
n--

DESIGN AND ANALYSIS

OF FAULT TOLERANT ARCHITECTURES

FOR MULTI-MICROPROCESSOR SYSTEMS

91

C655

C66695

1984

1
91

C655

C66695
1984

INT -84 -45

1

1

9-oirl1geb1s CANADA

, I' .." . 	,..,

1.1. 13,11iRY 	BIBtliffilnUE

INTELLITECH CANADA LIMITED

352 MacLaren Street
Ottawa, Ontario

K2P 0M6

. , M tU '16'qbil5 m‘u aw-nes 1

1

1
%----

/‘SIGN AND ANALYSIS

OF FAULT TOLERANT ARCHITECTURES

FOR MULTI-MICROPROCESSOR SYSTEMS/r

DECEMBER 1984

indust.yGanc .

Library Queen

ek 2 0 1998

Inclustrie (Dan ada

 Bibliothèque
Queen

CD/
Prepared By: (S.1Bo ucouris
Approved By: Dr. S.A. Mahmoud

4, Government Gouvernement
of Canada 	du Canada

Department of Communications

DOC CONTRACTOR REPORT 	DOC-CR-SP -84-051

DEPARTMENT OF COMMUNICATIONS - OTTAWA - CANADA

SPACE PROGRAM

TITLE: 	Design and Analysis of Fault Tolerant Architectures
for Multi-Microprocessor Systems

AUTHOR(S): Spiros Boucouris

Dr. S.A. Mahmoud

ISSUED BY CONTRACTOR AS REPORT NO: INT-84-45

PREPARED BY: S. Boucouris
Dr. S.A. Mahmoud

DEPARTMENT OF SUPPLY AND SERVICES CONTRACT NO: OER 83-05075

DOC SCIENTIFIC AUTHORITY: Michel Savoie

Communications Research Centre

Ottawa, Ontario

CLASSIFICATION: Unclassified

This report presents the views of the author(s). Publication
of this report does not constitute DOC approval of the reports
findings or conclusions. This report is available outside the
department by special arrangement.

DATE: December 1984

SUMMARY

This report presents the results of a study conducted to design,

simulate and evaluate a fault-tolerant multi-microprocessor system for

spacecraft 	on-board processing applications. 	The 	fault-tolerant

processor architecture can also be used in general applications

requiring high degree of reliability over a specific processor life

cycle.

The design approach proposed in this study is novel in the sense

that fault-tolerant features and supporting mechanisms are embedded both

in the hardware architecture and in the operating system software. The

hardware has several redundant components that are controlled by fault

detection mechanisms to isolate the sources of error and prevent the

proliferation of these errors from the faulty component to the remainder

of the system. The operating system software contains all the

intelligence needed to detect errors, identify their sources, take the

necessary action to remove faulty units, reallocate the processing tasks

and reconfigure the system to adapt to the new operational state.

Results of the fault tolerant study are presented in two reports,

both of which are deliverables under contract OER-83-05075. This report

presents the hardware fault tolerant architecture. The second report,

entitled "Conceptual Design of a Fault Tolerant Multiprocessor Operating

System and the Implementation of a Prototype Kernel", presents the

conceptual design and simulation of the basic functions (the kernel) of

an operating system with fault-tolerant characteristics.

Further research intended to complete the description of the fault-

tolerant operating system and to integrate it with the underlying

hardware structure is currently being conducted. Results of this

research will be presented at the conclusion of the current phase of the

contract (March 1985).

This report is a deliverable under the terms of DSS contract OER

83-05075, to the Communications Research Centre of the Department of

Communications, Government of Canada.

1

TABLE OF CONTENTS

1. INTRODUCTION 	 1

1.1. Objectives Of This Study 	 1

1.2. A Typical Satellite Bus Configuration 	 1
1.3. Fault Tolerant Features 	 4
1.4. Structure of this Report 	 5

2. SELECTION OF A MULTIPROCESSOR ARCHITECTURE 	7

2.1. Introduction 	 7
2.2. Central Processors 	 9
2.3. Peripheral Processors 	 16

2.4. Processor Network. 	 16

2.5. Peripheral Network 	 25

3. FAULT TOLERANT ARCHITECTURE 	 27
3.1. Introduction 	 27
3.2. Central Control System 	 27

3.3. Peripheral Interface System 	 31

3.4. Batch Extension 	 37
3.5. System Reset Mechanism 	 39

4. RELIABILITY ANALYSIS OF THE FAULT TOLERANT MULTIPROCESSOR
ARCHITECTURE 	 41

4.1. Introduction 	 41
4.2. Stochastic Model for Guardian Behaviour 	43
4.3. Stochastic Model for the Behaviour of the Peripheral

Network 	 52
4.3.1. Stochastic Model For The Behaviour Of The

Redundant Bus 	 54

4.3.2. Stochastic Model For The Behaviour Of The

Interface Processors 	 55
4.3.3. Stochastic Model For The Behaviour Of The

Essential Devices 	 56
4.3.4. Stochastic Model For The Behaviour Of The

Peripheral Network 	 56

5. DETAILED HARDWARE DESCRIPTION 	 58
5.1. Introduction 	 58

5.2. Guardians 	 59
5.3. Gates and Gate Complex 	 65
5.4. Intermodule Communications 	 68

5.5. Transmitter and Receiver 	 69

5.6. Description of Processor Modules and Interface Processors 	72
5.7. Typical System Configuration 	 75

6. SUMMARY AND CONCLUSIONS 	 78

1

1

LIST OF FIGURES

1-1: Typical Satellite Subsystems 	 2

2-1: Conceptual Logical Description of a Satellite Processing

System 	 8

2-2: Tightly Coupled System with Instruction Synchronization 	11

2-3: Tightly Coupled System with Task Synchronization 	12

2-4: Task Communication in a Loosely Coupled System 	14

2-5: System Degradation for Tightly and Loosely Coupled 	15

2-6: Common Memory Common Bus System 	 19

2-7: Private Memory Common Bus System 	 20

2-8: Common Memory Fully Interconnected System 	22

2-9: Private Memory Fully Interconnected System 	24

3-1: Block Diagram of the Proposed System 	 28

3-2: Processor Module 	 29

3-3: Peripheral Interface System 	 33

3-4: Interface Processor 	 34

3-5: Bus Interface 	 36

3-6: Batch Extension Subsystem 	 38

3-7: Reset Mechanism 	 40

4-1: Gate Complex 	 42

4-2: Transition Diagram of Markov Process for a Gate Complex 	45

4-3: Transition Diagram of Complete Random Process 	46

4-4: State Meaning in Operation with Agreement 	49

4-5: State Meaning in Operation with Majority 	 50

4-6: Peripheral Network 	 53

5-1: State Diagram of Peripheral Processor Guardian 	60

5-2: State Diagram of Interface Processor Guardian 	62

5-3: Example of Guardian Operation 	 64

5-4: Implementation of a Gate with Agreement 	 66

5-5: Block Diagram of a Gate Complex in N.mPc 	67

5-6: Connection of Processors to the Redundant Bus 	70

5-7: Block Diagram of a Transmitter 	 71

5-8: Block Diagram of a Receiver 	 73

5-9: Block Diagram of Processor Interconnection 	74

5-10: Typical System Configuration 	 76

1

LIST OF TABLES

5-1: Commands for Peripheral Processor Guardians 	61

5-2: Commands for Interface Processor Guardians 	63

1

1. INTRODUCTION

1.1. Objectives Of This Study

The main objective of this study is the design and simulation of a

processing system architecture capable of graceful recovery from

component failures or other errors, so that it can function in a normal

mode for a specific, relatively long, time duration.

This study has been motivated by the ever increasing on board

processing requirements in future spacecraft missions. One of the

essential requirements for satellite on-board processing is the ability

of the processing system to recover from component failures,

redistribute the processing load among the remaining components and

continue its normal functioning throughout the intended mission life

span.

To achieve these characteristics in an unattended mode, the fault

tolerant features of the system must be embedded both in its hardware

structure and in the software operating system which manages the fault

recovery mechanisms.

This study was conducted for the Communications Research Centre,

Department of Communications under a DSS contract.

1.2. A Typical Satellite Bus Configuration

The block diagram of a typical present day satellite system is

shown in Figure 1.1. 	The system consists of a number of dedicated

subsystems each of which controls a set of devices that serve one

particular function. The most important of these subsystems are:

- Telemetry Tracking and Command subsystem (TT&C)

This subsystem handles the communications with the ground

station and the control of the other subsystems. Any on board

1

SENSORS1 	

THRUSTERS 	

MOTORS 	

CPS

AOCS

DS S

	 I R ES

	 GYROS

	 WHEELS

SOLAR 	
ARRAYS

	 SENSORS

TT&C

TX

RX

BATTERIES

PSS

	 HEATERS TCS

HE AT PI PE

I

1
1

FIGURE 1-1: Typical Satellite Subsystems

2

intelligence is, at present, very limited and is included in

this subsystem. Aside from controlling the other subsystems

this subsystem directly controls the communication devices of

the satellite, namely the Transmitter (TX) and the Receiver

(RX).

- Attitude and Orbit Control Subsystem (AOCS)

This subsystem monitors the stability of the satellite and

ensures its proper orientation. To accomplish this it takes

its data from Digital Sun Sensors (DSS), Infra-Red Earth

Sensors (IRES) and Gyros. After suitable processing these

data can be transmitted to the ground station or they can be

used to control the wheels in order to change the orientation

of the satellite.

- Combined Propulsion Subsystem (CPS)

This subsystem monitors the speed and acceleration of the

satellite and performs any necessary corrections under the

commands of the TT&C subsystem.

- Thermal Control Subsystem (TCS)

The function of this subsystem is to maintain the temperature

of the satellite within certain prespecified limits in order

to ensure proper operation of the on-board systems. This is

accomplished by monitoring heat sensors (HS) and operating

either a heater or a cooler as appropriate.

- Power Subsystem (PSS)

This subsystem ensures that all systems in the satellite are

provided with sufficient electrical power. It controls the

connection of the Solar Arrays (SA) to the batteries and the

flow of energy from the batteries to the various subsystems of

3

1

1

the satellite.

1.3. Fault Tolerant Features

The processing system for the typical satellite example described

in section 1.2 does not employ any fault tolerant features. Instead

designers relied mainly on component screening and thorough testing in

order to ensure the reliable operation of the system.

Although this approach was feasible for very simple satellite

systems, the ever increasing complexity of the various subsystems

dictated the inclusion of certain fault tolerant features for the

processing system of the described architecture. These consisted mainly

of duplicate devices intended to become operational in case of a failure

of the main device. 	However, no change in the architecture of the

system was attempted. 	The main reason for that is the simplicity of

this architecture which made it usable in the resource limited satellite

environment.

As the state of the art of electronic components progresses, it

becomes feasible to employ more complex architectures in a satellite

processing system. These architectures enable the satellite processing

system to function on its own without any supervision from the ground

and to automatically make any corrections necessary in case of a

component failure.

To accomplish this, a satellite processing system must be capable

of detecting any failure. As well, such failure should not be allowed

to interfere with the normal operation of the on-board processing

system. This is accomplished by employing more redundancy in the

processing system. For example three or more processors running in

parallel can both detect and mask any single failure, thus allowing the

4

system to continue its operation in a normal fashion despite the

failure.

Once the error is detected the processing system must take steps

for the isolation of the faulty component and possibly for its

replacement with a functional unit. This capability is provided to the

system by a suitable integration of hardware support mechanisms and

appropriate control software. 	Typically the hardware will first detect

the fault, and signal the software about it. 	Then the software will

determine if a certain device must be isolated and/or the system must be

reconfigured. Appropriate commands are then issued to the hardware

which then implements the isolation/reconfiguration.

1.4. Structure of this Report

In this report a processor architecture will be presented which

meets the requirements mentioned in section 1.3. 	Many elements of the

proposed architecture have been adopted from fault tolerant

architectures used in various control applications, namely flight

control for aircraft, train junction control etc. These architectures

were considered too complex to be employed in the satellite environment.

The study reported here investigates the feasibility of adapting such

fault tolerant architecture to meet the on-board processing requirements

of satellite systems.

The control applications mentioned above require a very high degree

of reliability since in most cases human lives are in immediate

jeopardy. 	However the time period over which this reliability is

required is small since flight time is in the order of few hours. 	Thus

repairs and service are accessible every few hours. A satellite system,

by contrast, 	requires a relatively lower degree of reliability but for

5

1

significantly longer periods of time, namely the intended life span of

the satellite which can be in the order of 10 years.

In chapter 2 of this report the various available architectural

alternatives are described and compared to each other. 	From this

comparison an optimal architecture is selected and described in detail

in chapter 3. Chapter 4 presents a reliability analysis of the selected

architecture. 	This analysis is similar to the analyses available for

existing systems although the different requirements dictate different

weighting of the analysis parameters. Some factors that were considered

insignificant in other application turn out to be playing a primary role

in the satellite application.

Chapter 5 contains a detailed description of one possible hardware

realization of the selected architecture presented in chapter 3. 	The

description is general and is not hardware specific. 	However, it is

detailed enough that it can be used directly for an implementation of

the architecture. 	Finally, Chapter 6 contains a summary of the work

completed so far along with some concluding remarks.

6

2. SELECTION OF A MULTIPROCESSOR ARCHITECTURE

2.1. Introduction

From a logical point of view the control processes of a satellite

system can be divided into central processes and peripheral processes.

The central processes perform the actual processing while the peripheral

processes are simply device drivers which interface to peripheral

devices. Although the logical separation does not necessarily dictate

physical separation, in most cases the device drivers are actually

embedded in the devices as firmware. In this report, the processors

that run this firmware will be referred to as peripheral processors

while the processors that run the actual control software will be called

central processors. Peripheral devices may either be connected to an

external (peripheral) processor or they may be directly controlled by

the central processors.

An on-board processing system for a typical satellite can be

modelled as a composite of two sets of processors. One set does the

actual processing while the other set consists of intelligent peripheral

controllers, sensors and actuators. The latter set of processors can be

considered as slave processors and are controlled by the former set.

This arrangement is shown in Figure 2.1. The central processors share

the computational load and are the highest authority. They are built as

a fault tolerant structure and employ redundancy to ensure reliability.

The peripheral processors usually operate alone and may have stand-by

replacements.

The processor network interconnects the central processors while

the peripheral network connects the central processors to the peripheral

processors which they control. 	Once again logical separation does not

dictate physical separation. 	In the detailed descriptions of the

7

PROCESS OR NETWORK

C P C P C P

PERIPHERAL NETWORK

P P P P P P

ri û ri û
DEVICES

FIGURE 2-1: Conceptual Logical Description of a Satellite Processing System

8

various 	possible 	configurations 	we shall see 	that 	for 	some

configurations the two networks may be physically one and the same.

2.2. Central Processors

The central processors handle the processing load of the satellite.

Since they constitute the highest authority they must be made fault

tolerant and fail safe. 	Besides, the whole system must be able to

degrade gracefully so as to maximize its total useful life. 	To

accomplish •that it is necessary that any faulty part of the system can

be completely isolated. This ensures that accumulation of faults will

not cause a system crash as might happen if the fault was simply masked

out of the system.

To accomplish this some redundancy must be built into the system so

that there will be no single point of failure. A single point of

fàilure is defined as a part of the system whose malfunction would be

irrecoverable. 	Redundancy may be employed either microscopically or

macroscopically. 	Microscopic redundancy is achieved by duplication of

individual devices in a processor and is more suitable for processors

built out of discrete devices. Macroscopic redundancy is achieved by

employing redundancy in the number of processors executing a segment of

code while providing for flexible reconfiguration of the system for the

isolation of faulty parts. Considering the rapid advances in

microprocessor technology, macroscopic redundancy seems preferable.

In order to ensure that the results of any program will be

available in time independent of any hardware failure, the program must

be run on at least three processors and the results voted. Different

implementations of this idea have been used, each with its own

advantages and disadvantages. These tnplementations differ in the way

9

the processors are interconnected and synchronized. 	The various

processor interconnection schemes will be presented and discussed in the

section devoted to the processor network. Two different synchronization

methods are available. These are tight coupling (or tight

synchronization) and loose coupling.

In a tightly coupled system all processors run synchronously (i.e.

they are ail driven by the same clock). Different implementations of

the clock circuit ensure that it will not become a single point of

failure [1]. Any program that has to be executed is run on three

processors simultaneously and the results of the processors are voted

upon by hardware majority voters. This voting may take place either on

a per instruction basis or on a task basis. Figure 2.2 showns a system

with instruction synchronization. Any data fetched from memory are

actually fetched from .bree separate memories and voted upon before they

are distributed to the processors. 	Similar voting takes place for data

sent to the memory from the processors. 	Figure 2.3 shows a system with

task synchronization. 	Each processor accesses its own memory as an

independent system. 	However any I/O is voted upon •efore it is passed

out to the rest of the system.

Although voting on an instruction by instruction basis minimizes

the time during which an error remains undetected, it requires a large

hardware overhead and therefore is not suitable for a satellite system.

On the other hand task synchronization requires much less hardware

overhead while, by an appropriate choice of checkpoints, it ensures an

acceptable level of security. A classic example of a tightly coupled

system with task synchronization is FM' [1].

In a loosely coupled system there is no phase synchronization

between the clocks of the various processors in the system. 	Instead

1 0

V

V

FIGURE 2-2: Tightly Coupled System with Instruction Synchronization

1 1

7F-

V

FIGURE 2-3: Tightly Coupled System with Task Synchronization

synchronization is effected by software. 	Any task runs on three

independent processors. 	At certain predefined points the three copies

of the task exchange information. 	This information is then voted upon

in software. 	If an error is detected it is masked by the voting and

logged. 	When a task is completed it distributes its results to the

three copies of its successor(s). 	Each of the copies will vote the

received results and proceed. 	Figure 2.4 shows the passing of messages

between three copies of a task and one of the copies of its successor

through message buffers. A classic example of a loosely coupled system

is the SIFT system [2,3,4].

Both tight and loose coupling seem to provide a similar level of

fault tolerance. In both cases some sort of error logging and handling

is required so that transient errors will not affect the operation of

the system. This may be done by some operating system level tasks

(error handlers) running in parallel with the application tasks.

Whenever a fault is detected an appropriate message is passed to

these tasks. Then these tasks will decide if there is a hardware

failure or the fault is simply a transient one and can be ignored for

the time being. The exact nature of the message depends on the fault

and the fault detection mechanism of the particular system whereas the

way the message is passed depends on the hardware and software

implementation of the system.

In terms of error recovery the loosely coupled system is superior

because all processors are autonomous. Therefore the load of a failed

processor can be transferred to another processor, or it may be

distributed among several processors. 	In a tightly coupled system a

similar distribution is not possible. 	The load of a processor must be

transferred to a spare which must then be brought in synchronization

13

3 -I X X

with the other two members of the triad. 	Asa result, 	the processing

power of tightly coupled systems, degrades less gracefully than that of

loosely coupled systems as shown in Figure 2.5. This is to be expected

since in tightly coupled systems any processor that is not a member of a

triad remains idle whereas in loosely coupled systems all processors can

share the processing load.

Processing

Power (CPUs)

5 -* 	 loosely coupled

I + 	 X tightly coupled

* both systems

4 -I 	X X * 	? marginal situation

	

2-1 	X X

	

1-1 	 X X * 	?

0 -I---1---1---1---1 --- 1 --- i --- 1 --- 1 --- 1 --- i --- 1 --- 1 --- 1 ---*---*--

	

0 	1 	2 	3 	4 	5 	6 	7 	8 	9 10 11 12 13 14 15

of processor failures

FIGURE 2-5: System Degradation for Tightly and Loosely Coupled

Systems of 15 Processors

15

TASK TASK

TASK

B 	B 	B

TASK

FIGURE 2-4: Task Communication in a Loosely Coupled System

14

2.3. Peripheral Processors

The peripheral processors are little more than intelligent device

controllers. Besides controlling the actual devices and interfacing

with sensors/actuators they have to be able to handle some communication

protocol in order to assure reliable communication with the central

processors. The nature of the protocols available will be discussed in

the section for the peripheral network.

Triple redundancy is not necessary for these processors. 	Instead

the operation of the processor is monitored by the central processors

and, in case of a failure, a cold stand-by unit is activated and brought

in to replace a faulty unit. The monitoring of the peripheral

processors can be done either by anploying a suitable transaction

protocol or by periodic polling of the peripheral processors by the

central processors.

2.4. Processor Network

The function of the processor network is to interconnect the

central processors of the system. The nature and requirements of this

network may vary greatly depending on the memory organization of the

system. 	The two schemes that can be used are common memory and private

memory. 	If common memory is used then each processor must also be

equipped with an on-board cache in order to minimize bus and memory

contention.

The two main schemes used for processor interconnection are common

bus and full interconnection. The fully interconnected system

inherently offers a greater degree of fault tolerance due to its

redundancy whereas the common bus offers simplicity and lower cost.

Clearly care must be taken so that the common bus will not become a

16

single point of failure. 	This is accomplished by using several busses

in parallel and providing spare busses and the ability to switch busses.

The most obvious implementation is again triple redundancy. Data is

sent along three separate busses and if one bus fails it is replaced by

a spare.

Intermediate bus structures do not seem very promising for fault

tolerant applications because they contain single points of failure.

For example in a crossbar arrangement the failure of a switch may

incapacitate both busses it connects. If triple redundancy is employed

then the number of busses in the system will become comparable to that

of a fully interconnected system without any added advantage. Besides a

crossbar allows connections between any member of one set and any member

of another set. 	Therefore it is usable for connecting processors with

memories but not for interconnecting processors. 	One example of such a

system is the Pluribus system [5] which uses a modified crossbar

structure. Although this modified structure avoids single points of

failure it is very complicated.

Simpler interconnection schemes like rings or stars have obviou s .

single 	points 	of failure. 	If redundancy is employed in 	the

implementation of one of these schemes the possibility of single point

failure could be removed. However, such an implementation would have no

advantage over a common bus configuration.

In summary, we can combine the previously mentioned configurations

(i.e. common or private memory, common bus or fully interconnected and

tight or loose coupling) in almost every possible way. Each possible

combination will now be discussed briefly in order to determine the most

suitable configuration.

17

1) Common Memory - Common Bus

The block diagram of this configuration is shown in Figure 2.6 for

both tight and loose coupling.

1.a) Tightly Coupled

This configuration is the one employed in the FTMP system [1].

Effectively each processor gets assigned a memory and a bus and

operates with these as a separate system. 	However both memories

and busses are common and may be assigned to any processor. 	Thus

it provides a fine component granularity. 	A serious drawback of

this configuration is that all processors must run in perfect

synchronization. 	This requires extra hardware for reliable clock

distribution and processor synchronization. 	However its main

disadvantage is that either the interface to the memory will be

serial and therefore slow or a very large bus will be required.

1.b) Loosely Coupled

This configuration has the disadvantage over the corresponding

configuration with tight coupling that the busses that form the

common bus will be asynchronous to each other. 	Therefore some

extra synchronization and arbitration will be necessary. 	On the

other hand it does not require clock distribution. 	However, it

shares the disadvantage of either slow memory interfaces or

expensive bus.

2) Private Memory - Common Bus

The block diagram of this configuration is shown in Figure 2.7 for

both tight and loose coupling.

18

1

FIGURE 2-6: Common Memory Common Bus System

19

FIGURE 2-7: Private Memory Common Bus System

20

2.a) Tightly Coupled

This configuration seems to have no particular advantage over

the corresponding system with loose coupling. Given the relatively

independent nature of each processor there is no reason justifying

the extra hardware cost of tight coupling.

2.b) Loosely Coupled

This 	configuration is very much like the SIFT [2,3,4]

configuration with the difference that the common bus is used for

message passing. The disadvantage of this approach is that a

faulty processor may end up overwritting messages (in the receivers

input) from another processor. This is because there is no

physical 	separation of the communications of 	the various

processors. Besides, the sharing of a common bus between

asynchronous processors imposes some requirements for reliable and

fault tolerant arbitration.

3) Common Memory - Fully Interconnected

The block diagram of this configuration is shown in Figure 2.8 for

both tight and loose coupling.

3.a) Tightly Coupled

This configuration has several drawbacks. 	In order to allow

for reconfiguration each memory must be connected to all the

processors in the system. 	This means a significant increase in

hardware complexity. 	Besides, memory contention might make it

impossible for tightly coupled processors to operate with any

acceptable performance.

21

•••nn•

7

•••••

n11.10, WW1

nn•n

FIGURE 2-8: Common Memory Fully Interconnected System

22

3.b) Loosely Coupled

This configuration serves as an alternative to a private

memory - fully interconnected system. Its advantage is that it has

more independent subsystems that can be isolated and therefore it

degrades more gracefully than the corresponding configuration with

private memories. The requirement for multiport memories, along

with the large number of connections required, makes it impractical

for large systems.

4) Private Memory - Fully Interconnected

The block diagram of this configuration is shown in Figure 2.9 for

both tight and loose coupling.

4.a) Tightly Coupled

This configuration has the advantage over the corresponding

loosely coupled system that it can directly drive peripherals

without any extra overhead. However, it requires some extra

hardware overhead for fault detection and degrades less gracefully

than the loosely coupled system.

4.b) Loosely Coupled

This is the best alternative for large systems. 	The hardware

overhead is minimized and all fault tolerant functions are handled

in software. This makes future changes and upgrades to the system

extremely easy to implement without any requirement for hardware

changes. Therefore the system can be upgraded without being

physically changed which is an important feature for satellite

systems. A classic example of this configuration is the SIFT

system [2,3,4].

23

FIGURE 2-9: Private Memory Fully Interconnected System

2.5. Peripheral Network

The peripheral network will connect the central computer system to

the peripheral system which will be spread throughout the satellite.

The bandwidth requirements of this network depend on whether it will be

used strictly for control purposes or there will be some high speed data

transfers as well. If the network is only used for control purposes

then its only function will be to pass control messages to actuators and

receive readings from sensors. If high speed data transfers are also

required it may be better to employ a dedicated path for high speed data

transfers rather than giving the whole network a high bandwidth. These

factors seem to dictate a serial realization of the data paths of this

network.

The large number of devices connected to this network makes a

common bus the only viable alternative. 	Therefore the only decision

that remains to be taken is the actual realization of the bus. 	Since_

not all devices connected to this bus will have intelligence it_ seems

that three busses carrying the same information is the only viable

alternative. 	The final decision is whether the three busses will be

synchronous to each other or not. 	If the busses are not synchronous

then every peripheral device will have to buffer its messages until all

three copies are available and only then vote on them. This implies the

need for timeout in the case of missing messages along with some

protocol for dealing with this case. On the other hand a synchronous

bus can drive a voter directly thereby simplifying the device interface.

Given the large number of devices a synchronous bus is the best

alternative.

The term synchronous busses is used above to mean that the three or

more parts of the bus will be synchronous to each other. 	However the

25

operation of the bus as a unit may be synchronous or asynchronous in the

conventional sense. Synchronous operation yields a higher bandwidth but

requires distribution of the clock to all peripherals. On the other

hand asynchronous operation of the bus does not have this requirement.

If the extra bandwidth offered by synchronous operation is not

essential, asynchronous bus operation is preferable.

26

3. FAULT TOLERANT ARCHITECTURE

3.1. Introduction

In this chapter the architecture of a fault tolerant hierarchical

multiprocessor system will be presented. The overall block diagram of

the system, shown in Figure 2.1, is similar to the general block diagram

presented in Figure 1.1. However, some of the blocks in the diagram

differ radically from the corresponding blocks described in chapter 2.

In the following sections only the blocks that differ from the

"standard" blocks described in chapter 2 will be discUssed. For reasons

of simplicity the central processors and the processor network are

presented in a single section (section 3.2) as the central control

system. No specific requirements are placed upon the peripherals. As

well, no assumption is made about the peripherals, therefore the system

is completely general.

The peripheral interface system (peripheral network) is described

in section 3.3. Section 3.4 describes an extension to the system which

could be added if there is a requirement for large computational power.

Finally section 3.5 describes the devices used for system reset and in

the removal of malfunctioning units.

3.2. Central Control System

This consists of the central processors and the processor network.

Given the requirements for expandability, modularity and flexibility of

the architecture along with the requirements for an easily

reconfigurable, gracefully degrading system, a loosely coupled, fully

interconnected system with private memories was chosen.

The key element of the central control system is the processor

module (Figure 3.2). 	A processor module consists of the CPU, memory,

27

CP CP CP

PERIPHERAL NETWORK

PP P P P P

I 	I 	1
DEVICES

FIGURE 3-1: Block Diagram of the Proposed System

28

RESET

AND

POWER

IA

OTHE R

P M

IA

IA

CPU
IA

:4. TO

I P

ROM

IA

1
IA

RAM IA FE FROM

I P

IA

FIGURE 3-2: Processor Module

29

hardware support for an operating system (timers, interrupts, etc.) and

appropriate interfaces for the interconnection with the other processors

in the system. 	The module includes both RAM and ROM memory and is

completely self contained. 	The on board ROM contains a basic operating

system that handles the communication with other processors, and a

number of self checking routines.

The interfaces to the other processor modules consist of a

transmitter/receiver pair. The interface to the interface processors

consists of a single transmitter that broadcasts the message to all

interface processors and a number of receivers, one for each interface

processor. The reason for this different interface to the interface

processors will be explained in the following section that describes the

peripheral interface system. The exact nature of the transmitters and

receivers will be explained in the chapter about the detailed

description of the hardware.

In addition, the board has a power control and reset block which

will be discussed in detail in the section about the system reset

mechanism. The function of this block is to force a reset on a board

which is suspected of malfunctioning, thereby causing it to run its

self checking routines. Also if a board is determined to be

irrecoverably lost, then, it is powered down to conserve energy. All

these functions will be carried out following instructions originating

from some supervisory tasks running on the processor cluster. From that

point of view the system can be though of as self maintaining.

The relatively simple structure of the hardware has to be

complemented by reliable and intelligent software so that the system can

fulfill its specifications. At a bare minimum the operating system must

be able to :

30

1) Keep a record of errors in order to determine if some module

needs to be tested. 	The record must be complete and the

software must be intelligent enough so that transient errors

will not cause unnecessary tests. In other words a processor

that makes a single mistake must be given the benefit of the

doubt. Only if the number of errors within a certain time

period exceeds a threshold should the processor be declared as

faulty.

2) Provide for some sort of a timeout mechanism so that a

processor will not be tied forever waiting for a message from

another processor. This will prevent a crashed processor from

delaying or even deadlocking the system.

3) Isolate and ignore any single faulty communication channel and

reconfigure the system around the problem. 	If, for example,

the channel between two processors fails, then by

appropriately rearanging the distribution of tasks it may be

possible to keep the system operating at full capacity.

The implementation of an operating system that covers the above and

several other requirements for fault tolerance will be presented and

discussed in detail in the report on the system software [6].

3.3. Peripheral Interface System

Basically the peripheral interface consists of a common redundant

bus (a number of serial busses running in parallel). 	In section 2.5 it

was determined that such a bus should be tightly coupled. 	However the

central control system, as described in section 3.2, is loosely coupled.

The interface system must provide an interconnection between the two

without introducing a single point of failure.

31

1

• To accomplish this a number of interface processors are used. 	The

interface processors are tightly coupled and provide an interface

between the loosely coupled central processors and the tightly coupled

peripheral network as shown in Figure 3.3. The connections of an

interface processor are shown in Figures 3.3 and 3.4.

On one side an interface processor is connected to the fully

interconnected central control system. This interface is especially

designed to accomodate the conflicting operating modes of the central

and interface processors. 	To the other side it is connected to the

redundant bus. 	At any given time an interface processor drives at most

one of the busses that forai the redundant bus. 	However, it is possible

for any interface processor to drive any one of the buses.

Three interface processors will be active at any time. 	These will

run in an infinite loop polling both the central processors and the

peripheral devices. 	Whenever a message is received from a device it is

passed to the appropriate central processors. 	When a message is

received from a central processor it is stored and, after a prefixed

timeout period has elapsed, a software voting takes place and the

correct(ed) message is passed to the appropriate peripheral.

If one of the interface processors fails, it is disconnected and a

cold stand-by is phased in to replace it. Similarly, in case of a bus

failure, the corresponding processor is connected to one of the unused

busses. In this event all peripheral devices must be notified of the

change so that they too will switch to the new bus.

Any device connected to the peripheral bus is buffered by a fail

safe interface. 	An interface consists of a parallel to serial

converter, a tri-state gate and a number of bus guardians. 	The exact

number of guardians is a subject of analysis. 	A detailed analysis will

32

C P C P

.1Z

(P 'P 'P

P I B

FIGURE 3-3: Peripheral Interface System

33

:= ..
IA

IA

IA

FROM

C P
IA

RAM

IA

RESET

AND

POWER

:11 IA

IA .3
TO

C P

CPU

TO/

FROM

PIB

ROM

IA

V

FIGURE 3-4: Interface Processor

34

be presented in a later chapter. Figure 3.5 shows an interface with two

guardians controlling the gate to one of the busses.

Each guardian is directly addressable from the bus and therefore it

can be accessed like any other peripheral. For a device to access a bus

ail the corresponding guardians must be enabled. The guardians will

determine when a device will access the bus, which of the redundant

busses will be accessed and for how long the device may have control of

the bus. 	This interface is the same for both the interface processors

and the peripheral processors and devices. 	The only difference is that

an interface processor is only allowed access to one of the redundant

busses at any given time whereas a device is permitted access to all

active busses. At power up some of the guardians controlling the access

of the interface processors will be automatically activated so that the

system can start functioning.

Of particular importance at this point is the design of the bus

guardians. 	The guardian's connections to the redundant bus only allow

it to read from the bus. 	Therefore a faulty guardian cannot

directly affect the bus. 	The guardian is directly addressable from the

bus like any other device and is capable of receiving messages from the

interface processors via the active bus triad. A message to the

guardian contains commands which are latched by the guardian and applied

to its outputs until superseded by another command.

A guardian attached to a peripheral processor is programmed so that

it only enables the gate it controls for prespecified lengths of time.

This ensures that a single faulty processor cannot monopolize the bus.

All inactive guardians are programmed to ignore the bus during the time

that data may be transferred to/from a peripheral. Thus it is not

possible that data will be recognized as commands and cause undesirable

35

D EVIC E

P I B

B G GATE B G

FIGURE 3-5: Bus Interface

I I

36

state changes to occur.

3.4. Batch Extension

If there is a requirement for on-board high throughput processing

then the batch extension subsystem shown in Figure 3.6 can be connected

to the fault tolerant multiprocessor system. The main system acts as

the controller (CNT) of the extension through an interface on the

peripheral bus. 	The extension is a common bus, loosely coupled

subsystem with both private and common memories. 	The batch extension

subsystem does not incorporate any fault tolerant features as such but •

instead it is controlled and observed by the main system. The operation

of this subsystem is as follows :

All tasks and all data are kept in a global data base in common

memory. A free processor is assigned the first task in the Ready-to-Run

queue. 	This task and its data is then copied into the processor's

private memory and the processor starts executing the task. 	At

predefined intervals the processor communicates with the controller and

if all is determined to be well it,is allowed to update the global data

base and proceed with the task. Otherwise it is disconnected from the

subsystem and the task it was executing is again placed in the Ready-to-

Run queue. With this technique, only a part of the processing done by

the processor before it crashed is lost (the part between the two

checkpoints).

This subsystem requires much less hardware than a complete fault

tolerant subsystem and can provide a good degree of reliability. Its

main weakness is its controller which must be fully fault tolerant.

However, by using the main system as the controller this subsystem can

provide high processing power at a much lower cost.

37

P P P

CNT

M M M

FIGURE 3-6: Batch Extension Subsystem

38

1

•

3.5. System Reset Mechanism

As shown in Figure 3.2 a processor module includes a power control

and reset block. This block serves two functions: It provides some

means of resetting a suspected processor, thereby forcing it to run its

self test routines, and it allows for a faulty processor that has been

determined to be unusable to be powered down. 	A block diagram of the

block is shown in Figure 3.7. 	The block is connected to the peripheral

bus like any other device and only consists of two switches that can be

controlled from the bus. Since the block is connected to the bus in

such a way that it can only read from the bus, the connection of these

blocks does not require any special care. Effectively the switches can

be controlled by a set of guardians in very much the same way a gate is

controlled.

The switches must be designed so that their failure modes will be

asymmetrical and in case of a failure they will fail safely. It is also

desirable that the failure of any single switch will not incapacitate

the processor it controls. This can be accomplished by employing a

number of switches in suitable configurations so that single or even

multiple switch failures will be masked without any effect on the

operation of the block.

Some extensions to this block may allow the use of redundant power

supplies with software controlled load switching.

39

BG B G

FIGURE 3-7: Reset Mechanism

40

4. RELIABILITY ANALYSIS OF THE FAULT TOLERANT MULTIPROCESSOR ARCHITECTURE

4.1. Introduction

In this chapter we will describe the analytical model used to

determine various design parameters of the architecture. The model

predicts the behaviour of the fault tolerant system described in the

previous chapter as a function of time. The analysis here is

concentrated on the behaviour of the peripheral subsystem (network).

The behaviour of the central system is similar to the behaviour of the

SIFT hardware [2,3,4]. Since the central system depends on software for

fault tolerance it will not be considered here.

A stochastic model has been developed for the behaviour of a gate

guarded by a number of guardians. This configuration constitutes a gate

complex and is shown in Figure 4.1. This model is then used as the

basis for the development of a model that covers the entire peripheral

network.

The peripheral network is taken to consist of a redundant bus, and

a number of interface processors. 	The bus can also be accessed by a

number of peripheral processors and devices. 	For the purpose of this

analysis we do not have to differentiate between peripheral processors

and dumb peripheral devices.

The expected life span of the peripheral network is calculated as a

linear function of the expected life span of a single guardian. In this

analysis we take the expected life span of a guardian to be 20 years.

This is a rather pessimistic assumption considering the present state of

the art and the relative simplicity of a guardian (less than 200 logic

gates).

41

'P

GATE

BG BG BG

P I B

FIGURE 4-1: Gate Complex

I

42

4.2. Stochastic Model for Guardian Behaviour

In the proposed system each device and/or processor is connected to

the peripheral network through a gate. 	The operation of the gate is

controlled by a number of guardians as depicted in Figure 4.1. 	The

guardians may permit the processor to write to the bus or may prevent it

from doing so depending on the commands they receive from the interface

processors. What we are interested in here is the probability that a

device is still usable (i.e. an active and useful part of the computer

system) along with the various modes of failure and their impact on the

operation of the remaining system.

Starting the analysis we must determine the behaviour of the gate

complex shown in Figure 4.1 when certain of its parts fail. For this

analysis we will omit the gate itself and concentrate on the guardians.

The impact of a gate failure can be incorporated in the analysis by an

appropriate modification of the probabilities of failure of the

guardians. Considering the fact that the hardware of the gate is much.

 simpler than that of a guardian (less than 5 logic gates) the gate can

be ignored without any noticeable impact on the results.

The following assumptions are made :

- At time zero all guardians function properly.

- Guardians fail independently of each other according to

an exponential distribution and with a failure rate lambda.

- A guardian fails in the ON state with probability alpha and

in the OFF state with probability (1-alpha).

- A guardian that has failed will not change state at a later

time. 	For example a guardian that failed in the ON state

will remain in that state forever. 	Also all failures are

permanent.

43

The state in which a guardian fails is independent of the

guardian's state prior to its failure. The state of the guardian before

the failure is of no consequence to this analysis and is therefore

ignored. 	Failure in the ON state means that the output of the guardian

is such as to try to enable the gate. 	Similarly failure in the OFF

state means that the output is such as to try to disable the gate.

Under the above assumptions the failures of the guardians in a gate

complex like the one shown in Figure 4.1 can be considered as a pure

death Markovian process [8]. If there are k guardians in the gate

complex the process has k+1 states (numbered from 0 to k) and the

transition diagram is shown in Figure 4.2. 	The physical meaning of

state L is that L guardians have failed. 	The probability of a state L

as a function of time can be calculated and is :

P(L) = C(k,L) *211,(C(L,k-i) 	(-1)(i -k+L) * e(-i*lambda*t))

i=k -L

(1)

where L = 0, 1, 2, k

Besides the number of guardians that have failed it is of great

importance to know the number of guardians that have failed in the ON

state. To incorporate that into the analysis we break each state of the

Markov chain into substates. 	Thus state L is separated into L+1

substates, namely LO, Li, L2, 	LL. The physical meaning of substate

Lm is that L guardians have failed m of which have failed in the ON

state. 	Thus the state diagram of the process becomes that shown in

Figure 4.3. 	The probability of each substate can be denoted as P(L,m).

44

FIGURE 4-2: Transition Diagram of Markov Process for a Gate Complex

45

FIGURE 4-3: Transition Diagram of Complete Random Process

46

P(L,m) can be calculated from the Tormula :

P(L,m) = P(L) * P(m I L) 	 (2)

and the conditional probability P(m 1 L) is :

P(m 1 L) = C(L,m) * alpham * (1-alpha) (L-m) 	(3)

By combining (1) and (3) we obtain the general formula for the

probability of each substate :

P(L,m) = C(k,L) * C(L,m) * alpham * (1-alpha)(L -m)

*E(C(L,k-i) * (-1)(i-k+L) * e (-i*lambda*t))

i=k-L

(4)

where L = 0, 1, 2, ... k

m = 0, 1, 2, 	L

From (4) we can calculate the probability of any state for any

given size of a gate complex. However, in order to determine the

overall behaviour of the gate complex we must also know how the

guardians enable the gate. 	The two possible ways are by agreement and

by majority voting. 	By agreement means that all guardians must agree

for the gate to be enabled. By majority voting means that the gate will

do whatever the majority of the guardians dictates.

Depending 	on the decision mechanism (agreement or majority)

different states of the complex have different effects. The gate may be

in any one of three states. These are :

- Functioning Normally

- Permanently OFF

- Permanently ON

47

If the gate is permanently OFF the corresponding processor is

incapable of reaching the bus. 	Therefore it is effectivelly removed

from the system. 	On the other hand if a gate is permanently ON the

corresponding processor has unrestricted access to the bus. 	This may

not be a problem unless the processor also malfunctions and starts an

endless transmission. In order to accomodate the worst possible case we

assume that when a gate is permanently ON the corresponding processor is

always malfunctioning. 	Note that a gate may be functioning normally

although some of its guardians have failed. 	For example in a gate

complex with three or more guardians and decision by majority the

failure of .a single guardian will go unnoticed.

The effect of the decision mechanism to the behaviour of the gate

can be understood by considering the relation of the state of the

guardians to the state of the gate as a function of the decision

mechanism. Figure 4.4 shows this relation for a gate complex with three

guardians operating by agreement, while Figure 4.5 shows the same

relation if the gate complex operates by majority.

Finally, the effect of the value of alpha to the failure rate

lambda must be considered. If no care is taken the value of alpha will

be about 0.5 (i.e. if a guardian fails there is a 50% probability that

it will fail in the ON state). 	This value can be changed by altering

the design of the guardian. 	However, the alternate design will require

a larger number of components for each guardian and this in turn will

increase the failure rate lambda. Since the component count of a device

increases logarithmically with the number of states of the device, and

alpha is inversely proportional to the number of states it follows that

the failure rate lambda must be altered according to the formula :

48

NORMAL
1

1

1

• 	20
	

•
OFF

r3-2)

FIGURE 4-4: State Meaning in Operation with Agreement

49

NORMAL

/
\ 	/

\ /
Y

1

OFF ON

FIGURE 4-5: State Meaning in Operation with Majority

50

lambda effective = lambda * (s + log2 (0.5/alpha)) / s 	(5)

where s is the logarithm base 2 of the number of states of an unmodified

guardian. 	In order to cover the worst case we assume s = 1 (i.e 2

states). 	Therefore the failure rate lambda is altered according to the

formula :

lambda effective = lambda * (1 + log2 (0 5/alpha))

The following configurations of the gate complex were considered :

- 2 guardians with agreement

- 3 guardians with agreement

- 4 guardians with agreement

- 5 guardians with agreement

- 3 guardians with majority

- 5 guardians with majority

- 7 guardians with majority

For each of these configurations the probabilities of each of the

gate states defined above was calculated as a function of time. For

each configuration the value of alpha was varied from 0.1 to 0.5 in

steps of 0.1. 	Representative results of this analysis are included in

Appendix A. 	Appendix B shows plots of the probabilities of a device

functioning normally as a function of time for various values of alpha.

We can see that as the value of alpha increases this probability

decreases. On the other hand the probability of getting the system in

an undesirable state also decreases.

Therefore in making the decision for a certain configuration of

guardians in the gate complexes we must not only consider 	the

(6)

51

probability of the bus remaining usable for the longest possible time

but also the probability that a minimum required number of devices will

remain usable. To do that we must develop a model that shows the

behaviour of the entire system rather than a single gate complex.

Clearly this model will be based on the model of the gate complex

developed in this section.

4.3. Stochastic Model for the Behaviour of the Peripheral Network

The heart of the peripheral network is a redundant bus as shown in

Figure 4.6. 	These busses interconnect the interface processors to the

peripheral processors and the peripheral devices. 	For the purpose of

this analysis the terms peripheral processors and peripheral devices can

be used interchangeably. The peripheral network can be considered as

consisting of the following parts :

- Redundant bus

- Interface Processors

- Essential Devices (ED)

- Non-essential Devices (NED)

An essential device is a device that must be functional for the

system to be functional. It is assumed that such devices are always in

pairs and the device is considered functional if at least one of the two

devices is functional. 	A non-essential device is a device that is not

necessary for the system to function. 	In other words a non-essential

device performs some secondary function that can be discontinued without

seriously affecting the operation of the system. 	Non-essential devices

may be single units or in pairs. 	For the purpose of this analysis a

pair of non-essential devices can be considered as two independent

devices.

52

NED

ED

FIGURE 4-6: Peripheral Network

53

IP IP

• • 	•

PIB

• •

1

1

1

1
1

1

1

1

The 	peripheral network, 	and thereby 	the 	system, 	becomes

inoperational if one or more of the first three parts fails. That is if

the redundant bus becomes unusable, if the interface processors become

unoperational or if one or more pairs of essential devices fail. The

probability of each of these to occur will be calculated separately and

then combined to give the probability of failure of the entire

peripheral network.

4.3.1. Stochastic Model For The Behaviour Of The Redundant Bus

The redundant bus consists of a number of busses used in parallel.

Under normal operating conditions three of these busses are active and

are used for the transfer of information with error_ detection and

masking. 	In a marginal case the operation of the redundant bus can be

maintained even if only two of the busses are usable. 	This is because

the third bus (any one of the remaining unusable busses) will be voted

out of the result. However this configuration will fail to mask a soft

error as was the original intent.

Therefore for the redundant bus to be usable at least two of the

busses that comprise it must be usable. The probability of a single bus

being unusable is the probability that one or more gates connected to

this bus have failed in the permanently ON state. This probability can

be calculated as :

nd+nip

lb
* (1-p

ON
,(nd+nip-i))

P = 	* - ON :E(C(ndl-nip,i) 	P 	
)

1=1

where nd is the number of devices

nip is the number of interface processors

PoN is the probability of a gate being permanently ON

(7)

1
54

From this probability we can calculate the probability of the

redundant bus being unusable. This is the probability that of the

busses that comprise it at least nb-1 are unusable and can be calculated

as :

nb

Pb = 	(C(nb,i) * P lb
i * (1-P)(nb-i))

lb

i=nb-1

where nb is the number of busses in the redundant bus

4.3.2. Stochastic Model For The Behaviour Of The Interface Processors

	

The function of the interface processors is to handle 	the

communication between 	the asynchronous central system and 	the

synchronous peripheral network. At any given time three of the

interface processors are active and each of them drives one of the

active busses. For the system to be functional at least two of the

interface processors must be operational by a reasoning similar to the

one used for the redundant bus. For this analysis an interface

processor is considered to be inoperational if it has been cut off from

the bus. This probability can be calculated as :

nb P . - p
lip - OFF

where P
OFF is the probability

of a gate being permanently OFF

The probability of the interface processors being inoperational can

then be calculated as :

nip

ip -
F. - 	

(C(nip,l) * Plip * (1-p
	(r1-113- i))
lip/

i=nip-1

where nip is the number of interface processors

(8)

(9)

(1 0)

55

4.3.3. Stochastic Model For The Behaviour Of The Essential Devices

Since the hardware connection of a device to the bus is identical

to that of an interface processor, the calculation of the probability of

a device being cut-off is similar to the calculation of that probability

for an interface processor . This probability can be calculated for a

single device as :

nb

,
P ldc = 	(C(nb,i) * P -OFF

1 * (i_p
. 	\ 	OFF)

(nb

i=nb-1

From this probability we can calculate the probability of both devices

in a pair failing as :

P ,
ldpc = rldc

2

Now the probability of the system failing due to the failure of a

pair of essential devices can be calculated as :

ned

* Pd 	(C(ned,i) * Pldpc 	
(1-P

ldpc)
(ned-i))

i=1

where ned is the number of essential device pairs

4.3.4. Stochastic Model For The Behaviour Of The Peripheral Network

The peripheral network will become unusable if any one of the three

cases listed above occurs. Since we know the probability of each case

to arise and the various cases are independent since they depend on

(11)

(12)

(13)

56

different equipment, we can calculate the probability of failure of the

peripheral network as :

Pnet = Pb Pip Ped

- (Pb * Pip) - (P b * Ped) 	(P ip * Ped)

+ (P * D 	* 	\
b 	Lip 	Led)

Appendix C shows the values of these probabilities as a function of

time for some typical cases. The peripheral network considered

consisted of :

5 Interface processors

4 Essential Device Pairs

7 Non-essential Devices

Appendix D shows the values of these probabilities after ten years

of operation of the system for all combinations of number of guardians

per gate, decision mechanism and alpha. From these values we concluded

that the optimum configuration is 3 guardians per gate with agreement.

The optimum value for alpha was found to be 0.5. This configuration is

optimum not only in terms of reliability but also in terms of cost.

(14)

57

1

1

Ii

I I

5. DETAILED HARDWARE DESCRIPTION

5.1. Introduction

In this chapter we will describe in detail the hardware specified

in the previous chapters. The proposed system consists of a relatively

small number of distinct parts that are then combined to form a full

fledged fault tolerant system. 	First each of these parts will be

described separately. 	Then the interconnection of these parts into a

fault tolerant system will be described.

First, the guardians and gates will be presented in detail.

Section 5.2 will present a detailed explanation of the operation of a

guardian. Section 5.3 will present the gate and will deal with the

combination of guardians and gates to form a gate complex.

Section 5.4 will deal with the intermodule communications. 	These

include the communication between the processor modules that constitute

the central control system along with the communication of these

processor modules with the interface processors. 	The communication

ports used will be described at the block level. 	Section 5.5 will

present the details of the communication ports employed.

Section 5.6 will deal with the implementation of the processor

modules and the interface processors. 	The hardware configuration of

both will be presented. 	Section 5.7 will deal with the connection of

the interface processors and the peripheral processors to the redundant

bus which is the heart of the peripheral network. 	The use of gate

complexes will be discussed in detail. 	Finally section 5.8 will deal

with the interconnection of all these parts into a full fault tolerant

system.

58

I I

5.2. Guardians

Basically a guardian is a simple finite state machine the state

diagram of which is given in Figure 5.1. This FSM has a number of

inputs and a single output. Normally a guardian is idle with its output

set so as to disable the gate. 	At this state the guardian monitors the

bus until it recognizes a command on it. 	The list of commands a

guardian can recognize is given in Table 5.1. 	Except for the special

case of a change in the triad of active busses, a guardian will remain

idle until it recognizes either a Select or an Enable command. When a

Select command is detecteithe guardian sets an internal flag and awaits

an Enable command. As soon as the Enable command is received the

guardian sets its output so as to enable the gate and leaves it enabled

for a fixed period of time. At the end of this time period the guardian

disables the gate and returns to its idle state.

If an Enable command is detected but the guardian has not received

a Select command then the guardian does not enable the gate. However it

still waits for the same fixed period of time. 	While waiting the

guardian ignores the bus and any information on it. 	Thus it is not

possible for some data on the bus to be interpreted as commands and

cause erroneous operation of the system.

The operation described above refers to a guardian attached to a

peripheral processor or a peripheral device. Guardians attached to the

interface processors have a slightly different state diagram as shown in

Figure 5.2. 	The commands they understand are also slightly different

and are given in Table 5.2. 	Such a guardian will still ignore the bus

for a fixed period of time after it detects a Turn On command. 	However

once activated it remains on until explicitly turned off. 	Thus an

interface processor that has been given control of a bus maintains this

59

TIMERI 	ENBL 	 ENBL

FIGURE 5-1: State Diagram of Peripheral Processor Guardian

60

control except for the short periods of time that it grants the bus to a

peripheral for some data transfer.

Figure 5.3 shows the outputs of the two types of guardians as a

function of time and of the commands received. We can observe how the

guardian of a peripheral processor is normally OFF whereas the guardian

of an interface processor is normally ON. 	When the guardian of the

peripheral processor is selected its output does not change. 	However

when the Enable command is sent its output is activated and remains so

for a fixed period of time. During this time all other guardians in the

system disable their outputs after they recognize the Enable command.

Switch Bus

101010IXIXIXIXIXI

old bus # 	I 	new bus #

1 	guardian # 	1

Select

1 0 101 1 IXIXIX1X1X1

1 	guardian # 	1

Temporary Enable

1011111X1XIXIXIX1

1 	guardian # 	1

Table 5-1: Commands for Peripheral Processor Guardians

61

OFF

TIMER DISBL

ON

DISBL TIMER

OFF OFF

ON

TURN

OFF

FIGURE 5-2: State Diagram of Interface Processor Guardian

62

Switch Bus

1 0 1 0 101X1X1X1X1X1

1 	old bus # 	1 	new bus # 	1

1 	guardian # 	1

Turn ON

1010111X1X1X1X1X1

1 	guardian # 	1

Turn OFF

101 1 101X1X1X1X1X1

1 	guardian II

Temporary Disable

101 1 1 1 1X1X1X1X1X1

1 	guardian M

Table 5-2: Commands for Interface Processor Guardians

63

fixed duration

of internal timer

IPG1

IPG2

PPG

Bus

Data ---<XX> 	<XX>-XXXXXXXXXXXXXX 	<XX> 	<XX>

Select 	Enable 	Data 	Turn off Turn off

PPG 	PPG 	from PP 	IPG1 	IPG2

PPG - Peripheral Processor Guardian

IPG - Interface Processor Guardian

FIGURE 5-3: Example of Guardian Operation

64

1

Note that a guardian attached to a peripheral always starts in the

OFF state whereas a guardian attached to an interface processor may

start either in the OFF or in the ON state. 	This is controlled by a

jumper or a switch. 	Some guardians always start in the ON state.

Namely the guardians that start in the ON state are selected so that

each of the three initially active interface processors will have access

to one of the initially active busses. This is essential for the system

to be operational after initialization.

5.3. Gates and Gate Complex

A gate is a simple tri-state buffer with multiple enable lines.

Since the peripheral busses are serial the gate only needs to control

one line. A gate can be implemented simply as a combination of two

standard TTL gates as shown in Figure 5.4.

A gate along with a number of guardians form a gate complex. 	The

function of a gate complex is to allow a processor or a device to access

a bus in a controlled and fault tolerant fashion. The block diagram of

a gate complex is shown in Figure 5.5.

The complex consists of a gate and three guardians. Each processor

connected to the peripheral network is connected to each of the busses

that forai the redundant bus via a distinct gate complex. It is

essential that no two gate complexes have any hardware in common so that

hardware failures are as local as possible. 	Thus it is not possible to

utilize a quad buffer chip to implement four gates. 	Each gate must be

physically separate from any other gate. 	Note that the guardians of a

gate complex can be made so that they all have the same address. 	This

is possible because they always have to receive the same commands.

Subsequently this reduces the control overhead.

65

FRONI

GUARDIANS

BUFFER

FIGURE 5-4: Implementation of a Gate with Agreement

66

BG BG BG

FIGURE 5-5: Block Diagram of a Gate Complex

BUFFER

67

5.4. Intermodule Communications

In this section we will present the ways in which the various

modules of the fault tolerant system communicate. 	Communication is

effected through a number of communication ports. 	Depending on their

use communication ports may differ but they all consist of the same

basic units, namely a transmitter and a receiver.

Communication ports intended to connect processor modules to other

processor modules consist of both a transmitter and a receiver. 	These

operate independently of each other. 	Each processor module has a

dedicated port connected to every other processor module so that a fully

interconnected system is formed. The detailed description of a

transmitter and a receiver will be given in the next section.

The communication ports on the interface processors that connect

them to the processor modules of the central control system are

identical to the ports that interconnect the processor modules to each

other. However the ports that connect the processor modules to the

interface processors and the ports that connect the interface processors •

 and the peripheral processors to the redundant bus are different. These

ports consist of a single transmitter and a number of receivers. In

both cases the transmitter broadcasts to all concerned units (either

interface processors or busses). However there is a dedicated receiver

for each distinct unit that is connected.

In the case of the processor modules the single transmitter ensures

proper communication between the loosely coupled central control system

and the tightly coupled interface processors. In other words it ensures

that all the interface processors will receive their copies of the

message simultaneously. 	This is essential for the interface processor

to remain in perfect synchronization. 	Even if the central processors

68

were synchronous the time difference between sending the same message to

different interface processors would be enough to throw them out of

synchronization. In the case of the interface processors the processors

need not know to which of the busses in the redundant bus they are

connected. So they simply transmit through a single transmitter and the

gate complexes ensure that only the proper bus is driven. This also

applies to peripheral processors and is shown in Figure 5.6.

5.5. Transmitter and Receiver

The block diagram of a transmitter is shown in Figure 5.7. 	The

transmitter consists of a FIFO queue and a serializer that converts the

parallel data into serial data ready for transmission. The serializer

can be thought of as the transmitter part of a UART. The FIFO serves to

offload the processor from continuously checking the transmitter and to

give the transmitter the capability of autonomous operation for a

certain length of time. The size of the FIFO is chosen so that the

transmitter can operate without any attention from the processor for the

duration of the time slice of a task. In other words the transmitter

requires the attention of the processor only during a context switch.

This greatly simplifies the design and implementation of the operating

system.

For example a processor module that wishes to send a message to

another module can write the message into the transmitter FIFO and then

proceed with its other tasks while the transmitter is sending the

message. 	The processor sees the transmitter as a pair of I/O ports.

One is a data port and the other is a command port. 	Data written into

the data port are placed in the FIFO and transmitted. 	The command port

enables the processor to control the transmitter and to check its

69

IP OR PP

G C G C GC GC

FIGURE 5-6: Connection of Processors to the Redundant Bus

STATUS

FI F0

DATA XMITER

COMMAND

FIGURE 5-7: Block Diagram of a Transmitter

71

internal status. 	For the time being we are only interested in being

able to reset the transmitter and to check if the queue is full.

The structure of the receiver is complementary to that of the

transmitter and is illustrated in Figure 5.8. 	The receiver consists of

a deserializer and a FIFO. 	The deserializer is actually the receiver

part of a UART. 	When a byte of data has been collected it is placed in

the FIFO for pickup by the processor. 	Like the transmitter, the

receiver appears to the processor as a pair of ports. 	One port is a

data port and the other a command port. 	A read from the data port will

return the first byte in the FIFO. 	If the FIFO is empty the result is

undefined. 	The command port enables the processor to control the

receiver and check its status. 	Presently we need to be able to reset

the receiver and check if the queue is empty or if it has overflowed.

5.6. Description of Processor Modules and Interface Processors

The block diagrams of a processor module and an interface processor

are given in Figures 3.2 and 3.4. Besides the CPU each module includes

some RAM memory and some ROM memory which will contain the kernel of the

operating system. Each module also contains a set of programmable

interval timers which are essential for some of the operating system

functions, an interrupt controller, and a number of communication ports

as described above. 	These communication ports will interconnect the

modules into a fully interconnected central control system. 	A block

diagram of the interconnection between two processor modules is given in

Figure 5.9.

The modules include as well a single transmitter and a number of

receivers that handle the communication with the interface processors.

This special interface is necessary because of the synchronous nature of

72

Fi FO

	> I RCV ER DATA

STATUS

COMMANDk_l

FIGURE 5-8: Block Diagram of a Receiver

1

73

C P C P

R X TX

4 RX TX

FIGURE 5-9: Block Diagram of Processor Interconnection

74

C P C P C P C P

I P

4GCs 4G Cs

GC GC GC GC

4GCs

*N. e.4.1111
bfflffl"

rairMilirdall aim

MI 	 • 111 	1
I P

4GCs 4GCS

1r NI

1r

PP

FIGURE 5-10: Typical System Configuration

76

4G Cs

PP

the interface processors.

On the other hand the interface processors also have a number of

communication ports. Namely an interface processor has one

communication port for each processor in the central control system. No

special care need to be taken for these ports since the central control

system is asynchronous. Actually these ports are identical to the ports

the processor modules use to communicate with each other. 	Aside from

these ports the interface processor also has a single transmitter. 	The

function of this transmitter is to drive the peripheral bus.

Actually any interface processor only drives one of the busses that

comprise the peripheral (redundant) bus. However this is taken care by

the gate complexes and is of no concern to the interface processor.

Also an interface processor has a number of receivers. 	The function of

these recàivers is to receive data from the peripheral bus. 	Each

receiver only receives data from one of the busses. 	Thus by comparing

the values received by different receivers the interface processor can

detect bus failures.

5.7. Typical System Configuration

A typical system configuration is illustrated in Figure 5.10. 	The

system depicted consists of :

4 Central Processors

4 Interface Processors

4 busses (forming the peripheral bus)

2 Peripheral Processors

24 gates (1 gate/bus/processor)

72 guardians (3 guardians/gate)

75

This system normally operates with only three of the interface

processors and the busses active at any time. The fourth interface

processor and bus are spares to be used as replacements to faulty units.

However all four of the central processors are initially active and

share the processing load. In case one of them fails its load is shared

among the remaining processors.

•

1

77

6. SUMMARY AND CONCLUSIONS

In this work we developed an architecture for a fault tolerant

multiprocessor system for satellite applications. Special care has been

taken to make the architecture both expandable and hardware independent.

This report presents the development of this architecture.

Chapter 2 describes the various possible configurations of a fault

tolerant computer. Some of these configurations have been used in the

past in various fault tolerant systems. Each configuration is described

briefly and its main advantages and disadvantages are presented. Based

on this qualitative analysis and the study of previous implementations

reported in the literature, a candidate architecture was selected and

analysed further in later study phases.

Chapter 3 describes a specific system designed according to the

selected architecture. This architecture is basically a combination of

two seemingly opposite philosophies, namely the tightly coupled FTMP

system and the loosely coupled SIFT system. The proposed architecture

is based on a more global view of the system than the previously

developed architectures. Thus it became possible to identify explicitly

the strengths and weaknesses of each implementation. The architecture

presented makes use of each approach for the part of the system where it

is most suitable. This results in a system where the implementation of

each part is matched to the function it has to serve and not to an

abstract architecture. In addition to fault tolerance, the system

presented provides graceful degradation, reconfiguration, expandability

and technology transparency (hardware independent implementation).

In chapter 4 we developed a model for a part of the system (the

peripheral network) and based on the model we derived the optimum values

of some design parameters of the processing system. Some of the basic

78

parts of the peripheral network (guardians and gates) have many

similarities to the FTMP system. 	However the FTMP system was designed

for short missions and many of its features were based on intuitive

rather than formal approaches. Results of the analysis showed that, for

long missions, the optimum solution is quite contrary to what would have

been intuitively chosen. The most notable example is the effort made in

the FTMP system to ensure passive failures. Results of our analysis

show that this approach leads to a much shorter life span for the system

than if no precautions to combat passive failures were taken. This is

because the accummulation of passive failures may result in system

configurations which are separated into non-communicating parts

incapable of fulfilling their overall functions.

Finally chapter 5 provided a detailed hardware description of the

proposed fault tolerant architecture.

A simulation of the proposed fault tolerant architecture can now be

implemented under N.mPc/N.2 based on the detailed hardware description

given in this report. This step will be undertaken along with the

integration of a fault tolerant multi-microprocessor operating system

for the testing and evaluation of a complete fault tolerant multi-

microprocessor system and will be described in a separate report.

79

REFFERENCES
REFERENCES

[1] A.L. Hopkins, T.B. Smith, J.H. Lala, "FTMP - A Highly Reliable

Fault-Tolerant Multiprocessor for Aircraft", IEEE Proceedings,

October 1978.

[2] J.H. Wensley, L. Lamport, J. Goldberg, M.W. Green, K.N. Levitt,

P.M. Melliar-Smith, R.E. Shotstak, C.B. Weinstock, "SIFT: Design

and Analysis of a Fault-Tolerant Computer for Aircraft Control",
IEEE Proceedings, October 1978.

[3] C.B. 	Weinstock, 	"SIFT: 	System Design and Implementation",

International Symposium on Fault-Tolerance, 1980.

[4] P.M. 	Melliar-Smith, R.L. Schwartz, "Formal Specification and

Mechanical Verification of SIFT: A Fault-Tolerant Flight Control

System", IEEE Transactions on Computers, July 1982.

[5] D. Katsuki, E.S. Elsad, W.F. Mann, E.S. Roberts, J.G. Robinson,

F.S. Skowronski, E.W. Wolf, "Pluribus - An Operational Fault-

Tolerant Multiprocessor", IEEE Proceedings, October 1978.

S. Boucouris, "Conceptual Design of a Fault Tolerant Multiprocessor

Operating System and the Impledhentation of a Prototype Kernel",

Intellitech Technical Report, TNT-84-44, October 1984.

[6]

80

intellitech
Intellitech Canada Ltd

352 MacLaren Street,

Ottawa, Ontario

K2P0M6
(3)235-5126

ri

_

