
QUEEN

91

. C655

C66698

1985

v . 1

...nMI1111111119

CTMTTT MN OF A FAULT TOLERANT

MULTIPROCESSOR SYSTEM

Volume 1

INT -85 -10

(Dttel
P 	t
91
C655
C66698
1985
v.1

Industry Canada
Library Queen

LBiblidtheque Queen

1 	Industrie Canada

JUIL 2 0 1990
JUL_

INTELLITECH CANADA LIMITED

352 MacLaren Street
Ottawa, Ontario

K2P 0M6

--ee9ee
",I Mâ

•

1

SIMULATION OF A FAULT TOLERANT

MULTIPROCESSOR SYSTEM///

Volume 1

-MARCH 1985

/ 	i/
Prepared By: /Max Streit

Approved By: Dr. S.A. Mahmoud

Government Gouvernement
of Canada 	du Canada I+

Department of Communications

DOC CONTRACTOR REPORT 	 DOC-CR-SP 85-004

DEPARTMENT OF COMMUNICATIONS - OTTAWA - CANADA

SPACE PROGRAM

TITLE: Simulation of a Fault Tolerant Multiprocessor System

AUTHOR(S): Max Streit
INTELLITECH CANADA LIMITED
352 MacLaren Street
Ottawa, Ontario

ISSUED BY CONTRACTOR AS REPORT NO: INT-85-10

PREPARED BY: Max Streit

DEPARTMENT OF SUPPLY AND SERVICES CONTRACT NO: OER 83-05075

DOC SCIENTIFIC AUTHORITY: Michel Savoie
Communications Research Centre
Ottawa, Ontario

CLASSIFICATION: Unclassified

This report presents the views of the author(s). Publication
of this report does not constitute DOC approval of the reports
findings or conclusions. This report is available outside the
department by special arrangement.

DATE: MARCH 1985

S UMMARY

The simulation activity described in this report is part of an

overall study 04hich includes the design and simulation of a fault

tolerant multiprocessor architecture for spacecraft applications. The

main focus of the overall study, however, has been on the development

and utilization of computer aided engineering (CAE) design tools. One

of these CAE design tools, known as N.mPc, is currently running on the

VAX/VMS 11/780 system located in the Analysis and Simulation Laboratory

of the Communications Research Centre, Department of Communications.

The N.mPc package is used as a simulation environment for the work

reported here.

N.mPc consists of a number of components used to describe the

hardware behaviour of a target system, and to execute the simulation of

that system.

The approach chosen for the design of the fault 	tolerant

multiprocessor system is novel in the sense that fault tolerant features

and supporting mechanisms are embedded in both the hardware architecture

and the operating system software. The hardware has multiple redundant

components that are controlled by fault detection mechanisms in order to

prevent the propagation of errors from the faulty component to the

remainder of the system. The operating system software contains all the

intelligence needed to detect errors, identify their sources, take the

necessary action to remove faulty units, reallocate the processing tasks

and reconfigure the system to adapt to the new operational state.

Examples of the hardware faults which can be tolerated 	(je. •

recovered from) by the full fault tolerant multiprocessor system

include:

- Malfunction of a central processor.

- Malfunction of an interface processor.

- Failure of one of the redundant buses between interface and

peripheral processors.

- A failing peripheral processor (device) is simply cut off from

the redundant bus by its guardians.

- Failure of a gate complex (guardians, gates).

- Errors in received data due to hardware failures.

The CAE tool N.mPc is used for functional testing of the fault

tolerant multiprocessor architecture by first developing descriptions of

all necessary hardware modules in N.mPc's hardware description language

ISP'. 	The next step is to describe an interconnection scheme for the

simulated hardware components of the multiprocessor architecture. 	Then

some test software for the programmable hardware modules (descriptions

of the Intel 8086 microprocessor) has to be developed. Finally

simulated hardware and test software for the microprocessors are

integrated under N.mPc to form an executable simulation that allows

functional testing of the fault tolerant multiprocessor architecture and

of the behaviour of the multiprocessor system in response to certain

failures.

The originally planned integration of the simulated multiprocessor

architecture and the full fault tolerant operating system was

subsequently scoped down to a simulation involving the integration of

the fully simulated multiprocessor hardware architecture and only a

subset of the operating system routines for the following reasons:

The slow execution speed of N.mPc mitigates against conducting

fault tolerant tests in a reasonable time period. This is due

to the fact that the execution of each single operating system

instruction involves detailed and numerous register transfer

level instruction executions with N.mPc. Since the task

execution cycles of the operating system are fairly lengthy to

begin with, the corresponding number of executions within

N.mPc will be extremely large, which leads to prohibitively

long simulation times.

The full operating system code, written in C programming

language, proved to be lengthy and complex which makes the

debugging process of the code, when executed under N.mPc,

intractable.

The N.mPc code corresponding to the VLSI structure of the 8086

chip details is not guaranteed to be absolutely correct. This

complicates the debugging process and makes it difficult to

determine whether the source of a given bug is in the VLSI

description or in the complex operating system code. Note

that this problem is inherent to any complex VLSI design such

as in the 8086 processor.

In summary a full integration of the fault tolerant hardware and

the operating system software proved to be beyond the time and resources

allocated for this study.

A number of conclusions could be drawn from the major findings in

this work:

1) When 	comparing 	the performance of the fault 	tolerant

multiprocessor system described in this report to the

performance of a system without fault tolerant features, we

observe that the fault tolerant features add considerable

redundancy and overhead due to continuous message exchanges

and voting. 	Hence system throughput and processing power are

reduced proportionately. 	This reduction is the penalty

normally paid to gain fault tolerance capabilities. 	As well,

the added mechanisms of synchronization and processor

cbordination require a careful design and verification effort.

Although publications of previously developed fault tolerant

systems such as SIFT and FTMP give indication of simulation

work conducted in the early stages of development to test the

functional concepts of each system, no simulation can provide

comparisons between the performance of the system described

here and the systems reported in the open literature.

2) The simulation approach to hardware and operating system

software design proved to be useful in the course of this

work. 	Several times it has been necessary to add a new

feature to the guardian initialization mechanism, change the

interconnection of some hardware modules or complete the

description of a bus interface which the simulation proved to

be inaccurate. 	All these changes would have been extremely

time consuming and costly if they had to be done on a real

prototype 	hardware. 	The inherent flexibility of 	the

simulation approach allows us to evaluate several design

alternatives of a hardware system in a short time. 	This

iv

allows the designer, when he finally commits himself to

implementing a certain design, to rule out early conceived

options that proved to be incorrect or inefficient through the

simulation work.

3) 	Concerning the adequacy of N.mPc as a design tool for

multiprocessor systems several points can be made:

In the course of this work the CAE tool N.mPc

clearly proved to be useful as a hardware design and

simulation tool. A system could be simulated and

tested in a relatively short period of time.

Frequent 	design changes 	to 	the 	simulated

multiprocessor architecture showed the flexibility

of N.mPc as a hardware design and simulation tool.

On the other hand, several limitations, mentioned

earlier in this summary, to N.mPc have been

identified. They tend to severely reduce N.mPc's

utility in the simulation and testing of fully

integrated multiprocessor systems.

A new version of N.mPc, called N.2, has been

introduced by the vendor and will be available on

the VAX/VMS environment. The new version N.2

incorporates a few features aiming towards making

the original N.mPc more powerful. The enhancements

made to N.mPc will offer only marginal improvements

in the limitations of the package with respect to

the simulation of fully integrated systems. It is

felt that substantial changes in the structure of

the package will be needed to make it applicable to

a true top-down design approach. 	In view of future

simulation work it is expected that the next

generation of CAE tools will be endowed with top-

down design and simulation features to allow the

designer to follow a methodology in which he can

test the lower level modules of the operating system

down to register transfer level of details. Higher

level modules can then be simulated and tested with

the already tested lower levels replaced by macro

instructions or functional blocks. This will

enhance the simulation performance by several orders

of magnitude over what is currently attainable by a

tool like N.mPc. It will then make it possible in

practice to simulate a sophisticated system such as

the fault tolerant architecture reported here in its

full fledged configuration in a reasonable period of

time and using modest computing resources.

The fault tolerant architecture simulated in this work is

useful in many practical applications requiring continuous

unattended operations. In addition to spacecraft on-board

processing, these applications include computer communication

switching gear, 	nuclear plant monitoring and processing

applications, data collection and distribution in

environmental and resource management applications and in on-

site processing of remote sensing data.

vi

TABLE OF CONTENTS

VOLUME 1

1. INTRODUCTION 	 1
1.1. Simulation Objectives 	 1
1.2. Report Structure 	 4

2. SIMULATION IMPLEMENTATION DESCRIPTION 	 5

2.1. Simulation Environment 	 5
2.2. Fault Tolerant Multiprocessor System Overview 	7
2.3. Luplementation of the Fault Tolerant Hardware Simulation. .12

2.3.1. The Central Control System 	 12
2.3.1.1. Processor Module 	 12
2.3.1.2. Processor Network 	 12

2.3.2. The Peripheral Interface System 	24

2.3.2.1. The Interface Processor 	24
2.3.2.2. The Peripheral Processor 	26
2.3.2.3. The Peripheral Network 	26
2.3.2.4. The Gate Complex 	 27

2.3.3. The System Reset Mechanism 	 47
2.4. Fault Tolerant Operating System Implementation 	47
2.5. System Integration 	 47

3. FUNCTIONAL TESTING OF THE SIMULATED HARDWARE SYSTEM 	52

3.1. Simulation Limitations 	 52
3.2. Test Plan and Approach 	 54

3.2.1. Objectives 	 54
3.2.2. Test Plan 	 54

3.3. Test Software 	 55
3.3.1. Functional Definition 	 55

3.3.1.1. Test of the Hardware Modules 	55
3.3.1.2. Test of the Full Fault Tolerant Interface 	57

3.3.2. Implementation Description 	 58
3.4. Test Results 	 58

3.4.1. The Hardware Modules Test Simulation 	58
3.4.2. Results of the Test of the Full Fault Tolerant

Interface 	 62

4. FUNCTIONAL TESTING OF THE INTEGRATED OPERATING SYSTEM SOFTWARE
AND THE SIMULATED HARDWARE SYSTEM 	 68

4.1. Limitations of N.mPc Simulations 	 68
4.2. Test Plan and Approach 	 70

4.2.1. Objectives 	 70
4.2.2. Test Plan 	 71

4.3. Test Software 	 71
4.3.1. Functional Definition 	 71
4.3.2. Implementation Description 	 75

4.4. Test Results 	 76

5. SUMMARY AND CONCLUSIONS 	 79

6. RECOMMENDATIONS FOR FUTURE WORK 	 86

REFERENCES

VOLUME 2

APPENDICES

APPENDIX A: THE SIMULATED HARDWARE SYSTEM

A.1: 	N.mPc Listings of the Simulated Hardware System

A.1.1: 	Description of the Hardware Modules
(ISP Source Files)

A.1.2: 	Topology Files

A.2: Test Software

A.2.1: 	Hardware Module Test Simulation
(in "persim" directory)

A.2.2: 	Simulation of Full Fault Tolerant Hardware

A.3: Installation Procedures

A.3.1: 	Hardware Module Test Simulation

A.3.2: 	Fault Tolerant Hardware Simulation

A.4: Test Runs

A.4.1: 	Hardware Module Test Simulation

A.4.2: 	Fault Tolerant Hardware Simulation

APPENDIX B: INTEGRATED OPERATING SYSTEM SOFTWARE AND SIMULATED HARDWARE
SYSTEM

B.1: Operating System Software Listings

B.2: Test Software Listing

(Hardware Dependent Communication Routines)

B.3: Installation Procedure

B.4: Test Run

B.5: Topology File
("CPCPCOM.T")

LIST OF FIGURES

2-1: Elements of the N.mPc System 	 6

2-2: Overview of the Fault Tolerant Hardware System 	9
2-3: The Fault Tolerant Operating System 	 10
2-4: The Central Control System 	 13
2-5: Central Processor Module 	 14
2-6: The Intel 8086 CPU Module 	 15
2-7: The Memory Module 	 16
2-8: The Timer Module 	 17
2-9: Block Diagram of a Transmitter 	 19
2-10: Block Diagram of a Receiver 	 21

2-11: Block Diagram of Central Processor Interconnection 	22
2-12: The Transceiver Module 	 23
2-13: The Interface Processor Module 	 25
2-14: Connection of Processors to the Redundant Bus 	28
2-15: The Transmitter Module 	 29
2-16: The Receiver Module 	 30
2-17: Block Diagram of a Gate Complex 	 32
2-18: Implementation of a Gate With Agreement 	 33
2-19: Parallel Dnplementation of a Gate 	 34
2-20: State Diagram of a Peripheral Processor Guardian 	35
2-21: Commands for Peripheral Processor Guardians 	37
2-22: State Diagram of Interface Processor Guardian 	38
2-23: Commands for Interface Processor Guardians 	39
2-24: Example of Guardian Operation 	 41
2-25: The Gate Module 	 42
2-26: The Guardian Module 	 43
2-27: Initialization of the Guardians 	 45
2-28: The Initialization Module 	 46
2-29: N.mPc Simulation of the Fault Tolerant Hardware Architecture 	49
2-30: Integration of the Fault Tolerant System 	50

3-1: Partial Simulations of the Fault Tolerant Multiprocessor
Architecture 	 53

3-2: Topology of the Test Simulation for the Hardware Modules 	56
3-3: Block Diagram of the Test Simulation for the Hardware Modules 	59
3-4: Topology of the Test Simulation for the Full Fault Tolerant

Hardware 	 63
3-5: Block Diagram of the Test Simulation for the Full Fault

Tolerant Interface 	 64
3-6: Initial Configuration of Fault Tolerant Hardware 	66

3-7: Reconfigured Fault Tolerant Hardware after Detecting a Failure
of Peripheral Inèerface Bus Number 1 	 67

4-1: Block Diagram of the Fault Tolerant Operating System/Hardware
Integration Simulation 	 72

4-2: Message Passing Loop Formed by Four Central Processors 	74
4-3: Topology of the Fault Tolerant Operating System/Hardware

Integration Simulation 	 77

I. INTRODUCTION

The simulation activity described in this report is part of an

overall study which includes the design and simulation of a fault

tolerant architecture for multimicroprocessors. The main focus of the

overall study, however, has been on the development and utilization of

computer aided engineering (CAE) design tools. One of these CAE design

tools, known as N.mPc, is currently running on the VAX/VMS 11/780 system

located in the Analysis and Simulation laboratory of the Communications

Research Centre, Department of Communications. 	The N.mPc package is

used as a simulation environment for the work reported here. 	A user

manual [24] and a system manual [16] for N.mPc are currently available

and should be reviewed by the reader as background material for the

simulation work described in this report.

A conceptual design for the hardware architecture was completed and

reported in [14]. As well, a fault tolerant operating system was

developed [7] and simulated separately using the C programming language

under the VAX/VMS environment. The simulation conducted here integrates

certain parts of the operating system with the hardware architecture

using the N.mPc simulation package. While a brief review of both the

hardware architecture and the operating system is provided in this

report, it is essential for the reader to consult references [7] and

[14] in order to gain full appreciation of the material presented in the

following sections.

This study was conducted for the Communications Research Centre

under a DSS contract.

1.1. Simulation Objectives

The main objectives of the simulation conducted here are:

1

1. To test the fault tolerant features of the hardware and to

examine in detail their behaviour when faults or errors take

place.

2. To provide a test bed which will make it possible to vary the

structure of the fault detection and recovery components and

to compare the effectiveness and performance of various

alternatives.

3. To test the interfaces between the low level layers of the

operating system and the hardware and verify the completeness

of the description of these interfaces.

While the ultimate objective of the simulation is to integrate

fully the hardware architecture and the fault tolerant operating system,

the work reported here includes a partially integrated system since only

certain modules of the operating system have been integrated with the

fully simulated hardware. Limitations of time and resources plus a

number of technical reasons (described in section 4.1 and in section 5)

have constrained the current effort towards full integration.

The simulation approach to hardware design was chosen because it

offers considerable benefits in the early stages of the design process.

Traditionally, microcomputer based products are designed according to

the following steps:

1. The necessary hardware components are built. 	This usually

includes the microprocessor itself as well as other peripheral

components.

2. Software is written for the target machine.

3. Software and hardware components are integrated and tested.

Very frequently, the software is produced on a host machine

using a cross development package, if available.

2

The development process usually involves many time consuming and

costly iterations. A CAE tool such as N.mPc improves the situation by

providing a simulation environment which is suitable for testing many

design alternatives in a short period of time. The implications of

using N.mPc are as follows:

1. It is no longer necessary to build the hardware components at

the beginning of the design work. Instead, N.mPc provides

what amounts to a micro-programmable, register transfer level

machine which can be programmed to emulate the target hardware

completely. In other words, a designer working on a VAX host,

for example, could create a VAX executable program which, when

run, would emulate the target hardware.

2. N.mPc provides a totally programmable cross development

package for the software to be written in assembly language.

The work documented in this report also uses an enhanced

software development environment permitting to write software

in the C high level language.

3. The rationale for using a tool such as N.mPc is that

programmability implies flexibility. Given that a base

exists, i.e. most of the hardware emulation is available as

well as the cross development package, a designer can alter

the design parameters with ease and test various alternatives

without committing to any hardware choice. The advantages and

disadvantages of the above mentioned design methodology are

also discussed in [16].

3

1.2. Report Structure

Section 2 of this report describes briefly the conceptual design of

the fault tolerant multiprocessor architecture and provides an overview

of the simulation of the hardware using N.mPc. 	An overview of the

operating system is also included in section 2. 	The testing of the

simulated fault tolerant hardware architecture is documented in section

3. 	Section 4 reports the testing of the hardware dependent routines of

the fault tolerant operating system. 	It is shown that these routines

constitute an interface between the fault tolerant operating system and

the hardware. Conclusions as well as a summary of achievements are

found in section 5. Section 6 contains recommendations for future

simulation work.

All appendices are contained in volume 2 of this report.

4

2. SIMULATION IMPLEMENTATION DESCRIPTION

2.1. Simulation Environment

The N.mPc package, running on a VAX 11/780 (located at CRC) and the

VMS operating system, provided the simulation environment for the work

presented here. A brief description of N.mPc is presented in the

following.

N.mPc consists of six components used to describe the hardware

behaviour of a target system and to execute the simulation of that

system. Figure 2-1 illustrates the components of N.mPc and their

interaction.

The Meta-micro assembler and the linking loader are used to

generate the software which is to be executed by the simulated hardware

components if these are programmable. Both are driven by a description

of the instruction set of a target machine and can be made to generate

code for either vertically or horizontally programmed machines [16].

The linking loader produces code which is executed by a simulated

processor or by an actual machine. The ISP compiler is used to produce

simulation modules for individual processors and other hardware

components of a system. 	The input language of the compiler is the ISP'

language which allows the specification of states for the implementation

of processor registers and flags, memories for the simulation of memory,

and ports which allow input to and output from simulated hardware.

The N.mPc ecologist and a simulated memory processor link the ISP'

processor modules with the linking loader outputs in order to form

complete simulations. A run-time package is used to execute a

simulation and to allow extensive user interaction with the simulation.

5

I N

v/

I MU LAT ION

• RUNTIME

ENVI RUM EUT

ISP'

COMP I LER
ECOLOG I ST

SOFTWARE DEVELOPMENT

METAM I CRO

S I MULATED

MEMORY

PROCESSOR vi
LINKING

LOADER

1

HARDWARE SYSTEM MODEL I NG 	 SYSTEM SIMULATION

Figure 2-1: Elements of the N.TnPc System

Other reports directly related to this work describe the conceptual

design of a fault tolerant multiprocessor operating system [7] and of a

fault tolerant architecture for multiprocessor systems [14]. Further

information on N.mPc and work in the area done at Intellitech is given

by references [8, 16, 20, 23, 24] as well as the original N.mPc

documentation listed as references [1-6, 9-13, 15, 18, 21, 22].

N.mPc is used to simulate the fault tolerant multiprocessor

architecture by first producing descriptions of all necessary hardware

modules in N.mPc's hardware description language ISP'. The next step is

to describe an interconnection scheme for the simulated hardware

components of the multiprocessor architecture.

Following the hardware description, some test software for the

programmable hardware modules (descriptions of the Intel 8086

microprocessor) has to be developed. Simulated hardware and test

software for the microprocessors are integrated under N.mPc to form an

executable simulation that allows testing of the fault tolerant

multiprocessor architecture. The behaviour of the multiprocessor system

in response to certain failures can also be simulated.

2.2. Fault Tolerant Multiprocessor System Overview

This 	section presents 	an .overview of 	a fault 	tolerant

multi-microprocessor 	system 	for 	spacecraft 	on-board 	processing

applications. The fault tolerant multiprocessor architecture can also

be used in general applications requiring a high degree of reliability

over a specific processor life cycle.

7

The approach chosen for the design of the fault 	tolerant

multiprocessor system is novel in the sense that fault tolerant features

and supporting mechanisms are embedded in both the hardware architecture

and the operating system software. The hardware has multiple redundant

components that are controlled by fault detection mechanisms in order to

prevent the propagation of errors from the faulty component to the

remainder of the system. The operating system software contains all the

intelligence needed to detect errors, identify their sources, take the

necessary action to remove faulty units, reallocate the processing tasks

and reconfigure the system to adapt to the new operational state.

Figure 2-2 gives an overview of the fault tolerant multiprocessor

architecture which is aimed primarily for spacecraft on-board processing

applications. The central processors (CPs) share the computational load

of the satellite and are the highest onboard processing authority. They

are built as a fault tolerant structure and employ redundancy to ensure

reliability. The peripheral processors usually operate alone and can be

considered as slave processors controlled by the central processors.

Another set of processors, the interface processors (IPs), provides an

interface between the loosely coupled central processors and the tightly

coupled peripheral network. The "gate complexes" come in groups of four

since four redundant buses are used in the interface between central and

peripheral processors. They are redundant components controlled by

fault detection mechanisms ("guardians") in order to isolate the sources

of error and prevent the proliferation of these errors from the faulty

component to the remainder of the system.

Figure 2-3 shows the different layers of the fault tolerant

operating system. 	At the lowest level is the hardware itself. 	The

C P C P C P C P

4 	

-4 	

4G Cs 4GCs 4G Cs .4GCs

IGCI I C, 1 J GC J r.111 .
4GCs

4G Cs

PP

PP

Figure 2-2: Overview of the Fault Tolerant Hardware System

Application Tasks
Global Executive

Figure 2-3: The Fault Tolerant Operating System

layer above that, the message passing kernel, is a simple message

passing system without any fault tolerant features but providing the

basic operating system functions. The layer above the kernel implements

the virtual machine visible to the application tasks and fault tolerant

facilities such as error detection, message traffic control, voting,

buffer management, task scheduling and reconfiguration. The next higher

layer, the processor manager, does not incorporate fault tolerance

mechanisms but directs and coordinates most of the fault handling

mechanisms of the layer below itself. Sitting on top of the processor

manager layer are the global fault tolerant facilities (the global

executive), which are responsible for synchronization and

reconfiguration. The global executive handles the assignment of tasks

to processors, reconfiguration of the system around failed parts,

isolation of faulty parts, system updates, etc. To ensure that the

global executive, the highest on-board authority of the satellite

processing system, operates without faults, it is tnplemented in

multiple copies and is executed on multiple processors.

Examples of the hardware faults which can be tolerated 	(le.

recovered from) by the full fault tolerant multiprocessor system

include:

- Malfunction of a central processor.

- Malfunction of an interface processor.

- Failure of one of the redundant buses between interface and

peripheral processors.

- 	A failing peripheral processor (device) is simply cut off from

the redundant bus by its guardians.

Failure of a gate complex (guardians, gates).

- Errors in received data due to hardware failures.

11

2.3. Implementation of the Fault Tolerant Hardware Simulation

This section describes the implementation of each hardware module

needed for the simulation of the fault tolerant multiprocessor

architecture. The interconnection of all hardware modules, resulting in

a full fledged fault tolerant mul.tiprocessor hardware architecture, is

then shown.

2.3.1. The Central Control System

2.3.1.1. Processor Module

The central control system consists of a number of loosely coupled,

fully interconnected processor modules as shown in Figure 2-4. Each

processor module consists of an 8086 CPU, a memory, a timer, 3 ports for

communication between central processors and 5 ports for communication

to and from all interface processors. 	Figure 2-5 shows a central

processor module. 	The 8086 CPU and the memory(16k, RAM) have been

discussed in detail in [20]; Figures 2-6 and 2-7 show their ports and

interconnection within the system. The timer shown in Figure 2-8 is

able, when adressed, to stop the CPU for a duration of time that can be

specified.

2.3.1.2. Processor Network

In this section the ways in which the various modules of the fault

tolerant system communicate will be presented. 	Communication is

effected through a number of communication ports. 	Depending on their

use communication ports may differ but they all consist of the same

basic units, namely a transmitter and a receiver.

Communication ports intended to connect central processor modules

to other central processor modules consist of both a transmitter and a

12

1

Y

C P

.*e
C P

	 ,

C P C P

Figure 2 -4: The Central Control System

8086
CPU

(E5)

I/O
(E6) TIMER

I/0

(E7)

I/O
(E3)

I/0
(E0)

I/0
(g1)

I/O
(E2)

• •

n•nn

TO OTHER
CENTRAL PROCESSORS

TO
INTERFACE
PROCESSORS

MEMORY I/O

FROM
INTERFACE
PROCESSORS

NB: The I/O addresses used to access an IO port or device are

indicated in brackets

Figure 2-5: Central Processor Module

int Int(n)

Inta(n)

Nmi(n)

Reset(n)

Test(n)
.4

Ready(n)

Lock(n)

MAX86CPU.ISP

St(n)

mbus ,
16

Mbus(n)

M rd(n)

Ale(n) al

rd

inta

NMI

reset

test

ready

lock

e

M hnib(n) 	m hnible

L_den(n)

Dt_r(n)

L bhe(n)

den den

dt_r

4

bhe._

3
.4/ status

iorc 	I Iorc(n)

k. 	

	1'4

iowc 	Iowc(n)

ioadsl 	I 	Ioadsl(
14 	

iowc Iowc(n)

ioadsl Ioadsl(n)

ioads7 	1 	Ioads7(n)
«1g 	44

_ _ 	_ _ 	_

NB: The number n identifies a certain 8086 CPU.

Figure 2-6: The Intel 8086 CPU Module

mbus ,
16

/ 	10>
Mbus(n)

ame

4
M hnib(n) 	m hnible

*I

86MEM.ISP

rd M rd(n) tg

ale 	Ale(n)

ready 	Ready(n)

bhe 	L_bhe(n)

rn

den 	L den(n)
14 	

dt_r 	- 	Dt_r(n)

3
, status
	F4

St (n)

NB: The number (n) depends on the processor to which
the memory is connected

Figure 2-7: The Memory Module

mbus

status

• Mbus(n)

St(n)

16

3

ale 	
14

Ale(n)

ready 	1 Ready(n)

TIMER.ISP

NB: The number n depends on the processor
to which the timer is connected

Figure 2-8: The Timer Module

receiver. 	Although united in one module(trx.isp) transmitter and

receiver operate independently of each other. 	Each central processor

module has a dedicated port connected to every other processor module so

that a fully interconnected system is formed.

In addition the central processor modules have a single transmitter

and a number of receivers that handle the communication with the

interface processors. This special interface is necessary because of

the synchronous nature of the interface processors.

The block diagram of a transmitter is shown in Figure 2-9. 	The

transmitter consists of a FIFO queue and a serializer that converts the

parallel data into serial data ready for transmission. 	The serializer

can be thought of as the transmitter part of a UART. 	The FIFO queue

serves to offload the processor from continuously checking 	the

transmitter and to give the transmitter the capability of autonomous

operation for a certain length of time. The size of the FIFO is chosen

so that the transmitter can operate without any attention from the

processor for the duration of the time slice of a task. In other words

the transmitter requires the attention of the processor only during a

context switch. This greatly simplifies the design and implementation

of the operating system.

For example a processor module that wishes to send a message to

another module can write the message into the transmitter FIFO and then

proceed with its other tasks while the transmitter is sending the

message. 	The processor sees the transmitter as a pair of I/O ports.

One is a data port and the other is a command port. 	Data written into

a data port are placed in the FIFO and transmitted. 	The command port

is addressed by using the normal data port I/O addresses (E0-E7)

18

DATA 10 	I XMITER
(to

receiver)

Fi F0

(to CPU)

COMMAN

(Status,

Reset)

Figure 2-9: Block Diagram of a Transmitter

increased by eight (E8-EF). 	The command port enables the processor to

control the transmitter and to check its internal status. 	The main

interest here is in being able to reset the transmitter and to check if

the queue is full.

The 	structure 	of the receiver, 	shown in Figure 2-10 	is

complementary to that of the transmitter. 	The receiver consists of a

deserializer and a FIFO. The deserializer is actually the receiver part

of the UART. When a byte of data has been collected it is placed in the

FIFO for pickup by the processor. 	Like the transmitter, the receiver

appears to the processor as a pair of ports. 	One port is a data port

and the other a command port. A read from the data port will return the

first byte in the FIFO. If the FIFO is empty the result is undefined.

The command port enables the processor to control the receiver and check

its status. Presently we need to be able to reset the receiver and

check if the queue is empty or if it has overflowed.

In the N.mPc simulation the serializer and deserializer have been

omitted. Instead data is sent one byte at a time. Also a handshaking

protocol has been included to ensure reliable communication through

interconnections shown in Figure 2-11. This simplifies the simulation

without affecting 	its validity. 	Appropriate delays have been

incorporated in the simulation of the transmitter. They simulate the

delays caused by serial transmission of data. For communication between

central processors and interface processors, as well as for inter

central processor communication, receiver and transmitter have been

united in one module called "transceiver" (trx.isp). Figure 2-12 shows

the transceiver which can be used for two way communications or also

just as a receiver or transmitter. The ISP description files for the

20

FIFO

1 	> i RCV ER DATA

COMMANOk

(Status,

Reset)

(from

trans-

mitter)

Figure 2-10: Block Diagram of a Receiver

P 1 	 CP2

8 Databus12
TX

TRX.ISP

RX [4--/

Req12

Req21

Databus21

f---->
->1

R X

-TRX.ISP

TX

to CPU1 44-> to CPU2

Figure 2-11: Block Diagram of.Central Processor Interconnection

ombus2 	. Datb(nm 8
imbus mbus(m)

St(m) status

iale Ale(m)

rec 	Req(nm
41 	

trs Req(n1r)

8 8
go--71

E(k)line . 4 	fifoid ombusl Datb(mn)

16

TRX.ISP
3

	

Ready(m) 6.1 	iready

- 	I

nnnn 	 nn•n

NB: (k), (m) and (n) are numbers which depend on what other
modules are connected to a transceiver

Figure 2-12: The Transceiver Module

transceiver (transmitter-receiver) and the timer are given in Appendix

A.1.

2.3.2. The Peripheral Interface System

2.3.2.1. The Interface Processor

In [14] it was determined that the peripheral interface system must

provide an interconnection between the loosely coupled 	central

processors and the tightly coupled redundant bus (also called

"Peripheral Interface Bus", PIB) without introducing a single point of

failure. To accomplish this a number of interface processor modules and

fault tolerant hardware interfaces ("gate complexes") are used. The

overview of the multiprocessor architecture in Figure 2-2 depicts the

situation.

The interface processor modules are no different from the central

processor modules in so far as they both contain the same 8086 CPU,

memory and timer. However, the interface'processor modules do have a

different set of communication ports. Figure 2-13 shows the components

that are part of an interface processor module.

The communication ports on the interface processors that connect

them to the processor modules of the central system are identical to the

ports that interconnect the processor modules to each other. However

the ports that connect the central processor modules to the interface

processors and the ports that connect the interface processors and the

peripheral processors to the redundant bus are different. 	These ports

consist of a single transmitter and a number of receivers. 	In both

cases 	the transmitter broadcasts to all concerned units (either

interface processors or buses). 	However there is a dedicated receiver

for each distinct unit that is connected.

24

8086
CPU

MEMORY

.•

TIMER

(DO)

I/O
(E0)

I/0
(El)

I/O
(E2)

I/0
(E3)

II0
(E4)

-TT5
(E5)

I/0
(E6)

I/0
(E7)

I/0
(FO)

FROM
PERIPHERAL
INTERFACE BUS •

TO
PERIPHERAL
INTERFACE BUS

TO
CENTRAL
PROCESSORS

NB: The I/O addresses used to access an I/O port or
device are indicated in brackets

Figure 2-13.. The Interface Processor Module

In the case of the central processor modules the single transmitter

ensures proper communication between the loosely coupled central system

and the tightly coupled interface processors. In other words it ensures

that all the interface processors will receive their copies of the

message simultaneously. 	This is essential for the interface processors

to remain in perfect synchronization. 	Even if the central processors

were synchronous the time difference between sending the same message to

different interface processors would be enough to throw them out of

synchronization. In the case of the interface processors the processors

need not know to which of the redundant buses they are connected. So

they simply transmit through a single transmitter and the gate complexes

ensure that only the proper bus is driven.

2.3.2.2. The Peripheral Processor

The peripheral processor module is virtually identical to the

interface processor module shown in Figure 2-13. The only difference

between the two is that a peripheral processor is not connected to the

central processors and therefore does not need the four I/O ports used

for this purpose in the interface processors.

2.3.2.3. The Peripheral Network

An interface processor has one communication port for 	each

processor in the central control system. 	No special care need to be

taken for these ports since the central control system is asynchronous.

Actually these ports are identical to the ports the central processor

modules use to communicate with each other. Aside from these ports the

interface processor also has a single transmitter and four receivers.

The function of the transmitter is to drive one of peripheral interface

buses whereas the four receivers "listen" to the four peripheral

26

interface buses. 	Figure 2-14 shows the connection of interface

processors to the peripheral interface bus.

Actually any interface processor only drives one of the buses that

comprise the peripheral (redundant) bus. However this is taken care of

by the gate complexes and is of no concern to the interface processor.

An interface processor also has a number of receivers. The function of

these receivers is to pick up bit streams from the peripheral bus. Each

receiver picks up data bits from only one of the buses. Thus by

comparing the bit stream received from different receivers, it will be

possible for the interface processor to detect bus failures.

Two of the interface processor elements, the transmitter and the

receivers for the communication via redundant bus, have not previously

been presented in detail. The ports and interconnection of transmitter

("gtintrfc.isp") and receiver ("bsfifo.isp") are given in Figures 2-15

and 2-16.

Both receiver and transmitter use a simple handshake protocol to

receive data from or send data through the redundant bus. This protocol

is different from the one used for communication between central

processors. 	The receiver automatically puts data received from the

redundant bus in a queue. 	Before the 8086 CPU reads from the queue it

can (and should) test whether the queue is empty or not. 	The

transmitter takes data sent to it by a CPU and automatically puts it on

the redundant bus, where it is received by any "listening" receiver.

2.3.2.4. The Gate Complex

A gate along with a number of guardians form a gate complex. 	The

function of a gate complex is to allow a processor to access a bus in a

controlled and fault tolerant fashion. 	The block diagram of a gate

27

Interface Processor

or

Peripheral Processor

G C G C G C GC

GC: Gate Complex

Figure 2-14: Connection of Processors to the Redundant Bus

r-
- 1

16
71

3
71

Gtbus(k) 8 ombus

oale Dstb

imbus

status

iale

 iready

Mbus(k)

St(k)

Ale(k)

Ready(k)

1

GTINTRFC.ISP

L___ _

NB: (k) is a number which depends on what other modules
are connected to a transmitter.

Figure 2-15: The Transmitter Module

Mbus(n)
16

mbus ,

9
. ombus Rbus(m)

3 St(n) 	, 	status

BSFIFO.ISP

Ale(n) 	iale

Ready(n) _ 1 	iready
oale 	Dstb

E(k)line fifoid 3

NB: (k), (n) and (m) are numbers which depend on what

other modules are connected to a receiver.

Figure 2-16: The Receiver Module

complex is shown in Figure 2-17. 	The complex consists of a gate and

three guardians. 	Each processor connected to the peripheral network is

connected to each of the buses that form the redundant bus via a

distinct gate complex. 	It is essential that no two gate complexes have

any hardware in common so that hardware failures are as local as

possible. 	Thus it is not possible to utilize a quad buffer chip to

implement four gates. 	Each gate must be physically separate from any

other gate.

A gate allows a processor to access the bus only if it is enabled

by all its three guardians. Each guardian enables its gate only after

having been switched on during the initialization or after receiving

appropriate commands from the redundant buses.

A gate is a simple tri-state buffer with multiple enables. 	Since

the peripheral buses are serial the gate only needs to control one line.

A gate can be implemented simply as a combination of two standard TTL

gates as shown in Figure 2-18.

For simulation purposes the peripheral buses were implemented as

byte wide parallel buses. 	This was done to avoid the unnecessary

overhead of simulating serializers. 	Instead the gate has become a byte

wide buffer that operates much like the single bit version described

above. 	The block diagram of this implementation is given in Figure 2-

19. 	The other important components of a gate complex are the

"guardians".

Basically a guardian is a simple finite state machine. 	The state

diagram of a guardian used in the gate complexes of peripheral

processors is given in Figure 2-20. This FSM has a number of inputs and

a single output. 	Normally a guardian is idle with its output set so as

to disable the gate. 	At this state the peripheral processor guardian

31

7
G

BUFFER

Figure 2 - 17: Block Diagram of a Gate Complex

r FROM

GUARDIANS

BUFFER

Figure 2-18: Implementation of a Gate With Agreement

FROM

GUARDIANS

-1

1

BUFFERS

Figure 2-19: Parallel Implementation of a Gate

Figure 2-20: State Diagram of a Peripheral Processor Guardian

monitors the bus until it recognizes a command on it. 	The list of

commands a peripheral processor guardian can recognize is given in

Figure 2-21. Leaving the special case of a change in the triad of

active buses, a peripheral processor guardian will remain idle until it

recognizes either a Select or an Enable command. When a Select command

is detected the guardian sets an internal flag and awaits an Enable

command. As soon as the Enable command is received the guardian sets

its output so as to enable the gate and leaves it enabled for a fixed

period of time. 	At the end of this time period the guardian disables

the gate and returns to its idle state. 	If an Enable command is

detected but the guardian has not received a Select command then the

guardian does not enable the gate. 	However it still waits for the same

fixed period of time. 	While waiting the peripheral processor guardian

ignores the bus and any information on it. 	Thus it is not possible for

some data on the bus to be interpreted as commands and cause erroneous

operation of the system.

The operation described above only refers to a guardian attached to

a peripheral processor or a peripheral device. Guardians attached to

the interface processors have a slightly different state diagram, as

shown in Figure 2-22. 	Figure 2-23 shows that the commands they

understand are also slightly different. 	Such a guardian will still

ignore the bus for a fixed period of time after it detects an Enable

command. However once enabled it remains enabled until explicitly being

disabled. Thus an interface processor that has been given control of a

bus maintains this control except for the short periods of time that it

grants the bus to a peripheral for some data transfer.

36

Switch Bus

	

-1 	 1 	 I 	 I 	 I 	 I 	 I
0 	1 	0 	1 	0 	X1 	X 	1 	X1 	XIX

	

- 1 	1 	I 	 1 	 1 	 1 	1 -
old bus # 	1 	new bus #

	

-1 	1 	. I 	 1 	 1 	 1 	 1 -
guardian #

	

- 1 	1 	 I 	 1 	 1 	 1 	 1 -

Select

	

- 1 	 1 	 1 	 1 	 1 	 1 	 1 -
o 	I 	o 	I 	I 	xlx1x1x1x

	

-I 	I 	I 	 I 	 I 	 I 	 I -
guardian #

1 	1 	 1 	 1 	 1 	 1 	 1

Temporary Enable

I 	 I 	 I 	 I 	 I 	 I 	 I 	 I 	 I
I . 	o11 1 11 x I 	x 	I 	xl 	x 	I 	x 	I
I 	 I 	 I 	 I 	 I 	 I 	 I 	 I 	 I

Figure 2-21: Commands for Peripheral Processor Guardians

37

OFF

ON

TURN

OFF

OFF

TIMER DISBL

ON

t(:-)F—F

DISBL TIMER

Figure 2-22: State Diagram of Interface Processor Guardian

Switch Bus

1 	 I 	I 	 I 	 I 	I 	I
o l o 	o l xIx i xIx i x
	I 	I 	I 	I 	 I

old bus # 	new bus #

	 1 	 1 	 1 	 1 	 1
guardian #
	I 	• 	I 	 1 	 I

Turn ON

1 	 I 	 I 	 I - 	- I 	I 	 I
010111X1X 	I 	X 	1 	X 	I 	X
1111111

guardian #
1111111

Turn OFF

I 	 I 	 I 	 I 	 I 	 I 	 I
o 	I 	I 	()Ix' 	xlx1x1x

I 	I 	 I 	 I 	 I 	 I 	 I
guardian #

Temporary Disable

I 	 I 	 I 	 I 	 I 	 I 	 I 	 I 	 I
I 	0 	1 	1 	1 	1 	1x1x1x1x1x1
I 	I 	 I 	 I 	 I 	 I 	 I 	 I 	 I

Figure 2-23: Commands for Interface Processor Guardians

39

Figure 2-24 shows the outputs of the two types of guardians as a

function of time and of the commands received. We can observe how the

guardian of a peripheral processor is normally OFF whereas the guardian

of an interface processor is normally ON. 	When the guardian of the

peripheral processor is selected its output does not change. 	However,

when the Enable command is sent its output is activated and remains so

for a fixed period of time. During this time all other guardians in the

system disable their outputs.

The two types of guardians as described above have been implemented

and tested in N.mPc. A detailed description of ports and

interconnection within the system of gate and guardian modules is given

by Figures 2-25 and 2-26. Note that a guardian attached to a peripheral

always starts in the OFF state whereas a guardian attached to an

interface processor may start either in the OFF or in the ON state. In

actual hardware this will be controlled by a jumper or a switch. In the

simulation some guardians always start in the ON state. Namely the

guardians that start in the ON state are selected so that each of the

three initially active interface processors will have access to one of

the initially active buses. 	This is essential for the system to be

operational after initialization. 	It is now necessary to discuss the

guardian initialization process in more detail. 	The initialization

process provides all guardians with an identification number and informs

every interface processor guardian whether it should initially be turned

on or off. In actual hardware one would simply use a dipswitch per

guardian in order to distribute an ID and initialization information to

each guardian. As there would be independent switches for each

guardian no single point of failure will be introduced. However, in the

40

IPG2

IPG1

PPG

Bus
Data ---<XX> 	<XX>-XXXXXXXXXXXXXX 	<XX> 	<XX>

Select 	Enable 	Data 	Disable 	Enable
PPG 	PPG 	from PP 	IPG1 	IPG2

PPG: Peripheral Processor Guardian

IPG: Interface Processor Guardian

Figure 2-24: Example of Guardian Operation

41

8 , Rbus(k) output

Enbl(m+1)

Gtbus (n) 	 input 8

GATE.ISP

enable

enable

Enbl(m+2) I 	enable

n

Enbl(m)

NB: (k) , (n) and (m) are numbers which depend on what

other modules are connected to a gate.

Figure 2- 25: The Gate Module

bus02

bus03

bus01 Rbusl 	'

Rbus2

Rbus3

INITIPG.ISP

Or

PPGUARD.ISP

numbus 	Errbus

enin 	Ein(n)

Rbus4 	bus04 8

Enbl(n) ' 	enable

Dstb 	datastb

Srdy 	allrdy

enout 	Ein(n+1)
eigg 	

agree 	I 	Agr(n)

1-4

NB: The number (n) indentifies a guardian.

Figure 2-26: The Guardian Module

simulation context the dipswitches were replaced by an initialization

mechanism that was easier to build and handle than sixty dipswitch

modules. 	Figure 2-27 shows the initialization circuitry of the

guardians. 	An initialization module distributes the initialization

information using a special bus ("numbus"). 	Through another line

("enin", "enout") a token is passed from guardian to guardian as each

one receives its initialization word. 	A "reset" signal allows to

reinitiate the guardian initialization whenever necessary. 	The most

significant bit of the initialization word is recognized by the

interface processor guardians (only) and tells them whether they should

initially be switched on or off. The rest of the initialization word is

used to distribute ascending identification numbers to each guardian.

Multiples of four are not used as guardian identifiers. This measure

makes it possible to address all three guardians (plus the nonexisting

one with an ID that is a multiple of four) associated with a certain

gate with one single command. In the guardians this feature is

implemented by having them recognize commands based on an ID whose two

least significant bits are truncated. Figure 2-28 shows the

initialization module in detail. It contains the IP-guardian

initialization information and may therefore be different if different

hardware is simulated. The initialization also distributes

identifications to all transmitters and receivers via ports that are

initialized to a certain value using the ISP initialization mechanism.

The transmitter/receiver modules get these values by connecting a line

to the appropriate initialization module port.

44

I
.

I . I

Li II 	,

,

I

numbus 	numbus

Guardian 1 	Guardian 2

enin enou 	nin enout

numbus

Guardian 3

enin enout 0.

V

numbus numbus numbus

Guardian n- Guardian n Guardian n-1

enin enout enin enout enin enout 410.

(to Initialization Module)

Figure 2-27: Initialization of the Guardians

Errbus

8 , id2(e1H)

8 id3(e2H)

EOline
1,1

Elline

E2line

1d4(e3H) 	E3line

FTIDGEN.ISP 8 , id5(e4H) E4line

8 id6(e5H) E5line

8 id7(e6H) E6line

allrdy 	. Srdy

enable Ein01 	(to first guardian)

16 idguard

idl(e0H)

reset . Reset

E7line 8 id8(e7H)

L_ _ _ _

NB: The numbers in brackets are the initial values assigned to a

port by an N.mPc mechanism. This corresponds to a "hardwired"

initialization

Figure 2-28: The Initialization Module

2.3.3. The System Reset Mechanism

The system reset mechanism description given in [14] was formulated

with a view towards system implementation in real hardware. 	Thus

powering down" of microprocessors and running of self test routines

were not considered in the context of the simulation work presented in

this report. However, the hardware simulation has the capability of

reactivating the guardian initialization mechanism. This capability is

described in Section 2.3.2.3.

2.4. Fault Tolerant Operating System Implementation

The fault tolerant operating system has been developed keeping in

mind that it should be easy to port it from its host computer based

development environment (described in [7]) to some specific target

hardware. Therefore the only hardware dependent communication routines

are four utility routines called by the message passing kernel for doing

inter processor communications.

The communications routines necessary to run the fault tolerant

operating system on Intel 8086 based hardware (simulated or real) were

written and tested on simulated hardware and are described in section 4.

2.5. System Integration

This section explains how to integrate the fault tolerant operating

system with the simulation of the fault tolerant hardware architecture in

order to form a fault tolerant multi-microprocessor system.

The first step is to design descriptions of all the necessary

hardware components in N.mPc"s hardware description language ISP'.

These components are then interconnected according to the design of the

fault tolerant *multiprocessor architecture and the interconnection

47

information is stored in a topology file. 	Figure 2-29 shows the

hardware modules involved in the simulation of the fault tolerant

multiprocessor architecture as well as their interconnection.

The next step is to load the operating system software in the

processor's memories. The enhanced software development environment (C-

8086 cross compiler) described in [20] is used to load the software of

the fault tolerant operating system, written in the C language, into the

memories of all central processors. For the interface processors and

the peripheral processor special drivers written in assembly code are

loaded. 	Software and hardware of the entire system can now be

integrated under N.mPc as shown in Figure 2-30. 	The simulation is then

put 	in the runtime mode and the processors 	are initialized

appropriately. 	The simulated fault tolerant multiprocessor system will

be ready to run at this point.

The methodology outlined above for the integration of the operating

system code with the simulated hardware architecture is general and will

definitely lead to a fully integrated system simulation. In this study

the full integration was not accomplished due to the following reasons:

The 	slow execution speed of N.mPc mitigates 	against

conducting fault tolerant tests in a reasonable time period.

This is due to the fact that the execution of each single

operating system instruction involves detailed and numerous

register transfer level instruction executions with N.mPc.

Since the task execution cycles of the operating system are

fairly lengthy to begin with, the corresponding number of

executions within N.mPc will be extremely large, which leads

to prohibitively long simulation times.

48

	61 16

• 26

• 36

46

63 F

H 64

1 met

1 8086 	1

1 TIM

• • 18

28 27

J
3 • 38

447 * 48

Ipe

r— ME17171

1 	8086 /-

1 TIM 	11

CT1

It

81

82

83 	}- 	

84 1

BS I 	.1 	

BS I 	1 	

BS I 	•I 	

_71 	r

72

73

74

mr

8s [1-

BS I

BS I

'FF70

BSI

am
1P5

GT1

8sr

BS I 1 CT I

C RDO I

CATE I

GRD02 GRD03

12 1 9E1.1

1 8086 1.

1 MEM

1 8086 1--1 13

TIM TIM 1--1

23 UM

24 Me

25 	52

Fm2:numili 62

27 	72

28 	82

54 51

6

Ht
81

-1 	41

-1 	42 	I

H
46

47 	7

48 	8

1.4- 4 	j

I .FF.11

1 	1- 	-1 	34

q 35 	1•"--* 53

	

35 	63

	

"i 37
	

- 38 	83

MEM

8086 I-

T I M 	.1 	14

L- 11 	1 	61•

17 	1. I 	a71

H

CP

MEM

8086

I TIM

MEM

8086

TIM

• 15

• 25

• 35

• 45

51

52

53

54 	•

IJP71 	I

4 CC

GRD78 GRD79

"."-{ 	BS 1

- BSI

mr

as'

4 CC

• 1

144•:

F14/• 1

0144

GRD77

Figure 2-29: N.mPc Simulation of the Fault Tolerant Hardware Architecture

IEP' Prime Source Code
User
Commands

Simulations
Output

".obj" files
max86cpu.isp
86mem.isp
timer.isp
trx.isp

'
Ise

bsfifo.isp 	Compiler
'

gtintrfc.isp
gate.isp
initipg.isp
ppgrd.isp
idgen.isp

FT Multiprocessor

Architecture Topolom

simul.t

simul.s

simul.exe

RUNTIME PACKAGE
'Simulation Progress
'Command, Interpreter
'Simulated Memory Manager

Trace
Output

simuLd
simul.f

romcore.p

(2) "copy ftos.out cpcorel.'
"copy ftos.out cpcore2."
"copy ftos.out cpcore3."
"copy ftos.out cpcore4."

"copy ipdriver.out ipcore5."
"copy ipdriver.out ipcore6."
"copy ipdriver.out ipcore7."

"copy ipdriver.out ipcore8."
"copy ppdriver.out ppcore9."

simul.x

ftos.s

ps
ipdriver.
pdriver.

OTOL
(object to 1.out)

Cross

Assembler/

Linker/Loader

C Source
Program

ftos.c

1

1

1

ftos.out
1 ipdriver.out
1 ppdriver.out
1

in "isplibr" directory

1) "@86asmotol ftos"
"@86asmotol ipdriver"
"@86asmotol ppdriver"

Figure 2-30: Integration of the Fault Tolerant System

- 	The full operating system code, written in C programming

language, proved to be lengthy and complex which makes the

debugging process of the code, when executed under N.mPc,

intractable.

The N.mPc code corresponding to the VLSI structure of the 8086

chip details is not guaranteed to be absolutely correct. This

complicates the debugging process and makes it difficult to

determine whether the source of a given bug is in the VLSI

description or in the complex operating system code. Note

that this problem is inherent to any complex VLSI design such

as the 8086 processor.

In summary a full integration of the fault tolerant hardware and

the operating system software proved to be beyond the time and resources

allocated for this study.

The functionality of the operating system software was tested

separately in a "C" based testbed as described in [7]. In 	the

simulation of the fault tolerant multiprocessor system the 	full

operating system software was replaced by a module exercising the

hardware dependent communication routines used by the message passing

kernel. The testing of the fault tolerant hardware and the application

of different failure conditions to the simulated system have been

conducted under the N.mPc environment in order to validate the concepts

developed in [7, 14].

51

3. FUNCTIONAL TESTING OF THE SIMULATED HARDWARE SYSTEM

3.1. Simulation Limitations

In N.mPc based hardware simulations the execution speed 	is

inversely, proportional to the complexity of the simulated hardware. In

microprocessor based simulations this means that the execution speed of

the total simulation will decrease in proportion to the number of

microprocessors simulated. Validation of the architectural hardware

concepts does not necessitate simulation of the entire fault tolerant

hardware architecture as many modules are repeated in the structure.

For this reason, the simulation has been broken down into smaller

modules. 	This will speed up each simulation run without affecting the

generality of the obtained results. 	The following module simulations

have been created and are shown in Figure 3-1:

i) A simulation involving an interface processor, a peripheral

processor and their gate complexes.

ii) A simulation with four interface processors, one peripheral

processor and all the fault tolerant hardware.

iii) A simulation of four fully interconnected central processors

and their communication modules.

Simulation i) is sufficient to exercise the basic properties of the

elements of the fault tolerant hardware. Simulation ii) can demonstrate

the synchronous functioning of the interface processors and makes it

possible to test the fault tolerant hardware architecture in different

failure conditions. Simulation iii) is used for the integration of the

hardware dependent communication routines of the fault tolerant

operating system with the simulated hardware architecture.

52

L-

i)

IP

* *
CP

—

_

iii)

CP C P C P

-I
ii)

IP

4GCS 4GCs 4GCs 4G C S

GC

...Mr Orr rob. 	 J

1

4GCs

4GCs

PP

r
1

I 	•
PP

—
door

r-

II

" I

	

I 	I

	

I ' 	I

I

II

I II

I II

	

II
	I

'

II

L

r,(,1 	

Figure 3-1: Partial Simulations of the Fault Tolerant Multiprocessor Architecture

3.2. Test Plan and Approach

3.2.1. Objectives

The main objective of the simulation is to establish 	the

correctness and completeness of the detailed descriptions of the

hardware modules. Correctness of the interconnection (topology) of

these hardware modules is also established through appropriate

simulation tests.

A second objective of the simulation is to demonstrate the ability

the fault tolerant hardware to continue correct operation in the

presence of (induced) faults and to perform a system reconfiguration

upon detection of a hardware failure.

3.2.2. Test Plan

The test procedure includes bd0 steps. 	First the hardware modules

and the guardian initialization mechanism are tested in a simulation

involving one interface processor and a peripheral processor as well as

all the fault tolerant hardware. This test should assess the functional

correctness of the hardware modules. The test method applied consists

in having appropriate test software exercise all the features of each

hardware module. The result expected from this test should give a

confirmation that 	the fault tolerant hardware needed 	for 	the

multiprocessor architecture works exactly as specified in [14].

In a second test simulation, involving all four interface

processors, the synchronous nature of the interface processors will be

demonstrated. The fault tolerant system's ability to continue

functioning correctly in the event of corrupted 	data, 	guardian

malfunction or bus failure will be demonstrated. This test should also

demonstrate the correct functioning of the full fault tolerant hardware

54

modules used to interface the central processors and the peripherals.

The test method used in this simulation is selective fault insertion by

the user in order to test the fault tolerant multiprocessor system's

response. The expected results were the masking of single errors in

input data by majority software voting, the cutting off of a device from

its bus when one of its guardians fails and the reconfiguration of the

fault tolerant hardware around the failure of a peripheral interface

bus.

3.3. Test Software

3.3.1. Functional Definition

3.3.1.1. Test of the Hardware Modules

Testing the hardware modules is conducted via a simulation which

involves an interface processor and a peripheral processor as shown in

Figure 3-2 inside the enclosed area (i). Test software modules are

needed to drive each processor. The listings of the interface processor

driver ("iptest.s") and the peripheral processor driver ("pptest.s")

used in this test simulation are found in Appendix A.2.

The "iptest.s" program exercises all the states of the guardians

shown in Figures 2-20, 2-22. It tests all guardian commands shown in

Figures 2-21, 2-23. In cooperating with a program driving the peripheral

processor the whole guardian operation sequence shown in Figure 2-24 was

exercised in the test. The "pptest.s" module just waits until the

peripheral processor guardians are enabled and then sends a message to

the interface processor via the temporarily accessible peripheral

interface bus. 	The guardian initialization mechanism, 	which

independent of the test software, is also checked by this test

simulation.

55

nrcpLISP

rtIrel

.1n11

CATE.ISP "ga 02")

INITIPC.ISP

("grd05")

(NIT (PC.ISP

"grdW)

(SIT PG.ISP

("g d.II)

CATE.ISP ("gAte01")

INITIPC ISP IN 11111:. ISP

("grOW")

INITIPC.ISP

("grd09")

INITIPC.1S

("grd03")

I 	

CATE.ISP ("Rate00")

MTIPC.ISP

(- 8,don
INITIPG.ISP

("grd02"

GATEJSP "gar...0 31

INITIPL.IS

(',rd 4")

IRIT PG.ISP

("grd15")
(NITIPC.ISP

I'vc113')

PPGRD.ISP

("grd18')

\ 1
CATE.ISP ("gate04)

PPCRD.ISP

I 	(ird19")

PPCRD. SP

d26")

GATE.ISP ("gate06")

PPGRD.ISP

("grd17")

PPC.80.1SP

("grd2r)

PCRD. SP

d25")

CATE.Rsr ("gmon

PPCRD. SP

("g d2 ")

PPCRO ISP

("grd21 —)

PPGRD.ISP

("R .210")

17
GATE.ISP (" 11+ 1 .°7")

PPCRD.ISP

("grd/1")

PPGRD.ISP

("grd29")

PPCRD. SP

("grd22")

TIMER.ISP

('II-9")

nUMCPILISP

cpa")

21614E11.UP

86MCM.ISP

("deeRS")

MAXRCPU.ISP

IPS

CTINTRFC.ISP

("grIS")

("8,151")

~ 8SFIFO.ISP

(1.152")

~ 8SFIFO.ISP

("tel$53")

mn MASI'

("1.154")

PP

CTINTRFC.ISP

("Z(9")

Figure 3-2: Topology of the Test Simulation
for Hardware Modules

("1.191")

- ISFIFO.ISP

("bsI92")

• IISFIMASP

(1.193")

RSIFINASP

("bel9i »)

3.3.1.2. Test of the Full Fault Tolerant Interface

This simulation is intended to demonstrate the fault tolerant

system's capability to continue correct operation in the presence of

specific user induced faults. The full fault tolerant interface,

including four interface processors and a peripheral processor, is part

of the simulation. The configuration is shown in Figure 3-1 inside the

enclosed area (ii).

The program driving the four interface processors ("fttest.s") does

a majority vote on input data and then goes through normal operation of

the fault tolerant interface and its guardians as shown in figure 2-24.

The peripheral processor waits until it gets access to a peripheral

interface bus, which means it has to wait until its guardians are

enabled. It then sends data to the interface processors. 	If the user

does not insert any faults this process continues indefinitely. 	The

user can then insert simulated faults, causing the fault tolerant

hardware and software to react in order to keep the system operating

correctly. Three failure conditions have been simulated:

1) The user can corrupt input data. A subsequent majority

software vote in the interface processors can mask a single

error.

2) The user can change the gate enable output signal of a

guardian to an incorrect state. Such a fault is detected and

masked by the guardian's gate, which only opens if its three

guardians are in agreement.

3) The user can cause a disagreement among the three peripheral

interface buses in use. This will be interpreted as a bus

failure by the interface processors and the fault tolerant

57

system is reconfigured around the failure by bringing in the

fourth reserve bus.

The results expected from this test are a continuing correct

operation of the fault tolerant system in presence of the above

mentioned user induced faults and a correct system reconfiguration upon

detection of a bus failure.

3.3.2. Lnplementation Description

Detailed descriptions of how to cross compile and run the test

software modules discussed in section 3.3.1 are given in Appendix A.3 as

well as in the simulation directories ("persim", "ftol") in the form of

"readmefirst" textfiles. The directories reiterate what has been

explained in the N.mPc user's manual[24] for the specific cases of the

two simulations discussed in this section.

3.4. Test Results

3.4.1. The Hardware Modules Test Simulation

The results of the simulation discussed in this section are

recordings of certain events (register transfers, signal changes, etc.)

which simulate the function of a complex hardware.

Figure 3-2 shows the topology of the test simulation for the

hardware modules and Figure 3-3 gives the usual block diagram of the

same simulation.

The listing of an interactive test simulation session , focussing

on the verification of the correct functioning of the fault tolerant

hardware modules, is given in Appendix A.4. It contains all the

information necessary to verify that the modules under investigation do

in fact work as specified in [14]. N.mPc makes it then possible to

verify with "display" commands and breakpoints that the hardware is

58

RUNTIME PACKAGE
.Simulation Progress
•Command Interpreter
•Simulated Memory . Manager

Compiler'

r-

max86cpu .isp
86mem.isp
timer.isp
trx.isp
bsfifo.isp
gtintrfc.isp
gate.isp
initipgasp
ppgrd.isp
ftidgen.isp

ftsim. t},

ftsim.exe

Target System
Topology 	

ftsim.s ".obj filo

ftsim.f

Cross

Assembler/

Linker/Loader

C Source
Program

Assembly
Source
Program

fttest.s
pptest.s

Cross

Compiler

fttest.out

pptest.out

OTOL
(object to 1.out)

in "isplibr" directory

User
Commands

	-- 	
Simulations
Output

411111Ie
Trace
Output

ftsim.d

Memory
List

initmemname.p

"@86asmotol fttest "
"@86asmotol pptest"

ftsim.x

..

1 Simulated Memory

1 Processor

"copy fttest.out ipcore5."
"copy fttest.out ipcore6."
"copy fttest.out ipcore7."
"copy fttest.out ipcore8."
"copy pptest.out ppcore9."

Figure 3-5: Block Diagram of the Test Simulation for the Full Fault Tolerant Interface

functioning correctly. The following conclusions could be drawn from

simulation test runs:

- interface processor guardian

("initipg.isp"): - all state transitions done

according to state diagram

- it executes all its special

commands correctly

- initial ID distribution and initialization

(on/off) working correctly

- it activates its enable signal

only 	when turned on during 	the

initialization 	or after receiving the

"Turn On" command

- peripheral processor guardian

("ppgrd.isp"): 	- all state transitions done according

to state diagram

- it executes all its special commands

correctly

- initial ID distribution functions

- activates 	its 	enable 	signal 	only

temporarily after receiving a "Select"

command followed by an "Enable" command

- gate("gate.isp"):- opens only when enabled by all three

guardians

- initialization module

("idgen.isp"): 	- correctly turns the desired interface

processor guardians on

60

- distributes IDs to all guardians

- distributes the right I/0 addresses to

each communication module

- transmitter("gtintrfc.isp"):

- correctly transmits the bytes written to

its I/O address via a FIFO queue to

peripheral interface bus(PIB, redundant

bus)

- the CPU can check whether the transmitter

queue is full before enqueuing another

byte

- receiver("bsfifo.isp"):

- correctly puts bytes received from the PIB

in a receiver queue

- the CPU can check whether the receiver

queue is empty before reading a byte from

it

- transceiver("trx.isp"):

- correctly transmits and receives bytes

using two separate FIFO queues

- a CPU can check whether the receiver queue

is empty before reading from it

- a CPU can check whether a transmitter

queue is full before writing to it

- a CPU can reset both FIFO queues

61

- timer("timer.isp"):

- the timer correctly halts a CPU for a

number 	of clock cycles that can 	be

specified

-memory("86mem.isp"):

- the 16k RAM memory has been tested in the

course of earlier N.mPc work(see [20])

- 8086 CPU("max86cpu.isp"):

- the description of an Intel 8086 CPU has

been the object of earlier N.mPc test and

verification work(see [20])

3.4.2. Results of the Test of the Full Fault Tolerant Interface

The topology of the simulation discussed in this section is

depicted in Figure 3-4 and the corresponding simulation block diagram is

presented in Figure 3-5. Again the "results" are not representable in a

simple, closed form. They represent changing states in a complex

simulated hardware that can only be observed by using various N.mPc run-

time commands in order to trace certain registers or ports.

The listing from an interactive N.mPc simulation session is

contained in Appendix A.4. It shows the testing of three different

failure conditions that can be handled by the fault tolerant hardware of

the simulated multiprocessor architecture. The following conclusions

can be drawn regarding the three fault conditions specified in 3.2.2:

1) 	Corrupted Input Data:

Data fed to interface processors (simulating a message

from 	three central processors) can selectively 	be

62

IPS

1.1
mbmEm.ISr

nnmEM. 1 SV

MI?' "Mr

116MEM.ISP

("Ronne)

NC PC.I s r

mA.XRCPU.ISP

(-)

I 	MAX8CPU.ISP

(“cpue) I 	MAXMCPU.INP (- cpu7 •)

TIMER.ISP

TIMEK.ISP

("tint")

TIMER.ISP

(- time)

TIMEN.ISP

(”time. - 1

CAT E.I SP (-1[. .04 -) CATE.ISP riateer) C,TE.ISP r,arn0r) CATC.ISP - saienr)

C.ATES 1(9.1Z)

CuardI:ns

(3 3-15 	37-39, 4) - 3. 45 47)

GATES (05-06)

Csa dians

(17-19. 1) -23. 15-27, ?9 31)

CATES (3-16)

Guardians

(49-51. 0 3-55. 57 59. 61-63)

IMITIPC IS

dIS- 1

IstturcAsr
14 -)

INITIPC.ISP

(.. t d Fe)
INITIPC.IS

rgrd.11)

isitircAsp

rc , d I 1 ')

11111 	III 	UM 	111 	1 I
ISITIPC.ISP

reed0Z- 1

i 	4 è

INITIPC.ISF

("(rd0S ..)

ISITIPC.ISP

(- Kr<ICM - 1

INITIPC.ISP

C,rdn7 - 1

1St IPC.ISP

('mrd119 ..) 1 - erd1 il

Hbus

Rbu s2

Rb os s3

Rbus4

r

CRTE.ISP 	ttttt

CATE.ISP

céac.isr CRRI..20.1
CATC.ISP (- Race le.)

TIMER.ISP

CrIn9 - 1

MAX136CPU.ISP

Ccru9 .«)

B6MEM.ISP Figure 3-4: Topology of the Test Simulation for the Full Fault
Tolerant Architecture

esr:m.ur

cb•(9...,

asrlro.tsr

Cbs197 ..)

BSFIMASP

(1.19n 	 •

e' (•:::; 1*:: e 	I.

CTINTRFC.ISP

CTISTRFC.ISP 	I
rit15 -)

SSFIFO.ISP

(-6.151 ..)

ISSFIFO.ISP

(b.152 -)

OSFIFO.ISP

(-01.53'1

ISFIFO.ISP

(-1.15e)

IISFIFO. ISP

rbst ,,

tors ro,

 Cbsi6r)

SMUT/ASP

CRin63 -)

BSFIFO.ISP

("bs164 -)

GTINTRFC.ISP

(”g[I7")

casnmAsp

cb.r/n

C1.1721

BSFIFO.ISP

(”bis ? -)

Cbs(74”)

GTINTRFC.ISP

(-stir)

e•—n

bISFIFOASP

rb.rrin

KS 1-11-0,15)'

18 2")

BSFIFO.ISP

BSFIFO.ISP

("bs1.84")

PPC1113.1SP

(lird65.)

PPC110.ISP

r“.166-,

PPC10.1SP

red6r)

?Pi- U.(5P

r.164-)

PPCR.D. SP
a7 C')

PPCRO. SP

.. Rre/71")

PCRO. SP

7 "5

?MID. SP
(•, d7 ”)

rrcge.isr
rird75 - 1

PPCMD.ISP
i'ird77 -)

PPCIRD.ISP

(", d75^)

PPCMD. Sr

(-yrd79.1

1 - 6119 4)

User
Commands

Simulations

Output

Assembly
Source
Program

fttest.s

pptest.s

C Source
Program

Cross

Compiler

Cross

Assembler/

Linker/Loader

fttest.out

pptest.out

OTOL
(object to 1.00t

ftsim.s

in "isplibr" directory
	 A 	

".obj files"

[SP'
Compiler

Target System
Topology

ftsim.t}

RUNTIME PACKAGE
.Simulation Progress

'Command Interpreter
'Simulated Memory Manager

401111le
Trace
Output

ftsim.d

max86cpu.isp
86mem.isp
timer.isp

trx.isp
bsfifo.isp

gtintrfc.isp
gate.isp

initipg.isp
ppgrd.isp
ftidgen.isp

Memory

List

initmemname.p

ftsim.x

"copy fttest.out ipcore5."
"copy fttest.out ipcore6."
"copy fttest.out ipcore7."

"copy fttest.out ipcore8."
"copy pptest.out ppcore9."

Simulated

Memory
Processor

"@86asmotol fttest "

"086asmotol ppiest"

Figure 3-5: Block Diagram of the Test Simulation for the Full Fault Tolerant Interface

corrupted. The interface 	processor can mask a single

error by majority software voting.

2) Guardian Failure:

The failure of a guardian can be induced by the "user" (=

person running the simulation), who inverts the logical

state of a guardian's enable signal. This failure is

correctly handled by the fault tolerant multiprocessor

system as a gate gives a device bus access only if

enabled by all of its three guardians. Thus the device

controlled by the faulty guardian is cut off from its

bus.

3) Bus Failure:

A disagreement between the three redundant buses in use

at any time is detected by the interface processors.

They can then reconfigure the system by determining the

faulty bus and switching the appropriate guardians and

the concerned interface processor to a previously unused

reserve bus. Figure 3-6 and 3-7 show the configuration

of the fault tolerant hardware before and after recovery

from a bus failure.

More details about these simulations are found in "Oreadme.fst"

information files contained in each simulation directory, in comments in

the listings of the programs run in each simulation and in the listings

in Appendix A.4.

65

CP C P CP

4G Cs

C P

4GCs 4GCS 4GCS

GC GC GC GC

4G Cs

PP

Figure 3 -6: Initial Configuration of Fault Tolerant Hardware

C P C P C P C P

MOM MOM •

IP IP I P IP

4GCs 4GCs

•Ir

.4,

4GCs 4GCs

bei e ; ma >zee«

ai 	 • O 	•NIM 	MI

I

GC G GC GC

leGCs

P P

Figure 3-7: Reconfigured Fault Tolerant Hardware after Detecting a Failure of
Peripheral Interface Bus Number 1

4. FUNCTIONAL TESTING OF THE INTEGRATED OPERATING SYSTEM SOFTWARE AND

THE SIMULATED HARDWARE SYSTEM

4.1. Limitations of N.mPc Simulations

The originally planned integration of the simulated multiprocessor

architecture 	and 	the full fault tolerant operating system 	was

subsequently scoped down to a simulation involving the integration of

the fully simulated multiprocessor hardware architecture and only a

subset of the operating system routines for the following reasons:

I) The work done on the validation of N.mPc microprocessor

simulation [20] concluded that a substantial host processor

CPU time is required when executing software on a simulated

processor instead of a real processor. Since the fault

tolerant operating system was still in the conceptual design

stage at the time the validation work was being conducted, it

was difficult to estimate the performance of N.mPc when

executing a complex software structure such as the fault

tolerant operating system. The simulation described in this

section gives accurate estimates of the magnitude of the CPU

resources needed to simulate software modules that are run on

simulated microprocessors. This simulation includes four

central processors communicating with each other by exchanging

messages. While the simulation works as described in the

hardware specifications stated in [14] it also indicates

clearly that the host CPU execution time needed for running

the complete fault tolerant operating system software on

simulated 8086 processors would be very high. For example,

the exchange of a single byte "message" consumes close to one

minute of CPU time on the VAX 11/780 host computer.

68

1
1
1

1

1

Considering that the lowest layer of the fault tolerant

operating system involves frequent exchange of messages each

with length in the order of hundreds of bytes, it is easy to

estimate that the CPU time required to perform a meaningful

simulation will be unrealisticaily large.

ii) The slow execution speed of N.mPc mitigates against conducting

fault tolerant tests in a reasonable time period. This is due

to the fact that the execution of each single operating system

instruction involves detailed and numerous register transfer

level instruction executions with N.mPc. 	Since the task

execution cycles of the operating system are fairly lengthy to

begin with, the corresponding number of executions within

N.mPc will be extremely large, which leads to prohibitively

long simulation times.

iii) The N.mPc code corresponding to the VLSI structure of the 8086

chip details is not guaranteed to be absolutely correct. This

complicates the debugging process and makes it difficult

determine whether the source of a given bug is in the VLSI

description or in the complex operating system code. 	Note

that this problem is inherent in any complex VLSI design such

as the 8086 processor.

In summary a full integration of the fault tolerant hardware and

the operating system software proved to be beyond the time and resources

allocated for this study.

For the reasons described above, it was decided to implement only a

subset of the fault tolerant operating system. The subset consists of

hardware dependent communication routines running on a simulated

hardware architecture which consists of four intercommunicating central

69

1

processors. This partial simulation is based on the fact that the fault

tolerant part of the multiprocessor hardware architecture has been

tested before. The breakdown of the total simulation into partial

simulations is necessary to complete the simulation while imposing a

reasonable demand on the host computer CPU time. The hardware

dependent communication routines of the fault tolerant operating system

were chosen for integration with the simulated hardware for two reasons:

i) The hardware dependent communication routines could be easily

transported in the future as part of the full operating system

software to an 8086 based prototype hardware.

ii) It is difficult to simulate separately any of the other

operating system routines since they are all interrelated.

4.2. Test Plan and Approach

4.2.1. Objectives

The main objectives of the simulation described in this section

are:

(1) To verify the correctness and establish the completeness of

the operating system routines used for interprocess message

	

communications. 	This will also establish that the interface

between the hardware and the software responsible for byte

transfer among the different processors is correct.

(2) To 	establish 	systematic and methodical procedures 	for

transporting operating system code, written in C, to a target

hardware prototype. This will be desirable in future research

involving 	the 	development 	of 	actual 	fault 	tolerant

multimicroprocessor hardware based on the study completed so

far.

70

4.2.2. Test Plan

The following activities were planned in the context of the

integration of the operating system and the fault tolerant hardware

architecture:

Investigation of the mechanism for calling hardware dependent

assembly routines from within hardware independent high level

software.

Design and test of special hardware modules ("transceivers")

for two way message passing between the fully interconnected

central processors following the criteria defined in the

hardware analysis report [14].

Write the assembly routines necessary for message passing

between central processor modules, using the previously

designed transceivers.

Write moderately sized high level test software modules (in C)

coordinating message passing between four central processors.

The expected result of this test consists in the integration of all

the message passing software and the four central processor modules in

order to build an interprocessor message passing simulation that can be

executed on the N.mPc/VAX 11-780 (located at CRC).

4.3. Test Software

4.3.1. Functional Definition

Figure 4-1 gives an overview of the different software and hardware

modules involved in the simulation of four fully interconnected,

communicating central processor modules.

The test software running each of the four central processors is

written in the high level language C and organizes the message exchange

71

cpcpcom.s
".obj " files

ISP'
Compiler

RUNTIME PACKAGE
.Simulation Progress
*Command Interpreter
'Simulated Memory Manager cpcpcom.exe

cpcpcom.f

ipcore5.p
cipcore9.p

cpcpcom.x

Assembly Source Program

(in link library): 	,/

QFULL.S
QEMPTY.S
OETBYTE.S
XMITBYTE.S

in "isplibr" directory
User
Commands

Simulations
Output

max86cpu.isp
86mem.isp
timer.isp
trx.isp
bsfifo.isp
gtintrfc.isp
gate.isp
initipg.isp
ppgrd.isp

newidgen.isp

Target System
Topology

cpcpcom.t

4011111>
Trace
Output

cpcpcom.d

Cross

Assembler/

Linker/Loader

Simulated
Memory
Processor

C Source
Program

CÉTOASK.0
CP1TASK.0
CP2TASK.0
CP3TASK.0

Cross

Compiler

CPOTASK .OUT
 CP1TASK.OUT

CP2TASK.OUT
CP3TASK.OUT

"copy CPOTASK.OUT cpcorel."
"copy CP1TASK.OUT cpcore2."
"copy CP2TASK.OUT cpcore3."
"copy CP3TASK.OUT cpcore4."

OTOL
(object to 1.out)1

"fflasmotol CPOTASK"
"fflasmotol CP1TASK"
"@86asmotol CP2TASK"
"fflasmotol CP3TASK"

Figure 4-1: Block Diagram of the Fault Tolerant Operating System/Hardware
Integration Simulation

between the four processors. 	Appendix B.3 contains the listing of each

processor's message passing software module. 	A message of six bytes in

length is passed around from processor to processor in a closed loop as

shown in Figure 4-2.

The hardware independent high level software modules running on the

central processors naturally can't do the message passing by themselves.

They need to call hardware dependent assembly routines that are able to

handle the communications hardware modules ("transceivers", trx.isp)

described in section 2. The four assembly routines for communication

are:

- "Qfull.s": 	Checks whether the transmit queue 	of 	a

transceiver is full or not. 	A "1" is returned

if the transmit queue is full, a "0" if the

queue is not full.

- "xmitbyte.s": Puts a specified byte into the transmit queue

connected to the desired destination processor.

The byte is then automatically transmitted to

the receive queue of the destination processor.

- "Qempty.s: 	Checks whether 	the receive queue 	of 	a

transceiver is empty or not. A "1" is returned

if the receive queue is empty, a zero

otherwise.

"getbyte.s": 	Reads a byte from the receiver queue connected

to the desired source processor.

The four communication routines have to be incorporated into the

link library of the cross software development tool (see [19, 20]).

They can then be called from within programs written in the high level

73

I

I

I

I

I

I

I

I

I

I

1

CP1 CP4
4)

1)

2)

OP-
CP2 CP3

I

I

1

I Figure 4-2: Message Passing Loop Formed by Four Central Processors

I

I

I

language C. 	Assembly routines called by C programs have to follow

certain conventions outlined in [19]. 	The following calls are used to

invoke the four communication routines from within a C program:

"Qfull(i)": 	The destination processor is specified by index

i.

"xmitbyte(i, byte)":

Destination processor index and the byte to be

transmitted have to be specified.

- "QemPtY(i)": 	The index of the source processor, from which a

transmitted byte is to be read, is specified.

- "getbyte(i)": Only the index of the desired source processor

has to be specified.

Thus, for sending a byte to a certain destination processor, a check

is done first to determine if the transmit queue of the transceiver

connected to the desired processor is full or not ("Qfull(i)"). If the

queue is not full, the byte is transmitted ("xmitbyte(i, byte)"). To

read a byte received from another processor, a check is conducted to

determine if the corresponding transceiver's receive queue is empty or

not ("Qempty(i)"). 	If the queue is not empty a byte is read and

transmitted by issuing a "getbyte(i)" call. 	These communication

routines correspond to the ones designed for the fault tolerant

operating system in the "C" based simulation testbed (see [7]).

4.3.2. Implementation Description

The implementation of the simulation of the four intercommunicating

central processors and their test software is shown in Figure 4-1 and

described in detail in Appendix B.3 and in a "readme" textfile in the

corresponding simulation directory ("osint").

75

4.4. Test Results

The detailed structure of the simulated hardware used to execute

the test software described in this section is given in Figure 4-3. The

following results were obtained from a test simulation doing

interpr6cessor message passing:

- The actual message transmission could be made without

requiring continuous attention from the CPU by using FIFO

queues for intermediate storage of messages.

- Transmission via serial bus was properly simulated by

introducing appropriate delays when transmitting via parallel

buses.

- A new transceiver module was created in order to perform

transmission and reception independently but in a single

hardware module.

A message (6 bytes) could continuously be passed through four

processors connected in a closed loop.

- It took over a minute of CPU time on the VAX/11-780 to pass

one byte from one processor to another one in the N.mPc

simulation environment.

	

A mechanism interfacing hardware independent high 	level

software to the fault tolerant hardware architecture was

investigated and used to implement interprocessor message

passing on four fully interconnected 8086 CPUs.

The results listed above can be verified in the listing of an

interactive session involving the simulation of the four fully

interconnected central processors (see Appendix B.4).

76

Cr' CP

("flfo41 ^)

TRX.ISP

rfif 44r./

TRICISP

rftfo4r1

861SEM.ISP

MAX86CPU.ISP

(« cpu)"/

TIMER.ISP

("t1s2")

HI TRX.ISP

("(1(.23*)

44. 	TRX.ISP

(« flfo24

86MER.ISP

(- and")

MAX86CrU.ISP

("cpul")

•nnLise

("t 1.1)

TRX.ISP

(» fIfol2

1-{ ("(I (oll")

TRILISP

H El TRIASP

r(1tod...)

CPI

86MEMASP
(..seml")

mzr.; . `sr

TIMERASP

(°URS»)

TRILISP

rlIfoM")

H. - TRX.ISP

("flfo)2")

TR.X.ISP

rmowl

86MEM.ISR

("neut. «)

I MAX86CPU.ISP

("cpu4")

unit.up
("um-)

Figure 4-3: Topology of the Fault Tolerant Operating System/Hardware Integration Simulation

• 1

Finally a remark concerning the interprocessor message passing is

in order. From the processor interconnection scheme shown in Figure 4-3

it can be concluded that a processor has to know its own "identity" (its

position in the interconnection scheme) in order to determine which I/O

port to choose when transmitting to or receiving from a certain other

processor. A special CPU identity distribution mechanism had to be

included in this simulations initialization module ("newidgen.isp").

It allows a CPU to obtain its own identity (numbers 0 to 3) by executing

an input instruction using a special I/O address ("IN ax, 0a0H"). The

communication assembly routines then take a processor's identity and the

interconnection scheme into account and are able to choose the

transceiver 	that is connected to the desired 	source/destination

processor. This makes it possible to simply specify the

source/destination processor when calling a communications routine from

within a C program. These details are also explained by the comments in

the listings of the communication assembly routines in Appendix B.1.

1
78

5. SUMMARY AND CONCLUSIONS

The following hardware modules have been simulated in the hardware

description language of N.mPc:

- interface processor guardian ("initipg.isp")

- peripheral processor guardian ("initipg.isp")

- gate ("gate.isp")

- initialization modules for the different simulations

("idgen.isp", "ftidgen.isp", "newidgen.isp")

timer ("timer.isp")

- The 8086 CPU ("max86mem.isp") and memory ("86mem.isp") were

designed in the course of previous simulation work.

By 	creating descriptions of specific interconnection schemes

(topology files) and integrating the interconnected hardware modules

with appropriate test software, the following, 8086 processor based,

partial simulations of a fault tolerant multiprocessor architecture were

completed:

A simulation testing each one of the fault tolerant hardware

modules designed in the course of this work.

- A simulation of the full fault tolerant hardware interfacing

the central (high level) processors of the fault tolerant

multiprocessor 	architecture to their 	peripherals. 	This

simulation was used to demonstrate the fault tolerant

multiprocessor system's ability to continue correct operation

in the presence of selected, induced faults. System

reconfiguration around a bus failure was also simulated

successfully.

79

- A simulation integrating the four fully interconnected high

level processors of the fault tolerant hardware architecture

with the message passing routines which consistute part of the

fault tolerant operating system.

The following software modules were written to run on the various

simulated Intel 8086 CPUs used in the simulations mentioned above:

- Assembly modules testing each hardware module and 	the

operation of the full fault tolerant hardware.

- Hardware dependent (assembly language) routines of the fault

tolerant 	operating 	system 	handling 	interprocessor

communication. These routines constitute an interface between

the fully portable, hardware independent, modules of the

operating 	system 	software 	and 	the 	fault 	tolerant

multiprocessor architecture.

- Hardware independent 	high level routines 	that handle

interprocessor message passing by calling the 	hardware

dependent communication routines listed above. These routines

were written in the C programming language.

When comparing the performance of the fault tolerant multiprocessor

system described in this report to the performance of a system without

fault tolerant features, we observe that the fault tolerant features add

considerable redundancy and overhead due to continuous message exchanges

and voting. 	Hence system throughput and processing power are reduced

proportionately. 	This reduction is the penalty normally paid to gain

fault tolerance capabilities. 	As well, the added mechanisms of

synchronization and processor coordination require a careful design and

verification effort.

80

1

1

1

1

1
1

to evaluate several design alternatives of a hardware system in a short

II . 	. 	„ 	.

1
1

1
1

time. 	This allows the designer, when he finally commits himself to

implementing a certain design, to rule out early conceived options that

proved to be incorrect or inefficient through the simulation work.

Concerning 	the adequacy of N.mPc as a design 	tool 	for

multiprocessor systems several points can be made:

In the course of this work the CAE tool N.mPc clearly proved

to us useful as a hardware design and simulation tool. A

complex multiprocessor system could be simulated and tested in

a relatively short period of time.

Although publications of previously developed fault 	tolerant

systems such as SIFT and FTMP give indication of simulation work

conducted in the early stages of development to test the functional

concepts of each system, no simulation details or results have been

reported. We are thus unable to provide comparisons between the

performance of the system described here and the systems reported in the

open literature.

The simulation approach to hardware and operating system software

design proved to be useful in the course of this work. Several times it

has been necessary to add a new feature to the guardian initialization

mechanism, change the interconnection of some hardware modules or

complete the description of a bus interface which the simulation proved

to be inaccurate. All these changes would have been extremely time

consuming and costly if they had to be done on a real prototype

hardware. The inherent flexibility of the simulation approach allows us

1

1
81

1

Frequent design changes to the simulated 	multiprocessor

architecture showed the flexibility of N.mPc as a hardware

design and simulation tool.

•On the other hand, several limitations to N.mPc have been identified

which tend to severely reduce its utility in the simulation and testing

of fully integrated multiprocessor systems:

N.mPc's slow execution speed results in a prohibitively high

demand on the host CPU time if the test software modules are

of substantial size. This was the case for the fault tolerant

operating system.

In the N.mPc simulation conducted here, the main (control)

processors were each represented by Intel's 8086 processor. A

full description of this processor is included in the library

of N.mPc. 	The 8086 version within N.mPc was developed based

on the available 8086 VLSI chip details. 	Like the case with

many sophisticated processors, the commerically available VLSI

description is not guaranteed to be complete nor absolutely

accurate (bug free). All unidentified faulty attributes in

the description will thus be propagated to any simulation

which uses the library copy of the processor description.

This complicates the process of tracing the sources of bugs

when high level operating system software modules are tested

in the simulation.

The fact that N.mPc simulates the hardware down to the

register transfer level is useful when newly designed hardware

modules are being tested. However, when the focus of the

simulation shifts to higher levels of structure modules, N.mPc

82

still 	simulates 	every 	register 	transfer 	in 	every

microprocessor involved in lower level instruction executions

resulting in a large simulation overhead. This aspect was

encountered when an initial attempt was made to run the

relatively complex software of the fault tolerant operating

system on the fault tolerant multiprocessor architecture.

The next generation of CAE tools is expected to be endowed with

top-down design and simulation features to allow the designer to follow

a methodology in which he can test the lower level modules of the

operating system down to register transfer level of details. Higher

level modules can then be simulated and tested with the already tested

lower levels replaced by macro instructions or functional blocks. This

will enhance the simulation performance by several orders of magnitude

over what is currently attainable by a tool like N.mPc. It will thus

make it possible in practice to simulate a sophisticated system such as

the fault tolerant architecture reported here in its full fledged

configuration in a reasonable period of time and using modest computing

resources.

The fault tolerant architecture simulated in this work is useful in

many practical applications requiring continuous unattended operation.

In addition to spacecraft on-board processing, these applications

include computer communication switching gear, nuclear plant monitoring

and processing, data collection and distribution in environmental and

resource management applications and in on-site processing of remote

sensing data.

A new version of N.mPc, called N.2, has been introduced by the

vendor and will be available on the VAX/VMS environment. 	The new

83

version N.2 incorporates a few features aiming towards making the

original N.mPc more powerful. These features are summarized below while

their details are available in [16].

1. ISP 	now supports a better handling of the port constructs.

Ports are N.mPc entities which allow various modules to

communicate with each other. 	Ports are now treated as three-

state devices, thus more closely resembling the behaviour of

the real hardware. 	Capabilities for wired-OR and wired-AND

have also been added.

2. Facilities for hierarchical descriptions in the ecologist have

been added. 	This was achieved through the use of composites

which are meant to be complete and already debugged

simulations. A composite can therefore be considered a stand

alone hardware module emulation and it can be given its own

pseudo-ports which then become the only means of

communications with the composite. This capability is going

to be very useful as many hardware descriptions are based upon

different levels of details. For example, a composite may be

made to represent an Intel 86/12 single board computer and be

used as a single entity even though it is, itself, made out of

several ISP' modules.

3. The Ecologist has been given the flexibility of dealing with a

new hardware description language for programmable logic

arrays. 	This should prove particularly useful in cases where

the ISP' language does not lend itself well to the modelling

of gate behaviour. 	The Ecologist will also display the

topology file(s) in a graphical format to help the designer

visualize the system as it exists within the simulation

84

environment.

4. 	Better fault testing mechanisms have been provided. 	In

particular, mechanisms to handle "stuck at" faults, "state

insertion" faults, etc., have been introduced.

The 	enhancements made to N.mPc will offer 	only marginal

improvements in the limitations of the package with respect to the

simulation of fully integrated systems. It is felt that substantial

changes in the structure of the package will be needed to make it

applicable to a true top-down design approach.

85

6. RECOMMENDATIONS FOR FUTURE WORK

Based on the work done so far the following recommendations for

future work are made:

It is essential to monitor the technology and the availability

of the next generation of CAE tools. 	Future CAE tools should

not only be able to do hardware simulations on the register

transfer level but should also include the capability of

, simulating complex hardware modules as "black boxes". In this

manner simulations could be moved to higher functional levels

while minimizing the demand for computer time for subsequent

simulations.

The hardware modules, their interconnection and the fault

tolerance mechanisms should be implemented as a hardware

prototype in order to fully test the integrated system

capabilities when subjected to actual hardware and software

failures and faults.

86

REFERENCES

[1] Ordy, G.M., "N.mPc: Runtime User's Manual," Department of Computer

Engineering and Science, Case Western Reserve University, 1979.

[2] Ordy, G.M. and Rogers, L.A., "N.mPc: MetaMicro User's Manual,"
Department of Computer Engineering and Science, Case Western
Reserve University, 1979.

[3] Rogers, L.A., "N.mPc: Linking Loader User's Manual," Department of
Computer Engineering and Science, Case Western Reserve University,
1979.

[4] Ordy, G.M., "N.mPc: 	Ecologist User's Manual," Department of
Computer Engineering and Science, Case Western Reserve University,

1979.

[5] Leffler, S.J., "PP: 	A Post-Processor for N.mPc," Department of

Computer Engineering and Science, Case Western Reserve University,
1979.

[6] Rogers, L.A., "A Generalized Linking/Loader for the Allocation of
the Code in Vertical and Horizontal Machines," Master of Science
Thesis, Department of Computer Engineering and Science, Case
Western Reserve University Report CES-79-6, August 1978.

[7] Boucouris, S., "Design and Implementation of a Fault Tolerant

Multiprocessor Operating System", a Report prepared by Intellitech,
March, 1985.

[8] Streit, M., "Simulation of the SBP 9989 Microprocessor Using the
Computer Aided Engineering Tool N.mPc on a VAX 11/780", a Report

prepared by Intellitech, September 1984.

[9] Parke, 	F.I., "An Introduction to N.mPc Design Environment",

Proceedings of the ACM/IEEE Design Automation Conference, June
1979.

[10] Rose, C.W., Rogers, L.A., and Straubs, R.V., "The N.mPc System
Description Facility," Proceeding of ACM/IEEE Design Automation
Conference, June 1979.

[11] Hewitt, D.C., Parke, F.I., and Rose, C.W., "The N.mPc Runtime
Environment," 	Proceedings of the ACM/IEEE Design Automation

Conference, June 1979.

[12] Hewitt, D.C., "The Runtime Environment for N.mPc, An Adaptable

System to Support the Development of Microprocessor-Based Systems",

Master of Science Thesis, Department of Computer Engineering and
Science, Case Western Reseve University Report CES-79-7, January

1978.

[13] Jiang, W., "A Distributed Kernel Runtime Environment for Large

N.mPc System Simulation", Master of Science Thesis, Department of

Computer Engineering and Science, Case Western REserve University

Report CES-82-7, August 1982.

[14] Boucouris, S., "Design and Analysis of Fault Tolerant Architectures

for Multi-Microprocessor Systems, Intellitech Technical Report,

October 1984.

[15] Ordy G., "N.2 ISP User's Manual", January 1984.

[16] Mahmoud, S.A., "VAX 11/780 CAE Tools for Multiprocessor Simulation

- N.mPc Detailed System Description", September 1984.

[17] Straubs, R., "ISP' User's Manual", 1978.

[18] "Introduction to N.mPc System Programs", Technical Report, Case

Western University, 1980.

[19]Lantech Systems Inc., "8086 C Cross Software Tools", 1983.

[20] Streit, M., "Validation of N.mPc/N.2 Microprocessor Simulation",

Intellitech Technical Report, September 1984.

[21] Ordy, G., "N.mPc under VMS-Preliminary Paper", 1984.

[22] Ordy, G., "A Simple VAX N.mPc Post Processor", January 1984.

[23] Laferriere, 	C., 	"N.mPc 	and 	its 	Utility 	for 	Spacecraft

Applications", Intellitech Technical Report, January 1983.

[24] Streit, M., "VAX 11-780 CAE Tools for Multiprocessor Simulation:

N.mPc User's and Application Manual and Installation Guide", a

Report prepared by Intellitech, September 1984.

All Appendices are included in a second volume.

intellitech
Intellitech Canada Ltd

352 MacLaren Street,

Ottawa, Ontario

K2P0M6
(613)235-5126

E7

