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SUMMARY 

This report presents the results of a study conducted to design, 

simulate and evaluate a fault-tolerant multi-microprocessor system for 

spacecraft 	on-board processing applications. 	The 	fault-tolerant 

processor architecture can also be used in general applications 

requiring high degree of reliability over a specific processor life 

cycle. 

The design approach proposed in this study is novel in the sense 

that fault-tolerant features and supporting mechanisms are embedded both 

in the hardware architecture and in the operating system software. The 

hardware has several redundant components that are controlled by fault 

detection mechanisms to isolate the sources of error and prevent the 

proliferation of these errors from the faulty component to the remainder 

of the system. The operating system software contains all the 

intelligence needed to detect errors, identify their sources, take the 

necessary action to remove faulty units, reallocate the processing tasks 

and reconfigure the system to adapt to the new operational state. 

Results of the fault tolerant study are presented in two reports, 

both of which are deliverables under contract OER-83-05075. This report 

presents the hardware fault tolerant architecture. The second report, 

entitled "Conceptual Design of a Fault Tolerant Multiprocessor Operating 

System and the Implementation of a Prototype Kernel", presents the 

conceptual design and simulation of the basic functions (the kernel) of 

an operating system with fault-tolerant characteristics. 



Further research intended to complete the description of the fault-

tolerant operating system and to integrate it with the underlying 

hardware structure is currently being conducted. Results of this 

research will be presented at the conclusion of the current phase of the 

contract (March 1985). 

This report is a deliverable under the terms of DSS contract OER 

83-05075, to the Communications Research Centre of the Department of 

Communications, Government of Canada. 
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1. INTRODUCTION 

1.1. Objectives Of This Study  

The main objective of this study is the design and simulation of a 

processing system architecture capable of graceful recovery from 

component failures or other errors, so that it can function in a normal 

mode for a specific, relatively long, time duration. 

This study has been motivated by the ever increasing on board 

processing requirements in future spacecraft missions. One of the 

essential requirements for satellite on-board processing is the ability 

of the processing system to recover from component failures, 

redistribute the processing load among the remaining components and 

continue its normal functioning throughout the intended mission life 

span. 

To achieve these characteristics in an unattended mode, the fault 

tolerant features of the system must be embedded both in its hardware 

structure and in the software operating system which manages the fault 

recovery mechanisms. 

This study was conducted for the Communications Research Centre, 

Department of Communications under a DSS contract. 

1.2. A Typical Satellite Bus Configuration  

The block diagram of a typical present day satellite system is 

shown in Figure 1.1. 	The system consists of a number of dedicated 

subsystems each of which controls a set of devices that serve one 

particular function. The most important of these subsystems are: 

- Telemetry Tracking and Command subsystem (TT&C) 

This subsystem handles the communications with the ground 

station and the control of the other subsystems. Any on board 

1 
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intelligence is, at present, very limited and is included in 

this subsystem. Aside from controlling the other subsystems 

this subsystem directly controls the communication devices of 

the satellite, namely the Transmitter (TX) and the Receiver 

(RX). 

- Attitude and Orbit Control Subsystem (AOCS) 

This subsystem monitors the stability of the satellite and 

ensures its proper orientation. To accomplish this it takes 

its data from Digital Sun Sensors (DSS), Infra-Red Earth 

Sensors (IRES) and Gyros. After suitable processing these 

data can be transmitted to the ground station or they can be 

used to control the wheels in order to change the orientation 

of the satellite. 

- Combined Propulsion Subsystem (CPS) 

This subsystem monitors the speed and acceleration of the 

satellite and performs any necessary corrections under the 

commands of the TT&C subsystem. 

- Thermal Control Subsystem (TCS) 

The function of this subsystem is to maintain the temperature 

of the satellite within certain prespecified limits in order 

to ensure proper operation of the on-board systems. This is 

accomplished by monitoring heat sensors (HS) and operating 

either a heater or a cooler as appropriate. 

- Power Subsystem (PSS) 

This subsystem ensures that all systems in the satellite are 

provided with sufficient electrical power. It controls the 

connection of the Solar Arrays (SA) to the batteries and the 

flow of energy from the batteries to the various subsystems of 

3 
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the satellite. 

1.3. Fault Tolerant Features  

The processing system for the typical satellite example described 

in section 1.2 does not employ any fault tolerant features. Instead 

designers relied mainly on component screening and thorough testing in 

order to ensure the reliable operation of the system. 

Although this approach was feasible for very simple satellite 

systems, the ever increasing complexity of the various subsystems 

dictated the inclusion of certain fault tolerant features for the 

processing system of the described architecture. These consisted mainly 

of duplicate devices intended to become operational in case of a failure 

of the main device. 	However, no change in the architecture of the 

system was attempted. 	The main reason for that is the simplicity of 

this architecture which made it usable in the resource limited satellite 

environment. 

As the state of the art of electronic components progresses, it 

becomes feasible to employ more complex architectures in a satellite 

processing system. These architectures enable the satellite processing 

system to function on its own without any supervision from the ground 

and to automatically make any corrections necessary in case of a 

component failure. 

To accomplish this, a satellite processing system must be capable 

of detecting any failure. As well, such failure should not be allowed 

to interfere with the normal operation of the on-board processing 

system. This is accomplished by employing more redundancy in the 

processing system. For example three or more processors running in 

parallel can both detect and mask any single failure, thus allowing the 

4 



system to continue its operation in a normal fashion despite the 

failure. 

Once the error is detected the processing system must take steps 

for the isolation of the faulty component and possibly for its 

replacement  with a functional unit. This capability is provided to the 

system by a suitable integration of hardware support mechanisms and 

appropriate control software. 	Typically the hardware will first detect 

the fault, and signal the software about it. 	Then the software will 

determine if a certain device must be isolated and/or the system must be 

reconfigured. Appropriate commands are then issued to the hardware 

which then implements the isolation/reconfiguration. 

1.4. Structure of this Report  

In this report a processor architecture will be presented which 

meets the requirements mentioned in section 1.3. 	Many elements of the 

proposed architecture have been adopted from fault tolerant 

architectures used in various control applications, namely flight 

control for aircraft, train junction control etc. These architectures 

were considered too complex to be employed in the satellite environment. 

The study reported here investigates the feasibility of adapting such 

fault tolerant architecture to meet the on-board processing requirements 

of satellite systems. 

The control applications mentioned above require a very high degree 

of reliability since in most cases human lives are in immediate 

jeopardy. 	However the time period over which this reliability is 

required is small since flight time is in the order of few hours. 	Thus 

repairs and service are accessible every few hours. A satellite system, 

by contrast, 	requires a relatively lower degree of reliability but for 
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significantly longer periods of time, namely the intended life span of 

the satellite which can be in the order of 10 years. 

In chapter 2 of this report the various available architectural 

alternatives are described and compared to each other. 	From this 

comparison an optimal architecture is selected and described in detail 

in chapter 3. Chapter 4 presents a reliability analysis of the selected 

architecture. 	This analysis is similar to the analyses available for 

existing systems although the different requirements dictate different 

weighting of the analysis parameters. Some factors that were considered 

insignificant in other application turn out to be playing a primary role 

in the satellite application. 

Chapter 5 contains a detailed description of one possible hardware 

realization of the selected architecture presented in chapter 3. 	The 

description is general and is not hardware specific. 	However, it is 

detailed enough that it can be used directly for an implementation of 

the architecture. 	Finally, Chapter 6 contains a summary of the work 

completed so far along with some concluding remarks. 
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2. SELECTION OF A MULTIPROCESSOR ARCHITECTURE 

2.1. Introduction  

From a logical point of view the control processes of a satellite 

system can be divided into central processes and peripheral processes. 

The central processes perform the actual processing while the peripheral 

processes are simply device drivers which interface to peripheral 

devices. Although the logical separation does not necessarily dictate 

physical separation, in most cases the device drivers are actually 

embedded in the devices as firmware. In this report, the processors 

that run this firmware will be referred to as peripheral processors 

while the processors that run the actual control software will be called 

central processors. Peripheral devices may either be connected to an 

external (peripheral) processor or they may be directly controlled by 

the central processors. 

An on-board processing system for a typical satellite can be 

modelled as a composite of two sets of processors. One set does the 

actual processing while the other set consists of intelligent peripheral 

controllers, sensors and actuators. The latter set of processors can be 

considered as slave processors and are controlled by the former set. 

This arrangement is shown in Figure 2.1. The central processors share 

the computational load and are the highest authority. They are built as 

a fault tolerant structure and employ redundancy to ensure reliability. 

The peripheral processors usually operate alone and may have stand-by 

replacements. 

The processor network interconnects the central processors while 

the peripheral network connects the central processors to the peripheral 

processors which they control. 	Once again logical separation does not 

dictate physical separation. 	In the detailed descriptions of the 

7 
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various 	possible 	configurations 	we shall see 	that 	for 	some 

configurations the two networks may be physically one and the same. 

2.2. Central Processors  

The central processors handle the processing load of the satellite. 

Since they constitute the highest authority they must be made fault 

tolerant and fail safe. 	Besides, the whole system must be able to 

degrade gracefully so as to maximize its total useful life. 	To 

accomplish •that it is necessary that any faulty part of the system can 

be completely isolated. This ensures that accumulation of faults will 

not cause a system crash as might happen if the fault was simply masked 

out of the system. 

To accomplish this some redundancy must be built into the system so 

that there will be no single point of failure. A single point of 

fàilure is defined as a part of the system whose malfunction would be 

irrecoverable. 	Redundancy may be employed either microscopically or 

macroscopically. 	Microscopic redundancy is achieved by duplication of 

individual devices in a processor and is more suitable for processors 

built out of discrete devices. Macroscopic redundancy is achieved by 

employing redundancy in the number of processors executing a segment of 

code while providing for flexible reconfiguration of the system for the 

isolation of faulty parts. Considering the rapid advances in 

microprocessor technology, macroscopic redundancy seems preferable. 

In order to ensure that the results of any program will be 

available in time independent of any hardware failure, the program must 

be run on at least three processors and the results voted. Different 

implementations of this idea have been used, each with its own 

advantages and disadvantages. These tnplementations differ in the way 
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the processors are interconnected and synchronized. 	The various 

processor interconnection schemes will be presented and discussed in the 

section devoted to the processor network. Two different synchronization 

methods are available. These are tight coupling (or tight 

synchronization) and loose coupling. 

In a tightly coupled system all processors run synchronously (i.e. 

they are ail  driven by the same clock). Different implementations of 

the clock circuit ensure that it will not become a single point of 

failure [1]. Any program that has to be executed is run on three 

processors simultaneously and the results of the processors are voted 

upon by hardware majority voters. This voting may take place either on 

a per instruction basis or on a task basis. Figure 2.2 showns a system 

with instruction synchronization. Any data fetched from memory are 

actually fetched from .bree separate memories and voted upon before they 

are distributed to the processors. 	Similar voting takes place for data 

sent to the memory from the processors. 	Figure 2.3 shows a system with 

task synchronization. 	Each processor accesses its own memory as an 

independent system. 	However any I/O is voted upon •efore it is passed 

out to the rest of the system. 

Although voting on an instruction by instruction basis minimizes 

the time during which an error remains undetected, it requires a large 

hardware overhead and therefore is not suitable for a satellite system. 

On the other hand task synchronization requires much less hardware 

overhead while, by an appropriate choice of checkpoints, it ensures an 

acceptable level of security. A classic example of a tightly coupled 

system with task synchronization is FM' [1]. 

In a loosely coupled system there is no phase synchronization 

between the clocks of the various processors in the system. 	Instead 

1 0 



V 

V 

FIGURE 2-2: Tightly Coupled System with Instruction Synchronization 

1 1 



7F- 

V 

FIGURE 2-3: Tightly Coupled System with Task Synchronization 



synchronization is effected by software. 	Any task runs on three 

independent processors. 	At certain predefined points the three copies 

of the task exchange information. 	This information is then voted upon 

in software. 	If an error is detected it is masked by the voting and 

logged. 	When a task is completed it distributes its results to the 

three copies of its successor(s). 	Each of the copies will vote the 

received results and proceed. 	Figure 2.4 shows the passing of messages 

between three copies of a task and one of the copies of its successor 

through message buffers. A classic example of a loosely coupled system 

is the SIFT system [2,3,4]. 

Both tight and loose coupling seem to provide a similar level of 

fault tolerance. In both cases some sort of error logging and handling 

is required so that transient errors will not affect the operation of 

the system. This may be done by some operating system level tasks 

(error handlers) running in parallel with the application tasks. 

Whenever a fault is detected an appropriate message is passed to 

these tasks. Then these tasks will decide if there is a hardware 

failure or the fault is simply a transient one and can be ignored for 

the time being. The exact nature of the message depends on the fault 

and the fault detection mechanism of the particular system whereas the 

way the message is passed depends on the hardware and software 

implementation of the system. 

In terms of error recovery the loosely coupled system is superior 

because all processors are autonomous. Therefore the load of a failed 

processor can be transferred to another processor, or it may be 

distributed among several processors. 	In a tightly coupled system a 

similar distribution is not possible. 	The load of a processor must be 

transferred to a spare which must then be brought in synchronization 
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with the other two members of the triad. 	Asa result, 	the processing 

power of tightly coupled systems, degrades less gracefully than that of 

loosely coupled systems as shown in Figure 2.5. This is to be expected 

since in tightly coupled systems any processor that is not a member of a 

triad remains idle whereas in loosely coupled systems all processors can 

share the processing load. 
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2.3. Peripheral Processors  

The peripheral processors are little more than intelligent device 

controllers. Besides controlling the actual devices and interfacing 

with sensors/actuators they have to be able to handle some communication 

protocol in order to assure reliable communication with the central 

processors. The nature of the protocols available will be discussed in 

the section for the peripheral network. 

Triple redundancy is not necessary for these processors. 	Instead 

the operation of the processor is monitored by the central processors 

and, in case of a failure, a cold stand-by unit is activated and brought 

in to replace a faulty unit. The monitoring of the peripheral 

processors can be done either by anploying a suitable transaction 

protocol or by periodic polling of the peripheral processors by the 

central processors. 

2.4. Processor Network  

The function of the processor network is to interconnect the 

central processors of the system. The nature and requirements of this 

network may vary greatly depending on the memory organization of the 

system. 	The two schemes that can be used are common memory and private 

memory. 	If common memory is used then each processor must also be 

equipped with an on-board cache in order to minimize bus and memory 

contention. 

The two main schemes used for processor interconnection are common 

bus and full interconnection. The fully interconnected system 

inherently offers a greater degree of fault tolerance due to its 

redundancy whereas the common bus offers simplicity and lower cost. 

Clearly care must be taken so that the common  bus  will not become a 
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single point of failure. 	This is accomplished by using several busses 

in parallel and providing spare busses and the ability to switch busses. 

The most obvious implementation is again triple redundancy. Data is 

sent along three separate busses and if one bus fails it is replaced by 

a spare. 

Intermediate bus structures do not seem very promising for fault 

tolerant applications because they contain single points of failure. 

For example in a crossbar arrangement the failure of a switch may 

incapacitate both busses it connects. If triple redundancy is employed 

then the number of busses in the system will become comparable to that 

of a fully interconnected system without any added advantage. Besides a 

crossbar allows connections between any member of one set and any member 

of another set. 	Therefore it is usable for connecting processors with 

memories but not for interconnecting processors. 	One example of such a 

system is the Pluribus system [5] which uses a modified crossbar 

structure. Although this modified structure avoids single points of 

failure it is very complicated. 

Simpler interconnection schemes like rings or stars have obviou s . 

single 	points 	of failure. 	If redundancy is employed in 	the 

implementation of one of these schemes the possibility of single point 

failure could be removed. However, such an implementation would have no 

advantage over a common bus configuration. 

In summary, we can combine the previously mentioned configurations 

(i.e. common or private memory, common bus or fully interconnected and 

tight or loose coupling) in almost every possible way. Each possible 

combination will now be discussed briefly in order to determine the most 

suitable configuration. 

17 



1) Common Memory - Common Bus 

The block diagram of this configuration is shown in Figure 2.6 for 

both tight and loose coupling. 

1.a) Tightly Coupled 

This configuration is the one employed in the FTMP system [1]. 

Effectively each processor gets assigned a memory and a bus and 

operates with these as a separate system. 	However both memories 

and busses are common and may be assigned to any processor. 	Thus 

it provides a fine component granularity. 	A serious drawback of 

this configuration is that all processors must run in perfect 

synchronization. 	This requires extra hardware for reliable clock 

distribution and processor synchronization. 	However its main 

disadvantage is that either the interface to the memory will be 

serial and therefore slow or a very large bus will be required. 

1.b) Loosely Coupled 

This configuration has the disadvantage over the corresponding 

configuration with tight coupling that the busses that form the 

common bus will be asynchronous to each other. 	Therefore some 

extra synchronization and arbitration will be necessary. 	On the 

other hand it does not require clock distribution. 	However, it 

shares the disadvantage of either slow memory interfaces or 

expensive bus. 

2) Private Memory - Common Bus 

The block diagram of this configuration is shown in Figure 2.7 for 

both tight and loose coupling. 

18 
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FIGURE 2-6: Common Memory Common Bus System 
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FIGURE 2-7: Private Memory Common Bus System 
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2.a) Tightly Coupled 

This configuration seems to  have no particular advantage over 

the corresponding system with loose coupling. Given the relatively 

independent nature of each processor there is no reason justifying 

the extra hardware cost of tight coupling. 

2.b) Loosely Coupled 

This 	configuration is very much like the SIFT [2,3,4 ]  

configuration with the difference that the common bus is used for 

message passing. The disadvantage of this approach is that a 

faulty processor may end up overwritting messages (in the receivers 

input) from another processor. This is because there is no 

physical 	separation of the communications of 	the various 

processors. Besides, the sharing of a common bus between 

asynchronous processors imposes some requirements for reliable and 

fault tolerant arbitration. 

3) Common Memory - Fully Interconnected 

The block diagram of this configuration is shown in Figure 2.8 for 

both tight and loose coupling. 

3.a) Tightly Coupled 

This configuration has several drawbacks. 	In order to allow 

for reconfiguration each memory must be connected to all the 

processors in the system. 	This means a significant increase in 

hardware complexity. 	Besides, memory contention might make it 

impossible for tightly coupled processors to operate with any 

acceptable performance. 

21 
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3.b) Loosely Coupled 

This configuration serves as an alternative to a private 

memory - fully interconnected system. Its advantage is that it has 

more independent subsystems that can be isolated and therefore it 

degrades more gracefully than the corresponding configuration with 

private memories. The requirement for multiport memories, along 

with the large number of connections required, makes it impractical 

for large systems. 

4) Private Memory - Fully Interconnected 

The block diagram of this configuration is shown in Figure 2.9 for 

both tight and loose coupling. 

4.a) Tightly Coupled 

This configuration has the advantage over the corresponding 

loosely coupled system that it can directly drive peripherals 

without any extra overhead. However, it requires some extra 

hardware overhead for fault detection and degrades less gracefully 

than the loosely coupled system. 

4.b) Loosely Coupled 

This is the best alternative for large systems. 	The hardware 

overhead is minimized and all fault tolerant functions are handled 

in software. This makes future changes and upgrades to the system 

extremely easy to implement without any requirement for hardware 

changes. Therefore the system can be upgraded without being 

physically changed which is an important feature for satellite 

systems. A classic example of this configuration is the SIFT 

system [2,3,4]. 

23 



FIGURE 2-9: Private Memory Fully Interconnected System 



2.5. Peripheral Network 

The peripheral network will connect the central computer system to 

the peripheral system which will be spread throughout the satellite. 

The bandwidth requirements of this network depend on whether it will be 

used strictly for control purposes or there will be some high speed data 

transfers as well. If the network is only used for control purposes 

then its only function will be to pass control messages to actuators and 

receive readings from sensors. If high speed data transfers are also 

required it may be better to employ a dedicated path for high speed data 

transfers rather than giving the whole network a high bandwidth. These 

factors seem to dictate a serial realization of the data paths of this 

network. 

The large number of devices connected to this network makes a 

common bus the only viable alternative. 	Therefore the only decision 

that remains to be taken is the actual realization of the bus. 	Since_ 

not all devices connected to this bus will have intelligence it_ seems 

that three busses carrying the same information is the only viable 

alternative. 	The final decision is whether the three busses will be 

synchronous to each other or not. 	If the busses are not synchronous 

then every peripheral device will have to buffer its messages until all 

three copies are available and only then vote on them. This implies the 

need for timeout in the case of missing messages along with some 

protocol for dealing with this case. On the other hand a synchronous 

bus can drive a voter directly thereby simplifying the device interface. 

Given the large number of devices a synchronous bus is the best 

alternative. 

The term synchronous busses is used above to mean that the three or 

more parts of the bus will be synchronous to each other. 	However the 
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operation of the bus as a unit may be synchronous or asynchronous in the 

conventional sense. Synchronous operation yields a higher bandwidth but 

requires distribution of the clock to all peripherals. On the other 

hand asynchronous operation of the bus does not have this requirement. 

If the extra bandwidth offered by synchronous operation is not 

essential, asynchronous bus operation is preferable. 
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3. FAULT TOLERANT ARCHITECTURE 

3.1. Introduction  

In this chapter the architecture of a fault tolerant hierarchical 

multiprocessor system will be presented. The overall block diagram of 

the system, shown in Figure 2.1, is similar to the general block diagram 

presented in Figure 1.1. However, some of the blocks in the diagram 

differ radically from the corresponding blocks described in chapter 2. 

In the following sections only the blocks that differ from the 

"standard" blocks described in chapter 2 will be discUssed. For reasons 

of simplicity the central processors and the processor network are 

presented in a single section (section 3.2) as the central control 

system. No specific requirements are placed upon the peripherals. As 

well, no assumption is made about the peripherals, therefore the system 

is completely general. 

The peripheral interface system (peripheral network) is described 

in section 3.3. Section 3.4 describes an extension to the system which 

could be added if there is a requirement for large computational power. 

Finally section 3.5 describes the devices used for system reset and in 

the removal of malfunctioning units. 

3.2. Central Control System 

This consists of the central processors and the processor network. 

Given the requirements for expandability, modularity and flexibility of 

the architecture along with the requirements for an easily 

reconfigurable, gracefully degrading system, a loosely coupled, fully 

interconnected system with private memories was chosen. 

The key element of the central control system is the processor 

module (Figure 3.2). 	A processor module consists of the CPU, memory, 
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hardware support for an operating system (timers, interrupts, etc.) and 

appropriate interfaces for the interconnection with the other processors 

in the system. 	The module includes both RAM and ROM memory and is 

completely self contained. 	The on board ROM contains a basic operating 

system that handles the communication with other processors, and a 

number of self checking routines. 

The interfaces to the other processor modules consist of a 

transmitter/receiver pair. The interface to the interface processors 

consists of a single transmitter that broadcasts the message to all 

interface processors and a number of receivers, one for each interface 

processor. The reason for this different interface to the interface 

processors will be explained in the following section that describes the 

peripheral interface system. The exact nature of the transmitters and 

receivers will be explained in the chapter about the detailed 

description of the hardware. 

In addition, the board has a power control and reset block which 

will be discussed in detail in the section about the system reset 

mechanism. The function of this block is to force a reset on a board 

which is suspected of malfunctioning, thereby causing it to run its 

self checking routines. Also if a board is determined to be 

irrecoverably lost, then, it is powered down to conserve energy. All 

these functions will be carried out following instructions originating 

from some supervisory tasks running on the processor cluster. From that 

point of view the system can be though of as self maintaining. 

The relatively simple structure of the hardware has to be 

complemented by reliable and intelligent software so that the system can 

fulfill its specifications. At a bare minimum the operating system must 

be able to : 
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1) Keep a record of errors in order to determine if some module 

needs to be tested. 	The record must be complete and the 

software must be intelligent enough so that transient errors 

will not cause unnecessary tests. In other words a processor 

that makes a single mistake must be given the benefit of the 

doubt. Only if the number of errors within a certain time 

period exceeds a threshold should the processor be declared as 

faulty. 

2) Provide for some sort of a timeout mechanism so that a 

processor will not be tied forever waiting for a message from 

another processor. This will prevent a crashed processor from 

delaying or even deadlocking the system. 

3) Isolate and ignore any single faulty communication channel and 

reconfigure the system around the problem. 	If, for example, 

the channel between two processors fails, then by 

appropriately rearanging the distribution of tasks it may be 

possible to keep the system operating at full capacity. 

The implementation of an operating system that covers the above and 

several other requirements for fault tolerance will be presented and 

discussed in detail in the report on the system software [6]. 

3.3. Peripheral Interface System  

Basically the peripheral interface consists of a common redundant 

bus (a number of serial busses running in parallel). 	In section 2.5 it 

was determined that such a bus should be tightly coupled. 	However the 

central control system, as described in section 3.2, is loosely coupled. 

The interface system must provide an interconnection between the two 

without introducing a single point of failure. 
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• To accomplish this a number of interface processors are used. 	The 

interface processors are tightly coupled and provide an interface 

between the loosely coupled central processors and the tightly coupled 

peripheral network as shown in Figure 3.3. The connections of an 

interface processor are shown in Figures 3.3 and 3.4. 

On one side an interface processor is connected to the fully 

interconnected central control system. This interface is especially 

designed to accomodate the conflicting operating modes of the central 

and interface processors. 	To the other side it is connected to the 

redundant bus. 	At any given time an interface processor drives at most 

one of the busses that  forai the redundant bus. 	However, it is possible 

for any interface processor to drive any one of the buses. 

Three interface processors will be active at any time. 	These will 

run in an infinite loop polling both the central processors and the 

peripheral devices. 	Whenever a message is received from a device it is 

passed to the appropriate central processors. 	When a message is 

received from a central processor it is stored and, after a prefixed 

timeout period has elapsed, a software voting takes place and the 

correct(ed) message is passed to the appropriate peripheral. 

If one of the interface processors fails, it is disconnected and a 

cold stand-by is phased in to replace it. Similarly, in case of a bus 

failure, the corresponding processor is connected to one of the unused 

busses. In this event all peripheral devices must be notified of the 

change so that they too will switch to the new bus. 

Any device connected to the peripheral bus is buffered by a fail 

safe interface. 	An interface consists of a parallel to serial 

converter, a tri-state gate and a number of bus guardians. 	The exact 

number of guardians is a subject of analysis. 	A detailed analysis will 
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be presented in a later chapter. Figure 3.5 shows an interface with two 

guardians controlling the gate to one of the busses. 

Each guardian is directly addressable from the bus and therefore it 

can be accessed like any other peripheral. For a device to access a bus 

ail the corresponding guardians must be enabled. The guardians will 

determine when a device will access the bus, which of the redundant 

busses will be accessed and for how long the device may have control of 

the bus. 	This interface is the same for both the interface processors 

and the peripheral processors and devices. 	The only difference is that 

an interface processor is only allowed access to one of the redundant 

busses at any given time whereas a device is permitted access to all 

active busses. At power up some of the guardians controlling the access 

of the interface processors will be automatically activated so that the 

system can start functioning. 

Of particular importance at this point is the design of the bus 

guardians. 	The guardian's connections to the redundant bus only allow 

it to read from the bus. 	Therefore a faulty guardian cannot 

directly affect the bus. 	The guardian is directly addressable from the 

bus like any other device and is capable of receiving messages from the 

interface processors via the active bus triad. A message to the 

guardian contains commands which are latched by the guardian and applied 

to its outputs until superseded by another command. 

A guardian attached to a peripheral processor is programmed so that 

it only enables the gate it controls for prespecified lengths of time. 

This ensures that a single faulty processor cannot monopolize the bus. 

All inactive guardians are programmed to ignore the bus during the time 

that data may be transferred to/from a peripheral. Thus it is not 

possible that data will be recognized as commands and cause undesirable 
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state changes to occur. 

3.4. Batch Extension  

If there is a requirement for on-board high throughput processing 

then the batch extension subsystem shown in Figure 3.6 can be connected 

to the fault tolerant multiprocessor system. The main system acts as 

the controller (CNT) of the extension through an interface on the 

peripheral bus. 	The extension is a common bus, loosely coupled 

subsystem with both private and common memories. 	The batch extension 

subsystem does not incorporate any fault tolerant features as such but •  

instead it is controlled and observed by the main system. The operation 

of this subsystem is as follows : 

All tasks and all data are kept in a global data base in common 

memory. A free processor is assigned the first task in the Ready-to-Run 

queue. 	This task and its data is then copied into the processor's 

private memory and the processor starts executing the task. 	At 

predefined intervals the processor communicates with the controller and 

if all is determined to be well it,is allowed to update the global data 

base and proceed with the task. Otherwise it is disconnected from the 

subsystem and the task it was executing is again placed in the Ready-to-

Run queue. With this technique, only a part of the processing done by 

the processor before it crashed is lost (the part between the two 

checkpoints). 

This subsystem requires much less hardware than a complete fault 

tolerant subsystem and can provide a good degree of reliability. Its 

main weakness is its controller which must be fully fault tolerant. 

However, by using the main system as the controller this subsystem can 

provide high processing power at a much lower cost. 
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3.5. System Reset Mechanism  

As shown in Figure 3.2 a processor module includes a power control 

and reset block. This block serves two functions: It provides some 

means of resetting a suspected processor, thereby forcing it to run its 

self test routines, and it allows for a faulty processor that has been 

determined to be unusable to be powered down. 	A block diagram of the 

block is shown in Figure 3.7. 	The block is connected to the peripheral 

bus like any other device and only consists of two switches that can be 

controlled from the bus. Since the block is connected to the bus in 

such a way that it can only read from the bus, the connection of these 

blocks does not require any special care. Effectively the switches can 

be controlled by a set of guardians in very much the same way a gate is 

controlled. 

The switches must be designed so that their failure modes will be 

asymmetrical and in case of a failure they will fail safely. It is also 

desirable that the failure of any single switch will not incapacitate 

the processor it controls. This can be accomplished by employing a 

number of switches in suitable configurations so that single or even 

multiple switch failures will be masked without any effect on the 

operation of the block. 

Some extensions to this block may allow the use of redundant power 

supplies with software controlled load switching. 
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4. RELIABILITY ANALYSIS OF THE FAULT TOLERANT MULTIPROCESSOR ARCHITECTURE 

4.1. Introduction 

In this chapter we will describe the analytical model used to 

determine various design parameters of the architecture. The model 

predicts the behaviour of the fault tolerant system described in the 

previous chapter as a function of time. The analysis here is 

concentrated on the behaviour of the peripheral subsystem (network). 

The behaviour of the central system is similar to the behaviour of the 

SIFT hardware [2,3,4]. Since the central system depends on software for 

fault tolerance it will not be considered here. 

A stochastic model has been developed for the behaviour of a gate 

guarded by a number of guardians. This configuration constitutes a gate 

complex and is shown in Figure 4.1. This model is then used as the 

basis for the development of a model that covers the entire peripheral 

network. 

The peripheral network is taken to consist of a redundant bus, and 

a number of interface processors. 	The bus can also be accessed by a 

number of peripheral processors and devices. 	For the purpose of this 

analysis we do not have to differentiate between peripheral processors 

and dumb peripheral devices. 

The expected life span of the peripheral network is calculated as a 

linear function of the expected life span of a single guardian. In this 

analysis we take the expected life span of a guardian to be 20 years. 

This is a rather pessimistic assumption considering the present state of 

the art and the relative simplicity of a guardian (less than 200 logic 

gates). 
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4.2. Stochastic Model for Guardian Behaviour  

In the proposed system each device and/or processor is connected to 

the peripheral network through a gate. 	The operation of the gate is 

controlled by a number of guardians as depicted in Figure 4.1. 	The 

guardians may permit the processor to write to the bus or may prevent it 

from doing so depending on the commands they receive from the interface 

processors. What we are interested in here is the probability that a 

device is still usable (i.e. an active and useful part of the computer 

system) along with the various modes of failure and their impact on the 

operation of the remaining system. 

Starting the analysis we must determine the behaviour of the gate 

complex shown in Figure 4.1 when certain of its parts fail. For this 

analysis we will omit the gate itself and concentrate on the guardians. 

The impact of a gate failure can be incorporated in the analysis by an 

appropriate modification of the probabilities of failure of the 

guardians. Considering the fact that the hardware of the gate is much. 

 simpler than that of a guardian (less than 5 logic gates) the gate can 

be ignored without any noticeable impact on the results. 

The following assumptions are made : 

- At time zero all guardians function properly. 

- Guardians fail independently of each other according to 

an exponential distribution and with a failure rate lambda. 

- A guardian fails in the ON state with probability alpha and 

in the OFF state with probability (1-alpha). 

- A guardian that has failed will not change state at a later 

time. 	For example a guardian that failed in the ON state 

will remain in that state forever. 	Also all failures are 

permanent. 
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The state in which a guardian fails is independent of the 

guardian's state prior to its failure. The state of the guardian before 

the failure is of no consequence to this analysis and is therefore 

ignored. 	Failure in the ON state means that the output of the guardian 

is such as to try to enable the gate. 	Similarly failure in the OFF 

state means that the output is such as to try to disable the gate. 

Under the above assumptions the failures of the guardians in a gate 

complex like the one shown in Figure 4.1 can be considered as a pure 

death Markovian process [8]. If there are k guardians in the gate 

complex the process has k+1 states (numbered from 0 to k) and the 

transition diagram is shown in Figure 4.2. 	The physical meaning of 

state L is that L guardians have failed. 	The probability of a state L 

as a function of time can be calculated and is : 

P(L) = C(k,L) *211,(C(L,k-i) 	( -1)(i -k+L) * e(-i*lambda*t)) 

i=k -L 

(1) 

where L = 0, 1, 2, .... k 

Besides the number of guardians that have failed it is of great 

importance  to know the number of guardians that have failed in the ON 

state. To incorporate that into the analysis we break each state of the 

Markov chain into substates. 	Thus state L is separated into L+1 

substates, namely LO,  Li,  L2, 	LL. The physical meaning of substate 

Lm is that L guardians have failed m of which have failed in the ON 

state. 	Thus the state diagram of the process becomes that shown in 

Figure 4.3. 	The probability of each substate can be denoted as P(L,m). 
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FIGURE 4-2: Transition Diagram of Markov Process for a Gate Complex 
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FIGURE 4-3: Transition Diagram of Complete Random Process 
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P(L,m) can be calculated from the Tormula : 

P(L,m) = P(L) * P(m I L) 	 (2) 

and the conditional probability P(m 1 L) is : 

P(m 1 L) = C(L,m) * alpham * (1-alpha) (L-m) 	(3) 

By combining (1) and (3) we obtain the general formula for the 

probability of each substate : 

P(L,m) = C(k,L) * C(L,m) * alpham * (1-alpha)(L -m) 

*E(C(L,k-i) * (-1)(i-k+L) * e (-i*lambda*t)) 

i=k-L 

(4) 

where L = 0, 1, 2, ... k 

m = 0, 1, 2, 	L 

From (4) we can calculate the probability of any state for any 

given size of a gate complex. However, in order to determine the 

overall behaviour of the gate complex we must also know how the 

guardians enable the gate. 	The two possible ways are by agreement and 

by majority voting. 	By agreement means that all guardians must agree 

for the gate to be enabled. By majority voting means that the gate will 

do whatever the majority of the guardians dictates. 

Depending 	on the decision mechanism (agreement or majority) 

different states of the complex have different effects. The gate may be 

in any one of three states. These are : 

- Functioning Normally 

- Permanently OFF 

- Permanently ON 
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If the gate is permanently OFF the corresponding processor is 

incapable of reaching the bus. 	Therefore it is effectivelly removed 

from the system. 	On the other hand if a gate is permanently ON the 

corresponding processor has unrestricted access to the bus. 	This may 

not be a problem unless the processor also malfunctions and starts an 

endless transmission. In order to accomodate the worst possible case we 

assume that when a gate is permanently ON the corresponding processor is 

always malfunctioning. 	Note that a gate may be functioning normally 

although some of its guardians have failed. 	For example in a gate 

complex with three or more guardians and decision by majority the 

failure  of .a  single guardian will go unnoticed. 

The effect of the decision mechanism to the behaviour of the gate 

can be understood by considering the relation of the state of the 

guardians to the state of the gate as a function of the decision 

mechanism. Figure 4.4 shows this relation for a gate complex with three 

guardians operating by agreement, while Figure 4.5 shows the same 

relation if the gate complex operates by majority. 

Finally, the effect of the value of alpha to the failure rate 

lambda must be considered. If no care is taken the value of alpha will 

be about 0.5 (i.e. if a guardian fails there is a 50% probability that 

it will fail in the ON state). 	This value can be changed by altering 

the design of the guardian. 	However, the alternate design will require 

a larger number of components for each guardian and this in turn will 

increase the failure rate lambda. Since the component count of a device 

increases logarithmically with the number of states of the device, and 

alpha is inversely proportional to the number of states it follows that 

the failure rate lambda must be altered according to the formula : 
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lambda effective = lambda * (s + log2 (0.5/alpha)) / s 	( 5 ) 

where s is the logarithm base 2 of the number of states of an unmodified 

guardian. 	In order to cover the worst case we assume s = 1 (i.e 2 

states). 	Therefore the failure rate lambda is altered according to the 

formula : 

lambda effective = lambda * (1 + log2 (0 5/alpha))  

The following configurations of the gate complex were considered : 

- 2 guardians with agreement 

- 3 guardians with agreement 

- 4 guardians with agreement 

- 5 guardians with agreement 

- 3 guardians with majority 

- 5 guardians with majority 

- 7 guardians with majority 

For each of these configurations the probabilities of each of the 

gate states defined above was calculated as a function of time. For 

each configuration the value of alpha was varied from 0.1 to 0.5 in 

steps of 0.1. 	Representative results of this analysis are included in 

Appendix A. 	Appendix B shows plots of the probabilities of a device 

functioning normally as a function of time for various values of alpha. 

We can see that as the value of alpha increases this probability 

decreases. On the other hand the probability of getting the system in 

an undesirable state also decreases. 

Therefore in making the decision for a certain configuration of 

guardians in the gate complexes we must not only consider 	the 

(6) 
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probability of the bus remaining usable for the longest possible time 

but also the probability that a minimum required number of devices will 

remain usable. To do that we must develop a model that shows the 

behaviour of the entire system rather than a single gate complex. 

Clearly this model will be based on the model of the gate complex 

developed in this section. 

4.3. Stochastic Model for the Behaviour of the Peripheral Network 

The heart of the peripheral network is a redundant bus as shown in 

Figure 4.6. 	These busses interconnect the interface processors to the 

peripheral processors and the peripheral devices. 	For the purpose of 

this analysis the terms peripheral processors and peripheral devices can 

be used interchangeably. The peripheral network can be considered as 

consisting of the following parts : 

- Redundant bus 

- Interface Processors 

- Essential Devices (ED) 

- Non-essential Devices (NED) 

An essential device is a device that must be functional for the 

system to be functional. It is assumed that such devices are always in 

pairs and the device is considered functional if at least one of the two 

devices is functional. 	A non-essential device is a device that is not 

necessary for the system to function. 	In other words a non-essential 

device performs some secondary function that can be discontinued without 

seriously affecting the operation of the system. 	Non-essential devices 

may be single units or in pairs. 	For the purpose of this analysis a 

pair of non-essential devices can be considered as two independent 

devices. 
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The 	peripheral network, 	and thereby 	the 	system, 	becomes 

inoperational if one or more of the first three parts fails. That is if 

the redundant bus becomes unusable, if the interface processors become 

unoperational or if one or more pairs of essential devices fail. The 

probability of each of these to occur will be calculated separately and 

then combined to give the probability of failure of the entire 

peripheral network. 

4.3.1. Stochastic Model For The Behaviour Of The Redundant Bus  

The redundant bus consists of a number of busses used in parallel. 

Under normal operating conditions three of these busses are active and 

are used for the transfer of information with error_ detection and 

masking. 	In a marginal case the operation of the redundant bus can be 

maintained even if only two of the busses are usable. 	This is because 

the third bus (any one of the remaining unusable busses) will be voted 

out of the result. However this configuration will fail to mask a soft 

error as was the original intent. 

Therefore for the redundant bus to be usable at least two of the 

busses that comprise it must be usable. The probability of a single bus 

being unusable is the probability that one or more gates connected to 

this bus have failed in the permanently ON state. This probability can 

be calculated as : 

nd+nip 

lb 
* (1-p 

ON
,(nd+nip-i)) 

P  = 	* - ON :E(C(ndl-nip,i) 	P 	
) 

1=1 

where nd is the number of devices 

nip is the number of interface processors 

PoN is the probability of a gate being permanently ON 

(7) 

1 
54 



From this probability we can calculate the probability of the 

redundant bus being unusable. This is the probability that of the 

busses that comprise it at least nb-1 are unusable and can be calculated 

as : 

nb 

Pb = 	(C(nb,i) * P lb
i * (1-P )(nb-i)) 

lb 

i=nb-1 

where nb is the number of busses in the redundant bus 

4.3.2. Stochastic Model For The Behaviour Of The Interface Processors 

	

The function of the interface processors is to handle 	the 

communication between 	the asynchronous central system and 	the 

synchronous peripheral network. At any given time three of the 

interface processors are active and each of them drives one of the 

active busses. For the system to be functional at least two of the 

interface processors must be operational by a reasoning similar to the 

one used for the redundant bus. For this analysis an interface 

processor is considered to be inoperational if it has been cut off from 

the bus. This probability can be calculated as : 

nb P . - p 
lip - OFF 

where P
OFF  is the probability 

of a gate being permanently OFF 

The probability of the interface processors being inoperational can 

then be calculated as : 

nip 

ip - 
F.  - 	

(C(nip,l) * Plip * (1-p 
	(r1-113- i)) 
lip/ 

i=nip-1 

where nip is the number of interface processors 

( 8 ) 

(9) 

(1 0) 
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4.3.3. Stochastic Model For The Behaviour Of The Essential Devices 

Since the hardware connection of a device to the bus is identical 

to that of an interface processor, the calculation of the probability of 

a device being cut-off is similar to the calculation of that probability 

for an interface processor . This probability can be calculated for a 

single device as : 

nb 

, 
P ldc = 	(C(nb,i) * P -OFF

1 * (i_p
. 	\ 	OFF)

(nb 
 

i=nb-1 

From this probability we can calculate the probability of both devices 

in a pair failing as : 

P , 
ldpc = rldc

2 
 

Now the probability of the system failing due to the failure of a 

pair of essential devices can be calculated as : 

ned 

* Pd 	(C(ned,i) * Pldpc 	
(1-P

ldpc )
(ned-i)) 

 

i=1 

where ned is the number of essential device pairs 

4.3.4. Stochastic Model For The Behaviour Of The Peripheral Network 

The peripheral network will become unusable if any one of the three 

cases listed above occurs. Since we know the probability of each case 

to arise and the various cases are independent since they depend on 

(11)  

(12) 

(13) 
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different equipment, we can calculate the probability of failure of the 

peripheral network as : 

Pnet  = Pb Pip Ped 

- (Pb * Pip) - ( P b * Ped) 	(P ip * Ped )  

+ (P * D 	* 	\ 
b 	Lip 	Led) 

Appendix C shows the values of these probabilities as a function of 

time for some typical cases. The peripheral network considered 

consisted of : 

5 Interface processors 

4 Essential Device Pairs 

7 Non-essential Devices 

Appendix D shows the values of these probabilities after ten years 

of operation of the system for all combinations of number of guardians 

per gate, decision mechanism and alpha. From these values we concluded 

that the optimum configuration is 3 guardians per gate with agreement. 

The optimum value for alpha was found to be 0.5. This configuration is 

optimum not only in terms of reliability but also in terms of cost. 

(14) 
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5. DETAILED HARDWARE DESCRIPTION 

5.1. Introduction  

In this chapter we will describe in detail the hardware specified 

in the previous chapters. The proposed system consists of a relatively 

small number of distinct parts that are then combined to form a full 

fledged fault tolerant system. 	First each of these parts will be 

described separately. 	Then the interconnection of these parts into a 

fault tolerant system will be described. 

First, the guardians and gates will be presented in detail. 

Section 5.2 will present a detailed explanation of the operation of a 

guardian. Section 5.3 will present the gate and will deal with the 

combination of guardians and gates to form a gate complex. 

Section 5.4 will deal with the intermodule communications. 	These 

include the communication between the processor modules that constitute 

the central control system along with the communication of these 

processor modules with the interface processors. 	The communication 

ports used will be described at the block level. 	Section 5.5 will 

present the details of the communication ports employed. 

Section 5.6 will deal with the implementation of the processor 

modules and the interface processors. 	The hardware configuration of 

both will be presented. 	Section 5.7 will deal with the connection of 

the interface processors and the peripheral processors to the redundant 

bus which is the heart of the peripheral network. 	The use of gate 

complexes will be discussed in detail. 	Finally section 5.8 will deal 

with the interconnection of all these parts into a full fault tolerant 

system. 
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5.2. Guardians  

Basically a guardian is a simple finite state machine the state 

diagram of which is given in Figure 5.1. This FSM has a number of 

inputs and a single output. Normally a guardian is idle with its output 

set so as to disable the gate. 	At this state the guardian monitors the 

bus until it recognizes a command on it. 	The list of commands a 

guardian can recognize is given in Table 5.1. 	Except for the special 

case of a change in the triad of active busses, a guardian will remain 

idle until it recognizes either a Select or an Enable command. When a 

Select command is detecteithe guardian sets an internal flag and awaits 

an Enable command. As soon as the Enable command is received the 

guardian sets its output so as to enable the gate and leaves it enabled 

for a fixed period of time. At the end of this time period the guardian 

disables the gate and returns to its idle state. 

If an Enable command is detected but the guardian has not received 

a Select command then the guardian does not enable the gate. However it 

still waits for the same fixed period of time. 	While waiting the 

guardian ignores the bus and any information on it. 	Thus it is not 

possible for some data on the bus to be interpreted as commands and 

cause erroneous operation of the system. 

The operation described above refers to a guardian attached to a 

peripheral processor or a peripheral device. Guardians attached to the 

interface processors have a slightly different state diagram as shown in 

Figure 5.2. 	The commands they understand are also slightly different 

and are given in Table 5.2. 	Such a guardian will still ignore the bus 

for a fixed period of time after it detects a Turn On command. 	However 

once activated it remains on until explicitly turned off. 	Thus an 

interface processor that has been given control of a bus maintains this 
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TIMERI 	ENBL 	 ENBL 

FIGURE 5-1: State Diagram of Peripheral Processor Guardian 
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control except for the short periods of time that it grants the bus to a 

peripheral for some data transfer. 

Figure 5.3 shows the outputs of the two types of guardians as a 

function of time and of the commands received. We can observe how the 

guardian of a peripheral processor is normally OFF whereas the guardian 

of an interface processor is normally ON. 	When the guardian of the 

peripheral processor is selected its output does not change. 	However 

when the Enable command is sent its output is activated and remains so 

for a fixed period of time. During this time all other guardians in the 

system disable their outputs after they recognize the Enable command. 

Switch Bus 

101010IXIXIXIXIXI 

old bus # 	I 	new bus # 

1 	guardian # 	1 

Select 

1 0 101 1 IXIXIX1X1X1 

1 	guardian # 	1 

Temporary Enable 

1011111X1XIXIXIX1 

1 	guardian # 	1 

Table 5-1: Commands for Peripheral Processor Guardians 
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OFF 

TIMER DISBL 

ON 

DISBL TIMER 

OFF OFF 

ON 

TURN 

OFF 

FIGURE 5-2: State Diagram of Interface Processor Guardian 
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Switch Bus 

1 0 1 0 101X1X1X1X1X1 

1 	old bus # 	1 	new bus # 	1 

1 	guardian # 	1 

Turn ON 

1010111X1X1X1X1X1 

1 	guardian # 	1 

Turn OFF 

101 1 101X1X1X1X1X1 

1 	guardian  II  

Temporary Disable 

101 1 1 1 1X1X1X1X1X1 

1 	guardian M 

Table 5-2: Commands for Interface Processor Guardians 
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fixed duration 

of internal timer 

IPG1 

IPG2 

PPG 

Bus 

Data ---<XX> 	<XX>-XXXXXXXXXXXXXX 	<XX> 	<XX> 

Select 	Enable 	Data 	Turn off Turn off 

PPG 	PPG 	from PP 	IPG1 	IPG2 

PPG - Peripheral Processor Guardian 

IPG - Interface Processor Guardian 

FIGURE 5-3: Example of Guardian Operation 
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Note that a guardian attached to a peripheral always starts in the 

OFF state whereas a guardian attached to an interface  processor may 

start either in the OFF or in the ON state. 	This is controlled by a 

jumper or a switch. 	Some guardians always start in the ON state. 

Namely the guardians that start in the ON state are selected so that 

each of the three initially active interface processors will have access 

to one of the initially active busses. This is essential for the system 

to be operational after initialization. 

5.3. Gates and Gate Complex  

A gate is a simple tri-state buffer with multiple enable lines. 

Since the peripheral busses are serial the gate only needs to control 

one line. A gate can be implemented simply as a combination of two 

standard TTL gates as shown in Figure 5.4. 

A gate along with a number of guardians form a gate complex. 	The 

function of a gate complex is to allow a processor or a device to access 

a bus in a controlled and fault tolerant fashion. The block diagram of 

a gate complex is shown in Figure 5.5. 

The complex consists of a gate and three guardians. Each processor 

connected to the peripheral network is connected to each of the busses 

that  forai the redundant bus via a distinct gate complex. It is 

essential that no two gate complexes have any hardware in common so that 

hardware failures are as local as possible. 	Thus it is not possible to 

utilize a quad buffer chip to implement four gates. 	Each gate must be 

physically separate from any other gate. 	Note that the guardians of a 

gate complex can be made so that they all have the same address. 	This 

is possible because they always have to receive the same commands. 

Subsequently this reduces the control overhead. 
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FIGURE 5-4: Implementation of a Gate with Agreement 
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FIGURE 5-5: Block Diagram of a Gate Complex 
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5.4. Intermodule Communications 

In this section we will present the ways in which the various 

modules of the fault tolerant system communicate. 	Communication is 

effected through a number of communication ports. 	Depending on their 

use communication ports may differ but they all consist of the same 

basic units, namely a transmitter and a receiver. 

Communication ports intended to connect processor modules to other 

processor modules consist of both a transmitter and a receiver. 	These 

operate independently of each other. 	Each processor module has a 

dedicated port connected to every other processor module so that a fully 

interconnected system is formed. The detailed description of a 

transmitter and a receiver will be given in the next section. 

The communication ports on the interface processors that connect 

them to the processor modules of the central control system are 

identical to the ports that interconnect the processor modules to each 

other. However the ports that connect the processor modules to the 

interface processors and the ports that connect the interface processors • 

 and the peripheral processors to the redundant bus are different. These 

ports consist of a single transmitter and a number of receivers. In 

both cases the transmitter broadcasts to all concerned units (either 

interface processors or busses). However there is a dedicated receiver 

for each distinct unit that is connected. 

In the case of the processor modules the single transmitter ensures 

proper communication between the loosely coupled central control system 

and the tightly coupled interface processors. In other words it ensures 

that all the interface processors will receive their copies of the 

message simultaneously. 	This is essential for the interface processor 

to remain in perfect synchronization. 	Even if the central processors 
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were synchronous the time difference between sending the same message to 

different interface processors would be enough to throw them out of 

synchronization. In the case of the interface processors the processors 

need not know to which of the busses in the redundant bus they are 

connected. So they simply transmit through a single transmitter and the 

gate complexes ensure that only the proper bus is driven. This also 

applies to peripheral processors and is shown in Figure 5.6. 

5.5. Transmitter and Receiver 

The block diagram of a transmitter is shown in Figure 5.7. 	The 

transmitter consists of a FIFO queue and a serializer that converts the 

parallel data into serial data ready for transmission. The serializer 

can be thought of as the transmitter part of a UART. The FIFO serves to 

offload the processor from continuously checking the transmitter and to 

give the transmitter the capability of autonomous operation for a 

certain length of time. The size of the FIFO is chosen so that the 

transmitter can operate without any attention from the processor for the 

duration of the time slice of a task. In other words the transmitter 

requires the attention of the processor only during a context switch. 

This greatly simplifies the design and implementation of the operating 

system. 

For example a processor module that wishes to send a message to 

another module can write the message into the transmitter FIFO and then 

proceed with its other tasks while the transmitter is sending the 

message. 	The processor sees the transmitter as a pair of I/O  ports. 

One is a data port and the other is a command port. 	Data written into 

the data port are placed in the FIFO and transmitted. 	The command port 

enables the processor to control the transmitter and to check its 
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FIGURE 5-6: Connection of Processors to the Redundant Bus 
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COMMAND  

FIGURE 5-7: Block Diagram of a Transmitter 
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internal status. 	For the time being we are only interested in being 

able to reset the transmitter and to check if the queue is full. 

The structure of the receiver is complementary to that of the 

transmitter and is illustrated in Figure 5.8. 	The receiver consists of 

a deserializer and a FIFO. 	The deserializer is actually the receiver 

part of a UART. 	When a byte of data has been collected it is placed in 

the FIFO for pickup by the processor. 	Like the transmitter, the 

receiver appears to the processor as a pair of ports. 	One port is a 

data port and the other a command port. 	A read from the data port will 

return the first byte in the FIFO. 	If the FIFO is empty the result is 

undefined. 	The command port enables the processor to control the 

receiver and check its status. 	Presently we need to be able to reset 

the receiver and check if the queue is empty or if it has overflowed. 

5.6. Description of Processor Modules and Interface Processors  

The block diagrams of a processor module and an interface processor 

are given in Figures 3.2 and 3.4. Besides the CPU each module includes 

some RAM memory and some ROM memory which will contain the kernel of the 

operating system. Each module also contains a set of programmable 

interval timers which are essential for some of the operating system 

functions, an interrupt controller, and a number of communication ports 

as described above. 	These communication ports will interconnect the 

modules into a fully interconnected central control system. 	A block 

diagram of the interconnection between two processor modules is given in 

Figure 5.9. 

The modules include as well a single transmitter and a number of 

receivers that handle the communication with the interface processors. 

This special interface is necessary because of the synchronous nature of 
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FIGURE 5-9: Block Diagram of Processor Interconnection 
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FIGURE 5-10: Typical System Configuration 
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the interface processors. 

On the other hand the interface processors also have a number of 

communication ports. Namely an interface processor has one 

communication port for each processor in the central control system. No 

special care need to be taken for these ports since the central control 

system is asynchronous. Actually these ports are identical to the ports 

the processor modules use to communicate with each other. 	Aside from 

these ports the interface processor also has a single transmitter. 	The 

function of this transmitter is to drive the peripheral bus. 

Actually any interface processor only drives one of the busses that 

comprise the peripheral (redundant) bus. However this is taken care by 

the gate complexes and is of no concern to the interface processor. 

Also an interface processor has a number of receivers. 	The function of 

these recàivers is to receive data from the peripheral bus. 	Each 

receiver only receives data from one of the busses. 	Thus by comparing 

the values received by different receivers the interface processor can 

detect bus failures. 

5.7. Typical System Configuration 

A typical system configuration is illustrated in Figure 5.10. 	The 

system depicted consists of : 

4 Central Processors 

4 Interface Processors 

4 busses (forming the peripheral bus) 

2 Peripheral Processors 

24 gates (1 gate/bus/processor) 

72 guardians (3 guardians/gate) 
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This system normally operates with only three of the interface 

processors and the busses active at any time. The fourth interface 

processor and bus are spares to be used as replacements to faulty units. 

However all four of the central processors are initially active and 

share the processing load. In case one of them fails its load is shared 

among the remaining processors. 

• 

1 
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6. SUMMARY AND CONCLUSIONS 

In this work we developed an architecture for a fault tolerant 

multiprocessor system for satellite applications. Special care has been 

taken to make the architecture both expandable and hardware independent. 

This report presents the development of this architecture. 

Chapter 2 describes the various possible configurations of a fault 

tolerant computer. Some of these configurations have been used in the 

past in various fault tolerant systems. Each configuration is described 

briefly and its main advantages and disadvantages are presented. Based 

on this qualitative analysis and the study of previous implementations 

reported in the literature, a candidate architecture was selected and 

analysed further in later study phases. 

Chapter 3 describes a specific system designed according to the 

selected architecture. This architecture is basically a combination of 

two seemingly opposite philosophies, namely the tightly coupled FTMP 

system and the loosely coupled SIFT system. The proposed architecture 

is based on a more global view of the system than the previously 

developed architectures. Thus it became possible to identify explicitly 

the strengths and weaknesses of each implementation. The architecture 

presented makes use of each approach for the part of the system where it 

is most suitable. This results in a system where the implementation of 

each part is matched to the function it has to serve and not to an 

abstract architecture. In addition to fault tolerance, the system 

presented provides graceful degradation, reconfiguration, expandability 

and technology transparency (hardware independent implementation). 

In chapter 4 we developed a model for a part of the system (the 

peripheral network) and based on the model we derived the optimum values 

of some design parameters of the processing system. Some of the basic 

78 



parts of the peripheral network (guardians and gates) have many 

similarities to the FTMP system. 	However the FTMP system was designed 

for short missions and many of its features were based on intuitive 

rather than formal approaches. Results of the analysis showed that, for 

long missions, the optimum solution is quite contrary to what would have 

been intuitively chosen. The most notable example is the effort made in 

the FTMP system to ensure passive failures. Results of our analysis 

show that this approach leads to a much shorter life span for the system 

than if no precautions to combat passive failures were taken. This is 

because the accummulation of passive failures may result in system 

configurations which are separated into non-communicating parts 

incapable of fulfilling their overall functions. 

Finally chapter 5 provided a detailed hardware description of the 

proposed fault tolerant architecture. 

A simulation of the proposed fault tolerant architecture can now be 

implemented under N.mPc/N.2 based on the detailed  hardware description 

given in this report. This step will be undertaken along with the 

integration of a fault tolerant multi-microprocessor operating system 

for the testing and evaluation of a complete fault tolerant multi-

microprocessor system and will be described in a separate report. 
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