
/ VALIDATION OF N.mPc /N. 2

MICROPROCESSOR SIMULATION/

INT-84-38

e
91 	1 C655
C66692
1984

/
MaxLStreiti

Approved By: Dr. S.A. Mahmoud
Dr. C. Laferriere

Prepared By:

•COMIVIRICATIOUS CARADA---"

Mg/1.0 mos

LIBRARY — BIBLIOUntil

AVALIDATION OF N.mPc/N.2

MICROPROCESSOR SIMULATION///

i---T-M17a;MG---P Lidr, arv Que,,, n 	û

SEPTEMBER 1984
gL

VA J L: 2 0 1998
Industrie canada

E3ibliothëque
Queen

INTELLITECH CANADA LIMITED

352 MacLaren Street
Ottawa, Ontario

K2P 0M6

Department of Communications

DOC CONTRACTOR REPORT DOC-CR-SP — 84 - 04 1

II+ Government Gouvernement
of Canada 	du Canada

•

1

DEPARTMENT OF COMMUNICATIONS - OTTAWA - CANADA

SPACE PROGRAM

TITLE: Validation of N.mPc/N.2 Microprocessor Simulation

AUTHOR(S): Max Streit
Intellitech Canada Ltd.
352 MacLaren St.
Ottawa, Ontario

ISSUED BY CONTRACTOR AS REPORT NO: INT-84-38

PREPARED BY: Max Streit

DEPARTMENT OF SUPPLY AND SERVICES CONTRACT NO: OER 83-05075

DOC SCIENTIFIC AUTHORITY: Michel Savoie
Communications Research Centre
Ottawa, Ontario

CLASSIFICATION: Unclassified

This report presents the views of the author(s). Publication
of this report does not constitute DOC approval of the reports
findings or conclusions. This report is available outside the
department by special arrangement.

DATE: SEPTEMBER 1984

Summary

This document describes the validation of a hardware simulation

facility and a microprocessor software development environment. The

hardware simulation facility is provided by the CAE tool N.mPc whereas

the software development environment is provided by a commercial cross

software development package.

The validation scenario first involves the development of target

microprocessor software in a high level language. For comparison the

target software is then cross compiled and run on a simulation of the

target hardware (itself running on the VAX 11-780), the actual target

hardware and directly on the VAX 11-780.

The target software used is a simple spacecraft attitude control

algorithm and the target hardware is an Intel 8086 based single board

computer. The cross software development environment, the target

software, and the target hardware simulation are described. This report

is part of the work done under DSS contract OER 83-05075 for the

Communications Research Centre of the Department of Communications,

Government of Canada.

TABLE OF CONTENTS

1. INTRODUCTION 	
1.1. Background 	 1
1.2. Overview of N.mPc 	 2
1.3. Report Structure 	 3
1.4. Related Documentation 	 5

2. VALIDATION SCENARIO 	 6

3. DESCRIPTION OF THE INTEL 86/12 SBC SIMULATION 	 9
3.1. The Intel 8086 CPU 	 12
3.2. The ROM 	 15
3.3. The Multibus Interface 	 17
3.4. The Global Memory 	 18
3.5. The Dualport RAM 	 20
3.6. The Programmable Interrupt Controller (PIC) 	 20
3.7. The IO Facility 	 25
3.8. The Simulated iSBC 86/12 Single Board Computer 	 27

4. TEST SOFTWARE DEVELOPMENT FOR SIMULATED AND ACTUAL HARDWARE 	31
4.1. The Enhanced Software Development Environment for 8086

Based N.mPc Simulations. 	 31
4.1.1. The "C"-Crosscompiler 	 31
4.1.2. The Cross Assembler/Linker/Loader 	 36
4.1.3. The "OTOL" Program 	 38
4.1.4. Command Files For The Cross Software Tools 	40

4.2. Software Development for an actual Intel SBC 	 41
4.3. Description of the Target Software for the Validation 	41

5. VALIDATION/TEST PROCEDURES 	 44

6. COMPARISON OF SIMULATION AND ACTUAL RESULTS 	 48

6.1. Interpretation of the Validation Results 	 48
6.2. Performance of Simulated and Real Hardware 	 53

7. SUMMARY AND CONCLUSIONS 	 56

REFERENCES 	 61

1

APPENDIX B:

APPENDIX C:

APPENDIX D:

APPENDIX E:

APPENDIX F:

APPENDIX G:

APPENDIX H:

APPENDIX A: Complete Directory of Intel :SBC 86/12 Files

B.1 Mathematical Basics of the "Simple Attitude Control
Algorithm"

B.2 The Validation Testprogram Running on the Actual
Intel SBC Hardware (CMD.C, = CMVAL.C86)

B.3 The Validation Testprogram Running on the Simulated
Intel SBC Hardware ("VALCMD.C")

B.4 The Benchmark Program Used for Performance Tests

Test Software Development and Execution Procedure
for the actual Intel SBC Hardware

D.1 Test Software Development and Execution Procedure
for Simulated Intel SBC Hardware

D.2 Performance Test Execution Procedure for Simulated
Intel SBC Hardware

Printouts from Running the Performance Testprogram on
Simulated Intel SBC Hardware

Listing of the Topology File for the Simulation of the
86/12 SBC

The "OTOL" Program

H.1 The Program Used To Test the Simulated 8086 CPU

H.2 List of "Bugs" fixed in the initial 8086 CPU
Descriptions

APPENDIX I: Listing of the I/0 Assembly Routines used in the
Validation Simulation ("PRINT.S", "IN.S")

LIST OF FIGURES

1-1: Elements of the N.mPc System 	 4

2-1: The Validation of N.mPc as a CAE Tool 	 8

3-1: The iSBC 86/12 Single-Board Computer 	 10
3-2: The Simulated 86/12 Hardware 	 11
3-3: The Simulated 8086 CPU 	 14
3-4: The Simulated ROM 	 16
3-5: The Multibus Interface 	 19
3-6: The Global Memory 	 21
3-7: The Simulated Dualport RAM 	 22
3-8: The Programmable Interrupt Controller 	 24
3-9: The "Raw Memory" IO Facility 	 26
3-10: Schematic Diagram of the Simulated 86/12 Hardware 	 28
3-11: Memory Map of the Simulated 86/12 Hardware 	 29

4-1: Standard Software Development in N.mPc 	 32
4-2: High-Level Software Development in N.mPc 	 33
4-3: Detailed Look at High Level Software Development in N.mPc 	35

6-la:Running the Validation Program on the Simulated 86/12 	49
6-1b:Running the Validation Program on the Simulated 86/12 	50
6-2a:Running the Validation Program on the Actual Intel SBC

Hardware (output in hex) 	 51
6-2b:Running the Validation Program on the Actual Intel SBC

Hardware (output in decimal 	 52
6-3: Performance Penalty due to Simulation using N.mPc 	 55

7 -1: Fault Tolerant Computer Architecture 	 60

1. INTRODUCTION

1.1. Background

In recent years Computer Aided Engineering (CAE) tools have made it

possible to choose a new, more flexible approach for the design of

microcomputer systems. Traditionally, microcomputer based products are

designed in the following fashion:

1. The necessary hardware components are built. This usually

includes the microprocessor itself as well as other peripheral

components.

2. Software programs are written for the target machine.

3. Software and hardware components are integrated and tested.

Very frequently, the software is produced on a host machine

using a cross development package, if available.

The development process usually involves many time consuming and

costly iterations. A CAE tool such as N.mPc improves the situation by

providing a simulation environment which is suitable for testing many

design alternatives in a short period of time. The implications

using N.mPc are as follows:

1. 	It is no longer necessary to build the hardware components at

the beginning of the design work. Instead, N.mPc provides

what amounts to a micro-programmable, register transfer level

machine which can be programmed to emulate the target hardware

completely. In other words, a designer working on a VAX host,

for example, could create a VAX executable program which, when

run, would emulate the target hardware.

1

2. 	N.mPc 	provides a totally programmable cross development

package for the software to be written in assembly language.

The work documented in this report introduces an enhanced

software development environment permitting to write software

in the C high level language.

3. 	The rationale for using a tool such as N.mPc is that

programmability implies flexibility. 	Given that a base

exists, i.e. most of the hardware emulation is available as

well as the cross development package, a designer can alter

the design parameters with ease and test various alternatives

without committing to any hardware choice.

The new approach to microcomputer design is of particular

importance in a field like space technology where fault tolerant on-

board processing is a very urgent need. Fault tolerance implies

redundant multi-processor architectures of considerable complexity.

Thus the development of a fault tolerant computer architecture for space

purposes looks like an ideal application of the CAE Tool N.mPc.

In order to get a reliable, independent indication for the

potential of CAE tools in multiprocessor design, the validation of the

hardware simulation facility N.mPc and of an enhanced software

development environment were included in the objectives of this work

done for the Communications Research Centre of the Department of

Communications.

1.2. Overview of N.mPc

It is assumed that the reader, having read the "N.mPc Detailed

System Description" document [16], is alread y. familiar with the elements

of the N.mPc system. A short overview of N.mPc is given here as a

2

reminder.

N.mPc consists of six components used either to describe the

hardware behaviour of a target system, or to execute the simulation of

that system. Figure 1-1 illustrates the components of N.mPc and their

interaction.

The Meta-micro assembler and the linking loader are used to

generate the software which is to be executed by the simulated hardware

components if these are programmable. Both are driven by a description

of the instruction set of a target machine and can be made to generate

code for either vertically or horizontally programmed machines. The

linking loader produces code which is executed by a simulated processor

or by an actual machine. 	The ISP compiler is used to produce

simulation modules for individual processors and other 	hardware

components of a system. The input language of the compiler is the ISP'

language which allows the specification of states for the implementation

of processor registers and flags, memories for the simulation of memory,

and ports which allow input to and output from simulated hardware.

The N.mPc ecologist and a simulated memory processor link the ISP'

processor modules with the linking loader outputs in order to form

complete simulations. A run-time package is used to execute a

simulation and to allow extensive interaction with the simulation.

1.3. Report Structure

Section 1 introduces the reader to background, 	motives and

objectives of the work documented in this report. 	Section 2 outlines

the approach chosen to validate an N.mPc microprocesor simulation.

Section 3 describes the simulation of an Intel 86/12 SBC hardware on the

N.mPc system. Section 4 covers the development of the test software run

3

I
1 	S I MULAT ION 1 1\

I I/ .

I

RUNT ME
ENVI RONMENT

I SP
COMP I LER

ECOLOG [ST

I I

HARDWARE SYSTEM MODEL I NG SYSTEM SIMULATION

LE NK I NG
LOADER

SOFTWARE DEVELOPMENT

SI MULATED
MEMORY

PROCESSOR
METAM I CRO

Figure 1-1 Elements of the N.mPc System

on the simulated and the actual hardware to perform the validation of

N.mPc for microprocessor simulations. 	Section 5 gives some 	detailed

information about how to run the validation test program on the actual

and the simulated hardware. 	Section 6 presents the results from the

validation test program and the performance test. 	Section 7 gives a

summary of accomplishments and makes conclusions regarding the strong

points and the perceived shortcomings of the CAE tool N.mPc.

1.4. Related Documentation

This report is one of the deliverables identified under contract

OER 83-05075. Other reports submitted under the same contract include

an N.mPc detailed system description document [16], an N.mPc User Manual

[7], a report on the simulation of the SBP 9989 microprocessor [8], and

two reports on a Fault Tolerant Computer Architecture and a Fault

Tolerant Operating System [14], [20]. References to the original N.mPc

documentation, provided by the vendor of the N.mPc package, are also

listed.

5

2. VALIDATION SCENARIO

The primary goal of this work was to validate N.mPc as a CAE tool

for microprocessor simulations. This includes the investigation of

N.mPc - s potential as a hardware and software development tool. The idea

was not only to develop a simulation of a fairly complex hardware module

but also to introduce the enhanced software development environment for

8086 based N.mPc simulations which is described in section 4.1. This

would allow to do software development in a high level language and was

considered to be quite an achievement in the N.mPc context. Besides the

validation of N.mPc as a CAB tool for microprocessor simulations, the

validation activities would have some useful by-products, namely the

development of a reliable, powerful microcomputer simulation of the

86/12 SBC and the introduction of the enhanced software development

environment mentioned above.

With the above goals in mind, the following activities were planned

to validate N.mPc:

- The design of hardware modules simulating the Intel iSBC 86/12

single board computer.

- The use of an 8086 C cross software development package to

develop software in C that could be run on the 86/12

simulation.

- The implementation of an algorithm, taken from a space

attitude control system, on the simulated hardware using C as

a high level programming language.

- Run a benchmark program on simulated and actual Intel SBC

hardware in order to do a performance comparison.

The choice of simulating an 86/12 single board computer was made because

its complexity represents a challenge in terms of N.mPc simulations and

6

because a description of the heart of the 86/12, the 8086 CPU, was

contained in the N.mPc microprocessor description library. C was chosen

for the use as a modern high level language as it allows for close

interaction with the hardware.

Figure 2-1 shows the activities carried out for the validation of

N.mPc as a CAE Tool for microprocessor simulation. The activities

denoted as 1), 2) and 3) in Figure 2-1 have been described in sections

3, 4 and 5.

As a result of the above mentioned activities the simulation of the

86/12 SBC and the enhanced software development environment were used to

build the "Validation Simulation". The goal was to execute a simple

spacecraft attitude control algorithm, implemented in "C", on both the

simulated 86/12 SBC hardware as well as on an actual Intel SBC machine.

Results and performance from these tests were to be used to determine

the validity of the CAE tool N.mPc for a specific simulation.

7

//-
1) Development of an 	 2) Creation of a Soft-

appropriate High 	 ware Development
Lovai Test Program 	 Path from "C" to
to be run on the 	 N.mPc compatible
86/12 simulation: 	 object code for an

Intel 8086 CPU:

1
1

Algorithm in
Fortran

1,

1
1

design essential
hardware modules
of the Intel
86/12

test/debug par-
ticularly the
8086 CPU descrip-
tion

test reliability of the
simulated 86/12 single
board computer by running

increasf.ng amounts of code
it (using "C")

1
1

1

7--
3) Development of

simulated Intel
86/12 Single Board
Computer Hardware:

V

Algorithm in
"C", executable
on 8086 CPU

Run the Validation

algorithm, using "C"
compiler and "C
standard IO state-
ments, on a real
machine (VAX or
iSBC86/12)

Install Lantech
"C"-8086 Cross

Development tools

change N.mPc s "OTOL"
program in order to
handle object code for
an 8086 CPU

1, 	1, •
Run the Validation algori-
thm, (in "C") on the Sim-
ulation of the 86/12 Single
Board Computer using
N.mPc's "Raw Memory" 10

facility and a "C"-8086
Crosscompiler

1 Algorithm in
"C"

add "Raw Memory"
IO facility

Identical results establish the
correct execution of the validation
program, and a validation of the
CAE Tool N.mPc

Figure 2-1: The Validation of N.mPc as a CAE Tool

1

3. DESCRIPTION OF THE INTEL 86/12 SBC SIMULATION

The Intel 86/12 is a single board computer that is based on the

Intel 8086 CPU. The 86/12 SBC was chosen for simulation, mainly because

a description of the 8086 CPU was available in the N.mPc microprocessor

library (see [7], section 3). The 8086 also is an interesting processor

for space related research as it is to be space qualified soon.

	

Figure 3-1 shows all the components of the 86/12 SBC. 	An 8086 CPU

is the heart of the SBC structure. 	Other essential components are a

programmable interrupt controller, memories (ROM, dual-port RAM) and the

multibns interface. 	The Multibus allows the 86/12 SBC to communicate

with other SBCs or with devices tied to the Multibus. 	Additional

elements like the programmable communications interface, the baud rate

generator, the peripheral interface, the RS-232-C interface and the

driver/terminator interface provide various I/O functions. Programmable

timers have also been included and may be used in certain applications.

To reduce the cost and the duration of the development of the•

simulation, only the necessary 86/12 components will be simulated. The

essential subset of 86/12 elements to be simulated is shown in the left

half of Figure 3-1. 	The complex I/O interfaces depicted in the right

half of figure 3-1 are not needed for the intended simulation. 	N.mPc's

raw memory" feature will be used to do I/O operations. Figure 3-2

shows the structure of the simulated 86/12 SBC. The remainder of this

section will describe each component of the 86/12 SBC simulation.

9

1

RS-232-C
tNTERFACE

DRIVER/
r€F4HNAToR
INTERFACE

32 K K 8
RAM

e DUAL PORT eus

RS-132-C
COMPATIBLE DEVICE

4-**›- 	•(*).

24 PROGRAMMABLE
PARALLEL I/O LINES

THE iSBC 86/12 SINGLE-BOARD COMPUTER

'NTERRUPT
SELECTE R
(J UMPERS)

POWER FAIL
INTERRUPT

DUAL-PORT
CONTROLLER

16 K K 8
RO M!

Ce ROM
 (SOCKETS)

8086
CENTRAL

PROCESSING
UNIT

1

SERIAL DEVICE CONTROL INTERFACE

PROGRAM-
MABLE

INTERRUPT
CONTROLLER

TWO
PROGRAM-

MABLE
TIMERS

PROGRAMMABLE
COMMUNICATIONS

INTERFACE
(USARTI

PROG RAM-
mA8LE

BAUD RATE
GENEFIATOR

PROGRAM.
mABLE

PERIPHERAL
INTERFACE

to be simulated using N.mPc not needed for simulation purposes; N.mPc's
"raw memory" feature used for I/0

Figure 3-1

The iSBC 86/12 Single-Board Computer (from Intel Application
Handbook, Sept. 81)

I/O
Interface

("Raw" Memory)

Intel
8086
CPU

Programmable
Interrupt
Controller

ROM

(14 kB)

MI MIMI MN 11111111 MI MI NM 	 11111 MIIII 	11•11 	11•11

Terminal

Dual-Port

RAM

(1 kB)

INTERNAL BUS

MULTIBUS INTERFACE

MULTIBUS

Global
Memory (1 kB)

Figure 3-2: 	The Simulated 86/12 Hardware

3.1. The Intel 8086 CPU

The starting point of the development of a hardware description for

the Intel 8086 CPU was an ISP description of this microprocessor

written by Y. Trivedi, Case Western University, for the N.mPc library.

A few initial tests showed that this description required considerable

testing/debugging in order to obtain the reliability needed 	for

simulations of fault tolerant computer architectures. 	Therefore, the

first and most important step was a thorough testing and debugging of

the 8086 CPU description, a program of well over 3000 lines of code in

size. 	The test program used for this purpose (see Appendix H) included

every single 8086 instruction. 	The instructions were tested by

executing them in various addressing modes.

Testing 	activities consisted of setting up the 	appropriate

registers and/or memory locations for a particular instruction and

checking these registers/memory locations after execution for correct

results. If an instruction was not executed the way the Intel 8086

Hardware Manual prescribed, the error had to be found through a time

consuming debugging effort. The usual errors found consisted in misuse

of the ISP"language or misunderstanding of how the 8086 hardware really

worked. 	A list of the "bugs" found in the initial 8086 description is

part of Appendix H. 	One type of error resulting from a misuse of the

ISP' hardware language deserves to be specially mentioned here. This

error consists in wrongly determining the size of the operands of an

instruction, for instance by testing a wrong bit. The result is a byte

instruction trying to handle word operands (or the reverse), an

ambiguity which cannot be properly handled by N.mPc and which causes the

VMS operating system to halt operations. The fact that the simulation

leaves the runtime mode altogether disables the usual debugging tools.

12

Only very thorough knowledge of the ISP code in question, or iterative

reduction of the user program until the fault-causing instruction is

determined, can help. The N.2 system, which is to be released soon,

should solve the above difficulty with VMS.

• 	Figure 3-3 shows the communication ports used by the simulated 8086

CPU. 	The simulated 8086 is configured in "maximum mode" because the

alternative "minimum mode" limits a CPU to standalone use. The "maximum

mode" is therefore compulsory for multi-processor applications. As the

goals of this work did not include the design of any co-processors (8087

Math Processor, 8089 IO Processor) for the 8086, the ports serving for

this purpose were not implemented (request/grant lines, queue status

lines). Some signals, which are usually generated on a separate bus

controller chip because of lack of space on the 8086 chip, are part of

the simulated 8086 (den_, dt r 7 ale, inta). _

Internally the simulated 8086 represents a very accurate model of

the real 8086 chip. Like the "Bus Interface Unit" in the real 8086, a

process called "BIU" constantly refills a queue of prefetched

instructions which are to be executed by a second process called "EU

(Execution Unit)". The "EU" process reacts to external events

(interrupts, resets), fetches, decodes and executes instructions from

the prefetch queue. At this point, it should be stressed that N.mPc

hardware descriptions resemble black boxes behaving like real hardware

when observed from the exterior but which are entirely different

internally. Hardware descriptions designed using the N.mPc system can,

and usually do, have an internal structure and complexity which is

very similar to the actual hardware they model. In N.mPc this is true

down to the register transfer level which strengthens N.mPc"s potential

in hardware design.

13

status <3>

iorc

iowc 1 5)

rd

ale

den

d t r
bhe

den_

Im hnible<4>
IN TEL
8086

CPU

(maximum
mode)

mb us <16>

__----- int
	 in ta
	 NMI 	

1 3)

re se t
	test
- ready

} 4)
	 lock

	 ioads I
	 ioads 7

I) memory access signals

2) multiplexed address/data bus

3) control signals (interrupts etc.)

4) bus priori ty lock con trol

5) Multibus signals

Figure 3-3: The Simulated 8086 CPU

1

Another aspect of the simulated 8086 is that the user has to

initialize segment registers, stackpointer and instruction pointer

himself. In real applications an operating system usually takes care of

such details. 	As there is no operating system on top of this hardware

simulation, 	the user is responsible for the proper initialization of

the 8086 before running a program. 	Section 5 provides the details

concerning the initialization of the simulated 8086 CPU.

3.2. The ROM

Three simulated memories are part of the 86/12 single board

computer simulation (as shown by the memory map in Figure 3-11). 	This

section will concentrate on the Read Only Memory (ROM). 	Figure 3-4

shows the address data lines and signals that allow an 8086 to access

the ROM. It has to be added that for two reasons the "ROM" is not yet

used in a read only mode in the context of the validation simulation

(see *). Firstly, the N.2 system, which will soon fully supersede

N.mPc, offers the possibility to declare ports that have attributes like

read only", "write only", "read/write" (see "N.2 ISP User's Manual

[15], page 13). Secondly, a ROM is not essential for the work described

in 	this document as N.mPc can be made to perform a complete

initialization of a RAM module at the beginning of the simulation. 	The

fact that the RAM memory can still be accessed for write does not

present any difficulty since such an operation can easily be disallowed.

(*): Due to the flexibility inherent to N.mPc based simulations, certain
liberties were taken with the Read Only Memory (ROM) module. In
fact the ROM was used as RAM by the compiler for its stack and
dynamic data area. This does not detract from the purpose and
goals of the validation.

15

status <3)

rd _

- ale

m hnible <4)

ready

bhe_

mb us <16
en__

t r

ROM

1) multiplexed address/data bus

2) memory access control signals

3) CPU status

Figure 3-4: The Simulated ROM

The memory address range used by the ROM is determined by the

numerical values assigned the macros "LOROM", "UPROM" in the ISP'

description of the ROM. The address ranges of the other simulated

memories in the 86/12 simulation are determined in a similar manner and

it is therefore very easy to change the whole memory configuration.

Currently, the ROM services the address range from 1024 (lk) to 14335

(14k-1) as shown in the memory map of Figure 3-11.

The name by which N.mPc's "Simulated Memory Processor (SMP)"

identifies the ROM among the three simulated memories that are part of a

simulation is "romcore.;". If a user wants his program to be loaded

into the ROM as an initial content, he simply creates a new version of

the "Lout" formatted object version of his program and renames it to

romcore.; . The SMP will then know that the destination of the program

is the ROM. 	The name "romcore.;" is chosen by the user but has to be

previously declared in the topology file.

The simulated ROM is accessed exactly the same way as the real 8086

accesses memory: Words starting at even addresses are accessed in one

memory cycle, words located at odd addresses need two memory cycles to

be read. 	The CPU indicates whether a memory access or an IO operation

is to take place by a "status" signal (see Figure 3-4). 	A "ready"

signal holds the CPU until a memory access is over.

3.3. The Multibus Interface

In Figure 3-2 one can see that the simulated 8086 uses an "Internal

Bus" to access memory directly. In multiprocessor configurations a bus

like Intel's "Multibus" will be used for interprocessor communication

and resource sharing. As the "Multibus" is part of the intended 86/12

single board computer simulation, an interface between the "Internal

17

S I

Bus" and the "Multibus" is needed. Figures 3-5, 3-1, 3-2, and 3-10

illustrate the Multibus interface.

The Multibus interface will respond only to memory accesses in a

range assigned to the Multibus. Like in the case of the ROM, two macros

In the ISP description of the Multibus interface determine the address

range. In the 86/12 simulation, the Multibus address range is set from

14336 (14k) to 16383 (16k-1) as shown in Figure 3-11.

In a multiprocessor configuration, several processors may want to

use the Multibus at the same time. The Multibus interface not only

translates the usual memory access of an 8086 (via internal bus) into a

memory access following the Multibus protocol but also implements an

arbitration scheme for the different Multibus masters. The method used

relied on a serial priority scheme in which every processor has to wait

for a bus grant signal to be activated. After using the Multibus, a

processor passes the bus grant "token" on to the next one and so on.

A few Multibus lines were not relevant for simulation purposes and

were therefore not implemented; among these lines were the

Initialization signal, RAM/ROM Inhibit, Bus, Constant clock, Common Bus

Request, Power Supply lines, etc.. It should be pointed out that the

Multibus interface is transparent from the standpoint of a processor.

The only noticeable sign of a Multibus use might be a longer wait when

different Multibus masters are competing for the Multibus.

3.4. The Global Memory

The "Global Memory" is accessed exclusively via Multibus using the

Multibus signals and protocols. A Multibus may have multiple masters

thus making the global memory accessible to all processors tied to the

Multibus. The global memory may be used for interprocessor

18

mad(20)

mda(16)

mrdc

mwtc

iorc

iowc

male

xack

bp rn

bhen

bpro

busy

12)

m hnible (4) {

r"

mb us <16)

ale 	

rd 	 _

ready 	

bhe 	 _

den_ 	

dt_r 	

}

3)

1 4)

MULTIBUS

INTERFACE

status (3> {

1) Internal Bus Side

2) Multibus Address Lines (20) and Data Lines (16)

3) Multibus Signals

4) Multibus Arbitration Lines

Figure 3._5: The Multibus Interface

communication (mailbox) or simply as a shared resource.

The address range of the global memory has to be within the address

range assigned to the Multibus (see section 3.3). In the 86/12

simulation, the global memory is assigned the address range from 14336

(14k) to 15359 (15k-1) as shown in Figure 3-11. The signals, address

lines and data lines used by the global memory are all part of the

Multibus lines and are shown in Figure 3-6. The global memory is

identified by N.mPc's "Simulated Memory Processor" by the name

"gblcore.;".

3.5. The Dualport RAM

The Dualport RAM is a combination of a RAM and a global memory

allowing to access a given set of memory locations either via the

Multibus or directly via the Internal bus. In the 86/12 simulation, the

CPU accesses Its RAM directly via the internal bus using the address

range from 0 to 1023 (1k-1). On the other hand, the CPU (or any other

Multibus master) can also access the same memory locations using the

(Multibus) address range from 15360 (15k) to 16383 (16k-1). The

Multibus addresses of the RAM are translated down into the 0 to 1023

range.

The Dualport RAM delays access attempts via Multibus while it is

being accessed via the internal bus and vice versa. 	The internal bus

has priority over the Multibus. 	Figure 3-7 shows the two buses

connected to the Dualport RAM and Figure 3-11 shows the two different

address ranges used to access the Dualport RAM.

3.6. The Programmable Interrupt Controller (PIC)

The PIC designed for the 86/12 simulation represents a subset of

the functionality of the real Intel 8259 chip. 	The full set of

20

mad (20>

mda (16>

Global

Memo ry

bhen

male

xack

mw t

mrdc

1) Mul tibus Address and Data Lines

2) Multibus Con trol Signals

Figure 3-6: The Global blemory

\
/ mad

m hnible<4)

Dual

Port

RAM

mbus 16>

mda<16

rd _
ale

ready

bhe _
den _

dt_r

	 male

	 xack

	 mrdc

	 nu tc

	 bhen
{

s tatus <3>

1) ports for access of RAM by CPU

2) ports for access of RAM via Multibus

Figure 3-7: The Simulated Dualport RAM

different hardware functions and priority resolution schemes is not

needed in a simulation context. The basic idea was to implement a fully

functional PIC but only for the given 86/12 hardware and one single

interrupt priority resolution scheme. The priority resolution scheme

chosen scans the 8 interrupt request lines from line 0 to line 7

continuously. If an interrupt request line is scanned while being

active the request is serviced, the request line is reset and the

scanning restarts again at line O. A request line is activated by the

leading edge of a strobe on that line and stays activated until reset.

It can be seen that the scanning is not cyclic and gives the lower

numbered request lines a higher priority.

Figure 3-8 shows the simulated PIC and its ports. A "Signal

Generator" was designed for convenient testing of the interrupt

facilities in the 86/12 simulation. It periodically generates a "pulse"

on each interrupt request line. This is an asynchronous way of

triggering all the interrupts for testing purposes.

An interrupt is serviced in exactly the same manner as in the real

86/12 single board computer. The positive edge of a pulse on an

interrupt request line sets the corresponding bit in the PIC's Interrupt

Request Register (IRR). The interrupt may have to wait until it becomes

the highest priority request when other interrupts have been activated

as well. Once the interrupt has the highest priority, the PIC goes

ahead and activates the CPU's "INT" line to signal the interrupt to the

CPU. The CPU responds with a succession of two pulses on the "INTA"

(interrupt acknowledge) signal, thereby reading the interrupt type which

is put on the lower half of the data bus by the PIC. The 8086 then gets

the interrupt vector (new instruction pointer, new CS register content)

stored at the four memory locations starting at (4 * interrupt type).

23

Programmable

Interrupt

Controller

Databus (16) 2)

RD

WR

CS

AO

-<

4)

1 3)

INT

INTA

1)

IRQO

IRQ1

IRQ2

IRQ3

IRQ4

IRQ5

IRQ6

IRQ7

1) Eight interrupt request inputs.

2) The lower half of the databus is used to send the

interrupt type to the CPU.

3) Signals used for PIC programming via CPU.

4) Interrupt request lines.

Figure 3-8: The Programmable Interrupt Controller

The CPU then executes the interrupt service routine corresponding to the

interrupt vector it acquired and, upon completion, returns to the

execution of the interrupted program.

It is possible for the CPU to access the PIC's internal registers

by doing TO operations using addresses assigned to the PIC by the

designers of the 86/12. The following PIC register accesses may be

carried out on the simulated PIC:

- Set Interrupt Mask Register:

MOV al, OFh
OUT 0C2h, al

These instructions mask interrupt lines 0 to 3.

- Read Interrupt Mask Register:

IN al, 0C2h

- Read Interrupt Request Register:

MOV al, 0Ah
OUT 0000h, al
IN al, 0000h

- Read In-Service Register:

MOV al, OBh
OUT 0000h, al
IN al, 0000h

It is also possible to have the CPU initialize the simulated PIC

but this is in fact irrelevant as the simulated PIC has been dedicated

to a single priority resolution mode and to the 86/12 hardware.

3.7. The IO Facility

The IO module "terminal.isp", shown in Figure 3-9, makes it

possible for N.mPc simulations to read and write directly from/to the

working terminal. This "Raw Memory" has a structure almost identical to

that of the ROM described in Section 3-4. The "Raw Memory", though, has

25

ready

bhe _

den

dt_r

m_hn ib le <4)

ale

"Raw

Memory"
mbus (16

/ \
status 3)

Figure 3-9 : 	The "Raw Memory" TO Facility

just one memory location and only responds to IO calls to address O. In

order to have the "Raw Memory" address the terminal driver, the name

assigned to the working terminal under the VMS operating system has to

be declared in the topology file. 	This name is "tt:" under VMS and is

not compatible with the syntax used in the topology file. 	To resolve

this situation a new logical name compatible with the topology file

syntax has been defined ("wtty" for "tt:") in one of the login files

(logsys.com). For details about "raw memories" refer to the "Ecologist

User's Manual" ([4], Section 2.1.6). The following examples show how IO

operations using the "terminal.isp" raw memory are carried out:

a) output to working terminal: MOV al, #97
OUT al, #0

These instructions write the letter "a" (=97 in ASCII) on the

screen of the working terminal.

b) input a character from the working terminal: IN al, #0

NB: 	The ASCII code for the first character on the working

terminal's screen will be put into al.

The "Raw Memory" feature provides N.mPc simulations with a simple

IO mechanism that is sufficient for the needs of most simulations.

3.8. The Simulated iSBC 86/12 Single Board Computer

The 	components of the simulated 86/12 SBC as well as the

interconnection of their communication ports is shown in great detail by

Figure 3-10. For a simulation, the information about a set of simulated

hardware modules and their interconnection is stored in a topology file.

Appendix F contains the listing of the topology file for the simulation

of the 86/12 SBC. 	Detailed information about how to write topology

files is found in the "Ecologist User's Manual" [4]. 	Figure 3-11 is a

memory map of the three contiguous, simulated memories used in the 86/12

27

-t-t-i

Àsn
1

 ,pox 	>..1 0: .pinitu),orA4
%ray" •I'D'OX ape" >I retw àrre-i■AA 	>OrAI (02>re"M

9 V>i
Sowl
1,11

zOw1
/

I 19?,11

0 CSI

V1A
oJ

tt
SD

V -Iry 1
_IN I

•frai

IWN
r".1t:.

»-t ■-•

--y

(

/1

kle2icid

ey et

O4 d

'vex

alvw

axempaull z1/98 pal-e-rnuiTs 	jo tup.x2vTG 3-ppluagos :01—£ aln2II

(:)-ri 2 L.L7ri w

x 	7V20—TO
213_1.N/

S'v12 iH1 t-J (î > 	(91> 	(h > J—tra —br.))0 —;■.// Aree 	.2117 p4 	a 	shri.<èf

I 	
'1,v31-/ MV2i

■i•p■or

ch>

"h139 'IN!

9ee1

St9W1

re»:
20>/1

 reDkIl

T)11

9808
--ho

-veep

red,'
ibe

<E)3"te'is(1,
/t <9J> se9 44

<h)

1,1 0

(i5"f 1°1

(51>enr44

<h>

9
Aroa_4

4>;er-ts

<91> e>17 '44

<h) 	<0;,,9

(16383)

RAM (accessed via
Multibus, lk)

(15360)
(1 5359)

Global Memory (1k):

initial memory name: "gblcore.;"

memory reference name: "gmem:me"

(14336)

(14335)

ROM (13 k):

initial memory name:"romcore.;"

memory reference name:"rom:mem86"

(1024)

(1023)

RAM (1k):

initial memo ryname :" ramco re . ;"

memory reference name: "ram:me"

(0)

Figure 3-11: Memory Map of the Simulated 86/12 Hardware

simulation: 	RAM, 	ROM 	and Global Memory. 	For simulation 	of

multiprocessor configurations one would simply have to tie multiple

86/12 modules onto the Multibus and set up the serial arbitration scheme

for each processor's Multibus interface.

30

4. TEST SOFTWARE DEVELOPMENT FOR SIMULATED AND ACTUAL HARDWARE

This section describes the development of the validation test

software for the simulated and the actual Intel SBC hardware as well as

the software development tools involved and their use. 	All test

simulations 	involving the simulated 86/12 SBC hardware are also

described in the N.mPc User's Manual [7] (section 2) and in textfiles in

the corresponding directories.

4.1. The Enhanced Software Development Environment for 8086 Based N.mPc
Simulations

Initially, the only way to develop software to be run on N.mPc

simulated hardware involved the use of a programmable "Metamicro"

assembler that was not entirely compatible with commercial 8086

assemblers. The use of this "standard" method of software development

for N.mPc simulations is documented in Intellitech's N.mPc User Manual

[7] and, as a reminder, is illustrated again in Figure 4-1.

Following current trends, a need was felt for using high level

programming languages for more convenient software development. The use

of this method for developing software to be run on simulated hardware

is also documented by examples in IntellitecW's N.mPc User Manual [7].

An overview of a simulation in the case of the "C" language and a

simulated Intel 86/12 single board computer is given by Figure 4-2. The

rest of section 4.1 will describe the use of "C" and commercial cross-

development tools in an N.mPc simulation context.

4.1.1. The "C"-Crosscompiler

As mentioned above "C" was chosen to be the high level language in

which a user would write programs. The 8086 "C" Cross Software Tools by

Lantech Systems Inc. are described in the corresponding Lantech Manual

31

Trace

Output

tname.d

tname.f

	1 N.mPc

elements

N.mPc

	 commands

ISP . Source iname.obj 	 tname.s

r---------.
Simulations

Output

User

Commands

ISP .

Compiler'
RUNTIME PACKAGE

• Simulations Program

• Command Interpreter

. Simulated Memory
Manager

iname.isp

tname.exe

initmemname.p

tname.x
pgmname.n . 	-

f 	Simulated

Memory

Processor

(

. 3)

"rename 1.00t pgmname.out"

"copy pgmname.out iniCmemname.

(name.
Linking/Loader

Description

MetaMicro

Source

).

pgmname.m

Machine

Descriptions

Linking/

Loader
Allocator

(1 .o ut)

'name. a

In te r-
p re Le r

1
Target System

Topo logy

)

tname.t

Figure 4-1 : Standard Software Development in N.mPc

N.mPc inputs

tname.s ISP'Sources raname.obj

User
Commands

marne. isp
'SP'
Compiler

Ecologist

tname.exe

RUNTIME PACKAGE
.Simulation Progress
'Command Interpreter
'Simulated Memory Manager

Target System
Topo logv

tname.t

Trace
Output

tname.d
tname.f

Memory
List

"@cc8086 name.c"
initmemname.p

tname.x

Cross

Assembler/

Linker/Loader

Cross

Compiler

C Source
Program

1

name.c
1
1
1

1
1

1 	Assembly
1 	Source

Program

1
1
1 	name.s

1

1

Simulated
Memory
Processor

name.hex

	1) 3) "copy name.out initmemname.;"

1

1

name._1 out OTOL
(object to 1.out)

C 	

_

2) "fflasmotol name"

Figure 4-2: High-Level Software Development In N.mPc

[19]. 	The package includes a "C" Cross Compiler and a "C" Cross

Assembler/Linker/Librarian/Downline Loader for Intel 	8086/8087/8088

processors.

The steps necessary to run a program written in "C" on a simulated

86/12 hardware are shown in detail in Figure 4-3. The situation

depicted in Figure 4-3 shows the path of a program written in "C"

(namel.c) and a program written in Intel's ASM86 assembler (name2.$)

through all the development stages. The two programs in the example are

finally loaded into two different simulated memories of an N.mPc_

simulation by the "Simulated Memory Processor" (SMP). 	Figure 4-3 also

shows how to do software development in an orderly manner. 	It is

advisable to do the cross compiling of "C" programs in one directory

("c86") and the cross assembling/linking/loading plus the "otol"

invocation in another ("as86"). The product of all software development_

(a ".out" file) is then copied into the actual simulation directory

where it is loaded into some simulated memory. Doing software

development in separate directories avoids having too many files in the

simulation directory.

The Lantech Cross Development package was installed on the VAX/VMS

environment which is host to the N.mPc system and is invoked using the

commands declared in a login command file ("L0G86.COM", see User Manual

[7], Appendix D).

Step 1 in Figure 4-2 shows how to invoke the cross compiler in

order to create an 8086 assembly version of a C program. The

operation involves several steps (preprocessor, parser, code generator,

postprocessor) which are executed by a command file called "cc8086".

This command file is located in the "C86" directory, which is reserved

for high level software development. The command below is used to cross

34

C Source Program:

namel.c
Cross

Linker

LJ

Link
Library

(Object
Modules)

romcore.p

ramcore.p

namel.out

romcore.;
Cross
Loader

namel.hex

name2.hex

OTOL
Simulated

Memory

Processor

NM 1111•11 	 1111111 	MI Mil Mil 	 MIS 11111 	IIIIIII

namel.s

name2.s

namel.obj

Cross
Assembler

name2.obj

namel.exe
name2.exe

Assembly
Source Program:

name2.s

Page formatted
initial contents
for Simulated
Memories:

List of Simulated
Memories:

romcore.i

.7>
ramcore.d

N.mPC System

Figure 4-3 : Detailed Look atliigh-Level Software Development in N.mPc

name2.out

ramcore.;

compile the C program "namel.c" in Figure 4-3:

" @cc8086 namel"

The output produced is a file with a ".s" extension and the same

name as the input file: "namel.s".

It 	should 	be 	remembered 	Chat 	the 	Lantech 	cross

assembler/linker/loader assumes that both an 8086 CPU and an 8087 math

processor are to be found in the target system. It therefore relies on

the floating point arithmetic instructions implemented by the 8087,

whenever floating point operations are required in a C program.

The assembly programs produced by the C cross compiler are stack

oriented. If one wants to write assembly routines Chat can be called

by C programs, detailed knowledge of the use of the stack by the code

produced by the cross compiler is required. The Lantech documentation

[19, chapter 7] contains detailed information on this subject.

4.1.2. The Cross Assembler/Linker/Loader

For details concerning the Lantech cross software development

tools, the corresponding user guide [19] should be consulted. 	To

illustrate briefly the application of the Lantech cross

assembler/linker/loader, the steps 2 to 4 in Figure 4-3 will be

explained using a cross compiled C program named "namel.c" as a general

example.

Step 2 assembles assembly source programs written in a syntax

language. which 	is 	very similar to the Intel ASM86 	assembly

Unfortunately, complete compatibility has not been achieved. 	The

assembly source program may have been created either by the C cross

compiler (Example: 	"namel.s") or directly by the user (Example:

name2.s"):

36

• 1

"asm86 -1 -o namel.obj namel.s"

- The option -1 generates a listing of the assembly
program.

- The option -o is used to have the output named
namel.obj

Step 3 in Figure 4-3 resolves references to library routines in the

main program. For details on libraries refer to [19]. The cross linker

links the main object module with other object modules stored in the

link library to form a final object module:

"lkr86 -1 -o namel.exe namel.obj llib:1ib8086.a"

- The option -1 is used to list tables of external

references.

- The option -o is used to have the output file named

to "namel.exe".

- "namel.obj" is the object module of the main program.

- "llib" is the logical name for the library (directory)

in which source and object modules of some assembly

routines are stored; 	at present the library only

contains the routines necessary to process doubleword

operands (corresponds to "long integer" variables in

C).

Step 4 in Figure 4-3 determines where in a (simulated) memory the

linked object module is to be loaded. 	The loader reserves two areas in

memory: A "Code Block" and a "Data Block". It is important to know

that the "Data Block" is reserved for data (global labels, ...) and the

stack. The following command invokes the Lantech cross loader:

"1dr86 -1 [-c ...] [-d...] -o namel.hex namel.exe"

37

1

- The option -1 generates a listing displaying information

about starting addresses and sizes of reserved memory

areas. This listing is important as it contains the

necessary information for the initialization of the 8086

CPU.

- The -c and -d options allow the user to choose the

starting addresses (=hex numbers after -c, -d) of the

memory areas to be reserved for program code (-c) and

data, stack (-d). If these options aren't used the loader

by default loads the program code starting at memory

location 1024 (400 hex) and starts the data block at the

next paragraph location after the end of the code. A

paragraph is an address that is a multiple of 16.

4.1.3. The "OTOL" Program

The "OTOL" ("object to 1.out") program transfers object code from

different formats (Motorola, Intel Hex, ...) into the "Lout" format

used by N.mPc. For this application the "OTOL" program had 'to be

enhanced as it could not handle the concept of "segmented" memory (see

Intel 8086 documentation). The 8086 has four segment registers and

addresses its megabyte of address space in 64k byte segments.

With reference to Step 5 of Figure 4-3, the "Lout" formatted

files produced by "OTOL" have to be renamed so that the "Simulated

Memory Processor" can direct their contents to the appropriate simulated

memory. In the example of Figure 4-3, the object version of the

"namel.c" program is to be made the initial content of the simulated

ROM. Therefore "namel.out", the object version of "namel.c", is renamed

"romcore.;" (the name "romcore.;" is declared in the topology file) and

38

similarly "name2.s" Is directed to the simulated RAM by renaming

name2.out" to "ramcore.;".

Step 5 in Figure 4-3 is executed by the following command:

"otol - id namel.hex namel.out [-a "initrecord"]"

- The i option tells "otol" that the object file to be

transferred into "Lout" format is in Intel Hex format.

- The -d option produces a listing of starting addresses

of data records.

- namel.out" is the name assigned to the output file in

"Lout" format. 	The ".out" extension reflects the fact

that the file is in the "Lout" format required by

N.mPc. 	The default name of the output file is "Lout".

- The "initrecord" option may be used to initialize areas

of memory with certain values.

Example: "-a2048-3000$00" initializes the memory
locations from 2048 to 3000 with the value
0.

Other object code formats which can be handled by "OTOL" include:

MOTOROLA;

- Tektronix Hexadecimal;

RCA Cosmac;

- MOS Technology;

Signetics Absolute Object;

- Fairchild Fairbug.

A short documentation on "OTOL", written by the N.mPc developers

is to be found in Appendix G.

39

4.1.4. Command Files For The Cross Software Tools

As 	it 	is 	rarely 	necessary 	to 	invoke 	the 	Cross

assembler/linker/loader in a step-by-step fashion, several command files

have been created to make the use of the Lantech cross software

development tools easier. The command files are located in the "AS86"

directory, which is reserved for software development. The name and

purpose of each of the two command files currently used with the cross

assembler/linker/loader are listed below along with an example for their

use:

1) "86asmotol.com ": 	This 	command file invokes the 	cross

assembler/linker/loader and the "OTOL" utility. 	It uses none

of the -c, -d loader options so that the code is loaded

starting at address 1024 and the data immediately after the

code. 	Again, the input file is assumed to have a

extension. 	The output file is given a ".out" extension as it

is a file in N.mPc's "Lout" a format.

Example: "@86asmotol namel"

2) "cOasmotol": 	This is exactly the same command file as the

"86asmotol" but the -c option is used when invoking the loader

in order to have the code loaded starting at address 0.

(instead of the 1024 default).

Example: "@cOasmotol namel"

NB: 	If the reader at this point should want to add further to his

knowledge of the use of the Lantech 8086 C cross software

development tools, the reader is referred to the examples

documented in section 6 of the N.mPc User Manual [7].

le 	te .s

40

4.2. Software Development for an actual Intel SBC

The actual hardware used was an Intel 86/30 SBC running iRMX86. The

86/30 SBC is essentially an 86/12 with additional on-board memory and

for the purpose of this test can be considered identical to an 86/12

SBC. 	The test programs for the actual hardware, written in C, were

compiled using Intel's C-86 compiler. 	Appendix C shows the steps to

generate the code necessary to execute a test program on the actual

Intel SBC hardware.

4.3. Description of the Target Software for the Validation

The previous two sections described the software development tools

involved when developing test software for the actual and the simulated

Intel SBC hardware. The test software was to be run on both the actual

and the simulated Intel SBC hardware in order to validate N.mPc's

microprocessor simulation capabilities. The starting point was the

choice 	of 	a 	"Simple Attitude Control 	Algorithm" 	(SACL) 	for

implementation as a test program. Appendix B contains a mathematical

description of the SACL algorithm and listings of the programs

hnplementing it. 	The SACL algorithm was discretized using the Z-

transform and implemented as a Fortran program named "SACLZ.FOR". 	At

this point, the fact that SACLZ.FOR used real (floating point) variables

had to be taken into account. Floating point variables result in 8087

floating point arithmetic instructions as the C cross compiler assumes

the presence of an 8087 math processor. The simulated 86/12 single

board computer was not intended to include such mathematical convenience

and the alternative was to use "integer" instead of the floating point

variables in the SACLZ.FOR program. This resulted in an assembler

41

program with instructions that could be executed by an 8086 alone. 	By

scaling some variables, an implementation of the SACL algorithm using

only integer variables was produced and given the name "SACLZI.FOR". In

order to produce a SACL version in C that could be developed on the

Lantech cross software development package used with the simulated SBC

hardware, SACLZI.FOR was translated into C and called "CMD.C". The fact

that the Lantech cross software development package did not include an

"ABS" (absolute value) routine in the link library was taken into

account by adding an "ABS" subroutine to the "CMD.C" program. In this

form, CMD.0 can be run on the actual Intel SBC hardware.

It was stated earlier that N.mPc's raw memory feature was to be

used in order to simplify I/O operations for simulations. Two I/O

 procedures ("IN", "PRINT") have been written in assembly language and

added to the link library of the Lantech cross development tools in

order to replace the standard I/O procedures ("SCANF", "PRINTF") called

in CMD.C. The program using the new "IN" and "PRINT" procedures for I/O

in N.mPc simulations is called "VALCMD.C" and can be run on the

simulated 86/12 hardware using the Lantech cross software development

tools. 	As VALCMD.0 uses "long integer" variables, the 8086 CPU has to

handle double word operands. 	The necessary assembly language routines

are contained in the link library which is part of the Lantech Cross

software tools. 	Listings of the two assembly routines used to perform

the I/O for the validation simulation are found in Appendix I. 	The

total size of the validation code amounts to 1680 bytes which is very

considerable in an N.mPc simulation context. This code corresponds to

about 300 8086 instructions or a C program of about 40 lines.

42

The steps to build the simulation of an Intel 86/12 SBC and to run

the validation testprogram ("VALCMD.C") on the simulated hardware are

shown in detail in Appendix D. How to run the intermediate programs

("SACLZ.FOR", "SACLZI.FOR") produced when developing the validation

testprogram ("VALCMD.C") is also indicated in Appendix D.

43

5. VALIDATION/TEST PROCEDURES

In the case of the actual Intel SBC hardware it was very easy to

run the validation testprogram as the 86/30 SBC is running the 1RMX86

operating system. Appendix C shows that the actual running of the

validation testprogram CMD.0 (here named "CMVALID.C86") is done by a

single command.

In the case of the simulated 86/12 SBC hardware things are not so

easy. The user has to initialize some registers of the 8086 CPU in

order to have the 8086 start executing at the beginning of a program and

to set up a stack and data area in memory. The use of the Lantech cross

software development tools introduces a restriction for the

initialization of the 8086 which will be discussed in detail.

The Lantech 8086 C cross software development tools are intended to

develop software to be run on hardware consisting of an 8086 CPU and an

8087 math processor. In usual applications one just develops the

software in high level language and the operating systems of the host

and target systems will take care of everything else. In an N.mPc

simulation, there is no operating system on top of the simulated

hardware so that the user has to initialize the simulated hardware

before he runs a program. The initialization of a simulated 8086 CPU

serves the following purposes:

I) 	It sets the instruction pointer (ip) and the code segment

register (cs) to point to the starting address of the code.

2) It places the data area and the stack area appropriately into

the data block reserved in memory by the loader. The Lantech

cross software development tool requires that the 8086 stack

and data segment registers be initialized with the same value.

44

To perform a proper initialization of the 8086 CPU one has to

remember the following loading information from the previous development

steps:

i) the address where the loaded program starts

ii) the beginning and the end of the common memory block reserved

by the loader for the data and stack areas

In order to determine those values one has to look at the listing

produced by the cross loader when using the -1 option and find the

starting addresses and sizes of code and data blocks. The end of the

reserved memory area is verified by inspecting the corresponding

simulated memory when the simulation is in runtime mode. The following

example was made up to illustrate the initialization procedure discussed

above.

1) Information from the cross loader (obtained when the -1 option

was used with cross loader):

- The program code block starting address is

400 hex (=1024).

- The data block starting address is 470 hex (=1136), the

end of the reserved memory area is found at 600 hex

(=1536). 	Memory areas not reserved by the loader are

characterized by an "illegal memory access" message when

being inspected. Use the "initrecord" option in OTOL to

reserve a bigger memory space (see section 4.1.3).

	

2) 	Program counter initialization:

- Set the combination of instruction pointer (ip) and code

segment register (cs) to the starting address of the code

block.

45

NB: program counter = (16 * (cs)) + (ip)

Example: starting address = 1024 (=400hex)
- "deposit 1024 :ip"

- or: "deposit 64 :cs", "deposit 0:ip"

- or: "deposit 32 :cs
deposit 512 :ip"

- etc ...

3) 	Data segment, stack segment initialization:

- It should be noted that the Lantech 8086 C cross software

development tools do not make any distinction between

stack segment and data segment; the starting addresses of

stack and data segments have to be identical which means

that the "ds" and "ss" segment registers have to be

initialized with identical values (see [19], 	page 3-

6).

- Have the data and stack segment registers (and the extra

segment register if it is used) point to the starting

address of the data block: - "deposit 0x47 :ds"

- "deposit 0x47 :ss"

(- deposit 0x47 :es) (if "es"

used)

- The stack grows downwards from its top; it is therefore

reasonable to put the top of the stack near or at the end

of the memory block reserved for data and stack by

initializing the stack pointer with an appropriate value.

Example: - 	(end of reserved stack, data memory area -

its base address) = 600 hex - 470 hex =

190 hex: "deposit 0x190:sp"

The initialization information as well as all the other essential

46

I I

information about all "ready-to-run" simulations is found in the

"Oreadme.fst" textfiles put into each simulation directory.

The step by step description of how to build and run the validation

testprogram "VALCMD.C" on simulated 86/12 SBC hardware is found in

Appendix D. The execution of the testprogram ("SIEVE.C") on the actual

Intel SBC hardware is handled in a similar fashion to the execution of

the validation testprogram shown in Appendix C.

With the exception of the initialization step, the execution of the

"sieve.c" test is also analoguous to the execution of the validation

testprogram. The "OREADME.FST" textfile in the simulation directory

(86sieve) describes how to carry out the performance test.

1

47

• 1

6. COMPARISON OF SIMULATION AND ACTUAL RESULTS

6.1. Interpretation of the Validation Results

Figures 6-la and 6-lb show the input and the output produced by

running the validation testprogram ("VALCMD.C", see Appendix B) on the

simulated 86/12 single board computer. The validation of N.mPc as a CAB

 tool for microprocessor simulations is done by comparing these results

to the ones produced when "CMD.C" (or "HEXCMD.C") is run on the actual

Intel SEC hardware. The program "CMD.C" only differs from "VALCMD.C" in

the routines used for I/O operations. The results are identical if

identical "angles" are entered by the user when running "CMD.C" on the

simulated hardware or "CMD.C" (or "HEXCMD.C" for output in hex numbers)

on the actual Intel SBC hardware. Figures 6-2a and 6-2b show the results

obtained when running "HEXCMD.C" (see Appendix B) on an actual Intel

86/30 SBC using the same input angle as the one used to produce the

simulation output shown in Figures 6-la and 6-1b.

Thus the validation testprogram, written in the high level language

C, and implementing a discrete, scaled version of the "Simple Attitude

Control Algorithm" (SACL), was developed and run on both simulated and

actual Intel SEC hardware, producing identical results.

48

s ho de(
USERtDISKI:CICLI.NtirC.READYS14.86VAL)

S see val
run val

tielco.e to 14.mPe/88S
tr.mPe: val

• der 1024 :tr
• der 08.1a :cc
• de" Oxaa :ds
• der 280 :sr
• ru
MAX 11:45134 VAL 	 CPW, 00100131.97 P 1' , 1926 10 , 2121 4E8.307
Enter anglefd 	.2 ditits01
01
0000 00000000 00000000 0000 0000 0000

0001 00000020 00000004 6451 6451 1600

0002 00000020 0000000C 3CD3 3CD3 1600

0003 00000020 00000014 2522 2522 1600

0004 00000020 0000001C 16E 1' 16E1' 1600

0005 00000020 00000024 0E64 0E64 0E64

0006 00000020 0000002C 0946 0946 0946

0007 00000020 00000034 0635 0635 0635

0008 00000020 0000003C 045E 045E 045E

0009 00000020 00000044 0344 0344 0344

0004 00000020 0000004C 0291' 02914 02914

00014 00000020 00000054 0236 0236 0236

000C 00000020 0000005C 01F9 01F9 01F9

00014 00000020 00000064 01145 01D5 01145

000E 00000020 0000006C OICO OICO OICO

000F 00000020 00000074 01 144 01144 01P4

0010 00000020 0000007C 01414 01414 0141'

0011 00000020 00000084 0149 0149 0149

0012 00000020 0000008C 0147 0147 0147

0013 00000020 00000094 0146 0146 0146

0014 00000020 0000009C 01AS 0145 0145

0015 00000020 00000044 0146 0146 0146

0016 00000020 0000004C 0146 0146 0146

0017 00000020 00000084 0147 0147 0147

0018 00000020 00000014C 0147 0147 0147

0019 00000020 000000C4 0148 0148 0148

0014 00000020 000000CC 0149 0149 0149

00114 00000020 00000004 0144 0144 0144

001C 00000020 000000 14C 0144 0144 0144

001D 00000020 000000E4 OIAB 01 414 01414

001E 00000020 000000EC 01 4C 01AC 014C

001F 00000020 000000F4 01 41' 0141' 014D

0020 00000020 000000FC 014E OIAE 014E

0021 00000020 00000104 014E OtAE 014E

0022 00000020 0000010C 01 4F 014F 0141'

0023 00000020 00000114 OM 0180 OM

0024 00000020 0000011C 01E41 Olbt

0025 00000020 00000124 011'2 01E42 01142

0026 00000020 0000012C 01112 01142 01 142

Figure 6-1a: Running the Validation Program on the Simulated 86/12

0026 00000020 0000012C 01 1' 2 01B2 0111 2

0027 00000020 00000134 01143 01143 OM

0028 00000020 0000013C 01P4 01144 01E44

0029 00000020 00000144 01E45 OM 0114 5

002A 00000020 0000014C 01146 01P6 01P6

002 14 00000020 00000154 01146 01E46 0114 6

002C 00000020 0000015C 01 14 7 01147 01 1' 7

002D 00000020 00000164 01E8 01148 01e8

002E 00000020 0000016C 01E49 01149 01 14 9

002F 00000020 00000174 OIDA OIDA 01PA

0030 00000020 0000017C OIDA °IPA 0114 A

0031 00000020 00000184 011414 OIDD 0114 14

 0032 00000020 0000018C 01ec OIDC 0114 C

0033 00000020 00000194 0114 1' 01 141' 01 141'

 0034 00000020 000001 9C 0114E 0114E OIDE

0035 00000020 000001A4 01 14E OIDE OIDE

0036 00000020 00000IAC OleF 01 14F 0114F

0037 00000020 000001E4 OICO OICO 01C0

0038 00000020 00000 114C OICI OICI 01C1

0039 00000020 00000 1 C4 01C2 01C2 01C2

003A 00000020 000001CC 01C2 01C2 01C2

003 14 00000020 000001 11 4 01C3 01C3 01C3

003C 00000020 000001DC 01C4 01C4 01C4

003 14 00000020 000001E4 0105 0105 0105

003E 00000020 000001EC 0106 0106 0106

003F 00000020 000001F4 0106 0106 0106

0040 00000020 000001FC 01C7 01C7 01C7

0041 00000020 00000204 01C8 01C8 OICB

0042 00000020 0000020C 01C9 01C9 01C9

0043 00000020 00000214 OICA OICA OICA

0044 00000020 0000021C OICA OICA OICA

0045 00000020 00000224 01C 14 01Ce 01C14

0046 00000020 0000022C OICC OICC OICC

0047 00000020 00000234 OICD 01CD OICD

0048 00000020 0000023C OICE OICE OICE

0049 00000020 00000244 OICE OICE OICE

004A 00000020 0000024C OICF OICF OICF

004 14 00000020 00000.254 OIDO 01D0 01D0

004C 00000020 0000025C 01 11 1 OIDI OIDI

004D 00000020 00000264 01D2 01 14 2 01 14 2

004E 00000020 0000026C 01 142 01D2 0111 2

004F 00000020 00000274 01D3 01D3 01 14 3

0050 00000020 0000027C 01 14 4 0104 01 11 4

Enter ang1e(de0rees,2 dits):
MAX 09:00:14 VAL 	CPW, 04:50:17.19 PF.19311 10 , 5890 FIFH -, 319
a y

Figure 6-1b: Running the Validation Program on the Simulated 86/12

run hexemd
Enter the commanded andle

O 0 0 0 0 0
1 20 4 6451 6451 1600
2 20 c 3cd3 3cd3 1600
3 20 14 2522 2522 1600
4 20 le I6eb 16eb 1600
5 20 24 e64 e64 e64
6 20 2e 916 946 946
7 20 34 635 635 635
• 20 3c.45e 45e 45e
9 20 44 . 344 344 344
a 20 4e 29b 29b 291'
b 20 54 236 236 236
c 20 5e 11'9 lf9 1f9
d 20 64 1d5 1d5 1d5
e 20 6e lc° lc° le°
f 20 7 4 1b4 1b4 1b4
10 20 7e lad lad lad
11 20 84 la9 la? le?
12 20 Oc 1a7 1a7 1a7
13 20 94 la6 1a6 la6
14 20 9e la5 la5 la5
15 20 a4 la6 la6 1a6
16 20 ac la6 146 la6
17 20 b4 la7 1a7 1a7
18 20 bc la7 1a7 1a7
19 20 e4 la8 la8 la8
la 20 cc la9 la9 le?
lb 20 d4 laa laa laa
le 20 dc lac laa laa
Id 20 e4 lab lab lab
le 20 cc lac lac lac
If 20 f4 lad lad lad
20 20 fc lac lac lae
21 20 104 lae tac lac
22 20 10e laf laf laf
23 20 114 1b0 1 1,0 1b0
24 20 11e 1bl 1bl 1bl
25 20 124 1b2 1b2 1b2
26 20 12e 11,2 1b2 1b2
27 20 134 1b3 1b3 1b3
28 20 I3c 1b4 1b4 1b4
29 20 144 1b5 1b5 1b5
2e 20 14e 11,6 11,6 1b6
2b 20 154 1b6 1b6 1b6
2e 20 15e 1b7 11,7 1b7
2d 20 164 1b8 1b8 1b8
2e 20 16e 1b9 lb? 1b9
2f 20 174 lba lba lba
30 20 17e lba lba lba
31 20 184 lbb lbb Ibb
32 20 18e the lbc lbc
33 20 194 lbd lbd lbd
34 20 19e lbe lbc lbe
35 20 la4 the lbe lbe
36 20 lac lbf lbf lbf
37 20 1b4 lc° lc° lc°
38 20 lb.: tel tel lei
39 20 1c4 1e2 1e2 lc?
3e 20 Ice 1c2 1e2 1c2
3b 20 Id4 1e3 le3 1e3
3e 20 ide tel le4 1e4
3d 20 leA 1c5 1c5 1c5
3e 20 lec 1e6 1e6 1e6
3f 20 1f4 1e6 1c6 1e6
40 20 Ifc 1c7 1e7 le7
41 20 204 Ice 1c8 Ica
42 20 20e le? le? 1c9
13 20 214 Ica lea Ica
44 20 21e Ica Ica lca
45 20 224 lcb lcb Icb
46 20 22e Ice Ice Ice
47 20 234 lcd lcd lcd
48 20 23e Ice Ice Ice
49 20 244 Ice Ice Ice
4e 20 24e lef lcf lef
Ab 20 254 Id0 Id0 1d0
4e 20 25e Idl Idl Idl
Ad 20 264 1d2 1d2 1d2
4e 20 26e 1d2 112 1d2
4f 20 274 1d3 1d3 1d3
SO 20 27e 1d4 1d4 1d4

Figure 6-2a: Running the Validation Program on the actual Intel SBC Hardware
(output in hex)

run cmd
Enter the commanded anale

0 0 0 0 0 0
1 32 4 25681 25681 5632
2 32 12 15571 15571 5632
3 32.20 9506 9506 5632
4 32 28 5867 5867 5632
5 32 36 3684 3684 3681
6 32 41 2374 2374 2374
7 32 52 1589 1589 1589
8 32 60 1110 1118 1118
9 32 68 836 836 836
10 32 76 667 667 667
11 32 84 566 566 566
12 32 92 505 505 505
13 32 100 469 469 469
11 32 108 448 418 448
15 32 116 436 436 436
16 32 124 129 429 429
17 32 132 125 425 425
18 32 140 423 423 423
19 32 148 122 422 422
20 32 156 421 421 421
21 32 164 422 422 422
22 32 172 122 422 422
23 32 180 423'423 423
24 32 188 423 123 423
25 32 196 424 424 424
26 32 204 425 425 425
27 32 212 426 126 426
28 32 220 426 426 426
29 32 228 427 427 427
30 32 236 428 428 428
31 32 241 429 429 429
32 32 252 430 430 430
33 32 260 130 430 430
34 32 268 431 431 431
35 32 276 432 432 432
36 32 284 433 433 433
37 32 292 434 434 434
38 32 300 134 431 434
39 32 30 8 435 435 435
40 32 316 436 136 436
41 32 324 437 437 137
42 32 332 438 438 438
43 32 340 438 438 438
44 32 348 439 439 439
45 32 356 440 410 440
46 32 364 411 441 111
17 32 372 442 442 412
48 32 380 412 442 442
49 32 388 143 413 443
50 32 396 414 414 444
n1 32 404 445 445 115
52 32 112 116 416 146
53 32 420 446 446 446
54 32 428 447 417 447
55 32 436 448 448 448
56 32 414 449 449 449
57 32 452 450 450 450
SO 32 460 450 450 450
59 32 468 451 451 451
60 32 176 152 452 152
61 32 404 453 453 153
62 32 192 454 451 154
63 32 500 454 454 454
64 32 508 455 455 455
65 32 516 456 456 456
66 32 524 457 457 457
67 32 532 458 458 158
68 32 540 458 458 458
69 32 548 459 459 459
70 32 556 460 460 460
71 32 564 461 461 461
72 32 572 462 462 462
73 32 580 462 462 462
71 32 588 463 463 163
75 32 596 464 164 464
76 32 604 165 465 465
77 32 612 466 466 466
78 32 620 466 466 466
79 32 628 467 467 467
80 32 636 468 468 468

Figure 6-2b: Running the Validation Program on the actual Intel SBC Hardware
(output in decimal)

6.2. Performance of Simulated and Real Hardware

As another application for the high level software capabilities of

the 86/12 simulation developed during this work, it was decided to run

performance tests using a high level benchmark program in C. 	This

program could be run on any machine equipped with a C compiler. 	The

machines being compared in this case were the VAX 11-780, the iSBC 86/12

single board computer and a simulation of the 86/12 using N.mPc on the

VAX 11/780. To get reasonable and measurable execution times for the

"sieve" benchmark, the program was executed 100,000 times on the VAX and

on the 86/12 while one single execution of the "sieve" on the 86/12

simulation was sufficiently long. The factor 100,000 was later taken

into account when comparing the relative performance of each processor.

The "sieve" benchmark uses the "long integer" data type for variables on

all three machines. The execution times on the VAX were measured in CPU

time. The details about how the "sieve" benchmark was run on different

machines are to be found in Appendix D.2. The performance comparison of

real machines to a simulated one shows of course a significant

performance penalty due to the simulation overhead. The following

execution times were measured when running the "sieve" benchmark:

VAX 11/780 : 17 sec. for 100,000 runs of "sieve"

1SBC86/12 : 211 sec. for 100,000 runs of "sieve"

Simulation of the iSBC 86/12 using N.mPc on a VAX 11-780: 402

sec. for one run of "sieve"

Expressed in performance ratio (P for Performance) this means:

VAX : P8612 : 'Simulation 8612 = 2,364,000 : 190,000 : 1

53

1

Figure 6-3 shows the same results in a graphical form. 	These

performance comparisons only serve to get a notion of the order of

magnitude of the performance penalty caused by the N.mPc simulation

overhead and do not claim to be exact as compiler differences may

influence the results. See Appendix D or the "readme" file in the

"86sieve" directory for details on the performance comparisons.

54

"SIEVE" execution time on 86/12 Simulation
Logarithm of Performance Ratio

"SIEVE" execution time on real processor

2,364,000

1,000,000

190,000

100,000

10,000

1,000

100

10

1

.1

VAX 11-780 Intel 86/12 	86/12 Simulation
(on VAX 11-780)

Processors

Figure 6-3

Performance Penalty due to Simulation using N.mPc

7. SUMMARY AND CONCLUSIONS

The 'following is a summary of the main results . of the study

, presented in this report:

A simulation of an Intel iSBC 86/12 single board computer was

performed successfully. 	It included an 8086 CPU, a dual port RAM,

a ROM, a programmable interrupt controller (PIC), a Multibus

interface, a global memory and an I/O facility based on N.mPc's

"raw memory" feature. These modules were designed and thoroughly

tested and debugged during the course of the work.

The program "OTOL" was used to transfer object code produced by the

cross compiler to the "1.out" format needed by N.mPc . The program

was subsequently upgraded in order to handle code intended to be

run on an 8086 CPU. This made it possible to do software

development for the 86/12 simulation in the high level language

"C", using the C 8086 cross software development tools by Lantech

Inc.

The validation of N.mPc as a CAE tool for microprocessor .

simulations was performed by implementing a "Simple Attitude

Control Algorithm" as a "C" program, which was successfully run on

the simulated 86/12 single board computer as well as on the actual

Intel SBC hardware. The validation not only established the

reliability of the simulated hardware but also demonstrated the I/O

 capabilities of the 86/12 simulation. The development of the

validation program in "C" demonstrated the potential of the high

level software development path introduced as a result of this

work.

The work reported in this document was an opportunity to acquire

considerable expertise with the CAE tool N.mPc. 	As a result, it has

56

been felt that N.mPc is in fact a valuable tool in the development of a

computer system.

For 	the case of the Intel 86/12 simulation the 	following

observations were felt to be strong points of the CAE tool N.mPc:

The design of the hardware modules of the simulation of the

86/12 SBC showed N.mPc's flexibility; making hardware changes

due to new requirements or correcting design errors could be

performed easily and efficiently.

- The debugging of the description of the 8086 CPU demonstrated

the power of N.mPc's monitoring, 	control and debugging

features which allow the tracing of errors in hardware

descriptions.

- This work showed the feasibility of a high level language

software development for N.mPc microprocessor simulations.

- The major effort of writing a hardware description of the 8086

CPU could be reduced by using a description from the library

of descriptions of existing microprocessors (this library was

delivered with the N.mPc system).

The following observations are based upon the 86/12 simulation work

and outline some difficulties experienced with N.mPc:

The C programs which were executed on the simulated 86/12 SBC

were limited to be of a moderate size. 	This restriction was

due to the simulation performance penalty resulting from the

simulation overhead.

- Errors 	in the 8086 CPU description from 	the 	N.mPc's

microprocessor description library required a considerable

debugging effort. Just as the testing of VLSI chips is a major

57

problem of today's semiconductor industry, the same problem

occurs in N.mPc descriptions of complex hardware modules. 	As

in all software endeavours, the larger the programs one can

run successfully, the more confidence one can have in a

microprocessor description, for example. At the present time,

there is . no straightforward, systematical way to find all the

possible bugs in a complex hardware description.

The VMS version of the N.mPc run-time environment behaved

strangely, at times, when faced with some subtle hardware

description errors. The result was a catastrophic exit to VMS

which left one unable to ascertain the cause of the failure

systematically.

Some general conclusions can be drawn from the experience gained

during the work documented in this report. Some of the strong points of

a design approach using computer aided design tools such as N.mPc are

listed below:

N.mPc introduces the inherent flexibility of software into

hardware design.

Complex computer systems can quickly be simulated by taking a

few hardware descriptions from a library and "interconnecting"

them in a topology file.

N.mPc separates the logical hardware design problems from the

technical ones (timing, etc.) so that they can be solved

separately.

N.mPc not only offers an entirely programmable software

development environment for microprocessor simulations but

also allows to use of commercial cross software development

58

packages. These packages make it possible to develop software

for microprocessor simulations in a high level language.

Of course, the advantages gained by the use of CAE tools come at a

price:

The 	performance penalty paid by N.mPc microprocessor

simulations is significant and clearly limits the size of

software to be run on a simulated processor. This simulation

performance penalty will be alleviated by the ever increasing

performance and decreasing cost of host computer systems.

N.mPc's library of hardware descriptions should be improved in

order to contain descriptions of existing hardware elements

(microprocessors, etc.) with a reliability that is similar to

the actual hardware. 	The hardware designer using the N.mPc

could then directly use these descriptions without having to

worry about debugging.

It is interesting to note that the design of a fault tolerant

computer architecture for space applications (see Figure 7-1) was part

of the work done under this contract. In that section of the work, a

fault tolerant multiprocessor architecture was developed and it was

decided to simulate the operations of such an architecture with N.mPc.

The 8086 CPU was chosen as the generic processor for the elements of the

multiprocessor system. N.mPc makes possible the simulation of several

8086 based processing elements at a very low incremental effort. This is

where a CAE tool like N.mPc really shows its inherent power.

59

CP

(86/12)

CP

(86/12)

CP

(86/12)

PERIPHERAL NETWORK (3 IPs)
(three 86/12)

.==1:

1
PP

(86/12)
P P

86/12)
p p

(86/12)

DEVICES

CP = Central Processor
IP = Interface Processor
PP = Peripheral Processor

Figure 7-1: Fault Tolerant Computer Architecture

REFERENCES

[1] Ordy, G.M., "N.mPc: Runtime User's:Manual," Department of Computer
Engineering and Science, Case 'Western Reserve University, 1979.

[2] Ordy, G.M. and Rogers, L.A., "N.mPc: MetaMicro User's Manual,"
Department of Computer Engineering and Science, Case Western
Reserve University, 1979.

[3] Rogers, L.A., "N.mPc: Linking Loader User's Manual," Department of
Computer Engineering and Science, Case Western Reserve University,
1979.

[4] Ordy, G.M., "N.mPc: 	Ecologist User's Manual," Department of
Computer Engineering and Science, Case Western Reserve University,
1979.

[5] Leffler, S.J., "PP: 	A Post-Processor for N.mPc," Department of
Computer Engineering and Science, Case Western Reserve University,
1979.

[6] Rogers, L.A., "A Generalized Linking/Loader for the Allocation of
Code in Vertical and Horizontal Machines," Master of Science
Thesis, Department of Computer Engineering and Science, Case
Western Reserve University Report CES-79-6, August 1978.

[7] Streit, M., "VAX 11-780 CAE Tools for Multiprocessor Simulation:
N.mPc User's and Application Manual and Installation Guide", a
Report prepared by Intellitech, September 1984.

[8] Streit, M., "Simulation of the SBP 9989 Microprocessor Using the
Computer Aided Engineering Tool N.mPc on a VAX 11/780", a Report
prepared by Intellitech, September 1984.

[9] Parke, 	F.I., "An Introduction to N.mPc Design Environment",
Proceedings of the ACM/IEEE Design Automation Conference, June
1979.

[10]Rose, C.W., Rogers, L.A., and Straubs, R.V., "The N.mPc System
Description Facility," Proceeding of ACM/IEEE Design Automation
Conference, June 1979.

[11] Hewitt, D.C., Parke, F.I., and Rose, C.W., "The N.mPc Runtime
Environment," 	Proceedings of the ACM/IEEE Design Automation
Conference, June 1979.

[12] Hewitt, D.C., "The Runtime Environment for N.mPc, An Adaptable
System to Support the Development of Microprocessor-Based Systems",
Master of Science Thesis, Department of Computer Engineering and
Science, Case Western Reserve University Report CES-79-7, January
1978.

61

REFERENCES CONTINUED

[13] Jiang, W., "A Distributed Kernel Runtime Environment for Large
N.mPc System Simulation", Master of Science Thesis, Department of
Computer Engineering and Science, Case Western Reserve University
Report CES-82-7, August 1982.

[14] Boucouris, S., "Design and Analysis of Fault Tolerant Architectures
for Multi-Microprocessor Systems", Intellitech Technical Report,
October 1984.

[15] Ordy, G., "N.2 ISP Users's Manual", January 1984.

[16]Mahmoud, 	S.A., 	"VAX 	11/780 	CAE Tools for 	Multiprocessor
Simulation - N.mPc Detailed System Description", September 1984.

[17] Straubs, R., "ISP' User's Manual", 1978.

[18] "Introduction to N.mPc System Programs", Technical Report, Case
Western University, 1980.

[19] Lantech Systems Inc., "8086 C Cross Software Tools", 1983.

[20] Boucouris, 	S., 	"Conceptual 	Design 	of 	a 	Fault 	Tolerant
Multiprocessor 	Operating System and the Implementation of a
Prototype Kernel", Intellitech Technical Report, October 1984.

[21] Ordy, G., "N.mPc under VMS-Preliminary Paper", 1984.

[22] Ordy, G., "A Simple VAX N.mPc Post Processor", January 1984.

62

APPENDIX A:

Complete Directory of Intel :SBC 86/12 Files

.these elements can be found. The ISP source files containing the

"max86cpu.isp"

"max86mem.isp"

"dpram.isp"

"pic.isp"

"interrupt.isp"

"terminal.isp"

"multint86.isp"

"globalmem.isp"

- 	Description file
of 86/12 topology: val.t"

The listings of the hardware descriptions that are part of the

simulated 86/12 single board computer are too long to be appended to

this manual. The following list indicates the file names used for each

element of the 86/12 model and the names of the directories in which

descriptions of the elements of the simulated Intel 86/12 single board

computer are:

- 8086 CPU:

- ROM:

- Dualport RAM:

PIC:

- Interrupt Generator:

- Raw Memory:

Multibus Interface:

Global Memory:

The above listed files of the simulated 86/12 single board computer

are found in the following directories in the present N.mPc directory

structure presented on the next page:

"86 sieve". 	Directory listings of these four directories are also part

of this Appendix.

"lib 8612, "86 demo", "86 val",

MI MI NM BM MI 	 1111111 MI 	INII

SYS5SY8DISK:IPACKACE1

86build

USER$DISKI:I1c111

1og86.com 	logeas4.com 	logsys.com 	login.com 	nmpc 	 otol

USER5D1SKI: 1LANTECH1

astosend

as8086.sym

N:47C

softgen llb 	 86softdev 	 readysim 	update 	bin 	library 	manuals 	softgen 	source

mmpd 11c1 liblOOL m1crol1b 1168612 1168085 	1161802 1169989 as86 	1116 	c86 86demo 	86va1 	86sieve 	86int 	8085 	1802demo SLP9989 	F1001. 	mult185

The N.mPc Directory Structure on VAX/VMS

set def 86val
$ dir3

Directory USER$DISK1:EICL1.NMPC.READYSIM.86VAL]

OREADME.F8T;9
CMD.MAI;2
DPRAM.ISP;11
8BLCORE.;4
GLOBALMEM.OBJ;7
HEXCMD.OBJ;1
INTERRUPT.OBJ;7
MAX86MEM.ISFq.36
11ULTINT86.OBJ;21
PRINT.Si3
ROMCORE.;77
SACLZ.EXE;1
SACLZI.EXU2
TERMINAL.OBJ;5
VAL.F;46
VAL.X;184
VALCMD.Sil

CMD.Ci2
CMD.MPIA2
DPRAM.OBJ;6
GBLCORE.P;219
HEXCMD.C;2
IN.8;3
MAX86CPU.T.SP;5
MAX86MEM.OBJ;44
PIC.T8P;24
RAMCORE.;98
ROMCORE.P;185,
SACLZ.F0M2
SACLZI.FOR;3
VAL.D;257
VAL.S;46
VALCMD.Ci2

CMD.EXEi2
CMD.OBJ;1
EDTIMI.EDT;1
GLOBALMEM.ISP;10
HEXCMD.EXEil
INTERRUPT.ISPU
MAX86CPU.OBJ;5
MULTINT86.ISP;27
PIC.OBJ;20
RAMCORE.P:607
SACLZ.DAT;3
SACLZI.DATi5
TERMINAL.ISPi9
VAL.EXE;44
VAL.T;s5
VALCMD.OUT;3

Total of 49 files.
$ set def 86demo
$ dir3

Directory USER$DISK1:EICL1.NMPC.READYSIM.86DEMO]

OREADME.EST;5"
86A8S.S;3
DPRAMfOBJ;6
GLOBALMEM.ISP;10
INTERRUPT.OBJ;5
MAX86CPU.OBJ;183
MULTINT86«ISP;27
PIC.OBJ;19
PRIME.OUT;3
PRIME.Si3
ROMCORE.;20
TERMINAL.OBJP1
VAL.8;18

86ASMOTOL.COM ;8
CC8086.COMil
EDTIMI.EDTil
GLOBALMEM.OBJU
MAX86CPU.DAT;2
MAX86MEM.ISP;36
MULTINT86.OBJ;21.
PRIME.Ci4
PRIMEeSi5
PRIME.S;2
ROMCORE.;19
VAL.EXE;17
VAL.T;4

86A 85 .OUT;1
DPRAM.ISP;11
OBLCORE.;4
INTERRUPT.ISP;1
MAX86CPU.ISP;246
MAX86MEM.OBJ;44
PIC.I8P;1
PRIME.HEM3
PRIME.Si4
RAMCORE.;75
TERMINAL.ISP;1
VAL.F;18

Total of 38 files.

set def 86int
$ dir3

Directorm USER$DISK1:[ICL1.NMPC+READYSIM.86IMT]

OREADME.FST;2
OBLCORE.P;82
MAX86CPU.DAT;1
RAMCORE.P;470
VAL.D;143
VAL. 8;37

EDTIMUEDT;1
INTDEM0.0UTi5
MAX86CPU.0BJ;181
ROMCORE.;11
VAL+EXE;35
VAL.T;5

OBLCORE.;4
INTDEMO.S;1
RAMCORE.i91
ROMCORE.P;83
VAL.F;37
VAL.M.118

Total of 18 files«
$ set def lib8612
$ dir3

Tiirector.2 USER$DISK1:EICL1.NMPC.LIB.LIB86123

OREADME.FST;2
GLOBALMEM.ISP;10
INTERRUPT.OBJ;7
MAX86CPU.OBJ;184
MULTINT86+ISP;27
PIC.OBJ;20

DPRAM.ISP;11
GLOBALMEM.0BJf7
MAX86CPU.DAT;3
MAX86MEM.ISP;36
MULTIMT86.OBJ;21
TERMINAL.ISP;9

DPRAM.OBJ;6
INTERRUPT.ISPU
MAX86CPU«ISP;246
MAX86MEM.OBJP14
PIC.ISP;24
TERMINAL.OBJ;5

Total of 18 files«
$ set del' 86sieve
$ dir3

Directorm, USER$DISK11EICL1+NMPC.READYSIM.86SIEVE3

OREADME.FSTP1
EDTINI+EDT;1
NMPCSIEVE«C;6
RAMCORE.;75
ROMCORE.P;37
SIEVE.OBJ;1
VAL.F;12
VAL.X;72.
VAXSIEVE.OBJ;1

86SIEVE«C;2
OBLCORE.i4
MMPCSIEVE«OUT;6
RAMCORE.P;124
SIEVE.C;1
VAL.D;80
VAL.8;12
VAXSIEVE.CP1

86SIEVE.S;1
GBLCORE.P:36
MMPCSTEVE.S;3
ROMCORE.;15
SIEVE«EXE;2
VAL.EXE;12
VAL.T;5.
VAXSIEVE.EXE;6

Total of 25 files.

APPENDIX B:

1) Mathematical Basiss of the "Simple Attitude Control Algorithm"

B
1
(t)

y (0

e c (t) 	e

s + p

s + np

T
int

=0.25s

A
1
(t) K

I

(wheel bias)

---*
y (t)

Pulse
Duration

c(t)

--)

o(t)

T.
int

- 1. 0

I.

1—>
1 . 0

Simple Attitude Control Loop(SACL):

Lead/Lag Filter

commanded 	Proportional
angle 	Term 	 Integral

Term

PITM

Input: 9 c (t), Commanded Angle

Output: Ym (t), Pulse Duration

F(k.-1) + p(z+1)
F(z-1) + np(z+1)

Z transformation based on Tustin's Method

	

let s = 2 	(z-1) — 	

	

T 	(z+1) where T = Tint = 0.25s

let F _ 2

(i) lead/lag filter
(z- 1)

e4-1) 	 G (z) - T 	(Z+1) 	 G 1 (s) P
s+np 	J-

7i; (zE171) 	nP

(F+p) z+p-F
(F+np) z+np -F

a
11

z+ a
10

b 11
z+ b

10

where a
10

= p-F ' a
11

= F+p

b10 	
np-F, b 11 = F+np

(ii) integral term
K 	 K

I 	
K
I 	(z+1) 	

K
I

z+ K
I I

G
2
(s) = -

-s
- G

2
(z) - 	 _ 	 =

2 (z.:1) 	F (z-1) 	Fz-F
--T- (z+1)

a ll z+ a20
b 21 z+ b 20

where a
20

= KI' a
21

= FI

b20 = -F ' b 21 = F

difference equations

C (s) 	 1 (s) G 1 (s) - 	 G2(s) -
A 1 (s) 	 A

1 (s)

C(z) 	
a
11

z+ a
10 	

B 1 (z) a21 	a20
A

1
(z) 	b 11 z+ b 10 	 A

1
 (z) 	b21 z+ b 20

)
C(z) (b ll z 	b10) =

A
1
(z) (a

11
z + a 10)

b11C (K+1) 	
b lOC (K) = all

A1 (K+1)+ a loA l (K)

C(K+1) = (
a ll A

1 (K+1) + amyl° -b lOC(K)) /b ll

C(K) = (
a llA l (K) 	a10A1 (K-1) -blOC(K- 1)) /b

il

Bi(z
) (b21 z 	b20) = Al (z) (a21z 	a20)

b
21

B
1
(K+1) + b

20
B

I
(K) = a

21
A

1
(K+1) + a

20
A

1
(K)

B I (K+1) = (a21A 1 (K+1) + amAl(K) -b20BI(K))/b21

B
1
(K) = (a

21
A

1
(K)+ a

20
A

1
(K-1) -b

20
B

1
(K-1))/b

21

0(K) = B 1 (K) + C(K)

A
1
(K) = K

A
- Y

e
(K)

The resulting algorithm is fully implemented in the SACLZ program.

The SACLZI program is scaled in order to use integer variables only.

SI 1

1/4

80

80/4

MI UM MI MI 	 Ma 11111i MI MR RIM 	 MIMI

To Compare Scaled Integer Results Against Real Results:

A 1 (t) 	 B 1
 (t) 	 0(t) 	 YI(t) 	 YM(t)

-4 0.25 	 32.0 	 3.94 x 10 	 25.6 	 25.6 	 0.25

32 	 4 	 25681 	 25681 	 5632

conversion 32/1
=0.25 	=32

4/10,000 	25681/1,000 	25681/1,000 	5632/22528
= 4 x 10-' 	=25.7 	=25.7 	= 0.25

20.0 	 32.0 6.27 x 10
-2

0.463 	 0.463 2.05 x 10
-2

S I 32 636 	 468 	 468 	 468

conversion 32/1
=20 	 =32

636/10,000 9
= 6.36 x 10-'

468/1,000
= 0.468

468/1,000
= 0.468

468/22528
= 2.08 x 10 -2

(r = real, SI = scaled integer)

For the scaled integer representation we now have:

i) tint x 4

the time interval, At, is scaled from 0.25 sec. bD

1 sec., hence by a factor of 4. However the difference

equations still use tint = 0.25 sec. in their

implementation

ii) B
1 	

x 10,000

the integrated output is scaled by a factor of

10,000

iii) 0(t) x 1,000

the PID output is scaled by a factor of 1,000

iv) Y1 (t) x 1,000

the input to the PWM is scaled by a factor of 1,000

v) Ym(t) x 5632x4

the output of the PWM is scaled by a factor of

22528, this scale factor is the combination of

1,000 from Y 1 (t), 5.632 KP, and 4 from tint.

o (t

Y
e
(t)

32

A
1

(

K
A

*K
I

B
1
(t)

25

C(t)

25

0(t)

0.25

Y
m
(t)

Actual
Pulses

Theoretical Results from the SACL Algorithm(based on a continuous system)

1

t 	At 	2At 	3At 	4At 	5At 	6At 	7At 	8At 	9At 	10At 	llAt 	12A1 0

4 	{ 	1

)

I
I
I

KA
SSV= n

1 	KA
/n + K

A
K
I
t

76At 	78At 	80At

--------4.-----------,---________ 	0.05[

I 	1 	1 	1 	i

	

7 	i 	11 	Ji 	

PROGRAM SACLZ
C
C THIS PROGRAM CONSISTS OF A SIMPLIFIED ATTITUDE
C CONTROL LOOP ALGORITHM BASED ON A PID CONTROLLER
C COMBINED WITH A PWM.
C
C WRITTEN BY 	M. SAVOIE - JUNEy 1984.
C
C The attitude control algorithm computes a new PWM
C outPut Pulse duration at everm 250 m soc. based on
C the measured attitude error, For this simPlified
C case, since there is no feedbackp the attitude
C error is assigned the value of the commanded ang]e.
C The PID controller output is added to the wheel
C bias before hein processed bm the PWM. The outPut
C Pulse duration of the PWM represents a fraction of
C the time interval between samrles and is calculated
C based on the magnitude and sign of the signal applied
C to it+
C
C DEFINITION OF VARIABLES
C 	KA 	- 	PID input gain (---)
C 	KI 	- 	PHI integral gain (1/sec.)
C 	N 	- 	PID Prenuencu ratio (---)
C 	P 	- 	PID lead freeuencu (rad/see.)
C 	KP 	- 	PWM gain (1/deg.)
C 	TINT 	- 	integration steP size (see.)
C 	TAU 	- 	PID time constant (sec.)
C 	YEK 	- 	attitude error angle (de .)
C 	AK 	- 	PID proportional output (de.)
C 	BK 	- 	PHI integral output (de g.)
C 	CK 	- 	PHI lag output (deg.)
C 	OK 	- 	PID controller output (de g.)
C 	TBK 	- 	wheel bias (deg.)
C 	YIK 	- 	PWM input (de.)
C 	YMK 	- 	PWM output (duration in sec.)
C 	THETAC - 	commanded angle (dei.)
C
C INITIALIZATION

REAL KA,KIrN,PpKP,TINTpF,
1 	A107A119D107B117
1 	A20yA21pB20pB21,
1 	TEŒPERRrYEKPAKPAKM1rBKrBKM1pCKsCKM1YOKs
1 . 	YIKIYMK,T7THETAC
OPEN(UNIT=. 17TYPE='NEW'FNAME'SACLZ.DAT')

C CONSTANTS
KA -32.0
KI.-:986E-5

1

N=80.0
P=0.0253
KP=1.0/5.632
TINT=0.25
F=2.0/TINT
TBN=0.0

C LEAD/LAG FILTER
A10=P-F
A11=F+P
B10=N*P-F
B11=F1-N*P

C INTEGRAL TERM
A20=KI
A21=KI
B20=-F
221=F

C INITIAL CONDITIONS
ERR=0.0
YEK=0.0
AK=0.0
AKM1=0.0
BK=0.0
BKM1=0.0
CK=0.0
CKM1=0.0

C MAIN LOOP
T=0.0
TYPE *r' Enter the commrsded anfile:
ACCEPT *,THETAC
DO WHILE (T .LE. 20.0)

YEK=ERR
AKM1=AK
AK=KA*YEK
BKM1=DK
BK=(A21*AK-FA20*AKM1-B20*BKM1)/B21
CKM1=CK
CK=(All*AKi.A10*AKM1-B10*CKM1)/B11
OK=BK+CK
YIK=OK-FTBK
YMK=KP*YIK
IF (ADS(YMK) .LE. 1.0) THEN

YMK=YMK*TINT
ELSE

YMK=SIGN(1.0rYMK)*TINT
ENDIF
WRITE(1r10)T.AKrBKrOKrYIKrYMK
ERR=THETAC
T=T+TINT

ENEIDO
10 	FORMAT(1X7F642y 5(Ur E10.3))

STOP
• ENO

run sac:
Enter the commanded anolc:
1
FORTRAN STOP

eat saclz.dat
0.00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00
0.25 0.320E+02 0.394E-03 '0.256E+02 0.256E+02 0.250E+00
0.50 0.320E+02 0.118E-02 0.151E+02 0.154E+02 0.250E+00
10 .75 0.320E+02 0.197E-02 0.937E+01 0.937E+01 0.250E+00
1.00 0.320E+02 0.276E-02 0.575E+01 0.575E+01 0.250E+00
1.25 0.320E+02 0.355E-02 0.359E+01 0.359E+01 0.159E+00
1.50 0.320E+02 0.434E-02 0.230E+01 0.230E+01 , 0.102E+00
1.75; 0.320E+02 0.513E-02 0.154E+01 0.151E+01 0.682E-01
2.00 0.320E+02 0.592E-02 0.108E+01 0.108E+01 0.480E-01
2.25 0.320E+02 0.670E-02 0.809E+00 0.809E+00 0.359E-01
2.50 0.320E+02 0.719E-02 0.647E+00 0.647E+00 0.287E-01
2.75 0.320E+02 0.828E-02 0.551E+00 0.551E+00 0.215E-01
3.00 0.320E+02 0.907E-02 0.194E+00 0.494E+00 0.219E-01
3.25 0.320E+02 0.986E-02 0.461E+00 0.461E+00 0.204E-01
3.50 0.320E+02 0.106E-01 0.441E+00 0.441E+00 0.196E-01
3.75 0.320E+02 0.114E-01 0.430E+00 0.430E+00 0.191E-01
4.00 0.320E+02 0.122E-01 0.123E+00 0.423E+00 0.188E-01
4.25 0.320E+02 0.130E-01 0.419E+00 0.419E+00 0.186E-01
4.50 0.320E+02 0.138E-01 0.418E+00 0.418E+00 0.185E-01
4.75 0.320E+02 0.146E-01 0.417E+00 0.417E+00 0.185E-01
5.00 0.320E+02 0.154E-01 0.417E+00 0.417E+00 0.185E-01
5.25 0.320E+02 0.162E-01 0.417E+00 0.417E+00 0.185E-01
5.50 0.320E+02 0.170E-01 0.417E+00 0.417E+00 0.185E-01
5.75 0.320E+02 0.177E-01 0.418E+00 0.418E+00 0.186E-01
6.00 0.320E+02 0.165E-01 0.419E+00 0.419E+00 0.186E-01
6.25 0.320E+02 0.193E-01 • 0.419E+00 0.419E+00 0.186E-01
6.50 0.320E+02 0.201E-01 0.420E+00 0.420E+00 0.187E-01
6.75 0.320E+02 0.209E-01 0.421E+00 0.121E+00 0.187E-01
7.00 0.320E+02 0.217E-01 0.422E+00 0.422E+00 0.187E - 01
7.25 0.320E+02 0.225E-01 0.422E+00 0.422E+00 0.188E-01
7.50 0.320E+02 0.233E-01 0.423E+00 0.123E+00 0.188E-01
7.75 0.320E+02 0.241E-01 0.424E+00 0.424E+00 0.188E-01
8.00 0.320E+02 0.248E-01 0.425E+00 0.425E+00 0.189E-01
8.25 0.320E+02 0.256E-01 0.426E+00 0.426E+00 0.189E-01
8.50 0.320E+02 0.264E-01 0.426E+00 0.426E+00 0.189E-01
8.75 0.320E+02 0.272E-01 0.427E+00 0.427E+00 0.190E-01
9.00 0.320E+02 0.280E-01 0.428E+00 0.428E+00 0.190E-01
9.25 0.320E+02 0.288E-01 0.429E+00 0.429E+00 0.190E-01
9.50 0.320E+02 0.296E-01 0.430E+00 0.430E+00 0.191E-01
9.75 0.320E+02 0.304E-01 0.430E+00 0.430E+00 0.191E-01
10.00 0.320E+02 0.312E-01 0.431E+00 0.431E+00 0.191E-01
10.25 0.320E+02 0.319E-01 0.432E+00 0.432E+00 0.192E-01
10.50 0.320E+02 0.327E-01 0.433E+00 0.433E+00 0.192E-01
10.75 0.320E+02 0.335E-01 0.434E+00 0.434E+00 0.192E-01
11.00 0.320E+02 0.343E-01 0.434E+00 0.434E+00 0.193E-01
11.25 0.320E+02 0.351E-01 0.433E+00 0.435E+00 0.193E-01
11.50 0.320E+02 0.359E-01 0.436E+00 0.436E+00 0.193E-01
11.75 0.320E+02 0.367E-01 0.437E+00 0.437E+00 0.194E-01
12.00 0.320E+02 0.375E-01 0.437E+00 0.437E+00 0.194E-01
12.25 0.320E+02 0.383E-01 0.438E+00 0.438E+00 0.195E-01
12.50 0.320E+02 0.390E-01 0.439E+00 0.439E+00 0.195E-01
12.75 0.320E+02 0.398E-01 0.440E+00 0.440E+00 0.195E-01
13.00 0.320E+02 0.406E-01 0.441E+00 0.441E+00 0.196E-01
13.25 0.320E+02 0.414E-01 0.441E+00 0.441E+00 0.196E-01
13.50 0.320E+02 0.422E-01 0.442E+00 0.442E+00 0.196E-01
13.75 0.320E+02 0.430E-01 0.443E+00 0.443E+00 0.197E-01
14.00 0.320E+02 0.438E-01 0.444E+00 0.444E+00 0.197E-01
14.25 0.320E+02 0.446E-01 0.445E+00 0.445E+00 0.197E-01
14.50 0.320E+02 0.454E-01 0.445E+00 0.445E+00 0.198E-01
14.75 0.320E+02 0.461E-01 0.446E+00 0.146E+00 0.198E-01
15.00 0.320E+02 0.469E-01 0.447E+00 0.447E+00 0.196E-01
15.25 0.320E+02 0.477E-01 0.416E+00 0.448E+00 0.199E-01
15.50 0.320E+02 0.485E-01 0.449E+00 0.449E+00 0.199E-01
15.75 0.320E+02 0.193E-01 0.449E+00 0.449E+00 0.199E-01
16.00 0.320E+02 0.501E-01 0.450E+00 0.450E+00 0.200E-01
16..25 0.320E+02 0.509E-01 0.451E+00 0.451E+00 0.200E-01
16.50 0.320E+02 0.517E-01 0.452E+00 0.452E+00 0.200E-01
16.75 0.320E+02 0.525E-01 0.452E+00 0.452E+00 0.201E-01
17.00 0.320E+02 0.532E-01 0.453E+00 0.453E+00 0.201E-01
17.25 0.320E+02 0.540E-01 0.451E+00 0.454E+00 0.202E-01
17.50 0.320E+02 0.548E-01 0.455E+00 0.455E+00 0.202E-01
17.75 0.320E+02 0.556E-01 0.456E+00 0.456E+00 0.202E-01
18.00 0.320E+02 0.561E-01 0.456E+00 0.156E+00 0.203E-01
18.25 0.320E+02 0.572E-01 0.457E+00 0.157E+00 0.203E-01
18.50 0.320E+02 0.580E-01 0.458E+00 0.158E+00 0.203E-01
18.75 0.320E+02 0.588E-01 0.459E+00 0.439E+00 0.204E-01
19.00 0.320E+02 0.596E-01 0.460E+00 0.460E+00 0.201E-01
19.25 0.320E+02 0.603E-01 0.460E+00 0.460E+00 .0.204E-01
19.50 0.320E+02 0.611E-01 0.461E+00 0.461E+00 0.205E-01
19.75 0.320E+02 0.619E-01 0.462E+00 0.462E+00 0.205E-01
20.00 0.320E+02 0.627E-01 0.163E+00 0.463E+00 0.205E-01

PROGRAM SACLZI

C THIS PROGRAM CONSISTS OF A SIMPLIFIED ATTITUDE
C CONTROL LOOP ALGORITHM BASED ON A PID CONTROLLER
C COMBINED WITH A PWM.

C WRITTEN BY 	M. SAVOIE - JUNEy 1984.

C The attitude control alÉorithm computes a new PWM
C output Pulse duration at everm 250 msec. based on
C the measured attitude error. For this simPlified
C case a since there is no feedback' the attitude
C error is assiÉned the value of the commanded en5J1e.
C the PID controller output J. 's added to the wheel
C bias before hein processed bm the PWM. The output
C Pulse duration of the PWM rePresents a fraction of
C the time interval between samples and is calculated
C based on the maCnitude and siAn of the si‘lnal applied
C to it.

C DEFINITION OF VARIABLES
C 	KA 	 PID input vain (---)
C 	KI 	 PID inte£Jral Eiain (1/sec.)
C 	N 	- 	PID frecluencm ratio (---)
C 	P 	- 	PID lead frceuencm (rad/sec.)
C 	KP 	- 	PWM airi (1/de.)
Ç 	TINT 	- 	intee,tration steP size (sec.)
C 	TAU 	- 	PID time constant (sec.)
C 	YEK 	- 	attitude error an5.11e (de.)
C 	AK 	 PID proPortionaI output (de5.)
C 	BK 	 PID inteÊral output (de .)
C 	CK 	- 	PID la output (deg.)
C 	OK 	- 	PID controller output (des.)
C 	TBK 	- 	wheel bias (deÉ.)
C 	YIK 	- 	PWM input (de.)
C 	YMK 	PWM output (duration in sec.)
C 	THETAC - 	commanded anÉle (def.i.)

C INITIALIZATION
INTEGER*A KAYKIPN,P,KP,TINTYFy
1 	 Al0A111, B107811,

A20,A21,B20,B2ly
1 	 TBK7ERR,YEK,AK7AKM17BK7BKM1pCK7CKM170K,

YIK,YMKrTsTHETAC
OPEN(UNIT --, 171YPEz-I'NEW 1 7NAMESACLZI.DAT')

C CONSTANTS

N=80.0
P=0.0253
KP=1 	 !(1.0/5.632)*5.632
TINT=1 	!F IS COMPUTED WITH TINT=0.25
F=2.0/TINT
TBK=0

C LEAD/LAG FILTER
A10=-79747 !(P-F)*10000
A11=80253 	!(F-FP)*10000
B10=-6 	!N*P-F
B11=10 	!Fi-N*P

C INTEGRAL TERM
A20=1 	!KI*10000
A21=1 	!KI*10000
B20=-8 	!-F
B21=8 	!F

C INITIAL CONDITIONS
ERR=0
YEK=0
AK=0
AKM1=0
BK=0
BKM1=0
CK=0
CKM1=0

C MAIN LOOP
T=0
TYPE *y'Enter the commanded an.<1.e:
ACCEPT *7THETAC
DO WHILE (T .LE. 80)

YEK=ERR
AKM1=AK
AK=KA*YEK
BKM1=BK
BK=(A21*AK-FA20*AKM1-B20*BKM1)/821
CKM1=CK
CK=(Al1*AK-FA10)<AKM1-B10*CKM1)/B11
0 K=(BK+CK)/10 	licaIe down bm 10
YIK=OK-FTBK
YMK=KP*YIK
IF (JIABS(YMK) +LE. 5632) THEN

YMK=YMK*TINT
ELSE

YMK=JISION(5632yYMK)*TINT
ENDIF
WRITE(1110)TrAKfflrOKrYIKYMK
ERR ,--THETAC
T=T+TINT

ENDDO
10 	FORMAT(1X7I4,5(1XrI6))

STOP
END

1

1
1

1
1

run saclzi
Enter the commanded anole:
I
FORTRAN STOP
$ cat. saclzi.dat

	

0 	0 	0 	o 	0 	o

	

1 	32 	4 	25681 	25681 	5632

	

2 	32 	12 	15571 	15571 	5632

	

3 	32 	20 	9506 	9506 	5632

	

4 	32 	28 	5867 	5867 	5632

	

5 	32 	36 	3484 	3684 	3684

	

6 	. 32 	44 	2374 	2374 	2374

	

7 	' 32 	52 	1589 	1589 	1589

	

a 	32 	60 	1118 	1118 	1118

	

9 	32 	68 	836 	836 	836

	

10 	32 	76 	667 	667 	667

	

11 	32 	84 	566 	566 	566

	

12 	32 	92 	505 	505 	505

	

13 	32 	100 	469 	469 	469

	

14 	32 	108 	448 	448 	448

	

15 	32 	116 	436 	436 	436

	

16 	32 	124 	429 	429 	429

	

17 	32 	132 	425 	425 	425

	

18 	32 	140 	423 	423 	423

	

19 	32 	. 148 	122 	422 	122

	

20 	32 	156 	421 	421 	421

	

21 	32 	144 	422 	422 	422

	

22 	32 	172 	422 	422 	422

	

23 	32 	180 	423 	423 	123

	

24 	32 	188 	423 	423 	423

	

25 	32 	196 	424 	424 	124

	

26 	32 	204 	425 	425 	425

	

27 	32 	212 	426 	426 	426

	

28 	32 	220 	426 	426 	426

	

29 	32 	228 	127 	4 27 	427

	

30 	32 	236 	428 	428 	428

	

31 	32 	244 	429 	429 	429

	

32 	32 	252 	430 	430 	430

	

33 	32 	260 	430 	430 	430

	

34 	32 	268 	431 	431 	431

	

35 	32 	276 	432 	432 	432

	

36 	32 	264 	433 	433 	433

	

37 	32 	292 	434 	434 	434

	

38 	32 	300 	434 	434 	434

	

39 	32 	308 	435 	4 35 	435

	

40 	32 	316 	436 	436 	436

	

41 	32 	324 	437 	437 	437

	

42 	32 	332 	438 	438 	438

	

43 	32 	340 	438 	438 	438

	

44 	32 	348 	439 	439 	439

	

45 	32 	356 	110 	440 	440

	

46 	32 	364 	441 	441 	441

	

47 	32 	372 	442 	442 	442

	

48 	32 	380 	442 	442 	442

	

49 	32 	388 	443 	443 	443

	

50 	32 	396 	444 	444 	444

	

51 	32 	404 	445 	'145 	445

	

52 	32 	412 	446 	446 	446

	

53 	32 	420 	446 	446 	146

	

54 	32 	428 	447 	447 	447

	

55 	32 	436 	448 	448 	448

	

56 	32 	444 	449 	449 	449

	

57 	32 	452 	450 	450 	450

	

58 	32 	460 	450 	450 	450

	

59 	32 	468 	451 	451 	151

	

60 	32 	476 	452 	452 	452

	

61 	32 	484 	453 	4.5.3 	453

	

62 	32 	492 	454 	454 	454

	

63 	32 	500 	45 4 	454 	454

	

64 	32 	508 	455 	450 	455

	

65 	32 	516 	456 	456 	456

	

66 	32 	524 	457 	457 	457

	

67 	32 	532 	458 	458 	458

	

66 	32 	540 	458 	458 	458

	

69 	32 	548 	459 	159 	159

	

70 	32 	556 	460 	460 	460

	

71 	32 	564 	461 	441 	461

	

72 	32 	572 	462 	462 	462

	

73 	32 	580 	462 	462 	462

	

74 	32 	588 	463 	463 	463

	

75 	32 	596 	464 	464 	464

	

76 	32 	604 	465 	465 	465

	

77 	32 	612 	466 	466 	466

	

78 	32 	620 	466 	466 	466

	

79 	32 	628 	467 	447 	467

	

60 	32 	636 	468 	468 	448

APPENDIX B

2) The Validation Testprogram Running on the Actual Intel SBC Hardware
(CMD.C, = CMVAL.C86)

/************AA)UkAAAY<AAAA*AMAAAA*AAAAAM<AAAAAAAA*****/
/* C version of a Simplified AttiLude Control Algorithm */
I**/
/* This validation testprogram implements the "SACL"
/* gorithm USing scaled integer variables.The *ARS" 	*/
/* functionynot available in the link librarm of the • 	*/
/* Lantech C 8086 cross software development toolsy was */
/* rePlaced with an RABS" subroutine.The resulting code */
/* contains no floating point instructions and can be */
/* executed bm an 8086 CPU.The C functions "scanf" and */
/* "Printf" are used for I/O operations as "CMD.C" is to*/
/* be run on an actual Intel SBC hardware (8086 CPU).This*/
/* is the onlm difference to the validation te•tprogram */
/* to be run on the simulated Intel SBC hardware */
/* (VALCMD.C). 	• 	 */
/**/
/* 	Max Streit, Intellitech Canada Ltdy Sept.84 	*/
/**/

/* 	*include math 	("exp" and "fabs' replaced) 	*/

main()

long mit
long int
long int
int

ka thetac ;
a 1 0 7 all 7 b10 7 LIU i320 3217b207b21;
err mek ak., akml y hkybkm1 ek. (And ;
kryty tin t, 7 t b k 7 k 7 M iky ,_effik ;

/* 	'Initialization 	 */

ka = 32;
/* 	ki = 9.86E-5; 	*/
/* 	n = 80; 	*/
/* 	p = 0.253; */

kp = 1; 	/* 	(1.0/5.632)*5.632 */
tint = 1; 	/* f is computed with tint=0.25 */

/* 	f = 2.0/tint */
tbk = 0;

/* lead/lag filter */
al0 = -79747; 	/* (p-f)*10000 */
all = 80253; 	/* (f+p)*10000 */
b10 = -6; 	/* n*P-f */
bll = 10; 	/* f+n*P */

/* integral tenu 	*/
a20 = 1; 	/* ki*10000 */
a21 = 1; 	/* ki*10000 */

b20
b21 = 8;

/* -f */
/* f */

/* 	initial conditions 	 */

err = 0;
vek = 0;
ak = 0;
akml = 0;
bk = 0;

bkml =
ck = 0;
ckml = 0;

/* 	main loop 	 */

t = 0;
printf(lEnter the commanded arile :\n');
scanf(UD', &thetac);

while (t <= 80)

mek = err;
akml
ak = ka * vek;
bkmt = bk;
bk = (a21*aki-a20*akm1-b20*bkm1)/b21;
ckm1 = ck;
ck = (a11*aki-a10*akml-b10*ckm1)/b11;
ok = (bk 	ck)/10; /* scaled down bv 10 */
mik = tbk 	ok;
mmk = kp * vik;

if (abs(vmk) <= 5632)
mmk = vmk * tint;

else

if (umk > 0) vmk = 5632 * tint;
else 	 mmk = -3632 * tint;

Printf(%d %D %D %d %d %d\n'strakrbkmoksvikymmk);

err = thetac;
t = t 	tint;

/* absolute value of floatinJ Point number */

abs(x)
int x;
{

int z;

if (x >= 0)

elsé

return(z);

$

APPENDIX B

3) The Validation Testprogram Running on the Simulated Intel SBC
Hardware ("VALCMD.C")

/* C version of a SimPlified Attitude Control Algorithm */

/* This validation testprogram implements the "SACL"
/* gorithm using scaled integer variables.The 'ABSI 	*/
/* functionynot available in the link librarm of the 	*/
/* Lantech C 8086 cross software develoPment tools, was */
/* rePlaced with an 'ABS" subroutine.The resulting code */
/* contains no floating point instructions and can be 	*/
/* executed by an 8086 CPU.Normallm the C functions 	*/
/* "scanf' and "printf' ere used for I/O operations.As */
/* 'VALCMD.C" is to be run'on a simulated 8086 CPU two */
/* 'C" callable Procedures("PRINT's'IN') were added to */
/* the link library to allow for I/O operations whieh 	*/
/* use N.mPc's 'raw memory' feature for I/O. 	 */
/**/
/* 	Max Streit, Intellitech Canada Ltdr SePt.84 	*/
/**/

/* 	tinclude math 	(sexp' and "fabs' replaced) 	*/

main()

long mit
long int
long int
int

kapthetac;
al07e117b10,b11,a207a217b207b21;
errryek,akyakmlebksbkmipcksckm1;
kpyt7tint7tbk7ok7mik7ymk;

/*

/ *
/ *
/*

/*

/ *

Initialization 	 */

ka = 32;
ki = 9.86E-5; 	*/
n = 80; 	*/
P = 0.253; */
kp = 1; 	/* (1.0/5.632)*5.632 */
tint = 1; 	/* f is computed with tint=0.25 */
f = 2.0/tint */
tbk = 0;

lead/lag filter
al° = -79747;
all = 80253;
b10 = -6;
bll = 10;

*/
/* (p-f)*10000 */
/* (f+p)*10000 */
/* n*P-f */
/* f-Fri*P */

/* integral term 	*/
a20 = 1; 	/* ki*10000 */

a21 = 1;
b20 = -8;
b21 = 8;

/* ki*10000 */
/* -f */
/* f */

/* 	initial conditions 	 */

err = 0;
yek = 0;
akmi = 0;
bkml = 0;
ckm1 = 0;

/* 	main loop 	 */

ak = 0;
bk = 0;
ok = 0;

yik = 0;
mmk = 0;
ck = 0;

/* 	Printf('Enter the commanded anÈle , :\n'); 	*/

/* 	scanf(RU'l &thetac); 	 */

thetac = in(); /* 10 procedure for N.mPc */

while (t <= 80)

mek = err;
akml
ak = ka * mek;
bkml
bk = (a21*ak+a20*akml-b20*bkm1)/b21;
ckml = ck;
ck = (all*ak+a10*akml-b10*ckm1)/b11;
ok = (bk 	ck)/10; /* sc8led down by 10 */
yik = tbk 	ok; -
mmk = kp * yik;

if (abs(mmk) <= 5632)
mmk = mmk * tint;

else

if (Ymk > 0) ymk = 5632 * tint;
else 	 mmk = -5632 * tint;

Print(trakpbkrokryikrymk); 	/* 10 procedure for N.mPc */

err = thetac;
t = t 	tint;

D.

/* absolute value of floatiroi point number */
abs(x)
int x;

int z;

if (x >= 0)

else

return(z);

APPENDIX B

4) The Benchmark Program Used for Performance Tests

/* Sieve test program */
tdefine true J.
tdefine false 0
tdefine size 8190

char flags[size + 13;

main() -C
int isprimerkycountsiter;

printf("10 iterations\n");
for (iter = 1; iter <= 10; iter++)

count = 0;
for (i = 0; i <= size;i++.)
flagsEi3 	true;
for (i = 0; i <= sizeii++)

if (flagsEi3)

prime = i + i + 3;
for (k = i + prime; k <= sizef k 	prime)
flagEk3 	false;

count++;

Printf(1 \n%d primes.'pcount);

It

Prime)

set def 86sieve
$ tmPe vaxsieve.c
/******************AA*AA*AAAAA*AAAAAAAAAAAAAA/
/* 	 Sieve test program 	 */
/* This version does more 1ooPs(100 000) in */
/* a sm i ller number range(1...15) than the */
/* original sieve program in order to g et a */
/* C program that cari be run (for a varming */
/* number of iterations)on the VAXs the(real)*/
/*-86/12 and the 86/12 on the M.mPe system. */
/*************************YfflAAA*AAAAAAAAA)W 0V
/* Max Streit7 intellitech Canada Ltd, Aug484*/
/************************YeAAAAAAM+AX**AAAAAAAX/
•define true 1
tdefine false 0
idefine sie.e 15

main() -C
long int flagsEsize + 13;
long int i 7 prime7k7eount7iter;

printf('100000 iterations\n');
for Citer = 1; iter <= 100000; iter++)

count = 0;
for (i = 0; i <=
f1agsEi3 = true;
for (i = 0; i <= size;i++)

if (f1agsEi3) 	•
{
Prime = i + j + 3;
for (k = j + prime; k <= size; k

f1agsEk3 = false;

count++;

printf("\nU primes.'reount);

$

/* 'NMPCSIEVE.C't Sieve test program 	 */
/* (version to be run on N.mPc) 	 */
/************10(A**AAAAAAA**AAAAAAAAAAA*AAAAAA*/
/* This version uses 'long integer' variables*/
/* and do' just one iteration in the 1...15 */
/* range of numbers.This is factor 100000 */
/* times less work than what the lvaxsieve' */
/* program does.In this way a direct perfor- */
/* mance comparison between VAX and a 86/12 */
/* run on N.mPc with a reasonable simulation */
/* time on MmPe is achieved. */
/***/
/* INITIALIZATION of the corresponding simu- */
/* N.mPe simulation 	 */
/* 	 */
/* Information from loader: 	 */
/* 	- end of reserved memory areat700hex */
/* 	- starting address of data segment 	*/
/* 	is 610hex; 	 */
/* 	- code segment starting address is 	*/
/* 	400hex(=1024) 	 */
/* 	- a possible initialization: 	 */
/* 	 - 'deposit 1024 ip' 	 */

'deposit 0x61 :ds 	 */
/e 	 deposit 0x61
/* 	 (0x61 = 61hex = 610/16) 	*/
/* 	 - 'deposit Oxf0 :Sp m 	 */
/* 	 (700hex chosen as top of 	*/
/* 	 stack;700hex - 610hex=F0hex)*/
/***/
/* Max Streitp Intelliteeh Canada Ltd, Aug.81*/

#define truc 1
Odefine false 0
#define size 15

main()
long int ,flagsEsize + 13;
long int ipprime7k7count7iter;

/* 	printf('1 iteration\n'); 	*/

for (iter 	1; iter <= 1; iter++)
{
count = 0;
for (i = 0; i <= size;i++)

f1asEi3 = true;
for (i = 0; i 	size;i4-4-)

-C
if (flaÉsEi])

• 	 PriM0 	 i 	3i
for (k = 	prime; k <= size; k 	prime)

f1afisEk3 = false;

count++;

/* 	Printf("\n%d primesi'scount); 	*/

APPENDIX C

Test Software Development and Execution Procedure for the actual Intel
SBC Hardware

Steps in generating and executing code on actual Intel
86/30 ,taret HW running iRMX86

Create the program:
-TX CMVALID.C86

{kem in Program)
cntrl
0

(note: - is the iRMX86 PromPts TX invokes a screen text editors
I stands for insert, 0 stands for ouity E stands for
exit)

Compiled the program:
-CC86 CMVALID.C86 LARGE

(note: CC86 invokes the Intel C-86 compiler, LARGE specifies
the large case -C. small model can have UP to 64KB of
code and 64KB of data; with all pointers OQCUPMillË
two bytes large model cari have access to the full
addressLng sPace of the 8086, each source file
generates a distinct pair of code and data segments
of UP to 64KB in lengthy all pointers are four bites
long3-)

Link the program:
-SUBM,IT TKB.CMD (CMVALID.OBJsCMVALID)

(note: SUBMIT invokes a command file, TKB.CMD, CMVAL1D.OBJ
is the object file generated from the compilation
Process, CMVALID is the name of the executable task)

Listing of the IKB.CMD command file:
link86 zo, &
:librIlemain.objy &
:libr:lclibliby &
:libr:large.libs a
:libr:87null.lib &
to %I. fastload bind a
objectcotrols(purge) &
segsize(stack(4-1000H))
mempool(4-1000117+0D000H)

(note: link86 invokes the 8086 linkers %0 and %1 are associated with
the first—and second parameters being pas.sed in the submit
command lines a is a continuation characters :libr:
is a logical name for a directormy lemain.objs
lclib.liby large.libs and 87nu1l.lib are modules
reeuired ta resolve smmbols generated bm the
compiler)

Running the program:
-CMVALID

1

APPENDIX D

1) Test Software Development and Execution Procedure for Simulated
Intel SBC Hardware

1

**
* M.MPC VALIDATION : C ON A 86/12 SIMULATION
*************************AM ■ AX*AAA*******A*AA*AA'AAA*
* This simulation is described in detail in Intel- *
* litech's technical report 'Validation of N.mPc
* MicroProcessor Simulation"
**
* This directorm not onlm conta ins the files for
* the validation simulation and the testproram to *
* be run for Lhe validation("VALCMD.C") but also
* some files produced when developing the valida- *
* tion testprogram. "SACLZ.FOR" is the original
* Fortran version of the validation algorithml the *.
* "SACLZI.FOR" file is a scaled version of
* "SACLZ.FOR' and uses integer variables. "CMD.C" *
* is a translation of "SACLZ.FOR" into C. "CMD.C" 	*
* also uses , scaled integer variables in order *
* to produce code thaty after cross compilationycan*
* be executed on an 8086 CPU."CMD.C" cari be run on *
* anm real machine that has a "C" compiler as it
* uses "C" standard functions for.I/0("Printf"y
* "scanf") whereas the otherwise identical valida- *
* tion Program run on the 86/12 simulation('VAL-
* CMD.C") uses N.mPc's "Raw Memorm' feature for
* I/O. The procedures "PRINT.5" and "IN.SE have
* been written and added to the link librarm so
* that C programs cari call them for convenient 10 *
* in this M.mPc simulation. The follow • ng text
* shows how to build the simulation of the Intel
* 86/12 SBC 8nd execute the testProgram "VALCMD.C"*
* on the simulated hardware.
**

Steps in building a simulation of an iSBC86/12
hardware and running the validation testprogram
"VALCMD.C* on the simulated hardware(euotation marks
mark the actual commands)

1) SIMULATION BUILDING:

a) Compile hardware modules:
-"set def 86val"(to go into validation

directory)
"ic *.isp'(do it one file bu one)

b) Software development:
-"set def c86"
"Gcc8086 valcmd"(done in the "c86"

1

HI

directory)
I COPM valcmd.s as 8 6"
"set def as86"
"86esmotol valcmd . (done in "es86"

directory)
"COPV valcmd.out 86va 1 "
"set def 86val"
e COPM v 3 1cmd.out romcore.;"

c) Interation of hardware and software:
-'cc val"(ec prompt:Herdware7 Software

or Both?)
"b"(for intel-..fratin both new hardware

and softwareithis is enuivalent
to:-"ecoloist val"

—n eJiMP val"

2) RUNNING THE simuLATTom:

a) Clear simulated memories:
—e 5MP val"

b) Put simulation into runtime mode:
-"run val"

c) Initialization of the 8086 CPU:
-"deposit 102A :iP"(the code block

starts at 40011.71024)

-"deposit Oxab Ids'
"deposit Oxeb Iss"(the data block

starts at abOh)
-"dePosit 264 s' (sets the TOP of the

stack to 3000r, 16*ss 	si)

d) Simulation observation 71/0: The proLiram displays its
results automatically as mentioned above.Compare
the results to the ones obtained bu runninti "CMD.C"
or "HEXCMD.C" on the VAX or on the reel Intel 86/12.
Theu are identical ifs the sanie anle was chosen as
Cr, input. The anle has to be inrut as a number of
two decimal di g its. The "IN' function picks the first
two decimal numbers if a strinrA of ASCII characters
is 1iven to it as an input.The accePted inPut will
be echoed in hex.The "PRINT" function also prints
the results of the simulation in hex.

e) Simulation control: -"run° to start or continue
-"Control C" to stop
-"e" to exit

THE DEVELOPMENT OF THE "SIMPLE SPACE ATTITUDE CONTROL"(SACL)
ALGORITHM

1) Run "SACtZ.FOR"(real variables):
-"run saclz"
-check results in file "SACLZ.DAT"

2) Run "SACLZI.FOR"(intemer variblesrscaled):
-"run saclzi"
-compare results in "SACLZI.DAT" to
those in "SACLZ.DAT"ithem are
eouivalent if scalinM factors and
roundinm errors from the inteMer
rePresentation are taken into account

3) Run "CME.C"(translation of "SACLZI.FOR" into C):
-"run CMD"
-comPare results to those of
the validation simulation

-"run HEXCMD"
-same as "CMD" but output
printed in hex numbers

-"CMD.C" was also run on the aetual
mite]. SEC hardware

-replacinM the standard C I/O functions
("SCANF"F"PRINTF") with calls to srecial
rouLines("IN"7"PRINT") usinÉ N.mPc's
'Raw Memorv" feature for I/O makes "CMD.C"
the validation test pro›Jram "VALCMD.C"

APPENDIX D

2) Performance Test Execution Procedure for Simulated Intel SBC
Hardware

*

In order to get a measurable simulation
t. mie on the VAX the 'vaxsieve' version executes
100'000 times in the 1..15 range.The same version
mam also be run on a real 86/12 machine(1 86sievel).

3) Simulation Use -N SMP val*
-'run

4) Initialization: -"deposit 1024 :iP N

-"dePosit 0x61 :ds"
-*deposit 0x61 :ss"
-"deposit Oxf0 : (M",N

5) Simulation Observation: Time start and stop of
the simulation run by 'sir, g the 'Control t" fa-
cilitm before and after the run.The difference in
CPU time is the simulation execution time for one
iteration of the 'sieve" program in the 1..15
number range.A breakPoint on the last instruction
executed("bkpt tir eol Oxcb00') halts the simulation
after program execution.

6) Simulation Control: -*run* to start or continue
-"Control C' to stop
-'o' to exit

7) Results: The simulated 86/12 takes about 400 seconds
to execute the 'sieve' benchmark once.

**********************AAAAAAAA*AAAAAAAAM(*A*AX*AAAAAAAAAAA**
* RESULTS OF THE PERFORMANCE COMPARISON BETWEEN VAX 11-780y*
* iSBC8612 AND A SIMULATION OF THE iSBC8612(running on VAX *
* 11-780) USING A 'C' PROGRAM AS A BENCHMARK('SIEVE")
******************ARAARARAlt*AARARARARARARARARRA***A***

* NB: 'P' means performanceahe Performance is inverselm 	*
ProPortional to the time needed to execute the bench-*
mark Program a certain number of tiMQS on a certain *
processor.

************************AARAARARARAlkAARRARARRARARARARARRA***

P(VAX) : P(8612) : P(8612 simulation)

corresponds approximatelm to

2'364'000 : 190'000 t 1

********************M(AAAXAAAAAAAAAAAAAAAAAAAAAAAAAA*AAAA***

*******************e******AAAAAAA*A)0(AAAAAAA*AAAYe
* PERFORMANCE COMPARISON BETWEEN A VAX 11-7807 AN*
* 1SBC86/12 AND A 86/12 SIMULATION USING THE
* 'SIEVE' BENCHMARK PROGRAM **AAAA**
A) RunninS "sieve' 1007000 times on the VAX 11-780
++

- use 'control t' to Set Present CPU time

- 'run vaxsieve'

- check CPU time asain;difference to first
measurement is time spent bu VAX 11-780 to
execute the 'sieve' benchmark 100 1 000 times

- the CPU time needed bu the VAX 11-780 for
100,000 sieve executions is rouShlm 17 seconds

+.1-4-1-4-4-Fff44-1-1-1-1-1-1-41-4.44444f4-11-1-1-4-1-1-1-1-1.+++++++++++++

B) RunninS 'sdeve' 100e000 times on an iSBC86/12

For this test an iSBC86/12 eouipped with a "C'
Cross Compiler is necessary.The testrun was there-
fore done at Communications Research Centres Ottawa s
in cooperation with Michel Savoie.The followinS re-
sult was obtained when runnins 'sieve" 100'000 tintes
(usiniA "lonS inteSer" tune variables in "sieve 1):

- 211 seconds

C) RunninS 'sieve" once on a Simulated iSBC86/12

1) Simulated Hardware: Intel 86/12(described in de-
tail in this report).

2) User ProSram: 'sieve' is a well known benchmark
ProSram.The version , to be run on the 86/12 simu-
lation("nmpcsievel) does just one execution of
'sieve" in the number ranSe from 1..15 usinS "Ions
inteSer' variables in order to set a reasonable
simulation time when runnins "sieve' usins N.mPc.
The same prosram cari be run on the VAX.

APPENDIX E

Printouts from Running the Performance Testprogram on Simulated
Intel SBC Hardware

SMP val
$ run val

Welcome to N.mPc/VM8
M.mPc: val
t der' 1021
* de P 0x61 :ss
* deP 0x61 :ds
* de p Oxf0 t sr
t bkpt :ir en1 Oxcb00 	 ,

• breakpoint number 1

t run
MAX 140532 VAL 	CPU=00:22:19413 PF . 9716 1.015881 MEW,. 243

1' 	FI

simulation halted t._1,: bkpt 1

(bkpt :ir col 0xeb00)

t
MAX 1A:24:28 VAL 	CP1P.00:29:17.95 PF7 9806 10 ,- 15884 MEM., 317

Cl 	 ,

$
$
$
$
$

t .

$ SMP val
$ run val .

Welcome to N.mPe/VMS

N.mPc: val
t der, 102 1 :iP
t deP 0x61 :ss
4 der.- 0x61 :ds
t deP Oxf0 :SP
4 bkPt tir ecAl Oxcb00
breakpoint number 1
4 run
MAX 11:26:10 VAL 	

CPU=00:29:20.02 PF,,10178 1016253 MEM ,- 311

run
simulation halted bu bkPt 1
(hkt tir col Oxcb00)

MAX 160423 VAL 	
CPU=00135:53.72 PF:- 10208 10=16256 MEM372

SW* val
$ run vaI

Welcome to N.mrc/VMS
N.mPc: val
II der. 1024 :IP
4 de 	01; 4I
4 'lop 0x61

der' 	 ti:›p
H bkpt tir cu .] fbscb00
breckPoint number 1
II 	tun
MAX 11:25:16 VAL 	cru , 00:54:12.01 PF - 6035 10 - 24117 MEM ,- 308

run 	,
ILImulation halted bu bkPt
(bkrl, :Jr :7.01 0xc2b00)

MAX 11:36:18 VAL 	CPU ,, 01:01:26.93 PF , 6063 10 - 21150 MEM-373

$ link vaxsieve
$ run vaxsieve
MAX 10:17:13 	(DCL) 	CPU...00:14:16.66 PF ,, 6792 10 ,, 10200 MEW- 65
$ run va•sieve
100000 iterations

10 rrime ,,
1
MAX 10:17:31 	(DCL) 	CPU --:00:1 4 :3 3 .22 PF - 6900 10 - 10211 MFW- 82

$ run vaxsieve
MAX 101832 	(DCL) 	CPW-001133.23 PIT: 6903 10 - 10211 MFM - 82

$ run vaxsieve
100000 iterations

10 primes.

MAX 101851 	(DCL) 	CPU - 00:11:19.77 PF - 7013 10 - 10225 MEM - 82

$ run va:,e,ieve
MAX 10:1907 	(DCL) 	CPU - 00:14119.81 FF 7016 I0 - 10228 MFM - 82
$ run vasieve
1 00000 iterations

10 primes.

MAX 10:19:29 	(DCL) 	cru.00:15:o6.10 PF , 712 	I0 ,, 10239 MFW-82

APPENDIX F

Listing of the Topology File for the Simulation of the 6/12 SBC

1 1111111111111 	11111111111 	111111111 11111 111 11 111 1 1 1 11

ToPologu file for the simulation of an Intel
86/12 board featuring an external memoryy a
multibus interface(arbiter) a dualport RAM:
a Programmable Interrupt Controller(PIC) and a !
global memorm.These are all the elements
Planned to be implemented for a validation of !
N.mPc by this 86/12 simulation.

Max Streit: Intellitech Canada Ltd, Mau 84

Memory map for the 86/12 :

RAM(seen bm Processor) 10...1023

- (Private) ROM1024...14335

Multibus:14336...16383 is shared bv:

-Global Memory14336...15359
-RAM(seen via Multibus)115360...16383

IIIIIIIIIIII111111111111111111111111111111111111Im

signal

Mbus(16)y
M_hnible(4),
Aley
Readur
Nmiy
Inty
Intay
l_deny

Dt_ry
Reset,
Testy
Lock,
Status(3),
Iorcy 	!used for reading/writing the PIC
Iowcy 	!registers

Ioads7y
Ioadst7

!demultiplexed I/O addresses AOsAl
!used in PIC

r- lore,
Iowep

lore
iowc

! PIC si5ina1s

Ire°,
Irolp
Ire2p
Ire3p
Ire4p
Ire5p
Ire67
Ire7p

! Multibus siMnals

Mad(20)p
Mda(16)p
Mrdcp
Mwtep
Males
Xackp
f-Msmp
BPrnp
DProp
B on;

lit 	I 	I 	I 	I 	I 	1 	1 	1 	I 	1 	I 	1 	I 	1 	1 	1 	1 	1 	1 	1 	1 	1 	1 	1 	1 	1 	1 	lit 	 1 	1 	1 	1 	1 	1 	1 	1 	1 	1 	1 	1 	1 	1 	1 	1 	1 	1 	1 	1 	1 	1 	il

processor 	CPU 	"max86cPu.sima
L ime delam 250ns;

connections
! I/O si£inals used
! Lo access the PIC
! reËisters:

io3d1:7 	= 	Ioads7p
ioadsl = 	Ioadslp

ale 	= 	Ale,
rd_ 	= 	M_rdp
mbus 	rr 	 nuss
m_hnible= 	M_hniblep
readm 	, 	Readmp
NMI 	= 	Nmip
j. nit 	, 	Intp

inta
den_
bhe_
dt_r
reset
test
lock
status =

Inta,
L_den,
L..bhey
Dt_rp
Reset,
Test,

 Lock,
Status;

r.--

11111 111 11111 111 11111 111 11111 111 11III III 11111 1111 11111 111 1 I1

processor 	rani = 'max86mem 4 sim" ;
time delam 250ns ;

connections

initial

ale 	 Ales.
rd_ 	= 	M_rd,

mbus 	= 	Mbus,
m_hnible= 	M_hnibley
readm 	= 	Readm,
den_ 	= 	L_deny
bhe_ 	r.: 	 L_bher
dt_r 	= 	fn_ry
status = 	Status;

mem86 	romcore

11111111111111111111111 111111 1111111111111111111111111I

Processor 	term
time delam 250ns ;

"terminalfobj"

connections ale
rd_

mbus
m_hnible=
readm
den_
bhe_
dt_r
status =

Ale,
M_rd,

Mbus,
M_hnibles
Readm,
L. dort,

 L_bhee
Dt_ry
Status;

I nitial ttm 	= (wttm) ;
! the VMS desi ,:Jnation of the
! workjn5J terminal is "W . ,
! a name not accePted bm the
! ecolo5:tist;a loEacal nam.e ac-
! ceptable to the ecol. has ta

rr.

Bheny
Mad?
Mda?

bhen
iii cd
mda

! be defined in the lodin file;
! (def wttm ttt in lodsms.com)

11111 	111111111111111111111111111 1111111111111111111111

processor

time delam

connections

int = "multint864.obj';

"IL- A
4. JynS ;

! Internal bus connections

mbus 	 Mbusy
rd_ 	 M_rdy
m_hnible= 	M_hnibley
status = 	Status?
ale 	 Aley
readm 	 Readmy
bhe_ 	= 	L_bhey
den_ 	 L_deny
dt_r 	=

! Multibus connections

mad 	' 	Mad?
mda 	= 	Mday
mrdc 	= 	Mrdc,
mwtr 	= 	Mwtcy
iorc 	= 	Iorcy
iowc 	m 	IOWC,
male 	= 	Maley
xack 	: 7. 	 Xacky
busm 	, 	BUSM,
bPrn 	:,... 	 Bprny
bpro 	= 	Bproy
bhen 	e, 	Bhen;

111111111111111111111111111 11111111111111111111111I

Processor

time delam

connections

dmem = "dlobalmem.obj';

250ns ;

male
xack
mrdc
mwtc

Maley
Xacky
Mrdcy
Mwtc;

initial me 	= ramcore;

initial 	 me 	= Fiblcore;
1111111timmlim111111111mititimmitmll

Processor 	 ram = "dpramtobj"

time delam 	25Ons

connections 	!CPU Ports
ale 	 Ale:
rd_ 	 M_rdy
mbus 	 Mbus,
m_hnible= 	 M_hnibley
readm 	= 	 Readmy
den_ 	 L_deny
bhe_ 	 L_bhey
dt_r 	 flt_ry
statu: = 	 Status,
lock 	 Lock,
!Multibus ports
bhen 	 Etheny
mad 	 Mady
mda 	 Mday
male 	 Male
xack 	 Xacky
mrdc 	 Mrdcy
mwtc 	 Mwtc;

111

processor 	 PiC 	"PirC.Obj u i

time delam 	 250ns;

connections 	 IROO 	= 	 iroOy
IRO1 	= 	 Ire?:
IR 0 2 	= 	 Iro2y
IRO3 	• =. 	 Ire3y
IRO4 	= 	 Irolly
IRO5 	= 	 Ire5y

Ireby
Ire7y

• Mbusy

IR06
IR07

Databus

	

RD 	r.... 	 'ore,

	

WR 	= 	Iowcy

	

CS 	= 	Ioads7y

	

AO 	r, 	Ioadsly

	

INT 	r., 	Inty

	

INTA 	= 	Inta;
IIIIIIIIIIIIIIIIImmtiIIIIIIIItImitimmismi

Processor 	 inter 	 'interruptfobj";

time delau 	 250nsi

connections 	 IRO° 	= Ira°,
IRO1 	= Irnly
IRO2 	 Ire2y
IR03 	= Ir3y
IRO4 	n Ire4y
IR05 	= Ire5y
IR 0 6 	= Ire6y
IR07

$

APPENDIX G

The "OTOL" Program

OTOL N. Research Group 	 OTOL

otol -Object File to J.. out format transformation

SYffl3 . 1::SU
otol -machineL4Aldx}j input ...file [output _file]

C - ainitrecord_13 L - ainitrecord_21

This pro9ram transforms the object file of .severai
machines to 1. out format. The user has to specify a minimum
of two thin9s.

1) machine name.
2) Input object file.

The quehne . should be specified with one of the follow-
in9 characters,

m - for the MOTOROLA data file
i - for the INTEL INTELLEC
t - for the TEKTRONIX HEXADECIMAL -data file.
✓ - for the RCA COSMAC data file.
• - for the MUS Technolo9y data file.
s - for the SIGNETICS ABSOLUTE OBJECT data file.
✓ - for the FAIRCHILD FAIRBUG data fiè

The ,;;,.11 .1 car, be specified in the followin9 mariniez' .

d - Put the debu9 option on. The pro9ram will output
the data record address ran9e to the standard output
in decimal value.

x - This is a modifier to 'd' option. 'dx' will output
the address ran9e in hexadecimal value.

The tumt. ... fj,1R" is the file containin9 the object data
file of the machine. This is essential for the pro9ram to
work.

The output file is the output file which will have the
1.out format transformation. Dy default, a filename '1.out'
will be used,

N. Research Group 	 OICa.

lnit Record

The program will fill up the specified range of memory
with the initial value and will give a warning message if

range overlaps any data rece.:rds. The User can specliy

more than one initrecord and In more than one wav. The i .flit
ucord can be specified as follows.

I) -aloweraddress-higheraddressi.sinitvalue

-aZ-higheraddressSinitvalue
In this case the lower limit of the range is implicit.

The program will fill up location from the highest address
of the user program to the specified higheraddress limit
with the initvalue.

3) -aloweraddress-ZSinitvalue
In this case the higher limit of the ran9e is implicit«

The program will fill up location from the specified
loweraddress to the lowest address of the user program
with the initvalue.

The value cari be specified in octal, decimal or hex format.
For octal 	- precede the number with 0

decimal - number is written as such
hex 	- precede the number with Ox

The program scans the input file according to the

machine specifications and produces the I.out or the speci-

fied output file. The check"..um is checked after every lir.e
or data record of the objee 't file • ives warning message if

Its not correct. The 1.out file has only tose location

filled up which are specified in the object file. So the

gaps cari occur in the memory and Runtime will give an error

message if the User program tries to access any of those

locations. The User cari use the initrecord facility to over-
come this problem.

(.1PJ. HP

Kaushik Sheth
Case Western Reserve University, Cleveland. Oh 44106.

November 23, 1983

OTOL 	 N. Research Group 	 OTOL

1:ii,AmPL£

otol -m test.1
The program will take the input file test.1 and scan through
it assuming the machine is MOTOROLA. The output file is 1.out.

otol -idx test. .1 test. ccre -aZ-Ox .»)00'f.25 -a0-X$0 -a400-500$
The program will take the input file test..!. scan through it
assuming the Ilachine is INTEL. output rile is te..t.core .. It
will 	un the memory location as follows.

1) highest location of program to 0 x3000 with 25 value.

2) 0 to lowest location of program with 0 value.
3) 400 to 500 with 0 value. It will overwrite the values in

those locations if program has written some thing to it.
The program will also output the memory map in the hex-range

V.31 ue.

mdump -- program to see the memory locations and symbols
sme 	-- program to edit the memory l oc a tio n

EUOS

Only INTEL and MOTOROLA program are checked at this
moment. The User might have to type '\$' in the case of
mit records if the operating system does not allow to pass

it is to the program. 	If you find any thing else let
us know !!

November 23 . 1983

APPENDIX 11

1) The Program Used To Test the Simulated 8086 CPU

1
1
1
1
1
1

1
1
1
1
1
1

C
il

.2
>

C
r.
1
 1,..

)

7

1 cat test.86

**

* Test proÉram for sinble step testio of *
* all the Intel 8086's insLructions in va- *
* rious addressin modes.The Proram is
* written in the as8086 assembler used bm *
* the Lantech Cross software tools.
* 'TEST.86" is transferred into "14out"
* format usin the Lantech assemblers
* linkers loader and the 'otol' Pro5Aram.

**

* Max Streit? Intellitech Canada Ltd
* June 1984

**

* constants

data8: 	.enu 	238
data16: tenu 	11ddH
disP81 	•emu 	11H
disp16: •2QU 	0100H
rill: 	.ds 	20
addr: 	•dw 	0
addr16: .dw 	0
port: 	.euu 	00c2H
tm•e: 	.eu 	7

sen16: 	•sement 	code

se5116: 	•ends

* two datase£ments for strin.q instruction tests

data datse<A: .seMment
•aril 3072

a: .db 	1
b:

•db

e: 	.db
d: .db
e:

•db

f:

•db
*: •db

h: 	.db 	8
at 	•db 	9
J: 	 .db 	10
kt 	.db 	11
1: 	.db 	12
m: •db 	13
n:

•db 	14

o: *dh 	15
P: 	 .db 	16

datseA: *ends

destseg: *segment 	data

,or A 3328

a: 	.dw 	0001h
r: 	•dw 	0302h
si 	*dw 	0504h
t: .dw 	0706h
u: *dw 	0,309h
v: .dw 	257
w: .dw 	257
x: *dw 	257

destseg:' *ends
*****************************AM<AA****
* This segment contains all the 8086 *
* instructions
******************************AAAAA***
tseg: 	.seAment 	code

* the ROM portion of the 86/12 memorm
* starts at 1024dec

.or A 1024

* everm possible wam of data shufflinA
* is tested bm MOV instructionsithis
* tests the correctness of ai], reAister
* and memorm transfers

mov 	Ebxpsi3ydi
MOV 	Chx7dil7di
mot) 	Ebpfsi]rdi
Iii 0V 	Cbp7dilydi
may 	Esi3rdi
way 	Cdi]fdi
mov 	Ebp3rdi

mos., 	Etlx3ydi
mov 	disp8nxrsi3sdi
mov 	disP8Ebx7dil,i
m o v 	disp8Cbppsi3Idi
mov 	disp8Ebp7di3,di
mov 	disP8EsiArdi
mov
mov 	disPBEbp3pdi

mov 	disp8E1:x3,di
mov 	disP16Ebxesi]edi
mov 	displ6Cbx7di37di
mov 	disP16Ebps5i3rdi
mov 	displ6Cbp,(1137di
mov 	disPlE[si],di
III 0 V 	 displ6Cdi 3 ,di

•

mov 	displ6Ebp]rdi
mov 	disP16Cbx17di
mov 	addrydi

mov 	dirEbx,si]
mov 	diynx7di]
mov 	diyEbPysi3
mot/ 	di,n1P7di3
m o v 	dipEsi3
mov 	di7Cdi3
mov 	dipEbp]
mov 	di7Ebx]
mov 	diydisp8Cbx,si3
mov 	dildisP8Lbx,di3
mov 	diedisp8lbPrsi3
mov 	diydispenpedi3
mov 	dipdisr8Usi3
mov
mov 	diydisp8Ehr, 3
mov 	diydisp8rbx3
mov 	dirdisp16Ebx,si3
Rs 0 V 	 di'displ6nx7di]
mov 	diedispl6nPysi3
mov 	diydisplénbP9di]
mov 	di'displérEsi]
mov 	diydisipl6Cdi3
111 0 V 	 di,displ6nP7
mov 	dirdispl6[.bx]
mov 	dipaddr

**
mov 	EbNysi]rtdata8
mov 	Cbxydi174data8

mov 	Ebp'sflitdata8
mov 	[bp,dilltdata8
mov 	CsiAptdata8
mov 	Willidata8
mov 	Cbp],*data8
mov 	Etxx17 ,1data8
mov 	disP8ELlx,si],tdata8
mov 	disPenxydill4data8

	

mov 	disPEULIPpsi77*dat88

	

mov 	disPEMbP7dElyedata8

	

mov 	disr-8Lsflytdata8

	

mov 	disr8Edilpedata8

	

mov 	disP8np3ptdata8

	

mov 	disP8Cbx374data8

	

mov 	disPl6nbxrsi3lidata8

	

mov 	disP16Ebxedi1,tdata8

	

mov 	disP16[LIP:si],tdata8

	

mov 	disPI6CipPrdfly4data8

	

mov 	disP16Esi3pidata8

	

Ili 0 V 	disrl6Cd1374data8

	

mov 	disP16EttPlytdata8

	

mov 	disP16Ebx374data8

	

mov 	addrytdata8
**

	

mov 	nxpsi3rtdatal6

	

may 	[hxydi],tdz3tal6

	

mov 	[bPpsi3/tdata16

	

mov 	Ebp,di37 ,edata16

	

mov 	Csi3rtdatal6

	

mov 	Edi1p•dat316

	

mov 	Cbp]ptdata16

	

mov 	Cbx37•data16

	

mov 	disP8Ebxysi3stdata16

	

moV 	disp8Cbx,di],tdketa16

	

mov 	disr8nPesi3r4datal6

	

mov 	disr8ELIP7di],tdwta16

	

mov 	dispB[sfletdata16

	

mov 	disPEndilltdatal6

	

mov 	disP8CbP3rtdata16

	

-mov 	disp8nx1ytdatal6

	

mov 	disP16Lbxrsi]rtdatal6

	

mov 	displ6Lbxrdil7edatal6

	

mov 	disP16Ebp'sflytdatal6

	

mov 	disP16ELIPIdilyZelta16

	

mov 	disP16ni]stdata16

	

mov 	disP1Andi37tdata16

	

mov 	disP16[bp]etdata16

mov 	disP161-Alx]rtdatal6
mov 	addrytdata16

mov 	binxrsi3ptdat38
mov 	bi[bx,di],tdata8
mov 	binpysi3etdata8
mov 	b'Ebprdil7tdata8
mov 	bUsi],tdeta8

I .

	

mov 	bUdiArtd3ta8

	

mov 	b'EbP]ptdata8

	

mov 	h'Cbx37tdata8

	

mov 	bidisPEMbx,si],tdata8

	

mov 	bidisp8Ebxyd137tdata8

	

mov 	b'disP8[bPysi]ptdata8

	

mov 	bidisP8EbP7di17•data8

	

mov 	b'disPEUsi3rtdata8

	

mov 	bidisp8EdLlytd3ta8

	

mov 	bidisp8EbP37tdata8

	

mov 	b'disPeCtlx17td3ta8

	

may 	bidispl6Ebx,sil1, tdata8

	

mov 	bidisplUbx,dil7edata8

	

mov 	b'displ6nbppsi3lidata8

	

mov 	bidisp16ELIPpdi1ledata8

	

mov 	b'disp16rsi31tdata8.

	

mov 	b'displ6Edi],tdat88

	

mov 	b'disp16Cbp]r1dat88

	

mov 	bidispl6nbx],tdata8

	

mov 	b'addr,tdata8
**
arops: jMP iMP3

aaa
aad
aam
aas

	

adc 	Ebx,sflytdatal6

	

adc 	Ebxysi]ltdata8

	

ado 	Ebxysi],tdata8

	

adc 	Ebx,siAp•data8

	

adc 	[bx,si3rdi

	

adc 	alrtdata8

	

adc 	axltdata16

	

adc 	hUbxyui3,4data8

	

.adc 	bUbx,si],bh

	

adc 	bh,Ebxysi3

	

adc 	dir[hxpsi]

	

add 	Eimrsiiptdatal6

	

add 	nxisi],tdata8

add 	Ebxlsi],tdata8
add 	Ebx,sflytdata8
add 	Cbx,siltdi
add 	alrtdata8
add 	axytdatal6
add 	bUbxrsi3ftdata8
add 	bUbx7si],bh
add 	bilyEbx,si3

and 	Ebxlsi3ltdata16
and 	Cbx,siAptdatel
and 	[bxlsi],di
and 	alptdata8
and 	axpidata16
and 	b'Ebxesi3,tdata8
and 	b'EbxysiAlbh
and 	bh:Ebx,sil
and 	diy[bxysi3

* test of procedure calls

call 	procl
calli 	Cbxysi3
earn 	proc3rtses

• 	callli 	Cbxlsil

cbw
cic
cld

cmc

*.taret procedures for calls
Procl: mov 	axrti

ret
Proc2: mov 	ax,12

ret 	tdatal6
proc31 mov 	ax,t3

rat].
Proc4: mov 	ax,*4

rat]. 	edatal6

CMP 	EbxysiAptdatal6
CMP 	Ebxlsi3vtdata8
CMP 	LbX,Si1,tdata8
CMP 	Cbxrsi3ptdata8
CMP 	EbX,5i],di
CMP 	alltdata8
CMP 	axptdatal6

I .

- 1 ;not implemented

; (use inb)

; (use inw)

CMP 	b'Ebxysi]ytdata8
CMP 	bUbxysi]ybh
CMP 	bhyEbxysi]
CMP 	diyEbxysi]
reP
cmpsb
reP
CMPSW

repne
empsb
repne
CMPSW

cwd
daa
das
dec 	Ebxysi)
dec 	ax
dec 	b'Ebxysi)
dec 	bp
dec 	bx
dec 	cx
dec 	di
dec 	dx
dec 	si
dec 	SP
div 	Ebxysi]
div 	b'Ebxysi3
esc 	[bx,si]
hlt

idiv 	Ebxysi3
idiv 	bUbxysi3
imul 	Ebxrsi3
imul 	b'Ebxysi3
in 	alydx
in 	alytport
in 	axydx
in 	axy•Port
inb
inc 	Cbxysi3
inc 	ax
inc 	b'Ebxysi3
inc 	bP
inc 	bx
inc 	cx
inc 	di
inc 	dx
inc 	si

inc 	SP

* Software interruPts

int 	3 	 use int3
int 	type
int3
into
inw
iret

* test for conditional control transfer instructions

I 11: 	CMP 	 axybx
ja 	12

•• 	 M 13: 	CP

jae 	
axpbx
14

15: 	CMP 	 axybx
jb 	16

I 	
17: 	CMP

jbe 	
axpbx
18

19: 	CMP 	 axpbx

II 	111: 	
jc

CMP 	

110
axybx

jcxz 	112

I 	
113: 	CMP

Je 	
axybx
114

115: 	CMP 	 axpbx
jS 	116

11 	
117: 	CMP

Je 	
axybx
118

119: 	CMP 	 axybx
• J1

M P 	

120
121: 	C axybx

jle 	122

II 	
133: 	CMP

Jna 	
axpbx
124

12: 	CMP 	 axybx
jnae 	13

14: 	CMP 	 axybx
jnb 	15

16: 	CMP 	 axpbx
jnbe 	17

18: 	CMP 	 axpbx
jnc 	19

110: 	CMP 	 axpbx
jne 	111

8 •,,,, .:..

•

	

112: 	CMP 	axybx
jng 	113

	

114: 	CMP 	axybx
jn!1e 	115

	

116: 	CMP 	axybx
jnl 	117

	

118: 	CMP 	axybx
jnle 	119

	

120: 	CMP 	axybx
jno 	121

	

122: 	CMP 	axybx
jnp 	133

	

124: 	CMP 	axybx
jns 	124

	

126: 	CMP 	axybx
jnz 	126

	

128: 	CMP 	axybx
jo 	128

	

130: 	CMP 	axybx
jp 	130

	

132: 	CMP 	axybx
jPe 	132

	

134: 	CMP 	axybx
jP0 	136

	

136: 	CMP 	axybx
js 	136

	

138: 	CMP 	axybx
jz 	138

* unconditional control transfer instructions

JMPO: 	JMP 	JMP2

iMP 	jITIPO

jMP 	aras

jMPi 	Ebxysi3

jmPl 	datal6ydatal6

jmpli 	Ebxysi3

Jmpl:

Jmp2:

J11, p3

jmp4:

j11, p5

lahf
lds diyEbxysi]

le a 	dipCbxysi]
les 	diyEbxysi3
lock
lodsb
l'odsw

**
* loop instructions

lol: 	loop 	loi

1. o2 	CMP axybx
loope 	lo2

1 o3: 	CMP axybx
looPne lo3

1 o4: 	CMP axybx
loopnz lo4

1 o5: 	CMP axybx
looPz 	lo5

mov 	tbxysflytdatal6
mov 	Cbxysi3ytdata8
mov 	Ebxysi:lydi
mov 	biaddrlfryal
mov 	3ddr16yax
mov 	ahytdata8
mov 	alyedata8
mov 	alyaddr16
mov 	. axy•datal6
may 	axyaddr16
mov 	b'Ebxyni]ytd3ta8
mov 	b'Ebxysi],bh
mov 	billtdata8
mov 	bhy[bxysi]
mov 	blytdata8
mov 	bPytdatal6
mov 	bxy•datal6
mov 	chy1data8
mov 	cly:Id43ta8
mov 	cxytdatal6

mov 	dipTdatal6
mov 	dirEbxysi3
mov 	dlytdata8
mov 	dxytdatal6
may 	siytdatal6
mov 	spytdatal6
movsb

movsg 	Cbx/si3/ss
movsg 	55rEbx/si3
movsw
mul 	[bx/si]
mul 	b'Ebx/si3
ne A 	Ebx/si3
ries 	bUbx/si3
DOP

not 	Ebx/si]
not 	b'Ebx/si3
or 	Ebx/si3/tdatal6
or 	Ebx/si3/tdata8
or 	[bx/si3/di
or 	a1/tdata8
or 	axptdatal6
or 	bUbx/silptdata8
or 	b'Ebxesi3/bh
or 	bh/Ebx/si3
or 	di/Ebx/si]
out 	dxpal 	 ;use outb
out 	dx/ax 	 ;use outw
out 	alltport
out 	ax/tport
outb
outw
POP Ebxesi3
POP 	8X
POP 	bp
POP 	bx
POP 	CX

POP 	di
POP 	dx
POP 	Si

POP 	.SP
pof
POPSÉ 	ds
POPSg 	es
POPSg 	ss
rush 	Ebx/si]
rush 	BX

rush 	bp
push 	bx
rush 	ex
rush 	di
push 	dx
rush 	si
rush 	SP

rushf
pushsg cs
pushsg ds
Pushsg es
pushsg ss
rd l 	Cbx,si3
rd l 	b'Ebx,si3
rely 	[bx,si3
rclv 	b'Ebxysi3
rcr 	Ebxysi]
rcr 	b'[bx,si]
rcrv 	Ebx,si3
rerv 	b'Ebxysi]
reP
repe
rePne
rePnz
rePz
ret
ret 	tdatal6
retl
retl 	tdata16
roi 	Ebxesi]
roi 	bUbx,si)
rolv 	Cbxysi]
rolv 	b'Ebxysi3
ror 	Ebxysi3
ror 	bUbxesi3
rorv 	Cbxysi3
rorv 	b'Ebxlsi)
sahf
sar 	[bxrsi]
sar 	b'Ebx7si3
sarv 	Cbx,si3
sarv 	b'Cbxysi3
sbb 	[bxrsi3,tdatal6
sbb 	tbxysflytdata8
sbb 	Tbx/si3rtdata8
sbb 	Cbx7silyedata8

sbb 	alridata8
sbb 	axpidatal6
sbb 	b'Ebx,si3rfedata8
sbb 	b'Cbx7silybh
sbb 	bh,Ebx,si]
sbb 	dilEbxpsi]
rePe
scasb

repe
scasw
repne
scasb
rePne
SCBSW

sescs
scÈds
seSes
seSss
shl 	[bxysi]
shl 	bUb4ysi3
shlv 	Ebxysi3
shly 	b'fbxysi3
shr 	Ebxysi]
shr 	b'Ebxrsi3
shrv 	Ebx,si7
shrv 	bUbxysi3
stc
std
sti
reps
stosb
repe
stosw
repne
stosb
repne
stosw
sub 	Ebx,si3ttdatal6
sub 	Ebxlsi]yedata8
sub 	Cbxtsi3ptdata8
sub 	Cbx/si],lidata8
sub 	Ebxlsi3ydi
sub 	al71d3ta8
sub 	axy*data16
sub 	blEbxlsi3ltdata8
sub 	b'Ebxlsi3ebh
sub 	bh/Ebxrsi]
sub 	dirEbx,si3
test 	Ebxlsily4datal6
test 	Ebxfsi]pdi
test 	alytdata8
test 	axptdata16
test 	b'Ebxysi],tdata8
test 	b'Ebxysi],bh
wait
xchS 	ax/ax

tseg:

xchg 	axybp
xchg 	axybx
xchg 	axycx

xchg 	axydi
xchg 	axydx
xehg 	BX,Si

xch 	exygp
xchg 	bhyEbxysi3
xchg 	diyEbxysi3
xlat
xor 	[bxysi3ytdatal6
xor 	[bxysi]ytdata8
xor 	Ebxysi3ydi
xor 	alytdata8
xor 	axytdatalb
xor 	b'Ebxysflytdata8
>or 	bUbxysi3ebh
xor 	bhy[bxysi3
xor 	diyEbxysi3
*ends

'eject

fend

1

APPENDIX H

2) List of "Bugs" fixed in the initial 8086 CPU Description

!** ************ ieAY<AAAAA*AAXAMffl*A*AAAAAAAA*AAVokAAAAAA*A)k*AAI
List of 'Bugs" in the Trivedi version of the 8086 fixed !
bu M. Streit:

1) introduction of the word/bute case for
the LDA and ST A instructions

2) active high logic for the readu signal
(wait if readu = high) because two mo-
dules use this input signal(N.mPc "ORs"
all Ports writing to a signal)
a delam of 2 units introduced between
the two memorm accesses for read/write
of a word from/to an odd address to allow !
private or global memoru to finish its
first read/write opera(ion before the sub-!
seauent one starts

A) a missing "next;" after the IO 	OutPuti 	!
statement in the "do_outputi procedure
disabled all output operations and had to !
be added •

5) offsets in jUMPS were 1 unit too short be-!
cause improper jump ex ecution(iP=iP-Fget0) !
where the last ip incrementation took pla-!
ce in the gete Procedure but didn't affect!
the jump;step bu step execution of the
jump(iptemprzget(Unext;ip=ip-hiptemP;next;) !
now Perform a jumP using the proper offset!
The linking loader program also had to be !
adjusted(see 180861.i in lief directorv).

6) the effective address calculation was
wronglu encoded in the case of EbP75117di;!
bx was mixed UP with bP(in case r_m re 02) !

7) the number Fhewr:15dec was wronglu rePre- !
! 	 sented as 0x15=15hex(in ISP')=21dec in

the DA A and AAA(2 times) instructions 	-1
8) in all add- or subtract carru instructions!

the car ru fia(cf) was added without ex- !
sion ta a word and was therefore misin-
terpreted as -1;ef had to be replaced bu !
(cf ext 16) in the ADCrAICYSBC,SAItABCIP 	!
and SBB instructions

9) improPer use of getO bu the "getimd_sw"
procedure in the ADCI instruction •fixed bu!
arranging the cases of ir<9:8> correctlu !

10) decoding and procedure for the ADC
reg/memr reg instruction had to be added !
(opl 	ir<15:9> 	010octal)isame for ADD !
regimen', reg (oP1 	0)

11) similar changes as on ADD/ADC had to be

i l

performed on SUB/SBB(subtract with bor-
row)

12) incorrect Quotient ranUe criterion(ax(16 !
bit) cannot be ureater than FFFFh) rePla- !
ced in the "div" procedure; divisor read !
corrected to reflect the word/bute Possi- !

! — 	 bilitie for unsiUned division -
13) bu U in RidivitreU32<31:16> = dx; (and not !

<31:15>
14) software interrupt tupe0 also implemented !

in "idiv" and "div" for attemPts to divi- !
de by zero

15) the two instructions "mull and "div" ex- !
pect unsiUned operands;as siun extension !
occurs when bute or rands are acQuired
this problem had to be fixed bu avoidinu !
bute operand acQuisition

16) bite- and word-operand case were not cor- !
rectlm treated in 'mu]' and "imule

17) the mem/reU destination case had to be ad-!
ded in the AND, OR and XOR instructions

18) the implicite count reUister for all the !
shifts and rotates is clt,recx<lobute>) and !
not dx!

19) rotatinu throuUh carry had to be fixed in
all instructions usinÈ it

20) all shifts and rotates onlu took care of !
word operationsithe bute case had to be
introduced

21) inadeQuate siZe variable(reÉ3y 2 bit wide !
instead of 3) spoilt parameter passinU
in the PUSHS instructions;extension of
reU3 to 3 fixed the problem

22) improper acouisition of the offset - operand!
in the LES instruction fixed

23) the estorereu" procedure improperlm stored!
simnextended bytes instead of butes onlu I
into the reUistersytherebu affectinU also !
the one half of e 16 bit reUister that
should remain unaffected bu a byte trans- !
fer

21) WAIT chanued from 'if TEST inactive" to
'while TEST inactive ' ; wait_ff is reset as!
soon as test becomes active(see 8086 Hard-!
ware Manualy pU.2-18)

25) the opcode for the "SCAS" instruction was. !
not put into the decodinu table and there-!
fore not decoded

26) incrementing and decrementing of the data-!
indexes in the string instructions was in-!
as a one bit constant(wrd1) is interpreted!
as 0 or -1 bu ISP';extension to word size !
solves the problem

27) end of repetition in case of ex = 0 had to!
be added in the SCAS and CMPS instructions!

28) for correct execution of repeated string !
instructions the "zeroflag• bit of the re-!
Peat prefixes had to be stored in a globa1!
variable(repzf); at the sanie this prevents!
the repeat prefixes from affecting the 	!-

!

flans
29) onlm the lower bmte of an alu result

should affect the paritm flag(pf);the tre-!
atment of word reSults in the alu procedu-!
had to be changed to take peritm onlm of !
lobmte of the result

30) the Parity flag was stuck at 1; the reason!
was that the Predefined H•sec procedure
'parity alwams produeed zeroes as output
the Problem was fixed bu introducing an
internal parity procedure called "par"

31) the overflow flag was not correctly set
for subtractions(Ex:-3 	(-3) = 0 produ- !
ced an overflow); a case ..bu case treatment!
for over flows had to be introduced for
addition and subtraction

32) the overflow determination wronglm used
carry bit instead of the sign bit in the !
bute case of the alu procedure

33) JMP(intrasegment direct, lori and short)
jumPed one bute too far because the jUMP !
in these instructions was executed before !
the ip was increased bu the offset acaui- !
sition(getOy et0_2)

34) the fifo_emptm flag was not set in the JMP!
(short) instruction;so the instruction
Queue didn't g et cleared after a short
jUMP and wrong instructions got executed !

35) the indirect control transfer instructions!
(CASI,CISIIJAI,JII) were omitted in the 	!
decoding table; as their decoding would
have coincided wth the one of PUSH the
latter's decoding hed to be changed'y tocs !

36) the Phmsical address calculation("b_alu" 	!
Procedure) did not perform the 4 bit Posi-!
.ion left shift(= *16) of the segment base!

value before its addition to the offset
37) intra segment calls/returns wronglm Pushed!

iP and cs(instead of onlm ip)
38) all CALL and RET instructions were incor- !

rect because improver seeuence of assign- !
ments led to faulty control transfers

39) the te constant for software interrupts !
was onlm defined as a 3 bit constant, thus!
limiting software interrupt tes ta 0-3; !
softint was redefined to a bute size alla-!
for the 255 tapes of the 8086 to be execu-I
ted

40) "next' statements were added to the INTER-!
TERRUPT procedure to ensure that the flags!
are hein pushed on the stack before any !
flags are altered

! 	 41) if the bP register is used as a base for !
calculation of the effective address the !
stack segment is referenced unless an ov- !
*pride prefix specifies another segment
gister;this setting was introduced into
the "getEA' procedure

42) variables (besides strings,bv) using the !
EA a ,3 an offset use the data segment un- !
less an override segment specifies another!
segment; this override Possibilitu was

! 	 also introduced into "getEA"
43) the "mem_readm and "mem_write" Procedures !

were onlv using the first 64 kButes of the!
address space because m_hnible(bits 19116 !
of the 20 bit address) was set to 0 at the!
beginning of both procedures;m_hnible is !
now set to address<19:16>

44) the BTU Queue filling fetch oPerations did!
! interfere with the reading of the tuPes !

of external interrupts; a flag(intaip =
interrupt acknowledge in progress) had to !
be set UP to prevent the BIU from eorrup- !
tin g the data sent bu the PIC as well as !
the corresponding "while(intaip) delam"
in the BIU procedures

• 	45) the FILL_FIFO BIU-procedure used the cs
register to fill two butes into the instr-!
uction oueue; so a change of es would im- !
mediatelv affect the FILL_FIFO procedure !
causing reading from wrong addresses as
as the corresponding ie(stored globally
in b_ip) would not be affected bu the EU !

changes 	toring the initial cs in a an-• !
other global variablelb_csrsolves the 	!-

! 	 the Problem
46) the CPI(compare immediate) instruction

used wrd3(=ir<9>) instead of wrd1(=ir<8>) !
to determine word or bute operation; this !
bug happened onlY after several executions!
of the instruction and caUsed the NtmPc
sustem to blow UP and pass control baek to!
the operating sustem(VMS) getting an AC- I
CCESS VIOLATION error message; NsmPc also !
didn't blow UP in the compare instruction
itself so that this kind of bug is verm
difficult to trace; this bug was found bu !
varuing the input assembler program in or-!
der to determine that caused the problem !

47) the segment argument in the "getmeml Pro- !
cedure was reduced to a two bit size(from !
unappropriate WORD size;as well the seg- !
ment argument was zeroextended to three
bit size before being assigned to the 3bit!
EB_seg variable to Prevent automatic sign !
bu the sustem(therebm assiÉninC faultm
segment values to EB_seA); this sign ex- !
tension was also introduced in istoremem' !

48) the memoru read calls in the 'INTERRUPT' 	!
Procedure used the argument ituPe * 4' to !
read the interrupt pointers; but tmpe is !
defined as a bute and therefore sign ex- !
tended bu the 'INTERRUPT' procedure which !
expects a word . sized argument;this onlm
created a Problem for interrupt tMPOS hi- !
Sher than 31 because onlv at tune = 32 the!
Product 4*32128 starts havin a 1 in the !
8th bits which is interpreted as the sint!
of a neative number bu the 'INTERRUPT'
Procedure which then destrys the the car- !
rect type value bu siÉnextendin%ï it to 16 !
bits.(non siÉn) extension of the interruPt!
type before it is used bu 'INTERRUPT' sol-!
ves the problem

49) The *CMP' instruction only worked in the !
'CMP reÊsreti/mem' directionithe necessary !
code to do 'CMP reM/memsren was added in !
the arithmetic instruction's field under !
cases 034 and 035.Like in the case of
'CPIR(see 46) N.mPe aborted the -runtime
environment catastrophicallYtThe last in- !

struction observed before the abort occur-!
red was the one executed two instructions !
before the faultu instructions indicating !
a delam between execution inside M.mPc and!
displau of the executed instruction.So if !
a catagtrophical abort occurs one alwaus !
to suspect the cause in an instruction 1
slightlm BEFORE the last one executed.

! 50) The "INCR" and "DECR" instructions did not!
update the flags when incrementing/deere- !
menting registers.This was fixed bu using !
the 'al ii' procedure for incrementing/dec- !
rementing rather than just adding/subtrac-!
ting 1.

51) The carru in the case of subtractions(cal-!
led 'borrow) was improperlm set.The borrow!
is the inverted carry except in the case !
of a subtraction of zero from some number !
where the borrows as well as the earn:sr
is enual to 0.The carrm for subtraction is!
determined in the sanie wam as the carrm
for addition but one adds the 2 ; s comPle- !
of the number to be subtracted.The carrm !
is then inverted e •cePt in the case of the

 subtrahend hein g zeroswhere carrm:mborrowr-, 0!
52) The "SHL" and "SAL" instructions did not 	!

set the carrm with the bits shifted out
leftwards.The carrm flag now contains the !
last bit shifted leftwards out of a regis-!
ter.

53) An unwanted sign extension in the 'MM."
instruction corrupted results for negative!
numbers.Zero extension of multiplicand and!
multiplicator Up result size Prior Lo the !
multiplication solved the problem.

54) The conditional jump instructions 'JO',
"JLE"s'JL's"JNL" did not take the overflow!
flag into account for their jUMP conditi- !
ons.Conditions were corrected according to!
hardware manual.for the Intel 8086.

!*********************90kA*AAAAA*AA*AAAAAAAAA*AAAAAAA)NAAAAAAAAI

APPENDIX I

Listings of the I/O Assembly Routines used in the Validation Simulation
("PRINT.S", "IN.S")

_in:
.public

+segment
+assume

_in
code

cs:_inrds:Scommon

rush 	bp
rush 	bx
rush 	cx

*stack:
* oldcs
* (spi-6): oldiP
* (sp1-4): bP
* (sP-1.2): bx

Sp - > CX

mov 	bprsp 	;have bp point to
;bottom of stack

* INPUT ROUTINE FOR THE VALIDATION SIMULATION *

mov 	axrt10 ;writes 'Enter an.sle
out 	axr40 	;(dosreesr2 disits):'
.mov 	axr*13
out 	ax,*()
mov 	axrt69
out
mov 	axrt110
out 	axr*0
mov 	axr*116
out 	ax,*()
mov 	axrt101
out 	ax,*()
mov 	axr4114
out 	axr10 .
mov 	axr*32
out 	axr*O

mov 	axr*97
out 	axr*O
mov 	axrt110
out 	axr*0
mov 	axrt103
out 	ax,*()
mov 	axrt108
out 	axr*0

•

axpt7fh
axpt57

;strip ,1 p:3ritm bit off
;prevents input of anmthint1

and
C 111 P

mov 	axpt101
out 	axpt0
mov 	axp•40
out 	axyt0
mov 	axpt100
out 	axpl0
mov 	axpt101
out 	axpt0
mov 	axpt103
out 	axpt0
mov 	axpt114
out 	axyt0
mov 	axpt101
out 	axy40
mov 	axpt101
out 	axpt0
mov 	axpt115
out 	axpt0
mov 	axpt44
out 	axyt0
mov 	ax,t50
out 	axpt0
mov 	axpt32
out 	axy40
mov 	axpt100
out 	axp40
mov 	axpt105
out 	axpt0
mov 	axp$103
out 	axpt0
mov 	axpt105
out 	axy40
mov 	axpt116
out 	axy40
mov 	axpt115
out 	axpt0
mov 	axyt41
out 	axpt0
mov 	axpt56
out 	axpt0
sub 	axpax

1 NONUM: 	in 	axpt0 ;the first two numbers in a
;strin of characters are ta-
;ken to he the input 'anfne"

ah
ah

shr
shr

1

I

jâ 	NONUM 	but numbers 0-9
CMP 	 axytA8
jb 	NONUM
out 	axyt0

sub 	axy•48
mot, 	bxyax
sub 	axyax
MOV 	 axyt10
mul 	bx
MOV 	 bxyax
sub 	axyax

NONU: 	in 	axyt0
and 	axyt7fh ;strips Parity bit off
CMP 	 axytS7 	;prevents input of anmthinâ
jâ 	NONU 	;but numbers 0-9
CUsP 	 axyt4S
jb 	NONU
out 	axyt0

sub 	axyt48
add 	axybx 	;ax now contai ris 'angle' to be

;input
MOV 	 dxyt0 	the function return returns a

;doubleword in the dxyax reâisters
the hiâher word(in dx) is always zero

END: POP 	 CX

POP 	 bx
PoP 	bp

retl

*************************AA)«*A*A*AA*AA*AAAAA*
* THIS SUBROUTINE PRINTS A WORD(THE VALUE IN *
* THE AX REGISTER) IN HEX ON THE SCREEN OF 	*
* THE WORKING TERMINALUT IS INVOKED TWICE TO*
* HANDLE 32 BIT VARIABLES P1 BIT GROUPS OF THE*
* NUMBER TO BE DISPLAYED ARE CONVERTED TO THE*
* CORRESPONDING ASCII CODE
**
asciprt:

MOV 	 cxyax ;cx end ax reâistors
MOV 	 ahych 	are used

;transform hishest nibble
;of ax to hex(in ASCII)

• 1

shr 	ah
shr 	ah

. and 	ahstOfh
CMP 	 ah7*9
jg 	hex
add 	ahlt3Oh
jMP 	 next

hex: 	add 	ahl*37h
next: 	mov 	a1 ah

out 	al7t0 ;output hiShest nibble on
;on screen

mov 	ahlch
and 	ahr*Ofh
CMP 	 ah719
jg 	hexl
add 	ah7130h
jmp 	nextl

hexl: 	add 	ah7*37h
nextl: 	mov 	aleah

out 	al JO 	;output second hishest
;nibble on screen

MOV 	 al7c1
shr 	al
shr 	al
shr 	al
shr 	al
and 	alp*Ofh
CMP 	 a1719
jg 	hex2
add 	al7t3Oh
jMP 	 next2

hex2: 	add 	al7t37h
next2: 	out 	al7*0 	;output third hiShest

;nibble on screen

mov 	alycl
and 	aly*Ofh
CMP 	 al749
jg 	hex3
add 	al7 .430h
jMP 	 next3

hex3: 	add 	al7t37h
next31 	out 	al 7t0 ;output least sisnificant

;nibble on screen
ret

+ends
*end

.public
+segment
+assume

_print
code
cs:_printsds:Seommon

_print:

rush 	bp
rush 	ax
rush 	ex

*stack:
* 	(sp-1-24): mmk lo
* (sP1-22): sik lo
* (sp+20): ok lo
* 	(sP4-18): bk hi
* 	(sP+16): bk lo
* (sP.1-14): ak hi
* 	(sP+12): ak lo
* (spi-10): t lo
* (sp+8): oldcs
* (sP1-6): oldip
* (sp+4): bp
* (sr-F.2): ax

SP - > CX

mov 	bpysp 	;have bp point to
;bottom of stack

;carriase return

;line feed

may 	axyl0Ebp3 	;Print "t"(word)
call 	asciprt
mov 	axyt32
out 	axyt0

mov 	axy14Ebp3 	;print "ak"(doubleword)
call 	asciPrt
mov 	axy12Ebp3
call 	asciPrt
mov 	axyt32
out 	axyt0

mov 	alyt13
out 	alyt0
mov 	alyt10
out 	alyt0

mov
call
mov
call

axylUbp3 	;Print "bk"(doubleword)
asciPrt
ax,16[bp3
asciPrt

MOV 	axy22Ebp3 	;Print "mik"(word)
call 	asciPrt
mov 	axyt32
out 	axyt0

mov 	axy24Ebp3 	;printlymk"(word)
call 	asciPrt
mov 	axpt32
out 	axytO

mov 	alyt13 	;carriage return
out 	alytO
MOV 	alet10 	;line feed
out 	aly40

1

axyt32
axytO

mov 	axy20EbP3 	;Print "ok"(word)
call 	asciPrt
mov 	axyt32
out 	axy•O

MOV
out

END: POP 	 CX
POP 	 ax
POP 	 bp

retl

***********************************)W 0 **AA*
* THIS SUBROUTINE PRINTS A WORD(THE VALUE IN *
* THE AX REGISTER) IN HEX ON THE SCREEN OF 	*
* THE WORKING TERMINALUT IS INVOKED TWICE TO*
* HANDLE 32 BIT VARIABLES;4 BIT GROUPS OF THE*
* NUMBER TO BE DISPLAYED ARE CONVERTED TO THE*
* CORRESPONDING ASCII CODE
**
asciprt:

MOV 	cxyax ;cx and ax registers
mov 	ahych ;are used

shr 	ah 	;transform highest nibble
shr 	ah • 	;of ax to hex(in ASCII)
shr 	ah
shr 	ah
and 	ahytOfh

1

1

CMP 	 ahlt9
jg 	hex
add 	ahyt3Oh
jmp 	next

hex: 	add 	ah7•37h
next: 	mov 	alyah

out 	ai $0 ;output highest nibble on
;on screen

mov 	ahych
and 	ahytOfh
CMP 	 ah,49
jg 	hexl
add 	ahy430h
jMP 	 nextl

hexl: 	add 	ah1437h
nextit 	mov 	alyah

out 	alytO 	;output second highest
;nibble on screen

mov 	alycl
shr 	al
shr 	al
slip 	al
shr 	al
and 	alytOfh
CMP 	 aly49
jg 	hex2
add 	al1430h
jmp 	next2

hex2: 	add 	aly437h
next2: 	out 	alytO 	;output third highet,t

;nibble on screen

mou 	alycl
and 	alytOfh
CMP 	 alyt9
j5 	hex3
add 	aly430h
jmp 	next3

hex31 	add 	aly437h
next3: 	out 	al ,*0 ;output least significant

;nibble on screen
ret

_print: *ends
.end

intellite.ch
Intellltech Canada Ltd
352 MacLaren Street,
Ottawa,Ontare
K2P0M6
(613)235-5126

sl

