N
= W

i

-

-

"

2
«[intellitech

L

i
v

o
~

P= N 'S
- -

!
—

—
/

\
' e

=

N
S

- b RS ey ky

) \)
)

The Intelligent Use of
Technology

, @&

/
/" VALIDATION OF N.mPc/N.2

MICROPROCESSOR SIMULATIO&///

kgk.\,.@gﬂ !
01 |
C655 |
INT-84-38 582292‘
&“¥__%j}
@
A&LIDATIQN OF N.mPc/N.2
MICROPROCESSOR SIMULATION/
1‘&—:3-.% S
Industry Carags,
Library QUE‘-@R L
SUE 20 1998
Industrie 4
T . anad:
B'b“ot,héCJUe C\?,C:i !
SEPTEMBER 1984 e o]
D | CONMURICATIONS CARARA-{
Prepared By: Maﬁlﬁtreit,/ _ ™ o

MAL-10"1985

i

Approved By: Dr. S.A. Mahmoud
Dr. C. Laferriere

£

1LIBRARY ~ BIBLIOTHR Y

-~

INTELLITECH CANADA LIMITED

352 MacLaren Street
Ottawa, Ontario
K2P OM6

B

“ ’

BS

Government Gouvermnement
of Canada du Canada

Depanment of Communications

DOC CONTRACTOR REPORT DOC-CR-SP - 84 - 04F

DEPARTMENT OF COMMUNICATIONS - OTTAWA - CANADA

SPACE PROGRAM

TITLE: Validation of N.mPc/N.2 Microprocessor Simulation

AUTHOR(S): Max Streit
Intellitech Canada Ltd.
352 MacLaren St.
Ottawa, Ontario

ISSUED BY CONTRACTOR AS REPORT NO: INT-84-38

PREPARED BY: Max Streit

DEPARTMENT OF SUPPLY AND SERVICES CONTRACT NO: OER 83-05075

DOC SCIENTIFIC AUTHORITY: Michel Savoie

Communications Research Centre
Ottawa, Ontario

CLASSIFICATION: Unclassified

This report presents the views of the author(s). Publication
of this report does not constitute DOC approval of the reports
findings or conclusions. This report is available outside the
department by special arrangement.

DATE: SEPTEMBER 1984

: s , , .

P

1 i { J

Sl ETETETE

Summary

This document describes the validation of a hardware simulation
facility and a microprocessor software development environment. The
hardware simulation facility is provided by the CAE tool N.mPc whereas
the software development environment is prévided by a commercial cross
software development package.

The validation scenario first involves the development of target
microprocessor software in a high level language. For comparison the
target software is then cross compiled and run on a simulation of the
target hardware (itself running on. the VAX 11-780), the acpual target
hardware and directly on the VAX 11-780.

The target software used is a simple spacecraft attitude control
algorithm and the target hardware is an Intel 8086 based single board
computer. The cross software development enviromment, the target
software, and the target hardware simulation are described. This report
is part of the work done under DSS contract OER 83—05075 _for the
Communications Research Centre of the Department of Communigapions,

Government of Canada.

TABLE OF CONTENTS

1. INTRODUCTION.ceocccvcceacoccnscsasscsosnncsscssasssssnscsoccsssscnccnsacnl
1.1. Backgroundeseessosssceossecansosocascssasssosescssnanaancascsl
1.2. Overview Of NeMPCecseceoasessarassaasssassossaosoasssacnosesesd
1.3. REpPOTt SETUCEUIr@ecesssceccscsssacssasessosasessssssaassssanssl
l.4. Related DocumentatioNessececeesccessasssansescassassssacscssvee)

20 VALIDATION SCENARIO-......o........oouo-ooouoocooo.-uo.oocooco-o6

3. DESCRIPTION OF THE INTEL 86/12 SBC SIMULATION..cccocccecccconssed

3.1.
3.2.
3.3.
3.4,
3.5.
3.6.
3.7.
3.8.

4. TEST
4.1.

5. VALIDATION/TEST PROCEDURES.O..OQ.II......'.0...................44

6. COMPARISON OF SIMULATION AND ACTUAL RESULTS..cosvcscccccsccecessi8
6.1. Interpretation of the Validation ReSultS.ssecescescreeess o8

The
The
The
The
The
The
The
The

Intel 8086 CPUcceceesscscasansssnncssassastaaacesonssssll
0 P I
Multibus Interfaceessesssssaceccsssscsessssssvasssenennsll
GLlobAal MEemMOTYeessssscanscacasssssssascsenssssacssnssneslB
DUAlport RAMueveseeeececensesscecscesasssncesseanasanesll
Programmable Interrupt Controller (PIC)eeccecescascasa20
TO FAcilityeeeeoesssecsascesasesaosascesssossonsansnassoeld
Simulated iSBC 86/12 Single Board Compute@rees.eeesceess2?

SOFTWARE DEVELOPMENT FOR SIMULATED AND ACTUAL HARDWARE....31

The

Enhanced Software Development Environment for 8086

Based N.mPc SimulationSe.escessssasscsscsssasnscsssossscsascel

4.1.
4.1.
4.1.
4.1.

1. The "C"—Crosscompiler.cieeecsscesesssasscsaseseasassll
2. The Cross Assembler/Linker/Loaderciecceccecscssesess3b
3. The "OTOL" PrOgraMesscsecsscscssccssssosssccsnsesnaslB
4. Command Files For The Cross Software ToolS.sseses..40

Software Development for an actual lntel SBCieeseveosessoall
Description of the Target Software for the Validation.....4l

6.2. Performance of Simulated and Real Hardwar€eseceseececosscssee53

7. SUMMARY AND CONCLUSIONS......“.O.‘...l..‘.l“‘.‘...0‘..0.0..0.56

REFERENCES.oco..iii......o.......toollucooco-oo-.c.'.too...o..acl.u61

I

APPENDIX

APPENDIX

APPENDIX

APPENDIX

APPENDIX

APPENDIX

APPENDIX

APPENDIX

APPENDIX

A:

B:

Gt

H:

Complete Directory of Intel :SBC 86/12 Files
B.1 Mathematical Basics of the "Simple Attitude Control
Algorithm” :

B.2 The Validation Testprogram Running on the Actual
Intel SBC Hardware (CMD.C, = CMVAL.C86)

B.3 The Validation Testprogram Running on the Simulated
Intel SBC Hardware ("VALCMD.C")

B.4 The Benchmark Program Used for Performance Tests

Test Software Development and Execution Procedure
for the actual Intel SBC Hardware

D.1 Test Software Development and Execution Procedure
for Simulated Intel SBC Hardware

D.2 Performance Test Execution Procedure for Simulated
Intel SBC Hardware

Printouts from Running the Performance Testprogram on
Simulated Intel SBC Hardware

Listing of the Topology File for the Simulation of the
86/12 SBC

The "OTOL" Program
H.1 The Program Used To Test the Simulated 8086 CPU

H.2 List of "Bugs" fixed in the initial 8086 CPU
Descriptions

Listing of the I/O Assembly Routines used in the
Validation Simulation ("PRINT.S", "IN.S")

1-1:

2-1:

3
3
3
3
3
3
3
3
3
3

OCoOoONoOTU M~ N -

LIST OF FIGURES

Elements of the N.mPC SySteMeeceececcacuccssosensasccsoscssssoncssh

The

The

: The
: The
: The

The
The

¢ The
¢ The
: The
-10: Schematic Diagram of the Simulated 86/12 Hardware«sseeseoessss28

Validation of NemPc 85 8 CAE TOOleesoeeasscsoscsscncssnscncsed

iSBC 86/12 Single—-Board COMPULEr «eeeeesssesssecssssnsasssll
Simulated 86/12 Hardwar@.essessessssssoccsssvascsnsacnssesll
Simulated 8086 CPUscececessoncessscsncsssssscanoassnnonsasnell
Simulated ROMaeeeeeesossancesvoscnssssacsasncssvsssncsssaslb
Multibus Interface.e.cescesssscesasocssossacssnseasssnssoasld
Global MemOrye.ceesseasssscsoessanassasasssesssssosecscennsll
Simulated Dualport RAMe:sceecesoecacocscscasoncsnsssosonnnell
Programmable Interrupt Controller.eccecececessscesccnsenssseld
"Raw Memory" I0 Facility.eeeseocesosescecsscsssacscsncsnenelbd

3—11: Memory Map Of the Simulated 86/12 Hardware..."’.......O..'.lzg

4-1: Standard Software Development in NeMPCeseseceecavsasessansosses32
4~2: High-Level Software Development in NemPCesseseesocsavscncsanse3d
4-3: Detailed Look at High Level Software Development in N.mPC.....35

6—la:Running the Validation Program on the Simulated 86/12.........49
6-1b:Running the Validation Program on the Simulated 86/12....¢.....50
6-2a:Running the Validation Program on the Actual Intel SBC

Hardware (output in heX)eseeeaseeoesssasesasssasccssasssanssnsdl
6-2b:Running the Validation Program on the Actual Intel SBC

Hardware (output in decimal...eeceeccscsscncaccsonsscoscevsnseead?
6-3: Performance Penalty due to Simulation using N.mPCseseseessessedd

7-1:

Fault Tolerant Computer Architectur@.seececcsssovecsesccscncsssbl

. -~ -
. 5y .

1. INTRODUCTION
1.1. Background

In recent years Computer Aided Engineering (CAE) tools have made it
possible to choose a new, more flexible approach for the design of
microcomputer systems. Traditionally, microcomputer based products are
designed in the following fashion:

1. The necessary hardware components are built. This wusually
includes the microprocessor itself as well as other peripheral
components.

2. Software programs are written for the target machine.

3. Software and hardware components are integrated and tested.
Very frequently, the software is produced on a host machine
using a cross development package, if available.

The development process usually-involves many time consuming and
costly iterations. A CAE téol such as N.mPc improves the situation by
providing a simulation environment which is suitable for testing many
design alternatives in a short period. of time. The implications of
using N.mPc are as follows:

1. It is no longer necessary to build the hardware components at
the beginning of the design work. Instead, N.mPc provides
what amounts to a micro—-programmable, register transfer level
machine which can belprogrammed to emulate the target hardware
completely. In other words, a designer working on a VAX host,
for example, could create a VAX executable program which, when

run, would emulate the target hardware.

2. N.mPc provides a totally programmable cross development
package for the software to be writtenm in assembly language.
Thé work documented in this report introduces an enhanced
software development enviromment permitting to write software
in the C high level language.

3. The rationale for wusing a tool such as N.nmPc 1is that

programmability iImplies flexibility. Given that a Dbase.

exists, i.e. most of the hardware emulation is available as
well as the cross development package, a designer can alter
the design parameters with ease and test various alternatives
without committing to any hardware choice.

The new approach to microcomputer design 1is of particular

importance in a field like space technology where fault tolerant on-

board processing 1is a very urgent need. Fault tolerance implies

redundant multi-processor architectures of considerable complexity.
Thus the development of a fault tolerant computer architecture for space
purposes looks like an ideal application of the CAE Tool N.mPc.

In order to get a reliable, independent 1indication for the
potential of CAE tools in multiprocessor design, the validation of the
hardware simulation facility N.mPc and of an _enhanced software
development enviromment were included in the objectives of this work
done for the Communications Research Centre of the Department of

Communications.

1.2. Overview of N.mPc

It 1is assumed that the reader, having read the "N.mPc Detailed
System Description” document [16], is already familiar with the elements

of the N.mPc system. A short overview of N.mPc is given here as a

reminder.

N.mPc consists of six components used either to describe the
hardware behaviour of a target system, or to execute .the simulation of
that system. Figure 1-1 illustrates the components of N.mPc and their
interaction.

The Meta-micro assembler and the linking loader are wused to

generate the software which is to be executed by the simulated hardware

components if these are programmable. Both are driven by a description .

of the instruction set of a target machine and can .be made to generate
code for either vertically or horizontally programmed machines. The
linking loader produces code which is executed by a simulated processor
or by an actual machine. The ISP” compiler is wused to produce

simulation modules for 1individual processors and other hardware

components of a system. The input language of the compiler is the ISP~

language which allows the specification of states for the implementation

of processor registers and flags, memories for the simulation of memory,
and ports which allow input to and output from simulated hardware.

The N.nPc ecologist and a simulated memory processor link the ISP~

processor modules with the linking loader outputs in order to form

complete simulations. A run-time package is wused to execute a

simulation and to allow extensive interaction with the simulation.

1.3. Report Structure

Section 1 introduces the reader to background, motives and
objectives of the work documented in this report. Section 2 outlines
the approach chosen to validate an WN.mPc mnicroprocesor simulation.
Section 3 describes the simulation of an Intel 86/12 SBC hardware on the

N.mPc system. Section 4 covers the development of the test software run

HARDWARE SYSTEM MODELING

[sp’
COMPILER

:

ECOLOGIST

) "RUNTIME
o ENVIRONMENT

SYSTEM SIMULATION

SIMULATION

METAMICRO

LINKING
LOADER

N MEMORY
PROCESSOR

SIMULATED

SOFTWARE DEVELOPMENT

Figure 1-1

Elements of the N.mPc System

on the simulated and the actual hardware to perform the validation of
N.mPe for microprocessor simulations. Section 5 gives some detailed
information about how to run the validation test program on the actual
and the simulated hardware. Section 6 presents the results from the
validation test program and the performance test. Section 7 gives a
summary of accomplishments and makes conclusions regarding the strong

points and the perceived shortcomings of the CAE tool N.mPc.

1.4. Related Documentation

This report is one of the deliverables identified wunder contract
OER 83-05075. Other reports submitted under the same contract include
an N.mPc detailed system description document [16]}, an N.mPc User Manual
{7], a report on the simulation of the SBP 9989 microprocessor [8], and
two reports on a Fault Tolerant Computer Architecture and a Fault
Tolerant Operating System [14], {[20]. References to the original N.mPc
documentation, provided by the vendor of the N.mPc package, are alsq

listed.

£

ert "

2. VALIDATION SCENARIO

‘The primary goal of this work was to validate N.mPc as a CAE tool

:for microprocessor simulations. This includes the investigation of

N.mPc“s potential as a hardware and software development tool. The idea
waé not only to develop a simulation of a fairly complex hardware module
but also to introduce the enhanced software development enviromment for
8086 based N.mPc simulations which is described in section 4.1. This
would allow to do software development in a high level language and was
considered to be quite an achievement in the N.mPc context. Besides the
validation of N.mPc as a CAE tool for microprocessor simulations, the
validation activities would have some useful by-products, namely the
development of a reliable, powerful microcomputer simulation of the
86/12 SBC and the introduction of the enhanced software development
environment mentioned above.

With the above goals in mind, the following activities were planned
to validate N.mPc:

The design of hardware modules simulating the Intel iSBC 86/12

single board computer.

- The use of an 8086 C cross software development package to
develop software in C that could be run on the 86/12
simulation.

- The implementation of an algorithm, taken from a space
attitude control system, on the simulated hardware using C as
a high level programming language.

- Run a benchmark program on simulated and actual Intel SBC
hardware in order to do a performance comparison.

Thé choice of simulating an 86/12 single board computer was made because

its complexity represents a challenge in terms of N.mPc simulations and

because a description of the heart of the 86/12, the 8086 CPU, was
contained in the N.mPc microprocessor description library. C was chosen
for the use as a modern high level language as it allows for close
interaction with the hardware.

Figure 2~1 shows the activities carried out for the validation of
N.mPec as a CAE Tool for microprocessor simulation. The activities
denoted as 1), 2) and 3) in Figure 2-1 have been described in sections
3, 4 and 5.

As a result of the above mentioned activities the simulation of the
86/12 SBC and the enhanced software development environment were used to
build the "Validation Simulation". The goal was to execute a simple
spacecfaft attitude control algorithm, implemented in "C", on both the
simulated 86/12 SBC hardware-as well as on an actual Intel SBC machine.
Results and performance from these tests were to be used to determine

the validity of the CAE tool N.mPc for a specific simulation.

1) Development of an
appropriate ligh
Level Test Program
to be run on the
86/ 12 simulation:

Algorithm in
Fortran

Algoricthm in
"C"

Algorithm in
"c", executable
on 8086 CpU

2) Crcation of a Soft-
ware Development
Path from "C" to
N.mPc compatible

object code for an
Intel 8086 CPU:

Install Lantech
"Cc"-8086 Cross
Development tools

J

change N.mPc's "oTOL"
program in order to
handle object code for
an 8086 CPU

V4

3) Development of
simulated Lntel
86/12 Single Board
Computer Hardware:

design essential
hardware modules
of the Intel

86/ 12

test/debug par-
ticularly the
8086 CPU descrip-
tion

test reliability of the
simulated 86/12 single
board computer by rumning
increasing amounts of code
it (using "C'")

V

add "Raw Memory"

Run the Validation
algurithu, using "C"
compiler and “C”
standard 10 state-
ments, on a real
machine (VAN or
iSBC86/12)

[

Run the Validation algori-
thm, (in "C") on the Sim-
ulation of the 86/12 Single
Board Computer using
N.mPc's "Raw Memory" 10
facility and a *'C"-8086
Crosscompiler

Figure 2-1:

v\

10 facility

Identical results establish the
correct execution of the validation
program, and a validation of the

CAE Tool N.mPc

The Validation of N.mPc as a CAE Tool

3. DESCRIPTION OF THE INTEL 86/12 SBC SIMULATION

The Intel 86/12 is a single board computer that is based on the
Intel 8086 CPU. The 86/12 SBC was chosen for simulation, mainly because
a description of the 8086 CPU was available in the N.mPc microprocessor
library (see [7], section 3). The 8086 also is an interesting processor
for space related research as it is to be space qualified soon.

Figure 3-1 shows all the components of the 86/12 SBC. An 8086 CPU
is the heart of the SBC structure. Other essential components are a
programmable interrupt controller, memories (ROM, dual-port RAM) and the
multibus interface. The Multibus allows the 86/12 SBC to communicate
with other SBCs or with devices tied to the Multibus. Additional
elements like the programmable communications interface, the baud rate
generator, the peripheral interface, the RS-232-C interface and the
driver/terminator interface provide various I/O functions. Programmable
timers have also been included and may be used in certain applications.

To reduce the cost and the duration of the development of the
simulation, only the necessary 86/12 components will be simulated. The
essential subset of 86/12 elements to be simulated is shown in the left

half of Figure 3-1. The complex I/0 interfaces depicted in the right

~ half of figure 3-1 are not needed for the intended simulation. N.mPc”s

"raw memory"” feature will be used to do I/0 operations. Figure 3-2
shows the structure of the simulated 86/12 SBC. The remainder of this

section will describe each component of the 86/12 SBC simulation.

, RS-232-C 24 PROGRAMMABLE
COMPATIBLE OEVICE PARALLEL 1/ LINES
THE iSBC 86/12 SINGLE-BOARD COMPUTER ,
{_- CONTROL INTERFACE SERIAL OEVICE }
ORIVER/
RS-232-C
TERMINATOR
[INTERFACE INTERFACE !
|
l <]}\r l
' INTERRUPT [
| SELECTER 547
2Kkt (JUMPERS) K |
l RAM POWER FAIL l
[INTERRUPT
DUAL-PDRT BUS Jul [
l) N o l
| 16Kt 8086 PROGRAM- ™0 PROGRAMMABLE PROGRAM: | | PROGRAM
QUAL-PORT RO M/ CENTRAL MABLE PROGRAM- | | COMMUNICATIONS], | MABLE MABLE |
| [conTRoLLER| | eprom | pROCESSING INTERRUPT MABLE INTERFACE 8auU0 RATE| | PERIPHERAL
[{SOCKETS) usIT CONTROLLER TIMERS (USART) GENERATOR] | INTERFACE | |
{ : * ON-BOARDINTERNALBUS @@ - [
l . MULTIBUS/MULTIMASTER ! l
| B INTERFACE |
L

A\

to be simulated using N.mPc

The 1SBC

N Van

not needed for simulation purposes; N.mPc's
"raw memory" feature used for 1/0

Figure 3-1

86/12 Single-Board Computer (from Intel Application
Handbook, Sept. 81)

1
Terminal
j \g
Dual-Port Intel Programmable 1/0
ROM 8086 Interrupt Interface
RAM . CPU Controller (IIRawH Hemor}')
(1 kB) (14 kB)
L - | L
|]] T |
INTERNAL BUS
MULTIBUS INTERFACE
s : o~
<::: ' MULTIBUS <;:;>
<~ /

Global
Memory (1 kB)

Figure 3-2: The Simulated 86/12 Hardware

3.1. The Intel 8086 CPU

The starting point of the development of a hardware description for
the 1Intel 8086 CPU was an ISP” description of this microprocessor
written by Y. Trivedi, Case Western University, for the N.mPc library.
A few initial tests showed.that this description required considerable
testing/debugging in order to obtain the reliability needed for
simulations of fault tolerant computer architectures. Therefore, the
first and most important step was a thorough testing and debugging of
the 8086 CPU description, a program of well over 3000 lines of code in
size. The test program used for this purpose (see Appendix H) included
every single 8086 instruction. The instructions were tested by
executing them in various addressing modes.

Testing activities consisted of setting up the appropriate

registers and/or memory locations for a particular instruction and

checking these registers/memory locations after execution for correct
results. If an 1ﬁstruction was not executed the way the TIantel 8086
Hardware Manual prescribed, the error had to be found through a time
consuming debugging effort. The usual errors found consisted in misuse
of the ISP~ “language or misunderstanding of how the 8086 hardware really
worked. A 1list of the "bugs" found in the initial 8086 description is
part of Appendix H. One type of error resulting from a misuse of the
ISP” hardware language deserves to be specially mentionedl here. This
error consists in wrongly determining the size of the operands of an
instruction, for instance by testing a wrong bit. The result is a byte

instruction trying to handle word operands (or the reverse), an

ambiguity which cannot be properly handled by N.mPc and which causes the

YMS operating system to halt operatiomns. The fact that the simulation

leaves the runtime mode altogether disables the usual debugging tools.

12

Only very thorough knowledge of the ISP” code in question, or iterative \
reduction of the user program until the fault-causing instruction 1is
determined, can help. The N.2 system, which is to be released soon,
should solve the above difficulty with VMS.

Figure 3-3 shows the communication ports used by the simulated 8086

~CPU. The simulated 8086 is configured in "maximum mode” because the

alternative "minimum mode” limits a CPU to standalone use. The "maximum
mode" is therefore compulsory for multi-processor applications. As the
goals of this work did not include the design of any co—processors (8087
Math Processor, 8089 I0 Processor) for the 8086, the ports serving for
this purpose were not implemented (request/grant lineé, queue status
lines). Some signals, which are usually generated on a separate bus
controller chip because of lack of space on the 8086 chip, are part of
the simulated 8086 (den , dt r, ale, inta).

Internally the simulated 8086 represents a very accurate model of
the real 8086 chip. Like the "Bus Interface Unit" in the real 8086, a
process called "BIU" constantly refills a queue of prefetched
instructions which are to be executed by a second process called "EU_
(Execution Unit)"; The “EU" process reacts to external events
(interrupts, reseté); fetches, decodes and executes instructions from
the prefetch queue. At this point, it should be stressed that N.mPe
hardware descriptions resemble black boxes behaving like real hardware
when observed from the exterior but which are entirely different
internally. Hardware descriptions designed using the N.mPc system can,
and usually do, have an internal structure and complexity which is
very similar to the actual hardware they model. Tn N.mPc this is true
down to the register transfer level which strengthens N.mPc”s potentiali

in hardware design.

13

5

y

1)
2)
3)
4)

5)

rd

ale

den

dt r

bhe

den_ ————
m_hnible{s) {_____
| (

———

mbus {16 <

memory access signals

INTEL
8086

CPU

(maximum
mode)

T

I

\

multiplexed address/data bus

control signals (interrupts etc.)

bus priority lock control

Multibus signals

Figure 3-3:

The Simulated 8086 CPU

int
inta
NM1
reset
test

ready

lock

:} status {3

iorc

iowc

ioadsl

ioads7

T
I2

5)

v~

Another aspect of the simulated 8086 is that the wuser has to
initialize segment registers, stackpointer and instruction pointer
himself. 1In real applications an operating system uéually takes care of
such details. As there is no operating system on top of this hardware
simulation, the wuser is responsible for the proper initialization of
the 8086 before running a program. Section 5 provides the details

concerning the initialization of the simulated 8086 CPU.

-

3.2. The ROM

Three simulated memories are part of the 86/12 single board
computer simulation (as shown by the memory map in Figure 3-11). This
section will concentrate on the Read Only Memory (ROM). Figure 3-4
shows the address data lines and signals that allow an 8086 to access
the ROM. It has to be added that for two reasons the "ROM" is not yet
used in a read only mode in the context of the validation simulation
(see *). Firstly, the N.2 system, which will soon fully supersede
N.mPc, offers the possibility to declare ports that have attributes like
“"read only", "write only”, "read/write"” (see "N.2 ISP~ User”s Manual
[15], page 13). Secondly, a ROM is not essential for the work described
in this document as N.mPc can be made to perform a complete
initialization of a RAM module at the beginning of the simulation. The
fact that the RAM memory can sﬁill be accessed for write does not
present any difficulty since such an operation can easily be disallowed.
(*): Due to the flexibility inherent to’N.mPc based simulations, certain

liberties were taken with the Read Only Memory (ROM) module. In

fact the ROM was used as RAM by the compiler for its stack and

dynamic data area. This does not detract from the purpose and
goals of the validation. '

15

-

\

1)
2)

3)

m _hnible <4> {

.

mbus {16) <

CPU status

Figure 3-4:

LLLAATNELY 1

multiplexed address/data bus

memory access control signals

ROM

mm——— Y

| ale

L . ready

bhe

den

dt r

—e—eee—— L L

._._—--} status <3>

The Simulated ROM

I3

The memory address range used by the ROM is determined by the

numerical values assigned the macros "LOROM", "UPROM" in the ISP~

"description of the ROM. The address ranges of the other simulated

memories in the 86/12 simulation are determined in a similar manner and
it 1is therefore very easy to change the whole memory configuration.
Currently, the ROM services the address range from 1024 (1k) to 14335
(14k-1) as shown ian the memory map of Figure 3-11.

The name by which N.mPc”s "Simulated Memory Processor (SMP)"
identifies the ROM among the three simulated memories that are part of a
simulation is “romcore.;". If a user wants his program to be loaded
into the ROM as an initial content, he simply creates a new version of
the "l.out" formatted object version of his program and renames it to
"romcore.;" . The SMP will then know that the destination of the program
is the ROM. The name "romcore.;" is chosen by the user but has to be
previously declared in the topology file.

The simulated ROM is accessed exactly the same way as the real 8086

accesses memory: Words starting at even addresses are accessed in one

memory cycle, words located at odd addresses need two memory cycles to

be read. The CPU indicates whether a memory access or am I0 operation
is to take place by a "status" signal (see Figure 3-4). A "ready”

signal holds the CPU until a memory access 1s over.

3.3. The Multibus Interface

In Figure 3-2 one can see that the simulated 8086 uses an "Internal

Bus" to access memory directly. In multiprocessor counfigurations a bus
like TIntel”s "Multibus” will be used for interprocessor communication
and resource sharing. As the "Multibus" is part of the intended 86/12

single board computer simulation, an interface between the “Internal

17

’

Bus" and the "Multibus" is needed. Figures 3-5, 3-1, 3-2, and 3-10
illustrate the Multibus interface.

The Multibus interface will respond only to memory accesses in a
range assigned to the Multibus. Like in the case of the ROM, two macros
in the ISP” description of the Multibus interface determine the address
range. In the 86/12 simulation, the Multibus address range is set from
14336 (14k) to 16383 (16k~1) as shown in Figure 3-11.

In a multiprocessor configuration, several pfocessors may want to
use the Multibus at the same time. The Multibus interface not only
translates the usual memory access of an 8086 (via internal bus) into a
memory access following the Multibus protocol but also implements aun
arbitration scheme for the different Multibus masters. The method used
relied on a serial priority scheme in which every processor has to wait
for a bus grant signal to be activated. After using the Multibus, a
processor passes the bus grant "token" on to the next one and so on.

A few Multibus lines were not relevant for simulation purposes and
were therefore not implemented; among these lines were the
Initialization signal, RAM/ROM Inhibit, Bus, Constant clock, Common Bus
Request, Power Supply lines, etc.. It should be pointed out that the
Multibus 1interface is transparent from the standpoint of a processor.

The only noticeable sign of a Multibus use might be a longer wait when

different Multibus masters are competing for the Multibus.

3.4. The Global Memory

The "Global Memory" 1is accessed exclusively via Multibus using the
Multibus signals and protocols. A Multibus may have multiple masters
thus making the global memory accessible to all processors tied to the

Multibus. The global memory may be used for interprocessor

18

1)
2)
3)

4)

r i
m_hnible(d} 1 ' . -}> mad<20>
F— >2)
T > nda(l6) 3
mbus <16><] .
MULTIBUS
- mrd
INTERFACE mrde M
————i —_———— mwtc
g ___— iorxc
i idiowec F 3)
status(é) <:~——————— male
xack -
ale
rd —— . bpm
ready e - bhen . 4
bhe _____ | oo bpro
den busy
dt r

Internal Bus Side
Multibus Address Lines (20) and Data Lines (16)
Multibus Signals

Multibus Arbitration Lines

Figure 3.5: The Multibus Interface

- .

communication (mailbox) or simply as a shared resource.

The address range of the global memory has to be within the address
range assigned to the Multibus (see section 3.3). In the 86/12
simulation, the global memory is assigred the address range from 14336
(14k) to 15359 (15k-1) és shown in Figure 3-11. The signals, address
lines and data 1lines used by the global memory are all part of the
Multibus lines and are shown in Figure 3-6. The global memory fis
identified by N.mPc”s "Simulated Memory Processor"” by the name
"gblcore.;". V

3.5. The Dualport RAM

The Dualport RAM is a combination of a RAM and a global memory
allowing to access a given set of memory locations either via the
Multibus or directly via the Internal bus. In the 86/12 simulation, the
CPU accesses its RAM directly via the internal bus using the address
range from 0 to 1023 (1k-1). On the other hand, the CPU (or any other
Multibus master) can also access the same memory locations using the
(Multibus) address range from 15360 (15k) to 16383 (16k-1). The
Multibus addresses of the RAM are translated down into the 0 to 1023
range.

The Dualport RAM delays access attempts via Multibus while it 1is
being accessed via the internal bus and vice versa. The internal bus
has - priority over the Multibus. Figure 3-7 shows the two buses
connected to the Dualport RAM and Figure 3-11 shows the two different

address ranges used to access the Dualport RAM.

3.6. The Programmable Interrupt Controller (PIC)

The PIC designed for the 86/12 simulation represents a subset of

the functionality of the real Intel 8259 chip. The full set of

20

1)

2)

[
mad<éd><< .
' Global
L Memory
—~
mda <16> <
Multibus Address and Data Lines
Multibus Control Signals
Figure 3-6: The Global Memory

- male

xack

nmwte

| mrdc

bhen

> 2

1))

1))

2)

m_hnible {4)

iii

mbus (16) §

filll

rd

ale
ready
bhe
den
dt r

status <3> {—-———-—-—

Dual

Port

ports for access of RAM by CPU

ports for access of RAM via Multibus

>mad(20)

> mda<16\7

male

xack

mrdc

. mwte

. bhen

Figure 3-7: The Simulated Dualport RAM

S

different hardware functions and priority resolution schemes 1is not
needed in a simulation context. The basic idea was to implement a fully
functional PIC but only for the given 86/12 hardware and one single
interrupt priority resolution schemne. The priority resolution scheme
chosen scans the 8 interrupt request lines from line O to 1line 7
continuously. If an interrupt request line is scanned while being
active the request 1is serviced, the request line is reset and the
scanning restarts again at line 0. A request line is activated by the
leading edge of a strobe on that line and stays activated until reset.
It can be seen that the scanning is not cyclic and gives the lower
numbered request lines a higher priority.

Figure 3-8 shows the simulated PIC and its ports. A "Signal
Generator” was designed for convenient testing of the interrupt
facilities in the 86/12 simulation. It periodically generates a "pulse”
on each interrupt request line. This is an asynchronous way of
triggering all the interrupts for testing purposes.

An interrupt is serviced in exactly the same manner as in the real
86/12 single board computer. The positive edge of a pulse on an
interrupt request line sets the corresponding bit in the PIC"s Interrupt
Request Register (IRR). The interrupt may have to wait until it becomes
the highest priority request when other intefrupts have been activated
as well. Once the interrupt has the highest priority, the PIC goes
ahead and activates the CPU”s "INT" line to signal the interrupt to the
CPU. The CPU responds with a succession of two pulses on the "INTA"
(interrupt acknowledge) signal, thereby reading the interrupt type which
ié put on the lower half of the data bus by the PIC. The 8086 then gets
the interrupt vector (new instruction pointer, new CS register content)

stored at the four memory locations starting at (4 * interrupt type).

23

1)

2)

3)

4)

IRQO ~———> e
IRQl ———> b
IRQ2 —> Programmable - >Databus a6y 2)
IRQ3 S Interrupt -
IRQ4 s Controller P J
IRQ5 ——> e———— RD
}t———— AO

e INT
e INTA 4)

Eight interrupt request inputs.

The lower half of the databus is used to send the

interrupt type to the CPU.
Signals used for PIC programming via CPU.

Interrupt request lines.

Figure 3-8: The Programmable Interrupt Controller

The CPU then executes the interrupt service routine corresponding to the
interrupt vector it acquired and, upon completion, returns to the
execution of the interrupted program.

It 1is possible for the CPU to access the PIC”s internal registers
by doing TI0 operations using addresses assigned to the PIC by the
designers of the 86/12. The following PIC register accesses may be
carried out on the simulated PIC:

- Set Interrupt Mask Register:

MOV al, OFh
OUT 0C2h, al

These instructions mask interrupt lines O to 3.
- Read Interrupt Mask Register:
IN al, 0C2h
- Read Interrupt Request Register:
MOV al, OAh
OUT 00COh, al
IN al, 00COh
- Read In-Service Register:
MOV al, OBh
OUT 00COh, al
IN al, 00COh
It 1is also possible to have the CPU initialize the simulated PIC

but this is in fact irrelevant as the simulated PIC has been .dedicated

to a single priority resolution mode and to the 86/12 hardware.

3.7. The IO Facility

The IO module "terminal.isp™, shown in Figure 3-9, makes it
possible for N.mPc simulations to read and write directly from/to the
working terminal. This "Raw Memory" has a structure almost identical to

that of the ROM described in Section 3-4. The "Raw Memory", though, has

25

m_hnible (4)

—_— ""Raw

Memory"

mbus <16> <

rd

ale

. ready

bhe

den

de_r

| . ¥
. \
e status <3}

Figure 3-9 : The "Raw Memory" IO Facility

just one memory location and only responds to I0 calls to address 0. In
order to have the "Raw Memory"” address the terminal driver, the name
assigned to the working terminal under the VMS operating system has to

be declared in the topology file. This name is "tt:" under VMS and is
not compatible with the syntax used in the topology file. To resolve
this situation a new logical name compatible with the topology file
syntax has been defined ("wtty"” for "tt:") in one of the login filesA
(logsys.com). For details about "raw memories"” refer to the "Ecologist
User”s Manual"” ([4], Section 2.1.6). The following examples show how I0

operations using the "terminal.isp” raw memory are carried out:

a) output to working terminal: MOV al, #97
OUT al, #0

These instructions write the letter "a" (=97 in ASCII) on the
screen of the working terminal.

b) input a character from the working terminal: 1IN al, #0
NB: The ASCIT code for the first character on the working
terminal”s screen will be put into al.

The "“Raw Memory" feature provides N.mPc simulations with a simple

10 mechanism that is sufficient for the needs of most simulations.

3.8. The Simulated iSBC 86/12 Single Board Computer

The components of the simulated 86/12 SBC as well as the
interconnection of their communication ports is shown in great detail by
Figure 3-10. For a simulation, the information about a set of simulated
hardware modules and their interconnection is stored in a topology file.
Appendix F contains the listing of the topology file for the simulation
of the 86/12 SBC. Detailed information about how to write topology
files 1is found in the "Ecologist User”s Manual"” [4]. Figure 3-11 is a

memory map of the three contiguous, simulated memories used in the 86/12

27

_ T] . '
mod<20y mohable) K== pm_ he'ble ree fpo ¥ m_hnible N ' T —
v (l«l) {4y nn,’ . - —_
ale ' T\ b {16 b e e LU NT IRQ @ IRG & IR ’“-(““",'1’“
! M bus 7 T INT A
—_— a6 mbus (16) <'l¥ ; ready ! ——— foads ¥ cs IRa | - IRG{) f‘\‘\
‘\> -~ MA"U(“) Lheo |) ‘l MS}ai(ut<3) lo"a:";lc AO lRQ 2 . RA2) ’__\/”‘A“‘{K) .
male S‘ahﬁ(g} ¢ . S#a*u:(g> dea_ |___ | ‘ d I‘OQC Ro 1R&2 1R&@3 Stafus() T T Y
xack ! , ro- NMI WR @
rd- dior ale reset| 4 IRa4l ___ liraw rol -
mrde ale ROMI — rxedy Voot ' ‘ IRGS ‘] ete
mwte ready — — olcn: l«::-i L . mbusi6) ” {RQS ready
Lhen bhe_ . i - dt_r IRas IRQ & ——— L he -
den: I 8086 cPU pic] 'Ret RGY P
D P RA M t_r INT. GEN. di-r
l | . RAW HEM.
)4
(INTERNAL BUS) J
“habl atur rd_ ady bhe~ den
M(q)‘ﬁ e rzlér;s 523‘;: d- ale ready bhe- deas ofir MULTIRULS GLOBAL ME MOR Y l
INT ER FACE .
m;,,((\zc» mia&) mrde mw‘(tor<c rewe male xa(k thn éprn é/;ro Au:y MQO‘<ZO) MO(0<"> mrdec Mwl(MGLQ Xdck L/\eh
— < . ‘/\ P \-..
| - - S S SR T —)
7
—_ = 7,
—i = o — 4
: . R S | —
M ' : : ‘\
N . V -
I et et e e U “..i;f:'" ' \\
, e L T I I 1

- (MULT{ B us)

Figure 3-10: Schematic Diagram of the Simulated 86/12 Hardware

(16383)
RAM (accessed via
Multibus, lk)
(15360)
(15359)

Global Memory (1K) :

PR L
initial memory name: ''gblcore.;

memory reference name: gmem:me"

(14336)

(14335)

ROM (13 k):

PR N1
initial memory name:''romcore. ;

t
memory reference name:''rom:mem86'

(1024)

(1023)
RAM (1lk):

initial memoryname:'ramcore. ;

memory reference name: '"ram:me"

(0)

Figure 3~-11&

Memory Map of the Simulated 86/12 Hardware

simulation: RAM, ROM and Global Memory. For simulation of
multiprocessor configurations one would simply have to tie multiple
86/12 modules onto the Multibus and set up the serial arbitration scheme

for each processor”s Multibus interface.

30

4, TEST SOFTWARE DEVELOPMENT FOR SIMULATED AND ACTUAL HARDWARE

This section describes the development of the validation test
software for the simulated and the actual Intel SBC hardware as well as
the software development tools involved and their use. All test
simulations involving the simulated 86/12 SBC hardware are also
described in the N.mPc User”s Manual [7] (section 2) and in textfiles in

the corresponding directories.

4.1. The Enhanced Software Development Environment for 8086 Based N.mPc
Simulations

Initially, the only way to develop software to be run on N.mPc
simulated hardware involved the use of a programmable "Metamicro"
assembler that was not entirely compatible with commercial 8086

assemblers. The use of this "standard” method of software development
for WN.mPc simulations is documented in Intellitech”s N.mPc User Manual
[7] and, as a reminder, is illustrated again in Figure 4-1..

Following current trends, a need was felt for using high level

programming languages for more convenient software development. The use

of this method for developing software to be run on simulated hardware

is also documented by examples in Intellitech’s N.mPc User Manual [7].

An overview of a simulation in the case of the "C" 1language and a
simulated Intel 86/12 single board computer is given by Figure 4-2. The

rest of section 4.1 will describe the use of "C" and commercial cross-

"development tools in an N.mPc simulation countext.

4.1.1. The "C"-Crosscompiler

As mentioned above "C" was chosen to be the high level language in
which a user would write programs. The 8086 "C" Cross Software Tools by

Lantech Systems Inc. are described in the corresponding Lantech Manual

31

N.mPc {nputs

‘N.mPe
elements t
commands

Simulations

Ouctput

ISP Source inamc.obj tname.s
inamc. isp éSP'll ’ i Ecologist | RUNTIME PACKAGE
omprrer . Simulacions Program
tname.exe . Command Interpreter
Simulated Memory
Managert

Target System

Topology

tname. t
tname ., f
tname.d

Machine

Descriprions

lname.i}

MetaMicro
Source

{nitmemame. p
tnamae. X

pamame.n

Simulated
Memory
Processor

Linking/
Loader
Allocator

MetaMicro
Asscmbler

Iname. i
Inter-
preter

lname . i

3)

“rename l.out ppmame.out”

pgmame. m
“copy prrmame.out initmemname.

Linking/Loader

Description

Standard Software Development in N.mPc

Figure 4-1

iname.isp

C Source
Program

name.,c

ISP’ Sources

iname.obj

tname.s

Isp

Compiler

Ecologist AJ

Target System
Topology

tname. t

Cross

Compiler

Assembly

Source

Program

name.s

Figure 4-2:

tname.cxe

Assembler/

Linker/Loader

name. hex

oTOL
(object

name.

o

RUNTIME PACKAGE
*Simulation Progress
*Command Interpreter
*Simulated Memory Manager

—_—

out

tname.d

initmemname.p

tname. X

to l.out)

65 "@f6asmotol namei)

i
t
t
t
{
{
!
t
{
i
1
t
|
t
|
!
t
|
{
i
t
i
|
!

Simulated
Memory
Processor

(}) “copy name.out initmemnnme.ﬂ;;:>

High-Level Software Development In N.mPc

[19]. The package 1includes a "C" Cross Compiler and a "C" Cross
Aséembler/Linker/Librarian/Downline Loader for Intel 8086/8087 /8088
pProcessors.

The steps necessary to run a program written in "C" on a simulated
86/12 hardware are shown in detail in TFigure 4-3. The situation
depicted in TFigure 4-3 shows the path of a program writtemn 1in "C"
(namel.c) and a program written in Intel”s ASM86 assembler (name2.s)

through all the development stages. The two programs in the example are

finally loaded into two different simulated wmemories of an N.mPc_

simulation by the "Simulated Memory Processor” (SMP). Figure 4-3 also
shows how to do software development in an orderly manner. it is
advisable to do the cross complling of "C" programs in one directory

("c86") and the cross assembling/linking/loading plus the "otol"

invocation in another ("asB86"). The product of all software development

(a ".out" file) is then copied into the actual - simulation directory
where it 1is loaded 1Into some simulated wmemory. ‘Dolng software
development in separate directories avoilds having too many files in the
simulation directory.

The Lantech Cross Development package was installed on the VAX/VMS
environment which is host to the N.mPc system and is invoked using the
commands declared in a login command file ("LOG86.COM", see User Manual
[7}, Appendix D).

Step 1 in Figure 4-2 shows how to invoke the cross coﬁpiler in
order to create an 8086 assembly version of a C program. The
operation involves several steps (preprocessor, parser, code generator,
postprocessor) which are executed by a command file called "cc8086".
This command file -is located in the "C86" directory, which is reserved

for high level software development. The command below is used to cross

34

C Source Program: 1

namel.c:}}

C Cross
Compiler

namel.s _EJ
name2.S 5

A\

Assembly
Source Program:

Cross
Assembler

namel.obj

name2.s }

Page formatted _]
initial contents !
for Simulated romcore.p
Memories:

-~ -

ramcore.p

List of Simulated

name2.ob j

—>

Link
Library

(Object
Modules)

| namel.out, 5

romcore. ;

Memories:
Simulated
romcore. ;
Memory <::
ramcore. ; .
Processor
<

N.mPC System

a - - " &

Figure 4-3 :

0TOL

Cross
Linker

namel.exe
name?.exe

4

namel.hex

‘namez.out)

ramcore. ;

name?2.hex

Cross
Loader

Detailed Look atHigh-Level Software Development in N.mPc

compile the C program "namel.c" in Figure 4-3:

" @cc8086 namel"

The output produced is a file with a ".s" exteansion and the same
name as the input file: "namel.s".

It should be remembered that the Lantech cross
assembler/linker/loadér assumes that both an 8086 CPU and an 8087 math
processor are to be fouand ian the target system. It therefore relies on
the 'floating point arithmetic instructions implemented by the 8087,
whenever floating point operations are required in a C program. |

The assembly programs produced by the C cross compiler are stack
oriented. If one waunts to write assembly routines that can be called
by C programs, detailed knowledge of the use of the stack by the code
produced by the cross compiler is required. The Laatech documentation

{19, chapter 7] contains detailed ianformation on this subject.

4.1.2. The Cross Assembler/Linker/Loader

For details concerning the Lantech cross software devélopment
tools, the corresponding user guide [19] should be coansulted. To
illustrate briefly the application of the Lantech cross
assembler/linker/loader, the steps 2 to 4 in Figure 4-3 will be
explained using a cross compiled C program named "namel.c" as a general
exémple.

Step 2 assembles assembly source programs writtem in a syntax
which is very similar to the Intel ASMS86 assembly language.
Unfortunately, complete compatibility has not been achieved. The
assembly source program may have been created either by the C cross
compiler (Example: "namel.s") or directly by the user (Example:

"name2.s"):

36

“asm86 -1 —o namel.obj namel.s”

- The option —1 generates a listing of the assembly

~ The option —o 1s used to have the output named
namel.obj

Step 3 in Figure 4-3 resolves feferences to iibrary routines in the
main program. For details on libraries refer to [19]. The cross linker
links the main object module with other object modules stored in the
link library to form a final object module:

"1kr86 -1 -o namel.exe namel.obj 11ib:1ib8086.a"

~ The option -1 is used to list tables of external
references.

- The option ~o0 is used to have the output file named
to "namel.exe".

~ "namel.obj" is the object module of the main program.

- "11ib" is the logical name for the library (directory)
in which source and object modules of some assembly
routines are stored; at present the library only .
contains the routines necessary to process doubleword
operands (corresponds to "long integer" variables in.
C).

Step 4 in Figure 4-3 determines where in a (simulated) memory the
linked object module is to be loaded. The loader reserves two areas in
memory: A "Code Block" and a "Data Block". It is important to know
that the "Data Block" is reserved for data (global labels, ...) and the
stack. The following command invokes the Lantech cross loader:

"1dr86 -1 [~¢ ee.] [~dv..] —0 namel.hex namel.exe”

37

- The option -1 generates a listing displaying information
about starting addresses and sizes of reserved memory
areas. This listing 1s important as it contains the
necessary information for the initialization of the 8086
CPU.

-~ The -c and -d options allow the user to choose the
starting addresses (=hex numbers after -c, =-d) of the
memory areas to be reserved for program code (-c) and
data, stack (-d). If these options aren”t used the loader

by default loads the program code starting at memory

location 1024 (400 hex) and starts the data block at the

next paragraph location after the end of the code. A

paragraph is an address. that is a multiple of 16.

4.1.3. The "OTOL" Program

‘The "OTOL" ("object to l.out") program transfers object code from
different formats (Motorola, Intel Hex, ...) into the "l.out" format

used by N.mPc. For this application the "OTOL" program had "to be

‘enhanced as it could not handle the concept of "segmented" memory (see

Intel 8086 documentation). The 8086 has four segmeﬁt registers and
addresses its megabyte of address space in 64k byte segments.

With reference to Step 5 of Figure 4-3, the "l.out" formatted
files produced by "OTOL" have to be renamed so that the "Simulated
Memory Processor” can direct their contents to the appropriate simulated
Memory. ~ In the example of Figure 4-3, the object version of the
“namel.c" program 1is to be made the initial content of the simulated

ROM. Therefore "namel.out", the object version of "namel.c”, is renamed

“romcore.;" (the name "romcore.;"” is declared in the topology file) and

38

similarly

“name2.s" ‘is directed to the simulated RAM by renaming

"name2.out” to "ramcore.;".

Step 5 in Figure 4-3 is executed by the following command:

"otol

~ id namel.hex namel.out [-a “initrecord™}]"”

The 1 option tells "otol" that the object file to be
transferred into "l.out” format is in Intel Hex format.
The -d option produces a listing of starting addresses
of data records.
"namel.out” is the name assigned to the output file 1in
"l.out" format. The ".out" extension reflects the fact
that the file is in the "l.out" format required by
N.mPc. The default name of the output file is "l.out".
The “initrecord" option may be used to initialize areas
of memory with certain values.

Example: "-a2048-3000800" initializes the memory

locations from 2048 to 3000 with the wvalue
O'

Other object code formats which can be handled by "OTOL" include:

MOTOROLA;

Tektronix Hexadecimal;

- RCA Cosmac;

- MOS Technology;

Signetics Absolute Object;

Fairchild Fairbug.

A short documentation on "OTOL", written by the N.mPc developers

is to be found in Appendix G.

39

A o T

4.1.4, Command Files For The Cross Software Tools

As it is rarely necessary to invoke the cross
assembler/linker/loader in a step-by-step fashion, several command files
have been created to make the use of the Lantech cross software
development tools easier. The command files are located in the "AS86"
directory, which 1is reserved for software development. The name and
purpose of each of the two command files currently used with the cross

assembler/linker/loader are listed below along with an example for their

use:

1) "8basmotol.com™: This command fille 1nvokes the Cross
assembler/linker/loader and the "OTOL" utility. It uses unone
of the -c, ~-d loader options so that the code 1is loaded
starting at address 1024 and the data immediately after the
code. Again, the input file is assumed to have a ".s"
extension. The output file is given a ".out"” extension as it
is a file in N.mPc”s "l.out" a format.

Example: "@86asmotol namel”

2) "cOasmotol": This 1is exactly the same command file as the
"86asmotol"” but the —c option is used when invoking the loader
in order to have the code loaded starting at address O.
(instead of the 1024 default).

Example: "@cOasmotol namel”
NB: If the reader at this point sﬁould want to add further to his

knowledge of the wuse of the Lantech 8086 C cross software
development tools, the reader is referred to the examples

documented in section 6 of the N.mPc User Manual [7].

40

- - MAA

4.2. Software Development for an actual Intel SBC

The actual hardware used was an Intel 86/30 SBC running iRMX86. The
86/30 SBC is essentially an 86/12 with additional on-board wmemory and
for the purpose of this test can be considered identical to an 86/12
SBC. The test programs for the actual hardware, written in C, were
compiled using Intel”s C-86 compiler. Appendix C shows the steps to
generate the code necessary to execute a test program on .the actual

Intel SBC hardware.

4.3. Description of the Target Software for the Validation

The previous two sections described the software development tools
involved when developing test software for the actual and the simulated
Intel SBC hardware. The test software was to be rum on both the actual
and the simulated Intel SBC hardware in order to validate N.mPc”s
microprocessor simulation capabilities. The starting point was the
choice of a "Simple Attitude Control Algorithm” (SACL) for
implementation as a test program. Appendix B contains a mathematical
description of the SACL algorithm and listings of the programs
implementing it. The SACL algorithm was discretized wusing the Z-
transform and implemented as a Fortran program named “"SACLZ.FOR". At
this point, the fact that SACLZ.FOR used real (floating point) variables
had to be taken into account. Floating point variables result in 8087
floating point arithmetic instructions as the C cross compiler assumes
the presence of an 8087 math processor. The simulated 86/12 single
board computer was not intended to include such mathematical convenience
and the alternative was to use "integer"” instead of the floating point

variables in the SACLZ.FOR program. This resulted in an assembler

41

- program with instructions that could be executed by an 8086 alone. By

scaling some variables, an implementation of the SACL algorithm using
oniy integer variables was produced and given the name "SACLZI.FOR". 1In
order to produce a SACL version in C that could be developed on the
Lantech cross software development package used with the simulated SBC
hardware, SACLZI.FOR was translated into C and called "CMD.C". The fact
that the Lantech cross software development package did not include an
"ABS" (absolute value) routine in the link library was taken into

account by adding an "ABS" subroutine to the "CMD.C" program. In this

form, CMD.C can be run on the actual Intel SBC hardware.

It was stated earlier that Ne.mPc”s raw memory feature was to be
used in order to simplify I/O operations for simulations. Two I/0
procedures ("IN", "PRINT") have been written in assembly language and
added to the 1link library of the Lantech cross development tools in
order to replace the standard I/O procedures ("SCANF", "PRINTF") called
in CMD.C. The progrém using the new "IN" and "PRINT" procedures for I/O
in N.mPc simulations is called "VALCMD.C" and can be run on the
simulated 86/12 hardware using the Lantech cross software development
tools. As VALCMD.C uses "long integer” variables, the 8086 CPU has to
handle double word opgrands. The necessary assembly language routines
are contained in the link library which is part of the TLantech Cross
software tools. Listings of the two assembly routines used to perform
the I/0 for the validation simulation are found in Appendix I. The
total size of the validation code amounts to 1680 bytes which 1is very
considerable in an N.mPc simulation context. This code corresponds to

about 300 8086 instructions or a C program of about 40 lines.

42

The steps to build the simulation of an Intel 86/12 SBC and to run
the validation testprogram (“VALCMD.C") on the simulated hardware are
shown in detail in Appendix D. How to run the intermediate programs
("SACLZ.FOR", "SACLZI.FOR") produced when developing the validation

testprogram ("VALCMD.C") is also indicated in Appendix D.

43

5. VALIDATION/TEST PROCEDURES

In the case of the actual Intel SBC hardware it was very easy to
run the validation testprogram 'as the 86/30 SBC is running the 1RMX86
operating sSystem. Appendix C shows that the actual running of the
validation testprogram CMD.C (here named "CMVALID.C86") is done by a
single command.

In the case of the simulated 86/12 SBC hardware things are not so
easy. The user has to initialize some registers of the 8086 CPU in
order to have the 8086 start executing at the beginning of a program and
to set up a stack and data area in memory. The use of the Lantech cross
software development tools introduces a restriction for the
initialization of the 8086 which will be discussed in detail.

The Lantech 8086 C cross software development tools are intended to
develop software to be run on hardware consisting of an 8086 CPU and an
8087 math processor. In wusual applications one just develops the
software in high level language and the operating systems of the host
and target systems will take care of everything else. In an N.mPec
simulation, there 1s no operating system on toﬁ of the simulated
hardware so that the user has to Initialize the simulated hardware
before he runs a program. The initialization of a simulated 8086 CPU

serves the following purposes:

1) It sets the instruction pointer (ip) and the code segment
register (cs) to point to the starting address of the code.

2) It places the data area and the stack area appropriately into
the data block reserved in memory by the loader. The Lantech
cross software development tool requires thét the 8086 stack

and data segment registers be initialized with the same value.

44

To perform a proper initialization of the 8086 CPU one has to
remember the following 1oading information?from the previous development
steps:

i) the address where the loaded program starts

11) the beginning and the end of the common memory block reserved
by the loader for the data and stack areas

In ‘order to determine those values one has to look at the 1listing
produced by the cross loader when using the -1 option and find the
starting addresses and sizes of code and data blocks. The end of the
reserved memory area 1is verified by inspecting the corresponding

simulated memory when the simulation 1s in runtime mode. The following

‘example was made up to 1llustrate the initializatlon procedure discussed

above.
1) Information from the cross loader (obtained when the -1 option
was used with cross loader):
- The'program code block starting address is
400 hex (=1024).
- The data block starting address is 470 hex (=1136), the
end of the reserved memory area is found at 600 hex
(=1536). Memory areas not reserved by the loader are
characterized by an "illegal memory access” message when.
being inspected. Use the "inltrecord" option im OTOL to
reserve a bigger memory space (see section 4.1.3).
2) Program counter ilnitialization:
- Set the combination of instructlon polnter (ip) and code
segment register (cs) to the starting address of the code

block.

45

NB: program counter = (16 * (cs)) + (ip)

Example: starting address = 1024 (=400hex)
- “"deposit 1024 :ip"

- or: "deposit 64 :cs™, "deposit O:ip"

- or: "deposit 32 :cs
deposit 512 :ip"

- etc .+

3) Data segment, stack segment initialization:

- It should be noted that the Lantech 8086 C cross software
development tools do not make any distinction between
stack segment and data segment; the starting addresses of

. stack and data segments have to be identical which means
that the "ds" and "ss" segment registers have to be
initialized with identical values (see [19], page 3-
6).

- Have the data and stack segment registers (and the extra
segment register if it is used) point to the starting
address of the data block: - “deposit 0x47 :ds”

- "deposit 0x47 :ss"
(- deposit 0x47 :es) (if "es"
used)

- The stack grows downwards from its top; it is therefore
reasonable to put the top of the stack near or at the end
of the memory block reserved for data and stack by
initializing the stack pointer with an appropriate value.
Example: - (end of reserved stack, data memory area -

its Dbase addressj = 600 hex — 470 hex =
190 hex: "deposit 0x190:sp"

The 1initialization information as well as all the other essential

46

information about all “ready-to-run” simulations 1is found ia the

-"Oreadme.fst" textfiles put into each simulation directory.

The step by step description of how to build and run the validation
testprogram "VALCMD.C" on simulated 86/12 SBC hardware is found in
Appendix D. The execution of the testprogram ("SIEVE.C") on the actual
Intel SBC hardware is handled in a similar fashion to the execution of
the validation testprogram shown in Appendix C.

With the exception of the initialization step, the execution of the
"sieve.c" test 1s also analoguous to the execution of the validation
testprogram. The "OREADME.FST" textfile in the simulation directory

(86sieve) describes how to carry out the performance test.

47

6. COMPARISON OF SIMULATION AND ACTUAL RESULTS

6.1l. Interpretation of the Validation Results

Figufes 6-la and 6-1b show the input and the output produced by

_runhiﬁg the validation testprogram ("VALCMD.C", see Appendix B) oun the

simulated 86/12 single board computer. The validation of N.mPc as a CAE
tool for microprocessor simuiations is done by comparing these results
to the ones produced whea "CMD.C" (or "HEXCMD.C") is run on the actual
Intel SBC hardware. The program "CMD.C" only differs from "VALCMD.C" in
the routines used for I/0 operatious. The results are identical 1if
identical "angles" are eantered by the user when runaning "CMD.C" on the
simulated hardware or "CMD.C" (or "HEXCMD.C" for output ian hex anumbers)
on the actual Intel SBC hardware. Figures 6-2a and 6-2b show the results
obtained when running "HEXCMD.C" (see Appeudix B) on an actual Iatel
86/30 SBC wusing the same input angle as the oune used to produce the
simulation output shown in Figures 6-la and 6-1b.

Thus the validation testprogram, written in the high level language
C; and implementing a discrete, scaled version of the "Simple Attitude
Control Algorithm"” (SACL), was developed and ruan on both simulated and

actual Intel SBC hardware, producing identical results.

48

sho def

USERSTISKIICICLLI NHI'C,READYSTIN.BEVAL)

4 sear val
¢ ryn val

Uelcome Lo N.ef'c/UNMS

N.afc?: val

¢ der 1024 i1
¢ der Oxaa lss
¢ deer Oxaa ids
¢ dor 280 lsr

t ru

HAX 112433384 VAL

€nter anglelde
01
0000 00000000
0001 00000020
0002 00000020
0003 00000020
0004 00000020
0003 00000020
0004 00000020
0007 00000020
0008 00000020
0009 00000020
000A 00000020
000K 00000020
000C 00000020
0000 00000020
000€E 00000020
000F 00000020
0010 00000020
0011 00000020
0012 00000020
0013 00000020
0014 00000020
: 0015 00000020
0016 00000020
0017 00000020
0018 00000020
0019 00000020
001A 00000020
001K 00000020
001C 00000020
0010 00000020
001€ 00000020
001F 00000020
0020 00000020
0021 00000020
0022 00000020
0023 00000020
0024 00000020
0025 00000020

0024 00000020

1recss

00000000
00000004
0000000C
00000014
0000001C
00000024
0000002C
00000034
0000003C
00000044
0000004C
00000054
000000535C
000000644
0000004C
00000074
0000007C
00000084
0000008C
00000094
000000°9C
000000A4
000000nC
00000084
000000KC
000000CA4
000000CC
00000004
0000000LC
000000E4
000000EC
00000Q0F 4
000000FC
00000104
0000010C
00000114
0000011C
00000124

0000012C

CAPU=Q0200:31.97 FF=190& 1Q0=2401 HEN=307

0000

0944

0635

0236
OLF9?
2§07
ol1Co
O1kK4
olap
ol1a?
01A7
01AS
01AS
0146
01aé
01A7
0147
01A8
ol1AY
01AA
01AA
ol1aE
01AC
01AQD
O1AE
01AE
O1AF
0O1KO
Olkl
Otk

O1RD

Figure 6-1a: Running the Validation

digits)io)

0000 0000
6451 1600
3C03 1600
2522 1600
L6ER 14600
0E44 OES4
09446 0944
0635 0635
043E 045E

0344 0344

O1F? OIF?
0105 0105
o1co o1Co
OlEk4 O1E4
01AD OLlAD
01A9 0149
0lA7 01a7
01A6 01A4
01AS 01A3
0l1né 01A6
01As 0144
01A7 01A7
01A7 OLA?
01A8 01AB
01A9? 0Q1A9
otan 01AA
01AA 01AA
O1AER OlAR
01AC 01AC
01Al O0laAD
01NE 01AE
0INE O1AE
O1AF 01AF
0180 O1KO
Olkl Olkt
0182 OLH2

OIEDY 01K

Program on the Simulated 86/12

0024 00000020 0000012C O1HD Q1KY O1K2
0027 00000020 00000134 01H3 01k3 O1K3
0028 00000020 0000013C O1K4 O1K4 O1K4
0029 00000020 00000144 O1ES O1KS O1KS
002n 00000020 0000014C 01KS O1ES 01K
002k 000600020 00000154 O1EKS OLES O1ES
002C 00000020 0000015C 0167 OLK7 OLK?
0020 00000020 000001464 01k8 01KB 01E@
002€ 00000020 0000016C 01K9 O1EY O1KY
002F 00000020 00000174 Q1EA O1EA OLEA
0030 00000020 0000017C OLEA O1KA O1EA
0031 00000020 00000184 01Kk Ol1BE OlEEK
0032 00000020 0000018C O1KC O1EC OLKC
0033 00000020 00000194 O1EL OLKN 01K
0034 00000020 0000019C OLKE O1HE O01KE
0035 00000020 000001A4 O1KE Q1KE O1KE
0034 00000020 000001AC O1EF OLEF O1EF
0037 00000020 000001E4 01CQ 01CO OLCO
0038 00000020 000001KC 01C1 01C1 OiCI
0039 00000020 000001C4 01C2 01C2 01C2
003A 00000020 000001CC 01C2 01C2 0fC2
003K 00000020 0000014 01C3 0IC3 01C3
003C 00000020 00000t{[C 01C4 01C4 01CA
003D 00000020 000001E4 OICS 01CS 01CS
003E 00000020 00000LEC 01Cé 01C& 01Cé
‘003F 00000020 000001F4 01Cé 01Cs 01Cs
0040 00000020 000001FC 01C7 01C7 01C7
0041 00000020 00000204 01C8 01CB 01CB
0042 00000020 0000020C 01C? 01CY 01CY
0043 00000020 00000214 O1CA OLCA OLCA
0044 00000020 0000021C 01CA O1CA O0ICA
0045 00000020 00000224 01CE 0ICK OICK
0046 00000020 0000022C 01CC 01CC 01CC
0047 00000020 00000234 01CH O1CH 01CK
0048 00000020 0000023C O01CE 01CE 01CE
0049 00000020 00000244 01CE OICE 01CE
004A 00000020 0000024C 01CF O0I1CF 01CF
004K 00000020 00000254 0100 0100 0100
004C 00000020 0000025C 01Kt O01L1 01D
0041 00000020 00000264 0102 0102 0102
004E 00000020 0000024C 0102 0102 0102
004F 00000020 00000274 0113 01K3 0113
0050 00000020 0000027C 01N4 0104 01014
Enter andle(dedrees+2 digits)?
HAX 09:00:14 vaL CPU~=04150117.19 FF=1938 [Q~S890 HFH~319
SY
+

Figure 6~1b: Running the Validation Program on the Simulated 86/12

run hexcmd

Enter the commanded andle @

1

2b

44

00000

20 A 4451 6451 1600
20 < 3cd3 3cd3 1600

20
20
20
20
20
20
20
20
20
20
20
20
20
20
20
20
20
20
20
20
20
20
20
20
20
20
20
20
20
20
20
20
20
20
20
20
20
20
20
20
20
20
20
20
20
20
20
20
20
20
20
20
20
20
20
20
20
20
20
20
20
20
20
20
20
20
20
20
20
20
20
20
20
20
20
20
20
20

14
lc
24
2e
34
3n.
aa’
Ac
G4
Sc
64
bc
74
7c
84
8c
94
9c
a4l
ac
b4
be
c4
cc
d4
dc
el
ec
4
fc
10
10
11
11
12
12
13
13
14
14
15
15
16
16
17
17
18
18
19
19
1a
1a
ib
ib
lc
ic
1d
1d
ie
ile
if
1t
20
20
21
21
22
22
23
23
24
24
25
25
26
26
27

27

2522

252

2 1600

léeh 1é6eb 1600

eb4
244
635
AS5e¢
344
29b
236
1f9
149
1c0
1b4
1ad
1a9
1a7
tas
1as
1aé
136
137
1a7
1a8
139
1aa
13a
1ab
lac
fad
lae
4 1a
c 1a
4 1b
c ib
4 1b
c tb
4 1b
c 1l
4 1b
c 1b
4 ib
c ib
4 1b
c 1ib
4 1h
c ibh
4 Ib
c tb
4 1b
c 1b
4 tb
c 1b
4 ic
c 1ec
4 1c
c 1c
4 tc
T ic
4 ic
c lc
4 1c
c lc
4 1c
¢ 1c
4 lc
c e
4 e
c ic
4 1c
c ic
4 1c
c ic
4 id
c id
4 1d
c 1id
4 1d
c td

ebd
946
635
ASe
344
29b
2346
119
145
1c0
1h4
tad
1a9
1a?
1aé
135
1as
126
1a7
1a7
1a8
1a9
1aa
laa
1ab
tace
1ad
lae
e la
f 1a
0 ib
1 1b
2 1b
2 1b
3 ib
4 1b
5 1b
& 1b
6 ib
7 1b
8 1b
9 ih
2 1ib
a ib
b tb
c 1b
d 1b
e 1ib
e ib
f 1ib
0 1c
1 1e
2 1c
2 1c¢
3 1ic
4 1
S lc
& ¢
& 1c
7 te
8 1c
? 1c
a lc
a lc
b ic
o 1c
d 1c
e ic

ebd .
946
635
ASe
344
29h
236
119
145
1c0
1h4
t1ad
129
137
1aé
1ad
136
1aé
127
1a7
1a8
1a?
133
1aa
1ab
lac
1ad
iae
e lae
f taf
0 1b0
1 1ibt
2 1b2
2 12
3 ib3
4 1b4
S 1b5S
6 1hé
4 1bé
7 b7
8 1h8
? 1n9
a iba
a iba
b ihb
c ibe
d 1ibd
e 1be
e lhe
f ibf
0 icO
1 ict
2 1e2
2 te2
3 ic3
4 1cA
S 1cS
& lcé
& 1cé
7 le?
8 1c8
? 1c?
a 1ca
3 ica
b icb
c lce
d tcd
e ice

e 1ce lce

f 1c

f lcf ,

0 1d0 140

1 id

1 1di

2 1d2 1d2

2 14
3 id
4 id

2 142
3 1d3
4 1d4

Figure 6-2a: Running the Validation Program on the actual Intel SBC Hardware
(output in hex)

*

run cond
Enter the comaanded onale ¢
1
00000
J2 4 254681 25481 5432
32 12 153571 15571 5632
32 20 9506 9508 5632
J2 28 58A7 5847 54632
32 34 34684 3484 3484
32 A4 2374 2374 2374
32 52 1589 1589 13589
32 40 1110 1118 1118
32 48 834 8346 834
0 32 76 447 6487 647
11 32 84 546 564 544
2 32 92 505 505 505
13 32 100 449 A49 ALY
- 14 32 108 448 448 A48
1S 32 114 434 4346 A34
16 32 124 429 A29 429
17 32 132 A25 A25 425
18 32 140 423 423 423
19 32 148 A22 422 422
20 32 1S4 421 A1 Ay
21 32 144 422 422 422
22 32 172 A22 422 A22
23 32 180 423 423 423
24 32 188 423 A23 423
25 32 196 424 424 424
24 32 204 425 425 A2S
27 32 212 424 424 A2%
28 32 220 424 424 A28
29 32 228 427 427 A27?
30 32 234 428 428 428
31 32 244 429 429 A2¢
2 32 252 430 430 430
33 32 260 AJ0 430 430
34 32 248 431 431 431
35 32 2746 432 432 A32
346 32 284 433 433 433
37 32 292 434 434 A34
38 32 300 434 434 434
39 32 308 435 435 435
40 J2 J14 435 434 43S
A1 32 324 437 437 237
42 32 332 438 438 438
43 32 340 438 438 438
44 32 348 439 A39 43¢
. 4% 32 356 440 440 440
446 32 364 441 241 A4
A7 32 372 442 442 442
48 32 380 4412 442 442
A? 32 388 443 443 443
S0 32 3946 444 444 444
G1 32 404 445 445 445
S2 32 412 448 446 A48
53 32 420 4446 4446 AAg
54 32 A28 447 447 447
35 32 436 448 448 448
56 32 444 449 449 449
47 32 452 450 AS0 ASO
58 32 440 450 4350 450
59 32 44B AS51 451 451
40 32 4746 452 A52 452
41 32 484 453 A53 453
62 32 492 A54 454 454
63 32 500 A54 454 454
44 32 508 453 435 A55
83 32 G146 A58 4546 458
66 32 524 ASY AS7 AS?
&7 32 532 A58 AUB 41358
&8 32 540 458 4358 458
69 32 S4B 459 459 AS¢
70 32 556 A40 440 4460
71 32 S64 441 As1 4461
72 32 572 462 442 442
73 32 580 4482 4462 442
74 32 588 443 443 443
75 32 596 A6A A44 444
786 32 404 AAS A5 A4S
77 32 512 446 Ab6 AbS
78 32 420 44848 ALS AL
79 32 428 A87 A&7 4AbL7
80 32 4634 448 448 A4R

O DN WP ~>O

1]

Figure 6-2b: Running the Validation Program on the actual Intel SBC Hardware
(output in decimal)

X

6«2, Performance of Simulated and Real Hardware

As another application for the high level software capabilities of
the 86/12 simulation developed during this work, it was decided to run
performance tests using a high level benchmark program in C. This
program could be run on any machine equipped with a C compiler. The
machines being compared in this case were the VAX 11-780, the iSBC 86/12
single board computer and a simulation of the 86/12 using N.mPc on the
VAX 11/780. To get reasonable and measurable execution times for the
"sieve" benchmark, the program was executed 100,000 times on the VAX and
on the 86/12 while one single execution of the "sieve" on the 86/12
simulation was sufficiently long. The factor 100,000 was later taken
into account when comparing the relative performance of each processor.
The "sieve" benchmark uses the "long integer" data type for variables on
all three machines. The execution times on the VAX were measured in CPU
time. The details about how the "sleve" benchmark was run on different
machines are to be found in Appendix D.2. The performance comparison of
real machines to a simulated one shows of course a significant
performance penalty due to the simulation overhead. The following
execution times were measured when running the "sieve" benchmark:

- VAX 11/780 : 17 sec. for 100,000 runs of "sieve"

- 1SBC86/12 : 211 sec. for 100,000 runs of "sieve"

- Simulation of the iSBC 86/12 using N.mPc on a VAX 11-780: 402

sec. for one run of "sleve"

Expressed in performance ratio (P for Performance) this means:

P

VAX : P8612 * PSimulation 8612 = 2,364,000 : 190,000 : 1

53

.Figure '6-3 shows the same results in a graphical form. These
performance comparisons ounly serve to get a notion of the order of
magnitude of the performance penalty caused by the N.mPc simulation
overhead and do not claim to be exact as compiler differences may
iﬁfluence the results. See Appendix D or the "readme"” file in the

"86sieve"” directory for details on the performance comparisouns.

54

Logarithm of Performance Ratio

2,364,000
1,000,000

190,000
100,000

10,000

1,000

100

10

Processors

Performance Penalty due to Simulation using N.mPc

"SIEVE" execution time on 86/12 Simulation

"SIEVE" execution time on real processor

VAX 11-780

Figure 6-3

Intel 86/12

86/12 Simulation
(on VAX 11-780)

7. SUMMARY AND CONCLUSIONS

The following is a summary of the main vresults of the study

* presented in this report:

- A simulation of an Intel iSBC 86/12 single board computer was
performed successfully. It included an 8086 CPU, a dual port RAM,
a ROM, a programmable interrupt controller (PIC), a Multibus
interface, a global memory and an I/0 facility based on N.mPc”s
"raw.memory" feature. These modules were designed and thoroughly
tested and debugged during the course of the work.

- The program "OTOL" was used to transfer object code produced by the
cross compiler to the "l.out" format needed by N.mPc . The program
was subsequently upgraded in order to handle code intended to be
run on an 8086 CPU. This made it ppssible to do software
development for the 86/12 simulation in the high level language
"C", using the C 8086 cross software development tools by Lantech
Inc.

- The validation of N.mPc as a CAE tool for microprocessor
simulations was performed by implementing a "Simple Attitude
Control Algorithm" as a "C" program, which was successfully run on
the simulated 86/12 single board computer as well as on the actual
Tatel SBC hardware. The validation mnot only established the
reliability of the simulated hardware but also demonstrated the /0
capabilities of 'the 86/12 simulation. The development of the
validation program in "C" demonstrated the potential of the high
level software developument path introduced as a result of this
work.

The work reported in this document was an oppdrtunity to acquire

considerable expertise with the CAE tool N.mPc. As a result, it has

56

N . - -

been felt that NemPc is in fact a valuable tool in the development of a

computer system.

For the case of the Intel 86/12 simulation the following
 observations were felt to be strong points of the CAE tool N.mPc:

- The design of the hardware modules of the simulation of the
86/12 SBC showed N.mPc”s flexibility; making hardware changes
due to new requirements or correcting design errors could be
performed easily and efficiently.

- The debugging of the description of the 8086 CPU demonstrated
the power of N.mPc”s monitoring, control and debugging
features which allow the tracing of errors in hardware
descriptions.

- This work showed the feasibility of a high 1level language
software development for N.mPc microprocessor simulationms.

- The major effort of writing a hardware description of the 8086
CPU could be reduced by using a description from the 1library
of descriptions of existing microprocessors (this library was
.delivered with the N.mPc system).

The following observations are based upon the 86/12 simulation work

and outline some difficulties experienced with N.mPc:

- The C programs which were executed on the simulated 86/12 SBC
were limited to be of a moderate size. This restriction was
due to the simulation performance penalty resulting from the
simulation overhead.

- Errors in the 8086 CPU description from the N.mPc”s
microprocessor description library required a considerable

debugging effort. Just as the testing of VLSI chips is a major

57

Some

problem of today s semiconductor industry, the same problem
occurs in N.mPc descriptions of complex hardware modules. As
in all software endeavours, the larger the programs one can
run successfully, the more confidence one can have in a
microprocessor description, for éxample. At the present time,
there is no straightforward, systematical way to find all the
possible bugs in a complex hardware description.

The VMS version of the N.mPc run-time environment behaved
strangely, at times, -when faced with some subtle hardware
description errors. The result was a catastrophic exit to VMS
which 1left one unable to ascertain the cause of the failure
systematically.

general conclusions can be drawn from the experience gained

during the work documented in this report. Some of the strong points of

a design approach using computer aided design tools such as N.mPc are

listed below:

N.mPc 1introduces the inherent flexibility of software into
hardware design.

Complex computer systems can quickly be simulated by taking a
few hardware descriptions from a library and "interconnecting“
them in a topology file.

N.mPc separates the logical hardware design problems from the

technical ones (timing, etc.) so that they can be solved

" separately.

N.mPc not ounly offers an entirely programmable software
development environment for microprocessor simulations but

also allows to use of commercial cross.- software development

58

s

packages. These packages make it possible to develop software
for microprocessor simulations in a high level language.

of cdurse, the advantages gained by the use of CAE tools come at a

price;

- The performance penalty paid by N.mPc microprocessdr
simulations is significant and clearly limits the size of
software to be run on a simulated processor. This simulation
performance penalty will be alleviated by the ever increasing
perfofﬁance and decreasing cost of ho;t computer systems.

- N.mPc”s library of hardware descriptions should be improved in
order to contain descriptions of existing hardware elements
(microprocessors, etc.) with a reliability that is similar to
the actual hardware. The hardware designer using the N.mPc
could then directly use these descriptions without having to

worry about debugging.

It 1is 1interesting to note that the design of a fault tolerant
computer architecture for space applications (see Figure 7-1) was part
of the work done under this contract. In that section of the work, a
fault tolerant multiprocessor architecture was developed and it was
decided to simulate the operations of such an architecture with N.mPc.
The 8086 CPU was chosen as the generic processor for the elements of the
multiprocessor system. N.mPc makes possible the simulation of several
8086 based processing elements at a very low incremental effort. This is

where a CAE tool like N.mPc really shows its inherent power.

59

ce jp— cp 4 ce
: (86/12) (86/12) (86/12)
\ .. I. -l u l-
PERIPHERAL NETWORK (3 IPs)
(three 86/12)
| R RS -~ Ll Dl B L
PP PP PP
(86/12) (86/12 (86/12)
oy ~].- S o R P o
DEVICES
CP = Central Processor
IP = Interface Processor
PP = Peripheral Processor

Figure 7-1: Fault Tolerant Computer Architecture

(1l

[2]
[3j
[4]
[5]

[6]

7]

(8]

[91]

[10]

[11]

[12]

REFERENCES
Ordy, G.M., "N.mPc: Runtime User”s Manual,” Department of Computer
Engineering and Science, Case ‘Western Reserve University, 1979.

Ordy, G.M. and Rogers, L.A., "N.mPc: MetaMicro User”s Manual,"”

Department of Computer Engineering and Science, Case Western
Reserve University, 1979.

Rogers, L.A., "N.mPc: Linking Loader User”s Manual,"” Department of
Computer Engineering and Science, Case Western Reserve University,
1979.

Ordy, G.M., "N.mPc: Ecologist User”s Manual,” Department of
Computer Engineering and Science, Case Western Reserve University,

"

Leffler, S.J., "PP: A Post-Processor for N.mPc," Department of
Computer Engineering and Science, Case Western Reserve University,
1979.

Rogers, L.A., "A Generalized Linking/Loader for the Allocation of
Code in Vertical and Horizontal Machines,” Master of Science
Thesis, Department of Computer Engineering and Science, Case
Western Reserve University Report CES-79-6, August 1978.

Streit, M., "VAX 11-780 CAE Tools for Multiprocessor Simulation:
N.mPc User”s and Application Manual and Ianstallation Guide", a
Report prepared by Intellitech, September 1984. ‘

Streit, M., "Simulation of the SBP 9989 Microprocessor Using the
Computer Aided Engineering Tool N.mPc on a VAX 11/780", a Report
prepared by Intellitech, September 1984.

Parke, F.I., "An Introduction to N.mPc Design Enviromment",
Proceedings of the ACM/IEEE Design Automation Counference, June
1979.

Rose, C.W., Rogers, L.A., and Straubs, R.V., "The N.mPc System
Description Facility," Proceeding of ACM/IEEE Design Automation
Conference, June 1979.

Hewitt, D.C., Parke, F.I., and Rose, C.W., "The N.mPc Runtime
Environment," Proceedings of the ACM/IEEE Design Automation
Conference, June 1979.

Hewitt, D.C., "The Runtime Enviromment for N.mPc, An Adaptable
System to Support the Development of Microprocessor—-Based Systems",
Master of Science Thesis, Department of Computer Engineering and
Science, Case Western Reserve University Report CES-79-7, January
1978.

61

[13]

[14]

[15]

[16]

[17]

[18]
[19]

[20]

[21]

[22]

REFERENCES CONTINUED

Jiang, W., "A Distributed Kernel Runtime Environment for Large
N.mPc System Simulation”, Master of Scieunce Thesis, Department of
Computer Engineering and Science, Case Western Reserve University
Report CES-82-7, August 1982. :

Boucouris, S., "Design and Analysis of Fault Tolerant Architectures
for Multi-Microprocessor Systems”, Intellitech Technical Report,
October 1984.

Ordy, G., "N.2 ISP” Users”s Manual”, January 1984.

Mahmoud , S.A., "VAX 11/780 CAE Tools for Multiprocessor
Simulation - N.mPc Detailed System Description”, September 1984.

Straubs, R., "ISP” User”s Manual", 1978.

"Introduction to N.mPc System Programs", Technical Report, Case
Western University, 1980.

Lantech Systems Inc., "8086 C Cross Software Tools™, 1983.
Boucouris, S., "Conceptual Design of a Fault Tolerant
Multiprocessor Operating System and the Implementation of a
Prototype Kernel", Intellitech Technical Report, October 1984.

Ordy, G., "N.mPc under VMS-Preliminary Paper", 1984.

Ordy, G., "A Simple VAX N.mPc Post Processor!, January 1984.

62

APPENDIX A:

Complete Directory of Intel :SBC 86/12 Files

The 1listings of the hardware descriptions that are part of the
simulated 86/12 single board computer are too long to be appended to

this manual. The following list indicates the file names used for each

‘element of the 86/12 model and the names of the directories 1in which

. these elements can be found. The ISP” source files containing the

descriptions of the elements of the simulated Intel 86/12 single board

computer are:

- 8086 CPU: "max86cpu.isp”

- ROM:. "max86mem.isp”

- Dualport RAM: “"dpram.isp”

- PIC: "pic.isp”

- Interrupt Generator: “interrupt.isp”
- Raw Memory: "terninal.isp”

- Multibus Interface: "multint86.1isp”
- Global Memory: "globalmem.isp”

- Description file
of 86/12 topology: "val.t"

The above listed files of the simulated 86/12 single board computer
are found in the following directories in the present N.mPc directory
structure presented on the next page: "1lib 8612", "86 demo", "86 val”,
"86 sieve". Directory listings of these four directories are also part

of this Appendix.

, SYSSSYSDISK: [PACKACE)
USERSDISKI: [1cll] USERSDISKI : [LANTECH]
astosend
log86,com logeast.com logsys.com login.com nmpc otol 86build Erode
as8086.sym
softgen 1{b 86softdev . readysim update bin library manvals softgen source
mmpd llef 11b100L microlib 1ib8612 1ibB085 1ib1802 1ib9989 as86 1i1b c86 86demo 86val 86sieve 86int 8085 1802demo SEP9989 FlOOL oulei8s

The N.mPc Directory Structure on VAX/VMS

gelt def Baval
$ oir3

Directory USER$DISK1ICICLL.NMPC.READYSIM.B6VAL]

OREADME .F8T3#9
CMDLMALS 2
DFRAM.ISF#11
GELCORE. 4
GLORALMENW.ORJ:7
HEXCMD.ORJ3 1
INTERRUFPT .ORJF7
MAXBSGMEM . ISF 336
MULTINT84.,0RJ5 21
FRINT.G533
ROMCORE %77
SACLZ.EXEs L
SACLZI.EXE:2
TERMINAL.ORJ G
VAL .Fi746
VAL.X#184
VALCHND . 8§ 1

Total of 492 files.

$ set def B8édemo
$ dir3

CHn.Ci# 2
CHD.MF152
DFRAMORJEFS
GELCORE.F§219
HEXCMD.C: 2
IN.G33
MAXBLCFU T8RS
MAXBSMEM.ORJF 44
FIC.T8F3524
RAMCORE . 98
ROMCORE .F3#183 |
SACLZ.FORs 2
SACLIT.FOR$3
VAL .15 257

VAL 53745
VaALCHMD.Cs2

CHD.EXE?Z
CHMDLORJ# 1

ERTIMI ETDT?1
GLOBALMEM.ISFs10
HEXCHD .EXE+# 1
INTERRUFT .IGF$7
MAXBSCPU.ORIFS
MULTINT84.ISF:27
FIC.OBI?20
RAMCORE . F#607
SACLZ.DATH3
SACLZI.DATHS
TERMIMNAL.IGF:?
VAL EXEs 44
VAL « T35
VALCMD,O0UT#3

DNirectory USER$DISKLICICLL .NMFC.READYSIM.B84NENKD]

OREADME +FST#3
B6HASS. 533
OFRAM.ORJG &
GLORALMEM.ISF310
INTERRUFT .ORJFS
MAXB84CFU.ORJF 183
MULTINT86.I8FF 27
FIC.ORJS19?
FRINE.OUT#3
FRIME.S$3
ROMCORE . 320
TERMINAL.ORJF 4
VALL.S318

Total of 38 files.

4

86A8HMOTOL . COMIB
CCBOBG.COMSL
EUTIMILEDT#1
GLORALMEM. ORI 7
MAXBACFU.DATS 2
MAXBAMEM . ISF 36
MULTINTB6.0RJS 2L
FRIME.C#4
FRIMESS
FRIME.S3:2
ROMCORE. 319

VaL EXES 17
Val. . T 4

B&ASS.OUTHL
DFERAM. ISPILL
GRLCORE « 3 4
INTERRUPT.ISF$L
MAXBACFU.TSF3 246
MAY.BRGMEM. ORI 44
FIC.ISF1
FRIME.HEY 3
FRIME .G85 4
RAMCORE +$75
TERMIMAL.ISF#1
VAL .F$18 '

set def B&int
$ dird

Iirectory USER$DISKLIICICLL.NMFC.READYSIMN.B6INTI

OREADIME.FST#2 ERTIMILEDTS1
GRLCORE.F$82 INTREMO.OUTHS
MAX8ACFU.DATHL MAX8SCFU.ORIF 131
RAMCORE.F3470 ROMCORE .514

UAL +I13 143 Ual. . EXE?33

Ual. . 8737 VAL . TS

Total of 18 files.
$ set def 1ipBall2
$ odird

OREADME .F8T32 NFRAM.ISFI 1L
GLOBALMEM.ISF310 GLORALMEM.ORJS 7
INTERRUFT . .ORJ: 7 HAXBACFU.UAT 3
MAXB4CFU. ORI 184 MAXBOHMEM. IGF: 34
MULTINT86.18F:27 MUHLTINTB84.0RJI 21
FIC.ORJ:2C TERMINAL +IGF: 9

Total of 18 files.
4% wel def Bésieve
$ dir3

GRLCORE .7 4
INTREMO.881
RAMCORE . 591
ROMCORE .FfB3
UAL..F 337
Ual . Xi118

Directory USER$DISKLIICICLL.NMFC.LIE.LIEB&12]

ODFRAM.ORJS S
INTERRUFPT.ISF:7
MAXBLCFU L ISFI246
MAYXBSOMEM . ORJF A4
FIC.I8F324
TERMINAL.ORJSS

Directory USER$DISKIICICLL.NMFC.READYETM.B&48TEVE]

OREADME.FSTs 4 BABIEVE.C3#2

ERTINI.EDRDT#1 GRLCORE. 4
NMPCSIEVE.C3é MMFCSIEVE.QUT &
RAMCORE . » 75 RAMCORE .F35 424
ROMCORE.F3537 SIEVE.C#1
SIEVE.ORJs1 VAL . I1: 80

VAL .Fs§12 UAL.8312

VAL . X372 VAXSITEVE.CiA

UAXSIEVE.ORJ3 1

Total of 28 Tiles.
% '

848IEVE.S+1
GRLCORE.F§364
HMPLSTEVE.S5 3
ROMCORE.#15
STEVE.EXEs2
UL EXERL2

VAL T3S
UAXGSIEVE .EXEF &

APPENDIX B:

1) Mathematical Basiss of the "Simple Attitude Control Algorithm"

- - e 7 s o

Simple Attitude Control Loop(SACL):

Lead/Lag Filter

{wheel bias)

s + p
: T
——————— B - — — — = = = —
s + np :
! I
e (t) ! l
T. =0.25s : : A i
int : T
: 3 |
+ I int '
~_ A (6) K, N +/§ ’ -1.0 |
g ye(t) E s B,(t) KJ O(C)v l Kp ; > >
0_(t) 5 1 | 1.0 || y (0
‘ \
commanded Proportional I 3 (Pulse
angle Term Integral i Duration
Term l [
!
L — — o o e
PWM

Input: Qc(t), Commanded Angle

Qutput: Ym(t), Pulse Duration

Z transformation based on Tustin's Method

- .g. (_g:..];) = { =
let s = T (z+1) where T = Tint 0.25s
' 2
let F = T
(i) lead/lag filter 2 (z-1) ;
_ stp, _ T (2+1) - F(z-1) + p(ztl)
G,(s) stop G,(2) 2 (z-h) , _ F(z-1) + np(z+1)
T (z+1) P
_ (F+p) ztp-F
- (F+np) zinp-F
) a11 z+ a10 §
b11 z+ b10
where ag < p-F, a;, = F+p
blO = np-F, b11 = Finp
(ii) integral term
: + K
6(s) = L G = =L - —LGH) B S
2 s 2 2 (z=1) F (z-1) Fz-F
* T (z+1)
I S W 1)
b21 zt+ b20
where a20 = KI’ ay) = FI
|
byg = “F» by = F
difference equations
B. (s)
_ C (s) |
G, (s) AL (s) Gy(s) AL (s)
¢z _ 1 * %10 By(®) 3y, #* Ay
Al(z) b11 z+ blO Al(z) b21 z+ b20

C(z) (bllz + b)) = Al(z) (allz + alo)

10

bllc (K+1) + blOC K) = al Al(K+1)+ alOAl(K)

CK+1) = (a

) Al(K+1) + alOAl(K) —blOC(K)) /b11

1

CK) = (allAl(K) + alOAl(K_l) —bIOC(K—l)) /b11

B (2) (byyz +byg) = A (2) (ay,z + ay,)

BI(K) = a, A (K+1) + aZOAl(K)

20 211

b21B1(K+1) + b

By (K+1) = (a,,A (R¥1)+ a,y A (R) =b, B (K)) /by,

Bl(K) = (a21A1(K)+ aZOAl(K—l) —bZOBl(K—l))/bZI

o) = BI(K) + C(K)

A K) =K, - Y_(K)

The resulting algorithm is fully implemented in the SACLZ program.

The SACLZI program is scaled in order to use integer variables only.

To Compare Scaled Integer Results Against Real Results:

t Al(t) Bl(t) 0(t) YI(t) YM(t)
r 0.25 32.0 3.94 x 10 ~* 25.6 25.6 0.25
SI 1 32 4 25681 25681 5632
conversion 1/4 32/1 4/10,000_, 25681/1,000 25681/1,000 5632/22528
= 0.25 = 32 =4 x 10 = 25.7 = 25.7 = 0.25
-2 -2
r 20.0 32.0 6.27 x 10 0.463 0.463 2.05 x 10
ST 80 32 636 468 468 468
conversion 80/4 32/1 636/10,000 _, 468/1,000 468/1,000 468/22528
= 20 = 32 = 6.36 x 10 = 0.468 = 0.468 = 2.08 x 10

(r = real, SI = scaled integer)

For the scaled integer representation we now have:

i) tint x 4

the time interval, At, is scaled from 0.25 sec. to
1 sec., hence by a factor of 4. However the difference
equations still use tint = 0.25 sec. in their

implementation

ii) Bl(t) x 10,000
the integrated output is scaled by a factor of

10,000

iii) 0(t) x 1,000

the PID output is scaled by a factor of 1,000

iv) Y (£} x 1,000

the input to the PWM is scaled by a factor of 1,000 ‘

v) Ym(t) x 5632x4

the output of the PWM is scaled by a factor of
22528, this scale factor is the combination of

1,000 from YI(t), 5.632 KP, and 4 from tint.

Theoretical Results from the SACL Algorithm(based on a continuous system)

1|
6.(8)
t, At 20t 3At 4At S5At 6At 7At 8At 9At 10At 11At 12At
1 1
Ye(t)
32 T
Al(t)
yl 1 i ‘l i 'L - L i 1 i 1 4
v*v — —— —_— n/./~
I\A L{I —
Bl(C)
1l 4 {— 4 t i t %\
25 [
K
ci{t) } SSV——-——A—‘
] T n
1 t + t t t t ¢ = =% f
25 L : 1 ‘
KA/n+KAKIt:
o(t)
{ { ¢ : ¢ —T— { { ! |
76A¢t 78A¢t 80At
0.25 |
+ t ¢ t ¢ t———t : : t ~
Actual
Pulses H
. R B N O O I I O
4 1 - BRI t

OO0

OO OOOSoONO0NonNON 00NN OoONoNooon0a0n

—
E

.
L3

FROGRAM SACLZ

THIS FROGRAM CONSISTS OF & SIMPLIFTED ATTITURE
CONTROL LOOF ALGORITHM RASED OH A& FPIDR COMTROLLER
COMBINER WITH A FPUWM.

WRITTEN RY M. SAVOIE - JUNE:s 1984,

The attitude control aldorithm comrutes 8 new PUN
outrul rulse durstion ot avery 2050 aese, Ddaced on
the measured attitude error, For thioe simrlificed
caser simce bhore iv no fesdbhackys bhe stbtitude
error ie a3ssidned the value of the commended sndle.
The FID comtroller owbsnt ios added to bthe wiheel
hiass before beind srocessed by the FWUM, The outrut
ritlse durstion of the FUM rerresents a fraction of
the time interval hetweer samrles and is calculasted
hased on the madnitude and sidgn of the sidnal arrlied
Lo it

DEFINITION OF VARIARLES

K& - FID imnrut dgain (=---2

KI - FID intedrazl dain (1/cec.)

N - FID Fraueonecy rabio (=--)

f - FID lead frecuency (rad/sec,)
KF - FUM dgain (1/7ded.)

TINT - intedration ster size (sce.)
Tay - FITU time constant (soc.)

YEK - attitude error andle (ded.)
AR - FI sroarortinmal outrut (ded.)
EK - FID intedral outrut (ded.?

CK - FID lag outeub (deg.)

0K - FID controller outrul (ded,)
TERK - whoel bias (deod.)

YIK - FUM inrut (ded.)?

YHK - FUM outeut (daoration in sece)
THETAC - commended andle (dod.)

INITIALIZATION
REAL RKAasKIsNsFoRFsTINTFy

1 ALOALLsBLOSR1IL,
i AROyA2LsB20sB21
1 TERYERRs YERs ARy AKML y BKs BRKM1 s CRy CKM1 s OK s
1 YIKs YMKs Ty THETAC

OFENCUNIT=1, TYPE='NEW’ s NAME=/SACLZ AT ")
CONSTANTS '

RA=32.0

RI=Q84E-T

N=80,0
F=0.02%3
KF=1,0/5.632
TIMT=0,25
F=24,0/TINT
TRK=0.0

C LEAD/LAG FILTER
ALO=F~F
All=F+p
RBLO=NXP-F
B L NP

C INTEGRAL TERM
A20=K]
A21=KT
R2IOG=—F
RQL ==

C INITIAL CONDITIONS
ERR=0 .0
YEK=0,0
ARML=0.,0
RK=0,0
BRML=0.0
CRK=0Q.0
CRMI=0.0

C MAIN LOQOF
T=0.Q

TYFE Xy ‘Enter the commanded

ACCERT X THETAC
D0 WHILE (T JLE. 20.40)
YER=ERR
ARKML=AK
AR=KAKYER
BRRM1~RBK

BER=(A2LKAK+A20XARKMIL-RIOKEENMLY /R2L

CRM1=CK

CR=(ATLXARTALIORARML-BLOXTKMNIY /R L

DR=RK+CK
YIK=0K+TEK
YHK=KPXYIK

IF (ABS(YMK) +LE, 1.0

YMR=YMKXTINT
ELSE

YMR=8TGN(L 0 YMKIXTINT

ENDIF

anglel

THEN

WRITE(L»10)TsAKs RKsORs YIR s YHK

ERR=THETAC
T=T+TINT

10

4

ENDDO
FORMAT(LXF6295C1YsEL10.3))
STOR

END

run saclz
Enter the commanded ansglc!

1

FORTRAN STOF
¢ cal saclz.dat

0.00
0,25
0.50
0475
1.00
1.25
1.50

1075"

2,00
2,25
2,50
2.75
3.00
3.25
3,50
3.75
4.00
4,25
4,50
4,79
5.00
5.25
5,50
5.75
6.00
65425
6.50
4425
7.00
7.25
7.50
7.75
B.00
8.25
8.50
8.75
?.00
2425
?.50
975
10,00
10,25
10,50
10,75
11,00
11,25
11,50
11.75
12.00
12,25
12,50
12,75
13,00
13.25
12.50
13.75
14.00
14.25
14.50
14.75
15.00
15.25
15.50
15.75
16,00
16425
16,50
16,75
17,00
17.25
17.50
17.75
ig.00
18.25
168.50
18.75
19.00
19,29
19.50
19,75
20,00

0.,000E+00
0.320E4+02
0.320E402
0.,320E402
0,320E+02
0+320E+02
0,320E+02
0.320E+02
0,320E+02
0.,320E+02
0,320E402
0,320£4+02
0.320E+02
0.320E402
0,320E402
0.,320E+02
0.320E+02
0.320E+02
0.320E+02
0.320E+02
0.320E+02
0.,320E+02
0.,320E+02
0.320E402
0.320E+02
0.320E+02
0.320E+02
0.320E+02
0.,320E+02
0.320E+02
0.320E+02
0.320E+02
0,320E+02
0.320FE+02
0.320E102
0.320E+4+02
0.320E+02
0,320E402
04320E+02
0,320E402
04320E+402
0.,320E4+02
0.320E+02
0,320E+02
0.320E402
0.320E402
0.320E402
0,320E+02
0.320E4+02
0+320E+02
0.,320E+02
0.320E+02
0,320E+02
0,320E+02
0,320E+02
0.,320E402
0.320E4+02
0+320E+02
0.320E+02
0.320E+02
0.320E+02
0.320E+02
0.320E+02
0.320FE+02
0.,320E+02
0+320E+02
0.320E+02
0,320E402
0.320E+02
0,320E+02
0.,320E+02
04+320E+02
0.320E+02
0.320E+02
0.,320E+072
0,320E+02
0.320E+02
0,320E402
0.320E+02
0+320E+02
0,320E+02

0.000E+00
0+394E-03
0.118E~02
0.1976-02
0.274E~02
0434G5E-02
0.434E~02
0.513£-02
0.592E-02
0.670E-02
0.749€~02
0.828E-02
0.907E-02
0.984E-02
0.106E~01
0.114E-01
04122E~-01
0.130E-01
0,13BE-01
0.146E~01
0.154E~01
0.142€-01
0.170E-01
0.177E-01
0.185E-01

0.193E-01

0.201E-01
0,209E~01
0.,217E~01
0.225E-01
0.233E-01
0.241E-01
0.24BE-01
0.254E-01
0+264E~-01
0.272E~-01
0.2B80E-01
0.288E~-01
0.296E-01
0,304E-01
0.312E-01
0.3172E-01
0.327E~01
0.335E-01
0.343E-01
0,351E~01
0.359E-01
0.367E-01
0.375E~01
0.383E-01
0.390E~01
0.398E-01
0.404E-01
0.414E-01
0.,422E-01
0.430E~-01
0.438E-01
0.446E-01
0.,454E~01
0.461E-01
0.469E~-01
0.477E-01
0.48%E-01
0+493E~-01
0+501E-01
0.,509E-01
0.517E-01
0.525E-01
0.532E-01
0.540E~-01
0,548E~-01
0.356E-01
0.564E-01
0.572E~-01
0.,580E-01
0.G88E~01
0.596E-~013
0.403E-01
0.611E-01
0.619E-01
0.627E-01

0.000F+00

"0.256E402

0.154E4+02
0.,937E+01
0.575E+01
0,339E+01
0.230E101
0.134E+01
0.108E401
0.809E+00
0.647E400
0.551E+00
0.,494E1+00
0.461E+00
0.441E+00
0.430E+00
0.,423E400
0.419€+00
0.418E+00
0.417E+00
0.417E+00
0.417E+00
0.417E400
0.418E+00
0.419E+00
0.417E+00
0.420E4+00
0.421E4+00
0.422E400
0.422E+00
0.423E4+00
04424E+00
0.,425E100
0,426FE+00
0.426E400
0.427E+00
0.428E+00
0.429E+00
0.430E+00
0.,430£400
0.,431E+00
0.432E+00
0,433E+00
0.434E+00
0.,434E+00
0.435E400
0.434E100
0.437E+00
0+437E400
0+.438E+00
0.4392E+00
0.440E+00
0+441E+00
0.441E4+00
0.,442F+00
0,443E+00
0.444E+00
0.445E+00
0.445E+00
0.444E100
0.447E+00
0.448E+00
0.449E4+00
0.449£+00
0.450E+00
0.451E+00
0.452E100
0.452E+00
0.453E+00
0.454E+00
0.455E+00
0.455E100
0.456E+00
0.457E+00
0.458E+00
0.459E+00
0.460E+00
0.4460E+00
0.461E+00
0.,442E+00
0.443E100

0.000E400
0.254E402
0.154F402
0.937E401
0,575E401
0.359E+01
0.230E401,
0. 1S4E+01
0,108E401
0.809E400
0.447E400
0.5S51F+00
0.494F400
0.441E4+00
0.441E400
0.430E400
0.423E+00
0,A19E+00
0.418E+00
0.417E400
0.417E+00
0.417E400
0.417E400
0.4186+00
0.419E400
0.419E+00
0.420E400
0.421E400
0,422E400
0,422E400
0.423E400
0.424E400
0.425E400
0,426E400
04426E400
0.,AR7E+00
0.428E4+00
0.429E400
0.430E+00
0.430E400
0.431E+00
0.432E+00
0.433E400
0,434E400
0.434E+00
0,4356+00
0.A36E+00
0.437E400
0.437E400
0.438E+00
0.439E400
0.440E400
0.A41E+00
0.441E+00
0.442E400
0,443£+00
0.444E400
0.445E400
0.44SE+00
0.446E400
0.447E400
0.448E400
0.,449E+00
0.449E+00
0.450E+00
0.451E+00
0.452E+00
0,452E+00
0.453E400
0.454E+00
0.455E400
0.456E400
0.456E400
0,437E+00
0.458E400
0.439E400
0,440E400
0.440E+00
0.461E+00
0.442E+00
0,463E400

0.000E+00
0,240E+00
0.250£4+00
0.250E1+00
0.250E100
0+159E+00
0.102E100
0.,482E-01
0+480E-01
0.359E-01
0,2B87E-01
04+245E-01
0.219E-01
0,204E-01
0.194E-01
0,191E~01
0.188E~01
0.184E-01
0.185E-01
0.185E-01
0.,185E~-01
0.185E-01
0.185E~01
0.1846E-01
0.186E-01
0.184E-01
0.187E-01
0.187E~-01
0.187E~01
0,188E-01
0.188E~-01
0,188BE~01
0.189E-01
0.189E~01
0.3B9E-01
0.,190£-01
0.190E~01
0.190E-01%
0.191E-~01
0.191E~01
0.191E~01
0.192E~01
0.1926~01
0,192F~01
0+193E-01
0,193E~01
0+193E~01
0.194E-01
0.194E-01
0.195E~-01
0,195E~-01
0,195E~01
0.196E~01
0.194E-01
0.196E~01
0.197E-01
0.197E-01
0.197E~-01
0.198E~-01
0.198E~01
0.198E~01
0.199E-01
0+199E~-01
0.199E-01
0.200£E-01
0.,200E-01
0.200F-01
0.201£-01
0.201E~01
0.202E-01
0+202F-01
0.,202E-01
04203£-01
0.,203E~01
0,203E-01
0.204E~01
0.204E-01
04204E~01
0.+205F-01
0.2005E-01
0.,205E~-01

FROGRAM SACLZI

C
0 THIE FROGRAM CONSISTS OF A SIMPLIFIED ATTITUDE
C CONTROL LOOF ALGORTTHM RASEU ON A FPID COMTROLLER
C COMBINED WITH A FWM.
G
¢ WRITTEN RY Ms SAVOIE - JUNEs 1284,
»
i The attitude control asldgorithm comrutes 3 new FUM
C outrut rulse duration at avery 250 mesec. based on
¢ the measured attitude error. For thioc wimrlified
¢ caser since thare ig no feadbacks the attitude
C error is assidgned the value of the commanded andle.
C The FID controller outrubt is added to the wheel
i hizs before heind rrocessed by the FUM, The outrut
C rulse durastion of the PUM rerrecents 2 fraction of
L the time inteirval betueen samrles and is calculated
C based on the magnitude arnd sidgn of the sidnsl arrlied
C to 1t.,
(
C DEFINITION OF VARIARLES
G KA - FID invut dgain (--=-)
C RI - FID intedral dain (1/scec.)
(N N - FID freuency rabtio (-
(F - FID lead frecuencuy (rad/csec.)
C KF - PUHM gain (1L/cdadg.)
[» TINT - intedration ster size (secs) .
C TAl) -~ FID tiwme comnstant (sec.)
G YER - attitude error andle (ded.)
¢ AR - FID rsraorortional outrut (dedg.?
C EK - FID intedral outrut (deg.?
G CK - FID lag outeut (deg.)
(N OR - FID controller outrut (dedg.)
G TER - wieel hias (ded,)
» YIK - FUM imrut (ded.)
I YMR - FUM outrut (duration in swec.)
(THETAC - commanded andle (ded.)
-
C INITIALYIZATION
INTEGERXA KAsKIsNeFyRKFEsTINTFo»
L ALO»A11-R1I02BL1y
1 A20rA21yR20YEB21
1 TERyERR?YEK s AR ARKML 7 BKy BRM1 2 CR CRKM1 2 0Ky
1 YIRsYMKs Ty THETAC

OFENCUMIT=1TYPE="MEW’ s NAME="SACLZI.0AT ")
C CONSTANTS

RA=32
C KI=9.86E-0

N=80.0
=0, 0253
KF=] T(L0/5,632)KG, 632

TINT=1 IF TS COMPUTED WITH TIMHT=0,25

F=2.0/TINT
TRK=0
LEAD/LAG FILTER
ALQ==79747 V1 (F-F)X10000
A11=80253 L(F+HFIX10000
R10==-6 FNXF-F
Bl11i=10 LFHNKF
INTEGRAL TERH
A20=1 IRIX10000
AR1l=1 IRIX10000C
R20=-8 b
R21=8 F
CINITIAL CONDITIONS
ERR=0
YER=0
AR=0
ARKML=0
BRK=0
BKMIL=0
CK=0
CRKM1I=0
MAIN LQOF
T=0
TYFE %Xy ’Enter the commanded andles
ACCEFT X:THETAC
N0 WHILE (T +LE. 8G)
YER=ERR
ARKM1 =4K
AR=KAXYER
RKM1~BK

s

BR=(A2LKAKFEZORARML-BR2ONRRKM 1) /B2

CKM1=CR

CR=(ALLIXAKSALIOXARML-BLORCKNMI Y /7HT

OR=¢(BRK+CK)Y /10 tooale down by
YIK=0K+TER
YMR=KFXYIR
IF (JIARSCYMK) LLLE. H&632) THEN

YMK=YMKXTINT
ELSE
YMK=JISIGN (556325 YMK)KTINT
ENDIF
WRITE(1y10)T»AKrEKrOKs Y IK: YHK
ERR=THETAC
T=T+TINT \

16

10

ENDIINO
FORMAT(1XsI4>5C1Xs16))
STOF

END

run sacl=i
Enter the commanded

1

FORTRAN STOF

$ cat saclzi.dat

V]

DN DN -

0
32
32
32
32
32
32
32
32
32
32
32
32
32
32
32
32
32
32
32
32
32
32
32
32
32
32
32
32
32
32
32
32
32
32
32
32
32
32
32
32
32
32
32
32
32
32
32
32
32
32
32
32
32
32
32
32
32
32
32
32
32
32
32
32
32
32
32
32
32
32
32
32
32
32
32
32
32
32
32
32

0

4
12
20
28
34
44
52
40
48
76
84

ey
<

100
108
114
124
132
140
148
156
144
172
180
188
1964
204
212
220
228
236
244
252
240
268
276
284
292
300
308
314
324
332
340
348
356
364
372
380
388
396
404
412
420
428
A34
444
152
460
448
4764
A84
492
500
508
514
524
532
540
548
556
564
572
580
s88
596
404
612
420
428
636

amglel

0
256481
15571
9506
5847
3484
2374
1589
1118
834
647
566
s0%
449
A48
434
429
a2s
423
ana
A21
A22
422
423
423
424
425
404
426
427
428
429
430
430
431
432
433
434
434
435
436
437
A38
438
439
440
441
442
442
A3
444
445
Aa4
A46
447
A48
449
A50
As0
ast
452
453
454
A54
455
AS4
457
A58
458
459
460
Ab1
442
462
463
464
465
466
466
447
448

0
235681
15571
9504
5867
3484
2374
1589
1118
834
667
5664
505
469
A48
436
429
425
423
422
421
422
422
423
423
424
425
424
424
427
428
429
430
430
431
432
433
434
434
A35
434
437
438
438
439
440
441
442
442
443
A4
445
446
444
447
A48
449
A50
450
A51
452
453
A54
454
ASS
A4
457
ASH
458
459
460
A41
A62
442
4463
Ab4
445
Y3
464
447
468

0
5632
5632
5632
5632
3484
2374
1589
1118
834
647
566
505
449
448
436
429
425
423
422
A21
422
422
423
423
424
425
426
424
427
428
429
430
430
431
432
433
434
434
435
436
437
438
438
439
440
441
442
442
443
A44
445
444
446
447
448
449
450
450
451
452
A53
454
454
455
AS6
457
458
AS8
459
440
461
442
462
443
464
465
4664
446
467
448

APPENDIX B

2) The Validation Testprogram Running on the Actual Intel SBC Hardware

(CMD.C, = CMVAL.C86)

ZRKK R KKK KK KK K KK K KKK K KKK K 0K 3 KKK KK R KKKOR RROKOR KR Kk /
7 C version of a Simelified Attitude Control Aldoribim X/

/7 KRRRROR KKK OROK K K KOR KKK KK K OROK 0K OKOK KRR RRKOROON AR KRR X /

/¥ This validation testrrodram ilarlements the "SACL"Y al-Xx/
/% gorithm using scaled inteder variasbles.The "ARS® X/
/% functionsmot availaile io the livk library of the o X/
/% Lantech C 8086 cross software develorment toolss was X/

/% rerlaced with an *ARS" subhroutine.The reosulting code X/

/¥ containe no floating soint instructions and can be ¥/
/% ewecuted by an 808646 CPU.The € fumctions "scanf" and X/
/¥ *rrintf" are used for I/0 orerations as "CHB.C" ie toXx/
/¥ be rum oon an actual Intel SEC harduwara2(80846 CRUY . Thisx/
/% is the only difference to the validation testrrodram X/

/% to be run on the gsimulated Tetel SBC harduware X/
7% (VALCHLI.CY., X/
Z KKK AR IR NORKOR RORR K AKX AOOK AR RO K ROR KRR KR XK RR R KR AR KRR Rdok kXK /
/X Max Streits Intellitech Canads Ltdsy Sert.84 X/
ZREKKEKKKK KR KKK ARANKKKRKEKKEKKER KRR KRR RKAOK ORI KR KKK K K/

/X ¥include math (*eue" and "fTabs® rerlaced) X/
maind)

1{

long int
long imt

kLasthetacs
8l02a811,01020011 523202021 ,020,0215%

long inmt errrvebysakryabmlsblebbnlrolerobmls
int kestobintrbidkronleruikyumles
/% Initialization X/
ke = 3275
/% ki = 9.846E-5% X/
/X noo= 803 X/
/% o= 0.2535 X/
ke = 1% 7% (1.,0/9,632)%%,632 X/
tint = 17 /% f dis comruted with tint=0.23 X/
/X f = 2.0/tint ¥/
thk = 0fF

/¥ lead/lag filter X/

ald = =79747; /X% (g=f3X10000 X/
all = B0253% /¥ (fAe)x10000 X/
bhi0 = ~4&3% /¥ nXe-f X/
hil = 10% /¥ Xy %/

/¥ intedral teram X/
al0d = 1% /7% 1Li%10000 %/
821 = 1% /¥ kiX10000 X/

/X

b0 = 8% /7 ~f X/

h21l = 8j /X 1 %X/

initial conditions X/
err = Q%

welk = 03

gk, = 03

akml = 03

bl = 03

trlml = 0%

ck. = 0%

clkml = 0%

main loor X/
t = 0%

erintf("Enter the commanded angle I\n"):
scanf ("4Z0"y &thetac)?

Wwhile (t <= 80)

Frintf(® %4 %D %D %d %d Zd\nstrabksolsolswilkrumb)

¥

£

¥

yel = errs
akml = ahks

alk. = ka X veks
clkml = blky

Bl = (aRiYak+a20kalml-b20Xbhkml)/bh213

chml = ok :

ol = (aliral+aloXaktmli-blO0Xckml)/blls

ok, = (v + ck)/10; /% gealed down by 10
wik = thk + ols

umb, = kr X uwiksy

if (abs(umhk) <= H632)
umb, = wmlk X tints

else
<
if (umk = Q) umb, = 5432 X tints
else vumk, = =5632 X tints
¥

err = thetac?
t = t + tinmt?é

b 94

/% absolute value of floating

o= oMy
else
& ~M3

return(z);s

roint

numbher X/

APPENDIX B

3) The Validation Testprogram Running on the Simulated Intel SBC

Hardware ("VALCMD.C")

2222222232328 0433333 TPFIEETFIIRIFFE LTSS S TSRS V4
/¥ C version of & SiwrlitTied Attitude Control Algorithm %/
2223332223323 8 2322382338322 FPPL SR ERITTETEFIES T EILT ST P
/X This validation testrrodram imrlements the *SACLY al-¥%/
/X dorithm using sceled inteder variables.The "ARS® X/
/¥ functionrynot available in the link library of the X/
/X Lantech © 80846 cross software develorment Loolars wae X/
/¥ rerlaced wibth an "ARS" subroubtine.The resulting code X/

/¥ contains pno floating roint instructions and can he X/
A¥ executed v an 80848 CRUNMormally the € functions X/

/¥ "sesnf* and "erintf' are used for 1/0 orervalions.Os X/
/% "UALCHMD.CY i Lo be run on a3 simulated 8086 CRU two %/
/7% "C* callable rrocedures(*FPRINT"»*IN') were added to %/

/¥ the licnk library to 2llow for I/70 orerations which X/
/% use N.mFPeoc‘s "raw memoru* feature for 1/0. X/
ZEXRHKKEKKRKAKE KKK KA KRR EKREKARRA KKK ARKKAKKRKKKRRRAKRRK/
/% Max Streits Intellitech Canada Lids Sert.84 94
ZRRKERKARKAERKE KKK A KKK A KKK KKK KKK RRKRAKKRKA AR R A kKK /
/% ¥include math ("exr" and "fabs" rerlaced) X/
main)
{
long int kastnetscs
long int 310722311010/ 0115320:2a321,020:,021
long int errreekrabsabtmlsbhlsblmlsclrobmls
int hpstotintshbkroksviksumks
/X Initialization X/
ka = 323
/% ki = 9.B6E~55% %/
/% noo= 803 X/
’X o= Q0.253F X/
ke = 1% /% (1.0/5.632)%5.632 X/
tint = 13 /% F is comruted with tint=0.235% X/
/X CfF = 2,0/tint X/
thk = 03
/%X lead/lad filter ¥/
al0 = =-79747; /X (p=f3X10000 %/
all = 80253+ /% (f+e)¥%10000 %/
1) = -63 /¥ niky-f X/
il = 103 /¥ fi4nXs X/
/¥ intedral term X/
a20 = 13 /% kiXx10000 %X/

/%

/X

/X
/X

a2l = 17 A% Lix10000 X/

20 = -8% /X -f X/

21 = 83 /¥ f X/

initial conditions X/
err = 0O3F

gelb, = Q3

akml = 0%

ttbml = 0O3F

chkml = 03

main loor X/
t = OF

alk = QpF

bl = O3

ok = Qf
gib, = O3
umb, = 0%

cl. = Of

rrintf("Enter the commanded andle I\n")i
seanf ("4 Lthatac)y
thetac = 1n()§ /% 10 srocedure for N.mPo X/

while (4 <= 80)

{

gelk, = err?
akbml = aksF

alk, = ka X uel?

blwml = bl
bk = (a21¥akta0Xalbml-h20XDEmL) /b1
ckml = chs
el o= (aliXcktaloXalbmi-bl0Xckmi)/blls

ok = (hk 4+ ec¥)/105 /% scaled down by 10 ¥/
yilk. = thl + ol
umbk., = Yr X uils
if (abs(umk) <= S56332)
umbe, = ymbk X tints
else
L \
if Cumb = Q) wumbk = 3632 X tinti
else umb, = =54832 X binmts
¥
rrint(tsaksblrolyuik sgmb)y /% 10 rrocedure fTor N.mFc X/

X/
X/

2 .

err = thetac?
o= 4 4+ tints
¥
¥
/% abhsolute value of floating
aha ()
int M9
{
int z3¥
if (s == 0)
T OF My
elge
aom =u3

return{z=);

roidnt

numbher X/

4)

APPENDIX B

The Benchmark Program Used for Performance Tests

/¥ Sieve test srrodgram X/
fdefine true 1

¥define false O

fdefine siwe 8190

char fladgslsize + 113

main() <

int isrrimesbrcountsiters

erintf("10 iterations\n®)y
for (iter = 1% iter

1{

count = 03
for (i = 0F 1
fladoglil =
for (i = 0f 1

{

Lrue

¥

if (fladslLil)

{
Frime =
for (k =

count++3»

¥
3
¥

2= 108 itertd)

sizeritt)

sizesitt)

i+ 1+ 3s
i + srimes l <=
flagulhkl

+= prime)

1
=
*
B
“r

falses

Frintf (*\nZd srimes, *scount)?

04

Al
N

set def Bésieve

$ ture vaxsieve.oe

/R R HOROK K OR KO KOR K OK HOE KRR R R R AR ROR AR AR AOR AR R KRR KKK KK K/
/X Sieve test rrodgram X/
/¥ This version does more loopra(i00 000) in %/
/¥ & smaller nmumbar rande(l.os o 13) than tha X/
/% original sieve srodram in order to gct 8 X/
/% C srodgram that oon e run (for 3 varuying ¥/

/¥
/%

mamber of iterationsdon the VAYs thel(rezllX/

‘86712 and the 84712 on tie N.aoPo sustom.

X/

AR RO A OO R R RO R OR R OO RR KRR R KR KK/
Maw Streity, Intellitech Canadas Lid: Audg.BaX/
Z ROKKROK K NOK K KOK KKK RO R R KRR X RO RORRMR KRR AR RRK K/
fdefine true 1 ‘
Fdefine felse O
Fdefine sive 19

/X

maind() <

-

long int fladslsize + 11%
lomg int isrrimer¥rcount:iteors

#rint (100000 iterations\n®*)s

for (iter = 13 iter <= 1000007 itertd?

1{

count = 0QF

for (1 = 0% i <= sigesitd)
fladslil = trues

for (i = 0% i <= gizesitd)

{
if (flagslil)
{
gyime = 1 04+ 1 4+ 3%
for (B = 1 4+ primes bk <= sizes
fladgelll = falces

counttts

*

:}.
¥
Frintf("\nZd srimes."scount)s
¥

I

e

rrime)

s

ZRRRRORRR R RO ROk o Rk k ok okl ok ok doR RO R Rk /
/% *MMFCSIEVE.C"! Sieve tast rrodram - X/
/% (version to be runm on N.mFo) X/

AEKIOKKR KR SOKRORIORR R R KRR MOR R R R AR K RRR KRR KRR RR KRR KK/
/% This vercion uses "long inteder® variablesk/
/¥ and daes Just one iteeration in the 1...15 %/
/% range of numbers.This is faetor 100000 X/
/% times less work bhan what Lhe *vaxsiesve® X/
/¥ erogram does.In Lhis weyw a3 direct revfor- X/
/% mancyh compariscon betwesen VAX and 8 86712 X/
/% run on NsmPe with 2 reasonable simulation X/

/% time on H.wnfPFe s achieved. X/
AR K ROE K R K R K K K K KKK R R R OR R kRO R ROk RO KRR
/% INITIALIZATION of the carresronding siau- X/
¥ NemPo simulation */
/X X/
/¥ Information from loaderd X/
/X - anpd of reserved memory areatZ00hax X/
/X - starting sddress of data sedmoent X/
Vg is Al0hexns X/
/X - ¢code segment starting address is X/
/X A00hex(=1024) X/
/X - a possible initizlization? . ¥4
/X - *derosit 1024 tir" X/
Vg - *derosit OMéel ids X/
/% doarosit Oxsl iss® t 4
/X (0xé61 = blhew = &10/716) %/
/% - "derosit OxfO tar® X/
/X (700hex chosen as tor of X/
/X staeki700hex - S10heéx=FOhax)kx/
/KRR R R KKK KRR R R OR S OR OKOR R OR KR R R ok ok Rk ok R/
/¥ May Streity Intollitzeh Canada Ltds, Aug.84%/
/KR KKK K K K OROK RO KR K ROk KRR Ok ok ook OOk ROER Kok Rk /

fdefine true 1
fdefine falee O
fdefine size 19

main() <
long int fladsisize 4+ 113
long int irsrrimeskrcountsiters

Vg rrintf("l iteration\n");: X/

for (iter = 17 iter <= 17 itertd)
1{

pount = 0%

for (1 = 0% i <= gizgedfitt)

/X%

fladsl[il = trues
for (1 = 05 1 <= sizeritid)

{
it (Fladelil)
£
Fsrime = 1 + 1 + 3§
for (k = i + erimes k <= gized b
fladgolkl = falses

counttts

>

¥
:).

erintf("\n%d srimes. " scount)? X/

4o

rrime)

APPENDIX C

Test Software Development and Execution Procedure for the actual Intel
SBC Hardware

Sters in denerating and executing code on actual Tntel

86/30 tardet HW running iRMX86

" GCreate the rrodrami

-~TX CMVALID.C86

T

{ley in errograml
entrl Z

Q

E

(note! - is the 1RMXB86 rromets TX invokes & scoreen
I stands for inssrt, 0 stands for auitr, E stands for

exit)

Comriled the rrodgramt
~CC86 CHVALIL.CB6 LARGE

{riote! CCB6 invokes the Intel C-8% comriler:
the lardge case 4 swmall model can have

code and A44KE of datar: with 21l rointers
two bhutess larde moadel can have access to
addrassing gsraice of the 8084y oach souros
data ©

generatese & distinct rair of code and
of ur to 44KE i lengtihs all rointers
long})

Link the rrodrami
~GUEMIT TRKE,CHMD (CMVALIDN.OQRJ:CMVUALTIID

(rnoted SURMIT involes o command filer, TRKE.CHI,

is the obdect file gemerated from the

Listing of tne TRE,CMD commandg filed
linkB86 %0s %
tlibrilemain.obdr &
tlibrileliib.liby &
tlibrilarde.libhs &
flibri87mull i &
to A1 fecetload bind &
obhdecetootrols(rurge) &
gsedeize(stack{+1000H) Y &
mensro0l (+1000H+0NOQ0H)

LARGE
ur Lo

text editors

sracifies
&6AKE of

ooourying
Lhe full
file

cdments

are four hutes

CHUALITTD.ORJ

comrilation
rroceasy OMVALID ig ths name of the executahls tashk)

(note! 1ink84& invokes the 8086 linkers %40 ond Z1 are asssocigted with
the first and sscond rarametors doing rascsed in the submit

command liner & 16 a continuation char

acters

tlibred

is a lagical mane Tor 3 dicoctorys loamsin.obds
lelib,libe larde.liby and 87null.lib ere modules

reaul red to resolve sumbols dgenerated
comeiler)

Runming the srrodgramd
~GMVALTID

4

gy the

=

APPENDIX D

1) Test Software Development and Execution Procedure for Simulated

Intel SBC Hardware

. . . . B N - . e . B A

KEKE L E KA R AR KA KK AR KK R AR KRR K KRR KKK KRR RKRRRARRANRK
K MoMFC VALTIOATION | C OM A 846712 STMULATION

KRR A AR E KR KK RE LR KR KRR EARMERK AR RN AKKAR KKK KRR
¥ This simulation is descriined in detasil in Intel-
¥ litech’s technical rerort *Validation of N.mFe

¥ Microrrocessor Simulation®

BOROR K AR RO RO R KRR KK K KK ORI OAAORAORORROR KRR K RR Ak
¥ This divectory not only contains the files for

¥ the validation simulation and the testrrodram to
¥ bhe run for bhe validation("VALCHD.C") bhut alsoe

¥ some files rroduced when develoring the vaelids-

¥ tion testrrosdram. "SACLZ.FOR" idig bhe oridinsl

¥ Fortran vercion of the validation slgorithms the
¥ "SACLZI.FOR" file is a scaled version of
SACLZ.FOR" and uses inteder variasbles. “CMD.C®
is 8 translotion of *SACLZ.FOR* into C. *CMD.CT
also uses scaled inteder variables in order %
to sroduce codse that, after cross comrilationrscanX
tbe executed on an 8086 CFULCMDLC® can be run on X
any reasl machine that has 8 "G comriler as it
wses "C' standard functions for. I/0(*rrintf"s
scanf) whereas the obhorwise identical valida-
tion mrogram run on the B4/12 simulation{*Val.-
CHO.C") uses MNemFo’'s "Raw Memory® feature for
I1/0. The rrocedures "FRINT.E® and "IN.S" have
been written and added tao the link librare so
that C rrodgrams can call them for convenient IO
in this M.mFce simulation, The following tex
shows how to build the simulation of the Intel
86712 SRC and execute the testrrodreanm *VALCHOTL.C"X
X on the simulated hardware. X
KEKKRRRHAEERERKARKKEKEKK IR KRR K AAARRRKAHRR KR KRR RKNK

OB K 2 M H N W M K M X D K X

b i N

A

Stere in bhuilding 2 simulation of an iSELB8&/12
hardware and running the validation testrrogram
"UALCHILZC® on the simulated hardware(auotation merks
mark the actusl commands)

e e m me M =t mes bes e e s A ML we M e S me e e me e W i e M M vt i MRt et MR A vt M b b4 Sed mes L4 M) e Mas mes Mmes M e e e e M e e e

1) SIMULATION RUILDINMNG?

@) Comrile hardware modulest
~*get def 84&vael'"{(to dgo into validation
directary) .
_ "ie Xedaor'(do it one file bhwy ong)
h) Softuware develorment!
~"gpt def cBé"
"BeeB0846 valcmd* (done in the "cBs°

S,

directorw)
‘eory valomdes 386"
"set def acBsé"
*Béacmotol valomd® (done in "aaBé®
directory)
*cory valemd.out 8b4val®
*sot def Béval®
: eory valeomd.out romcors., s
) Intedration of harduace and softwaret

"

-"oo val*(ee rrometiHardwares Softuware

aor RBotn?)

B (for intedrating bolth new hardware

arnd softwareithis is ecuivalent
tol—-"ecologict vel®

~"amrre val®
)

2) RUNNING THE SIMULATION!
#8) Clear simulated memoriec!
-*ome val®
) Put simulation into runtime wmodel
~="run val”
) Initializotion of ths 8084 CRUL
~'derosit 1024 {ir*{the code black

starts at 400h=1024)

~"darosit Oxsb tds®
"derosit Oxab les"(the date bDlocl
starts at anln)

~*darosit 244 1er(

d) Simulation observation:i/0%0 Tha sreodgram diselauvs 1ts
resuultes automatically as menltioned above.Compare
the rosults to the ones obteined by runndicdg *CHO.CO
or "HEXCMI.C* on the VYaX or on the real Intel 86712,
They are idantical 1if the same andls was chosen 8s
an inFrut,. The zngle hes to be inrut as a number of
two decimal digita. The "IN" function sicks the firat
two decimal numberes if 8 string of ASCII characters
is divern ta it s8¢ an irmrout.The zcecerted inrut will
e echoed in hex.The *FRINT' function also srints
the results of the siwulation in hoex.

@) Simulation controlt ~"run®" to start or continue
~*"Gontraol C" to star
-'a® to exit

saets the Tor of the
staclk to 3000<-1é6Xcs

THE DEVELOFMENT OF THE "SIMFLE SFACE ATTTITUDE CONTROL*(SACL)
ALGORTTHM

1) Runm "SACLZ.FOR®*(real variables)?
=*tun saolz"
~eheck results in file *SAaCLZ.DAT*
2) Run "SACLZI.FOR"(intedar varihlesrscaled)!
~Yprun saclzit
~eomneare results in "SACLZL.NAT to
those in "SACLZ.DAT"ithay are
ecuivalent if scalind factors and
rounding errors from the inteder)
rerresentation are taken into sccount
2) Run *CHO.C*{(translation of “SACLZI.FOR® into C)i
="peun CHD
-comrare results to those of
the velidation simulation
=*pryun HEXCMI®
-game as "CMU" but outrut
srinted in hex numbers
="CHR.C" was also run on the actual
Intel SEC harduware .
—~rerlacing the starndard C I/70 functions
("SCANF s *FRINTF") with calls to srecial
roubinas (" TN "FRINT")Y using MemFo'‘s
"Raw Memoru® feature for I/0 malkes “CMILC®
the validation tost svodran fvaLcHn.c®

APPENDIX D

2) Performance Test Execution Procedure for Simulated Intel SBC
Hardware '

7
h

. 5 -
- . ‘

g
g

In order to det a measursahle simulation
time on the VAX the ‘vaxsieve" version executes
1007000 times i the 1..15 range.The same version
may also be run on 2 real B4/12 machine(*8ésieve),
3) Gimulation Use! -"sme val'
=*run val®

4) Tnitislizationt -"derosit 1024 tip"
-'derosit Oxél tds®
~*dorosit 0xb1 tss*”
~*derosit OxfO tap"

9) Simulation Ohservationt Time start and stor of
the simulation run by using the “Control t* fa-
ceility befora and after the run.The difference in
CRPU time is the simulation execution time fTor one
iteration of the "sieve' srodeaa i the 1,.15
number rande.f breakroint on the last instruction
evecuted("hkrt tir ool Oxceb00") halts the simulation
after rrodram execution.
$) Simulation Control! -*run" to start or ceontinue
-*"Control C* to stour
. Ce-tat Lo axit
7) Results! The simulated 846/12 talkes sbout 400 seconds
S to execute the "sieve® benchmack once.

ok oK ok oksokokekosioR siok kol okiokaiek ook siok ok siolololokolelolokek sokskoekolololekoioriooioeiok
¥ RESULTS OF THE FERFORMANCE COMFARISON BETWEEN VUAX 11-780s5X
X i8RCB612 AMD A SIMULATION OF THE iSRC841Z2(runmming on VAX X

X 11--780) USING A "C* PROGRAM AS & RENCHMARK("SIEVE®") X
PSR E P EFER TP RN SR LTI TSP EFES D TEESI SIS I IS I P EE TSR &SSP ¢
¥ X
X ME!Y "F* means rerformancesithe rerformance is inversely X
X srorortionsal to the time needed to execute the bench-X
X mark mrogram 8 corbain number of times on a certain X
¥ FTOCESSOTr. X
FRRERRE KRR ER A KRR R KR KR KRR R KRR KRR R RO KA MK KA KK IR KX
X X
pd FOUAXY ¢ F(8A12) § F(8412 simulstiom) X
X X
X carresronds arproximately to X
X X
X 273564000 ¢+ 190000 ¢ 1L X
X X
KKK KRR K KK KK R KKK KR OK K00 ROR 0K 3OR SRR O SOOI RO OR kX Rk X

$

.~ :

HOROR KRR RO OR K RRORR ROK K ROK KKOROKOR R ok 20K 30K KK K0K R KRR KR KOO Xk
¥ FERFORMANCE COMFARISON BETWEEN A VAX 11-780, ANX
X iSRCB6/12 AND A 86/12 SIMULATION USING THE X
¥ "SIEVE" RENCHMARK FROGRAM X
KRR OR K K ROROK OK OR HOROK SRR RO R XX RO RO R KRR KK KK X

@) Running “sieve® 100:000 times on the VAX 11-780
ER R R TR R TR ER TR TR R D o i o o o o o B o o o o

-~ nae "control L' to dget weesent CRU time
- Yryun vaxsieve"

- pheck CPU time adainsdifference to first
measurement is time srent hy VAX 11-780 ta
erxecute the "sieve' benchmark 1007000 times

~ the CPU time needed bw the VAX 11-780 for
1009000 sieve executions is roudhly 17 seconds

T A A T

B) Runrming "sieve" 100:000 times on an 18RCB4/1L2

For this test an i8RBCB46/12 eauipred with & "C°

Cross Comriler is necessarvs The testrun was bhere-
fore domne at Communications Research Centres Ottawas
in cooreration with Michel Savoie.The following re-
si1lt was obtained when running "sieve" 1007000 times
(using "long inteder® ture varisbhles in "sigve") !

211 seconds

Arm wes i e W bh s M e M0 ML Gt B aed e Mes bt em Gt e bead i Sem ot Med Bod W0 R e et host M0 S0l B S S P Gwd Gt et Gad et e R Sl man e Wee et

C) Running "sisve" once on 8 Simulasted i8BC84/12

1) Simulated Hardware! Intal 84/12(described in de-
tail in this rerort).

2) User Prodram! "sieve” 15 a well known benchmark
Frogram. The version to he run on the 86/12 simu-
lation{("mnmrcsieve") does Just one execution of
*sieva" in the number randge from L..19 using "lond
inteder" variabhles in order to det & reasonable
simulation time whamn running "sisve® using M.aPo.
The same =srodram can be ran on the VAX.

oy
]

APPENDIX E

Printouts from Running the Performance Testprogram on Simulated

Intel SBC Hardware

HmE Ve

$orun

mol
e

e

e

I dew

F bilet
hreaks
Fovun

MaxX 14
T

i S e
.

gimulation

(blst
ki

MAX 14

1
val

Welcome to

val
1G24
Qél
Oxol
Q0T o
MR

oint

108

tivw

1241

7,

o

oal

e

.

PR
PR &
LT
v B85
ol
¢
Ve
PSR

OuenhdO

rnumber 1

2
o

Val

halted bw

Q
=4

O etr00)

vaL

NemPo/VNME

blet 1

CrU=Q&id

¢

g1

7

/7

+

Cr &

i

\

ot

FF=980

&
=

10=-1

e

.

56

y
4

[
v

1O=15881

A

MEM=243

MEM=Z17

22

sme val
run val
Welcome to NomPosVMS

MemPod vol
T dor 24
b ociew Oxél
$ oder 0ol
$ des O0ufQ taw

I oblet tiv eal O ce it (0
nreakproint number 1
i

i

s 24 ae

a8

MAX 141246310 VAL CRU=00+29120.02 PE=10178 TAr1&RGT HEM-3TA
LR

cimulation halted by bhet 1

(el tiv wal Oxeia00)

&l
y g = PR T B e
MAX 16104123 VAL CRU=0@¢{353183.,72 FF-10208 10=1&6256 MEMSI7ZE

smr val
¢ prun val

3,
P
-

i g

e 22 s 2%
e de e e

==
s
=%

e um‘u

& Fr

Fobket tir eal Oxen®Q

brecslroint numboer 1

M run

MAxX 144125116 VAL CrU=0031%4142.01 FF=8035 10724147 MEM=3 08

LI . _

simulation halted bw blket 1

Chlrt vir oal Omehd0d

:"t

MAX 14134318 val CRU=011012

()
-
o

FF=6063 10724150 HEN-373

r
-
-

£ linmk vaxsieve
$ orun vaxsievoe
MAaX 10117413

¢ run vexsieve
100000 itevrations

(ncL?

10 rrimes.
L
HAX 10147
%

k)

LH

Forun vaxsieve
MAX 1¢i11B8:32

$ run vaxslieve
100QCe iterstions

T A
AR IR

(QcL

(new?

1G
e
Max 10118131

%

&%

&

$ run vaxsieve
MAX 10119107

$ orun vexsieve
10GO00 iterations

Frimnes.

{QCL?

(o)

10
%
Mix
%

Frimes.

(OCL)

CRU=00

CRU=Q00

CRU=00

CrU=QQ

CHUm=Qa

&
+ b

+.

.

e

-+

A
N e

-~
~0

s

o)
.,

o,
i~

a0
o)

23
ol

~.3

4

7
—t

FF= 6797

b
-1
I
S
~l:’
b
]

PFe \IIQC"Z

FFE=701

Ll

PE=7014

TO=10200

T0=10211

I0=10228

IQ=10228

et
il
-
r)
]
)

s

(=
W

ME M~

o

HEM-82

MEM—~82

- ',

APPENDIX F

Listing of the Topology File for the Simulation of the 86/12 SBC

I

! Tarology file for the simulation of an Intel

! 846/12 hoard featuring a¢n externzl wRworys &

! multibus interfacel(zrbiter) 2 dualrort RAMs

! 2 Fraodrammable Intovrurt Controller(FPIC) and a
! globzl memorv.These are 211 the elementca
|

I

|

]

|

rlanmned Lo

MemFe by this 86/12 simulation.

Max Streity

Memory mar

1

RaM{(seen

f

(rrivate)

{

Multibus?

-Global Memorui143346..,.1535%
~RAM(seen via Multibus)i153450...16383

he dmrlenentaed for a validation of

Intellitech Camada Litdy Maw 84

for the B&/12 1
by srocessor)i...1023
ROMI1024., 14335

14336, ..16383 i shared bul

M_rdr
Mbras(Llb) s
Mohnible(4)
Aley
Readuyr
Mmis

Int
Intas
loddens
L.tihey

It .ry
Recety

Testy

l.ock s

Gtatus(3)y

Tore:s tused for resding/writing the FPIC
Iowc:e trodicsters

loads7s tdemultirlexed 170 addresses A0shl
Ioadstls tused in FIC

U FIC sidnals

ITraQ:s
Traly
Trady
Trady
Trads
Irade.
Trad:
Ira7y

I Multibus signals

Mad(20)
Mda(lé)»
Mrdoe
Mutor
Maler
Xachks
Rusue
Brernms
Beror
Bhen?

FrQUEessor orl = "madBsoruesim®
time delay 230nsyd

connactions
I I/0 sigdnals used
i to access the FIC
I redgisters?

ioadg’? = Ioads?y
ioadsl = Toadsols
iore = Iovre:
iowe = Iowey
ale = filey
rol. = M.rdy
movl s = Mbuis s
m_hnioles M.hniixler
readw = Raaoduss
NMI = Mmiy
int = Ity

inta = ITntas
dern.. = l._.deny
bhe. = lL..bhesr
dt.r = R (0 3
reset = Rosatr
test = Tectr
lock = L.ock
stalus = Statusy

Frocessor rom = "maxBémemssim" §
time delawy 230ns 7§

connections ale = Alos
rd. = M..rdy
MG = Mbugs
~hnible= M.hminles
ready = Readyr
der.. = t.dderny
trhe.. o L.bhes
dt..r = Jibovry
statuas = Statuss

initial memlé TOPOmCOre ¥

L T O O O S O O

FTRCeGs0D Lerm = “teovrminalsobd" f
time delay 250ms #

connections ale = Aler

rd.. = Mords
mbhus = Mbhusy
mo.nrnifiles M_ohnibler
ready = Roaduyr
der.. v L.densy
nhe. = L..hher
dt..r = Dt...ry
status = Statuss

initial tty = whtty » §
I the VNG dosidmation of the
b working terminal ig *tti%s
I 2 raame oot accerbtod by the
! ecolodgistia logical name ac-
I certable to the ecal. has to

EEE

FTOCEES0T
time delay

connections

FroCceasor

time delaw

conmnections

e defimed in
(cfof wity

lodgin files
logususecom)

the
Lttt in

"multint86.0nd®s

-

Internal bus connections
mous = Mhus s
el = M.rds
m.hiniole= M. .hnibler
status = Staotussy
ale = Ale
reatly = Readus
ohe.. = L..bher
cder.. m lL.densy
dt.r = tory
Multibus connections
mad = Mady
mcla = Mday
mrde = Mrdcy
mwtc = Mutcs
iarc = Torce
iown = Iowc:
males = Maler
waoel wx Xack.
oGy = Rusys
e rn = Brrne
rro = Rrroy
ohen = Bheny

gmem =

290nNs

bhen

macl
mada

"“silobalmem.obJd® s

<

= Bhens
= Mady
= Mdes

male = Maley
Macl = Xaclk:
mrde = rdc:»
mut = Mutcs
T
initial me = oghleoresd
N

Frocessor ram = "drram.obdt 3

time delaw 2590ns 3§

conmections 1ICFY rorts
ale = fles
T = M.rdy
miLs = Mbhuse
m-hnibhle= K. .iniiles
ready = Reardys
dar.. = L.darny
hhe.. = L.bhey
dt.r = it _ry
astatus = Statucy
look = Lacks
IMultits rorts
then = Rheny
mad = Mans
mda = Hdar
male = Maler
Maok == Xachks
mrdoe = Mrdcs
mute = Hutcs

initial me =OPGmeore

{200 T T T T T T T T T T T T T A T T U T T T T T T T T T T O O O

Frocessar [A “relosobnd s

Lime delay 250ns

connections I1RQO = Ira0y
IRQL = Iraly
IRQ2 = Tra2y
IRG3 - = Iraeds
IRQA4 = Irad,
IRAS = Irady

TRQ&
TRQ?

tat abus

RI
WR
CS
Ao
INT
INTA

Iraby
Ira7:y

t

Mgy

Torcy
Towes
Toada7s
Ioadsly
Int:y
Intas

G400

il i

Frocessor

time delaw

connections

$

IRQO
IRGL
IRQ2
IRR3
IRQ4
TRQS
IRRS
TRQ7

= “intecrurt.obhdt

= TraQs
= Jrals
= Jraly
= Irads
o Tvrady
= Irady
= Trabdy
= Ire7sd

APPENDIX G

The "OTOL" Program

t

utoL

ManE:

N. Kesearch Group 0OTOL

otol ~Ubject File to l.out format tramsformation

BYHOrG LG

IPY

Thi

macnines

otol —machirel{d|dxrd input file (output filel
[~ainmitrecord 11 L-aimitrecord 21 ..

Lan:

s proaram transforms thne object file of @ several
to L.out format. The user has to specify a minimum

of two thinqs.

1)

)

P

The
ittg char

The
file of
wonrk .

The

machine name.
Imput object file.

machine should ke gpecified with orne of the follow-
acters.

for the MOTOROLA data file

for the INTEL INTELLEC 8/MIS data file..

for the TEKTRONIX HEXADECIMAL data file.

for the RCA COSMAC data file.

far the MUS Technoloaqy dats file.

for the SIGNETICE ARSOLUTE ORJECT data file.
for thne FALRCHILD FAIKRRUG data filkeé.

Put the debug option on. The program will output

the data record address ranqe to the standard output
in decimal value.

This is a modifier to ‘d’ optiom. ‘“dx’ will outputl
the addrese ramge in hexadecimal value.

irput file is the file contairning the object data
the machine. This 1is essential for the proqram to

output file is the output file which will have the

l.out format tramsformation. By default, a filename ‘l.out’

Wwill ke

sed.

4

HNNEN N. Kesearch fGroup OYTGL
Inet Recors

The proaram will fill up the specified ranae of memory
witih the initial value and will aive s warnina messaqe if
thrlg range ovirlaps any dats reccords. The Uesr o3n spacily
more Lvhan ond rnitrecord amd an more than aone wav.e The dinxt
reeoard can be zpecified as follows.

1y =aloweragdress-pilaneraddres
L oe-ak-mianeraddresstinlitvalue

Iry tias case the lower limit of the range 1e implicit.,

Trie proaram will £ill up loeation from the highest address

of the user orogram to the specified higheraddress limit

Wit ths 1nitvalue.

drmatvalues

3) —-3loweraddrese-Y$initvalue
Im this case the nigher limit of the range is implicit.
The proaram will £ill up location from the specified
loweraddrass to the lowest address of the user proqram
with the initvalue.

Ihe value can be specified inm octal, decimal or hex format.

For octal - precede the number with @
- decimzl - number is writtemn as such
nesx ~ precede the mumber with 0Ox

Ihe program scans the dnput f£ile according Lo the
machnine specifications and produces the l.out or the speca-
fred output file. The check_sum is checked arter every liv
or data record of the object file aives warnina message if
1ts not correct. The l.out file has only those locatian
filled wp which are specified in the obiject file. 30 the
qape can oceur in the memory and Runtime will give an error
MeE s 5398 if the User proaram tries Lo acoess arny of those
locations. Tne User can wuse the initrecord facility to over-
come Lhis problem.

AUTHOER,

Kauenik Sheth
Ciase Weestern Reserve University, Cleveland. Oh 44106.

November 23, 1983

R - T
us know 1 v

doe

LTOL N. Fesearcnh Group 0TOL

EXAMPLE

otol -m testi.l
The proaram will take the input file test.l ard scan throuan
it assuming the machine 1s MOTURULA. The output file is l.owut.

otol =-idx test.l t .core =ad-0MZ000Ed:
The proarusm will take tne 1npun file Lest. scan tnrouan it
assuming tog nachine s INTEL, output $ile s test.core. I
will fiLt: un tne memory locstion as follows.

) ~30_Z$O ~2400-500%}
.
1

) hianest location of proaram to OxIZ0U0 wuth 25 value.

) 0 to lowest location of program with O value.

) 400 to $00 with O value. It will overwrite the values in
thoce locations if program has writtem some thing to 1it.

The program will also output the memory map in the hex-range

value.

[N R

SEE aLsQ

mdump -- program to see the memory locations and synbols

sme -- proaram to edit the memorv location.

BUGS

Orly INTEL and MOTORULA program are checked at this

momernt . The User miaht nave to type “\$‘ in the case of

init receords if the operating system does not allow to pass
it iz to the proaram. [f you find any thing else letl

Novembier 23, 1983

P R

D)

APPENDIX H

The Program Used To Test the Simulated 8086 CPU

y

cat test .84

KK KK K KK ROK KK KK KK HOK H0K KR K OB R OR OO RR KRR R R KK KK
X X
* Tast eprogram for sindgle ster testing of X
X all the Intel B8084's instructions in va- X
X rious addressing modes.The frodgram i6 . d
X written in the as8086 assemblare used by X
X the Lantech Cross software tools. X
* "TEST.84" is transferced into “l.out” X
X format using the Lantech sssemblers X
S linkery loaoader and the "otol" srodram. X
¥ X
ERREEKAREONKRERARERKREKKKRAKARKAARAXAXKLKKARREKKK
X X
X Hax Streit: Intellitech Canada Ltd X
X June 1984 ¥
X X
3K oK K RO MK OROK KK K OR KK K R KKK KR OO R RO R ROk X

¥ constants

data8: «2QL 238

datelél ‘equ 11ddH

disr81e c @R 11H

digrlél (2au 0100H

filli vds 20

addrt « du 0

addrlé!l du 0

FOrt e @R 00c2H

tusel P EQRI 7

MR SR KK R OK KK K K KK ROKE K KK KRR KK R K OR RORORORONOE X
sedldl caedment code

seglél ends
KK KR R K K R KK K KK K R K K ROR R K KRR R K ROE R OR AR R RO

¥ two datasedmaents for shtring instruction

dateed! .sedment data
vorg 3072

al tdt\ i

e b 2

(i e 3

ofd 30 4

el afal 5

i Nt 6

= b 7

tasts

:!:'44 o

ts s] 8
it vdb 9
Jl s1a) 10
ot N tal i1
13 « 3 12
mi W« fa) 13
rd Nt 14
o N 1d] 153
I N 1al 16

datsed! .ends
FOK KK KR KRR OK K KRR KOk R ORKKOROR R R OR Kok R ok KX
tlestuedl soedment data

«OvE 3328

Q vidu 0001h
T « 3y 03020
st v 3w 05040
ti sy 07060
0y vy 030%h
vi NN 287
wi s du 287
¥4 N 287

destsest .onds
KKK KK KKK KK KK KK KO KK OR ROR KRR BOR KRR XA KRRk K
X This sedment combtainms 8ll the 8084 X%

¥ instructions X
LS R E TR ESREE S SEVEN SV EEC TR EEE TS S S F
toedl 'sedment code

X the ROM rovrtion of the 84712 wmemory
X starts a8t 1024dec
corg 1024

¥ every rossible wae of data shuffling
¥ is tested by MOV instructionsithie
X tests the correctness of 3ll redister
¥ and memory transfers

mos Lhxesildedi

mov L dilsrdi

mov Lorreildrdi

‘mov Chwrrdi do g

mov Cgilrdi

mov CebdJeadi

mov Lhreledi

moyv Lhxlrdi
mov digrB8Llbursilrdi
moy diarB8Lhx,dilsdi
moy digerBLlbrysiledi
moy disr8lnrsdilsdi
mov disrB8lsilrdi
may disrBLdilydi
mov diserBLhrlsrdi
Moy disr8lhxlsdi
mov disrlblbxrailsdi
mow disrlelinx,dil,di
moy disrléolbhrrgilsdi
mov disrlélhrsdilsdi
mov digrlélsilrdi
Moy disrloDdilsdi
mov diserlélbrlrdi
mov divsrléfhxlsdi
mov addrydi

FEKRKRK
moy dislibraild
moy gisDlherdil
moyv disLbhrysil
mov disLhrrdil
mov disLsil
mov dirNdil
mey diyLbhel
mov disLhxl
mav disdisrB8Llbxrsil]
mov dirdisr8Lnx,dil
moy disrdisrBLbrrgil
mov dirdisr8Lhrrdil
mov dirsdigr8lail
mov dirdisgr80dil
mov dirdigrBLby]
mov dirdigr8ibxl
mowv dirdisplélbxrgil
mowv dirdisrlobibvsdi]
Moy dirdisrlélbrrgil
mov dirdisrlélhrsdil
mov dirdigrléleil
mowv dirdigel6Udil
moy dirdisrléolbe]
mov dirdisrlélhn]
may diysaddr

LSS S S S S S LS EP P EFIEIETEFFIEIFTEEEFEFTTEFE TS ¢ &4
mov ChrrsilefdataB
mov Chxrdilds¥datal

- - 7 v — T
.) -) - - -

nov Ebrrsilrfdata8

mov Cherdil,Fdatad

mov Lsilsy¥datal

mav Cofidekdatad

moy Chelry¥datal

mov Cuxlr#datas

mov digrB8lbxrsilrfdatat

mov diarBlbxrdilskdatat

moy diarBlbrysilr¥datal

mowv disr8lbrrdilrykdata8

moy dicorg8lailrfdatal

mov digr8Ldilrkdata8

mnmov disr8lbrlry¥datal

mov disr8lhxlsEkdatat

moyv disrlélbxrsileddatal

mov disrlbélbMrdilrfdatas

moy disrlélhrrsilsfdatag

may digsrlélirydildlskdatag

mov disrlélsileddatat

mov disrléldil,fdatas

moy disrlébbrlsy¥datal

movy disrléelhxl &data8

mov addre¥datad
ARERREARKERKAKKEKKRKRKRKRKREK KKK RRKRERKERAREKK

mov Ebvrasilr¥datals

may ChaxrdildeFdatals

mov Lhrysileddatlaléd

mov Chrsdidskdatals

mov Esils¥datalé

mov Ldiledatals

mov Chrleddatals

mov Lhxls#datals

mov disr8lbxrysils¥datalé

mov disrBlivrydilsEdataléd

mov disrB8Lbrrgilricdatalé

mov disr8Lhrsdilkdntalé

Moy disrBlailsddatalé

mov disr8ldilEdatals

nov digrBlbrlrfdatals

MmOV disrluxlykdatalé

mov disrlélbrersildrfdatalé

mov disrléolburdildsEdataléd

mov disrlélhrysidrddatals

mov disrlélheydilds kdatals

mowv digrlélgils¥dataléd

mov disrlbdbdild,fdatals

mov digrlélbrlsdddatals

mov diarléfbxls#dataléd
mos addrsEdatalé
HERKKKKK
mov b‘Chxrsilr¥datad
mayv b/Chusydids$datat
mov h'Cbrrsilsidatat
mowv b/Lhrsdilrfdatas
mov . h'‘Csilr¥datad
moy b’LdilskdataB
Cmov b'Cbelrddatas
mayv b/ ChxlrEkrdatan
moyv b'disrBLlbxrsilsdatasd
moy h'disr8Lbxrdils¥#datan
moy b'disprBlbrysilr¥datab
maoyv nfdisr8lbrrsdil #datad
] mowv b’‘diseBlsilrkdatal
| moyv b/'disrBLdildrEFdatas
| mov b'diseBLbrlstdatas
mos hidisr8lbxlrkdatas
Moy b'displélbxrsilsddatan
mQoy nidisrlolbysdil-kdata8
mov b‘displélbrssilsddatat
mowv h/digrléelbrrdilskdatas
mov bdisrlélsilsfdatas.
may hdiarloldilrEdatas
mov b'disrlélbrlr¥dataB
mav h/disrlolbxlrkdata8
moyv b’addrry¥datat

KRKKKKKKEKRKKACOK KKK EKEKRKKRK KKK RIRA KKK K
arars s Jme dme3

aaa
aad

aam

aaa

adc [bwsailsddatalé
adc Chxysilrskdatat
ade Chvrsilryddatat
ade Chxrsildrfdatat
ade Chxrsiledi

ade alrFdataB

ade axs¥datalé

ade h'Chxrsilsidatat
Cade h'Chxrailrbn

ade thelhMrsild

ade disLbxrsil

acdd ChuesidrBdatals
add [bxrailr¥datas

2

. .

add Chursilr¥datal
add CbxrsilrfdataB
add Churailsdi

add als¥datat

add avrFdatals

add b/Chursils¥datald
add b/Lhxrailsbh

add bhelbiesil

and Chxreilr¥datalés
and Cbxrsily¥datag
and Chwrallrdi

and alr¥datal

and axr¥dataelsd

and b/Chussilyidastal
ard b/Lhxrsilsbh

and bhelbxesild

ard disrChxrasil

R R KK O o8 3 oK o 8K oK 8 S RROROROKOR SOROR R R K Ok ok
¥ test of rrocedure calls

call rrocl
calli Chyrsil
calll rroc3rsteed

: callli Chursil

K SRR Ok R o8 oK R KR SR ROKOK K 8RO ok R SRR RO ROk

cbuw '

cla

cld

eli

ome

3R ROROK R R ROR S R SR R R R R RO OR SR ROR OB R RO OK R K
¥ tardet rrocedures for calls

#vocl! mov axr¥1
ret

#roc2t mov arnr %2
ret ¥dataslé

#roc3dt mov arnr ¥3
retl

Frocdd mov axr ¥4
retl Fdataléd

O8O0 3RO of o808 o8 o R R S ROROR ORR RRRR ROR RO K
cms Cbxrsildrfdatalé
c Cbxrsilr¥datal
cme ChxrsidrkdataB
Cme Coxrsilrddatal
cme Chxrsilrdi
cme aly¥dataB
cme avskdatalé

k

cms
cme
cme
cime
res
cmrsh
e
cmrEsw
rerne
cmrah
rerne
cmEsw
cwed
dea
des
e
dec
tlec
dec
tec
dec
dec
dec
dec
dec
div
div
esce
hlt

idiv
idiv

imul

imul
inm
in
in
in
ing
inc
ine
inc
ince
ince
ine
ine
ime
ine

t‘Chxysile¥data8
b/Chxrssilybh
thelbxrsil
disLhur,sil

Chxesil
ax
b/Lbhxesil
o

e

e

di

[a P

=81

G
Cbxysil
t/Lhxrail
Chxrsil snot imerlemented

Cohxesild
h/Chxrsil
Chuesil
D/lbxrsil
alydy
alsEtrort
Wy i (use inw)
axr¥rort

(use inb)

-

Chxesgil
an
t/Cboxesild
e

cx

di

o

si

ine G

¥ software interrurts
int 3 yuse int3d
int ture
l int3
into
inw
I iret
KKK K OK KK KK KK KK K K XK KK KRR KK K KK K K 80Kk 0K KK KOk KRR ookl
¥ test for conditional control transfer instructions
l 11 cmr axrbx
Ja 12
132 cme Xy
I Jae 14
15¢ cme axrbhn
R Jb 16
l 1713 cme Xy DK
Jhe 18
191 cme My b
I Je 110
1113 cme axrbx
| dexs 1i2
1133 cme axrbhig
l Je 114
1154 cme MrhX
com: Jg 114
I 1173 cme 8y N
Jde 118
119 cmr axyhM
bl 120
I 1213 cme axryih
G Jle 122
o 1338 omse axr by
I Jdria 124
‘ l 12¢ cme axshx
Jnae 13
143 cmE axriby
Jhb 15
I 1a¢ cme axebin
Jnbe 17
182 cme a3y b
: I JGhe 19
' 110¢ Coome Ry b
Jne 111

7

112 cme axybu
Jrig 113
114 ome axrby
Jnige 115
116 omE axybx
Jrl 117
118¢ cme axr b
Jrile 119
120 Ch axy b
Jdro 121
12214 oW axybx
Jne 133
1243 CmE axy by
Jdris 124
12461% o axybu
Jnz 124
128 Cme axrbu
Jo 128
1303 CmE any by
Je 130
132: Cclur arxybx
Jre 132
1341¢ cm axsbu
Jro 136
1361 ome axsbu
Js 136
1381 ocme axrby
JE 138

AOKOKOKOK KK KK KK K KK KK K KRR K KK 308 KKK R OK K XK R EOR K XOR AR AR K XX
X unconditional econtrol transfer instructions

Jue 0l Js Jmp 2
Jdmeld
R Jme Jme 0

Jdmrd

JdmE arors
Jdmr 3l

Jme i Lbhuysil
Jmea

Jdmel datalérdatald
Jmrd

Jmeli Lbhwrasil

RERKKKKKAKARRKARCRRKK KK KK RKKKRKKARXKK

lahf
1ds dirlbxrsil

I ’

lea disDbhxreil
les disLbxrsil
lochk

lodsh

lodesw

EEEREREEEER KRR R KRR KRR KR AR RA R R R KKK KRR KRR
¥ loor instructions

lol loor lol

o2t cimr 3Mrbn
loore lo2

lo3? iy axrbx
loorne 103

lo4: cmy axMrb
© loornz lo4

loGd cmee axyby
loorz loS

FRRRRRERFR KRR KRR R R R KR KRR R KRR ORS00 Y

mov foxssilryfdatals
mov [hyssily¥dataB
mov Chyr,ailedi

mov D/’asddrléyal
mov addrlbrax

mov ahs¥datal

mov alyddatag

mov alyaddrié

mov axykdataslé

mov axraddrls

mov bh’'Lbhxrsilsdata8
nmov D/Cbxessilrbh
mov hths¥datas

mov bhyLbxesil

mov blryFdatad

mowv bes¥dataléd

mov husddatals

nov chrddatal

mov cls#datag

moy cr¥dataléd

mov disFdatalé

mov diyLbuesil

mov dl,¥#dataB

mov dxr¥datalé

moyv sir¥datalsé

mow seryddatals
movsh

nmovssd
moves s
MOVEW
mul
mul
re s
ned
MO
not
not
or

or

or

or

ar

or

or

or

or
out
out
out
out
outh
outuw
PO
FORF
O F
PO
PO
FOF
FOR
FOR
PO
#orf
FORSH
PO s o
Qe of
Fush
FuUsh

Fush
Fiish
UsH
Fush
Fush
Fush
Push

Cbhursildrss
sselbyrsild

Lbhxesil
b/'Lhwrsil
Cbxysil
b/Lhiysil

Lbxrsil
h/Lbirsil

Lhxssilryddataléd
Lhwesilrfdatag

Lhxreiledi

alsfdatal

axr¥datals
h'Lbmrsilerfdata8
b/Cbrysildsbh

theLhavrsaild
disLbxrsil

Mral suse outb
dxyan fuse outw
alskrort

wrdrort

Cbhxesil
3
b
oM
M
di
M

=81

-3

oo
Ry

(L = N = N v
X owe XX

T -

.
4

ruasnt
Fushay
rushsed
Pushad
rushad
rcl
rel
rcly
roly
rey
roee
rery
rerv
rer
rere
reFne
reRPNE
rery
ret
ret
retl
retl
rol
rol
rolv
roly
ror
ror
rory
rory
gsanhf
s870
5871
5BV
sarv
sbh
asbb
soh
shbh

sbb
sbh
shb
st
shib
sbhh
rege
scash

cs
ds

eyg

=21
Chxrsil
b/Lbresil
Lhastrsil
b/'Chxysil
Clavrsil
bChwrsil
Chaxssil
b/Chxsail

tdatalé

tdatalsé
Chxsil
b'Chxesil
Chastrsil
b'Lhxysil
fbhwsasild
b/Chxysil
Lhxesill
b'Chxesll

Chrsil
b'Chxrsil]
Chursil
b'Chxrsil
Chwrsilsddataléd
ChxrsilrskdataB

Lhwrsilrdaatat

CouvrssilrkdataB

als¥dataB

are bdatalé
b'Cbxrsilrddatad
bfChrrsailsbh
bhelbirail
disChxessil

R

rere
SCBSW
rerne
scash
rerne
GCBSW
Gedcs
sedgds

seges

sedss
shl
shl
shlv
shlv
ashr
shr
Hshry
shry
ato
std
sti
rere
stosb
refe
stosw
resne
stosh
rerne
stosw
sih
sub
sub
suh
sub
sutbh
S
sub
sib
sith
St
test
test
test
test
test
test
usit
wehd

Chiesil
bh'’Chyrgil
Lbhxrsil
b/’Chursil
Chirsil
bh/Caxessild
LChxersil
b/Chxesil

Chessilsddataléd
Ebhxrsils fdatsl
Chxrsilr#datat
Chrrsileddatal
Ebhxssildsdi
als%dats8
werkdatalé
h'CixxsrsidsEdatasl
bh'CLbxersidrbh
bheLbhxrsil
disLhxesil
Chxrsildeddataléd
Chuesilrdi
alrddatat
axs¥datalé
b/’CLhxryasilr¥datad
bLhxrsilsbh

axran

tsed?

Mohd
Kehd
wohg

woehd
Hehd
wohd
wehis
wohd
Hehd
xlat
®or
MO
Ko
war
xar
®ar
Xorp
wor
HOTDP
sends

seJdect
eerd

axrdi
axydx
axesil
HYER-$
bhelbMesil
disChxrsil

Chursils¥dataléd
Fbhxessilridotal8
Chuysilsdi
alsFkdata8
axr¥datals
b'Lhxssileddatalg
b'Lhxrsildebh
bhrsChusrsil
divLhXesil

APPENDIX H

2) List of "Bugs" fixed in the initial 8086 CPU Description

'*#*#**#***X**xxk
Liast of "Rusgg®

|
I
1
!
|
1
|
]
{
!
!
]
|
!
]
|
!
]
!
!
]
!
]
]
]
]
!
]
!
!
]
1
!
!
!
!
!
!
]
!
!
!
!
|
!
|
!

by M.

Streit!
12

2

o4
~

4)

&)

7)

8)

)

100

1)

RERKRRKRRAKR x* ARRK KKK RRKRAR KRR ARRRRAKX
in the Trive vergsion of the 8086 fi

\
|
\
introduction of the word/bhute case for !
the LIA and STA instructions !
active hish lodic for the readuy sidnal !
(wait if ready = hidgh) because two mo- |
dulas ues this inrut signal(N.oPe "ORs" !
all rorts writing to a signal) !
a delay of 2 units introduced bhetuwaen !
the two memore accesses for read/write !
of 2 word from/to an odd address to s3llow |
erivate or dlabal memory to finish itg !
firast read/write oreration before the sub-|
seauent one starts !
g wmissing *rmexti® after the 10 = Duteuis !
statement in the “"do.outrut* sroacedure !
disanled a3ll outrut orerations and had to |
e added !
nffsots in Jumers were 1 unit too shovrt bhe-!
cause imrrvorer Jumr execution(is=iptdetl) |
whers the last ir dincrementation took sla-)
ce in the dget® srocedure but didn’t affect!
the Jumrister by steor oxecution of the !
Jumplirtemprdet@inextiir=iptirteonrinexts) |
row rorform a Jdume using the rrorer offset!
The linking loader srodgdram also had to be !
addusted(ane 180841.1i in llef dirzectory). |
the effective address calcoculstion was !
wrongly encaoded in the case of Lhresilzdis!
b was mixed ur with be(in case rom = 02)
the number Fhex=13dec was wrondly rerre- !

sented au Ox1S=1Ghex(in ISP/)=21dec in ¥
the DAN and AAAC2 timeg) 1nubruct1on" A
in all add- or subtract coarry ins tructxcn«'
the carry fladg(ef) was added without ex- |

sion toa a word and was therefare misin- !
terrroted s ~1sef had to be rerlaced by !
(cf ext 16) in the AHC;AIF:SRC;SAI;ADCI; !
and S8R incstructions |
imrrorer use of detQ by the "detimd.sw" [
rrocedure in the AULCT instruction fiwed bw)
arranging the cases of Lird?2i8> carrectly !
docoding and srocedure for the ADNC !
reg/mems reg instruction had to be added)
(o) = 1r<1Si9> = 0l0nctal)isame for AND |
red/mems reg (orl = Q) !
similar chandes as on AUR/ZARNC had to he !

B s Tttt T —— I .

rerformed on SUEB/SEBRB(subtract with bor- !
TOW) !
12) dincorrect cuotient randge criterion(axi(ié !
hit) cannot be dreater than FFFFh) rerla- |
ced in the "div*® rrocedures divisor read |
porrected to reflect the word/bute rossi- |
bilitie for unsigned divigion !
13) bug in "idiv®"ired32<31t16r = dxi (2nd not !
DR I R !
14) goftware interrurt tured a3lvo imrlemented !
in "idiv* and "div* for attemrts to divi- !
de by zero !
1%) the two instructions "mul* and "div® eux- !
roct unsidned orerandsias sidn extension !
oecurs when bute orerands are aceunired |
this sroblem had to be fived bw avoiding |
bete orersnd aceuicition !
14) bute- and word-orerand case were not cor- |
rectly treated in *mul” and "imul® !
17) the mem/reg destination case had to be ad-!
ded in the ANDy OR and XOR instructions [
18) the imrlicite count register for all the !
shifts znd rotates is cl{=ex<lobytel) and |
not ! !
19) rotating through carry had to be fixed in |
211 instruections using it !
20) all shifts and rotates only took care of !
word orerationsithe bute case had to be !
introduced !
21) inadoouate size variahle(red3y 2 bit wide !
instead of 3) sroilt rarameter rassing !
in the PUSHS imstructionsiextension of |
red? to 3 fixed the sroblem !
27 imerrorer acauisition of the offset orerand!
irn the LES instruction fixed !
2%) the "storersd" rrocedure improrerly stored!
signextended butes instead of butes onluy |
into the redisterssthereby affectbing also
the one half of a 16 bit redgister that
should remain unaffected by a3 hute trans-
fer
24) WALT cohandged from "if TEST inactive" to !
*while TEST inactive's wait.ff is reset as!
snon 3% test becomes active(see 8086 Hard-!
ware Manuals rd.2-18) [
2%) the orcode for the *SCAS" dinstruction was. !
not rut into the decoding table and there-!
fore not decoded !

b
H

300

31D

34)

36)

incrementing and decrementing of the data-!
indexes in the string instructions was in-|
ase a8 one bit constant{uwrdl) is interrreted!
as 0 or -1 ba JSP‘jextension bo word sise !
solves the rroblem !
end of rerstition in case aof o = 0 had to!
be added in the SCAS and CHFS instructiongs!
for corrvect execution of rereated string |
instructions the "zeroflad® bit of the re-!
raagt rrefixes had to be stored in a s#lobal!
varisghle(rerzf)s at the same this srevents!

the rereat erefives from affecting the !
flads |
only the lower bute of am a4lu result !

should affect the raritu fladg(efd)ithe tre-!
atment of word results in the alu rrocedu-!
had to be chanded to talke parity onluy of !

lohute of the result !
the rarity flad wags stuchk at 1% the reason!
was bthat the srrodofined NemPe srocoedure f

*rarituy" aluwaugs rroduced zeroes as outruti!
the rroblem was fived by intreducing an !
internzl rarity rrocedure called "par® !
the overflow flad uwas not correctluy set !
for subtractions(Exi-3 - (-3) = 0 produ- !
ced an overflow)s a case.bu case treatment!
for over flows had to be introduced for !
addition and subtraction !
the overflow determination wrondgly used !
carry it instead of the sidrn bhit in the !
bute case of the alu rroacedure !
JUR Cintrasedgment directylong and short) !
Jumred one bute too far because the Jumr !
in these instructions was edecuted hefore |
the ir was incressed by the offset acoui-~ |
sition(dgesl, s2tQ.2) |
the fifo.emrty flod was not set in the JHME!
(ashort) instructioniso the instruction
cuene didn’t get cleared after 3 short !
Jiume and wrong instructions dot executed !
the indirect control transfer inctructions!
(CASTCISTIy AT, JIT) were amitted in the .
decoding tables a3 their decoding would !
have coincided wbth the one of FUSH the !
latter’s decodindg had to be changeds toa !}
the rhusical address calculation(b aluy® '
rrocedure) did not revform the 4 hit rosi-|
tion left shift(= X14) of the sedment hasel

.

P Tem s cmm s imw e s e WS i e ST CEm ceim SA tum fa S fam S s PR Smm W tmm me S aeme e PR sum smem saem cmm smm S saww S

37)

382

292

40)

41)

43)

44)

value hefore its addition to the offset !
ntra sedment calls/returns wrongly sushed!
ir and cosdinsteasd of only ir) !
211 CaLl and RET instructions were incor- |
rect because imrrorer sequence of ascidgn- !
ments led to faulty control transfoers |
the ture conostant for softuware interrvurts |
was only defined as 8 3 bit constanty thus!
limiting software interrurt tures to 035 !
softint was redefined to a3 byte size allo-!
for the 255 tures of the 8086 to be execu—!
ted !
next' statements were added to the INTER-!
TERRUFT rracedure to ensure that the flads)
are bheing rushed on the stack before any !
flads are altered ’ !
if the br redister is used as 3 hasse for !
casloulation of the effective address the !
stack sedmnent is referenced unless ann ov—- |
arride rrefix srecifies another sedment }
gistersthic settindg was introduced into !
the *detEA" rrocodure !
variables (besides stringssbr) using the !
EA 89 an offset use the data sedwment un- |
less an override sedment grecifies anolther!
sagmenti thic override rossibilituy was !
also introduced into “dgetEa* |
the *mem.read® and "mem.uwrite” rrocedures |
were only using the first 64 kRutes of the!l
addross srace hecause m-hnible(bite 192116 !
of the 20 bit address) was set to ¢ a3l the!
bedinning of hoth eroceduresim.ohnible is !
now set to addressd<i?ilées !
the BRTU cueug filling fetech orgrations did!
interfere with the reading of the tures !
of axternal inpterrurtsd 3 flad{intair =
interrurt ackrnowledde in srrodrees) had to
be sat ur to rravent the RIU from corruas-
ting the doata csent by the PIC as well as
the corresronding *while(intair) delou®

in the BIU rrocedures

the FILL.FIFOQ RIU-rrocedurse used the co
redgister to fill two butes into the instr-
uetion queued so a8 chansge of og would im-
medistely affect the FILL.FIFO procedure
causing readint from wrond addresens as

as the corresronding ir(stored dlobally

in b.ir) would ot bhe affected by the EU

Sem ram s cam rwe cmm s smm s M tam PR R st tem e tmm S s M CEE e fea SmE cmm cems AR st tem fam tmm fmm s fmm e tmm temm e sam fam S tmm omm Smm smm e

46)

47)

48)

49)

chandgess storing the initisl cs inm a8 an- |
nther dlohal variabhlesb.csrasolves the !
the rroblem !
the CRI(caomrars immediate) instruction !
gsed wrd3(=ird?2x) instead of wrdi{(=ie<8x) |
to determine word or bute orarations bthisg |
bug harrenced only after several executions!
aof the imstruction and caused the MenFo [
sustem to blow ur and rass control back ta!
the orerating susten(VM8) setting am AC- !
CCESS VIOLATION error mosuastes N.mFc also |
didr’t bdlow ur in the comrare instructiorn !
itself so that this kind of bud is very !
difficult to traces this bug was found by |
vardying the inrut assenbler srodgram in or-!
der Lo determine that csused the rrobleam !
the sedment ardument in the "detmem® rro- |
cadurs was reduced to a two kit sixed(from !
unarrrorriate WORD sizesas well the seg- |
ment srdument was =eroextendsd to three !
it size befoare being assidgned to the 3bit!
ER.sed variahle to rrevent sutomatic sidn |
by the sustem{(therebuy ascsidgning foulty [
sedmant values to ER.sed)s this sidn ox- !
tension was also introduced in "storemem® !
tihe mewoere read calls in the "INTERRURT® !
srocedure vesed the arvdument *ture X 4" to |
read the intervurt rointersi but ture is !
defined 85 a bute and therefore sidgn ex- !
tended by the "INTERRUPT® srocedure which !
exrects a word sized ardumentithis onlu !
created 3 rroblem for intarrurt tures hii— |
gher than 31 tecause only at ture = 32 the!
rroduct 4A%X32=128 stoarts having a2 1 in the |
8th bhits which is interereted as the sign |
of a2 mnedgative nugber by the *TMNTERRUFT® !
rrocedure which then degstrus the the coapr- |
rect tyra value by signextending 14 to 16 1
tits.(rnon sidn) extension of the interrurt!
ture bhoefore it is used by "IMNTERRUFPT" <sol-!
ves the sroblem !
The *CHFY instruction only worked in the !
CHMP redsred/mem” directionithe necessary |
code to do "CHUP rod/memsrad” wss added in !
the arithmetic instruction’s field under |
casnes 034 and 035.Like in the cogse of !
*CRI"(see 44) N.mFce aborted the runtime !
environment catastrarnically,.The last i |

¢
3
L

1)

struction obsevrved before the shovrt ccoue-!
raed wzs the one executed two instructions |
tefore the faulty instructiony indicating !
a dolay hetween axecution inside NenPoe ood!
disrlay of the executed instruction.So if |
g catastrorhical siort occurs one sluwaus !
to csusrect the cadse in an instruction !
slightly REFORE the last one executed. !
The "INCR" and "DRECR" dinstructions did not!
urdate the flasgs whern incrementing/decea- |
mentindg redisters.This wae fided by using !
the *alu® rrocedure for incrvenanting/dec- |
rementing rather than Just addindg/subtrsc-
timsg 1. |
The carry in the case of subtractions(cal-!
lad "borrow) was imrrvorerly set.The bovvow!
is the inverted carvry excert in the case |
of a3 subtraction of 2evo from some romaber |

where the borrowr 8o well as the carrys !
is eaual to O0.The carecy fTor subtraction isl
determined in the same wiay as the carry !

for addition but one adds the 2's comrle- |
of the number to bhe gsublracted.The carry !
is then inverted suesrt in the case of the!
subtrahend beind zevorswhere carry=barrows0!
The "SHL* and "SAL" instructions did not !
set the carry with the bits shifted out !
laftwards.The carry Tlad now containg the |
last bit shifted leftwards out of 8 redgis-!
ter. !
an unwanted sidn extension in the "MUL® !
insteuction corrurted rosults for nodative!
numbers.Zera extension of multirlicand and!
multisrlicator bto result sive rrior to bhe |
multirlication solved the rroblem. !
The conditional Jume imstructions "JGT !
CJLE"» " JLY s "JNL® did rmot take the overflow!
flag into sccount for their dume condibi- |
ons.Conditions were corvected according tol
harduare manusl for the Intal 8084, !

*7?*k*******')}'ﬁ’)!’)H’>§')}'k*’*kkkkkkkkkk**kkkkkkkkkkkkkk)‘(kkkkk*** KXKN !

APPENDIX I

Listings of the I/0 Assembly Routines used in the Validation Simulation

("PRINT.S", "IN.S")

LA

. o

sruUblic -1t
—imt voegment code
c3SGUME car_insdsigscommon

rush e
FuUsh b
Fush C

Xstack? :

(ar+B8)! oldces

(srtbd)! oldie

(srt+4)! br

(art2)t b

.,
SF-s OX

2€ K HK € %

mov hhrrsr ihave by roint to
shottom of stachk

RRHHOKRK KA KR KKK EKREXEKKKKKOCKKE XK KRR KXKCKKKK
X INFUT ROUTINE FOR THE VALIDATION SIMULATION X
ARKKEKK KK AORREAKEKKEKEKECKKEREREXAKREKRKXIRE KKK %

mov axeEl0 Furites "Enter anstle

out aMs %0 sldedroes,? digitas)t®

mov axr¥13

out axs %0

mov axr b9

out axsr ¥0

mov axy¥110

out axr ¥0

mov avr¥11lé

out vy ¥0

mov ax+¥$101

out axr ¥0

moyv awedlla

out a0

mov axns ¥32

out ans %0

mov axr ¥97

out ame &0

mov 3y ¥110

out axr¥0

mov axy¥103

out axr¥0

mov axy %108

out axr ¥0

_

kd

mov axs¥101
out REE AV
mov axr$40
out HIEE 14)
mov axsr 100
out axr %0
mov wer$101
out 3y %0
mov e $1032
out a1 %0
mov axy¥114
out a1 ¥0
mov we$101
out LER V)
mov axs$101
out axr %0
movy axsF115
out RYEE 14]
mov axrdas
out axr ¥0
mov ar 50
out a3y X0
mov w32
out HEEE 3¢
mov axr %100
out PR V)
mowv e k100
out axsr %0
mov wrd103
out w0
mov 3y 105
out e §0
mov axr¥116
out axr F0
nov e d115
out axs %0
mowv EE N
out iy 10
mov axr 58
out a1y %0
suih Wy 3R
NONLUM? in R 1V sthe first two numbers in a
' iotring of characters are te-
fkhen to he the ineut "andle®
and awr%7fh jstriprg rarity it off
cms axs ¥57 irrevents inrut of anuthing

AR E . R

Jdg NONUM ibut rumbhers 0-9
cme axr¥48
Jh MONUM
ot arnr %0
=YhTa) amr k48
mov brrax
=S ¥al axran
mov ars¥10
mul b
mov bir 3
sub aKrax
NONU§ in axr ¥0
and axs¥7fh fetrisrs sarity bit off
CmE axr¥57 seravents inrut of anubthing
Jd NONU sttt numbers 0-9
Cmr a7 %48
N s NONU
out axr ¥0
sub axs¥48
add 33y D Fax now containg "andlet
fineut
mov cdrs ¥0 fthe function returm
sdoubleword in the disax
sthe higher ward(in d) is
ENDG FOF oM
FOF b
FOF e
retl
RO AR KRR R X K0K KR XK KK RO K RO OR R KOK K OK ok & KO OOR N K

¥ THIS SURROUTINE FRINTS A WORD(THE VALUE IN X
¥ THE AX REGISTER) IN HEX ON THE SCREEN OF X
¥ THE WORKIMNG TERMIMALIIT IS IMVOKED TWICE TOx
¥ HANDLE 32 RIT VARIABLES$4 RIT GROUFS OF THEX
¥ NUMRER TO RE DISPLAYED ARE COMVERTED TO THEX
¥ CORRESFONDNING ASCII CODE X
KRR HORNOR KK KRR KRR KKK KKK KRR KOO R KR KKK KK

asciert !
mov Oxyax fox and sy redisters
mov ahrohh jare used
shr an stransform higdghest nibble
shve ah sof ax to hex(in ASCII)

returns a
registers

"

hexl!
nextll

3T
1

o~

pd
o+ 13

,.v
I3 e
-

hexdi
nextd

it

shr
shr
and
cme
Jg

add
Jdme

mov
out

mov
and
cmE
Je

add
JmE

~add

mov
out

mov
ghr
shr
ahr
shr
andg
Cme
e
add
Jmye
Caddg
out

mov
andg
Cm
Jg

add
Jue

add
out

ret

cends

+end

ah

ah

ahs £0fh
ahr %9
hew

at 7300
neM

ansEk37h

alsah

3110 soutrut highest nibble on
Fon sorean

zhroh

ahs¥0fh

ahs ¥9

hexl

shs %300

rnextl

ahrE37h

alrah

als %0 soutrut second hidghest
iniobhle on soreen

alscel :

al

al

al

al

als%0fh

2l %9

hex?

als%30h

rnext?

sl %370

als %0 soutrut third highest
sinhle orn soreen

alsel
als¥0fh
als39
hex
als#30h
nextd
al s 2370
al»¥0 soutrut least sidnificant
inihihle on scoreen

~Frintt '
Xstack?
X (srt+24) ¢
X (ar+22) 1
X (art20) 3
X (artli8) ¢
X (art+libdd
X (sr+14)t
X (sp+i2)1
X (sr+10) ¢
X (s8¢
X (artb)t
X (artadl
X (art2)
X G-
mov
mov
out
mov
out
movy
cal
mov
out
moy
cal
moy
cal
moy
out
moy
cal
moy
cal

+rublic ~rrint
sedment code

s BSHIIME (4

=2
Ry

FUsh
LIS h
Fsh

o

nw

umk. lo
ik lo
ok lo
bl hi
bk lo
ak hi
zk lo
t lo
oldes
aldie
e
ax
oK

teyar

a3lv¥13
als¥0
ale k10
als$0

axerlOLbe]
1 ascirrt
axy ¥32

as s kQ

avsl14Llbe]
1 ascirrt

axrl12lbel
1 ascirrt

aMy¥32

HITER 1)

avs18Lbr]
ascirrt
avriélbrl
gucirrt

1

1

gi_rrintsdst$connon

thave br roint to
ihottam of stack

jearriage return

Fling feed

frrint "t (woard)

sprint "ak"(doubilecword)

frrint *bhk® Gdoubleworad)

mov axy ¥32
out ax s %0
mov axy20Lbrl srrint "ok " (uward)
call ageirrt
mov axy$32
out axr¥0
mov a3y 22Cbrl $erint "uwilk"(word)
call ascirrt
mov axy¥32
out gy %0
movy axy24Lhel ferinttumk® (word)
call ascirrt
mov a3y ¥32
out axy %0
mov aly¥#13 scarriade return
out alr¥0
mov al+¥10 tline feed
out al %0
ENIt PO oK
RO ax
FOF b
retl

FOR KKK KRR KR KKK KK ROR KRR R HOK RO OKRRORR KRR R KA KRR AR K

FH N K K

THIS SURROUTINE FRINTS A WORD(THE VALUE IN X
THE AX REGISTER) IN HEX ON THE SCREEN OF X
THE WORKIMNG TERMIMALFIT IS5 IMVORKED TWICE TOX
HANDLE 32 BIT VARIAELES$:4 RIT GROUFS OF THEX
NUMBER TO RE DISFLAYED ARE COMVERTEU TO THEX

CORRESFONIIING ASCII COIDE X
KEEKKEKRKEKRERK KR A RRAKKERRKRLRKA KRR LHRRKK
ascirrt!

mov Ooxrar fox and ax redisters

mov ahs0h jave used

shr ah ttransform hidghest nibble
shr ah sof ax to hex(in ASCID
shr ah

shr ah

and ahr¥0fh

hest
et ?

el
nextls

hexd!
nextd:

~Erintt

$

Cmr
Jg
add
Jme
add
mov
out

mov
and
cmg
Jg

add
dmg

add

mov
ot

mov
shir
ahr
shir
snr
and
omg
Jdg

add
dme
add
out

mowv
and
cmy
Jg
add
Jme
add
out

ret

sands
vend

ahs %9

e

ahsE30h

next
ah:2370

alsah

2ly#0 souterut hidghest nibble an

FOIT Soreen

zhroh

ahr0fh

ahr ¥9

hexl

a7 #3000

nextl

ahsE37h
alyran
al+ %0 foutrut second hidghesot
snibblae on sereen

alscl

al

al

al

al

als¥$0fh

als %9

hex?

al £30h

next2

als%37h

alr %0 sontrut third hidghent

rmibile on screen

alsol
aly#0fh
al s %9
hexd
als,#30h
nextd
als %370
als¥0 joutrut least sidgnificant
fnibhle on screen

intellitech
Intellitech Canada 1td
352 Maclaen Street,

' Ottowa, Ontono

| K2POM6

| 6I3235-9126

