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S UMMARY 

The simulation activity described in this report is part of an 

overall study 04hich includes the design and simulation of a fault 

tolerant multiprocessor architecture for spacecraft applications. The 

main focus of the overall study, however, has been on the development 

and utilization of computer aided engineering (CAE) design tools. One 

of these CAE design tools, known as N.mPc, is currently running on the 

VAX/VMS 11/780 system located in the Analysis and Simulation Laboratory 

of the Communications Research Centre, Department of Communications. 

The N.mPc package is used as a simulation environment for the work 

reported here. 

N.mPc consists of a number of components used to describe the 

hardware behaviour of a target system, and to execute the simulation of 

that system. 

The approach chosen for the design of the fault 	tolerant 

multiprocessor system is novel in the sense that fault tolerant features 

and supporting mechanisms are embedded in both the hardware architecture 

and the operating system software. The hardware has multiple redundant 

components that are controlled by fault detection mechanisms in order to 

prevent the propagation of errors from the faulty component to the 

remainder of the system. The operating system software contains all the 

intelligence needed to detect errors, identify their sources, take the 

necessary action to remove faulty units, reallocate the processing tasks 

and reconfigure the system to adapt to the new operational state. 



Examples of the hardware faults which can be tolerated 	(je.  • 

recovered from) by the full fault tolerant multiprocessor system 

include: 

- Malfunction of a central processor. 

- Malfunction of an interface processor. 

- Failure of one of the redundant buses between interface and 

peripheral processors. 

- A failing peripheral processor (device) is simply cut off from 

the redundant bus by its guardians. 

- Failure of a gate complex (guardians, gates). 

- Errors in received data due to hardware failures. 

The CAE tool N.mPc is used for functional testing of the fault 

tolerant multiprocessor architecture by first developing descriptions of 

all necessary hardware modules in N.mPc's hardware description language 

ISP'. 	The next step is to describe an interconnection scheme for the 

simulated hardware components of the multiprocessor architecture. 	Then 

some test software for the programmable hardware modules (descriptions 

of the Intel 8086 microprocessor) has to be developed. Finally 

simulated hardware and test software for the microprocessors are 

integrated under N.mPc to form an executable simulation that allows 

functional testing of the fault tolerant multiprocessor architecture and 

of the behaviour of the multiprocessor system in response to certain 

failures. 

The originally planned integration of the simulated multiprocessor 

architecture and the full fault tolerant operating system was 

subsequently scoped down to a simulation involving the integration of 



the fully simulated multiprocessor hardware architecture and only a 

subset of the operating system routines for the following reasons: 

The slow execution speed of N.mPc mitigates against conducting 

fault tolerant tests in a reasonable time period. This is due 

to the fact that the execution of each single operating system 

instruction involves detailed and numerous register transfer 

level instruction executions with N.mPc. Since the task 

execution cycles of the operating system are fairly lengthy to 

begin with, the corresponding number of executions within 

N.mPc will be extremely large, which leads to prohibitively 

long simulation times. 

The full operating system code, written in C programming 

language, proved to be lengthy and complex which makes the 

debugging process of the code, when executed under N.mPc, 

intractable. 

The N.mPc code corresponding to the VLSI structure of the 8086 

chip details is not guaranteed to be absolutely correct. This 

complicates the debugging process and makes it difficult to 

determine whether the source of a given bug is in the VLSI 

description or in the complex operating system code. Note 

that this problem is inherent to any complex VLSI design such 

as in the 8086 processor. 

In summary a full integration of the fault tolerant hardware and 

the operating system software proved to be beyond the time and resources 

allocated for this study. 

A number of conclusions could be drawn from the major findings in 

this work: 



1) When 	comparing 	the performance of the fault 	tolerant 

multiprocessor system described in this report to the 

performance of a system without fault tolerant features, we 

observe that the fault tolerant features add considerable 

redundancy and overhead due to continuous message exchanges 

and voting. 	Hence system throughput and processing power are 

reduced proportionately. 	This reduction is the penalty 

normally paid to gain fault tolerance capabilities. 	As well, 

the added mechanisms of synchronization and processor 

cbordination require a careful design and verification effort. 

Although publications of previously developed fault tolerant 

systems such as SIFT and FTMP give indication of simulation 

work conducted in the early stages of development to test the 

functional concepts of each system, no simulation can provide 

comparisons between the performance of the system described 

here and the systems reported in the open literature. 

2) The simulation approach to hardware and operating system 

software design proved to be useful in the course of this 

work. 	Several times it has been necessary to add a new 

feature to the guardian initialization mechanism, change the 

interconnection of some hardware modules or complete the 

description of a bus interface which the simulation proved to 

be inaccurate. 	All these changes would have been extremely 

time consuming and costly if they had to be done on a real 

prototype 	hardware. 	The inherent flexibility of 	the 

simulation approach allows us to evaluate several design 

alternatives of a hardware system in a short time. 	This 

iv 



allows the designer, when he finally commits himself to 

implementing a certain design, to rule out early conceived 

options that proved to be incorrect or inefficient through the 

simulation work. 

3) 	Concerning the adequacy of N.mPc as a design tool for 

multiprocessor systems several points can be made: 

In the course of this work the CAE tool N.mPc 

clearly proved to be useful as a hardware design and 

simulation tool. A system could be simulated and 

tested in a relatively short period of time. 

Frequent 	design changes 	to 	the 	simulated 

multiprocessor architecture showed the flexibility 

of N.mPc as a hardware design and simulation tool. 

On the other hand, several limitations, mentioned 

earlier in this summary, to N.mPc have been 

identified. They tend to severely reduce N.mPc's 

utility in the simulation and testing of fully 

integrated multiprocessor systems. 

A new version of N.mPc, called N.2, has been 

introduced by the vendor and will be available on 

the VAX/VMS environment. The new version N.2 

incorporates a few features aiming towards making 

the original N.mPc more powerful. The enhancements 

made to N.mPc will offer only marginal improvements 

in the limitations of the package with respect to 

the simulation of fully integrated systems. It is 

felt that substantial changes in the structure of 

the package will be needed to make it applicable to 



a true top-down design approach. 	In view of future 

simulation work it is expected that the next 

generation of CAE tools will be endowed with top-

down design and simulation features to allow the 

designer to follow a methodology in which he can 

test the lower level modules of the operating system 

down to register transfer level of details. Higher 

level modules can then be simulated and tested with 

the already tested lower levels replaced by macro 

instructions or functional blocks. This will 

enhance the simulation performance by several orders 

of magnitude over what is currently attainable by a 

tool like N.mPc. It will then make it possible in 

practice to simulate a sophisticated system such as 

the fault tolerant architecture reported here in its 

full fledged configuration in a reasonable period of 

time and using modest computing resources. 

The fault tolerant architecture simulated in this work is 

useful in many practical applications requiring continuous 

unattended operations. In addition to spacecraft on-board 

processing, these applications include computer communication 

switching gear, 	nuclear plant monitoring and processing 

applications, data collection and distribution in 

environmental and resource management applications and in on-

site processing of remote sensing data. 

vi 



TABLE OF CONTENTS 

VOLUME 1 

1. INTRODUCTION 	 1 
1.1. Simulation Objectives 	 1 
1.2. Report Structure 	 4 

2. SIMULATION IMPLEMENTATION DESCRIPTION 	 5 

2.1. Simulation Environment 	 5 
2.2. Fault Tolerant Multiprocessor System Overview 	7 
2.3. Luplementation of the Fault Tolerant Hardware Simulation. .12  

2.3.1. The Central Control System 	 12 
2.3.1.1. Processor Module 	 12 
2.3.1.2. Processor Network 	 12 

2.3.2. The Peripheral Interface System 	24 

2.3.2.1. The Interface Processor 	24 
2.3.2.2. The Peripheral Processor 	26 
2.3.2.3. The Peripheral Network 	26 
2.3.2.4. The Gate Complex 	 27 

2.3.3. The System Reset Mechanism 	 47 
2.4. Fault Tolerant Operating System Implementation 	47 
2.5. System Integration 	 47 

3. FUNCTIONAL TESTING OF THE SIMULATED HARDWARE SYSTEM 	52 

3.1. Simulation Limitations 	 52 
3.2. Test Plan and Approach 	 54 

3.2.1. Objectives 	 54 
3.2.2. Test Plan 	 54 

3.3. Test Software 	 55 
3.3.1. Functional Definition 	 55 

3.3.1.1. Test of the Hardware Modules 	55 
3.3.1.2. Test of the Full Fault Tolerant Interface 	57 

3.3.2. Implementation Description 	 58 
3.4. Test Results 	 58 

3.4.1. The Hardware Modules Test Simulation 	58 
3.4.2. Results of the Test of the Full Fault Tolerant 

Interface 	 62 

4. FUNCTIONAL TESTING OF THE INTEGRATED OPERATING SYSTEM SOFTWARE 
AND THE SIMULATED HARDWARE SYSTEM 	 68 

4.1. Limitations of N.mPc Simulations 	 68 
4.2. Test Plan and Approach 	 70 

4.2.1. Objectives 	 70 
4.2.2. Test Plan 	 71 

4.3. Test Software 	 71 
4.3.1. Functional Definition 	 71 
4.3.2. Implementation Description 	 75 

4.4. Test Results 	 76 

5. SUMMARY AND CONCLUSIONS 	 79 

6. RECOMMENDATIONS FOR FUTURE WORK 	 86 

REFERENCES 



VOLUME 2 

APPENDICES 

APPENDIX A: THE SIMULATED HARDWARE SYSTEM 

A.1: 	N.mPc Listings of the Simulated Hardware System 

A.1.1: 	Description of the Hardware Modules 
(ISP Source Files) 

A.1.2: 	Topology Files 

A.2: Test Software 

A.2.1: 	Hardware Module Test Simulation 
(in "persim" directory) 

A.2.2: 	Simulation of Full Fault Tolerant Hardware 

A.3: Installation Procedures 

A.3.1: 	Hardware Module Test Simulation 

A.3.2: 	Fault Tolerant Hardware Simulation 

A.4: Test Runs 

A.4.1: 	Hardware Module Test Simulation 

A.4.2: 	Fault Tolerant Hardware Simulation 

APPENDIX B: INTEGRATED OPERATING SYSTEM SOFTWARE AND SIMULATED HARDWARE 
SYSTEM 

B.1: Operating System Software Listings 

B.2: Test Software Listing 

(Hardware Dependent Communication Routines) 

B.3: Installation Procedure 

B.4: Test Run 

B.5: Topology File 
("CPCPCOM.T") 



LIST OF FIGURES 

2-1: Elements of the N.mPc System 	 6 

2-2: Overview of the Fault Tolerant Hardware System 	9 
2-3: The Fault Tolerant Operating System 	 10 
2-4: The Central Control System 	 13 
2-5: Central Processor Module 	 14 
2-6: The Intel 8086 CPU Module 	 15 
2-7: The Memory Module 	 16 
2-8: The Timer Module 	 17 
2-9: Block Diagram of a Transmitter 	 19 
2-10: Block Diagram of a Receiver 	 21 

2-11: Block Diagram of Central Processor Interconnection 	22 
2-12: The Transceiver Module 	 23 
2-13: The Interface Processor Module 	 25 
2-14: Connection of Processors to the Redundant Bus 	28 
2-15: The Transmitter Module 	 29 
2-16: The Receiver Module 	 30 
2-17: Block Diagram of a Gate Complex 	 32 
2-18: Implementation of a Gate With Agreement 	 33 
2-19: Parallel Dnplementation of a Gate 	 34 
2-20: State Diagram of a Peripheral Processor Guardian 	35 
2-21: Commands for Peripheral Processor Guardians 	37 
2-22: State Diagram of Interface Processor Guardian 	38 
2-23: Commands for Interface Processor Guardians 	39 
2-24: Example of Guardian Operation 	 41 
2-25: The Gate Module 	 42 
2-26: The Guardian Module 	 43 
2-27: Initialization of the Guardians 	 45 
2-28: The Initialization Module 	 46 
2-29: N.mPc Simulation of the Fault Tolerant Hardware Architecture 	49 
2-30: Integration of the Fault Tolerant System 	50 

3-1: Partial Simulations of the Fault Tolerant Multiprocessor 
Architecture 	 53 

3-2: Topology of the Test Simulation for the Hardware Modules 	56 
3-3: Block Diagram of the Test Simulation for the Hardware Modules 	59 
3-4: Topology of the Test Simulation for the Full Fault Tolerant 

Hardware 	 63 
3-5: Block Diagram of the Test Simulation for the Full Fault 

Tolerant Interface 	 64 
3-6: Initial Configuration of Fault Tolerant Hardware 	66 

3-7: Reconfigured Fault Tolerant Hardware after Detecting a Failure 
of Peripheral Inèerface Bus Number 1 	 67 

4-1: Block Diagram of the Fault Tolerant Operating System/Hardware 
Integration Simulation 	 72 

4-2: Message Passing Loop Formed by Four Central Processors 	74 
4-3: Topology of the Fault Tolerant Operating System/Hardware 

Integration Simulation 	 77 



I. INTRODUCTION 

The simulation activity described in this report is part of an 

overall study which includes the design and simulation of a fault 

tolerant architecture for multimicroprocessors. The main focus of the 

overall study, however, has been on the development and utilization of 

computer aided engineering (CAE) design tools. One of these CAE design 

tools, known as N.mPc, is currently running on the VAX/VMS 11/780 system 

located in the Analysis and Simulation laboratory of the Communications 

Research Centre, Department of Communications. 	The N.mPc package is 

used as a simulation environment for the work reported here. 	A user 

manual [24] and a system manual [16] for N.mPc are currently available 

and should be reviewed by the reader as background material for the 

simulation work described in this report. 

A conceptual design for the hardware architecture was completed and 

reported in [14]. As well, a fault tolerant operating system was 

developed [7] and simulated separately using the C programming language 

under the VAX/VMS environment. The simulation conducted here integrates 

certain parts of the operating system with the hardware architecture 

using the N.mPc simulation package. While a brief review of both the 

hardware architecture and the operating system is provided in this 

report, it is essential for the reader to consult references [7] and 

[14] in order to gain full appreciation of the material presented in the 

following sections. 

This study was conducted for the Communications Research Centre 

under a DSS contract. 

1.1. Simulation Objectives  

The main objectives of the simulation conducted here are: 

1 



1. To test the fault tolerant features of the hardware and to 

examine in detail their behaviour when faults or errors take 

place. 

2. To provide a test bed which will make it possible to vary the 

structure of the fault detection and recovery components and 

to compare the effectiveness and performance of various 

alternatives. 

3. To test the interfaces between the low level layers of the 

operating system and the hardware and verify the completeness 

of the description of these interfaces. 

While the ultimate objective of the simulation is to integrate 

fully the hardware architecture and the fault tolerant operating system, 

the work reported here includes a partially integrated system since only 

certain modules of the operating system have been integrated with the 

fully simulated hardware. Limitations of time and resources plus a 

number of technical reasons (described in section 4.1 and in section 5) 

have constrained the current effort towards full integration. 

The simulation approach to hardware design was chosen because it 

offers considerable benefits in the early stages of the design process. 

Traditionally, microcomputer based products are designed according to 

the following steps: 

1. The necessary hardware components are built. 	This usually 

includes the microprocessor itself as well as other peripheral 

components. 

2. Software is written for the target machine. 

3. Software and hardware components are integrated and tested. 

Very frequently, the software is produced on a host machine 

using a cross development package, if available. 

2 



The development process usually involves many time consuming and 

costly iterations. A CAE tool such as N.mPc improves the situation by 

providing a simulation environment which is suitable for testing many 

design alternatives in a short period of time. The implications of 

using N.mPc are as follows: 

1. It is no longer necessary to build the hardware components at 

the beginning of the design work. Instead, N.mPc provides 

what amounts to a micro-programmable, register transfer level 

machine which can be programmed to emulate the target hardware 

completely. In other words, a designer working on a VAX host, 

for example, could create a VAX executable program which, when 

run, would emulate the target hardware. 

2. N.mPc provides a totally programmable cross development 

package for the software to be written in assembly language. 

The work documented in this report also uses an enhanced 

software development environment permitting to write software 

in the C high level language. 

3. The rationale for using a tool such as N.mPc is that 

programmability implies flexibility. Given that a base 

exists, i.e. most of the hardware emulation is available as 

well as the cross development package, a designer can alter 

the design parameters with ease and test various alternatives 

without committing to any hardware choice. The advantages and 

disadvantages of the above mentioned design methodology are 

also discussed in [16]. 

3 



1.2. Report Structure  

Section 2 of this report describes briefly the conceptual design of 

the fault tolerant multiprocessor architecture and provides an overview 

of the simulation of the hardware using N.mPc. 	An overview of the 

operating system is also included in section 2. 	The testing of the 

simulated fault tolerant hardware architecture is documented in section 

3. 	Section 4 reports the testing of the hardware dependent routines of 

the fault tolerant operating system. 	It is shown that these routines 

constitute an interface between the fault tolerant operating system and 

the hardware. Conclusions as well as a summary of achievements are 

found in section 5. Section 6 contains recommendations for future 

simulation work. 

All appendices are contained in volume 2 of this report. 

4 



2. SIMULATION IMPLEMENTATION DESCRIPTION 

2.1. Simulation Environment  

The N.mPc package, running on a VAX 11/780 (located at CRC) and the 

VMS operating system, provided the simulation environment for the work 

presented here. A brief description of N.mPc is presented in the 

following. 

N.mPc consists of six components used to describe the hardware 

behaviour of a target system and to execute the simulation of that 

system. Figure 2-1 illustrates the components of N.mPc and their 

interaction. 

The Meta-micro assembler and the linking loader are used to 

generate the software which is to be executed by the simulated hardware 

components if these are programmable. Both are driven by a description 

of the instruction set of a target machine and can be made to generate 

code for either vertically or horizontally programmed machines [16]. 

The linking loader produces code which is executed by a simulated 

processor or by an actual machine. The ISP compiler is used to produce 

simulation modules for individual processors and other hardware 

components of a system. 	The input language of the compiler is the ISP' 

language which allows the specification of states for the implementation 

of processor registers and flags, memories for the simulation of memory, 

and ports which allow input to and output from simulated hardware. 

The N.mPc ecologist and a simulated memory processor link the ISP' 

processor modules with the linking loader outputs in order to form 

complete simulations. A run-time package is used to execute a 

simulation and to allow extensive user interaction with the simulation. 

5 
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Other reports directly related to this work describe the conceptual 

design of a fault tolerant multiprocessor operating system [7] and of a 

fault tolerant architecture for multiprocessor systems [14]. Further 

information on N.mPc and work in the area done at Intellitech is given 

by references [8, 16, 20, 23, 24] as well as the original N.mPc 

documentation listed as references [1-6, 9-13, 15, 18, 21, 22]. 

N.mPc is used to simulate the fault tolerant multiprocessor 

architecture by first producing descriptions of all necessary hardware 

modules in N.mPc's hardware description language ISP'. The next step is 

to describe an interconnection scheme for the simulated hardware 

components of the multiprocessor architecture. 

Following the hardware description, some test software for the 

programmable hardware modules (descriptions of the Intel 8086 

microprocessor) has to be developed. Simulated hardware and test 

software for the microprocessors are integrated under N.mPc to form an 

executable simulation that allows testing of the fault tolerant 

multiprocessor architecture. The behaviour of the multiprocessor system 

in response to certain failures can also be simulated. 

2.2. Fault Tolerant Multiprocessor System Overview 

This 	section presents 	an .overview of 	a fault 	tolerant 

multi-microprocessor 	system 	for 	spacecraft 	on-board 	processing 

applications. The fault tolerant multiprocessor architecture can also 

be used in general applications requiring a high degree of reliability 

over a specific processor life cycle. 
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The approach chosen for the design of the fault 	tolerant 

multiprocessor system is novel in the sense that fault tolerant features 

and supporting mechanisms are embedded in both the hardware architecture 

and the operating system software. The hardware has multiple redundant 

components that are controlled by fault detection mechanisms in order to 

prevent the propagation of errors from the faulty component to the 

remainder of the system. The operating system software contains all the 

intelligence needed to detect errors, identify their sources, take the 

necessary action to remove faulty units, reallocate the processing tasks 

and reconfigure the system to adapt to the new operational state. 

Figure 2-2 gives an overview of the fault tolerant multiprocessor 

architecture which is aimed primarily for spacecraft on-board processing 

applications. The central processors (CPs) share the computational load 

of the satellite and are the highest onboard processing authority. They 

are built as a fault tolerant structure and employ redundancy to ensure 

reliability. The peripheral processors usually operate alone and can be 

considered as slave processors controlled by the central processors. 

Another set of processors, the interface processors (IPs), provides an 

interface between the loosely coupled central processors and the tightly 

coupled peripheral network. The "gate complexes" come in groups of four 

since four redundant buses are used in the interface between central and 

peripheral processors. They are redundant components controlled by 

fault detection mechanisms ("guardians") in order to isolate the sources 

of error and prevent the proliferation of these errors from the faulty 

component to the remainder of the system. 

Figure 2-3 shows the different layers of the fault tolerant 

operating system. 	At the lowest level is the hardware itself. 	The 
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layer above that, the message passing kernel, is a simple message 

passing system without any fault tolerant features but providing the 

basic operating system functions. The layer above the kernel implements 

the virtual machine visible to the application tasks and fault tolerant 

facilities such as error detection, message traffic control, voting, 

buffer management, task scheduling and reconfiguration. The next higher 

layer, the processor manager, does not incorporate fault tolerance 

mechanisms but directs and coordinates most of the fault handling 

mechanisms of the layer below itself. Sitting on top of the processor 

manager layer are the global fault tolerant facilities (the global 

executive), which  are  responsible for synchronization and 

reconfiguration. The global executive handles the assignment of tasks 

to processors, reconfiguration of the system around failed parts, 

isolation of faulty parts, system updates, etc. To ensure that the 

global executive, the highest on-board authority of the satellite 

processing system, operates without faults, it is tnplemented in 

multiple copies and is executed on multiple processors. 

Examples of the hardware faults which can be tolerated 	(le. 

recovered from) by the full fault tolerant multiprocessor system 

include: 

- Malfunction of a central processor. 

- Malfunction of an interface processor. 

- Failure of one of the redundant buses between interface and 

peripheral processors. 

- 	A failing peripheral processor (device) is simply cut off from 

the redundant bus by its guardians. 

Failure of a gate complex (guardians, gates). 

- Errors in received data due to hardware failures. 

11 



2.3. Implementation of the Fault Tolerant Hardware Simulation  

This section describes the implementation of each hardware module 

needed for the simulation of the fault tolerant multiprocessor 

architecture. The interconnection of all hardware modules, resulting in 

a full fledged fault tolerant mul.tiprocessor hardware architecture, is 

then shown. 

2.3.1. The Central Control System 

2.3.1.1. Processor Module  

The central control system consists of a number of loosely coupled, 

fully interconnected processor modules as shown in Figure 2-4. Each 

processor module consists of an 8086 CPU, a memory, a timer, 3 ports for 

communication between central processors and 5 ports for communication 

to and from all interface processors. 	Figure 2-5 shows a central 

processor module. 	The 8086 CPU and the memory(16k, RAM) have been 

discussed in detail in [20]; Figures 2-6 and 2-7 show their ports and 

interconnection within the system. The timer shown in Figure 2-8 is 

able, when adressed, to stop the CPU for a duration of time that can be 

specified. 

2.3.1.2. Processor Network  

In this section the ways in which the various modules of the fault 

tolerant system communicate will be presented. 	Communication is 

effected through a number of communication ports. 	Depending on their 

use communication ports may differ but they all consist of the same 

basic units, namely a transmitter and a receiver. 

Communication ports intended to connect central processor modules 

to other central processor modules consist of both a transmitter and a 

12 
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receiver. 	Although united in one module(trx.isp) transmitter and 

receiver operate independently of each other. 	Each central processor 

module has a dedicated port connected to every other processor module so 

that a fully interconnected system is formed. 

In addition the central processor modules have a single transmitter 

and a number of receivers that handle the communication with the 

interface processors. This special interface is necessary because of 

the synchronous nature of the interface processors. 

The block diagram of a transmitter is shown in Figure 2-9. 	The 

transmitter consists of a FIFO queue and a serializer that converts the 

parallel data into serial data ready for transmission. 	The serializer 

can be thought of as the transmitter part of a UART. 	The FIFO queue 

serves to offload the processor from continuously checking 	the 

transmitter and to give the transmitter the capability of autonomous 

operation for a certain length of time. The size of the FIFO is chosen 

so that the transmitter can operate without any attention from the 

processor for the duration of the time slice of a task. In other words 

the transmitter requires the attention of the processor only during a 

context switch. This greatly simplifies the design and implementation 

of the operating system. 

For example a processor module that wishes to send a message to 

another module can write the message into the transmitter FIFO and then 

proceed with its other tasks while the transmitter is sending the 

message. 	The processor sees the transmitter as a pair of I/O  ports. 

One is a data port and the other is a command port. 	Data written into 

a data port are placed in the FIFO and transmitted. 	The command port 

is addressed by using the normal data port I/O  addresses (E0-E7) 
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increased by eight (E8-EF). 	The command port enables the processor to 

control the transmitter and to check its internal status. 	The main 

interest here is in being able to reset the transmitter and to check if 

the queue is full. 

The 	structure 	of the receiver, 	shown in Figure 2-10 	is 

complementary to that of the transmitter. 	The receiver consists of a 

deserializer and a FIFO. The deserializer is actually the receiver part 

of the UART. When a byte of data has been collected it is placed in the 

FIFO for pickup by the processor. 	Like the transmitter, the receiver 

appears to the processor as a pair of ports. 	One port is a data port 

and the other a command port. A read from the data port will return the 

first byte in the FIFO. If the FIFO is empty the result is undefined. 

The command port enables the processor to control the receiver and check 

its status. Presently we need to be able to reset the receiver and 

check if the queue is empty or if it has overflowed. 

In the N.mPc simulation the serializer and deserializer have been 

omitted. Instead data is sent one byte at a time. Also a handshaking 

protocol has been included to ensure reliable communication through 

interconnections shown in Figure 2-11. This simplifies the simulation 

without affecting 	its validity. 	Appropriate delays have been 

incorporated in the simulation of the transmitter. They simulate the 

delays caused by serial transmission of data. For communication between 

central processors and interface processors, as well as for inter 

central processor communication, receiver and transmitter have been 

united in one module called "transceiver" (trx.isp). Figure 2-12 shows 

the transceiver which can be used for two way communications or also 

just as a receiver or transmitter. The ISP description files for the 
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transceiver (transmitter-receiver) and the timer are given in Appendix 

A.1. 

2.3.2. The Peripheral Interface System  

2.3.2.1. The Interface Processor  

In [14] it was determined that the peripheral interface system must 

provide an interconnection between the loosely coupled 	central 

processors and the tightly coupled redundant bus (also called 

"Peripheral Interface Bus", PIB) without introducing a single point of 

failure. To accomplish this a number of interface processor modules and 

fault tolerant hardware interfaces ("gate complexes") are used. The 

overview of the multiprocessor architecture in Figure 2-2 depicts the 

situation. 

The interface processor modules are no different from the central 

processor modules in so far as they both contain the same 8086 CPU, 

memory and timer. However, the interface'processor modules do have a 

different set of communication ports. Figure 2-13 shows the components 

that are part of an interface processor module. 

The communication ports on the interface processors that connect 

them to the processor modules of the central system are identical to the 

ports that interconnect the processor modules to each other. However 

the ports that connect the central processor modules to the interface 

processors and the ports that connect the interface processors and the 

peripheral processors to the redundant bus are different. 	These ports 

consist of a single transmitter and a number of receivers. 	In both 

cases 	the transmitter broadcasts to all concerned units (either 

interface processors or buses). 	However there is a dedicated receiver 

for each distinct unit that is connected. 
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In the case of the central processor modules the single transmitter 

ensures proper communication between the loosely coupled central system 

and the tightly coupled interface processors. In other words it ensures 

that all the interface processors will receive their copies of the 

message simultaneously. 	This is essential for the interface processors 

to remain in perfect synchronization. 	Even if the central processors 

were synchronous the time difference between sending the same message to 

different interface processors would be enough to throw them out of 

synchronization. In the case of the interface processors the processors 

need not know to which of the redundant buses they are connected. So 

they simply transmit through a single transmitter and the gate complexes 

ensure that only the proper bus is driven. 

2.3.2.2. The Peripheral Processor  

The peripheral processor module is virtually identical to the 

interface processor module shown in Figure 2-13. The only difference 

between the two is that a peripheral processor is not connected to the 

central processors and therefore does not need the four I/O  ports used 

for this purpose in the interface processors. 

2.3.2.3. The Peripheral Network  

An interface processor has one communication port for 	each 

processor in the central control system. 	No special care need to be 

taken for these ports since the central control system is asynchronous. 

Actually these ports are identical to the ports the central processor 

modules use to communicate with each other. Aside from these ports the 

interface processor also has a single transmitter and four receivers. 

The function of the transmitter is to drive one of peripheral interface 

buses whereas the four receivers "listen" to the four peripheral 
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interface buses. 	Figure 2-14 shows the connection of interface 

processors to the peripheral interface bus. 

Actually any interface processor only drives one of the buses that 

comprise the peripheral (redundant) bus. However this is taken care of 

by the gate complexes and is of no concern to the interface processor. 

An interface processor also has a number of receivers. The function of 

these receivers is to pick up bit streams from the peripheral bus. Each 

receiver picks up data bits from only one of the buses. Thus by 

comparing the bit stream received from different receivers, it will be 

possible for the interface processor to detect bus failures. 

Two of the interface processor elements, the transmitter and the 

receivers for the communication via redundant bus, have not previously 

been presented in detail. The ports and interconnection of transmitter 

("gtintrfc.isp") and receiver ("bsfifo.isp") are given in Figures 2-15 

and 2-16. 

Both receiver and transmitter use a simple handshake protocol to 

receive data from or send data through the redundant bus. This protocol 

is different from the one used for communication between central 

processors. 	The receiver automatically puts data received from the 

redundant bus in a queue. 	Before the 8086 CPU reads from the queue it 

can (and should) test whether the queue is empty or not. 	The 

transmitter takes data sent to it by a CPU and automatically puts it on 

the redundant bus, where it is received by any "listening" receiver. 

2.3.2.4. The Gate Complex  

A gate along with a number of guardians form a gate complex. 	The 

function of a gate complex is to allow a processor to access a bus in a 

controlled and fault tolerant fashion. 	The block diagram of a gate 
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complex is shown in Figure 2-17. 	The complex consists of a gate and 

three guardians. 	Each processor connected to the peripheral network is 

connected to each of the buses that form the redundant bus via a 

distinct gate complex. 	It is essential that no two gate complexes have 

any hardware in common so that hardware failures are as local as 

possible. 	Thus it is not possible to utilize a quad buffer chip to 

implement four gates. 	Each gate must be physically separate from any 

other gate. 

A gate allows a processor to access the bus only if it is enabled 

by all its three guardians. Each guardian enables its gate only after 

having been switched on during the initialization or after receiving 

appropriate commands from the redundant buses. 

A gate is a simple tri-state buffer with multiple enables. 	Since 

the peripheral buses are serial the gate only needs to control one line. 

A gate can be implemented simply as a combination of two standard TTL 

gates as shown in Figure 2-18. 

For simulation purposes the peripheral buses were implemented as 

byte wide parallel buses. 	This was done to avoid the unnecessary 

overhead of simulating serializers. 	Instead the gate has become a byte 

wide buffer that operates much like the single bit version described 

above. 	The block diagram of this implementation is given in Figure 2- 

19. 	The other important components of a gate complex are the 

"guardians". 

Basically a guardian is a simple finite state machine. 	The state 

diagram of a guardian used in the gate complexes of peripheral 

processors is given in Figure 2-20. This FSM has a number of inputs and 

a single output. 	Normally a guardian is idle with its output set so as 

to disable the gate. 	At this state the peripheral processor guardian 

31 



7 
G 

BUFFER 

Figure 2 - 17: Block Diagram of a Gate Complex 



r FROM 

GUARDIANS 

BUFFER 

Figure 2-18: Implementation of a Gate With Agreement 



FROM 

GUARDIANS 

-1 

1 

BUFFERS 

Figure 2-19: Parallel Implementation of a Gate 



Figure 2-20: State Diagram of a Peripheral Processor Guardian 



monitors the bus until it recognizes a command on it. 	The list of 

commands a peripheral processor guardian can recognize is given in 

Figure 2-21. Leaving the special case of a change in the triad of 

active buses, a peripheral processor guardian will remain idle until it 

recognizes either a Select or an Enable command. When a Select command 

is detected the guardian sets an internal flag and awaits an Enable 

command. As soon as the Enable command is received the guardian sets 

its output so as to enable the gate and leaves it enabled for a fixed 

period of time. 	At the end of this time period the guardian disables 

the gate and returns to its idle state. 	If an Enable command is 

detected but the guardian has not received a Select command then the 

guardian does not enable the gate. 	However it still waits for the same 

fixed period of time. 	While waiting the peripheral processor guardian 

ignores the bus and any information on it. 	Thus it is not possible for 

some data on the bus to be interpreted as commands and cause erroneous 

operation of the system. 

The operation described above only refers to a guardian attached to 

a peripheral processor or a peripheral device. Guardians attached to 

the interface processors have a slightly different state diagram, as 

shown in Figure 2-22. 	Figure 2-23 shows that the commands they 

understand are also slightly different. 	Such a guardian will still 

ignore the bus for a fixed period of time after it detects an Enable 

command. However once enabled it remains enabled until explicitly being 

disabled. Thus an interface processor that has been given control of a 

bus maintains this control except for the short periods of time that it 

grants the bus to a peripheral for some data transfer. 
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Figure 2-24 shows the outputs of the two types of guardians as a 

function of time and of the commands received. We can observe how the 

guardian of a peripheral processor is normally OFF whereas the guardian 

of an interface processor is normally ON. 	When the guardian of the 

peripheral processor is selected its output does not change. 	However, 

when the Enable command is sent its output is activated and remains so 

for a fixed period of time. During this time all other guardians in the 

system disable their outputs. 

The two types of guardians as described above have been implemented 

and tested in N.mPc. A detailed description of ports and 

interconnection within the system of gate and guardian modules is given 

by Figures 2-25 and 2-26. Note that a guardian attached to a peripheral 

always starts in the OFF state whereas a guardian attached to an 

interface processor may start either in the OFF or in the ON state. In 

actual hardware this will be controlled by a jumper or a switch. In the 

simulation some guardians always start in the ON state. Namely the 

guardians that start in the ON state are selected so that each of the 

three initially active interface processors will have access to one of 

the initially active buses. 	This is essential for the system to be 

operational after initialization. 	It is now necessary to discuss the 

guardian initialization process in more detail. 	The initialization 

process provides all guardians with an identification number and informs 

every interface processor guardian whether it should initially be turned 

on or off. In actual hardware one would simply use a dipswitch per 

guardian in order to distribute an ID and initialization information to 

each guardian. As there would be independent switches for each 

guardian no single point of failure will be introduced. However, in the 
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simulation context the dipswitches were replaced by an initialization 

mechanism that was easier to build and handle than sixty dipswitch 

modules. 	Figure 2-27 shows the initialization circuitry of the 

guardians. 	An initialization module distributes the initialization 

information using a special bus ("numbus"). 	Through another line 

("enin", "enout") a token is passed from guardian to guardian as each 

one receives its initialization word. 	A "reset" signal allows to 

reinitiate the guardian initialization whenever necessary. 	The most 

significant bit of the initialization word is recognized by the 

interface processor guardians (only) and tells them whether they should 

initially be switched on or off. The rest of the initialization word is 

used to distribute ascending identification numbers to each guardian. 

Multiples of four are not used as guardian identifiers. This measure 

makes it possible to address all three guardians (plus the nonexisting 

one with an ID that is a multiple of four) associated with a certain 

gate with one single command. In the guardians this feature is 

implemented by having them recognize commands based on an ID whose two 

least significant bits are truncated. Figure 2-28 shows the 

initialization module in detail. It contains the IP-guardian 

initialization information and may therefore be different if different 

hardware is simulated. The initialization also distributes 

identifications to all transmitters and receivers via ports that are 

initialized to a certain value using the ISP initialization mechanism. 

The transmitter/receiver modules get these values by connecting a line 

to the appropriate initialization module port. 
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2.3.3. The System Reset Mechanism 

The system reset mechanism description given in [14] was formulated 

with a view towards system implementation in real hardware. 	Thus 

powering down" of microprocessors and running of self test routines 

were not considered in the context of the simulation work presented in 

this report. However, the hardware simulation has the capability of 

reactivating the guardian initialization mechanism. This capability is 

described in Section 2.3.2.3. 

2.4. Fault Tolerant Operating System Implementation 

The fault tolerant operating system has been developed keeping in 

mind that it should be easy to port it from its host computer based 

development environment (described in [7]) to some specific target 

hardware. Therefore the only hardware dependent communication routines 

are four utility routines called by the message passing kernel for doing 

inter processor communications. 

The communications routines necessary to run the fault tolerant 

operating system on Intel 8086 based hardware (simulated or real) were 

written and tested on simulated hardware and are described in section 4. 

2.5. System Integration  

This section explains how to integrate the fault tolerant operating 

system with the simulation of the fault tolerant hardware architecture in 

order to form a fault tolerant multi-microprocessor system. 

The first step is to design descriptions of all the necessary 

hardware components in N.mPc"s hardware description language ISP'. 

These components are then interconnected according to the design of the 

fault tolerant *multiprocessor architecture and the interconnection 
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information is stored in a topology file. 	Figure 2-29 shows the 

hardware modules involved in the simulation of the fault tolerant 

multiprocessor architecture as well as their interconnection. 

The next step is to load the operating system software in the 

processor's memories. The enhanced software development environment (C-

8086 cross compiler) described in [20] is used to load the software of 

the fault tolerant operating system, written in the C language, into the 

memories of all central processors. For the interface processors and 

the peripheral processor special drivers written in assembly code are 

loaded. 	Software and hardware of the entire system can now be 

integrated under N.mPc as shown in Figure 2-30. 	The simulation is then 

put 	in the runtime mode and the processors 	are initialized 

appropriately. 	The simulated fault tolerant multiprocessor system will 

be ready to run at this point. 

The methodology outlined above for the integration of the operating 

system code with the simulated hardware architecture is general and will 

definitely lead to a fully integrated system simulation. In this study 

the full integration was not accomplished due to the following reasons: 

The 	slow execution speed of N.mPc mitigates 	against 

conducting fault tolerant tests in a reasonable time period. 

This is due to the fact that the execution of each single 

operating system instruction involves detailed and numerous 

register transfer level instruction executions with N.mPc. 

Since the task execution cycles of the operating system are 

fairly lengthy to begin with, the corresponding number of 

executions within N.mPc will be extremely large, which leads 

to prohibitively long simulation times. 

48 



	61 16 

• 26 

• 36 

46 

63 F 

H 64  

1 met  

1  8086 	1 

1 TIM 

• • 18 

28 27 

J
3 • 38  

447  * 48 

Ipe  

r—  ME17171 

1 	8086 /- 

1 TIM 	11 

CT1 

It  

81  

82 

83 	}- 	 

84 1  

BS I 	.1 	 

BS I 	1 	 

BS I 	•I 	 

_71 	r  

72  

73 

74 

mr  

8s [  1- 

BS I 

BS I 

'FF70  

BSI 

am 
1P5 

GT1 

8sr 

BS I 1  CT I 

C RDO I 

CATE I 

GRD02 GRD03 

12 1  9E1.1  

1  8086 1.  

1  MEM  

1  8086 1--1 13 

TIM TIM 1--1 

23 UM 

24 Me 

25 	52 

Fm2:numili 62 

27 	72 

28 	82 

54 51 

6 

Ht  
81 

-1 	41 

-1 	42 	I 

H 
46 

47 	7 

48 	8 

1.4-  4 	j 

I .FF.11  

1 	1- 	-1 	34  

q 35 	1•"--* 53  

	

35 	63 

	

"i  37 
	

- 38 	83 

MEM  

8086 I- 

T I M 	.1 	14  

L- 11 	1 	61• 

17 	1. I 	a71  

H 

CP 

MEM 

8086 

I TIM 

MEM 

8086 

TIM 

• 15 

• 25 

• 35 

• 45 

51 

52 

53 

54 	• 

IJP71 	I  

4 CC 

GRD78 GRD79 

"."-{ 	BS 1 

- BSI 

mr 

as'  

4  CC  

• 1 

144•: 

F14/• 1 

0144 

GRD77 

Figure 2-29: N.mPc Simulation of the Fault Tolerant Hardware Architecture 



IEP' Prime Source Code 
User 
Commands 

Simulations 
Output 

".obj" files 
max86cpu.isp 
86mem.isp 
timer.isp 
trx.isp 

' 
Ise 

bsfifo.isp 	Compiler 
' 

gtintrfc.isp 
gate.isp 
initipg.isp 
ppgrd.isp 
idgen.isp 

FT Multiprocessor 

Architecture Topolom 

simul.t 

simul.s 

simul.exe 

RUNTIME PACKAGE 
'Simulation Progress 
'Command, Interpreter 
'Simulated Memory Manager 

Trace 
Output 

simuLd 
simul.f 

romcore.p 

(2) "copy ftos.out cpcorel.' 
"copy ftos.out cpcore2." 
"copy ftos.out cpcore3." 
"copy ftos.out cpcore4." 

"copy ipdriver.out ipcore5." 
"copy ipdriver.out ipcore6." 
"copy ipdriver.out ipcore7." 

"copy ipdriver.out ipcore8." 
"copy ppdriver.out ppcore9." 

simul.x 

ftos.s 

ps 
ipdriver.
pdriver. 

OTOL 
(object to 1.out) 

Cross 

Assembler/ 

Linker/Loader 

C Source 
Program  

ftos.c 

1 

1 

1 

ftos.out 
1  ipdriver.out 
1 ppdriver.out 
1 

in "isplibr" directory 

1) "@86asmotol ftos" 
"@86asmotol ipdriver" 
"@86asmotol ppdriver" 

Figure 2-30: Integration of the Fault Tolerant System 



- 	The full operating system code, written in C programming 

language, proved to be lengthy and complex which makes the 

debugging process of the code, when executed under N.mPc, 

intractable. 

The N.mPc code corresponding to the VLSI structure of the 8086 

chip details is not guaranteed to be absolutely correct. This 

complicates the debugging process and makes it difficult to 

determine whether the source of a given bug is in the VLSI 

description or in the complex operating system code. Note 

that this problem is inherent to any complex VLSI design such 

as the 8086 processor. 

In summary a full integration of the fault tolerant hardware and 

the operating system software proved to be beyond the time and resources 

allocated for this study. 

The functionality of the operating system software was tested 

separately in a "C" based testbed as described in [7]. In 	the 

simulation of the fault tolerant multiprocessor system the 	full 

operating system software was replaced by a module exercising the 

hardware dependent communication routines used by the message passing 

kernel. The testing of the fault tolerant hardware and the application 

of different failure conditions to the simulated system have been 

conducted under the N.mPc environment in order to validate the concepts 

developed in [7, 14]. 
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3. FUNCTIONAL TESTING OF THE SIMULATED HARDWARE SYSTEM 

3.1. Simulation Limitations 

In N.mPc based hardware simulations the execution speed 	is 

inversely, proportional to the complexity of the simulated hardware. In 

microprocessor based simulations this means that the execution speed of 

the total simulation will decrease in proportion to the number of 

microprocessors simulated. Validation of the architectural hardware 

concepts does not necessitate simulation of the entire fault tolerant 

hardware architecture as many modules are repeated in the structure. 

For this reason, the simulation has been broken down into smaller 

modules. 	This will speed up each simulation run without affecting the 

generality of the obtained results. 	The following module simulations 

have been created and are shown in Figure 3-1: 

i) A simulation involving an interface processor, a peripheral 

processor and their gate complexes. 

ii) A simulation with four interface processors, one peripheral 

processor and all the fault tolerant hardware. 

iii) A simulation of four fully interconnected central processors 

and their communication modules. 

Simulation i) is sufficient to exercise the basic properties of the 

elements of the fault tolerant hardware. Simulation ii) can demonstrate 

the synchronous functioning of the interface processors and makes it 

possible to test the fault tolerant hardware architecture in different 

failure conditions. Simulation iii) is used for the integration of the 

hardware dependent communication routines of the fault tolerant 

operating system with the simulated hardware architecture. 
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3.2. Test Plan and Approach  

3.2.1. Objectives  

The main objective of the simulation is to establish 	the 

correctness and completeness of the detailed descriptions of the 

hardware modules. Correctness of the interconnection (topology) of 

these hardware modules is also established through appropriate 

simulation tests. 

A second objective of the simulation is to demonstrate the ability 

the fault tolerant hardware to continue correct operation in the 

presence of (induced) faults and to perform a system reconfiguration 

upon detection of a hardware failure. 

3.2.2. Test Plan  

The test procedure includes bd0 steps. 	First the hardware modules 

and the guardian initialization mechanism are tested in a simulation 

involving one interface processor and a peripheral processor as well as 

all the fault tolerant hardware. This test should assess the functional 

correctness of the hardware modules. The test method applied consists 

in having appropriate test software exercise all the features of each 

hardware module. The result expected from this test should give a 

confirmation that 	the fault tolerant hardware needed 	for 	the 

multiprocessor architecture works exactly as specified in [14]. 

In a second test simulation, involving all four interface 

processors, the synchronous nature of the interface processors will be 

demonstrated. The fault tolerant system's ability to continue 

functioning correctly in the event of corrupted 	data, 	guardian 

malfunction or bus failure will be demonstrated. This test should also 

demonstrate the correct functioning of the full fault tolerant hardware 
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modules used to interface the central processors and the peripherals. 

The test method used in this simulation is selective fault insertion by 

the user in order to test the fault tolerant multiprocessor system's 

response. The expected results were the masking of single errors in 

input data by majority software voting, the cutting off of a device from 

its bus when one of its guardians fails and the reconfiguration of the 

fault tolerant hardware around the failure of a peripheral interface 

bus. 

3.3. Test Software 

3.3.1. Functional Definition 

3.3.1.1. Test of the Hardware Modules  

Testing the hardware modules is conducted via a simulation which 

involves an interface processor and a peripheral processor as shown in 

Figure 3-2 inside the enclosed area (i). Test software modules are 

needed to drive each processor. The listings of the interface processor 

driver ("iptest.s") and the peripheral processor driver ("pptest.s") 

used in this test simulation are found in Appendix A.2. 

The "iptest.s" program exercises all the states of the guardians 

shown in Figures 2-20, 2-22. It tests all guardian commands shown in 

Figures 2-21, 2-23. In cooperating with a program driving the peripheral 

processor the whole guardian operation sequence shown in Figure 2-24 was 

exercised in the test. The "pptest.s" module just waits until the 

peripheral processor guardians are enabled and then sends a message to 

the interface processor via the temporarily accessible peripheral 

interface bus. 	The guardian initialization mechanism, 	which 

independent of the test software, is also checked by this test 

simulation. 
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3.3.1.2. Test of the Full Fault Tolerant Interface 

This simulation is intended to demonstrate the fault tolerant 

system's capability to continue correct operation in the presence of 

specific user induced faults. The full fault tolerant interface, 

including four interface processors and a peripheral processor, is part 

of the simulation. The configuration is shown in Figure 3-1 inside the 

enclosed area (ii). 

The program driving the four interface processors ("fttest.s") does 

a majority vote on input data and then goes through normal operation of 

the fault tolerant interface and its guardians as shown in figure 2-24. 

The peripheral processor waits until it gets access to a peripheral 

interface bus, which means it has to wait until its guardians are 

enabled. It then sends data to the interface processors. 	If the user 

does not insert any faults this process continues indefinitely. 	The 

user can then insert simulated faults, causing the fault tolerant 

hardware and software to react in order to keep the system operating 

correctly. Three failure conditions have been simulated: 

1) The user can corrupt input data. A subsequent majority 

software vote in the interface processors can mask a single 

error. 

2) The user can change the gate enable output signal of a 

guardian to an incorrect state. Such a fault is detected and 

masked by the guardian's gate, which only opens if its three 

guardians are in agreement. 

3) The user can cause a disagreement among the three peripheral 

interface buses in use. This will be interpreted as a bus 

failure by the interface processors and the fault tolerant 
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system is reconfigured around the failure by bringing in the 

fourth reserve bus. 

The results expected from this test are a continuing correct 

operation of the fault tolerant system in presence of the above 

mentioned user induced faults and a correct system reconfiguration upon 

detection of a bus failure. 

3.3.2. Lnplementation Description  

Detailed descriptions of how to cross compile and run the test 

software modules discussed in section 3.3.1 are given in Appendix A.3 as 

well as in the simulation directories ("persim", "ftol") in the form of 

"readmefirst" textfiles. The directories reiterate what has been 

explained in the N.mPc user's manual[24] for the specific cases of the 

two simulations discussed in this section. 

3.4. Test Results  

3.4.1. The Hardware Modules Test Simulation  

The results of the simulation discussed in this section are 

recordings of certain events (register transfers, signal changes, etc.) 

which simulate the function of a complex hardware. 

Figure 3-2 shows the topology of the test simulation for the 

hardware modules and Figure 3-3 gives the usual block diagram of the 

same simulation. 

The listing of an interactive test simulation session , focussing 

on the verification of the correct functioning of the fault tolerant 

hardware modules, is given in Appendix A.4. It contains all the 

information necessary to verify that the modules under investigation do 

in fact work as specified in [14]. N.mPc makes it then possible to 

verify with "display" commands and breakpoints that the hardware is 
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functioning correctly. The following conclusions could be drawn from 

simulation test runs: 

- interface processor guardian 

("initipg.isp"): - all state transitions done 

according to state diagram 

- it executes all its special 

commands correctly 

- initial ID distribution and initialization 

(on/off) working correctly 

- it activates its enable signal 

only 	when turned on during 	the 

initialization 	or after receiving the 

"Turn On" command 

- peripheral processor guardian 

("ppgrd.isp"): 	- all state transitions done according 

to state diagram 

- it executes all its special commands 

correctly 

- initial ID distribution functions 

- activates 	its 	enable 	signal 	only 

temporarily after receiving a "Select" 

command followed by an "Enable" command 

- gate("gate.isp"):- opens only when enabled by all three 

guardians 

- initialization module 

("idgen.isp"): 	- correctly turns the desired interface 

processor guardians on 
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- distributes IDs to all guardians 

- distributes the right I/0 addresses to 

each communication module 

- transmitter("gtintrfc.isp"): 

- correctly transmits the bytes written to 

its I/O address via a FIFO queue to 

peripheral interface bus(PIB, redundant 

bus) 

- the CPU can check whether the transmitter 

queue is full before enqueuing another 

byte 

- receiver("bsfifo.isp"): 

- correctly puts bytes received from the PIB 

in a receiver queue 

- the CPU can check whether the receiver 

queue is empty before reading a byte from 

it 

- transceiver("trx.isp"): 

- correctly transmits and receives bytes 

using two separate FIFO queues 

- a CPU can check whether the receiver queue 

is empty before reading from it 

- a CPU can check whether a transmitter 

queue is full before writing to it 

- a CPU can reset both FIFO queues 
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- timer("timer.isp"): 

- the timer correctly halts a CPU for a 

number 	of clock cycles that can 	be 

specified 

-memory("86mem.isp"): 

- the 16k RAM memory has been tested in the 

course of earlier N.mPc work(see [20 ]) 

- 8086 CPU("max86cpu.isp"): 

- the description of an Intel 8086 CPU has 

been the object of earlier N.mPc test and 

verification work(see [20]) 

3.4.2. Results of the Test of the Full Fault Tolerant Interface  

The topology of the simulation discussed in this section is 

depicted in Figure 3-4 and the corresponding simulation block diagram is 

presented in Figure 3-5. Again the "results" are not representable in a 

simple, closed form. They represent changing states in a complex 

simulated hardware that can only be observed by using various N.mPc run-

time commands in order to trace certain registers or ports. 

The listing from an interactive N.mPc simulation session is 

contained in Appendix A.4. It shows the testing of three different 

failure conditions that can be handled by the fault tolerant hardware of 

the simulated multiprocessor architecture. The following conclusions 

can be drawn regarding the three fault conditions specified in 3.2.2: 

1) 	Corrupted Input Data: 

Data fed to interface processors (simulating a message 

from 	three central processors) can selectively 	be 
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corrupted. The interface 	processor can mask a single 

error by majority software voting. 

2) Guardian Failure: 

The failure of a guardian can be induced by the "user" (= 

person running the simulation), who inverts the logical 

state of a guardian's enable signal. This failure is 

correctly handled by the fault tolerant multiprocessor 

system as a gate gives a device bus access only if 

enabled by all of its three guardians. Thus the device 

controlled by the faulty guardian is cut off from its 

bus. 

3) Bus Failure: 

A disagreement between the three redundant buses in use 

at any time is detected by the interface processors. 

They can then reconfigure the system by determining the 

faulty bus and switching the appropriate guardians and 

the concerned interface processor to a previously unused 

reserve bus. Figure 3-6 and 3-7 show the configuration 

of the fault tolerant hardware before and after recovery 

from a bus failure. 

More details about these simulations are found in "Oreadme.fst" 

information files contained in each simulation directory, in comments in 

the listings of the programs run in each simulation and in the listings 

in Appendix A.4. 
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4. FUNCTIONAL TESTING OF THE INTEGRATED OPERATING SYSTEM SOFTWARE AND 

THE SIMULATED HARDWARE SYSTEM 

4.1. Limitations of N.mPc Simulations 

The originally planned integration of the simulated multiprocessor 

architecture 	and 	the full fault tolerant operating system 	was 

subsequently scoped down to a simulation involving the integration of 

the fully simulated multiprocessor hardware architecture and only a 

subset of the operating system routines for the following reasons: 

I)  The work done on the validation of N.mPc microprocessor 

simulation [20] concluded that a substantial host processor 

CPU time is required when executing software on a simulated 

processor instead of a real processor. Since the fault 

tolerant operating system was still in the conceptual design 

stage at the time the validation work was being conducted, it 

was difficult to estimate the performance of N.mPc when 

executing a complex software structure such as the fault 

tolerant operating system. The simulation described in this 

section gives accurate estimates of the magnitude of the CPU 

resources needed to simulate software modules that are run on 

simulated microprocessors. This simulation includes four 

central processors communicating with each other by exchanging 

messages. While the simulation works as described in the 

hardware specifications stated in [14] it also indicates 

clearly that the host CPU execution time needed for running 

the complete fault tolerant operating system software on 

simulated 8086 processors would be very high. For example, 

the exchange of a single byte "message" consumes close to one 

minute of CPU time on the VAX 11/780 host computer. 
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Considering that the lowest layer of the fault tolerant 

operating system involves frequent exchange of messages each 

with length in the order of hundreds of bytes, it is easy to 

estimate that the CPU time required to perform a meaningful 

simulation will be unrealisticaily large. 

ii) The slow execution speed of N.mPc mitigates against conducting 

fault tolerant tests in a reasonable time period. This is due 

to the fact that the execution of each single operating system 

instruction involves detailed and numerous register transfer 

level instruction executions with N.mPc. 	Since the task 

execution cycles of the operating system are fairly lengthy to 

begin with, the corresponding number of executions within 

N.mPc will be extremely large, which leads to prohibitively 

long simulation times. 

iii) The N.mPc code corresponding to the VLSI structure of the 8086 

chip details is not guaranteed to be absolutely correct. This 

complicates the debugging process and makes it difficult 

determine whether the source of a given bug is in the VLSI 

description or in the complex operating system code. 	Note 

that this problem is inherent in any complex VLSI design such 

as the 8086 processor. 

In summary a full integration of the fault tolerant hardware and 

the operating system software proved to be beyond the time and resources 

allocated for this study. 

For the reasons described above, it was decided to implement only a 

subset of the fault tolerant operating system. The subset consists of 

hardware dependent communication routines running on a simulated 

hardware architecture which consists of four intercommunicating central 
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processors. This partial simulation is based on the fact that the fault 

tolerant part of the multiprocessor hardware architecture has been 

tested before. The breakdown of the total simulation into partial 

simulations is necessary to complete the simulation while imposing a 

reasonable demand on the host computer CPU time. The hardware 

dependent communication routines of the fault tolerant operating system 

were chosen for integration with the simulated hardware for two reasons: 

i) The hardware dependent communication routines could be easily 

transported in the future as part of the full operating system 

software to an 8086 based prototype hardware. 

ii) It is difficult to simulate separately any of the other 

operating system routines since they are all interrelated. 

4.2. Test Plan and Approach 

4.2.1. Objectives 

The main objectives of the simulation described in this section 

are: 

(1) To verify the correctness and establish the completeness of 

the operating system routines used for interprocess message 

	

communications. 	This will also establish that the interface 

between the hardware and the software responsible for byte 

transfer among the different processors is correct. 

(2) To 	establish 	systematic and methodical procedures 	for 

transporting operating system code, written in C, to a target 

hardware prototype. This will be desirable in future research 

involving 	the 	development 	of 	actual 	fault 	tolerant 

multimicroprocessor hardware based on the study completed so 

far. 
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4.2.2. Test Plan  

The following activities were planned in the context of the 

integration of the operating system and the fault tolerant hardware 

architecture: 

Investigation of the mechanism for calling hardware dependent 

assembly routines from within hardware independent high level 

software. 

Design and test of special hardware modules ("transceivers") 

for two way message passing between the fully interconnected 

central processors following the criteria defined in the 

hardware analysis report [14]. 

Write the assembly routines necessary for message passing 

between central processor modules, using the previously 

designed transceivers. 

Write moderately sized high level test software modules (in C) 

coordinating message passing between four central processors. 

The expected result of this test consists in the integration of all 

the message passing software and the four central processor modules in 

order to build an interprocessor message passing simulation that can be 

executed on the N.mPc/VAX 11-780 (located at CRC). 

4.3. Test Software  

4.3.1. Functional Definition  

Figure 4-1 gives an overview of the different software and hardware 

modules involved in the simulation of four fully interconnected, 

communicating central processor modules. 

The test software running each of the four central processors is 

written in the high level language C and organizes the message exchange 
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between the four processors. 	Appendix B.3 contains the listing of each 

processor's message passing software module. 	A message of six bytes in 

length is passed around from processor to processor in a closed loop as 

shown in Figure 4-2. 

The hardware independent high level software modules running on the 

central processors naturally can't do the message passing by themselves. 

They need to call hardware dependent assembly routines that are able to 

handle the communications hardware modules ("transceivers", trx.isp) 

described in section 2. The four assembly routines for communication 

are: 

- "Qfull.s": 	Checks whether the transmit queue 	of 	a 

transceiver is full or not. 	A "1" is returned 

if the transmit queue is full, a "0" if the 

queue is not full. 

- "xmitbyte.s": Puts a specified byte into the transmit queue 

connected to the desired destination processor. 

The byte is then automatically transmitted to 

the receive queue of the destination processor. 

- "Qempty.s: 	Checks whether 	the receive queue 	of 	a 

transceiver is empty or not. A "1" is returned 

if the receive queue is empty, a zero 

otherwise. 

"getbyte.s": 	Reads a byte from the receiver queue connected 

to the desired source processor. 

The four communication routines have to be incorporated into the 

link library of the cross software development tool (see [19, 20]). 

They can then be called from within programs written in the high level 
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language C. 	Assembly routines called by C programs have to follow 

certain conventions outlined in [19]. 	The following calls are used to 

invoke the four communication routines from within a C program: 

"Qfull(i)": 	The destination processor is specified by index 

i. 

"xmitbyte(i, byte)": 

Destination processor index and the byte to be 

transmitted have to be specified. 

- "QemPtY(i)": 	The index of the source processor, from which a 

transmitted byte is to be read, is specified. 

- "getbyte(i)": Only the index of the desired source processor 

has to be specified. 

Thus, for sending a byte to a certain destination processor, a check 

is done first to determine if the transmit queue of the transceiver 

connected to the desired processor is full or not ("Qfull(i)"). If the 

queue is not full, the byte is transmitted ("xmitbyte(i, byte)"). To 

read a byte received from another processor, a check is conducted to 

determine if the corresponding transceiver's receive queue is empty or 

not ("Qempty(i)"). 	If the queue is not empty a byte is read and 

transmitted by issuing a "getbyte(i)" call. 	These communication 

routines correspond to the ones designed for the fault tolerant 

operating system in the "C" based simulation testbed (see [7]). 

4.3.2. Implementation Description  

The implementation of the simulation of the four intercommunicating 

central processors and their test software is shown in Figure 4-1 and 

described in detail in Appendix B.3 and in a "readme" textfile in the 

corresponding simulation directory ("osint"). 
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4.4. Test Results  

The detailed structure of the simulated hardware used to execute 

the test software described in this section is given in Figure 4-3. The 

following results were obtained from a test simulation doing 

interpr6cessor message passing: 

- The actual message transmission could be made without 

requiring continuous attention from the CPU by using FIFO 

queues for intermediate storage of messages. 

- Transmission via serial bus was properly simulated by 

introducing appropriate delays when transmitting via parallel 

buses. 

- A new transceiver module was created in order to perform 

transmission and reception independently but in a single 

hardware module. 

A message (6 bytes) could continuously be passed through four 

processors connected in a closed loop. 

- It took over a minute of CPU time on the VAX/11-780 to pass 

one byte from one processor to another one in the N.mPc 

simulation environment. 

	

A mechanism interfacing hardware independent high 	level 

software to the fault tolerant hardware architecture was 

investigated and used to implement interprocessor message 

passing on four fully interconnected 8086 CPUs. 

The results listed above can be verified in the listing of an 

interactive session involving the simulation of the four fully 

interconnected central processors (see Appendix B.4). 
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Finally a remark concerning the interprocessor message passing is 

in order. From the processor interconnection scheme shown in Figure 4-3 

it can be concluded that a processor has to know its own "identity" (its 

position in the interconnection scheme) in order to determine which I/O  

port to choose when transmitting to or receiving from a certain other 

processor. A special CPU identity distribution mechanism had to be 

included in this  simulations  initialization module ("newidgen.isp"). 

It allows a CPU to obtain its own identity (numbers 0 to 3) by executing 

an input instruction using a special I/O  address ("IN ax, 0a0H"). The 

communication assembly routines then take a processor's identity and the 

interconnection scheme into account and are able to choose the 

transceiver 	that is connected to the desired 	source/destination 

processor. This makes it possible to simply specify the 

source/destination processor when calling a communications routine from 

within a C program. These details are also explained by the comments in 

the listings of the communication assembly routines in Appendix B.1. 
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5. SUMMARY AND CONCLUSIONS 

The following hardware modules have been simulated in the hardware 

description language of N.mPc: 

- interface processor guardian ("initipg.isp") 

- peripheral processor guardian ("initipg.isp") 

- gate ("gate.isp") 

- initialization modules for the different simulations 

("idgen.isp", "ftidgen.isp", "newidgen.isp") 

timer ("timer.isp") 

- The 8086 CPU ("max86mem.isp") and memory ("86mem.isp") were 

designed in the course of previous simulation work. 

By 	creating descriptions of specific interconnection schemes 

(topology files) and integrating the interconnected hardware modules 

with appropriate test software, the following, 8086 processor based, 

partial simulations of a fault tolerant multiprocessor architecture were 

completed: 

A simulation testing each one of the fault tolerant hardware 

modules designed in the course of this work. 

- A simulation of the full fault tolerant hardware interfacing 

the central (high level) processors of the fault tolerant 

multiprocessor 	architecture to their 	peripherals. 	This 

simulation was used to demonstrate the fault tolerant 

multiprocessor system's ability to continue correct operation 

in the presence of selected, induced faults. System 

reconfiguration around a bus failure was also simulated 

successfully. 
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- A simulation integrating the four fully interconnected high 

level processors of the fault tolerant hardware architecture 

with the message passing routines which consistute part of the 

fault tolerant operating system. 

The following software modules were written to run on the various 

simulated Intel 8086 CPUs used in the simulations mentioned above: 

- Assembly modules testing each hardware module and 	the 

operation of the full fault tolerant hardware. 

- Hardware dependent (assembly language) routines of the fault 

tolerant 	operating 	system 	handling 	interprocessor 

communication. These routines constitute an interface between 

the fully portable, hardware independent, modules of the 

operating 	system 	software 	and 	the 	fault 	tolerant 

multiprocessor architecture. 

- Hardware independent 	high level routines 	that handle 

interprocessor message passing by calling the 	hardware 

dependent communication routines listed above. These routines 

were written in the C programming language. 

When comparing the performance of the fault tolerant multiprocessor 

system described in this report to the performance of a system without 

fault tolerant features, we observe that the fault tolerant features add 

considerable redundancy and overhead due to continuous message exchanges 

and voting. 	Hence system throughput and processing power are reduced 

proportionately. 	This reduction is the penalty normally paid to gain 

fault tolerance capabilities. 	As well, the added mechanisms of 

synchronization and processor coordination require a careful design and 

verification effort. 
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time. 	This allows the designer, when he finally commits himself to 

implementing a certain design, to rule out early conceived options that 

proved to be incorrect or inefficient through the simulation work. 

Concerning 	the adequacy of N.mPc as a design 	tool 	for 

multiprocessor systems several points can be made: 

In the course of this work the CAE tool N.mPc clearly proved 

to us useful as a hardware design and simulation tool. A 

complex multiprocessor system could be simulated and tested in 

a relatively short period of time. 

Although publications of previously developed fault 	tolerant 

systems such as SIFT and FTMP give indication of simulation work 

conducted in the early stages of development to test the functional 

concepts of each system, no simulation details or results have been 

reported. We are thus unable to provide comparisons between the 

performance of the system described here and the systems reported in the 

open literature. 

The simulation approach to hardware and operating system software 

design proved to be useful in the course of this work. Several times it 

has been necessary to add a new feature to the guardian initialization 

mechanism, change the interconnection of some hardware modules or 

complete the description of a bus interface which the simulation proved 

to be inaccurate. All these changes would have been extremely time 

consuming and costly if they had to be done on a real prototype 

hardware. The inherent flexibility of the simulation approach allows us 

1 
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Frequent design changes to the simulated 	multiprocessor 

architecture showed the flexibility of N.mPc as a hardware 

design and simulation tool.

•On the other hand, several limitations to N.mPc have been identified 

which tend to severely reduce its utility in the simulation and testing 

of fully integrated multiprocessor systems: 

N.mPc's slow execution speed results in a prohibitively high 

demand on the host CPU time if the test software modules are 

of substantial size. This was the case for the fault tolerant 

operating system. 

In the N.mPc simulation conducted here, the main (control) 

processors were each represented by Intel's 8086 processor. A 

full description of this processor is included in the library 

of N.mPc. 	The 8086 version within N.mPc was developed based 

on the available 8086 VLSI chip details. 	Like the case with 

many sophisticated processors, the commerically available VLSI 

description is not guaranteed to be complete nor absolutely 

accurate (bug free). All unidentified faulty attributes in 

the description will thus be propagated to any simulation 

which uses the library copy of the processor description. 

This complicates the process of tracing the sources of bugs 

when high level operating system software modules are tested 

in the simulation. 

The fact that N.mPc simulates the hardware down to the 

register transfer level is useful when newly designed hardware 

modules are being tested. However, when the focus of the 

simulation shifts to higher levels of structure modules, N.mPc 
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still 	simulates 	every 	register 	transfer 	in 	every 

microprocessor involved in lower level instruction executions 

resulting in a large simulation overhead. This aspect was 

encountered when an initial attempt was made to run the 

relatively complex software of the fault tolerant operating 

system on the fault tolerant multiprocessor architecture. 

The next generation of CAE tools is expected to be endowed with 

top-down design and simulation features to allow the designer to follow 

a methodology in which he can test the lower level modules of the 

operating system down to register transfer level of details. Higher 

level modules can then be simulated and tested with the already tested 

lower levels replaced by macro instructions or functional blocks. This 

will enhance the simulation performance by several orders of magnitude 

over what is currently attainable by a tool like N.mPc. It will thus 

make it possible in practice to simulate a sophisticated system such as 

the fault tolerant architecture reported here in its full fledged 

configuration in a reasonable period of time and using modest computing 

resources. 

The fault tolerant architecture simulated in this work is useful in 

many practical applications requiring continuous unattended operation. 

In addition to spacecraft on-board processing, these applications 

include computer communication switching gear, nuclear plant monitoring 

and processing, data collection and distribution in environmental and 

resource management applications and in on-site processing of remote 

sensing data. 

A new version of N.mPc, called N.2, has been introduced by the 

vendor and will be available on the VAX/VMS environment. 	The new 
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version N.2 incorporates a few features aiming towards making the 

original N.mPc more powerful. These features are summarized below while 

their details are available in [16]. 

1. ISP 	now supports a better handling of the port constructs. 

Ports are N.mPc entities which allow various modules to 

communicate with each other. 	Ports are now treated as three- 

state devices, thus more closely resembling the behaviour of 

the real hardware. 	Capabilities for wired-OR and wired-AND 

have also been added. 

2. Facilities for hierarchical descriptions in the ecologist have 

been added. 	This was achieved through the use of composites 

which are meant to be complete and already debugged 

simulations. A composite can therefore be considered a stand 

alone hardware module emulation and it can be given its own 

pseudo-ports which then become the only means of 

communications with the composite. This capability is going 

to be very useful as many hardware descriptions are based upon 

different levels of details. For example, a composite may be 

made to represent an Intel 86/12 single board computer and be 

used as a single entity even though it is, itself, made out of 

several ISP' modules. 

3. The Ecologist has been given the flexibility of dealing with a 

new hardware description language for programmable logic 

arrays. 	This should prove particularly useful in cases where 

the ISP' language does not lend itself well to the modelling 

of gate behaviour. 	The Ecologist will also display the 

topology file(s) in a graphical format to help the designer 

visualize the system as it exists within the simulation 
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environment. 

4. 	Better fault testing mechanisms have been provided. 	In 

particular, mechanisms to handle "stuck at" faults, "state 

insertion" faults, etc., have been introduced. 

The 	enhancements made to N.mPc will offer 	only marginal 

improvements in the limitations of the package with respect to the 

simulation of fully integrated systems. It is felt that substantial 

changes in the structure of the package will be needed to make it 

applicable to a true top-down design approach. 

85 



6. RECOMMENDATIONS FOR FUTURE WORK 

Based on the work done so far the following recommendations for 

future work are made: 

It is essential to monitor the technology and the availability 

of the next generation of CAE tools. 	Future CAE tools should 

not only be able to do hardware simulations on the register 

transfer level but should also include the capability of 

, simulating complex hardware modules as "black boxes". In this 

manner simulations could be moved to higher functional levels 

while minimizing the demand for computer time for subsequent 

simulations. 

The hardware modules, their interconnection and the fault 

tolerance mechanisms should be implemented as a hardware 

prototype in order to fully test the integrated system 

capabilities when subjected to actual hardware and software 

failures and faults. 
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