
-652.
/rCOMPUTER -AIDED ENGINEERING (CAE)
TOOLS FOR SPACECRAFT MULTIPROCESSOR

DESIGN AND VERIFICATION

AN EXECUTIVE SUMMARY

91
C655
C66697
1985

INT -85 -11

MARCH 1985

1

Prepared By: Dr. Samy Mahmoud

i
--„,_

Indust-rjr ---
Libra ry 'l

Industrie Cane,dp.
eq9e Cht.gn

1
1

1

1 .-, 	/

, 	dint A e. dun_
Jut.. 2 0 1998

INTELLITECH CANADA LIMITED

352 MacLaren Street
Ottawa, Ontario

K2P 0146

1
1

/4MPUTER-AIDED ENGINEERING (CAE)
TOOLS FOR SPACECRAFT MULTIPROCESSOR

DESIGN AND VERIFICATION e

AN EXECUTIVE SUMMARY///

1

DOC CONTRACTOR REPORT DOC-CR-SP -85-003

Government Gouvernement
of Canada 	du Canada

Department of Communications

DEPARTMENT OF COMMUNICATIONS - OTTAWA - CANADA

SPACE PROGRAM

TITLE: Computer-Aided Engineering (CAE) Tools for Spacecraft Multiprocessor

Design and Verification - An Executive Summary

AUTHOR(S): Dr. S.A. Mahmoud
INTELLITECH CANADA LIMITED
352 MacLaren Street
Ottawa, Ontario

K2P 0M6

ISSUED BY CONTRACTOR AS REPORT NO: INT-85-11

PREPARED BY: Dr. S.A. Mahmoud

DEPARTMENT OF SUPPLY AND SERVICES CONTRACT NO: OER 83-05075

DOC SCIENTIFIC AUTHORITY: Michel Savoie

Communications Research Centre
, Ottawa, Ontario

CLASSIFICATION: Unclassified

This report presents the views of the author(s). Publication

of this report does not constitute DOC approval of the reports

findings or conclusions. This report is available outside the

department by special arrangement.

DATE: MARCH 1985

TABLE OF CONTENTS

1. INTRODUCTION AND BACKGROUND 	1

2. OBJECTIVES OF TRIS RESEARCH PROJECT 	3

3. CONTRACT ACCOMPLISHMENTS 	5

4. REPORTS PRODUCED AND SUBMITTED UNDER THE CURRENT STUDY 	7

5. DESIGN METHODOLOGY USING CAB TOOLS 	8

6. GENERAL DESCRIPTION OF THE FAULT TOLERANT MULTIPROCESSOR
SYSTEM 	15

7. SUMMARY OF RESULTS AND CONCLUSIONS 	19

8. RECOMMENDED DIRECTIONS FOR FURTHER STUDIES AND RESEARCH 	24

LIST OF FIGURES

FIGURE 1 	N.mPc Block Diagram 	10

EXECUTIVE SUMMARY

1. INTRODUCTION AND BACKGROUND

Microprocessor-based computer systems are used on spacecraft to

increase reliability, extend mission duration and provide the on-board

intelligence needed to meet mission objectives. These systems range

from simple redundant (dual-processor) systems to distributed fault-

tolerant multiprocessor systems.

To reduce the cost and risk associated with the development of such

hardware/software (HF/SW) systems, DOC in 1981 initiated a project to

specify, design, implement and demonstrate an appropriate set of CAE

(Computer Aided Engineering) tools for the design, simulation, test, and

maintenance of spacecraft on-board processing systems. The tools

consist of a set of general purpose computer programs that enable system

functional requirements (specifications etc.) and system HW/SW designs

to be expressed in machine-processable form in order to facilitate the

simulation and performance evaluation of alternate designs and to

provide a format mechanism for system HW/SW development, verification

and validation.

Work completed by Intellitech Canada Ltd. on this project in FY

81/82 and 82/83 includes a survey of existing CAE tools and techniques

and the specification, design and partial implementation of an

appropriate integration set of CAE tools for spacecraft applications.

An early version of a Computer Aided Engineering software package

known as N.mPc was procured from Dicar Corporation (Ohio, U.S.A.) and

installed for testing purposes on the Unix environment of a PDP 11/23

processor. A more powerful version of N.mPc was later installed on a

VAX/780 computer running under the VMS operating system environment in

1

the Analysis and Simulation Laboratory (A & SL) of CRC. 	An upgrade of

N.mPc, referred to as the N.2 version, has been announced by ENDOT Inc.

(Ohio, U.S.A.) and is being made available to CRC under a new software

maintenance agreement between CRC and ENDOT.

2

2. OBJECTIVES OF THIS RESEARCH PROJECT

The main objectives of the current phase (FY 83/84 & FY 84/85) of

the project are summarized in the following:

(1) The procurement, installation and checkout of the latest version of

the software package N.mPc and/or N.2 and its associated software

development environment (e.g., source code, C compiler and other

high level language compilers and assemblers) needed to perform the

tasks of this phase of the study. All software is to be installed

and run on the VAX 11/780 under VMS in the CRC A & SL.

(2) The modification and extension of the N.mPc and/or N.2 library

routines etc., to include the hardware models and software

development facilities for selected microprocesors (e.g., F100-L

and SBP 9989 and support chips etc.) used for spacecraft

applications. 	Particular 	emphasis will be placed on 	the

implementation of the SBP 9989 processor on N.mPc. The SBP 9989

hardware architecture and instruction set are to be assessed along

with the investigation of the bus transfer mechanisms, interrupt

linkages and interbus transfer mechanisms.

3

1

(3) Validation of N.mPc as a hardware simulation facility and as a

microprocessor software development environment. 	The validation

task involves the development of target microprocessor software in

N.mPc. The software is then cross compiled and run on a simulation

of the target hardware (itself running on the VAX 11-780).

(4) To 	specify, 	design and implement (using N.mPc and/or N.2)

simulations of selected spacecraft fault-tolerant multiprocessor

system architectures. 	The systems implemented will feature

multiple and self-checking processors communicating on redundant

serial 	buses with appropriate centralized and/or distributed

control. 	Fault detection, isolation and recovery algorithms will

be designed, implemented, compared and assessed. 	Feasible fault

tolerant architectures 	are examined through 	mathematical

reliability analysis in order to narrow down the selection of

feasible architectures which can then be studied and simulated in

detail. 	The main objective of this work is to develop a testbed

for alternative fault tolerant architectures and operating system

structures to be used in the simulation and development of future

spacecraft on-board processing systems.

4

3. CONTRACT ACCOMPLISHMENTS

The following is a summary of contract accomplishments:

technical specifications and the methodology for using the

N.mPc package have been fully documented following the installation

of the package on the VAX/780 computer system at CRC. A detailed

system description document and a user manual have been prepared.

The implementation of an SBP 9989 development system on N.mPc has

been successfully accomplished and resulted in descriptions of the

SBP 9900/9989 processors in the N.mPc hardware description

language. As in all N.mPc activities, there is an extra benefit

resulting from the careful study of the hardware to be implemented.

In this case, the benefit is a thorough understanding of the

working of the SBP 9989 microprocessor. Based upon that

understanding, the SBP 9989 can be compared with other

microprocessors that are likely to be used in space applications.

Examples of such processors include the Ferranti F100-L and the

CMOS version of the Intel 8086.

A simulation of an Intel iSBC 86/12 single board computer was

performed successfully. It included an 8086 CPU, a dual port RAM,

a ROM, a programmable interrupt controller (PIC), a Multibus

interface, a global memory and an I/O facility based on N.mPc's

"raw memory" feature. 	These modules were designed and thoroughly

tested and debugged during the course of the work. 	The validation

of N.mPc as a CAE tool for microprocessor simulations was performed

by implementing a "Simple Attitude Control Algorithm" as a "C"

program, which was successfully run on the simulated 86/12 single

5

board computer as well as on the actual Intel SBC hardware. 	The

validation not only established the reliability of the simulated

hardware but also demonstrated the I/O capabilities of the 86/12

simulation. The development of the validation program in "C"

demonstrated the potential of a high level software development

path introduced as a result of this work.

- 	A fault tolerant multiprocessor architecture 	suitable 	for

spacecraft on-board processing has been developed, simulated and

analysed. The hardware architecture concept is similar to the

concepts developed previously for aircraft applications, but has

been modified appropriately to provide higher reliability over the

relatively long spacecraft mission life. An operating system

capable of detecting, 	isolating and recovering from 	fault

conditions and errors has also been developed and integrated with

the hardware architecture. 	The functionality of the operating

system has been tested through simulation. As well, the

correctness and completeness of the hardware architecture have been

tested, along with some basic operating system modules, using N.mPc

simulation.

6

4. REPORTS PRODUCED AND SUBMITTED UNDER THE CURRENT STUDY

(1) VAX 11/780 CAE Tools for Multiprocessor Simulation:

N.mPc User's and Applications Manual and Installation Guide

. (DOC-CR-SP-84-067)

(2) VAX 11/780 CAE Tools for Multiprocessor Simulation
2

N.mPc Detailed System Description

(DOC-CR-SP-84-040)

(3) Validation of N.mPc/N.2 Microprocessor Simulation

(DOC-CR-SP-84-041)

(4) Simulation of the SBP 9989 Microprocessor Using the Computer Aided

Engineering Tool N.mPc on a VAX 11/780

(DOC-CR-SP-84-023)

(5) Design and Analysis of Fault Tolerant Architectures for Multi-

microprocessor Systems

(DOC-CR-SP-84-051)

(6) Design and Implementation of a Fault Tolerant Multiprocessor

Operating System

(DOC-CR-SP-84-050)

(7) Simulation of a Fault Tolerant Multiprocessor System

(DOC-CR-SP-85-004)

(8) Computer-Aided Engineering (CAE) Tools for Spacecraft

Multiprocessor Design and Verification - An Executive Summary

(DOC-CR-SP-85-003)

7

5. DESIGN METHODOLOGY USING CAE TOOLS

Interest in multiprocessor and distributed intelligence computer

systems has increased dramatically during recent years. 	This interest

has been generated by the demand for and the availability of

multiprocessors with ever increasing performance/price ratios. However,

the design of such systems is a fairly complex process which involves

several alternative structures and determination of many system

parameters. Control 	of these systems is not well understood,

particularly for applications requiring high degree of fault tolerance

and involving large number of processors. In addition ad-hoc techniques

for designing large multiprocessor systems are not very advanced.

Design tools are needed which can be employed in the design and

development of these systems and which can provide insights into the

structure and attributes of alternative configurations. To meet these

needs, a design and simulation environment for multiprocessor and

distributed systems should have the following attributes:

allow simulation of multiprocessor systems and at the

time allow modelling of such systems over a wide range of

functional levels.

- allow changes to structure and topology of processor elements

with minimum expense.

- provide monitoring and control facilities which can be

enployed anywhere in the target system.

perform 	well when evaluating 	heterogeneous 	target

architectures with large number of processors.

allow the testing of different operating system structures and

fault tolerance mechanisms.

same

8

Currently, no custom prototyping environment which possesses all of

the above attributes is commercially available. 	In response to this

perceived need, a design and simulation environment, N.mPc, has been

developed and made available on a commercial basis. Other tools to

serve the same purpose are currently undergoing development and will be

available commercially in the near future.

N.mPc consists of six components used to either describe the

hardware and software components of a microprocessor network, or to

execute the simulation of a network. Figure 1 illustrates the

components of N.mPc and their interactions.

Meta-micro, a generalized assembler along with the linking loader

are used to generate the software executed by the simulated hardware

components of the microprocessor network. Both are driven by a

description of the target machine and instruction set, and are adaptable

to generate code for either vertically or horizontally programmed

machines. 	This linking loader produces a locatable code which is

executed by a simulated processor or by an actual machine. 	The ISP'

compiler is used to produce simulation modules for individual processors

and other hardware components of a network. The input language of the

compiler is an extension of the computer hardware description language

(CHDL). The ISP language allows specification of states for the

implementation of processor registers and flags, memories for the

simulation of memory, and ports which allow input to and output from

simulated hardware.

The N.mPc ecologist and a simulated memory processor link the ISP'

processor modules with linking loader outputs to form complete network

simulations. A run-time package is used to execute a simulation and

allow extensive user interaction with the simulation.

9

SIMULATION
RUNTIME

ENVI RONMENT 1,/

METAMICRO
LINKING

LOADER

HARDWARE SYSTEM MODELING 	SYSTEM SIMULATION

ISP'

COMPILER ECOLOGIST

SOFTWARE DEVELOPMENT

SIMULATED

MEMORY

PROCESSOR

Figtire 1 _ N.mPc Block Diagram

An N.mPc simulation might be viewed as going through several phases

before finally reaching a design conclusion. 	The major phases are,

simulation preparation, 	simulation execution, and post simulation

evaluation.

Ultimately, the value of N.mPc will be measured in terms of its

ability to generate results at a sufficiently low cost to justify its

use in the design process. Cost, however, is a multi-dimensional

variable containing components such as engineering cost, labour cost,

and time spent. A realistic evaluation of N.mPc must address this issue

in terms of cost versus return across a wide range of design situations.

These situations include the utility of N.mPc in the evaluation of

general purpose processors, the design and simulation of special purpose

processors and the design and simulation of microprocessor networks.

(i) Evaluation of General Purpose Processors Using N.mPc

With any general purpose processor, it is important to have a

balanced functionally complete set of instructions and addressing

modes. 	Many times, the instruction set of a new processor is

planned long before any implementation problems are tackled. 	By

writting a high level ISP description of the device, N.mPc makes

it possible to construct an instruction executor which will allow

the instruction set to be evaluated, without the need for extensive

specification of the processors internal construction. Testing and

modification can continue at this level until a 	suitable

instruction set is developed for implementation. 	At this point

there would certainly exist a general register set specification,

and instruction bit mapping. 	Once the internal details of the

processor are defined, the ISP' description of the processor would

Il

slowly move from a high level algorithmic level to a register

transfer level. Eventually even specified peripheral devices could

be modelled to interact with this still unimplemented processor.

In addition to the above, a software gap usually develops for new

processors as they appear on the market. 	To attack this common

problem head on, N.mPc could be used to assist the movement of

currently popular mini-computer operating systems and the high

level languages to these processors. 	In such transfers, problems

are usually encountered in the software/hardware operating system

interface. 	N.mPc simulations of these interfaces such as device

drivers and memory management control, could reduce the debugging

time significantly.

(ii) The Design and Simulation of Special Purpose Processors Using N.mPc

The N.mPc system is equipped with the tools and primitives

necessary to deal with the bit slice devices commonly used to

construct special purpose computing machines. 	These machines are

usually micro-programmed. 	Because micro-program instructions are

usually more complex than standard machine instructions and because

next instruction calculation is usually more complicated than the

usual increment/branch, special attention has been given to micro

program development. Metamicro and linking loader have several

instructions expressly designed to aid in the development of

software for horizontal architectures. Metamicro contains a

register transfers syntax which may be used to clearly show the

flow of information in register sets.

In both the general and specific purpose design, N.mPc can be used

to evaluate the issues that complicate the design process, thereby

12

reducing the need for prototype hardware, often a costly portion of

a new architecture evaluation.

(iii) Simulation of Microprocessor Networks Using N.mPc

Due to the rapid growth of microprocessor technology, formal tools

to describe and predict the behaviour, of multi-micro processor

systems are not yet available. 	Simulation is the only real

alternative to prototyping. The prototype environment for

multiprocessor systems is very harsh, usually requiring large

investments of time and capital while often producing very little

in the way of useable results. With the existence of an N.mPc

library for the microprocessor family of interest, the user need

only create the network topology description to have a complete

hardware description of the network. The network software would

have to be written, but because the simulation software can be used

in the physical hardware, the user will have no additional software

costs due to N.mPc. 	Even without suitable tools to approach

multiprocessor designs, 	networks have generated widespread

interest. 	Designs, for example, may offer high processing power

versus cost performance, or high levels of fault tolerance. 	Some

of the new 16 and 32 bit microprocessors have special software and

hardware features to support multiple processor configurations.

With a simulation system such as N.mPc, the user may solve the

problems encountered in current multiprocessor configurations, as

well 	as 	acquire the data to construct higher 	performance

microprocessor systems.

The experience gained in working with N.mPc as a simulation tool

throughout this study indicated, however, the existence of some

13

limitations which affect its utility in simulating complex systems

such as the fault tolerant architecture and its associated fault

tolerant operating system. These limitations are described later

in this report.

11

14

6. GENERAL DESCRIPTION OF THE FAULT TOLERANT MULTIPROCESSOR SYSTEM

The hardware architecture of the fault tolerant system consists of

three separate components: the central control system, the peripheral

network and the peripherals. The central control system consists of the

Central Processors (CPs) and the interconnection network connecting

them. The central processors communicate with each other via dedicated

channels. They constitute the highest on-board processing authority and

handle all the processing and control requirements of the satellite.

The function of the peripheral network is to provide a fault

tolerant connection between the central processors and the devices they

control. The network consists of a serial redundant bus to which all

the peripheral devices are connected. The central processors do not have

direct access to the redundant bus. 	Instead they communicate with each

other via a set of dedicated Interface Processors (IPs). 	The function

of the IPs is to handle the low level details and the protocol of the

peripheral network and to provide a fault tolerant interface between the

asynchronous central processors and the synchronous redundant bus.

The interface processors and the peripheral devices are connected

to the redundant bus through specially designed gates that ensure a

device that fails will not incapacitate the system. Also the gates

provide the means for the isolation of any faulty device from the

system.

The system hardware described must be complemented with suitable

software in order to fulfill its intended purpose. 	The interface

processors perform relatively simple and repetitive tasks. 	Therefore

their software is straightforward and can be though of as firmware.

Their main function is to pass data between the central processors and

the peripherals in a controlled and fault tolerant manner. 	This

15

activity is directed and controlled by the central processors.

The operating system resides and runs on the central processors.

It provides the environment for the application tasks to run and handles

the masking and isolation of faults. In addition, it is responsible for

the recognition of hardware and software failures and the

reconfiguration of the system around them.

The proposed fault tolerant architecture has many common features

with a number of existing fault tolerant architectures for aircraft

systems. The two most Important of these are SIFT, and FTMP. Many

elements of the FTMP system were found to be particularly suitable for

peripheral interfacing and were adopted for the peripheral network.

These elements (serial redundant bus and gates) had to be modified in

view of the radically different requirements of a satellite system as

opposed to an aircraft system.

The main objective of operating system simulation is to make

possible the testing of the completeness and correctness of the various

functions of the operating system both under normal and faulty

conditions, to the greatest extent possible, given the unavailability of

the system hardware. To accomplish this a test module was developed and

linked with the operating system code. This module emulates both the

functions of the higher layers of the operating system (processor

managers and global executive) and the functions of the hardware

(interprocessor communications).

In addition, this module enables the user to interactively inject

errors in the system and observe the system's behaviour. At the present

stage the system can detect, isolate and recover from most external

errors including soft transmission errors, communication line failures,

16

task failures and processor failures. 	All these external errors

originate from within the central control system. 	Another class of

errors which cannot be tested at the present time are the errors

originating from the peripheral network. Any serious attempt with

practically meaningful results to include these errors would require the

availability of the system (target) hardware.

The interactive testbed has been designed as one self-contained

program. The underlying hardware is simulated internally by moving data

from one processor structure to another. Therefore it is entirely

independent of the operating system under which it runs.

Originally the operating system simulation was developed on a VAX

11/750 running UNIX 4.2. 	Once the debugging was completed it was moved

to the CRC VAX 11/780 and run under the VMS operating system. 	The

operating system and testbed software developed are transportable to any

host computer provided it has sufficient memory and a full C compiler.

The transportability of the software to other host computers is possible

since neither the testbed nor the operating system itself make use of

any special features of UNIX.

The CAE tool N.mPc was used for functional testing of the fault

tolerant multiprocessor hardware architecture by first developing

descriptions of all necessary hardware modules in N.mPc's hardware

description language ISP'. The next step was to describe an

interconnection scheme for the simulated hardware components of the

multiprocessor architecture. Then some test software for the

programmable 	hardware modules (descriptions of the 	Intel 	8086

microprocessor) were developed. 	Finally simulated hardware and test

software for the microprocessors were integrated under N.mPc to form an

executable simulation that allows functional testing of the fault

17

tolerant multiprocessor architecture and of the behaviour of the

multiprocessor system in response to certain failures. N.mPc was also

used to test the integration of some operating system modules with the

hardware architecture.

18

7. SUMMARY OF RESULTS AND CONCLUSIONS

A 	conceptual 	design 	for 	a 	fault-tolerant 	multiprocessor

architecture has been analysed, simulated and its suitability for

spacecraft on-board processing has been demonstrated. The

multiprocessor architecture is particularly suited for the relatively

long spacecraft mission duration.

The approach chosen for the design of the fault 	tolerant

multiprocessor system is novel in the sense that fault tolerant features

and supporting mechanisms are enbedded in both the hardware architecture

and the operating system software. The hardware has multiple redundant

components that are controlled by fault detection mechanisms in order to

prevent the propagation of errors from the faulty component to the

remainder of the system. The operating system software contains all the

intelligence needed to detect errors, identify their sources, take the

necessary action to remove faulty units, reallocate the processing tasks

and reconfigure the system to adapt to the new operational state.

One important limitation to the fault tolerant system developed in

this study stems from the fully connected topology of the main

processors. This topology means that the number of main processors must

be limited in practice since (n-1) interface ports are needed for a

configuration of n processors. This imposes an upper limit on the total

processing power of the system and precludes the flexibility of further

expansion into very large configurations. However the selection of the

fully connected topology was made in favour of arriving at a provable

and tractable fault tolerance capability and at the expense of the

flexibility of constructing a topology with very large number of

processors. This separates our system from many other published

configurations in which the number of processors numbered in the

19

II

II

• 1

hundreds. 	Finally it should be observed that our system is targetted

for applications requiring finite processing power but high degree of

fault tolerance and graceful degradation.

The operating system can detect and isolate a wide range of errors

and failures. Simple transient errors are masked from the system

whereas component and software failures are recognized, isolated and

repaired to the greatest possible extent. This is accomplished by

employing hardware and software redundancy along with the appropriate

fault tolerant software to manage the redundant resources of the system.

Redundancy ensures the fault tolerant operation of the system but

is achieved, however, at the cost of extra hardware resources and

reduction in processing throughput. In order to ensure the timely and

reliable isolation of faults any software running on the system must run

in triplicate (or sometimes in more copies). In other words for every

three processors in the system, the equivalent throughput of one

processor is obtained. Besides the fault tolerant features of the

software require extra processor resources 	for voting 	and

reconfiguration. It is estimated that the overall throughput of the

system will be 25% of that of a basic system without any fault tolerant

features.

Although the system presented here was originally designed for

spacecraft applications, it is not limited to such applications. In

fact the proposed architecture could be used for any system requiring

finite processing power with ensured continuous operation. The ability

of the system to isolate the failures automatically and reconfigure

itself around them makes it ideal for applications where the cost of

maintenance and the logistics associated with it require minimum human

20

interference. 	Examples of such systems include multi-microprocessors

used in the operation, monitoring and maintenance of nuclear plants, in

computer communication networks and in remote-site data collection and

distribution (eg. environment and resource management applications).

The simulation approach to hardware and operating system software

design proved to be useful in the course of this work. Several times it

has been necessary to add a new feature to the guardian initialization

mechanism, change the interconnection of some hardware modules or

complete the description of a bus interface which the simulation proved

to be inaccurate. All these changes would have been extremely time

consuming and costly if they had to be done on a real prototype

hardware. The inherent flexibility of the simulation approach allows us

to evaluate several design alternatives of a hardware system in a short

time. This allows the designer, when he finally commits himself to

implementing a certain design, to rule out early conceived options that

proved to be incorrect or inefficient through the simulation work.

Concerning 	the adequacy of N.mPc as a design tool 	for

multiprocessor systems, several points can be made:

In the course of this work the CAE tool N.mPc clearly proved to be

useful as a hardware design and simulation tool. 	A complex

multiprocessor system could be simulated and tested in a relatively

short period of time.

Frequent 	design changes 	to 	the 	simulated multiprocessor

architecture showed the flexibility of N.mPc as a hardware design

and simulation tool.

21

On the other hand, several limitations to N.mPc have been identified

«which tend to severely reduce its utility in the simulation and testing

of fully integrated multiprocessor systems:

N.mPc's slow execution speed results in a prohibitively high demand

on the host CPU time if the test software modules are of

substantial size. This was the case for the fault tolerant

operating system.

In the N.mPc simulation conducted here, 	the main (control)

processors were represented each by Intel's 8086 processor. A full

description of this processor is included in the library of N.mPc.

The 8086 version within N.mPc was developed based on the available

8086 VLSI chip details. Like the case with many sophisticated

processors, the commercially available VLSI description is not

guaranteed to be complete nor absolutely accurate (bug free). All

unidentified faulty attributes in the description will thus be

propagated to any simulation which uses the library copy of the

processor description. This complicates the process of tracing the

sources of bugs when high level operating system software modules

are tested in the simulation.

The fact that N.mPc simulates the hardware down to the register

transfer level is useful when newly designed hardware modules are

being tested. However, when the focus of the simulation shifts to

higher levels of structure modules, N.mPc still simulates every

register transfer in every microprocessor involved in lower level

instruction executions resulting in a large simulation overhead.

This aspect was encountered when an initial attempt was made to run

22

I

the relatively complex software of the fault tolerant operating

system on the fault tolerant microprocessor architecture.

The next generation of CAE tools is expected to be endowed with

top-down design and simulation features to allow the designer to follow

a methodology in which he can test the lower level modules of the

operating system down to register transfer level of details. Higher

level modules can then be simulated and tested with the already tested

lower levels replaced by macro instructions or functional blocks. This

will enhance the simulation performance by several orders of magnitude

over what is currently attainable by a tool like N.mPc. It will thus

make it possible in practice to simulate a sophisticated system such as

the fault tolerant architecture reported here in its full fledged

configuration in a reasonable period of time and using modest computing

resources.

A new version of N.mPc, called N.2, has been introduced by the

vendor and is available on the VAX/VMS environment. The new version N.2

incorporates a few features aiming towards making the original N.mPc

more powerful.

23

8. RECOMMENDED DIRECTIONS FOR FURTHER STUDIES AND RESEARCH

The study completed so far investigated the design, simulation and

testing of the basic functions of a fault tolerant multiprocessor

system. The results presented however, do not cover all potential

capabilities that can be included in such a system. Extending the fault

tolerant system to its full fault tolerant potential remains to be the

subject of further research and development.

Further work on the subject may include the expansion of the higher

layers of the operating system (the processor manager and the global

executive). The processor manager can be expanded so that it can handle

the creation, deletion and relocation of tasks. To do this some memory

allocation and management software is required which will have to be

developed and tested for a specific target hardware implementation.

The global executive can be expanded by using more intelligent

reconfiguration techniques and by increasing the number and types of

failures it can handle. These should include failures in the peripheral

network as well as partial failures of processor modules. It should

also be extended so that it can enforce a graceful degradation when

module failures result in overall reduction of the collective processing

power of the system. Graceful degradation would necessitate the removal

of certain functions according to a priority scheme which specifies an

order of importance. This will enable the system to continue performing

its basic functions even as processing power continues to decrease with

module failures.

Some of these extensions can be tested in a satisfactory way by

using simulation techniques similar to those employed in this report.

However, many of the functions can only be tested on the actual target

system hardware. Therefore the realization of the hardware and the

24

porting of the operating system to it are essential if this work is to

be carried to a conclusion.

The system in its present state can handle only single errors

(faults) occurring in serial order. 	The system should be expanded to

handle concurrent errors (faults). 	Since the number of combinations of

such errors is large, it would be difficult to anticipate their nature

in advance. A fault tree analysis will be required which will benefit

from the advances made in the field of expert systems in artificial

intelligence.

Finally, it is essential to monitor the technology and the

availability of the next generation of CAE tools. Future CAE tools

should not only be able to do harçlware simulations on the register

transfer level but should also include the capability of simulating

complex hardware modules as "black boxes". In this manner simulations

could be moved to higher functional levels while minimizing the demand

for computer time for subsequent simulations.

25

Intellitech Canada Ltd

352 kilacLaren Steet,

Ottawa, Ontario

K2P 01\46
(613)235-5126

