LAE(D1,Wi.
abus = temp<0:14> .
cru_transfer(cnt,15)

);
delay(5) .
)

5 : I STCR src,count
(

IALU cycles

temp = rreg(12,W) . temp<0:2> = clear .
cnt = 11<6:9> .

if ((cnt ext 8) leq 8) and ((cnt ext 8) gtr 0)
(
if Smode eql 3 ! auto increment
D2 = rreg(Sn,Size)

else
02 = src_opr(Sn,Smode,W). ! read destination

if Smode eql 2 	! before storing
PC = PC - 2 .

abus = temp<0:14> .

do
(
memen = high .
delay(clk +(3*phase));
01<0> = cruin .
delay(phase)

-cnt = cnt - 1 .

delay(c1k)
if cnt neq 0

(
D1 = D1 /: logical 1 ;
abus = abus + 1

)

I Dec 31 15:52 1983 t9989.isp Page 27

I 	- until (cnt eql 0).

if (11<6:9> ext 8) neq 8
D1 = D1 /: logical (8 - (11<6:9> ext 8)).

dst_opr(D1,Sn,Smode,B,se_fl);
P = parity(D1<byte>)

else

abus = temp<0:14> .

do

memen = high .
delay(clk+(3*phase));
Dl<O> = cruin .
delay(phase)

cnt = cnt - 1 .

delay(c1k)
if cnt neq 0

(

II 	
D1 = D1 /: logical 1 ;
abus = abus + 1

)

I 	

)
until (cnt eql 0).
if (11<6:9> neq 0)
D1 = D1 /: logical (16 - (11<6:9) ext 8)) .

I 	
dst_opr(D1,Sn,Smode,W,se_fl)

);
delay(8) . 	 !ALU cycles

II 	
)

6 : 1 MPY src,r
(

II 	

Si = src_opr(Sn,Smode,W) .
D 	

!get first operand
1 = rreg(Dn,W) .

!get second operand

templ<0:16> = 0; temp2<0> = 0; templ<17:32> = Sl;Iclean scratch reg
temp2<1:16> = D1 .

II tempi = templ * temp2 . !compute product for unsigned multiplication

I 	
if (Dn ext 8) eql 15

(
(s ecial case if reg 15 is used P 	g

wreg(templ<1:16), 15, W) . 	!most significant word

II

	

	

M_write(templ<17:32>, (WP+(2*16))) . !Least significant word
) !in memory next to reg

else

wreg(templ<1:16>, Dn, W) .
wreg(templ<17:32>, (Dn+1), W) . 	

!most significant word
(least significant word

);

)

d elay(21) . 	 1ALU cycles

!store quotient

!store remairider

);
delay(23) .

esac

IALU cycles

/

Dec 31 15:52 1983 t9989.isp Page 28

7 : ! DIV src,r

Si = src_opr(Sn,Smode,W) . 	!get first operand
templ<O> = 0; temp2<0> = 0; temp3<0> = 0; 	!clean scratch spaces
temp2<1:16> = Si.; templ<1:16> = rreg(Dn,W) • 	(copy & get operands
temp3<1:16> = templ<1:16>.

if temp2 Leq temp3 	!divisor is leq than msd of dividend

delay(6) . 	!ALU cycles
ST<4> = set 	!set overflow flag

else

if (Dn ext 8) eql 15 !special case if reg 15 is used

templ<17:32> = M_read(WP + 2A16) . !get lsd of dividend

temp3 = templ / temp2 .
wreg(temp3<1:16>, 15, W) . 	!store quotient in reg 15

temp3 = tempi mod temp2 . 	!compute remainder
M_write(temp3(1:16>, (WP + (2A16))) . 	!store in next memory

temp3 = templ / temp2 .
wreg(temp3<1:16>, Dn, W) .

temp3 = templ mod temp2 .
wreg(temp3<1:16>,Dn+1, W) .

/AAA/

/A 	 A/

/A Executes opcode 2 group of instructions. 	*/
/A Instructions : SZC,SZCE src,dst 	A/

/AAAAAAAAAAAAAAAAAAAAAAAAAAA*****AAAAAAAAAAAAAAAAAAAAA/

II 	°P—
S1 = src_opr(Sn,Smode,Size) .

if Dmode eql 3

D2 = 2Arreg(Dn,Size) .;
D1 = bus_read(D2,Size)

!get first operand

! auto increment

Dec 31 15:52 1983 t9989.isp Page 29

else
D1 = src_opr(Dn,Dmode,Size) . I Also dest. address,

if Dmode eql 2 	I so read last
PC = PC - 2 .

D2 = D1 and (not Si) . 	!compute set zero corresponding
dst_opr(D2,Dn,Dmode,Size,se_fl) . 	!store result D2 in dst
delay(2) . 	!ALU cycles
if Size eql B

P = parity(D2<byte>)

/AAA/
/A 	 A/

/* Executes opcode 3 group of instructions. 	*/
/* Instructions 	S,SB src,dst 	 */

*/
/AAA/

op_3 :=

Si = src_opr(Sn,Smode,Size) . Iget first operand

if Dmode eql 3 ! auto increment

D2 = 2*rreg(Dn,Size) .;
D1 = bus_read(D2,Size)

else
D1 = src_opr(Dn,Dmode,Size) . ! Also dest.addr.,

if Dmode eql 2 	! so read last
PC = PC - 2 .

D2 = RC(D1,S1,sub,Size) . 	!compute the difference

dst_opr(D2,Dn,Dmode,Size,se_fl) . 	!store in dst
0 = (Sl<O> neq Dl<O>) and (D2<0> neq Dl<O>) .
delay(2) . 	!ALU cycles
if Size eql B

• P = parity(D2<byte>)

/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA******A********AAA/
/A 	 A/

/* Executes opcode 4 group of instructions. 	*/
/A Instructions : C,CB src,dst 	 A/

/* 	 A/
/******AAAAAAAAAAAAA*******A*****A*************AAAAAAA/

op_4 :=

!set status bits

Si = src_opr(Sn,Smode,Size) . 	!get first operand
D1 = src_opr(Dn,Dmode,Size) . 	!get second operand
D2 = D1'- Si . 	 !get the difference
LGT = ((Sl<O> eql 1) and (Dl<O> eql 0)) or 	!ST<O>

((Sl<O> eql Dl<O>) and (D2<0> eql 1)) .
AGT = ((Sl<O> eql 0) and (Dl<O> eql 1)) or 	!STU.>

I Dec 31 15:52 1983 t9989.isp Page 30

((Sl<O> eql Dl<O>) and (D2<0> eql 1)) .
EQL = case Size

B : D2<byte> eql 0
W : D2<word> eql 0

esac
delay(3) . 	!ALU cycles
if Size eql B

P = parity(S1<byte>)

/AAA/

/A 	 A/

/* Executes opcode 5 group of instructions. 	*/
/A Instructions : A,AB src,dst 	 A/

/A 	 A/

/***/

op_5 :=

[ST <2>

!get first operand Si = src_opr(Sn,Smode,Size) .

if Dmode eql 3 ! auto increment .

D2 = 2*rreg(Dn,Size)
D1 = bus_read(1J2,Size)

else
D1 = src_opr(Dn,Dmode,Size) . I Also dest.addr., .

if Dmode eql 2 	! so read last
PC = PC - 2 .

D2 = RC(D1,S1,add,Size) . 	!compute the sum
dst_opr(D2,Dn,Dmode,Size,se_fl) . 	!store in dst
0 = (Sl<O> eql Dl<O>) and (D2<0> neq Dl<O>) .
delay(2) . 	IALU cycles
if Size eql B

P = parity(D2(byte>)

!set status bit

/AA*********/

/A Executes opcode 6 group of instructions. 	A/

/* Instructions : MOV,MOVB src,dst 	A/

/A 	 */

/***/

op_6 :=

D2 = src_opr(Sn,Smode,Size) . 	!get the source operand

if Dmode eql 3 ! auto increment

Si = 2Arreg(Dn,Size) .;
D1 = bus_read(S1,Size)

else

I .

Dec 31 15:52 1983 t9989.isp Page 31

D1 = src_opr(Dn, Dmode, Size) .1 Read destination
if Dmode eql 2 	 t before writing

PC = PC - 2 .
dst_opr(D2,Dn,Dmode,Size,se_fl) . !store src in dst
delay(2) . 	 ! ALU cycles
if Size eql B

P = parity(D2<byte>)

/AA*AAAAAAAAAAA*AA*AAAA*AAA*AAA***AA*AAAAAAAAAAAAAAAAA/

/A 	 A/

/A Executes opcode 7 group of instructions. 	 A/

/A Instructions : SOC,SOCB src,dst 	 */
/* 	 A/

/AAAAA**AAA*A***AAA*A71/471/4****A*AAAA*AA*AAA***AAAAAAA*AAA/

op_7 :=

Si = src_opr(Sn,Smode,Size) .

if Dmode eql 3 ! auto increment

D2 = 2Arreg(Dn,Size) .;
D1 = bus_read(D2,Size)

else
D1 = src_opr(Dn,Dmode,Size) . ! Also destination

if Dmode eql 2 	I address, so
PC = PC - 2 . 	 ! read last

D2 = D1 or Si . 	! compute set one corresponding
dst_opr(D2,Dn,Dmode,Size,se_fl) . 	!store result in dst
delay(2) . 	IALU cycles
if Size eql B

P = parity(D2<byte>)

/AAAAAAA***AAAAAA,IcAAAAAAAAAA*AAAAAAAAAAA*AAAAAAA*A**A*/

/74 	 * /
/74 Illegal Opcode check.
/A 	 A/

/***AAAAAAAAA***A***AA**A**A*****A***AA********A**AAA/

ILLOP_CHECK :=

Illop=0 . 	! if illegal opcode is detected it will be set
if (I1 geq 0x0000 and D. leq Ox007f) Illop=set .
if (II geq Ox00a0 and Il leq Ox017f) Illop=set .
if (I1 geq 0x0320 and Il leq 0x033f) Illop=set .
if (II geq 0x0780 and Il leq Ox07ff) Illop=set .
if (I1 geq Ox0c00 and Il leq OxOfff) Illop=set .

/*AAAA*AA*AAA*AAAAAA*AA***AylçAAAAA7kAAA*A***AA*AA**AAAAA/

/ A

/A Fetches first instruction word.

!get first operand

71/4 /

Dec 31 15:52 1983 t9989.isp Page 32

/A 	 A/

/AAA/

fetch_l :=

iaq = high;
Il = bus_read(PC,W)
iaq =low;
ILLOP_CHECK .
PC = PC + 2

!indicate processor is fetching instruction
!fetch instruction pointed by PC

!check for illegal opcode
!increment PC

/AAA/

iv A/

/* Decodes instructions. 	 */
/* 	 */
/AAA/

decode :=

!ALU cycles delay(1) .
case Opcode

0 : op_O
1 : op_l
2 : op _2
3 : op=3
4 : op_4
5 : op_5
6 : op_6
7 : op_7

esac

/AAA/

/A 	 A/

/* Decodes instruction fully and executes it. 	*/
/* 	 */
/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA****AAAAAAA****AAAAAA/

execute :=

decode .
if XP<O:9> eql 18 ! Execute remote instruction

decode .
Il = XR ; XR = Il.

/AAA/

/A 	 A/

/A Execution of Extended Processor Instruction. 	A/

/A 	 A/

/AAA/

Dec 31 15:52 1983 t9989.isp Page 33

XIPACT :=

context switch(0x0008) .
delay(CT .
Illop = low .
holda = high .
wait (xipp : lead) .
holda = low .
WP = rreg (13,W) .
PC = rreg (14,W) .
ST = rreg (15,W) .
mpen = not ST<8>

!reserve the environment
!ALU cycles
!reset illegal opcode indicator
!processor is in hold state
!wait until external processor is done
!exit from hold state
!restore the environment

/AAA/

/* 	 A/

/A Main Processing Loop. 	 A/

/* 	 A/

/* 1- interrupt is recognized through intreq signal */
/* 2- load,xipp and reset signals are processed by */
/* 	the when processors. 	 A/

/* 3- if illegal opcode is detected but xipp is not */
/* 	set, the process resumes normal operation. 	A/

/* 4- if overflow trap is enable and no interrupt 	A/

/* 	request is pending, the overflow trap is 	*/
/A 	executed. 	 A/

/* 5- if idle instruction is executed, the processor */
/* 	remains idle until either load, reset or 	*/
/* 	interrupt event happens. 	 A/

/* 	 */
/AAAAAAAAAAAA*****AAAAAAAAAAAAAAAAAAAAAA*****AAAAAAAAA/

when(reset : trail) := 	!to recognize a reset signal

wait(reset : lead)
Reset = set

when(load : trail) := 	!to recognize a load signal

wait(load : lead)
Load = set

when(xipp :trail) := 	!to recognize extended instruction processor
!present signal

Xipp=set

main :=

fetch_l . 	!fetch instruction from memory
if (Mop neq set and Xipp neq set) execute 	!decode and execute
else

if Xipp XIPACT 	!external processor takes over buses

else

delay(6) .
if Illop

1ALU cycles
!illegal opcode but no Xipp

I Dec 31 15:52 1983 t9989.isp Page 34

Illop=low . 	!reset illegal opcode indicator
context_switch(0x000a) .
Il<0:9>=0x010 	!so to skip the checking below

) 	;
if Load LOAD
else

if (I1<0:9> neq 0x010) and (I1<0:5> neq Ox0b) ! not BLWP or XOP

if (intreq eql low) and (intcode leq IM) INTERRUPT
else

if (ST<4> eql set) and (ST<10> eql set) OVERFLOW_TRAP
else

if I1<0:10> eql 26 	1 IDLE instruction, wait for an event

while ((load and reset) eql high) and (intreq eql high)

if (intcode ext 8) leq (IM ext 8) INTERRUPT
else CRU_CLOCK

) 	 .

) 	;
if Reset RESET .
if Load LOAD

);

APPENDIX A: The Hardware Modules

A.2 The Memory Module (timem.isp)

1&,
0&,
16&;

macro HIGH
LOW
WORD

cat timem.isp
/AAA/

MEMORY MODULE

Designed to work with the Texas Instrument
TMS 9989 processor.
This memory Module does not support byte write
operations.

Albert Lam
/A 	Intellitech Canada Limited 	September 1983
/A 	 */

/**AAAA****AAAAAAAAAAAAAA*AAAAAAAAAAAA************AAA******A/

/A

/A

/A

/A

/A

/A

/A

/A

/A

A/

A/

A/

A/

A/

A/

A/

A/

A/

*/

port 	adbus<15>,
dbus<WORD>,
memen,
ready,
dbin,
we;

state 	al<15);

mem 	meC0i2553<WORD>;

! address bus
! data bus
! low true memory enable
! memory ready
! data bus input signal
! low true write enable

! address latch

! 16 bit wide memory

when (memen:trail dbin eql HIGH) :=
(al = adbus ; next
ready = HIGH ; next
dbus = meCal7; next
delay(3); .
ready = LOW ;
dbus = 0;

when (memen:trail dbin eql LOW) :=
(al = adbus ; next
ready = HIGH ; next
meCal] = dbus ; next
delay(3);
ready = LOW ;

APPENDIX B: The Topology File (test.t)

II 	%C-'
/AAAAAAAAAAAAAAAAAAAAAAAAAAAA&AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA/

/A 	 A/

/* 	Topology file for initial test of TMS 9989 + memory 	A/

II 	/* /A 	 Albert Lam 	
h/

A/

/A 	 Intellitech Canada Limited 	09-SEP-83 	A/

/A 	 A/

II

	

	/AA/

%

signal
adresb(15), 	! address bus
datab(16), 	l data bus

II 	

dbinb,
memenb, 	

! data bus in signal. high true
! memory enable , low true.

web, 	! write enable. low true
cruclb, 	l CRU clock signal from processor

II 	

cruinb, ! CRU data in port for serial I/O
cruoub, ! CRU data out port for serial I/O
holdb, 1 low true hold signal
holdab, 	! hold acknowledge , high true
readyb, 	! ready signal from memory

II 	
pwaitb, ! wait signal for memory operation
mpenb, ! memory map enable output signal. low true
iaqb, 	1 instruction acquisition signal. high true
loadb, 	! low true load signal to processor

II 	

resetb, ! reset signal to processor. low true
mpilcb, ! multiprocessor interlock output signal
xippb, ! extended instruction input signal. low true
intreb, 	! low true interrupt request signal
intcob(4), 	I interrupt priority code

II % 	
intacb; 	! interrupt acknowledge output signal

/AAAAAAAAAAAAAAA*****AAAAAAAA***AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA**/
, 	/A 	 h/

II 	
IA Processor descriptions
IA 	 */

pl = TMS 9989 /* */
/* 	mem= memory module,initial max.core 	 */
/A 	 A/

II

	

	/AAAAAAAAA*AA/

%

!TEXAS INSTRUMENT TMS- 9 9 8 9
processor 	pl = "t9989.sim";

II 	

time delay
connections 	

5 ns;
abus = adresb,

dbus = datab,
dbin = dbinb,

II 	

memen = memenb,
we = web,
cruclk = cruclb,
cruin = cruinb,
cruout = cruoub,

II 	

hold = holdb,
holda = holdab,
ready = readyb,
pwait = pwaitb,

II 	

mpen = mpenb,
iaq = iaqb,
load = loadb,
reset = resetb,
mpilck = mpilcb,

II 	

xipp = xippb,
intreq = intreb,
intcode = intcob,
intack = intacb;

I 	

! MEMORY 	MODULE
processor mem = "timem.sim";
time delay

5ns;

connections 	adbus = adresb,
dbus = datab,

II 	

memen = memenb,
ready = readyb,
dbin = dbinb,
we = web;

I 	

initial
$ 	

me = "max.core";

.

APPENDIX C: The Linking Loader Description (t9989.i)

I pr t9989.i

I Sep 16 15:50 1983 t9989.i Page 1

II 	

tAAAA****AAAt

I A 	 Al

I* t9900.i. 	 At

I 	
IA Linking Loader description for Texas Instruments AI

IA 9900 microprocessor. 	 At

!* No input requirements. 	 At

!A Generates t9900.a on compilation. 	At

I 	LA Use "inter" to compile.
IA 	

At
At

!* Author 	: Samir S. Shah. 	 AL

111 	
IA Date
lA Modified 	

: Summer 1980.
: Samir S. Shah. 	

At
At

!* Modification : The previous version addressed 	Al

IA 	 memory by 16-bit words. It is 	At

111 	IA
IA 	

changed to byte addressing in At

this version.

At

IA Date 	: Sept 1980. 	 *1

I
l * 	 Al
IAAAAAAAAAA****AAAAAAAAAAAAAAAAA******AAAAAAAAAAAAAAAAt

I 	
tAAAt

IA 	 At

!* The memory is addressed in bytes. The default 	Al

!* instruction length is two bytes. The maximum 	At

I 	
!* instruction length is six bytes.

A 	

At

I At
tAAAAAAAAAAAAAAAAAAA***A***AAAAAAAAAAAAAAAA***AAAAAAA*1

11 	instr
1C3,13<16>$

I L

1* At -
!A Alternative shorter names for instruction bytes. AI

ll IA 	"ci
tAAAAAAAAAAAAA***AAAAAAAAAAA*****AAAAAA******AAAAAAAAAt

I 	format
IO = IC07<15:0>,
Il = I[1]<15:0>,

I
12 = 1E2]<15:0>,

t****AA*****AAA*1
t* 	 At

I IA Subfields of instruction bytes. At

I* At
tAAAAAAAAAAAAAAAAAAAAAA******AAAAAA*********AAAAAA***At

II Opcode = ICO3<15:13>,
BT 	. IC0]<12>,
TD 	= IC0J<11:10>,

111 	
DRO
DR1

= I [0]<7:6>,

TS 	= IE03K5:4>,

Il 	
SR 	=

t

Sep 16 15:50 1983 t9989.i Page 2

tAhAAA*AAAAAAhk**Akh**AAA*AAA*A***AAAA*A***AAAAkhAAAAAt

th 8-bit extended opcode. 	 kt
1* 	 kt
tAAAAAAAAAAAAAAAAAAAAAAAAAkkkkAhAkAAAAAAA*AAAAAAA*AAAkt

extop = 1E07(7:0),
disp = I[0]<7:0>,
xtion = I[0]<7:5>,
count = 1C0]<7:4>$

tAAAAAAA******h*AAA*AAAAA*AA**AAA***AAAA*AAAA*AAAAAA*At
th 	 kt
!* Memory space declaration. 	 Ai

I* 	 A i
tAkkAAAAA*A**A**AAAA*A*A********A*AAAAA***A*A**A*A*AA*1

space
<0:0x5fff>$

tAAA***AAAA*AA*A****AAAAA*AA**AA***AAAAAAAAA*AA**AAA**t

lh Unconditional Jump instruction for non-contiguous *!
!* memory allocation. 	 kt
I* 	 *1
1****AAA**************AkhkkA****kAkkAAAAkAk****A***A**1

transfer

new
Opcode = 0 $
BT = 0 $
TD = 1 $
DRU = 1 -2 $
DR1 = 1 $
TS = 2 $
SR = 0 $
Il = address $
length = 2 $

1

mode

tkkA**A***A**AA*A*AAAAAAAA**AkkAA*AAA**A**A***AAAAAkkAt
71/4 ic

1* Resolve one or both addresses. 	ic!

th 	 ici
tAAAAAAAkAAA*AA**A**AAAAkA****A*AAA****A*A*AA***kAkAkkt

case (length eql 3) 	•
if M. eql 0 then C Il = address[l] $ 3 $
if 12 eql 0 then C 12 = address[2] $ 3 $

break $
esac,
case ((labelcnt eql 1) and

Sep 16 15:50 1983 t9989.i Page 3

(field eql I1)) 	:
Il = address $

break $
esac,
case ((labelcnt eql 1) and

(field eql 12)) 	•
12 = address $

break $
esac,
case (field eql disp) 	:
disp = (address + disp - . - 1) $

break $
esac,
default :

10 = address $
esac $

APPENDIX D: The "Meta Micro Assembler Description (t9989.m)"

II pr t9989.m

I Sep 16 15:41 1983 t9989.m Page 1

I 	

1**AAA! I A 	 Ai

IA t9900.m. 	 A!

I 	

I* metaMicro description file for Texas instruments *!
1* 9900 microprocessor. 	 Ai

!A This file is included in the first line of 	AL

!A assembler source code file, say source.m. 	Ai

I 	ik It generates output file source.n if "micro" is 	*!
!A used. If "mas" is used than it generates the 	A!

!* following output files. 	 Ai

II !A source.n : nodal output file. ,I,I

!* source.1 : assembler listing, logical addresses. *!
1* source.L : assembler listing, both logical and Al

IA 	 physical addresses and assembled 	A!

I 	
!* object code listings.
1* 1.out

	

: assmbled object code core image. 	
A!
A!

!* Use "micro" with "cater" and "merge" or use "mas".*!

I 	
IA
!* Author 	: Samir S. Shah. 	

Al
k!

!* Date 	: Summer 1980. 	 Ai

II 	

1* Modified 	: Samir S. Shah. 	 Ai

!* Modification : The previous version addressed 	A!

!* 	memory in 16-bit words. It is 	A!

!* 	addressed in bytes in this version.*!

I 	
!A Date 	: Sept 1980.
!A Modification : Converted to TM59989. 4 more 	

Ai
Ai

1* 	instructions are added to reflect *1

I 	
IA this change.
!* Modified : by Albert Lam, July 1983 	A!

1***AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA******AAAAAAhi

I i*A********AAAI

1* 	 Ai

I 	!A The memory is addressed in bytes. The default 	Al

!* instruction length is two bytes and the maximum *!
1* instruction length is six bytes. 	,1,!

I 	
1* 	 AL

IAAAAAAAAAAAAAAAAAAAAAAAA******A*********AAAAAAAAAAAAA1

I 	
instr

IC3,17<16>$

IAAAAAAAAAAAAAAAAAAAA**********AAAAAAAAAAAAAAAAAAAAAAAi

I !A Alternative shorter names for instruction bytes. *1
!* 	 Al

I
iAA****Ai

format
IO = 1CO3<15:0>,

I 	
Il =
12 = 1[23(15:0>,

iAAAL

!A 	 Ai

II Sep 16 15:41 1983 t9989.m Page 2

I 	
IA Subfields of instruction bytes.
IA 	

*!
*!

tAAAt

I Opcode = IE0]<15:13>,
BT 	= ICO31<12),
TD 	= ICO3<11:10>,

I 	
DRO
DR1 	

= I [0]<9:8>,
= IE03<7:6>,

TS 	= IC0]<5:4>,

II SR 	= ICO3<3:0>,

tAAAt

IA
At

I 	ih 8-bit extended opcode.
!A 	

ht

At

tAAA*****AAAAAt

I extop = ICO3<15:8>,
disp = I [0]<7:0>,

I 	
xtion = ICO3<7:5>,
count = IE03<7:4>$

macro

I tAAAAAAAAAAAAAAAAAAAAAAAkAAAAAAAAAAAAAAAAAAAAAAAAAAAAAt

IA 	 At

II* Register name macros.
IA 	 A

ht

t

tAAAAAAAAAAAAAAAAAAAAAAAA*******A******AAAAAAAAAAAAAAht

I RO =0 &,
R1 = 1 &,
R2 = 2 &,

I 	
R3 =3 &,
R4 = 4 &,
R5 = 5 &,

•• 	
R6 =6 &,
R7 =7 &,
R8 = 8 &,

•• 	

R9 =9 &,
R10 = 10 &,
R11 = 11 &,
R12 = 12 &, 	 .

•• 	
R13 = 13 &,
R14 = 14 &,
R15 = 15 &,

I tAAAt

!A 	 At

!A Addressing mode management. 	 *i

I 	
!A Abbreviations : RG = ReGister
IA 	

7k !

RI = Register Indirect

Yiç !

,
IA 	SM = SyMbolic 	At

I
I*

A 	

IX = IndeXed
AI = AutoIncrement 	

*I
I A t

Sep 16 15:41 1983 t9989.m Page 3

IA 	
At

LAAAAAA*AAAAAA***AAAAAAAAAAAA*AAAAAAAAAAA**hAAAAAAAAAAL

DRG (Rn) =
TD = 0;
DRO = Rn A -2;
DR1 = Rn &,

DRI (Rn) =
TD = 1;
DRO = Rn A -2;
DR1 = Rn &,

DSM (Ad) =
TD = 2;
DRO = 0;
DR1 = 0;
if length neq 2 then C Il = Ad 1

else f 12 = Ad 1;
length = length + 1 &,

DIX (X,Rn) =
TD = 2;
DRO = Rn A -2;
DR1 = Rn;

- if (length neq 2) then

Il = X
J.

else

12 = X
1;

length = length + 1 &,

DAI (Rn) =
TD = 3;
DRO = Rn A

 DR1 = Rn &,

SRG (Rn) =
TS = 0;
SR = Rn &,

SRI (Rn) =
TS = 1;
SR = Rn &,

SSM (Ad) =
TS = 2;
SR = 0;
Il = Ad;
length = length + 1 &,

SIX (X,Rn) =
TS = 2;

Sep 16 15:41 1983 t9989.m Page 4

SR = Rn;
Il = X;
length = length + 1 &,

SAI (Rn) =
TS = 3;
SR = Rn &,

LAAA******AAAAI
71/4

I* src and dst concatenation macros. 	At
!* 	 Al

LAAAAAAAAAAAAAAAAAA*****AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAL

macS (src) =
if 1 then fSlsrc &,

macD (dst) =
if 1 then fDldst &,

[AAAI

!* 	 A[

I* Format 1 instructions. 	 At
I* 	 At
IAAAI

maclW (src,dst) =
ET = 0;
macS (src);
macD (dst) &,

mac1B (src,dst) =
ET = 1;
macS (src);
macD (dst) &,

A (src,dst) =
Opcode = 5;
maclW (src,dst) $ &,

AB (src,dst) =
Opcode = 5;
mac1B (src,dst) $ &,

C (src,dst) =
Opcode = 4;
maclW (src,dst) $ &,

I CE (src,dst) =
Opcode = 4;
mac1B (src,dst) $ &,

S (src,dst) =
Opcode = 3;
maclW (src,dst) $ &,

Sep 16 15:41 1983 t9989.m Page 5

SB (src,dst) =
Opcode = 3;
mac1B (src,dst) $ &,

SOC (src,dst) =
Opcode = 7;
maclW (src,dst) $ &,

SOCB (src,dst) =
Opcode = 7;
mac1B (src,dst) $ &,

SZC (src,dst) =
Opcode = 2;
maclW (src,dst) $ &,

SZCB (src,dst) =
Opcode = 2;
mac1B (src,dst) $ &,

MOV (src,dst) =
Opcode = 6;
maclW (src,dst) $ &,

MOVB (src,dst) =
Opcode = 6;
mac1B (src,dst) $ &,

LAAAAAAAAAAA*AAAA***AA*AAA*AAAAAA**AA*AAA*AAAA*AA*AAA*i

IA 	 AL

!A Format 2 instructions. 	 hi

!A 	 AL

(***A***AAA*AA*AAAAAAAAA*AAAA*AAA*A*AAAAAAAAAAAAAAAAAAI

mac2 (src,dstreg) =
Opcode = 1;
macS (src);
DRO = dstreg A -2;
DR1 = dstreg &,

COC (src,dstreg) =
BT = 0;
TD = 0;
mac2 (src,dstreg) $ &,

CZC (src,dstreg) =
ET = 0;
TD = 1;
mac2 (src,dstreg) $ &,

XOR (src,dstreg) =
ET = 0;
TD = 2;
mac2 (src,dstreg) $ &,

II MPY (src,dstreg) =

A

Sep 16 15:41 1983 t9989.m Page 6

BT = 1;
TD = 2;
mac2 (src,dstreg) $ &,

DIV (src,dstreg) =
BT = 1;
TD = 3;
mac2 (src,dstreg) $ &,

IAAA1

1* Format 3 instruction. 	 hi

1* 	 AL
1AAAL

mac3 (src) =
Opcode=0;
BT=0;
TD=0;
macS(scr) &,

MPYS (src) =
DRO = 7 A -2;
DR1 = 7;
mac3(src) $ &,

DIVS (src) =
DRO = 6 A -2;
DR1 = 6;
mac3(src) $ &,

(*****AAA*1

A 	 A!

!* Format 4 instructions. 	 At

!A 	 Ai
[AA

mac4 (src) =
Opcode = 0;
BT = 0;
TD = 1;
macS (src) &,

B (src) =
DRO = 1 A -2;
DR1 = 1;
mac4 (src) $ &,

BL (src) =
DRO = 10 A -2;
DR1 = 10;
mac4 (src) $ &,

BLWP (src) =

Sep 16 15:41 1983 t9989.m Page 7

DRO = 0;
DR1 = 0;
mac4 (src) $

CLR (src) =
DRO = 3 A -2;
DR1 = 3;
mac4 (src) $ &,

SEr(7) (src) =
DRO = 12 A -2;
DR1 = 12;
mac4 (src) $ &,

INV (src) =
DRO = 5 A -2;
DR1 = 5;
mac4 (src) $ &r

NEG (src) =
DRO = 4 A -2;
DR1 = 4;
mac4 (src) $ Ecr

ABS (src) =
DRO = 13 A -2;
DR1 = 13;
mac4 (src) $ &,

SPIPB (src) =
DRO = 11 A -2;
DR1 = 11;
mac4 (src) $ &,

INC (src) =
DRO = 6 A -2;
DR1 = 6;
mac4 (src) $ &

INCT (src) =
DRO = 7 A -2;
DR1 = 7;
mac4 (src) $ &,

DEC (src) =
DRO = 8 A -2;
DR1 = 8;
mac4 (src) $ &,

DECT (src) =
DRO = 9 A -2;
DR1 = 9;
mac4 (src) $ & r

X (src) =
DRO = 2 A -2;

II • Sep 16 15:41 1983 t9989.m Page 8

•• 	
DR1 . 2;
mac4 (src) $ &,

LAAAL

I 	!* 	 Al

!* Format 5 instructions. 	 AL

!* 	 AL

I 1AAAt

mac5 (src,bits) =

I 	
Opcode = 1;
BT = 1;
macS (src);

I 	
DRO = bits A -2;
DR1 = bits &,

LDCR (src,bits) =

•• 	
TD =- 0;
mac5 (src,bits) $ &,

I 	STCR (src,bits) =
TD = 1;
mac5 (src,bits) $ &,

I 	LAAAAAAAAAAAAAAAAAAAAAAAAAAA*****AAAAAAAAAAAAAAAAAAAAAL

!A 	 AL

I* Format 6 instructions. 	 7:çt
• !* 	 Ai

LAAAAAAAAAAAA******AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAL

II 	
SBO (displ) =

extop = Oxld;
disp = displ $ &,

I 	SBZ (displ) =
extop = Oxle;
disp = displ $ &,

II TB (displ) =
extop = Oxlf;

I 	
disp = displ $ &,

IAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA****AAAAAAAAA********Al

i* 	 AL

II !* Format 7 instructions. *I
 I* AL

LAAAAAAAAAAAAAAAAAAAAAAA****AA*****AAAAAAAAAAAAAAAAAAAL

I JEQ (displ) =
extop = 0x13;
disp = displ $ &,

I JGT (displ) =
extop = 0x15;

I disp = displ $ &,

Sep 16 15:41 1983 t9989.m Page 9

JH (displ) =
extop = Oxlb;
disp = displ $ &,

JHE (displ) =
extop = 0x14;
disp = displ $ &,

JL (displ) =
extop = Oxla;
disp = displ $ &,

JLE (displ) =
extop = 0x12;
disp = displ $ &,

JLT (displ) =
extop = 0x11;
disp = displ $ &,

JMP (disp1) =
extop = 0x10;
disp = displ $ &,

JNC (displ) =
extop = 0x17;
disp = displ $ &,

JNE (displ) =
extop = 0x16;
disp = displ $ &,

JNO (displ) =
extop = 0x19;
disp = displ $ &,

JOC (displ) =
extop = 0x18;
disp = displ $ &,

JOP (displ) =
extop = Oxlc;
disp = displ $ &,

[AAA*****A!

(A Format 8 instructions.

IA 	 At
IAAAAAAAAAAA*****AAA*****AAAAAAAAAAAA*****AAAAAAAAAAAA!

SLA (srcreg,cnt) =
extop = Ox0a;
SR = srcreg;
count = cnt $ &,

SRA (srcreg,cnt) =

Sep 16 15:41 1983 t9989.m Page 10

extop = 0x08;
SR = srcreg;
count = cnt $ &,

SRC (srcreg,cnt) =
extop = Ox0b;
SR = srcreg;
count = cnt $ &,

SRL (srcreg,cnt) =
extop = 0x09;
SR = srcreg;
count = cnt $ &,

!AAAt

!A 	 At
!* Format 9 instructions. 	 At

!* 	 At
IAA*AAAAAAt

mac9 (srcreg,operand) =
extop = 0x02;
SR = srcreg;
Il = operand;
length = 2 &,

AI (srcreg,operand) =
xtion = 1;
mac9 (srcreg,operand) $ &,

ANDI (srcreg,operand) =
xtion = 2;
mac9 (srcreg,operand) $ &,

CI (srcreg,operand) =
xtion = 4;
mac9 (srcreg,operand) $ &,

LI (srcreg,operand) =
xtion = 0;
mac9 (srcreg,operand) $ &,

ORI (srcreg,operand) =
xtion = 3;
mac9 (srcreg,operand) $ &,

[AAAAAAAAAAAAA*AA****AAAAAAAAAAAAAAAAA*AAAAAAAAAAAAAAAl

!* 	 AI

I* Format 10 instructions.
!A 	 *!
IAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA****AAAAAAAAAAA!

LWPI (operand) =
extop = 0x02;
xtion = 7;
Il = operand;

1

Sep 16 15:41 1983 t9989.m Page 11

length = 2 $ &,

LIMI (operand) =
extop = 0x03;
xtion = 0;
Il = operand;
length = 2 $ &,

!AAAI

!A 	 At

!A Format 11 instructions. 	 Al

!A 	 A!
!AA******AAAL

STST (srcreg) =
extop = 0x02;
xtion = 6;
SR = srcreg $ &,

STWP (srcreg) =
extop = 0x02;.
xtion = 5;
SR = srcreg $ &,

LST (srcreg) =
extop = 0;
count=8;
SR = srcreg $ &,

LWP (srcreg) =
extop = 0;
count = 9 ;
SR = srcreg $ &,

IAAA****1
[

LA Format 12 instruction. 	 A!

LA 	 A!
!AAA!

RTWP =
extop = 0x03;
xtion = 4 $ &,

XOP (src,xopconst) =
BT = 0;
TD = 1;
mac2 (src,xopconst) $ &,

!AAA!
71/4

I* Format 13 instructions. 71/4 I.

Sep 16 15:41 1983 t9989.m Page 12

t* 	 At
!AAA!

mac13 =
extop = 0x03 &,

IDLE =
xtion = 2;
mac13 $ &,

RSET =
xtion = 3;
mac13 $ &,

CKOF =
xtion = 6;
mac13 $ &,

CKON =
xtion = 5;
mac13 $ &,

LREX =
xtion = 7;
mac13 $ &,

LAA*****AAA*****1

i* 	 AI
i* Define Word psuedo-instruction. 	*I
1* 	 Al
tAAAAAAAAAAAAAAAAAAAAAAAAAAAAA******AAAAAAAAAAAAAAAAAA[

DW (Word) =
10 = Word; $ &$

APPENDIX E: A Test Program (test.m; test.1, test.L)

1
1
1

1

1

1

1

1
1

getwp:
getpc:

start:

loop:

sum:
n20:
n3:
end

!pointing to
'pointing to program area
'reserve paces for regieters

IRO is number
1 is a counter
ladd number to

register area

reg #

!compare number of loop with counter

of loop

SUM

test.1:

include inmpcfsoftgenfmmpdft9989.m 1.

2.
3 .
LEVEL: 1

5.
6.
7.
8.
9.
10.
11.
12.
13.
14.
15.
16.
17.
10.
19.
20.
21.
LEVELI 1

.m0 $
13LWP 	(SM(120))
.m128

getups DR 	(260)
getpcs DR 	(292)

.s146
starts MOV

CLR
loop: 	A

INC

JNE

sum: 	DR 	(0)
n201 	DR 	(20)
n3: 	DR 	(3)
end .
Syntax P635 Completed.

'pointing to register area
1pointing to program area
Ireserve spaces for registers

IRO is number of loop
Ire g 	1 is a counter

!add number to SUT9

(compare number of loop with counter

(SM(n20).RG(RO)
(RG(121))
(SH(n3),S)- (sum)
(RG(R1)/ 	.
(RG(R1).RG(R0)1
(loop)
(Sti(start)1

Warnings:
Nonfatal errors:
Fatal errors:
$

test. L:

include fnmpcisoftgenimmpdtt9989.m 1.

begin

(0)
(0)
(0)
(2)
(2)
(3)
(4)
(4)
(6)
(7)
(10)
(11)
(12)
(13)
(15)
(16)
(11)
(10)

1

1

0)

(2001
• 201/

(222)
(2241
(225)
(2301
(231)
(2321
(2331
(2351
(2361
(237)

C 002040 000200

C000404
C000444

C140040
C002301
C124040
C002601
C100001
C013372
CO02140
C000000
C000024
C000003

2.
3.
LEVEL: 1
4.

5.
6.
7.

9.
10.
11.
12.
13.
14.
15.
16.
17.
le.
19.
20.
21.
LEVEL:

0 .

(0)
(0)
(0)
(2)
(2)
(3)
(4)

 (4)
(6)
(7)
(101
(11)
(12)
(13)
(15)
(16)
(17)
(10)

1

Warnings:
Nonfatal errors:
Fatal errors:

3

000236

000237 0002353
3

000222

Syntax Pass Completed.

1 cat teet.m
include inmpc/8oftgen/mmpd/t9969.m $

begin

$
BLWP 	(SM(120))
.«120 $
DW 	(260)
DW 	(292)
.«146.$
KOV 	(SM(n20),JW(R0))
CLR 	(RG(R1))
A 	(SK(n3),SM(sum))
INC 	(RG(R1))

(RG(R1),RG(R0))
JNE 	(loop)

(gM(start))
DW 	(0)
DW 	(20)
DW 	(3)

begin

(260) 	 !pointing to register area
(292) 	 (pointing to program area

(reserve spaces Cor registers
(SM(n20).RG(R011 	 (RO is number of loop.

(RG(R1)))reg M 1 is gs counter
(SM(n3),Sti(sum)1 	 (add number to sum
(RC(R1)1
(RG(R1).RG(R0i)
(loop)
(Sti(start))

SUM1

n20:
n3s
end

.m0 S
BLRP 	(SM(12011
..120 $

getwp: DR
getpc: DR

..146
starts MOV

CLR
loop: 	A

INC

JNE

OW
DR
OW

(0)
(20)
(3)

'compare number of loop with counter

APPENDIX F: A Test Simulation

This part of the appendix presents a test simulation for the SBP

9989 implementation on N.mPc. To recall the configuration of the

elements see Figure 3.1 (Chapter 3.1). The "test.m" program first

establishes a "workspace" starting at memory location 128, initializes

the registers RO, R1 and increases R1, "sum" till RO equals Ri. 	The

program works in an endless loop. 	The function of the test program is

illustrated by the flowchart in Figure F.1. 	The linking of the test

program is shown in Figure F.2.

RO, R1 are the first two of the sixteen workspace registers of the

SBP 9989; "loop", "start", "sum" are labels.

The initialization procedure performs a context switch to spare the

memory locations before 128 for later use by interrupt and extended

operation trap vectors. Therefore the actual program is stored in

memory locations 128 through 159.

The following shows how a test program is run on the SBP 9989,

thereby checking the correct execution of all instructions used in the

program.

The simulation is controlled by setting a breakpoint everytime a

new instruction is loaded into the instruction register. By looking at

the contents of the memory locations in question, we can check the

correct execution of instructions.

Inc...U.1de H& tamic 	Se ri pli on

Initialization of the TI-
Memory

start: RO := 20
RI := 0

loop: sum := surn-F 3
RI 	:= RI 	-i- I

yes

no

Figure F.1 Flowchart of the Test Program

cat test.m
include /nmpc/softgen/mmPd/t9989.m $

begin

•=0 $

BLWP 	(SM(128))

.=128 $

getwp: 	OW 	(260) 	!Pointing to register area
getpc: 	OW 	(292) 	!Pointing to Program .3rea

.=116 $!reseeve spaces, for resiisters

start: 	MOV 	(SM(n20),RG(R0)) 	 !RO is number of loop

CLR 	(R6(R1)) 	 !reg t 1 is a counter

loop: 	A 	(SM(n3) SM(sum)) 	 !add number to sum
INC 	(RG(R1))

(RG(R1),RG(R0)) 	!comPare number of loci p with counter

JNE 	(loop)
(SM(start))

sum: 	OW 	(0)

n20: 	OW 	(20) •
n3: 	OW 	(3)

end

Figure F.2 Listing of the Test Program

TEbl bIMULAIIUA

pwci

/nmPc/usr/t9989 	 ! the working directory

• $ 1‹.; 	 ! files contained in the working-
max.eore 	 ! directory
msx.eore.P
t9989 • i SP
t 9989 • si m
test
Lest • L
t es t, • d
test f
test. 1
Lest.

s t • n
L est. s
test, • t
test .
t S. meth 	sp
t. ilTie ni . sini

4.

$ test
N.mPel test

4 memor ,A mem:me 0 4 	 1 examines contents of memory-locations
(0) 	1056
(1) 	128 ! in given limits; (0) , (1) contain
(2) 	0 	! the initialization(context-switch)
(3) 	0
(.1) 	0

1: memo r. 	irt e 	130 160 	! (130) to (145) contain the workspace-
(130) 	0 	! registers(RO - R15)
(131) : 	0
(132) 	0
(13:3'; : 	0
(1.34) 	0
(.135): 	0
(1.36) 	0
(1.37) 	0
(:138): 	0
(.139) : 	0
(:140) : 	0
(141)! 	0
(:142): 	ô
(1.13) 	0
(1.44) 	0
(1 '5) 	0

() : 	9184 1 (146) to (159) contain the user-
(147) 	.1.5 8 	! p ro gr am
(1. 4 8) 	.I. 2 1. 7
(1. 4. 9) 	4 3 0 4 0

• (.1. 	.1.) 	157 •
(:1. 5) 	1409

1. 5 3) 	3 ;17 6 9
.1. 5 4) : 	5882

 () 	1.1. 2c
1. 5 6 	116

(1.57) 	0
158) 	20

(t.".:19)

1 puts the simulation in the
runtime-mode(dif ferent prompt-sign)

! shows current values of all the
abus 	0 	! communicating-elements(busses, con-
dbus 	0 	! trol lines)
dbin 	0
memen
we 	0
cruclk 0
cruin 	0
cruout 0
hold 	0
holda 	0
ready 	0
Pwait 	0
mPen 	0

iae 	0
load 	0
reset 	0
mpilck 0
xiPP 	0
intrec: 	0
intcode
intack 0

t po rts

! stops the simulation after every
! change of the instruction-register
! displays the instruction-register
! after every change without stopping
! the simulation

•11 - repeat bkpt 	:II chamje
breakPoint number 1
it disPlay 	Z11 chane
Iii onitor number.2

- t

fi states ! shows the state(= value contained in)
I of all the temporary registers PC 	0

WP 	0
ST 	0
Al 	0
A2 	0
Di 	0
D2 	0
Ii 	0
12 	0
XR 	0
Si 	0
mbr 	0
in_vec 0
Load 	0
Reset 	0
Xi PP 	0
MOP 0

4
4 run
t: 15

2 displam 	:11 change 	1056
simulaLion halted bm bkPt 1
(rePeat bkpt 	:11 change)

4 run
L. 	185

! starts simulated execution of the
! program

! initial context-switch(BLWP) to
! memory-location 128

2 disPlam :11 change 	-16352 ! RO := 20(MOV...) is the next instruc-
S MU 1 a ULM) ha]. Le d bt..e bkPt 1 	 ! tion to be executed
(rePeat bkpt 	:I1 change)

.Li2Le's
PC 	292
WP 	260
ST 	0
Al 	128
A'? 	256
D1 	0
D'? 	0
Ii 	49184
12 	0
XR 	0
61 	4
mbr 	49184
in_vec 0
Load 	0
Reset 	0
XiPP 	0
IllOP 	0

! the context-switch has been executed

! shows a different number than display
! because display interprets (binary)
! numbers as signed numbers while
! all other examination-commands treat
! numbers as absolute values

1 •

memorm mem:me 130 131
(130): 0 	! initial contents of RO, Ri
(131): 0

4 deposit 22 mem:mell131]
4 memorm mem:me 131

(131): 22 	 ! contents of R1 changed to a non-zero
! value to check correct function of
! "clear RO" in the next instruction

4 run
t : 280

 2 disPla 	: 11 C h an5e = 1 2 1. 7 	! "CLEAR RO" is the next instruction to be
Simu 	:i. 0 I)

i 31. L. e d n.:1m 	t, 1 ! executed
IsePeat bk.Pt 	: Il change)
memors ii e r m e 1 30

(130): 20 	 ! 20 was correctly moved into RO

II 	c' ii •
t: 325

2 ci ispla 	 c: h n 	-•$$ 496 ! sum :--- sum + 3 is the next instruction
simu 	 (.1 b.:f 	t j. 	 ! in assembly-language: A(SM(n3),SM(sum))
irePeat bkPt 	:11 change)

memorm mem:me 131
(131): 	0 	 ! R1 has correctly been clared

uccii ilieni me 1 5 3
(157): 	0 	 ! contents of "sum" before addition(of 3)

1

1

1

1

1

1

1

2 disp18.2 	:I1 change = 1409
simula Lion halLed bm bkpt 1
(rePeat bkpt 	11 change)

mem mem :me 157

(157): 	6

T'un
t: 015

(131):

1

1

1

t run
L : 460

2 displam 	:I1 change = 1409
simulaLion halLed bm bkPt 1
(rePeat bkpt 	:II change)
t mem mem:me 157

	

(157): 	3 ,
11,
Q: mem mem:me 131

	

(131): 	0

! "INCREMENT RI is the next instruc-
! tion

! 3 has correctly been added to "sum"

! verification of the contents of RI
! before incrementation

t run
t: 520

2 disp1al-.1 	: 11 change 	-32767 ! "COMPARE R1,RO" is the next
si mu 1 a Li. on halted b b r- t 1 	 ! instruction
(repeat bkpt :I1 change)

Q mem mem:m e 131
! RI has correctly been incremented by
! one

rt run
t: 585

2 displam :II change = 5882
simulation halted b bkPt 1
(rePeat bkPt 	11 change)
t run
t: 620

2 di sn 1 a 	1.1 chare = -22496 ! the program-counter jumps back to
i u 2, tion 11.3 I e d hu b t 1 	 ! "loop" as R1=1 is not equal to R0=20.

(repeat bkpt 	change) 	! the program therefore will go through
Q: run 	 ! the loop twenty times and then branch
L : 7'55 	 ! to "start", resetting RI to 0

!"increment Ri" is the next instruction

! 3 correctly a. dded to "sum" in the se-
! cond passage through the loop

2 displam 	I1 change = -32767 ! "compare R1,R0 is the next instruc-

simulation halted b...; bkPt 1 	! tion

(repeat bkPt 	:It charKe)
e mem memme 151

! RI correctly incremented

(131): 	1

! "jump to loop if R1 ,RO not equal"
! is the next

t whatis all
1 rePeat bkpt 	Il change
2 displam 	:II change
*.rem 1

4 rem 2

4

t bkpt 	:11 (? ul 49184
breakpoint number 3

4 run
simulation halted bm bkPt 3
(bkPt 	:11 eu]. 49184)
* mem mem:me 130 131

(130): 20

(131): 20
t mem mem:me 157

	

(157): 	60
t repeat bkpt :I1 change
breakpoint number 4
e run 	

'
simulation halted bm IS14./Pt 4
(repeat bkpt 	:1.1 change)
e vieil, mem:me 130 131

(130): 20

(131): 20
4 run
simulation halted bu bkpt 4
(repeat bkpt. 	:I1 change)
4 mem mem:me 	130 '131

(130): 20

(131): 0 1
t

Il ouit

! shows all previously defined break-

! points and monitors

! removal of the present. breakpoints and

! and monitors

! next simulation-stop only when it gets

! to "start"(= NOV = 49184) which means

! after passing the loop twenty times

I R1 = 20 means that the loop has been
! passed twenty times before jumping

! to "start"; 3 has been added to "sum"

! twenty times as well, so the 60

! in "sum"(= memory(157)) are correct

! the "clear R1"-instruction has been
! executed correctly , resetting the

! "loop-counter"R1 to 0 after 20 loops

! the simulation has been exited(the
! $-prompt is used again)

Intellitech Ca 'do Ltd

352 %Loren Street

Ottawa Ontario

 K2P0iVI"
(613)23,V-5126

1

r)

