“intallitech

QUEEN
P

91
.C655
C66698

1985
v.1

Technology

\

//- { ‘2,,__/)

X
The Intelligent Use of

STMULATION OF A FAULT TOLERANT f

MULTTPROCESSOR SYSTEM /

Volume 1 {

, 1

Ld

]

v

i

’.“;‘

|

;

Voo A A TR RS (e

o - N o

i

« i . _ .

91
C655
INT-85-10 66698
1985
v.l

I

N

SIMULATION OF A FAULT TOLERANT

MULTIPROCESSOR SYSTEIV

Volume 1
| Industry Canada”
Library Queen
Jut 2 0 1998
Industrie Canada
Bibliotheque Quesan |
- MARCH 1985

Prepared By: /MaxZifrelt

Approved By: Dr. S.A. Mahmoud

INTELLITECH CANADA LIMITED

352 MacLaren Street
Ottawa, Ontario
K2P OM6

T

Government Gouvemement
of Canada du Canada

Department of Communications
DOC CONTRACTOR REPORT DOC-CR~-SP 85-004
DEPARTMENT OF COMMUNICATIONS - OTTAWA - CANADA

SPACE PROGRAM

TITLE: simulation of a Fault Tolerant Multiprocessor System

AUTHOR(S)3 Max Streit
INTELLITECH CANADA LIMITED
352 MacLaren Street
Ottawa, Ontario

ISSUED BY CONTRACTOR AS REPORT NO: INT-85-10

PREPARED BY: Max Streit

DEPARTMENT OF SUPPLY AND SERVICES CONTRACT NO: OER 83-05075

DOC SCIENTIFIC AUTHORITY: Michel Savoie

Communications Research Centre
Ottawa, Ontario

CLASSIFICATION: Unclassified

This report presents the views of the author(s). Publication.
of this report does not constitute DOC approval of the reports
findings or conclusions. This report is available outside the
department by special arrangement.

DATE: MARCH 1985

SUMMARY

The simulation activity described in this report is part of an
overall study (which includes the design and simulation of a fault
tolerant multiprocessor architecture for spacecraft. applications; The
main focus of the overall study, however, has been on the development
and utilization of computer aided engineering (CAE) design tools. One
of these CAE design tools, known as N.mPc, is currently running on the
VAX/VMS 11/780 system located in the Analysis and Simulation Laboratory
of thg Communications Research Centre, Department of Communications.
The N.mPc package 1is used as a simulation enviromment for the work
reported here.

N.mPc consists of a number of components used to describe the
hardware behaviour of a target system, and tb execute the simulation of
that system.

The approach chosen for the design of the fault tolerant

multiprocessor system is novel in the sense that fault tolerant features

and supporting mechanisms are embedded in both the hardware architecture

and the operating system software. The hardware has multiple redundant
components that are controlled by fault detection mechanisms in order to
prevent the propagation of errors from the faulty componment to the
remainder of the system. The operating system software contains all the
intelligence needed to detect errors, identify their sources, take the
necessary action to remove faulty units, reallocate the processing tasks

and reconfigure the system to adapt to the new operational state.

) .

Examples of the hardware faults which can be tolerated (ie.

. recovered from) by the full ' fault tolerant multiprocessor system

inglude:

- Malfunction of a central processor.

- Malfunction of an interféce processor.

- Failure of one of the redundant buses between interface and
peripheral processors.

- A failing peripheral processor (device) is simply cut off from
the redundant bus by its guardiauns.

- Failure of a gate complex (guardians, gates).

- Errors in received data due to hardware failures.

The CAE tool N.mPc is used for functional testing of the fault
tolerant multiprocessor architecture by first developing descriptions of
all necessary hardware modules in N.mPc”s hardware description language
ISP~. The. mnext step is to describe an interconnection scheme for the
simulated hardware components of the multiprocessor architecture. Then
some test software for the programmable hardware modules (descriptions
of the 1Intel 8086 microprocessor) has to be developed. Finally
simulated hardware and test software for the microprocessors are
integrated under N.mPc to form an executable_ simulation that allows
functional testing of the fault tolerant multiprocessor architecture and
of the behaviour of the multiprocessor system in response to certain
failures.

The originally planned integration of the simulated multiprocessor
architecture and the full fault: tolerant operating system was

subsequently scoped down to a simulation involving the integration of

ii

the fully simulated multiprocessor hardware architectute and only a
subset of the operating system routines for the following reasons:

- The slow execution speed of N.mPc mitigates against conducting
fault tolerant tests in a reasonable time period. This is due
to the fact that the execution of each single operating system
instruction involves detailed and numerous register transfer
level 1instruction executions with N.wmPc. Since the task
execution cycles of the operating system are fairly lengthy to
begin with, the corresponding number of executions within
N.mPc will be extremely large, which leads to prohibitively
long simulation times.

- The full operating system code, written in C programming
language, proved to be lengthy and complex which makes the
debugging process of the code, when executed under N.mPc,
intractable.

- The N.mPc code corresponding to the VLSI structure of the 8086
chip details is not guaranteed to be absolutely correct. This
complicates the debugging process and makes it difficult to
determine whether the source of a given bug is in the VLSI
description or in the complex operating system code. Note
that this problem is inherent to any complex VLSI design such

as in the 8086 processor.

In summary a full integration of the fault tolerant hardware and
the operating system software proved to be beyond the time and resources

allocated for this study.

A number of conclusions could be drawn from the major findings in

this work:

iii

3
'

1)

2)

When comparing the performance of the fault tolerant
mul tiprocessor system described in this report to the
performance of a system without fault tolerant features, we
obéerve that the fault tolerant features add considerable
redundancy and overhead due to continuous message exchauges
and voting. Hence system throughput and processing power are
reduced proportionately. This reduction 1is the penalty
normally paid to gain fault tolerance éapabilities. As well,
the added mechanisms of synchronization and processor
coordination require a careful design and verification effort.
Although publications of previously developed fault tolerant
systems such as SIFT and FIMP give indication of simulation
work conducted in the early stages of development to test the
functional concepts of each system, no simulation can provide
comparisons between the performance of the system described
here and the systems reported in the open literature.

The simulation approach to hardware and operating system
software design proved to be useful in the course of this
work. Several times it has been necessary to add a new
feature to the guardian initialization mechanism, change the
interconnection of some hardwére modules or complete the
description of a bus interface which the simulation proved to
be dinaccurate. All these changes would have been extremeiy
time consuming and costly if they had to be done on a real
prototype hardware. The inherent flexibility of the
simulation approach allows us to evaluate several design

alternatives of a hardware system in a short time. This

iv

3

allows the designer, when he finally commits himself to
implementing a certain design, to rule out early conceived
options that proved to be incorrect or inefficient through the
simulation work.

Concerning the adequacy of N.mPc as a design tool for
multiprocessor s;stems several points can be made:

- In the course of this work the CAE tool N.mPc
clearly proved to be useful as a hardware design and
simulation tool. A system could be simulated and
tested in a relatively short period of time.

- Frequent design changes to the simulated
multiprocessor architecture showed the flexibility
of N.mPc as a hardware design and simulation tool.

- On the other hand, several limitations, mentioned
earlier in this summary, to N.mPc have been
_identified. They tend to severely reduce N.mPc”s
utility in the simulation and testing of fully
integrated muitiprocessor systems.

- A new version of N.mPc, called N.2, has been
introduced by the vendor and will be available on
the VAX/VMS environment. The new version N.2
incorporates a few features aiming towards making
the original N.mPc more powerful. The enhancements
made to N.mPc will offer only marginal improvements
in the limitations of the package with respect~ to
the simulation of fully integrated systems. It is
felt that substantial changes in the structure of

the package will be needed to make it applicable to

a true top-down design approach. In view of future
simulation work it 1is expected that the .next
generation of CAE tools will be endowed with top—
down design and simulation features to allow the
designer to follow a methodology in which he can
test the lower level modules of the operating system
down to register transfer level of details. Higher
level modules can then be simulated and tested with
the already tested lower levels replaced by macro
instructions or functional blocks. This will
enhance the simulation performance by several orders
of magnitude over what is currently attainable by a
tool 1like N.mPc. It will then make it possible in
practice to simulate a sophisticated system such as
the féult tolerant architecture reported here in its
full fledged configuration in a reasonable period of
time and using modest computing resources.
The fault tolerant architecture simulated in this work is
useful in wany pracfical applications requiring continuous
unattended operations. In addition to spacecraft on-board
processiné, these applications include computer communication
switching gear, nuclear plant monitorinéu and processing
applications, data collection and distribution in

environmental and resource management applications and in on-

.site processing of remote sensing data.

vi

TABLE OF CONTENTS
VOLUME 1

1. INTRODUCTION!00.0..00.o.l'.oco--.oc..o'-'ol.oi..-o.-o..oo....-..l
1.10 Simulation Objectives..--..-......-..---......-....-----.--1
1.2. Repott Sttucture.-.--.-....-..-.........-..............-...4

2. SIMULATION IMPLEMENTATION DESCRIPTION:ccsccscvcaccsescscscsosscss)
2.1. Simulation Environment.ceseceeesaceeccscscecscsssessosascnsssd
2.2. Fault Tolerant Multiprocessor System OverviewWw.oeeoeoococsoees/
2.3. Implementation of the Fault Tolerant Hardware Simulation..l12

2.3.1. The Central Control SysteMesceceecccsccssscsssosssesl?
2.3.1.1. Processor Moduleeseseeseessucooncscssossnassl?
2.3.1.2. Processor NetworKeoeeoesseoosuassossssoansossssl?

2.3.2. The Peripheral Interface SyStemMeeeeeecsrssssescsessll
2.3¢2.1. The Interface ProCesSOTerssssssscsnccsasssll
2.3+.2.2. The Peripheral ProcessOfesscsscscescsssceelb
2.3.2.3. The Peripheral NetworKeeseecosoosonossassslh
2¢3.2.4. The Gate COmpleXeseeseososscsscscccsssnsceell

2.3.3. The System Reset MechaniSmeeeeeeececoscscecssoseaacd?

2.4, Fault Tolerant Operating System Implementation.ceeceeceseseé?
2.5. System IntegratiONesccesessscscccsssncscscsccscssoscsacsnnsh?

3. FUNCTIONAL TESTING OF THE SIMULATED HARDWARFE SYSTEM:ccecssvosee52
3.1. Simulation LimitationSeeeeeccscesceessscessonssessssosscsedl
3.2. Test Plan and Approach.eescescosesscesssscsscsssasssssssesdb

3¢2¢le ObjectivVeSeeeeesceccsvososesascocssososccsnsassssasesdld

3.2¢2¢ TESEt PlaNeesscossscasacesssoscnssscscossssesssnssesdl

3.3, Test SOfLWATrCeceessccesccscscscssascsssssssasssassancsasonasodd

3.3.1. Functional DefinitioNecececcsscssesssssasssaansssnsedd

3.3.1.1. Test of the Hardware ModuleS.:eeoeseesssssesdd

3.3.1.2. Test of the Full Fault Tolerant Interface.57

3.3.2. Implementation Descriptioneeceecesscccccececcscsceeesd8

3.4 TeSt ReSUlLSecescccssvesssonscesssssanvsosssssasvacansssnssdd

3.4.1., The Hardware Module”s Test SimulatioNeeecsecscsssesced8
3.4.2. Results of the Test of the Full Fault Tolerant

Interfaceeseecseesscescsscscssasesesvsensssscsvnssnsnesaabd?

4. TFUNCTIONAL TESTING OF THE INTEGRATED OPERATING SYSTEM SOFTWARE

AND THE SIMULATED HARDWARE SYSTEM:ccooecccrcacsoscccscccsnesesh8
4.1. Limitations of N.mPc SimulationSeceecssceesvsccscssscasesssbdd
4,2, Test Plan and Approachesceccesscccescecocsccsscscssscccsacnsl/O
4.2.1s ObjeCtiVeSeessecosssecsocesnsosssscsvssssscsnasassaselO

442¢2e TeSt PlaNesescevesasscscesesenssvocanssacnasosssacell

4e3, Test SOftWAIEseesescossssssscesssscesscnscscossscsaonsnaseall
4.3.1. Functional Definitionecessesceccscececasssosavnsasaseal/l

4,3.2, Implementation Descriptione.eseecsesccscesccscsescaald

4.4, Test ReSULLSevesssssesasesvsescssssossassccsoasssssasnssssnnslhd

5. SUmARYANDCONCLUSIONS..Q..’QOQ.Q.......0...........‘........'79
6- RECOMMENDATIONS FOR FUTUREAWORK...-ooo.....-o-.-;...-.-..-.....86

REFERENCES

VOLUME 2
APPENDICES
APPENDIX A:' THE SIMULATED HARDWARE SYSTEM
A.1: N.mPc Listings of the Simulated Hardware'System
A.l.1: Description of the Hardware Modules

(ISP~ Source Files)

A.l.2: Topology Files

A.2: Test Software

A.Z.l: Hardware Module Test Simulation

(in "persim” directory)

A.2.2: Simul ation of Full Fault Tolerant Hardwaré
A.3: Installation Procedures

A.3.1: Hardware Module Test Simulation

A.3.2: Fault Tolerant Hardware Simulation
Adh: Test Runs

AJb.1: Hardware Module Test Simulation

Ab,2: Fault Tolerant Hardware Simulation

APPENDIX B:

B.l:

B.2:

B.3:
B.4:

B.5:

INTEGRATED OPERATING SYSTEM SOFTWARE AND SIMULATED
SYSTEM

Operating System Software Listings

Test Software Listing
(Hardware Dependent Communication Routines)

-Installation Procedure

Test Run

Topology File
(“"CPCPCOM.T")

HARDWARE

LIST OF FIGURES

-1: Elements of the N.mPC SySteMescesessesvevsssoscsssscsacrsscecneehd
—-2: Overview of the Fault Tolerant Hardware SySteéMecsececeessccecsss?d
-3: The Fault Tolerant Operating SysSteMeecseeesesessescscssessenssssll
4: The Central Control SySteMesseescssccecessacssosssssosonansocssll
5: Central Processor MOdUlE.eeeeessccasosssasocesoasaosoacosascesll
6: The Intel 8086 CPU Module.eeesoesesssensosssasensososscssssanasnasld
~7: The MemOry MOAULE:uvsoeessssaassssossssscasssossssnsssssoncasselh
8: The Timer Modulesceseevevsevsasassesascaoassassassonssnancssscnnssel?
9: Block Diagram of a Transmitterecsessscecesssssassssssscccnssssl?
-10: Block Diagram of a ReCeivereesseesecccssasscsassesssssccanseell
-11: Block Diagram of Central Processor InterconnectionNeeesesssscees2?2
2-12: The Transceiver ModUleseeeesssesscesssocsssassosscsscssssasensall
2-13: The Interface Processor Modul@eseseesecsssesscssscsesascsneanel]
2-14: Connection of Processors to the Redundant BuS.essevsececsceselB
2-15: The Transmitter Modul€seeescescecssssessossssscssncsscccecensell
2-16: The Receiver Modulesessssesssssssssrneensssesassasccscscsssesll
2-17: Block Diagram of a Gate CompleX.essesossccosssssscscsssncnsseel
2-18: Implementation of a Gate With Agreement..scesseesssssvscssseell
2-19: Parallel Implementation Of a Gat@eesecescccssccsscssscncssessll
2-20: State Diagram of a Peripheral Processor Guardianeeeeseeeseees35
2-21: Commands for Peripheral Processor GuardianSeeceeccscesseseesess3?
2-22: State Diagram of Interface Processor Guardianeesesceeeseseces38
2-23: Commands for Interface Processor GuardianS.sesesecescsccssces3?d
2=-24: Example of Guardian OperatioNeecscsccccccecsssessscssccsssccssll
2-25: The Gate ModulEeeceacecsnsosscscsssssssssesssosssssssevesssesh?
2-26: The Guardian Modul@secsecscsccssecsssscscssesscssasssesascnnsshl
.2=27: Initialization of the GuardianS..sscesceccsscescescsscssscsssshh
2-28: The Initialization Moduleseeeeesoccceccncscacsonasscososnecsashbd
2-29: N.mPc Simulation of the Fault Tolerant Hardware Architecture.49
2=30: Integration of the Fault Tolerant SySteéllessecsssscscssscessssd0

3-1: Partial Simulations of the Fault Tolerant Multiprocessor

Architecturel.l......I..-.Ill.0.0."O..0..'..".."....'0.....53
Topology of the Test Simulation for the Hardware ModuleS...s..56

3-2:
3-3: Block Diagram of the Test Simulation for the Hardware Modules.59
3-4: Topology of the Test Simulation for the Full Fault Tolerant

HardWAT e eseesecseesvsnssssoossososaosossssasssssscnsssssnssssenshl
3-5: Block Diagram of the Test Simulation for the Full Fault

Tolerant Interfac@.eescecsscsscscscesssscssacsccssssscscsascssssechlh
3-6: Initial Configuration of Fault Tolerant Hardware..c.eeoeeesessebbd
3-7: Reconfigured Fault Tolerant Hardware after Detecting a Failure
of Peripheral Interface Bus Number lecesessccccscecocscocsscaeb?

4=1: Block Diagram of the Fault Tolerant Operating System/Hardware
Integration SimulatioNeeccessececcssssescosscnscsessccccscessoacscscel

4-2: Message Passing Loop Formed by Four Central ProcessorSessssese/b

4-3: Topology of the Fault Tolerant Operating System/Hardware
Integration SimulatioNeeeeacssecasssscosscsaccsscscccsascasasesl//

R

1. INTRODUCTION

Thg simulation activity described in this report is part of an
overall study which includes the design and simulation of a fault
tolerant architecture for multimicroprocessors. The main focus of the
overall study, however, has been on the development and utilization of
computer aided engineering (CAE) design tools. One of these CAE design
tools, known as N.mPc, is currently running on the VAX/VMS 11/780 system
located in the Analysis and Simulation laboratory of the Communications
Research Centre, Department of Communications. The Ne.mPc package 1is
used as a simulation environment.for the work reported here. A user
manual [24] and a system manual [16] for N.mPc are currently available

and should be reviewed by the reader as background material for the

~simulation work described in this report.

A conceptual design for the hardware architecture was completed and
reported in [14]. As well, a fault tolerant operating system was
developed [7] and simulated separately using the C programming language
under the VAX/VMS environment. The simulation conducted here integrates
certain parts of the operating system with the hardware architecture
using the N.mPc simulation package. While a brief review of both the
hardware architecture and the operating system is provided in this
report, it is essential for the reader to consult references [7] and
[14] in order to gain full appreciation of the material presented in the
following sections.

This study was conducted for the Communications Research Centre

under a DSS contract.

l.1. Simulation Objectives

The main objectives of the simulation conducted here are:

1. To test the fault tolerant features of the hardware and to
examine in detail their behaviour when faults or errors take
place.

2. To provide a test bed which will make it possible to vary the
structure of the fault detection and recovery components and
to compare the effectiveness and performance of Qarious
alternatives.

3. To test the interfaces between the low level layers of the
oﬁerating system and the hardware and verify the completeness
of the description of these interfaces.

While the ultimate objective of the simulation 1s to 1integrate
fully the hardware architecture and the fault tolerant operating system,
the work reported here includes a partially integrated system since only
certain modules of the operating system have been integrated &ith_ the
fully simulated hardware. Limitations of time and resources plus a
number of technical reasons (described in section 4.1 and in section 35)
have constrained the current effort towards full integration.

The simulation approach to hardware design was chosen because it
offers considerable benefits in the early stages of the désign process.
Traditionally, microcomputer based products are designed according to
the following steps:

1. The necessary hardware components are built. This wusually
includes the microprocessor itself as well as other peripheral
components.

24 Software 1s written for the target machine.

3. Software and hardware components are integrated and tested.
Very frequently, the software is produced.on a host mwmachine

using a cross development package, if available.

"~ The development process usually involves many time consuming and
costly iterations. A CAE tool such as N.mPc improves the situation by
pfoviding a-simulation environment which is suitable for testing many
design alternatives in a short period of time. The implications of

using N.wPc are as follows:

1. It is no longer necessary to build the hardware components at
the beginning of the design work. Instead, N.mPc provides
what amounts to a micro—programmable, register transfer level
machine which can be programmed to emulate the target hardware
completely. In other words; a designer working on a VAX host,
for example, could create a VAX executable program which, when
run, would emulate the target hardware.

2. N.mPec provides a totally programmable cross development
package for the software to be written in assembly language.
The work documented in this report also uses an enhanced
software development environmment permitting to write software
in the C high level language.

3. The rationale for wusing a tool such ‘as N.mPec is that
programmability implies flexibility. Given that a base
exists, 1i.e. most of the hardware emulation is available as
well as the cross development package, a.designer can alter
the design parameters with ease and test various alternatives
without committing fo any hardware cholce. The advantages and
disadvantages of the above mentioned design methodology are

also discussed in [16]}.

l

1l.2. Report Structure

Section 2 of this report describes briefly the conceptual design of
the -fault tolerant multiprocessor architecture and provides an overview
of the simulation of the hardware using N.mPc. An overview of the
operating system 1is also included in section 2. The testing of the
simulated fault tolerant hardware architecture is documented in section
3. Section 4 reports the testing of the hardware depeundent routines of
the fault tolerant operating system. It is shown that these routines
constitute an interface between the fault tolerant operating system and
the hardware. Conclusions as well as a summary of achievements are
found in section 5. Section 6 contains recommendations for future
simulation work.

All appendices are contained in volume 2 of this report.

2. SIMULATION IMPLEMENTATION DESCRIPTION

2.1. Simulation Environment

'The N.mPc package, running on a VAX 11/780 (located at CRC) and the
VMS operating system, provided the simulation environment for the work
presented here. A brief description of N.mPc ié presented in the
following.

N.mPc consists of six components used to describe the hardware
behaviour of a target system and to execute the simulation of that
system. Figure 2-1 {llustrates the components of N.mPc and their
interaction.

The Meta—micro assembler and the linking loader are used to
generate the software which is to be executed by the simulated. hardware
compénents if these are programmable. Both are driven by a description
of the instruction set of a target machine and can be made to generate
code for either vertically or horizontally programmed machines [16].
The 1linking loader produces code which is executed by a simulated

processor or by an actual machine. The ISP” compiler is used to produce

- simulation modules for 1individual processors and other hardware

components of a system. The input language of the compiler is the ISP~

language which allqws the specification of states for the implementation
of processor registers and flags, memories for the simulation of memory,
and ports which allow input to and output from simulated hardware.

The N.mPc ecologlst and a simulated memory processor link the ISP~
processor modules with the linking loader outputé in order to form
complete simulations. A run—-time package 1Is used to execute a

simulation and to allow extensive user interaction with the simulation. -

HARDWARE SYSTEM MODELING | SYSTEM SIMULATION

SIMULATION

e >
ECOLOGIST RUNTIME
COMPILER ' ENVIRONMENT

— et et G ey St St

Tt st (ot Sttt

- SIMULATED
METAMICRO T ::::::i:> MEMORY
~ PROCESSOR

SOFTWARE DEVELOPMENT

Figure 2-1: Elements of the N.mPc System

Other reports directly related to this work describe the conceptual

design of a fault tolerant multiprocessor operating system [7] and of a

fault tolerant architecture for multiprocessor systems [14]. Fur ther

infbrmation on N.mPc and work in the area done at Intellitech is given

by references [8, 16, 20, 23, 24] as well as the original ‘NemPc

documentation listed as references [1-6, 9-13, 15, 18, 21, 22].

NemPc is used to simulate the fault tolerant multiprocessor
architecture by first producing descriptions of all necessary hardware
modules in Ne.mPc”s hardware description language ISP”. The next step is
to describe an interconnection scheme for the simulated hardware
components of the multiprocessor architecture.

Following the hardware description, some test software for the
programmable hardware modules (descriptions of the Intel 8086
microprocessor) has to be developed. Simulated hardware and test
software for the microprocessors are integrated under N.mPc to form an
executable simulation that allows testing of the fault tolerant
multiprocessor architecture. The behaviour of the multiprocessor system

in response to certain failures can also be simulated.

2.2. Fault Tolerant Multiprocessor System Overview

This section presents an -overview of a fault tolerant

multi-microprocessor system for spacecraft on-board processing

applications. The fault tolerant multiprocessor architecture can also

be used in general applications requiring a high degree of reliability

over a specific processor life cycle.

The approach chosen _for the design of the fault tolerant
multiprocessor system is novel in the sense that fault tolerant features
and supﬁorting mechanisms are embedded in both the hardware architecture
and the oberating system software. The hardware has multiple redundant
components that are controlled by fault detection mechﬁnisms in order to
prevent the propagation of errors.from the faulty component to the
remainder of the system. The operating system software contains all the
intelligence needed to detect errors, identify their sources, take the
necessary action to remove faulty units, reallocate the processing tasks
and reconfigure the system to adapt to the new operational state.

Figure 2-2 gives an overview of the fault tolerant multiprocessor
architectufe which is aimed primarily for spacecraft on-board processing
applications. The central processors (CPs) share the computational load
of the satellife and are the highest onboard processing authority. They
are built as a fault tolerant structure and employ redundancy to ensure
reliability. The peripheral processors usually operafe alone and can be
considered as slave processors controlled by the central processors.
Another set of processors, the interface processors (IPs), provides an
interféce betweeﬁ the loosely coupled central processors and the tightly
coupled peripheral network. The “"gate complexes” come in groups of four
since four fedundant buses are used in the interface between central and_
peripheral processors. They are redundant components controlled by
fault detection mechanisms (“guardians") in order to isolate the sources
of error and prevent the proliferation of these errors from the faulty
component to the remainder of the system.

Figure 2-3 shows the different layers of the fault tolerant

operating systems At the lowest level is the hardware 1itself. The

cep ce cp cp
R y Q‘ Y
— —
'\
Wi o i
A 4
b 4
!
4 4 y y 4 y l 1 l & r 1 v 1 3
Ip It e ¢ P ¢ P ¢
. L L L
y y y y
4GCg 4GCg 4GCg 4GCs
: Y v
4 1 Y ¥
4 T v h 4 1 y
y 4 v
A
4GC
ac| lac| |ac| |ac| GEs
X X & 3
4GCg
’ PP
’ PP
Figure 2-2: Overview of the Fault Tolerant Hardware System

'

Application Tasks
Global Executive

Processor Manager

Fault
Tolerant Layer

Message
Passing Kernel

Hardware

Figure 2-3: The Fault Tolerant Operating System

layer above that, the message passing kernel, is a simple message

passing system without any fault tolerant features but providing the

- basic operating system functions. The layer above the kernel implements

the virtual machine visible to the application tasks and fault tolerant

. facilities such as error detection, message traffic control, voting,

buffer manaéement, task scheduling and reconfiguration. The next higher
layer, the processor manager, does not incorporate fault tolerance
mechanisms but directs and coordinates most of the fault handling
mechanisms of the layer below itself. Sitting on top of the processor

manager layer are the global fault tolerant facilities (the global

executive), which are- responsible for synchronization and

reconfiguration. The global executive handles the assignment of tasks
to processors, reconfiguration of the system around failed parts,
isolation of faulty parts, system updates, etc. To eunsure that the
global executive, the highest on-board authority of the satellité
processing system, operates without faults, it 1is implemented in
multiplé copies and is executed on multiple processors.

Examples of the hardwgre faults which can be tolerated (ié.

recovered from) by the full fault tolerant multiprocessor system

include:
- _ Malfunction of a central processor.
- Malfunction of an interface processor.
- Failure of one of the redundant buses between interface aﬁd

peripheral processors.

- A failing peripheral processor (device) is simply cut off from
the redundant Bus by its guardians.

- Failure of a gate complex (guardiams, gates).

- Errors in received data due to hardware failures.

11

R - | R SN -

2.3, Implementation of the Fault Tolerant Hardware Simulation

This section describes the implementation of each hardware module
neede& for the simulation of the fault tolerant mul tiprocessor
arghitecture. The interconnection of all hardware modules, resulting in
a full fledged fault tolerant multiprocessor hardware architecture, is

then showne.

2.3.1. The Central Control System

2.3.1.1. Processor Module

The centralAcontrol system consists of a number of loosely coupled;
fully interconnected processor modules as shown in Figure 2-4. Each
processor module consists of an 8086 CPU, a memory, a timer, 3 ports for
communication Between central processors and 5 ports for communication
to and from all interface précessors. Figure 2-5 shows a central
processor module. The 8086 CPU énd the memory(l6k, RAM) have been
discussed in detail in [20]; Figures 2-6 and 2-7 show their ports and
interconnection within.the system. The timer shown in Figure 2-8 is
able, when adressed, to stop the CPU for a duragion of time that can be

specified.

2+.3.1.2. Processor Network

In this section the ways in which the various modules of the fault
tolerant system communicate will be presented. Communication is
effected through a number of communication ports. Depending on theilr
use communication ports may differ but they all consist of the same
basic unité, namely a transmitter and a receiver.

Communication ports intended to connect central processor modules

to other central processor modules consist of both a tramsmitter and a

12

A

ce

ce ce

ce

Figure 2-4:

The Central Control System

NB:

o *{ 1/0 |= e
«* ; 'T_———-——
(E0) f- TO OTHER
-] 170 & " CENTRAL PROCESSORS
v | (E1)
- [170 _ Y
- - (Ez) :: -
8086 - .
CPU - = .
T 1
=) I/0 ———+ INTERFACE
<1 (E3). ———%+ PROCESSORS
" MEMORY .- /0 |.-
- (E4) |-
— FROM
- /0 = INTERFACE
| (E5) I~ PROCESSORS
. e 1/0 |-
TIMER 0 c6) |-
- I/O o
- (E7) |~
o

The I/0 addresses used to access an 10 port or device are
indicated in brackets

Figure 2-5: Central Processor Module

MAX86CPU.ISP

e e e - .
|
{
M rd(n) | rd_ [
|
Ale(n) l ale
> -
|
L den(n) ‘J den _
{
Dt r(n) _: dt r
: i
L bhe(n) | bhe _
;l Ban.
lv
|
l 4
M hnib(n) L m_hnible ,
l
|
l
Mbus(n) ‘: mbus /16
|
|
|
|
{
!
|
|
|
1
|
l
L
NB:

The number n identifies a certain 8086 CPU.

Figure 2-6:

The Intel 8086 CPU Module

int Int(n)
- ™=
|
inta Inta(n)
- »
i
NMI I Nmi(n)
< (et
'
reset I Reset(n)
~ je
) |
P test L‘ Test(n)
- I
|
I
. ready , . Ready(n)
% — TR
- !
|
P lock ; . Lock(n)
|
3 : !
7 status .. St(n)
i H [l
i
iorc ! Iorc(n)
I
iowc { Iowc(n)
-l - - % - T
{
ioadsl L‘ Ioadsl(n)
=
|
ioads7 L‘ Ioads7(n)
|
I
i
i
— e

r - —-—= —-—"—7 - — - = 7 = = - 1
[
]
!
rd [M rd(n)
- li
. 4 !
m_hnible , ale Ale(n)
7> “ t
ready ! Ready(n)
g k
86MEM. ISP [
bhe _ { L_bhe(n)
16
mbus den _ l L _den(n)
i - {
l ‘
dt r - Dt_r(n)
“ ja
3
, status St(n)
-

—

- —f -

|
l
!
|
|
l
|
I
|
|
|
l
!
!
!
|
L

The number (n) depends on the processor to which

the memory is connected

Figure 2-7: The Memory Module

‘

NB:

- TIMER.ISP

to which the timer is connected

Figure 2-8:

— - T 71
|
|
|
16 |
B -/ mbus {<Mbus(n)
3 |
status I St(n)
-t ot
|
P ale L‘Ale(n)
'. -
ready. | Ready(n)
<
l
|
L
i
4

The number n depends on the processor

The Timer Module

. , .

receiver. Although united in one module(trx,iép) transmitter and
receiver operate independeantly of each other. Each central processor
module has a dedicated port connected to every other processor module so
that a fully interconnected'system is formed.

In addition the central.processor modules have a single transmitter
and a number of receivers that handle the communication with the
interface processors. This special interface is necessary because of
the synchronous nature of the interface processors.

The block diagram of a transmitter is shown in Figure 2-9. The
transmitter consists of a FIFO queue.and a serializer that converts the
parallel data into serial data ready for tr;nsmission. The serializer
can be thought of as the transmitter part of a UART. "The FIFO queue
serves to offload the processor from continuously checking the
transmitter and to givé the transmitter the capability of autonomous
operation for a certain length of time. The size of the FIFO is chosen
so that the transmitter can operate without any attention from the
processor for the duration of the time élice of a task. In other words
the transmitter requires the attention of the processor only during a
context switch. This greatly simplifies the design and implementation
of the operating system.

For example a processor module that wishés to send a message to
another module can write the message into the transmitter FIFO and then
proceed with its other tasks while the transmitter is gending the
message. The processor sees the transmitter as a pair of I/0 ports.
One is a data port and the other is a command port. Data written into
a data port are placed in the FIFO and transmitted. The command port

is addressed by using the normal data port I/0 addresses (EO-E7)

18

(to CPU) ¢—}—p

FIFO

S DATA

|| XMITER

__>COMMNw

(Status,
Reset)

(to
» receiver)

Figure 2-9: Block Diagram of a Transmitter

increased by eight (E8-EF). The command port enables the processor to
control the transmitter and to check its internmal status. The main
interest here is in being able to reset the transmitter and to check if
the queue is full.

The structure of the receiver, shown in Figure 2-10 is
complementary to that of the transmitter. The receiver consists of a
deserializer and a FIFO. The deserializer is actuaily the receiver part
of the UART. When ; byte of data has been collected it is placed in the
FIFO for pickup by the processor. Like the transmitter, the receiver

appears to the processor as a pair of ports. One port is a data port

and the other a command port. A read from the data port will return the

first byte in the FIFO. If the FIFO is empty the result is wundefined.
The command port enables the processor to control the receiver and check
its status. Presently we need to be able to reset the receiver and
check if tﬁe queue is empty or if it has overflowed.

In the N.wmPc simulation the serializer and deserializer have Dbeen
omitted. Instead data is sent one byte at a time. Also a handshaking
profocol has been included to ensure reliable communication through

interconnections shown in Figure 2-11. This simplifies the simulation

without affecting its validity. Appropriate delays have been

incorporated in the simulation of the transmitter. They simulate “the

delays caused by serial transmission of data. For communication between

central processors and interface processors, as well as for inter

central processor communication, receiver and transmitter have been
united in one module called "transceiver" (trx.isp). Figure 2-12 shows
the transceiver which can be used for two way communications or also

just as a receiver or transmitter. The ISP~ description files for the

20

] .

(from
trans~
mitter)

FIFO

—1 3! RCVER > , »| DATA

COMMAND¢

(Status,
Reset)

—» (to CPU)

Figure 2-10: Block Diagram of a Receiver

cpP1 cP2

Databusl2 ‘

TX MRX
Reql2 *
to CPUL 4—Pf 1px.15p Req21 -1rx.15P [€—P to cPU2
. < 8 Databus2l
RX{—+ TX
Figure 2-11: Block Diagram of Central Processor Interconnection

P

| |
E(k)line fifoid 5 8 ombusl | Datb(mn)
- 1 - - 7 T
| l
mbus(m) _, imbus }6 L P ? ombus2 . Datb(nm)
At 7 - tf—/ T
|) TRX. ISP |
St(m) status
o ! rec I Req (nm)
1 -t et
. h [
Ale(m) iale o |
! |
Ready(m) iready o - trs r: Req (nm)
: |
|
!

N 2

NB: (k), (m) and (n) are numbers which depend on what other
modules are connected to a transceiver

Figure 2-12: The Transceiver Module

o

transceiver (transmitter—-receiver) and the timer are given in Appendix

A.l.

2.3.2. The Peripheral Interface System

2.3.2.1. The Interface Processor '

fn [14] it was determined that the peripheral interface system must
provide an interconnection between the 1ooseiy coupled central
processors and the tightly coupled redundant bus (also called
"Peripheral Interface Bus"”, PIB) without introducing a single point of
failure. To accomplish this a number of interface processor modules and
fault tolerant hardware interfaces (“gate complexes”) are used. The
overview of the multiprocessor architecture in Figure 2-2 depicts the
situation.

The interface processor modules are no different from ﬁhe central

processor modules in so far as they both contain the same 8086 CPU,

‘memory and timer. However, the interface processor modules do have a

different set of communication ports. Figure 2-13 éhows the components
that are part of an interface proceséor module.

The communication ports on the interface processors that connect
them to the processor modules of the central system are identical to the
ports that interconnect the processor modules to each other. However
the ports that connect the central processor modu;es to the interface
processors and the ports that connect the interface processors and the
peripheral processors to the redundant bus are different. These por;s
consist of a single transmitter and a number of receivers. In Dboth
cases the transmitter broadcasts to all concerned units (either
interface processors or buses). However there is a dedicated receiver

for each distinct unit that is connected.

24

8086
CPU

I/0
(E0)

1/0
(ED)

1/0
(E2)

MEMORY

I/0
(E3)

170

(E4)

TIMER
(DO)

I/0
(ES)

1/0
(E6)

1/0
(E7)

1/0

(F0)

-

NB: The I/0 addresses used to access an L/0 poft or
device are indicated in brackets

Figure 2- 13 The Interface Processor Module

TO .
CENTRAL
PROCESSORS

FROM :
PERIPHERAL
INTERFACE BUS

TO
PERIPHERAL
INTERFACE BUS

In the case of the central processor modules the single transmitter
ensures proper communication between the loosely coupled central system
and the tightly coupled interface processors. In other words it ensures
that all the interface processors will receive ﬁheir copies of the
message simul taneously. This is essential for the interface processors
to remain in perfect synchronization. Even if the central processors
were synchronous the time differemce between sending the same message to
different 1interface processors would be enough to throw them out of
synchronization. In the case of the interfgce processors the processors
need not know to which of the redundant buses they are connected. So
they simply tramsmit through a single transmitter and the gate complexes

ensure that only the proper bus is driven.

2.3.2.2. The Peripheral Processor

The peripheral processor module is virtually didentical to the
interface processor module shown in Figufe 2-13. The only difference
between the two is that a peripheral processof is not connected to the
central processors and therefore does not need the four I1/0 ports used

for this purpose in the interface processors.

2.3.2.3. The Peripheral Network

An 1interface processor has one communication port for each
processor 1in the central control system. No special care need to be
taken for these ports sincé'the central control system is asynchronous.
Actually these ports are identical to the ports the central processor
modules use to communicate with each other. Aside from these ports the
interface processor also has a single transmitter and four receivers.
The function of the tramsmitter is to drive one of peripheral interface

buses whereas the four receivers “listen” to the four peripheral

26

interface buses. Figure 2-14 shows the connection of interface

proéeSSOrs to the peripheral interface bus.

Actuaily any interface processor only drives one of the buses that
comprise the peripheral (redundant) bus. However this is taken care of
by the gate complexes and is of no concern to the interface processor.
An interface processor also has a number of receivers. The function of
these receivers is to pick up bit streams from the peripheral bus. Each
receiver picks up data bits from only one of the buses. Thus by
comparing ‘the bit stream received from different receivers, it will be
possible for the interface processor to detect bus failures.

Two of the interface processor elements, the transmitter and the
receivers for the communication via redundant bus, have not previously
been presented in detail. The ports and interconnection of transmitter
("gtintrfc.isp") and receiver ("bsfifo.isp”) are given in Figures 2-15
and 2-16.

Both Teceiver and transmitter use a simple handshake protocol to
receive daté from or send data through the redundant bus. This protocol
is different from the one used for communication between central

Processorse. The receiver automatically puts data received from the

redundant bus in a queue. Before the 8086 CPU reads from the queue it

can (and should) test whether the queue 1is empty' or muot. The

_ transmitter takes data sent to it by a CPU and automatically puts it on

the redundant bus, where it is received by any "listening” receiver.

2.3.2.4, The Gate Complex

A gate along with a number of guardians form a gate complex. The
function of a gate complex is to allow a processor to access a bus in a

controlled and fault tolerant fashion. The block diagram of a gate

27

‘

Interface Pro

or

Peripheral Pr

Cessor

ocessor

A

A

A

'

GC

GC

GC: Gate Complex

Figure 2-14:

Connection of Processors to the Redundant Bus

i . B
A B

———— - = — — —

are connected to a transmitter.

Figure 2-15: The Transmitter Module

o
| [
[[
! l
- Mbus(k) imbus 16 |
ot /. ‘
- 7 \agt
71 ? ombus [Gtbus (k)
st(k) ! 3 D r
© . status 4 | grivtrec.1sp |
o
Ale(k) iale N - l
- > :
| oale | Dstb
Ready (k) iready - I
-’ |
i l
i
!
N .
Lo A e
NB: (k) is a number which depends on what other modules

. EERL e B e - S

- - -——-- - 7 7 |
i | |
l | 1
I 1 ‘
Mbus(n) mbus %6 -~ l
1 7 - .
| 7, ombus . Rbus(m)
St(n) | status % N T v
i ' BSFIFO.ISP ‘
I
Ale(n) . iale l
K . |
Ready(n) | iready 1
> > oale . Dstb
- le
E(k)line . fifoid 3 l
> 7
i I
| l
I l
L e 4

NB: (k), (n) and (m) are numbers which depend on what
other modules are connected to a receiver.

Figure 2~16: The Receiver Module

complex 1s shown in Figure 2-17. The complex consists of a gate and
three guardians. Each processor connected to the peripheral network is
connected to each of the buses that form the redundant bus via a
distinct gate complex. It is essential that no two gate complexes have
any hardware in common so that hardwgre failures are as 1local as
possible. Thus it is not possible to utilize a quad buffer chip to
implement four gates. Each gate must be physically separate from any
other gate.

A gate allows a processor to access the bus only if it is enabled
by all its three guardiams. Each guardian enables its gate only after
having been switched on duriné the initialization or after receiving
appropriate commands from the redundant buses.

A gaté is a simple tri-state buffer with multiple enables. Since
the peripheral buses are serial the gate only needs to control one line.

A gate can be implemented simply as a combination of two standard TTL

'gates as shown in Figure 2-18.

For simulation purposes the peripherél buses were implemented as
byte wide parallel buses. This was done to avoid the unnecessary
overhead of simulating serializers. Instead the gate has become a bfte’
wide buffer that operates much like the single bit version described
above. The block diagram of this implementation is given in Figure 2-
19. The other important components of a gate complex are the
"guardians”.

Basically a guardian is a simple finite state machine. The state
diagram of a guardian used in the gate complexes of peripheral
processors is given in Figure 2-20. This FSM has a number of inputs and
a single output. Normally a guardian is idle with its output set so as

to disable the gate. At this state the peripheral processor guardian.

31

\y A : L
)

BUFFER

Figure 2-17: Block Diagram of a Gate Complex

FROM

BUFFER //

Figure 2-18:

GUARDIANS

Implementation of a Gate With Agreement

FROM

\J GUARDIANS

BUFFERS

Figure 2-19: Parallel Implementation of a Gate

‘

OFF

TIMER

OFF

Figure 2-20:

SEL

OFF

State Diagram of a Peripheral Processor Guardian

“monitors the bus until it recognizes a command on it. The 1list of

commands a peripheral processor guardian can.recognize is given in
Figure 2-21. Leaving the special case of a change in the triad of
active buses, a peripheral processor guardian will remain idle until it
recognizes either a Select or an Enable commaﬁd.‘ When a Select command
is detected the guardian sets an internal flag and awaits aﬁ Enable
command. As soon as the Enable command is received the guardian sets
its output so as to enable the gate and leaves it enabled for a fixed
period of time. At the end of this time period the guardian disables
the gate and returns to its idle state. If an. Enable command is
detected but the guardian has not received:a Select command then the
ghardian does not enable the gate. However it stili waits for the same
fixed period of time. While waiting the peripheral processor guardian
ignores the bus and any information on it. " fhus it is not possible for
SOmev data on the bus to be interpreted as commands and cause erroneous
operation of the system.

The opération described above only refers to a guardian attached to
a peripheral processor or a peripheral device. Guardians attached to
the interface processors have a slightly different state diagram, as
shown in Figure 2-22. Figure 2-23 shows that the commands they
understand are also slightly different. Such a guardian will still
ignore the bus for a fixed period of time aftef it detects. an Enable
command. However once enabled it. remains enabled until explicitly being
disabled. Thus an interface processor that has been given control of a
bus maintains this control except for the short periods of time that it

grants the bus to a peripheral for some data transfer.

36

Switch Bus
S S R — —— A A
l ol ol o | x | x| x | x | x |
SN RV R R R B .
] 0old bus # | new bus #
[B e
I guardian # |
[- [- |- |- |- |- |- |- I
Select
B] e DR R
|l o | o | v | x | x| x | x| x |
|- [~ [~ [- = I I | I
| guardian # ' |
[~ [- [- I [- |- |- |- I
Temporary Enable
S N R R R R B
% 0 I 1 I 1 I x | x| x | X I X |

Figure 2-21: Commands for Péripheral Processor Guardians

37

-~ .l o DR S

f

ON

OFF

‘" TURN z ON

TIMER oisBL

OFF

‘Figure 2-22:

TIMER DiSBL

OFF

State Diagram of Interface Processor Guardian

Switch Bus ' ‘
[O Y Y VU p p—
| o] o | ol x | x | x | x | x |
| mmmml o e | o e e | 2 e |
| old bus # I new bus #
[~ [- |- |- [~ [- [- [- |
| guardian # [
S R S ity VSN PR R
Turn ON
| e e e | = e | e | e | e
i o | ol 1 1 x| x | x | x 1| x|
| 2| e | e | e = | e | e |
| guardian # |
[~ [~ [~ | |- |- |- |- |
Turn OFF
S RV OV OSSN U S

o | 1 { 0 |l x | x| x| x | x

| |

guardian #
- | |- |- |- |- |- |-

Temporary Disable

| |- | I | | |
[o | » | v 1 x | x | x | x | x |
|- [- |- I | | I

Figure 2-23: Commands for Interface Processor Guardians

39

g

Figure 2-24 shows the outputs of the two types of guardians as a
function of time and of the commands received. We can observe how the
guardian of a peripheral processor is normally OFF whereas the guardian
of an interface processor is normally ON. - When the guardian of the
peripheral processor is selected its output does not change. However,
when the Enable command is sent its output is acfivated and remains so
fbr a fixed period of time. During this time all other guardians in the
system disable thei; outputs.

The two types of guardians as described above have been implemented
and. tested in N.mPc. A detailed description of ports and
interconnection within the system of gate and guardian modules is given
by Figures 2-25 and 2-26. Note that a guardian attached to a peripheral
always starts in the OFF state whereas a guardian attached to an
interfaée processor may start either in the»OFF or in the ON state. 1In
actual hardware this will be controlled by a jumper or a switch. In the

simulation some guardians always start in the ON state. Namely the

guardians that start in the ON state are selected so that each of the

three initially active interface processors will have access to one of
the initialiy active buses. This is essential for the system to be
operational after initialization. It is now necessary to discuss the
guardian ini;ialization process in more detail. The initialization
process provides all guardians with an identification number and informs
every interface processor guardian whether it should initially be turned
on or off. In actual hardware one would simply use a dipswitch per
guardiah in order to distribute an ID and initialization information to
each guardién. As there would be independent switchesl for each

guardian no single point of failure will be introduced. However, in the

40

IPGl

IPG2

PPG

Bus

Data 29.9.04 20.9.620:6.0:0.0.0.0.6.9.0.0.0.0.0:¢ 19.9:04 299,04
Select Enable Data Disable Enable
PPG PPG from PP IPGl IPG2

PPG: Peripheral Processor Guardian

IPG: Interface Processor Guardian

Figure 2-24: Example of Guardian Operation

41

:

(- |
| |
n | |
Gtbus(n) i input 8 I
l I
b | 7 Al) 8 l
1 GATE. ISP) output , . Rbus(k)
Enbl(m) ! enable 0 ! I
~ - |
|
Enbl(mt+l) ! enable 1 I
o > |
! ' |
Enbl(mt2) ! enable 2 o
- > [
‘ |
i .
' |
L _l

NB: (k), (n) and (m) are numbers which depend on what
other modules are connected to .a gate.

Figure 2-25: The Gate Module

N
|
l
|
I
!
|

|
!
l
Rbusl _f bus01 ? _ numbus Errbus
gt 7 - -~ -
|
Rbus2 | . bus02 8 INITIPG.ISP
T or
! PPGUARD.
Rbus3 bus03 § GUARD. ISP enin Ein(n)
>] 7 Lol -} - ‘ﬁ‘
|)
Rbusé bus04 8
. 7> .
| - .
Enbl(n) " enable enout) Ein(n+l)
Lt - B)]<
, |
Dstb | datastb |
| |
Srdy allrdy -~ agree | Agr(n)
- e
| |
| I
l |
R

NB: The number (n) indentifies a.guardian,

Figure 2-26: The Guardian Module

K L e -

Siﬁulation' context the dipswitches were replaced by an initialization
mechanism that was easier.to build and handle than sixty dipswitch
nodules. ?iguré 2-27 shows the initialization circuitfy of the
guardians. An initialization module distributes the initialization
information using a special bus (“"numbus™). Through another 1line
("enin", "enout") a token is passed from guardian to guardian as each

one receives 1its initialization word. A "reset" signal allows to

reinitiate the guardian initialization whenever necessary. The most

" significant bit of the initialization word is recognized by the

interface processor guardians (only) and tells them whether they should
initially be switched on or off. The rest-of the initialization word is
used to distribute ascending identification numbers to each guardian.
Multiples of four are not used as guardian identifiers. This wmeasure
makes it po#sible to address all three‘guardiahsi(plus the qonexisting
one with an ID that is a multiple of four) associated with a certain
gate with one single command. In the guardians this feature is
implementéd by haVing them recognize commands based on an ID whose two

least significant bits are truncated. Figure 2-28 shows the

initialization module in detail. It contains the IP-guardian:

initialization information and may therefofe be different if different
hardware is simulated. The initialization also distributes
identifications to all transmitters and receivers via ports that are
initiélized to a certain value using the ISP~ initialization mechanism.
The transmitter/receiver modules.get these valués by connecting a . line

to the appropriate initialization module port.

b4

‘

(to Initialization Module)

4

2.

A

/16
y
/

i

numbus

~

Guardian 1

Y

numbus

Guardian 2

/

nin enout|

enin enout

numbus

Guardian 3

enin enout

.

y

y

{Guardian n-2

numbus

enin enout

Figure 2-27:

numbus

Guardian n-1

enin enout

y

Initialization of the Guardians

numbus

Guardian n

enin enout]

’ .

-—— — =

NB:

.
H

8 idl(e0H) | EOline
7
8 -
, id2 (elH) ~t Elline
7 bl
|
8 id3(e2n) | E2line
7 !
!
8 idi(eswy ! E3line
7 bl }
A
FTIDGEN. ISP ? id5(e4H) _j E4line
i >
|
8 1d6(esH) ! ES5line _
7 el
8 . i .
, id7(e6H) . E6line
7 Lt
' |
? id8(e7H) ! E7line
7
O
N
reset | Reset
- -
.
allxdy - Srdy
L |
| .
enable EinOl (to first guardian)
L
%6 idguard ., Errbus
] Al |
|
|
|
— - - - _ 1

The numbers in brackets are the initial values assigned to a

port by an N.mPc mechanism. This corresponds to a "hardwired"

initialization

Figure 2-28: The Initialization Module

2.3.3. The System Reset Mechanism

The system reset mechanism description given in [14] was formulated
with a view towards éystem implementation in real hardware. Thus
"powering down" of microprocessors and running of self test routinés
were not considered in the context of the simulation work presented in
this report. However, the hardware simulation has the capability of
reactivating the guardian initiaiization mechanism. This capability is

described in Section 2.3.2.3.

2.4, Fauit Tolerant Operating System Implementation
| Thé fault tolerant operating system has been developed keeping in
mind that .it should be easy to port it from its host computer based
development " environment (described in [7]) to some specific target
hardware. Therefore the only hardware dependent communication routines
are four utility routines called by the message passing kernel for doing
inter processor communications.

The communications —routines necessary to run the fault tolerant
operating system on Intel 8086 based hardware (simulated or real) were

written and tested on simulated hardware and are described in section 4.

2.5. System Integration

This section explains how to integrate the fault tolerant operating
system with the simulation of the fault tolerant hardware architecture in
order to form a fault tolerant multi-microprocessor system.

The first step is to design descriptions of all the necessary
hardware components 1In N.mPc”s hardware description language ISP”.
These components are then interconnected according to the design of the

fault tolerant multiprocessor architecture and the Interconnection

47

.r

" information is stored in a topology file. Figure 2-29 .shows the

hardware modules 1involved in the simulation of the fault tolerant
mulﬁiprocessOr'architecture as well as their intercoannection.

The next--step is to load the operating system ﬁsoftware in the
processorjs wemories. The enhanced software development environment (C-

8086 cross compiler) described in [20] is used to load the software of

the fault tolerant operating system, written in the C language, into the

memdries of all central processors. For the interface processors and
the peripheral processor special drivers written in assembly code are
loaded. Software and - hardware of the entire system can néw be
integrated under N.mPc as shown iﬁ Figure 2;30. The simulation is then
put in. the runtime wmode and the processors are initialized
appropriately. The simulated fault tolerant multiprocessor system will
be ready to run at this point.

| The methodoiogy outlined aboie for the integration of the operating

system code with the simulated hardware architecture is general and will

definitely lead to a fully integrated system simulation. In this study

the full integration was not accomplished due to the following reasomns:
- The slow execution speed of ‘N.mPc mitigates against
conducting fault tolerant tests in a reasonable time period.
Tﬁis is due to the fact that the execution of each single
operating system instruction involves detailed and numerous
registér tfansfer level instruction executions with N.mPec.
Since the task execution cycles of the operating system are
fairly lengthy to begin with, the corresponding number of
executions within N.mPc will be extremely large, which leads

to prohibitively long simulation times.

48

T

{8086 }4 H 13 Er [(8os6 }4 H 23 |~ (808} (Cooss H 2 F

Crn H o =1 G H H j}:J Cen H H a4

[miw H H 1 = TIM LI 20 | [(rin H H 3 [t H H @ }
= IECIN S S 4 T e o 53 a5 e sa
2 S S (2t gEEINNS L o B
17— 7l {21 bt T o 25 74
. 1 2 3 4 '
Ut 8 E[:] g g
Pl L2] cP3 | 2

~
M I 15 . .) LTy N j ,
rrmn l‘ ﬁ st J % T [MEM }- 61 lm»:n }'} 81 f— 18
[8oss 52 — 1 } 28
) : l 8086 }-— 62 | l 8086 }- 82 T “
~_ 53 F 35 . =
Ti4 45 ' I TIM }- 63 TIM 4 83 <38
. j A
1 ""{ 56 r 64 r_.- 84 ~ 48
TP_S ‘ : st) . ’ : . BS1 BSI
BSI !
BSI- BSI
BSI
BSI BSI —
i CTi I—JJ BSI - | — ,
| GTI1 }-— BSI | cTl }-1 BSI |
1Ifb

] - o
GATE! . GATE2 GATED CATES | [‘e

croo1 | [crooz | [croos] { {croos] [croos | [croo7] | [croos] [croio | [crorr camrg, GRDI4 icxms]
A T 1T 1 [- I 171

et

| ,
| 1 L
GRD65] rcmsd[CRD671 E LGRDG;J ,rcxmo

T T T 1T

11 L ! |
GRD73 GRD74 GRD?S | rGRDN] fC_RD7B—| {cxn79J

 GATE GATE19

1]
)

Ly ecm1 . . .
, Figure 2-29: N.mPc Simulation of the Fault Tolerant Hardware Architecture

Il

L4 8086

;

BS

BS

:

BSI

/

BSI .

in "isplibr" directory

ppdriver.s

N
g N
. Simulations
ISP' Prime Source Code Output
max86cpu.isg\ " e
B6mem.isp .obj" files
timer.is E .8
nerosp ISP simul.s | RUNTIME PACKAGE
trx.isp Ecologist .
bsfifo.isp Compiler + ‘Simulagion Progress
gtintrfc.isp simul.exe .gimmin' ;ngerpretﬁr
gate.isp . mulate emory Manager
initipg.isp " s " —
pperd. isp 4)"ec simul A
idgen.isp -J)
5) “run simul' -
FT Multiprocessor
: Trace
Architecture Topology OQutput
simul.t
simul.f -
simuld
Memory
List
romcore.p
o o e e e e = = simul,x
& R
‘. C Source
: Program 3) “smp simul™
C-cross Cross
ftos.c Compiler . Assembler/.
Linker/Loader
ftos.s
Simulaced
:) Memory
d .
Lpdriver f}) © Processor

1
t
{
|
|
{
|
|
{
|
|
|
|
{
[
[
|
|
|
|
|
|

- -

Figure 2-30:

0TOL

(object to l.out)

1) "@86asmotol ftos"
"@86asmotol ipdriver"
"@86asmotol ppdriver"

2) "copy fros.out
“copy ftos.out
“"copy fros.out
“copy ftos.out

“copy ipdriver.out
“copy ipdriver.out

fros.out “copy ipdriver.out
s "copy ipdriver.out
ipdriver.out "copy ppdriver.out
ppdriver.out

cpeorel.”
cpeore?. "
cpecore3.”
cpcored .
ipcoreS5."
ipcore6."
ipcore7."
ipcore8."
ppcore9."

J

Integration of the Fault Tolerant System

- The full operating system code, writfen iﬁ C programming
language, proved. to be lengthy and éomplex which makes the
debugging process of the code, Qhen executed under N.mPc,
intractable.

- The N.mPc code corresponding to the VLSI structure of the 8086
chib details is not guaranteed to be absolutely correct. This
complicates thevdebugging process énd makes it difficult to
detefmine whether the source of a given bug is in the VLSI
description or in the qomplex operating system code. Note
thét this problem is inherent to any cbmblex VLSI design such

.as the 3086 processor.
In 'summary a full integration of the'fault tolerant hardware aﬁd»
the operatihg system software proved to be beyond the time and resources
aliocated for this study.

The functionality of the operating system software was tested

separately in a "C" based testbed as described in [7]. In the

simulation of the fault tolerant multiprdcessor system tﬁe full
operating ‘éystem software was replaced by a module exercising the
hardware dependent communication ;outines used by the message passing
kernel. The testing of the fault tolerant hardware and the application
of different failure conditions to the simulated system have been.
conducted under the N.mPc environmment in order to validate the concepts

developed in {7, 14}1.

51

: ‘

3. FUNCTIONAL TESTING OF THE SIMULATED HARDWARE SYSTEM

3.1. Simulation Limitations

In N.mPc based hardware simulations the execution speed is

"inversely. proportional to the complexity of the simulated hardware. In

‘microprocessor based simulations this means that the execution speed of

the total simulation will decrease in proportion to- the number of
microprocessors simulated. Validation of the architectural hardware
concepts does not necessitate simulation of the entire fault tolerant
hardware architecture as many modules are repeated in the structure.

For this reason, the simulation has been broken down into smaller

" modules. This will speed up each simulation run without affecting the

Agenerality of the obtained results. The following module simulations

have been created and are shown in Figure 3-1:

i) A simulation involving an interface processor, a peripheral

processor and their gate complexes.

ii) A simulation with four interface processors, one peripheral
‘ processor and all the fault tolerant hardware.
iii) A simulation of four fuliy'intercpnnected central processors

and their communication modules.

Simulation 1) is sufficient to exercise the basic properties of the

‘elements of .the fault tolerant hardware. Simulation ii) can demonstrate

tﬁe synchronous functioning of the interface processors and makes it
possible to test the fault tolerant hardware architecture in different
failure conditions. Simulation iii) is used for the integration of the
hardware dependent communication vroutines of the fault tolerant

operating system with the simulated hardware architecture.

52

llllllllllllllll i |
1
1
|
1
y
[%p} a 1
W O :
S P e ¢ .
1 A . ml Q.
4 i
o~ i
- 4+ & 4
|
]
1
1
— ~
! 4
[%2] » '
» O 1
(&) A
et {
> e it |
=l =] - = — - ——— —~ 4
+ mw |
! (&)
! G~ g !
w ~+
_ 4 !
%) (&)
My O) > O |
mw N a.
] 8] o !
> <
_ 3 I _
- e e el <4 m »> & PS q
]
!
|
o 1
3 > !
& » 1
¥]
A
!
)
llllll t
lllllllllllllllll i |

- em mm e e e e e m e e cme .

Partial Simulations of the Fault Tolerant Multiprocessor Architecture

Figure 3-1:

:

3.2. Test Plan and Approach

. 3.2.1. Objectives

The main objective of the simulation 1is to establish the
corvectness and completeness of the detailed descriptions of the
hardware modules. Correctness of the interconnection (topology) of
these hardware modules 1is also established through appropriate
simulation tesfs.

A second objective of the simulation is to demonstrate the ability
qf‘ the fault tolerant hardware to continue correct operation in the

presence of (induced) faults and to perfor@ a system reconfiguration

upon detection of a hardware failure.

3.2.2. Test Plan
The test procedure includes two steps. First the hardware modules
and the guardian initialization mechanism are tested in a simulation

involving one interface processor and a peripheral processor as well as

~all the fault tolerant hardware. ' This test should assess the functional

correctness of the hardware ﬁodules. The test method applied consists
in having appropriate test software exercise all the features of each
hardware moduie. The result expecfed from this test »should_ give a
confirmation that the fault tolerant hardware needed for the
multiprocessor architecture works exactly as specified in [14].

In a second test simulation, involving all four interface
processors, the synchronous nature of the interface processors will ©be
demonstrated. The fault tolerant system”s ability to continue
functioning correctly in the event of corrupted data, guardian
malfunction or bus failure will be demonstrated. This test should aléo

demonstrate the correct functioning of the full fault tolerant hardware

54

:

modules . used to interface the central processors and the peripherals.
The test method used in this simulation is selective fault insertion by>
the user 1in-order to test the fault tolerant multiprocessor system”s
response.‘ The expected results were the masking of single‘errors in
input data by.majority SOftwaré voting, the cutting off of a device from
its bus when one of its guardians fails and the reconfiguration of the
fault tolerant hardware around the failure of a peripheral interface

bus.

3.3. Test Software

3.3.1. Functional Definition

3.3.1.1. Test g£ therHardwaré Modules

Testing the hardware modules is conducted via a simulation which
involves an interface processor and a peripheral processor as shown in
Figure 3-2 inside the enclosed area (i). Test software modules are

needed to drive each processor. The listings of the interface processor

driver (“iptest.s") and the peribheral processor driver ("pptest.s™)

used ' in this test simulation are found in Appendik A.2.

The “iptest.s" program exercises all the states of the guardians

~shown in Figures 2-20, 2-22. It tests all guardian‘commands shown in

Figﬁres 2-21, 2-23. In cooperating with a program driving the peripheral
processor the whole guardian operation sequence shown in Figure 2-24 was
exercised in the test. The "pptest.s” module just waits until the
peripheral processor guardians are enabled and then sends a message to
the interface processor via the temporarily. accessible pefipheral
interface bus. The guardian initlalization mechanisnm, which 1is
independent of the test software, 1is also checked by this test

simulation.

55

. MAXBCPU. ISP "
("cpus™)

i

B6MEM. ISP
mens™)

TIMER.ISP
Ctans™)

}..

CTINTRFC.ISP
("ge13™)

BSFIFO.15P
{"bsis1")

18]

BSF1FO.15P
("bs152")

BSFIFO.ISP

g

("b1353")

BSFiFO.1ISP

("bai5a")

CGATE. ISP ("gate00™)

—

GATE.ISP ("gatenl™)

_/

\

GATE. ISP ("gate02™)

/

_——FATE.KSP ("gaten)

/

\

l

INITIPG. ISP

INITIPG. ISP
("gre02") ("

INITIPG. ISP

rdQ3")

INITIPG. ISP INITIPC. ISP
("grans*) ("grdoe™)

J

INITIPC. ISP
("grd07")

I l INITIPC. ISP

("grd.1l)

INITIPG.ISP_
(“5rate™)

I INITIPG. ISP]

("3rd01")

| [

I

l

I

INITIPGL ISP INITIPG. ISP
(“grd09*”) ("grdio”)

l INTTIPG. ISP
Crredid”)

[

1"krd15”)

I

Figure 3-2:

Topology of the Test Simulation

for Hardware Modules

]

:

Rbus i

Kbus2

Kbusd

Khusé

PPGRD. ISP
("grdi?™)

PPCRD, ISP
("gra18")

:
i prcro.1sP
I (Cgrdi™

PPCRD. ISP
(Trra2t”)

PPGRD. ISP
(gré22™)

|

PPGRD, ISP
("rrd2)")

PPCRI;. 1sp
("rrd25")

PPCRO. ISP
("grd26™)

PPCRD, ISP
("grd27*)

. PPGRO. ISP

("grd29”)

-+ PPGRD.ISP
("rrd30")

PPGRD. ISP

. ("grd3”)

CATE.ISP ("pate0d™)

7

CATE.ISP (“gate0$') r——-———-—‘

CATE.ISP ("gate08") [

)
\
r

CATE.ISP (“gate0I")

BSFIFO.ISP

(“bei91")

BSF1FO.1ISP
("bs1927) .

BSFIFO.ISP
(bs193") .

BSIFIFO.1SP
- ("ba19™)]

GTINTRFC.ISP
I (gei9”

TIMER.ISP
B ("tim9™)

MAXB6CPU.ISP
("cpud™)

B6MEM . 1SP
(“men9™)

3.3.1.2. Test of the Full Fault Tolerant Interface

This simulation is intended to demonstrate the fault tolerant
system”s capability ﬁo continue correct operation in the presencé of
specific user induced Ffaults. The full fault tolerant interface,
including four interface processors and a peripheral processor, is part
of the simulation. The configuration is shown in Figure 3-1 inside the
enclosed area (ii).

The program driving the four interface processors ("fttest.s”) does
a majority vote on input data and then goes through normal operation of
the fault tolerant interface and its guardians as shown in figure 2-24.
The peripheral processor waits until it gets aécessv to a peripheral
interface bus, which means it has to wait until 1its guardians are
enabled. It then sends data to the interface processors. If the user
does not insert any faults this process continues indefinitely. The
user can then. insert simulated faults, causing the fault tolerant
hardware and software to react iﬁ order fo keep the system operating
correctly. Three failure conditions have been simulated:

1) The user can corrupt input data. A subsequent majority
software vote 1in the interface processors can mask a single
error.

2) The user can change the gate enable output signal of a
guardian to an incorrect state. Such a fault is detected and
masked by the guardian”s gate, which only opens if {its three
guardians are in agreement.

3) The user can cause a disagreement among the three peripheral
interface buses in use. This will be interpreted as a bus

failure by the interface processors and the fault tolerant

57

R

system 1s reconfigured around the failure by bringing in the

fourth reserve bus.
The results expected from tﬁis test are a continuing correct
operation of the fault tolerant system in presence of the above
mentioned wuser induced faults and a correct system recounfiguration upon

detection of a bus failure.

3.3.2. Implementation Description

Detailed descriptions of how to cross compile and run the test
software modules discussed in section 3.3.1 are given in Appendix A.3 as
well as in the simulation directories ("persim”, "ftol") in the form of
“readmefirst” textfiles. The directories reiterate what has been
explained in the N.mPc user”s manual[24] for the specific cases of the

two simulations discussed in this sectiomn.

3.4, Test Results

3.4.1. The Hardware Module”s Test Simulation

The results of the simulation discussed ian this section are
recordings of certain events (register transfers, signal changes, etc.)
which simulate the function of a complex hardware.

Figure 3-2 shows the topology of the test simulation for the
hardware modules and Figure 3-3 gives the usual block diagram of the

same simulation.

The 1listing of an interactive test simulation session , focussing
on the verification of the correct functioning of the fault tolerant
hardware modules, is given 1in Appeundix A.4. It contains all the
information necessary to verify that the modules under investigation do
in fact work as specified in [14]). N.mPc makes it then possible to

verify with “display” commands and breakpoints that the hardware is

58

Simulations
Output

r A
“.obj files" ftsim.s . \ //////’

User
Commands

in "isplibr" directory

max86cpu.isp

86mem. isp ISp* RUNTIME PACKAGE
timer,isp Ecologist *Simulation Progress
trx.isp Compiler

N fif) ‘Command Interpreter
S o.isp fesim.exe *Simulated Memory Manager
gtinerfe.isp

gate.isp b
initipg.isp

ppgrd.isp

ftidgen.1isp

Target System

Topology

ftsim.{}

ftsim, £
ftsim.d

initmemname.,p

(object to l.,out)

t
: C Source . ftsim.x
1 Program t
| Cross Cross §
t
: Compiler Assemblec/ t
1 Linker/Loader :
: t Simulated
| { Memory
| ' Processor
{
| Assembly {
t
\ gource . wcopy fttest.out ipcoreS.:
t rropram copy fttest.out ipcoreé.
{ fttest.out “copy fttest.out ipcore7."
! 1 “copy fttest.out -ipcore8."
fttest.
t S pptest.out "'copy pptest.out ppcore9."
(pptest.s OTOL
{
|
1

"@86asmotol feriest ™
“@86asmotol pptest”

Figure 3-5: Block Diagram of the Test Simulation for the Full Fault Tolerant Interface

functioning correctly. The following conclusions could be drawn from

simulation test runs:

- interface processor guardian

("initipg.isp”):

all state transitions done

according to state diagram

it executes all its special

commands correctly

initial ID distribution and initialization
(on/off) working correctly

it activates its enable signal

only when turned on during the
initialization or after receiving the

"Turn On” command

- peripheral processor guardian

("ppgrd.isp”):

- gate("gate.isp”):

all state transitions done according

to state diagram

it executes all its special commands
correctly

initial ID distribution functions
activates its enable signal only
temporarily after receiving a "Select”
command followed by an "Enable” command
opens only when enabled by all three

guardians

- initialization module

("idgen.isp™):

correctly turns the desired interface

processor guardians on

60

- distributes IDs to all guardians
- distributes the right 1/0 addresses to

each communication module

- transmitter(“"gtintrfc.isp”):

- correctly transmits the bytes written to
its 1/0 address via a FIFO queue to
peripheral interface bus(PIB, redundant
bus)

- the CPU can check whether the transmitter
queue 1is full before enqueuing another
byte

- receiver(“"bsfifo.isp”):

- correctly puts bytes received from the PIB
in a receiver queue

- the CPU can .check whether the recelver
queue is empty before reading a byte from
it

- transceiver("trx.isp”):
- correctly transmits and receives bytes

using two separate FIFO queues

a CPU can check whether the receiver queue
is empty before reading from it

a CPU can check whether a transmitter

queue is full before writing to it

- a CPU can reset both FIFO queues

61

- timer("timer.isp™):

- the timer correctly halts a CPU for a
number of clock cycles that can be
specified

-memory(" 86mem.isp”):

- the 16k RAM memory has been tested in the

course of earlier N.mPc work(see [20])
- 8086 CPU("max86cpu.isp™):

- the description of an Intel 8086 CPU has

been the object of earlier N.mPc test and

verification work(see [20])

3.4.2. Results of the Test of the Full Fault Tolerant Interface

The topology of the simulation discussed in this section 1is
depicted in Figure 3-4 and the corresponding simulation block diagram is
presented in Figure 3-5. Again the "results” are not representable in a
simple, closed form. They represent changing states in a complex
simulated hardware that can only be observed by using various N.mPc run-
time commands in order to trace certaln registers or ports.

The 1listing from an interactive N.mPc simulation session is
contained. in Appendix A.4. 1t shows the testing of three different
failure conditions that can be handled by the fault tolerant hardware of
the simulated multiprocessor architecture. The following conclusions
can be drawn regarding the three fault conditions specified in 3.2.2:

1) Corrupted Input Data:

- Data fed to interface processors (simulating a message

from three central processors) can selectively be

62

!

N s |
AoMENM. IST - F
(Cmems”y

MAXBCPU USSP
T Cepud™y

MAXBCPU. ISP
{“cpug™)

HMAXKCPU. 1S
Ccpul™)

- MANHCFU. ISP
! (Mepun™)

P T) "
BOMEM. ISP o MOMENM. ISP o
(Cmea?™y (Cmemt™)

TINER.ISP n
{("etns™) . P TIMEK. ISP -

(Ctieh”)

i

TIMEK. ISP
timg™)

- 8SFLFO. ISP d
Cbars1™y D'SFH‘O.ISP BSFLFO. ISP KSFIFO. ISP
, {"bsih i™) ("bsi Tty ("bsi 81")

BSFIFO.IS¢P
(Tbs1527)

BSFIFO. ISP
("bsibh2")

ik

BSFLFO.1SP BSFIFO.ISP
"——W ("bst72™) I ("bs182") l

8SFIFO.1SP
15y] . BSFLFO.1SP BSFIFO.1SP 8SFIFO. ISP
("bisn3”) ("b1s737) ("bis83")

Ik

BSFIFO.1SP :
bel8e) { bod BSFIFO. ISP BSFLYO. ISP CTINTRFC.ISP BSFIFO.15P L
("bs164™) [("bei? &) r (“gety”) ("bsige") [
N N y ~N
|
;
!
CATES (05-08) (ATES (1912} TATES (13-16)

CATEL ISP ("gatemi®) CATE.LSP (“gate0i™) ————{ia![.ls? (“gatets™) Guardians Husrdians Guardians
/ \ / : \ Q7-19, 21-23, 25-27, 29-31) €33-35, 37-39, 4143, 43-a7) | - (49-51, 53-55, 37-39, 61-63)
INITERG, (ISP INITIPG. ISP EX1TING. L INITEPC. ISP INITIPC. ISP INLTIPC. ISP IKITIPG.ISP INITIPC.1SP INITIPG. ISP INITIPC. ISP INITIPGLINP INITIPG. ISP
Cleedni ey {"gedn?™) Crranyy {"ged0s™) (“ged0a™) (Meed)™y {"eran9y ("grdla™) ("prd. i1}y {(“crdtd™y {“xedl1a™)y CredlsT) .
3 H i I H . | Rbus|
P ' l J - - ’

CATE.IST (“gate2™)

; t i : Rbus2
; !
; :
i I Kbus3
| Rbusé
- PPCKD. ISP PPGKD. ISP rrcao. ISP PPGRD. tSP PPCRD. ISP PPCRD. ISP PPCRD. ISP PPGRD. ISP ':c‘ﬂ'lz: ’ZCkg}:‘s': :"‘c:ghl!'s‘: l :56:23;?“;
("grd6s) ("grd 667 (“gres?) ("graby™) ("grd10) ("xraltTy ("xea 73 Cerd?e Chears Ly * £
- -y 4 CATE.ISP (“gatel9™) CATE.ISP ("gace20™)
I CATE.ISP (“gace (7} CATE.ISP (“gace!B™) i
i
;
I N " . S
j |, cristarc.ase
;)
TIHER.ASP
K ~ ("1im9”)
HMAXBAHCPLU. ISP
. o ("cpu9™)
s
; .
MEX. ISP F =4 » i i
B igure 3-4: Topology of the Test Simulation for the Full Fault
Tolerant Architecture
BSFLrO.AST
P Chan™)
{ aserronse o
I ("bsi¥27)
ASF1YO. ISP
(bx1937)
astrrro.ase L]
. (“bs194™) !
. - A

in "isplibr" directory
A

r
“.obj files" frsim.s
max86cpu.isp
86mem. isp sp' RUNTIME PACKAGE
timer.isp c X Ecologist *‘Simulation Progress
trx.isp ompiler
" . ‘Command Interprecer
bs.i o.isp ftsim.exe *Simulated Memory Manager
gtintrfc.isp
gate.isp —
inicipg.isp
ppgrd.isp
ftidgen. isp
Target System Trace
Topology OQutput
ftsim.g} fesim. £ - froim.d
m.

Memory
List

initmemname.p

(object to 1l.out)

{
: C Source - ftsim.x
(Program |
{ Cross Cross {

{
: Compiler Assembler/ 1

L
[Linker/Loader .
: t Simulated

! { Memory
: _J : Processor
! Assembly 1

1
' Jouree { "copy fttest.out ipcorGS-T
t FProgram "copy fttest.out ipcore6."
‘ fttest.out “copy fttest.out ipcore7."
| "co .out reg."

fttest.s pptest.out “c py ftrtest.out ipco .

1 copy pptest.out ppcore9.
, Ppptesc.s 0TOL
[
|

b e e e e e e e .- = =

"

“@86asmotol frrest
“@86asmotol pptest'

Figure 3-5: Block Diagram of the Test Simulation for the Full Fault Tolerant Interface

corrupted. The interface processor can mask a single
error by majority software voting.
2) Guardian Failure:

- The failure of a guardian can be induced by the “user"(=
person running the simulation), who inverts the logical
state of a guardian”s enable signal. This failure 1is
correctly handled by the fault tolerant multiprocessor
system as a gate gives a device bus access only if
enabled by all of its three guardians. Tﬁus the device
controlled by the faulty guardian is cut off from its

bus.

3) Bus Failure:

- A disagreement between the three redundant buses in use
at any time is detected by the interface processors.
They can then reconfigure the system by determining the
féulty bus and switching the appropriate guardians and
the concerned interface processor to a previously unused
reserve bus. Figure 3-6 and 3-~7 show the configuration
of the fault tolerant hardware before and after recovery

from a bus failure.
More details about these simulations are found in "Oreadme.fst”
information files contained in each simulation directory, in comments in
the listings of the programs run in each simulation and in the listings

in Appendix A.4.

65

ce ce cp ce
X3 FXE 1
= =
/ [T
7 o
+
P P ' (P) P
e L4
|
4 y y r
4GCg 4GCg 4GCg 4GCs
y
1 y
1 y
4
GC} |GC| |GC] |GC
E S N ST
4GCg
i PP
Figure 3-6: Initial Configuratibn of Fault Tolerant Hardware

a

ce ce [ce ce
F L [5
r////// r///]
4 b 4 i' y 4 1’_‘
‘ — b
P P) P . e .
he— H— Inm
Y r 4 &
4GCg 4GCg (GCg (GCs
H 4
4 y
A
v
A
1GC Gd GC| |GC
4GCg
J
N PP
Figure 3-7: Reconfigured Fault Tolerant Hardware after Detecting a Failure of

Peripheral Interface Bus Number 1

4. FUNCTIONAL TESTING OF THE INTEGRATED OPERATING SYSTEM SOFTWARE AND
THE SIMULATED HARDWARE SYSTEM

4.1. Limitations of N.mPc Simulations

The originally planned integration of the simulated multiprocessor
architecture and the full fault tolerant operating system was
subsequently scoped down to a simulatioun involving the integration of
the fully simulated multiprocessor hardware architecture and ounly a
subset of the operating system routines for the following reasous:

i) The work done on the validation of N.mPc microprocessor

simulation [20] concluded that a substantial host processor
CPU time is required when executing software on a simulated
processor instead of a real processor. Since the fault
tolerant operating system was still in the conceptual desigun
stage at the time the validation work was being conducteq, it
was difficult to estimate the performance of N.mPc when
executing a complex software structure such as the fault
tolerant operating system. The simulation described im this
section gives accurate estimates of the magnitude of the CPU
resources needed to simulate software modules that are run on
simulated wmicroprocessorse. This simulation includes four
central processors communicating with each other by exchanging
messages. While the simulation works as described iun the
hardware specifications stated ian [l4] it also indicates
clearly that the host CPU execution time uneeded for ruuning
the complete fault tolerant operating system software on
simulated 8086 processors would be very high. For example,
the exchange of a single byte “"message” consumes close to one

miaute of CPU time on the VAX 11/780 host computer.

68

115

111)

In

Considering that the 1lowest layer of the -fault tolerant
operating system involves frequent exchange of messages each
with length in the order of hundreds of bytes, it is easy to
estimate that the CPU time required to perform a wmeaningful
simulation will be unrealistically large.

The slow execution speed of N.mPc mitigates against conducting
fault tolerant tests in a reasonable time period. This is due
to the fact that the execution of each single operating system
instruction involves detailed and numerous register transfer
level instruction executions with N.mPc. Since the task
execution cycles of the operating system are fairly lengthy to
begin with, the corresponding number of executions within
N.mPc will be extremely large, which leads to prohibitively
long simulation times.

The N.mPc code corresponding to the VLSI structure of the 8086
chip details is not guaranteed to be absolutely correct. This
complicates the debugging process and makes it difficult to
determine whether the source of a given bug is in the VLSI
description or in the complex operating system code. Note
that this problem is inherent in any complex VLSI design such
as the 8086 processor. |

summary a full integration of the fault tolerant hardware and

the operating system software proved to be beyond the time and resources

allocated for this study.

For the reasons described above, it was decided to implement only a

hardware

subset of the fault tolerant operating system. The subset consists of

dependent communication routines running on a simulated

hardware architecture which counsists of four intercommunicating central

69

processors. This partial simulation is based on the fact that the fault

;olerant part of the multiprocessor hardware architecture has been
tested Dbefore. The breakdowa of the total simulation into partial
simulations is nunecessary to complete the simulation while imposing a
reasonable demand on the host computer CPU time. The hardware
dependent communication routines of the fault tolerant operating system
were chosen for integration with the simulated hardware for two reasons:
i) The hardware dependent communication routines could be easily
transported in the future as part of the full operating system

software to an 8086 based prototype hardware.
ii) It is difficult to simulate separately any of the other

operating system routines since they are all interrelated.

4.2, Test Plan and Approach

4.2,1, Objectives

The main objectives of the simulation described in this section

are:

(1) To verify the correctness and establish the completeness of
the operating system routines used for interprocess message
communications. This will also establish that the interface
between the hardware and the software responsible for byte
transfer among the different processors‘is correct.

(2) To establish systematié and methodical procedures for
transporting operating system code, written in C, to a target
hardware prototype. This will be desirable in future research
involving the development of actual fault tolerant
multimicroprocessor hardware based on the study completed so

far.

70

4.2.2. Test Plan

The following activities were planned in the context of the
integration of the operating system and the fault tolerant hardware
architecture:

- Investigation of the mechanism for calling hardware dependent
assembly routines from within hardware independent high level
software.

- Design and test of special hardware modules ("transceivers")
for two way message passing between the fully interconnected
central processors following the criteria defined in the
hardware analysis report [l4].

- Write the assembly routines necessary for message passing
between central processor modules, using the previously
designed transceivers.

- Write moderately sized high level test software modules (in C)
coordinating message passing between four central proceséors.

The expected result of this test consists in the integration of all

the message passing software and the four central processor modules in
order to’build an interprocessor message passing simulation that can be

executed on the N.mPc/VAX 11-780 (located at CRC).

_4.3. Test Software

4.3.1. Functional Definition

Figure 4-1 gives an overview of thé different software and hardware
modules involved 1in the simulation of four fully interconnected,
communicating central processor modules.

The test software running each of the four central processors 1is

written 1in the high level language C and organizes the message exchange

71

in “isplibr" directory

max86cpu. isp “obj " files

86mem.isp cpcpcom. s
timer.isp

éSP ile ’ ? Ecolopist AAJ_‘*“"
bsfifo.isp ompller

trx. isp
gtintrfc.isp cpcpcom.exe

" RUNTIME PACKAGE
*Simulacion Propress
‘Command Interpreter
‘Simulaced Memory Manager

Assembly Source Program
(in link library):

gate.isp
initipg.isp :
ppgrd.isp
newidgen.isp
Target System .
Topologpy
" cpcpeom.t
) cpepeom, £
cpcpeom. d
ipcoreS.p
- opcore9.p
ST T T mr T - !
! C Source 1 cpcpcom.Xx
! g 1
! 'Pro = Cross Cross '
i CPTOASK.C N
, CPITASK.C Compiler Assembler/ 1
« CPZTASK.C Linker/Loader !
 CP3TASK.C '
1 ! Simulated
! Memor
I y
t AJ : Processor
) t
! t

"copy CPOTASK.OUT cpcorel."

{ QFULL.S CPOTASK.OUT “copy CPITASK.OUT cpcore2."
| QEMPTY.S CP1TASK.OUT| “copy CP2TASK.OUT cpcore3."
t GETBYTE.S CPZTASK.OU; “'copy CP3TASK.OUT cpcore4."
{ XMITBYTE.S 0TOL CP3TASK.0U

(object to l.out)

)
t
t
______ e e e b

“@86asmotol CPOTASK"
“"@86asmotol CPITASK"
“@g86asmotol CP2TASK"
"@86asmotol CP3ITASK"

Figure 4-1: Block Diagram of the Fault Tolerant Operating System/Hardware
Integration Simulation

between the four processors. Appendix B.3 contains the listing of each
processor”s message passing software module. A message of six bytes in
length is péssed around from processor to processor in a closed loop as
shown in Figure 4-2.

The hardware independent high level software modules running on the
central processors naturally can”t do the message passing by themselves.
They need to call hardware dependent assembly routines that are able to
handle the communications hardware modules ("transceivers", trx.isp)
described in section 2. The four assembly routines for communication
are:

- "quli.s": Checks whether the transmit queue of a
transceiver is full or not. A "1" is returned
if the transmit queue is full, a "0" 1f the
queue is not full.

- "xmitbyte.s": Puts a specified byte into the tranmsmit queue
connected to the desired destination processor.
The byte is then automaticaliy transmitted to
the receive queue of the destination processor.

- "Qempty.s: Checks whether the receive queue of a
transceiver is empty or not. A "1" is returned
if the receive queue 1s empty, a zZero
otherwise.

- "getbyte.s™: Reads a byte from the receiver queue connected

to the desired source processor.

The four communication routines have to be incorporated into the
link 1library of the cross software development tool (see [19, 201).

They can then be called from within programs written in the high level

73

CP1

A

4)

1)

Cp2

2)

CP4

3)

CP3

Figure 4-2: Message Passing Loop Formed by Four Central Processors

Y

language C. Assembly routines called by C programs have to follow

~certain coanventions outlined in [19]. The following calls are used to

invoke the four communication routines from within a C program:

"Qfull(i)": The destination processor is specified by index
i.

- '"xmitbyte(i, byte)":
Destination processor index and the byte to be
transmitted have to be specified.

- "Qempty(i)": The index of the source processor, from which a
transmitted byte is to be read, is specified.

- "getbyte(i)": Only the index of the desired source processor
has to be specified.

Thus, for seanding a byte to a certain destination processor, a check
is done first to determine if the transmit queue of the transceiver
connected to the desired processor is full or not ("Qfull(i)"). If the
queue is not full, the byte is transmitted (“"xmitbyte(i, byte)"). To
read a byte received from another processor, a check is conducted to
determine . if the corresponding transceiver”s receive queue is empty or
not ("Qempty(i)"). If the queue 1is not empty a byte is read and
transmitted by issuing a “getbyte(i)” call. These communication
routines correspoad to the ones designed for the fault tolerant

operating system in the “C" based simulation testbed (see [7]).

4.3.2. Implementation Description

The implementation of the simulation of the four intercommunicating
central processors and their test software is shown in Figure 4-1 and
described in detail in Appendix B.3 aund in a "readme" textfile in the

corresponding simulation directory ("osint™).

75

4.4, Test Results

The detailed structure of the simulated hardware used to execute
the .test software described in this section is given in Figure 4-3. The
fgllowing results were obtained from a test simulation doing
interprocessor message passing:

- The actual wmessage transmission could be made wifhout
requiring continuous attention from the CPU by wusing FIFO
queues for intermediate storage of messages.

- Transmission via serial bus was properly simulated by
introducing appropriate delays when transmitting via parallel
buses.

- A new transceiver module was created in order to perform
transmiésion and reception 1independently but in a single
hardware module.

- A message (6 bytes) could continuously be passed through four
processors connected in a closed loop.

- It took over a minute of CPU time on the VAX/11-780 to pass
one byte from one processor to another one in the N.mPc
simulation environment.

- A mechanism interfacing hardware independent high level
software to the fault tolerant hardware architecture was
investigated and used to implement inﬁerprocessor message
passing on four fully interconnected 8086.CPUs.

The results 1listed above can be verified in the 1listing of an

interactive session involving the simulation of the four fully

interconnected central processors (see Appendix B.4).

76

B6MEM. ISP
(“weal™)

2\

MAXB6CPU. ISP
("cpul™)

. - TIMER. ISP
("tial™)

TRX.ISP
("f1€o12")

TRX. 15P
(“f16o13"

TRX.ISP
(“f1fol4")

[

or]

B6MEM. ISP /wr TRX.ISP

("men2”) ("f1£021")
MAXB6CPU. ISP TRX. ISP [

("cpu2™) ("€1€023") T

[TIMER. ISP
(Cein2™)

s

T
.{ TRX.ISP {
("f1£024 | s

TRX. ISP
("fifod1")

© T TRx.1se
("f1£032"

TRX. ISP
(“f1€0)4")

-

-

CcPe

86MEN. ISP
("meat”™)

MAXB6CPU. ISP
("cpus”)

..{ TRX, ISP
: “f1f042" L

TRX. ISP f

("{1fokl")

TRX, ISP !
("f1f0d3%)

Figure 4-3: Topology of the Fault Tolerant Operating System/Hardware Integration Simulation

Finally a remark concerning the interprocessor message passing is
in order. From the processor interconnection scheme shown in Figure 4-3
it can be éoncluded that a processor has to know its own "identity" (its
position 1in the iaterconnection scheme) in order to determine which I/0
port to choose when transmitting to or receiving from a certain other
processor. A special CPU identity distribution mechanism had to be
included ia this simulation”s initialization wodule ("newidgen.isp”).

It allows a CPU to obtain its own identity (numbers O to 3) by executing

an input instruction using a special I/0 address ("IN ax, 0aOH"). The

communication assembly routines then take a processor”s identity and the
interconnection scheme into account and are able to choose the
transceiver that 1is connected to the desired source/destination
processor. This wmakes it possible to simply specify the
source/destination processor when calling a communications routine from
within a C program. These details are also explained by the couments in

the listings of the communication assembly routines in Appendix B.l.

78

_5.’SUMHARY AND CONCLUSIONS

- The following hardware modules have been éimulated in the hardware
description language of N.mPc:

- interface processor guardian ("initipg.isp™)

- peripheral processor guardian ("initipg.isp™)

- gaté ("gate.isp”)

- initialization modules for the different simulations

("idgen.isp", "ftidgen.isp”, "newidgen.isp™)

- timer ("timer.isp”)

- The 8086 CPU ("max86mem.isp”) and memory ("86mem.isp"”) were

designed in the course of previous simulation work.

By creating descriptions of specific interconnection schemes
(topology files) and integrating the interconnected hardware modules
with appropriate test software, the following, 8086 processor based,
partial simulations of a fault tolerant multiprocessor architecture were
completed:

- A simulation testing each one of the fault tolerant hardware

modules designed in the course of this work.

- A simulation of the full fault tolerant hardware interfacing

the central (high level) processors of the fault toierant
" multiprocessor architecture to ﬁheir peripherals. This
simulation was used to demonstrate the fault tolerant
multiprocessor system”s ability to continue correct operation
in the presence of selected, induced faults. System
reconfiguration around a bus failure was also simulated

successfullye.

79

- A simulation integrating the four fully interconnected high
level processors of the fault tolerant hardware architecture
with the message passing routines which counsistute part of the
féult tolerant operating system. |

The following software modules were writtem to run on the various
simulated Intel 8086 CPUs used in the simulations mentioned above:

- Assembly modules testing each hardware module and the

operation of the full fault tolerant hardware.

- Hardware dependent (assembly language) routines of the fault
tolerant operating system handling interprocessor
communication. These routines constitute an interface between
the fully portable, hardware Independent, wmodules of the
operating system software and the fault tolerant
multiprocessor architecture.

- Hardware independent high level routilnes that handle
interprocessor message passing by calling the hardware
dependent communication routines listed above. These routines
were written in the C programming language.

When comparing the performance of the fault tolerant multiprocessor
system described in this report to the performance of a system without
fault tolerant features, we observe that the fault tolerant features add
considerable redundancy and overhead due to continuous message exchanges
and voting. Hence system throughput and processing power are reduced
proportionately. This reduction is the penalty normally paid to gain
fault toierance capabilities. As well, the added wmechanisms of
synchronization and processor coordination require a careful design and

verification effort.

80

Although publications of previously developed fault tolerant
systems such as SIFT and FTMP give indication of simulation work
conducted in the early stages of development to test the functional

concepts of each system, no simulation details or results have been

reported. We are thus unable to provide comparisons between the

performance of the system described here and the systems reported in the
open literature.

The simulation approach to hardware and operating system software
design proved to be useful in the course of this work. Several times it
has been necessary to add a new feature to the guardian initialization
mechanism, change the interconnection of some hardware modules or
complete the description of a bus interface which the simulation proved
to be 1inaccurate. All these changes would have been extremely time
consuming and costly if they had to be dome on a real prototype
hardware. The inherent flexibility of the simulation approach allows us
to evaluate several design alternatives of a hardware system in a short
time. This allows the designer, when he finally commits himself to
implementing a certain design, to rule out early conceived options fhat
proved to be incorrect or inefficient through the simulation work.

Concerning the adequacy of N.mPc as a design tool for
multiprocessor systems several points can be made:

- In the course of this work the CAE tool N.mPc clearly proved

to us useful as a hardware design and simulation tool. A
complex multiprocessor system could be simulated and tested in

a relatively short period of time.

81

- Frequent design changes to the simulated muléiprocessor
architecture showed the flexibility of N.mPc as a hardware
design and simulation tool.

On the other hand, several limitations to N.mPc have been identified
which tend to severely reduce its utility in the simulation and testing
of fully integrated multiprocessor systems:

- N.mPc”s slow execution speed results in a prohibitively high
demand on the host CPU time if the test software modules are
of substantial size. This was the case for the fault tolerant
operating system.

- In the N.mPc simulation conducted here, the main (control)
processors were each represented by Intel”s 8086 processor. A
full description of this processor is included in the library
of N.mPc. The 8086 version within N.mPc was developed based
on the available 8086 VLSI chip details. Like the case . with
many sophisticated processors, the commerically available VLSI
description is not guaranteed to be complete nor absolutely
accurate (bug free). All unidentified faulty attributes in
the description will thus be propagated to any simulation
which uses the 1library copy of the processor description.
This complicates the process of tracing the sources of bugs
when high level operating system software modules are tested
in the simulation.

- The fact that N.mPc simulates the hardware down to the
register transfer level is useful when newly designed hardware
modules are being tested. However, when the focus of the

simulation shifts to higher levels of structure modules, N.mPc

82

still simulates every register transfer in every
microprocessor involved in lower level imstruction executions
resulting in a large simulation overhead. This aspect was
encountered when an initial attempt was made to run the
relatively complex software of the fault tolerant operating

system on the fault tolerant wmultiprocessor architecture.

The next - generation of CAE tools is expected to be endowed with
top~down design and simulation features to allow the designer to follow
a methodology - in which he can test the lower level modules of the
operating system down to register transfer level of details. Higher
level modules can then be simulated and tested with the already tested
lower levels replaced by macro instructions or functional blocks. This
will enhance the simulation performance by several orders of magnitude
over what 1s currently attainable by a tool like N.mPc. It will thus
make it ~possible in practice to simulate a sophisticated system such as
the fault tolerant architecture reported here in its full fledged
configuration in a reasonable period of time and using mwodest computing
resources.

The fault tolerant architecfure simulated in this work is useful iﬁ
many practical applications requiring continuous unattended operation.
In addition to spacecraft on-board processing, these applications
include computer communication switching gear, nuclear plant monitoring
and processing, data collection and distribution in envirommental and
resource management applications and in on-site processing of remote
sensing data.

A new version of N.mPec, called N.2, has been introduced by the

vendor and will be available on the VAX/VMS environment. The new

83

version N.2 1incorporates a few features aiming towards making the

original N.mPc more powerful. These features are summarized below while

their details are available in [16].

1.

ISP” now supports a better handling of the port constructs.
Pérts are N.mPc entities which allow various mwmodules to
communicate with each other. Ports are now treated as three-
state devices, thus more closely resembling the behaviour of
the real hardware. Capabilities for wired-OR and wired—-AND
have also been added.

Facilities for hierarchical descriptions in the ecologist have
been added. This was achieved through the use of composites
which are meant to be complete and already debugged
simulations. A composite can therefore be considered a stand
alone hardware module emulation and it can be given its own

pseudo—ports which then become the . only means of

communications with the composite. This capability is going

to be very useful as many hardware descriptions are bésed upon
different levels of details. for example, a composite may be
madg to represent an Intel 86/12 single board computer and be
used as a single entity even though it is, itself, made out of
several ISP~ modules.

The Ecologist has been given the flexibility of dealing with a
new hardware description languaée for programmable logic
arrayse. This should prove particularly useful in cases where
the ISP~ language does not lend itself well to the wodelling
of gate behaviour. The Ecologist will also display the
topology file(s) in a graphical format to help the designer

visualize the system as it exists within the simulation

84

environment.

4. Better fault testing mechanisms have been provided. In
particular, mechanisms to handle "stuck at” faults, "state
insertion" faults, etc., have been introduced.

The enhancements made to N.mPe will offer only marginal
improvements in the limitations of the package with respect to the
simulation of fully integrated systems. It is felt that substantial
changes in the structure of the package will be needed to make it

applicable to a true top—down design approache.

85

6. RECOMMENDATIONS FOR FUTURE WORK

Based on the work done so far the following recommendations for

future work are made:

- "It is essential to monitor the technology and the availability
of the next generation of CAE tools. Future CAE tools should
not only be able to do hardware simulations on the register
transfer level but should also include the capability of
simulating complex hardware modules as "black boxes”. In this
manner simulations could be moved to higher functionmal levels
while minimizing the demand for computer time for subsequent
simulations.

- The hardware modules, their interconnection and the fault
tolerance wmechanisms should be implemented as a hardware
prototype in order to fully test the integrated system
capabilities when subjected to actual hardware and software

failures and faults.

86

2]

[3]

[4]

[3]

(6]

7]

(8]

(9]

(10]

[11]

(12]

REFERENCES

Ordy, G.M., "N.mPc: Runtime User”s Manual,” Department of Computer
Engineering and Science, Case Western Reserve Uaiversity, 1979.

Ordy, G.M. and Rogers, L.A., "“N.mPc: MetaMicro User”s Manual,"
Department of Computer Engineering and Science, Case Western
Reserve University, 1979.

Rogers, L.A., “"N.mPc: Linking Loader User”s Manual," Department of
Computer Engineering and Science, Case Western Reserve University,
1979. '

Ordy, G.M., "N.mPc: Ecologist User”s Manual,” Department of
Computer Engineering and Science, Case Western Reserve University,
1979.

Leffler, S.J., “PP: A Post-Processor for N.mPc,"” Department of
Computer Engineering and Science, Case Western Reserve University,
1979.

Rogers, L.A., "A Generalized Linking/lLoader for the Allocation of
the Code in Vertical and Horizontal Machines,” Master of Science
Thesis, Department of Computer Engineering and Science, Case
Western Reserve University Report CES-79-6, August 1978.

Boucouris, S., "Design and Implementation of a Fault Tolerant
Multiprocessor Operating System”, a Report prepared by Intellitech,
March, 1985.

Streit, M., "Simulation of the SBP 9989 Microprocessor Using the
Computer Aided Engineering Tool N.mPc on a VAX 11/780", a Report

prepared by Intellitech, September 1984.

Parke, F.I., "An Introduction to N.mPc Design Environment",
Proceedings of the ACM/IEEE Design Automation Conference, June
1979. ‘

Rose, C.W., Rogers, L.A., and Straubs, R.V., "The N.mPc System
Description Facility,” Proceeding of ACM/IEEE Design Automation
Conference, June 1979.

Hewitt, D.C., Parke, F.I., and Rose, C.W., "The NemPc Runtime
Enviromment,"” Proceedings of the ACM/IEEE Design Automation
Conference, June 1979.

t

Hewitt, D.C., "The Runtime Enviromment for N.mPc, An Adaptable
System to Support the Development of Microprocessor—-Based Systems”,
Master of Science Thesis, Department of Computer Engineering and
Science, Case Western Reseve University Report CES-79-7, January
1978.

[13]

[14]
[15]
[16]

(L7]

(18]

[19]

[(20]

(2L]
[22]

[23]

[24]

Jiang, W., "A Distributed Kernel Runtime Enviromment for Large
N.mPc System Simulation”, Master of Science Thesis, Department of
Computer Engineering and Science, Case Western REserve University
Report CES-82-7, August 1982.

Boucouris, S., "Design and Analysis of Fault Tolerant Architectures
for Multi-Microprocessor Systems, Intellitech Technical Report,
October 1984,

Ordy G., "N.2 ISP~ User”s Manual", January 1984.

Mahmoud, S.A., "VAX 11/780 CAE Tools for Multiprocessor Simulation
- N.mPc Detailed System Description”, September 1984,

Straubs, R., "ISP” User”s Manual", 1978.

“Introduction to N.mPc System Programs"”, Technical Report, Case
Western University, 1980.

Lantech Systems Inc., "8086 C Cross Software Tools", 1983.

Streit, M., "Validation of N.mPc/N.2 Microprocessor Simulation",
Intellitech Technical Report, September 1984.

Ordy, G., "N.mPc under VMS-Preliminary Paper", 1984.
Ordy, G., "A Simple VAX N.mPc Post Processor", January 1984,

Laferriere, C., "N.mPc and its Utility for Spacecraft
Applications™, Intellitech Technical Report, January 1983.

Streit, M., "VAX 11-780 CAE Tools for Multiprocessor Simulation:
N.mPc User”s and Application Manual and Installation Guide"”, a
Report prepared by Intellitech, September 1984,

All Appendices are included in a second volume.

intellitech
Intelitech (anada td
352 Macloen Street,
Ottawa, Ontario
K2POM6
BI3)235-5126

