An experimental expert system
development environment for the

VAX computer operating under the VMS
operating system
/ by T. Gomi, N. Nakamura

l&, Govenment Gouvermement
! ofCanada du Canada

’ o : : : . 1 G6453
- _ . _ : ‘ 1985 .

" . Department of Cormmunications . o '

DOC CONTRACTOR REPORT ' _ . DOC-CR-SP‘85-045
DEPARTMENT OF COMMUNICATIONS - OTTAWA - CANADA

SPACE PROGRAM

TITLE: AN EXPERIMENTAL EXPERT SYSTEM DEVELOPMENT ENVIRONEMENT FOR THE VAX -
COMPUTER OPERATING UNDER THE VMS OPERATING SYSTEM

AUTHOR(S):T. Gomi
N. Nakamura

‘.:"'Sv-—x—rnd e \v._m]
ustry Canada %
Library Queen E

B 20 1998 f

i Industiie o
- Blb

ISSUED BY CONTRACTOR AS REPORT NO: AAIS 84-005

Canada
,Jokheoue Queen /»
Seeler,

PREPARED BY: Applied AI Systems, Inc.
P.0. Box 13550
Kanata, Ontario
K2K 1X6

DEPARTMENT OF SUPPLY AND SERVICES CONTRACT NO: 06ST.36001-3-4454

DOC SCIENTIFIC AUTHORITY: R.A. Millar

CLASSIFICATION: UNCLASSIFIED

This report presents the views of the author(s). - Publication

of this report does not constitute DOC approval of the reports’
findings or conclusions. This report is available outside the |
department by special arrangement. o

- DATE: . 6/5/85

e

- 'm‘ ad "L T T

¢

e M MRS
, .

—_—

{
s

e

Fe.

s

ha
;—"w; "

- -,

1 "
.~

. - +ergzrerey €

- N]
ha EE
. . -

!
e

. ‘ : i
PP

FIR—

i ®

Y N
PURPTA S ..

A/<;:>

"///An Experimental Expert System'DeVelupment"

under the VMS Operating Systip/

Technical Report No. AAIS~B4-005

NOV-
P 985

e

N

COHCIERT S CARGT
| S\\ uﬁjﬂmm
P

| LinhaRY — pipLioTaiQuE.

By
J o
T.| Gomi
A Nakamura
Applied Al Systems, Inc.
P.0O. Box 13550
Kanata, Ontario
KZK 1X&6 .

g cac;af,

Environment for the VAX Computer uperating .

Under DSS/DOC coﬁtract 065T.346001-3-4454

Version: 20FEB8S -

e

&U‘
(} W2,

T_rx P bé\@(ﬁ |

5% 12 10

W,

Jom—

CONTENTS

Glossatry

Acknowl edgements
Summary

i. Introduction

2. The over-all structure of the expert system
development envitronment

2.1 Objectives of the environment
2.2 Structure of the environment
Z. The Logic programming paradigm

Z.1 MPROLOG
1.1 Features of MPROLOG
2 Using MPROLOG on VAX/VMS
1.5 Examples of MPROLOG programs
F.1.3.1 Predicate to compute length of
a list
Z.1.3.2 Family tree problem

.2 ASPTF
3.2.1 Features of ASPTP
F.2.2 Using ASPTF
3.2.3 ASPTF program example
F.3 DUCE
J.%3.1 Features of DUCK
3.3.2 Using DUCK on VAX/VMS
F.3.3 Examples of DUCKE progtram
J3.F.3.1 A classification expert
J3.3.3.2 Data pool control

4. The Semantic networlk paradigm

4.1 SANS
4,.1.1 Semantic networks and S5ANS
4.1.2 Using SANS on VAX/VMS
4.1.3% SANS program example

page

iii

[0 [
1 |
[Y

1
~l BRI R

(DR l'.iul i

1
a

o

|
[
o

SR

—-18
3—-1s

320

- __ <
—_
Y

o
F—2
-.J_..'..é)
T_m
327
—_

P
i Sl

A

R e -

4.2 PSN
4.2.1 Features of FSN
4.2.2 Using PSN on VAX/VMS
4,2.3 FSN program example

The production system paradigm

L
o

"
[
"
o K} =T

Features of ClLisp
Using ClLisp on VAX/VMS
Clisp program example

oo

'u
o

Features of OPSS
Using OFSS on VAX/VMS
Example OFSS program

Lﬂf.l'lLﬂC]
KR
(A B =

Natural language processing
6.1 The 88T ATN tutor

&.1.1 Features of the 88T ATN tutor -
<.1.2 Using the ATN tutor on VAX/VMS
1.3 Examples of sessions using the ATN tutor

1 b

)
G&.

0

oo O
=

{4 (4

References

i1

1 Parsing a simple sentence
.2 Listing the dictionary
3 Parsing with the semantic parser

L Llﬂ o
Ced P b

th on

11
|

3-10

Llﬂ
jury
jury

|
by

I 11
00

|

oo o E{*U‘B‘U’~

i e N

)

AASC
Al

ASFTP

ATN

CLisp

cMu

CRC

Doc

DUCHK

KRS

MIT

GLOSSARY

Advanced Autonomous Spacecraftt Computer, a spacecratt
computer system concept developed at CRC (CRC/ARASC)

Aartificial Intelligence, a subdiscipline of Computer
Science (Computer Science/Al)

Almost as Simple as Possible Theorem Prover, an Al
tutorial theorem prover developed for Smart Bystems
Technology by Drew McDermott of Yale University.
(Al/Languages/ASPTR)

Augmented Transition Network, a language parsing
methodology proposed by William Woods, then of BEN.
Here, ATN is a tutorial software system developed for
Smart Systems Technology by Drew McDermott of Yale
University designed to teach and explore the basic
concepts of NL parsing. (AI/NL/ATN/ "ATN')

A dialect of LISP, and its language system including
an interpreter developed at the University ot
Massachusetts at Amherst (Al/Languages/LISP/CLisp)

Carnegie—-Mellon University

Communications Research Centre, Department of
Communications (DOC/CRC),

Department of Communications, Government of Canada

a deductive retrieval system developed by Drew
McDermott of Yale University. It is an Al system
language with +the ability to develop non-monotonic
logic systems. (AI/Languages/DUCK)

kKnowledge-Based System (AI/EBS). Synonym for Expert
System, except in the KBS the knowledge source is not
necessarily attributed to an expert.

Massachussets Institute of Technology

MFROLOG A prolog language system developed and marketed by

NL

OPSsS

Logicware of Toronto. A Frolog dialect (Al/Languages/.

Frolog/MFROLOG) .
Natural Language

A production system development language develdped by
Carnegie—Mellon University (Al/Languages/0FGE5S).

iii

_—" -‘ 3

-~

¥ d \ # d

3

PDSS

POC

FSN

SAMS

SANS

WM

Frogram Development SubSystem, a software development
environment for MFROLOG (AI/Environment/FDSS:.

Proof of Concept.
Frocedural Semantic Network. A semantic network
description language developed at the University of

Toronto (Al/Languages/PSN)

Spacecraft Aufonomy Management System, a substructure
of the hierarchical design of the AASC (AASC/SAMS)

Simplified Associative Network System, a simplified
semantic network language developed by Kenneth Hayves
of Smart Systems Technology. (Al/Languages/SANS)

OPSS Working Memory (AI/Languages/0OFSS/WM)

iv

K e -
L

— N R B EREEEEEEE

ity 0 ARawENTERt 000 Sweamiy

Acknowl edgements

The Spacecraft Autonomy Management System (GAME) was
developed by the authaors for the Communications Research
Centre (CRCY) of the Federal Department of Communications
{DOC) under contract to the Department of Supply and Services
{(Contract Number 068T.36001-3-4454). Authors are thankful for
the support given by Dr. S.P. Altman and Mr. R.A. Millar of
the Communications Research Centre.

e

o

Sommmendiiey

—

B

Gn S W Wy PN em G WE W e

-

Summaty

The SAMS is conceived as the top layer of the Advanced
Autonomous Space Computer (AASC) hierarchy developed at the
CRC during the past three vyears. The SAMS lavyers are
characterized by their use of Artificial Intelligence (AI)
techniques. A set of expert systems were developed in 1784 as
a Froof of Concept (FPOC) experimental system, and a series of
experiments were conducted using them.

This document describes the software development
environment used for developing the expert system and other
Al systems. The environment was established on the VAX-11/780
computer {running VM) at the Simulations & Analysis
Laboratory of the CRC at Shirleys Bay, Ottawa, Canada. This
work was accomplished during the course of the FOC
experimental system development. The environment exists as a
collection of AI languages and tools. Example programs are
given +For each of the software packages that constitute the
environment. v

vi

a a8 B .

el

)

/ e comtll ey
- s

1. Intruductiun

Early AI development environments were constructed on
main Fframe computers such as Digital Equipment Corporation’s
FDP-10. The DEC-20 series of computers such as DEC 2060 was
another Al standard in earlier days.

In 1780, MIT completed the First Lisp machine
prototype. This was quickly taken up by two commercial
interests, Lisp Machine Inc, now of Los Angeles California,
and Symbolics Inc. of Cambridge, Massachusetts. Both
companies are today successfully marketing these machines
atter several revisions of hardware and software. The most
important difference between this class of machine and a

. conventional computer is that in ' these machines Lisp

functions are directly executed by theX microcoded or
hard-wired control units of the hardware, rather than by

software emulation. One of the major drawbacks of this class

of machine, however, is an extremely poor cost performance.
Imported price of an avarage Al work station is about
$200,000. Yet such a workstation only supports one user per

installation. Multi-user versions of these machines started
to appear in the market, but per user cost is still much
higher than in conventional workstations for non—AlIl
computing.

In spite of impressive throughputs and amenities
offered by Al workstations, the Lisp machine has had a
limited penetration into the AI communities of North America
and of the world. The rest of the communities have gradually
shifted +rom mainframe machines to super minicomputers, most
notably, Digital Equipment Corporation’s VAX-11 Ffamily of
machines. This shift became dominant in the late 70s and
early 80s. That happened to be the period when UNIX was
gaining popularity, +Ffirst in universities, then in industry
and government agencies, as students trained in UNIX became a

main force in non—academic computing. Development by the

University of California at Berkley of Franz Lisp, and its
inclusion into the Berkley UNIX created a standard Al
development environment which was accepted by many university
departments, corporate laboratories, and government agencies.

However, UNIX never gained popularity as an operating
system Ffor real—-time applications. As the popularity of VAX
computers itself increased, and their use in on-line,
real-time applications grew, the relative importance of VMS
as a real-world operating system increased. Still very
limited in number and variety, there are now several software
packages that can be used under a VMS operating system as Al
development tools. .

f-v

An Al development environment built on a VAX machine
is far less costly than the AI workstations mentioned above.
It is most suitable for the earlier phases of building up an
in—house AI capability. Building fair size prototype Al
systems or small target Al systems can be done without
draining system resources. However, once a major target
system begins its production run, the squeeze is often felt
by itself and other programs running on the same machine.
Hence a large VAX machine, either running UNIX or VMS, can be
made into a multi-user Al development system for several
users safely, but never as a satisfactory AI target system.

An important development in AI software is the
emergence of industrial grade AI system shells (expert system
shells and natural language shells). These software packages
can be fitted with a knowledge base specifically developed
for an application domain, and made into a more or less
customized Al system. This approach not only cuts short the
development time for Al systems drastically, but also in most
cases increases the reliability of the developed AI system.

Software development for AI systems, such as expert
systems, requires a set of tools somewhat different from
conventional programming tocls. Most of the differences are
found in the nature of Al processes which are drastically
different from conventional numerical computation. = The
language for developing expert systems and other AI systems
used to be almost exclusively Lisp. The situation has changed
after the growth in popularity of Prolog and other logic
programming languages. Another trend 1is the use of
conventional computer languages such as FORTRAN, FPASCAL, C,
BLISS, etc., in the implementation of Al systems. These are
often a second implementation of a system first built in
Lisp. Hence the emphasis in these cases is on performance and
increased portability.

=
) -
- ~

—

-

am Es B

2.

2.1

The aver—all structure of the expert system development
system

Objectives of the environment

The expert system develaopment environment described in

this document has been developed +ta fulfill +he following
objectives:

(1)

Toa allow canstruction of expert systems rich ennugh to be
cansidered a proof of concept system.

Simple Al programs can be easily written using basic Al
languages 1like Lisp or Prolog. These languages may be
used to construct more seriocus applications, but that
often takes mare experience in knowledge representatiaon
and reasoning techniques. High level AI languages ar
expert system shells may be useful to guide initial
attempts at programming.

To provide a reasonably easy entry point for thaose who
intend tao enter the field of Al pragramming.

Programming Al systems such as expert systems is
nan—trivial ta pragrammers experienced anly in
conventional programming methaods. Software packages that
can demonstrate the significance of the difference
readily will be highly educational.

Ta cover all major approaches aof expert system building
(software packages selected faor the aproach are shawn in
bracket):

—= rule-based knowledge representation and reasoning
(CLISP, OPSS, DUCK, MPROLOG),

~ logic programming (ASPTP, DUCK, MPROLOS),
- problem solver (ASPTP, DUCK), .
- inference network (DUCK, SANS, MPROLOG) ,
~ frame-based semantic network (SAMS, PSN),
= intraductaory parsing techniques (ATM).
Earlier expert systems almost exclusively used rules ar

praductions as the basic knawl edge representatiaon
mechanism. Most commercially available expert systems in

—

(4)

the market today adopt this knowledge representation.
Semantic network representation, which was popular but
experienced a failure in the late-40s, is making a come
back with the improved nodal expression and enhanced
taxonomy, and is often used in conjunction with a
production system.

It is now well understood that, in order to create ‘deep’
or detailed causal maodels of an expertise, production
systems are not adequate. Frame-based semantic networks
are often viewed as vehicles to support such serious,
sophigsticated, and richer knowledge representatiaon
concepts.

The present state of the art in semantic networks is
still far from practical. This is in spite of intensive
R&D activities in the subfield of knowledge
representation. In order to make the new representation
techniques feasible, one may need the fifth generation
computer hardwares with massively parallel computational
elements. However, this is not a valid excuse for not
pursuing this technigque 'using whatever is available
today. It is the theoretical understanding and
acquisition and fluent usage of design know—-how that will
take the longest time. These studies can easily take
longer than the development of the first highly parallel
fifth generation hardware.

Logic programming has been ‘discovered’ by several large
scale Al projects, such as national Fifth Generation
Computer Systems (FGCS) projects of several countries.
These projects’ basic premise is that logic is probably
the most important single area of study in AI system
development. With the emergence of more implicit logic
and re—-investment'in the study of common sense, their
claim seems to have a foundation.

With the increased understanding of the capabilities and
the limitations of existing sxpert system technology, and
with existing pressure to bring expert systems into
practical application, many will begin to realise. that
interfacing expert systems to a real-world application is
often more important than issues internal to expert
systems themselves. Language parsing technigue is a basis
of Natural Language (NL) systems. NL systems may be
connected to expert systems to create an intelligent
interface, and hence their technical bases must be
understood.

To construct an Al programming environment that is highly
cost effective. o

ﬁ i’.
" -

An Al workstation costs between $35,000 and $200,000,
They are designed primarily for single users, those which
are not are very expensive. Today, not many can justify
the expense when nobody has successfully demonstrated the
universal usefulness of the expert system technoleogy.
Depending solely on basic AI languages, such as Lisp and
Prolog, on the other hand, costs the developer a long
build up time. By carefully selecting a set of software
tools, a less expensive but moderately powerful
develapment enviranment may be created using a papular
multi—-user computer.

-

—re,

sy Wewwluy 4

M B Gn am Sn s Wy MR B WR AR W e e

v

s

-

»

2.2 Structure of the environment

The development environment consists of a number of
software packages. They are additional layers to the VMS
operating system running on a VAX-11/780 super minicomputer,
as shown in Figure 2.1. All of them may be used to develop an
expert system. The height in the diagram indicates the level
of abstraction the software package represents. For example,
using PSN, one can represent events and objects more abstract
than those representable by SANS, and OPSS than CLISP.

PDSS is not a programming language, but is a
development support system for MPROLOG. However, since they
together create an appearance of a more abstract 1l anguage
interface to the user, it is represented in the diagram as it
is.

The version of Franz Lisp, a famous Lisp dialect, used
here as a basis for a number of AI languages is a private
copy of the language which was developed at Carnegie-Mellon
University (CMU) in the late 70s. While it can be accessed
from languages that lay on top of it, it is an older version
(Opus 34) and some aspects of the language are already
different. Similarly, NISP is an understructure of DUCK (a
macro library) and again accessible from DUCK. Because aof the
nature of Lisp, a macro, or a compound command automatically
becomes a command that operates at a higher level of
abstraction. These two software packages are not treated as
independent software modules. '

. VMS Operating system

A A A A A B B B A B B B |
W/ f /7 /. (expert system applications) /s /7 /7 /
A A A A A A B A Y A B B B B B Y A
Y A ——— Y A R A A N S S m——————
i/ /7 /1 DUCK i A A A A i / 1 PDSS

i\ S — i OPSS | . { PSN | .

v/ /7 TINISP) ! ! ASPTP | SANS | { ATN | :

t % + + + + + i MPROLOG
{ CLISP | (Franz Lisp) i

VAX—11 Hardware

Figure 2.1 The ekpert system development environment

N R SR P mr e e Wm E. e -

an m B o S8 A N

CLISF is a Lisp dialect developed at the Computer
Science department of the University of Massachussets at
Amherst for the past several years. It has relatively limited
facilities but truns efficiently in a VAX/VMS environment.

DUCK is an AI language system developed by Frof. Drew
McDermott of the Massachusetts Institute of Technology (MIT)
and Yale University. Its +truth maintenance features are
unique among expert system shells. It has rather 1limited
input/ocutput capabilities and command syntax is terse. DUCK
has a natural way of merging different programming styles
such as 1logic programming, functional programming, and
rule—-based system descriptions. :

OFSS was originally develaoped by John McDermott and
Charles Forgy of CMU as a series of production system
languages (OFSn). Its theoretical background goes back to
Simon/Hubert’s study .of human reasoning models studied in
Cognitive Science. The language has gained popularity
recently, particularly after the success of XCON (R1) and
XSEL expert systems written in OPSS5. Its weakness is the lack
of truth maintenance features and ability to handle
uncertainties. The former is being tackled by a group in IBM
Yorktown. There are commercialized versions of this software
available in the market which offer improved performance and
technical support. Unless immediate major expert system
development is planned using the language, it is the opinion
of the authors that the current version described herein is
sufficient for research purposes.

ASFTP is a tutorial problem solver developed for Smart
Systems Technology (SST) and is based on a logic programming
paradigm. Its Fformalism is much like that of DUCK, simply
because it was developed by the same author as a simplified
version of DUCK. It allows both forward and backward chaining
and serves as a good introductory logic programming language/
problem solver. - '

SANS was also developed for SST by Dr. Ken Hayes. It
is a simple frame-based semantic network language for
constructing small to medium size semantic networks. Though
relatively simple, it possesses all the basic features a
semantic network language should have.

FPSNy, on the other hand, is a highly elaborate and
sophisticated version of a frame—based semantic network
system. It has been developed at the University of Toronto
over the past several years. Portions of PSN are still under
devel opment. It is suitable for studying highly complex
semantic network systems. A large and rich system may be
developed using FSN, but its performancé on VAX computers is
limited because of its complexity.

ATN parser is not directly connected to expert system
building. It is a tutorial parser written by Drew McDermott
for S8T for educational purposes. It has basic mechanisms to
practice both syntactic and semantic parsing.

2 - &

oy

|

| |

MPROLOG is a dialect aof Prolog developed in Europe
during the last few vyears and imported +to North America by

" Logicware of Toronto. It is a well-debugged, well—-packaged

production quality AI language. Compared to some other
versions of Prolog, such as Sigma Prolog of the U.K., it may
be judged less elegant. However, its strengths are a facility
to allow modular construction of Proleog programs (original
Frolog is not modular), and a very rich set of well-appointed
built—in predicates. PD8S is built arocund MPROLOG and serves
as an environmental support to the user of the language.

| |

-

S. The logic programming paradigm

Logic programming is an approach to AI, originating in
Europe. It is currently used in various Al projects in
Britain, other European countries and Japan, including the
Fifth Generation Computer System (FGCS) projects of these
countries. Its application in North America has been limited
because of the dominance of Lisp as the standard AI 1language.
However, there is a move there to reevaluate its potential.
Universities (Stanford, Syracuse, among others) and private
companies (IBM, SRI Internationaly; Honeywell, and several
others) have been showing an active interest in the 1logic
programming approach to Al.

The concept of logic programming can also serve as a
unifier of recent innovations in the field of software
engineering, database technology, computer architecture, and
Al. Logic programming is also the missing link between
knowledge engineering, a powerful but an expensive process,
and parallel computing, a known solution to some computing
power problems. It also bridges the gap between the new
software technology based on reasoning and the new computer
architecture epitomized by the recent emergence of non-Von
Neuman machines. A paper by kKowalski [Kowalski 831 (attached
as Appendix %5) of Imperial College, London, gives a concise
summary of the programming method.

Frolog is a language system that implements & notion
of logic programming called Horn clause logic programming. It
is important that the two are not confused.

an o= o

- -

S n
a e N a8

3.1 MPROLOG

3.3.1 Features of MPROLOG

MPROLOG is a dialect of Prolog which originated at the
University of Edinburgh in the mid—-1970s. A version of
Edinburgh FPFrolog was transported to Hungary by visiting
researchers, and developed there from 1979-83. Currently the
language system is being developed for enhancements and North
American adaptation by Logicware Inc. of Toronto.

A Prolog program consists of a collection of
predicates formed into Horn clauses. A predicate can either
be a rule (often called an implication) or an assertion.
Rules are stored in rule bases, while assertions are stored
in a scratch pad memory, a temporary storage, or a database.

MPROLOG is easily transportabile and is currently
implemented on several machines including the following:

- IBM VM/CMS,
- DEC VAX-11/750, 780, 782, running under VMS or UNIX,

- Motorola 48000 based machines such as SORD and the
SUN Micro work station, '

— Tektronix 4404 AI Workstation,

-~ IBM PC and XT.

Except for the IBM PC version, MPROLOG software is
accompanied by a comprehensive software development

environment called the Program Development Sub-System (PDSS).
It contains the MPROLOG interpreter, a pretranslator, a

consolidator (linker), an editor, a tracer, a librarian, a -

help facility, a run control mechanism, and a module
management facility. A compiler 1is to be added to some
versions in the future (VM/CMS version of PDSS has a compiler
now)d .

The PDSS features the following:

— Interactive program editor,

~ On-line help facility,

— Program trace,

- User-defined exception handling,

A, sbwoste

- N

p—

-

S S S S 0N OE on 0N

h I-

~ Windowing,
- Automated garbage collection,

— About 240 built~in predicates (except for the IBM FC
version)

MFROLOG programs may be developed in modules using the.
module management facilities of the PDSS and MPROLOG. Modules
are connected non—-hierarchically and argument values
exchanged via inter—-module channels created by pdss’
import/export, global/loeal, visible/hidden, and other
interface commands.

Interlanguage communication supports in MPROLOG are
very limited. An MFROLOG-FORTRAN 1linkage is about to be
completed on the VM/CMS version, followed by other versions
(except for IBM PC version). For the VAX/VMS version,
attempts to link modules written in different languages using
the mailbox facility has been successful. This approach will
allow, for example, a module written in PASCAL to exchange
parameters with an MPROLOG program. Since logic programming,
particularly its Horn clause subset represented by Frolog has
its limitations, it is desirable to establish generous
inter-language links. More effort will be necessary to
improve this capability of the language.

Ancther limitation is the language s ability to handle

numbers. There is presently no provision for handling
floating point npumbers in MPROLOG. "Hence, no built-in
functions such as trigonometric functions exist. All

representations and calculations of numbers must be done
using integers, the maximum absolute value of which must be
less than 1000000 (i the VMS implementation). Again, work is
underway at Logicware to support floating point numbers and
operations using them.)

The original Edinburgh‘s DEC—-10 Frolog syntax may be
made acceptable to MFROLOG by using a switch in the PD8S. The
switch has an additional position at which rules can be
expressed in pseudo—-English style of "If...Then..." format.
However, the switch controls the over-all FDSS environment.
No mixture of formats is allowed among modules or within a
modul es.

The planned future enhancements of the MPROLOG
language system includes the following: :

- semi—intelligent tracing

— compiler

- screen-oriented editor
- window management

— optimizer

3.1.2 Using MPROLOG on VAX/VMS

The MPROLOG commands are documented in "MPROLOG
Language reference" and the PDSS commands in "MPROLOG
Development System reference” manuals [Logicware 841.
Assuming that PDSS and MPROLOG are installed and made
available to the user, the following steps exemplify a
typical PDSS/MPROLOG sessiont

¥ pdss . Invaoking PDSS

MPROLOG (Vi.y) Praogram Development SubSystem x.y Rev.
(c) 1984 LOGICWARE Inc., Toronta Canada

Herald message, X.y = version number.
PDSS praompts the user with a “:’.

-tconsult <file specification>

Bringing in file(s) containing user’'s
developed MPROLOG codes, rules, and

assertions. This command will be
aomitted when building an entirely new
program.

<a list of predicates being lnaded$

Predicates are displayed as they are

read in in the foarm
<predicate—-name/N>

where,

N = number of argdments.

{file specification> CONSULTED.

| L f ny)

-

al

)

«

End of a consultation sequence. Any
number of consult commands may be
issued.

:{pdss commands>

FPDSS commmands are used teo create,
modify, and delete MPROLOG
predicates.

1 P<predicate>

Request to the PDSS for the execution
of a predicate. In place of ‘7', the
following prompts may be used:

Also, any of the PDSS commands may be
issued here to Ffurther edit the
predicates created or consulted.

tbye
Terminates a PDSS session.
Normal exit from MPROLOG PDSS

Termination message by system

End of a PD5SS session. Back to VMS
environment.

During the PDSS session described above, a user may
enter thée VMS DCL (Digital Command Language) environment by
pressing the ENTER key to the ‘2’ prompt. Any of the VMS
commands may be issued then, including another PDSS. A LOGOFF
command brings the user back to the last PDS5S environment.

A PDSS session may be interrupted by an exception. For
example, upon reaching the alloted call count limit (the
number of times a predicate is invoked), the PDSS interrupts
the session by informing,

e TR S —

nl

!
! |

call limit reached

+ In call of <{predicate which was interrupted>
Limit = 10000

Function (h for help)?

By entering h, one gets the feollowing menu of commands
which can be used to manage the interruption:

— enter new FDSS level

- backtrace

— abandon execution

- continue

fail

- contents of the stack
- redo the broken call

= user handled interrupt
- help

Function (h far help)?

TN poo
|

In additien to this set of exception management
commands, inveoking a second copy of PDSES (use p command), the
PDSS commands may be issued to modify or inquire about the
PDSS run time environment. Issuing a PDSS command without
creating a second copy of PDSS will result in an automatic
termination of the current run feollowed by the execution of
the entered PDSS command.

p
Entering level 2 of FDSS

From within the new PDSS level, the PDSS set command
may be used to change the parameters of the old PDES run time

environment. For example, the call limit (number of predicate

invacations) may be increased from the default (10000 calls)
by entering,

set/ call_limit = 100000
call_limit = 100000

A bye and a c command (cantinue) must be entered to resume
the interuupted PDSS session. ‘

bye

AM
- un e

~

! f L, L ! ” 3 ;i

Lo

Exit from level 2Z of PDSS
Function (h for help)?
c .

Alternatively, the run may be terminated by entering
an a command upon interruption. The rationale for the call
limit provision is to provide a way of regaining control from
an infinite loop, which may be caused by an error in a
predicate definition. Another commonly used way of causing an
exception in FDSS execution is to arbitrarily interrupt a run
using ctrl-c:

~C
external interrupt |

In call of <interrupted predicater
Function (h for help)?

The pirocedure explainaed above for examining or
altering the PDSS run time environment is applicable here.

3.1.3 Examples of MPROLOG program
J3.1.3.1 PFredicate to compute length of a list

A predicate which computes the length of a list is
presented as a simple example of MPROLOG program. The
predicate, list_length, takes two arguments: the length of
the 1list, and the 1list itself. The example demonstrates
Prolog's power in defining ‘what should be calculated’ as
opposed to ‘how should be calculated’. It simply states that,

— the length of a list is zero, if it is empty

- otherwise, if the length of the tail of the list is
L, then the length of the list itself including the
head will be L+1.

The predicate uses a recursion. However, unlike more
common tail-recursion, it recurses on a clause which is not
the last element of the predicate. The program listing is
followed by an example run, which was traced using the PDSS
trace facility to show the step-by-step execution of the
recursion.

list_length (2, [1) .
list_length(Z, CXI1Y]) =~
list_length(L,Y), plusl(L,Z) .

plusli (L, Z) :-
plus(L,1,Z) .

emy et Setemes

swoutee peG—

Alist_length{l,La, b, cydye, Fso.hl)e——

OK
L.=8
Continue (y/vw) ?

trace list_lerngth
list_length/& TRACED
trace plusl
plusl1/2 TRACED
?list_lengthilL, [a,b,c,d,e, fy,g,h1).
> list_length(_311,[a,b,cydye, Ffytyeuad)
> list_lerngth(_346, [b,c,d,e, fyg,hl)
> list_length(_38@, [cydye, f,g,h1)
> list_length(_414, [d,e, f,g,hl)
> list_length{_448, [e, f,g,h1)
> list_length(_482, [f,g,hl)
Y list_length(_516, Lg, k1)
} list_lerngth (_S55@, [h1)
} list_length(_S84, [1)
+ list_length (@, L1)
Y plusi{a, _S52)
+ plusl (a, 1)
+ list_length(l, Chl)
} plusi(1,_Si6)
+ plusi(1,2)
+ list_length (2, [g,hl)
> plusi (2, _48&)
+ plusl (2,3
+ list_length(3, Lf,g,h1)
} plusl (3, _448)
+ plusl (3, 4)
+ list_length (4, [e, f,g,h1)
>} plusl (4, 414)
+ plusl (4,5)
+ list_length(S, [dye, fya,hl)
} plusi (S, _38@)
+ plusl(S,6)
+ list_length (6, [c,dye, f,g,hl)
} plusl (g, _346)
+ plusl (&, 7)
+ list_length(7, [byc,d,e, fy,g,h1)
Y} plusi1(7,_311)
+ plusi(7,8)
+ list_length(8,[a,b,cydyey, fygyeaed)

.. = 8
Cormtinue (y/vn) ?
1 4] -
0K

p-

L

3]
4 \ 1 ¢ H 3 " !

3.1.3.2 Family tree problem

A relatively large family tree or a lineage is created
in terms of assertions, such as father (Bob, Jochn)., and
relations or rules, such as:

grandfather (A, B) :- father (A, C), father (C, B).

The relations are common to all family trees that may
be built and examined using this program, while the
assertions are particular to an individual family tree. @as
described earlier, the former will be stored in a knowledge
base, while the latter will be placed in a database in the
toy expert system. The example chosen here is a family tree
of some of the Greek gods. The structure of the tree is shown
in Figure 3.2.

Gaea | U mmﬁ«s i
/N
Cronus Rhea, . Ot‘hgg? ams
Metis Mala

Demeler Hestia

/

Persepiimne

Aph‘mch‘te : .L-era.

. ' ‘
Ares HefhcxeS‘{?th- Hermes Athema A)oa o Artemns Dionysu$

Harntonia

Figure 3.2 Family tree of Greek gods

mwﬂwh
= Sother

Sty-—greek.-log

7 FHe e He e He He e K e H N He K I I NI I K W WKW N WKW WK KN NN NN

/7 *
/7 *
/7 *

MFPROLOG example of family relaticnships

*/
*x/
*/

/WK He K He e K e K I e H I I eI I I e KNI K WKW H NN KRS

7%
/%
7%

Rules

father(F,C) 11—
parent (F,C),male(F).

mother (M, C) :—
parent (M, C), fFemale(M).

grandfather (GF, GC) : —
parernt (6F,P),
parent (F, GC),
male (GF).

grandmother (GM, GC) 21—
parent (GM,),
parent (F, GC),
female (GM).

siblings(SX,8Y) -

mother (M, 8X) , mother (M, 8Y).
siblings (8X, 8Y) :—

father (F, 8X), father(F, SY).

immediateSiblings(I_SX,I_8Y):-
me=ther (M, I_8X),
mzther (M, I_8Y),
father(F, I_8X),
father(F, I_SY).

arcestar (R, D) -

parent (A, D).
ancestor (A, D) 1 -

parent (Z, D), ancestar (R, Z).

child/(C,P) -
parent (P, C).

descendant (D, A) 1 —
child(D,A).

descendant (D, A) 1 -
child(Z,A),descendant (D, Z).

3 - 10

*/
*/
*/

N J v " 5

/% */
S listing-of-conelution_ —_ . Y AS— -
/% */

is_parent_of (Child, Parent_list) -

setof (X, parent (X, Child), Farent_list).
is_parent_of(Child_list, Parent) :—-
—setoflX, parent (Farert, X),Child_list). . _. __ . ____

is_child_of(Farent,Child_1list) -

setof (X, child (X, Parent),Child_list).
is_child_of (Parent_list,Child):~

setof (X, child(Child, X), Farent_list).

is_grandfather_of (Grandechild, GrandFather_list) :—.
setof (X, grandfather (X, Grandchild), '
GrandFather_list).

is_grandfather_ nF(Grandchlld 115t Grarndfather) :~
setnf(X,grandfather(erandfather,X),
Grandchild_list).

is_grandmother _of (Brandehild, Grandmother_list) z-
setof (X, grandmather (X, Grandchild),
Grarndmother_list).

is_grandmother_of (Grarndechild_list, Grandmother) 1—
setof (X, grandmother (Brandmather, X),
Grardchild_list).

is_siblings_of(Sibling,Sibling_list):—
setof(X,siblings{(X,8ibling),8ibling_list).

is_immediateSiblings_of(Il_sibling, I_sibling_list):—
setof (X, immediatesiblings (X, I_sibling),
I_sibling_list). ‘

" is_ancestor_of (Descendant, Ancestor_list) 1-
setof (X, aricestor (X, Descendant),
Arcestor_list).

Cis_ancestor_of (Descendant __list, Arcestor) 1-
setﬁf(x,ancestor(ﬁncestnw X),)
Descendant_list).

is_descendant_of (Ancestor, Descendant_list) 1—
setof (X, descendant (X, Ancestor),
Descerdant_list).

is_descendart_of (Ancestor_list, Descendant) 1~
setof (X, descendant (Descerndant, X),
Arcestor_list).

——

-3

7/ %*

A¥._ Database _of _the Greek Gaods . .

/*

parent (gasa, cronus).
parent (gasa, rhea).
parent (gaea, cther).

—_— pareant (uranus, crarus) « -
parent (uranus, rhea).
parent {(urarnus, titans).
parent (cronus, demeter) .
parent (cronus, hestia).
parent (cronus, zeus) .
parent (oronus, poseidon).
parent (cranus, hera)l.
parent (cronus, hades) .
parent (rhea, demeter).
parent (rhea, hestia)l.
parent (rhea, poeseidan).
parent (rhea, zeus).
parent {(rhea, hera).
parent (rhea, hades).
parent (ather,metis).
parent (cther,maia)l.
parent (titans, metis).
parent{(titans, maial.
parent (demet er, persephane).,
parent (hera, ares).
parent (hera, hephaestus).
parent (metis, athemna).
parent (maia, hermes).
parent (aphrodite, harmoenial.
parent (zeus, ares).
parent (zeus, hephaestus).
parent (zeus, hermes).
parent (zeus, athena).
parent (zeus, apcoclln).
parent (zeus, artemis).
parent (zeus,dicnysius).
parent (leto, apalla).
parent (leto, artemis).
parent (ares, harmomnia).
parent (harmonia, semele).
parent (semele, dicnysius).

*/
*/

*/

—_ y

______femaleLgaeéL"__~_“wm_“»___“_mm_“ -

female{rhea).
female(other).
female(demeter).
female(heral.
female(metis).

- ———Ffemaleimaiale oo - . ——
female(aphrodite).
female(leto).
female (harmoria)l.
female(semele).
female(hestia).
female (persephore).
female (athena).
female (artemis).

male (uranus).
male(cronus).
male(titans).
male(zeus).

-

-Continue (y/n). 2 _ _ . e e

?is_parent_afthestia, X).
X = [coronus, rheal

?is_parent_of (X, cronus).
OK
X = [demeter,hades, hera, hestia, poseidon, zeus]
Conmtinue (y/n) 7
?is_child_of (rhea, X).
0K
X = Ldemeter, hades, hera,hestia, poseidon, zeusl
Continue (y/w) 72
?is_child_of (X, zeus).
OK
X = [eoronmus, rheal
Continue (y/wm) ?
?is_grandfather_of (hera, X).
0K
X = Luranusl
Corntinue (y/m) ?
?ie_grandfather_of (X, urarnus).
OK
X = [demeter,hades, hera,hestia,maia,metis, poseidon, zeus]
Comtinue (y/v) ?
?is_pgrandmother_of (hera, X).
0K
X = [gaeal
Contiruwe (y/m) ?
?is_pgrandmother_of (X, gaeal.
OK
X = [demeter, hades, hera, hestia,maia,metis, poseidar, zeusl
Comtinue (y/n) ?
?ig_siblirmgs_of (athena, X).
oK
X = fapallo, ares, artemis, athena, dionysius, hephaestus, hermes]
Contirnuwe (y/n) ? :
Pig_imnediatesiblings_of (ares, X).
oK
X = [ares, hephaestus]
Conmtirmme (y/n) ?
?is_arncestor_of (harmonia, X).
OK .)
X = L[aphrodite, ares, cronus, gaea, hera, rhea, urarus, zeus]
Cantirnuve (y/n) ? ' ’
?is_ancestar_of (X, rhea).
oK
X = [apolla, ares, artemis, athena, demeter, dionysius, hades, harmnonia,

hephaestus, hera, hermes, hestia, persephorne, poseidon, semele, zeus]

Continue (y/n) ?
?is_descendant_of (X, zeus).
oK

X = Leronus, gaea, rhea, uranusl -
Cortinue (y/n) ?

> -4

il

" | » g 7 " ? o . d

!

?is_descendant_of (uranus, X) .

OK.- — R
X = L[apallo, arnes, artemis, athena, cronus, demeter, dionysius,

hephaestus, hera, hermes, hestia,maia,metis, persephone, poseidaon,

rhea, semele, titans, hades, harmonia, «..1

Covmtinue (y/v) ? T

?is_descendant_of (X, zeus).
oK

X = [eronus, gaea, rhea, wranusl
Continue (y/v) ?

E TE GE om o am

3.2 ASPTF
3.2.1 Features of ASFTF

ASPTF is a problem solver included in the SS5T tutorial
software package. It is written entirely in Lisp and allows
the user to conduct simple problem solving sessions. A
session is conducted interactively, and consists of entering
facts and rules in the form of assertions, and then posing
questions in the form of a hypothesis (or a theorem) to be
proven. The sessions are effctive as a tutorial of the
theorem proving paradigm, and as an introduction to the more
sophisticated problem solver, DUCK.

There are only two commands (predicates) in the ASFTF:
assert and bec. Facts are entered as a simple assertion using
the assert command, while a rule is entered as a Horn clause,
again using the same command. A hypothesis to be proven is
presented as a goal of a goal-driven inference, using the bc
{backward chainig) command. A rule may be presented either as
a backward or a forward chaining rule. When a forward
chaining rule is added to the database, new assertions may be
made wusing that and other rules which may become relevant
because of the new rule. There will be no automatic
assertions when a backward chaining rule is added. It will be
invoked only in the process of proving a theorem.

S.2.2 Using ASFTP

The S5T7 tutorial software (ASPTP, SANS, OFPSS, ATN) is
stored under the directory

SYS$+SYSDISK: LPACKAGE.SS5T. TUTORIAL ..SSTC.AIC1]
The following sequence of commands, which is common to all of
the tutorial software, must be issued to access them:
¥ gat default sys¥sysdisk:[package.sst.tutorial.sstc.aicll

User ‘s default directory is set
to that of the tutorial software

$ @sstoourse
Assigns a version of Lisp that
is appropriate to the tutorial

package. System responds with
the following:

3 -6

- - -(-

Previous logical name assignment replaced
Previous logical name assignment replaced
Previous logical name assignment replaced
Frevious logical name assignment replaced

¥ lisp
Enter the lisp environment.

S4c00 bytes read into 2c00 to S77+FF
Franz Lisp, Opus 34

SMART SYSTEMS TECHNOLOGY
Artificial Intelligence Course

A.I. Course Software Selections

Type (asptp) for ASPTP deductive retriever
{ops3) for OFSS productive system
{sans) for SANS associative network system
{parser) for an ATN natural language parser
(loadloop) for examples of control structures

Note: above steps must be
followed by all SST Tutorial
software.

-> (asptp)
Select ASFTF. Note all inputs
are in lower case letters.
ASFTF responds with its herald
messages:

Lfasl sstflib:asptp.0l]

Leaving Waorkspace: background
In Workspace: asptp

Leaving Workspace: asptp

In Workspace: background

Type (navig) to load in the NAVIG database
{arith) to load in arithmetic plus and times
{(family) to load in the Family Tree database

nil

—->

Assert facts and rules using the assert predicate of
ASFTFP to the prompt "->", to construct a problem, and then to
activate the theorem prover by entering one or more of the bc

>-17

.

-,

. . ' " ..

prediéates. The assert predicate has the follaowing format:

=> (assert ‘<assertion’)
where, <assertion?> is either a fact or an implication (rule).
Examples of a fact would be:
{brother ted chris) Ted is a brother of Chris, or
Chris is a brother of Ted.

{is—east-of victoria vancouver)

Victoria is located east of
Vancouver.

(meaner_than lucy marcie)
Lucy is meaner than Marcie.
Rules are, in general, defined using a variable. A
variable is any lowercase alphanumeric string preceded by a
"?. Examples of an implication would be:
({— (wife ?x 7y) (and (spouse ?x Ty) (female Tx)))

If X is a spouse of yv and % is
a female, then x is y’'s wife.

(-=» (is female ?p) (is waman ?p))

If p is a female then p is a

woman .
. In.these examples the relational operator “<=" implies
a backward chaining or a goal driven inference, while "->»*

means a forward chaining, or data driven inference. In ASPTP,
there is no distinction between a knowledge base and a
database. Both rules and facts are written into a database.

In forward chaining, when a rule is asserted, any
facts that may be justified by the new rule will be asserted
in the database automatically. In the above forward chaining
example, if the database already had an assertion

{female alice)

then an assertion
{woman alice)
will be made immediately after the rule is asserted.

Once facts and rules are entered in the database, one
can request the ASFTF’'s rescolution mechanism to prove various
hypotheses. The format of the request is:

—=» (be ‘<hypothesis>)

where, bec stands for backward chain, signifying the fact that
the ASPTF tries to resolve a hypothes15 using a goal-driven
inference.

A hypothesis has the identical format as an assertion
discussed above. In fact, there is no actual distinction
between the two. In problem solving, one tries to prove that
there are supporting evidences (assertions) that can be used
to prove a hypothesis (assertion). The process may chain to
whatever depth necessary using available rules.

As one might suspect from the syntax of the ASFTP, the
problem solver is implemented entirely in Lisp, as a set of
Lisp functions. As such, other Lisp functions may be used in
conjunction with the ASFTF codes.

Also available to the ASPTP and other SST tutorial
software (OPS5, GANS and ATN), and the DUCK is the Lisp
Workspace Manager. A workspace is a set of related functions
and data that are in the main memory. A workspace can be
entered by executing (workspace ‘<workspace name>). Anything
defined after this will be done so in the workspace. In order
to preserve a workspace, execute (wsave ‘<file

specification*>). The current workspace will be saved in file '

<file name>. A sister function (load ‘<file specification>)
will load the file and restore the workspace. When switching
a workspace, issue (workspace ‘<workspace name)). Issue as
many (wsave ‘<file specification>) as necessary to save
functions defined thereafter. The rule applies to assertions,
productions, and grammars defined in ASPTP and DUCK, OFSS,
and ATN parser, respectively. In order to detatch a session
from all workspaces, execute (workspace nil).

The function {wsym ‘<symbol>) assoc:ates <symbol > with
the current workspace. All its properties will be saved with
the workspace. The default saving monitor normally saves any

3 -9

symbols that are 1likely to become necessary in future
sessions. {unwsym ‘<symbol>) Fflushes <symbol> from the
current workspace. (cursyms? returns the symbols in the
current workspace. Functions editp and editf permit in-memary

editing of predicates (assertions) and Lisp functions,
respectively. (workspace-push ‘<{workspace name») pushes the
current workspace on a stack and goes to a new workspace,
<workspace namel. (workspace-pop) restores the last
workspace. (wsmerge “<workspace nameX) merges the current

workspace with workspace <workspace name> and makes it
current.

3.2.F ASPTP program example

The sequence below demonstrates a simple ASFTP
session: .

.,

-» (assert “(is_a fred male))

"Fred is a male" is entered as
a fact. :
Asserting (is_a fred male))
asserted
System confirms what is
asserted by reciting.

—> (assert "(-> (is_a ?x male) (is_a ?x% human))})

"If ®x is a male, ¥ is a human."
is entered as a rule.

Asserting (-> (is_a (i?7i %) male) (is_a (|71 x) human))
System confirms.

Asserting (is_a fred human)

asserted

Because the rule is a forward
thaining one, “then Fred is a

human" is implied and asserted

automatically by the system.
—=» (assart “({—- (is_a ?x human) (is_a ?x female)))

A rule which says, "If x is a

female then x is a human" is

entered as a backward chaining
rule.)

3 -20

e,

P . —y d ‘

s .
L

Asserting (- (is_a (i71 %) human) (is_a ix}] %) female))

asserted o .
System recites, but since the
rule is a backward chaining
one, no implication occurs.

-» (assert “(is_a lucy female))
"Lucy is a female" entéred.

Asserting (is_a lucy female)
asserted

-» (be “(is_a fred human))
An engquiry, "Is Fred a human?".

Goal: (is_a fred human) Gueue length: ©
(nil) ‘ A
System takes up the hypothesis
as a goal to be solved. However,
this goal has been asserted

as a result of the forward
chaining rule.

Nota: (nil) in ASPTP means a
"Yes". Some intermediate
results are not shown here.

~>» (be “{is_a lucy human))

*"Is Lucy a human?" is asked.

Goal: (is_a lucy human? Gueue length: © ‘ -
Implication: (- (is_a (i?! v1) human) (is_a (i?{ vl1) female))

A rule that supports the goal
is found. It is a backward
chaining rule,

Subgoal: ({(is_a lucy fémale))

of which condition is "I+ % is
a female." This now becomes a

. goal to be proven. Since this
is one of the assertions
entered,

Discharged: (is_a lucy human)

|
|

the original goal is now
proven.

Goal: (is_a lucy female) tlueue length: ©
Assertion (is_a lucy female)

System also tries to prove the
enquiry directly, by looking
for the goal itself in the
database. Since this assertion
does not exist there,

RESULT: nil "ma" is returned from this
search. Note: (nil) = "Yes",
nil = "No".

Dischairged: (is_a lucy female)

and the attempt is given up.
1 Chainings Number of in?erences reported.
{nil) : The over-all answer to the

question is a "Yes".

=> (be ‘(is_a bill human))
“"Is Bill a humman?"”

nil System does not know anything
about "bill". So it answers no.

=> (be “{is_a ?x human))
A question "Wha are human?" is
asked.

Goal: (is_a (!7?! x) human) tlueue length: ©

System tries to find a straight .

assertion of the form "x is a
human. "

Assertion: (is_a fred human)
And finds the one asserted as
a result of the firing of the

forward chaining rule.

RESULT: ((x fred))
¥ = Fred is given as an answer.

Implication: ({- (is_a (i?! v1) human) (is_a (i?{ vl1) female))

~

3 -22

The backward chaining rule
picked up.

Subgoal: ((is_a (171 %) female))

Goal: (is_a (1?1 x) female)

Assertion: (is_a lucy females)

RESULT: ({x lucy))

The rule has "If X is a female"
as a condition.

Bueue length: 0O

Which is posted as a goal to
be proven.

An assertion which matches the
goal is found in the database.

¥ = Lucy is found.

Discharged: (is_a (1?1 x) female)

1 Chainings.
(({x lucy)) ((x fred)))

N,

= (be “(is_a 7x person))

nil

The goal discharged.

Answers listéd.
"Who is a person?"

ASFTP does not know any
"person” as that concept does
not exist in database.

3 -23

S
HE JE .

||
Il
| |

3.3 DUCK
J3.3.1 Features of DUCK

DUCK isg a hybrid Al lahguage for developing
predicate—calculus rules that may consist of one or more of
the following programming styles.

— Rule—-based knowledge representation,
— Logic programming,
— Functional programming.

DUCK is best suited for constructing non—monotonic
reasoning systems and intelligent databases in which
deductive retrieval of information is conducted using
built-in inference rules. The consistency of the database is
maintained wusing a truth maintenance system. DUCK is
currently the only commercially available system which can
handle non-monotonic logic. Other Al programming applications
in which Lisp or Prolog is normally used can also be written
in DUCK. Its drawback is in its slow execution.

DUCK was developed during the past decade both at the
MIT and Yale University by Professor Drew McDermott. The
software is now being marketed by Smart Systems Technology of
McLean Virginia, and runs on VAX/VMS, VAX/UNIX, and Symbolics
3600 Series computers.

DUCK combines four programming paradigms successfully
used in Al applications: ‘

(1) Logic Programming

First order predicate calculus is supported. Both
conjunctive (AND) and disjunctive (OR) operators are used to
form relations to be stored in the knowledge base, and to
issue queries. Unification and backtracking are used as in
Frolog as the basic execution control mechanisms. In fact,
these are about the only execution control mechanisms in
DUCK. Semantic information is separated from the algorithm in
knowledge and data bases, unlike conventional procedural
languages. This is a strength DUCK and other logic
programming languages share, and it makes program update
easier.

One of - the applications of DUCK based on this
characteristic is rapid prototyping. Rules and assertions are .
defined in knowledge and data bases, after their extraction
from an expert. Subsequent testing . is easy using DUCK's
control mechanisms.

' -

ey
-

| emasend
L

(2) Rule-based systems

Unlike conventional databases or systems built around
a database, DUCK builds a rule-based system. A rule here can
be thought of as a deduction: a conclusion of true beliefs
from true premises. Rules offer a significant increase in
computational power over conventional databases. DUCK allows
data to be deduced, rather than explicitly stored or computed
by procedures. Such a data form based on rules is sometimes
called virtual data. Structural changes to virtual data need
not be explicitly made. Since rules are, as described in (1)
above, independent {from program control structure, they can
be added or altered more easily than in conventional
procedural programming.

(ZJ) Non—monotonic reasoning

Handling of reasoning with assumptions or inconsistent
information is achieved through a technigue called dependency
directed backtracking. DUCK maintains a history of data
dependencies during 1its reasoning, so0 that changes to an
earlier assumption can be reflected throughout the database.
Considering that human reasoning includes many adjustments in
its process due to newly discovered assertions or data, this
feature is wvery important in creating highly {flexible
intelligent systems. In fact, non-monotonicity of a reasoning
mechanism will likely become a basic requirement in future Al
system design. DUCK is most advanced in this respect among
similar Al tools.

Using the truth maintenance system, DUCK can at First
assume default values for variables whose values are unknown.
These values are traced throughout subsequent deductive
processes. If at a later time an assumption is found to be
wrong, the correct 'value is assigned and corresponding
uwpdates are made to other assertions in the database.

. DUCK also maintains ‘data pools’. This mechanism
allows hypothetical ‘what if° situations to be specified in
the database. In effect, a data pool creates a copy of the
data base by saving the differences between the original.
This mechanism provides an opportunity to explore several
hypothetical situations with minimum memory overhead.

(4) Deductive search

DUCK uses both forward and backward search technigques.
The chaining process begins when rules invoke other rules in
the knowledge base. In forward chaining, the implications of
a given predicate are added to the database. Backward

Aty By, ——
- Ek am .

1

chaining begins with a goal and searches for assertions which
will support that goal. The processing time required for many
applications using searches increases exponentially as the
size of the search tree grows. By mixing forward and backward
chaining strategies, DUCK reduces significantly the amount of
search. This contrasts with Prolog s backward chaining only
control strategy (though PFrolog may be used to program a
strategy to do otherwise) and OPS3‘'s forward chaining only
control strategy.

In addition, hewristic search may be performed under
the user’s
control by using facilities provided in DUCK. This may
{depending on the heuristics introduced) result in a further
reduction in search time. Also, DUCK has a mechanism to allow
partial searches. This feature not only reduces the search
time but also aids the debugging.

Further details on the language system are described
in ([(Mcdermott 831 (Appendix %#3). Unfortunately, this rather
unreadable manual /functional description is the only document
available for the system.

5.5..2 Using DUCK an VAX/VMS

Assuming that DUCK is installed in a system directory,
the following sequence initiates a DUCK session: :

¥ DUCK (or duck)

154cQ0 bytes read into 2c00 to 1577FF
duck version lDUfB—4.;31}

DUCK herald message. User may
require an additional memory
allotment from the svystem
manager. DUCK uses an -arrow
(—>) as prompt.

—=> (lpad ‘<file—specificationi)

The contents of a file (DUCK
pradicates) are loaded into
mamory. This may not be the
case when starting an entirely
new DUCK program.

enter, mu&i{y, or delete

|

‘ ‘ - -

predicates in knowledge
base using commands available
under DUCHK.

-> (exit)
Exiting DUCK.

Back to the VMS.

3.3.3 Examples of DUCK program

Two programs are shown below as examples of a DUCK
progvram.

3.3.3.1 A classification expert

This program has a small amount of knowledge in its
knowledge base to conduct simple discrimination tasks among
animals.

At the beginning of a session the user imagines an
animal in his/her mind. The program asks the user a number of
questions concerning the features of the animal that the user

chose. The sequence with which these gquestions are asked is
governed by a set of rules so that unintelligent gquestions
such as "Does 1t nurse 1ts vyoung with milk?" be asked

follawing a "na" answer to "Is it a warm blooded animal?".
The user must answer these questions consistently in regard
to the animal.

Answers to these questions are stored in templates in
the databage. The template has a structure:

(answer <{question-id>*» <{reply>)
where,

question—id is an identifier of the question asked,
reply is a yes/no answer to the question.

The filled template then becomes a clause in the antecedent
of rules which are used to identify animals. Matching is
sought in backward chaining to didentify the animal.
Obviously, only a rule with all its AND conditions asserted
fires. .

‘Shown belaow is a program listing, followed by a log of
trial sessions:

. '—'I |

. (
I U =

A classification expert

wawkspace—push ’duck—dumd—ahlmal)

Define the varimus arimals

a3 A e G ar e

(defsymtype ANANIMAL SYMEOL)
{(duclare ANANIMAL chicker ecrceodile dog do lphln frog mosguito
roabin snake tiger tuna whale worm)

-Defire the varicus features of armimals

a3 28 ap

(defsymtype FERTURE SYMBOL)

{(duclare FEATURE backbone warm-bloocded nurse
water huge domesticated gills
gills—then—-lurngs legs begin fly)

]

H Define the gquestions

k)

(defpred (gquestion FEATURE ?f STRING ?q)
(questicn backbone "Does it have a backbaorme?")
(gquestion warm—-blooded "Is it a warm—-blooded animal??®)
(question rnurse "Does it rurse its yourg with milk?™)
(questiorn water "Does it live ivi the water?")
(guestion huge "Is it huge?")
(questiorn domesticated "Is it a commonly domesticated
animal?")
(question fly "Can it fly?")
(grestion gills

"Does it have gills and live all its life irn the water?")

(question gills—ther—lungs

"Does it start life with gills and therm become an air breather?')

(questiorn legs "Does it have legs?™)

Define what is allowed for arnswers

defsymtype YNANSWER SYMEROL)
duclare YNANSWER yes wo)

~ S N A s

Define guestion order

FTRRET RV TY

(defpred (next—guestion FEATURE ?ald YNANSWER ?tnil FEATURE ?riew)

(next—question begin yes backbone)
(next—gquestion backborne no fly)
(next—-guestiorn backbone yes warm—blooded)
(next—question warm—bloaded yes nurse)
(next-question warm—blooded rno gills)
(rext—question nurse yes water)
(next—question nurse ra fly)
(next—-question water yes huge)
(next—-question water ro damesticated)
(rnext—-question gills ro gills—thern—lungs)
(next-question gills—then=lungs no legs)
)

3- 2%

%

>

K
] User responses are kept as ANSWERs

3 We use begin as a way to start gquestions
H

£

defpred._(answer_FEATURE ?f. YNQNSNER Fyesruz)
(answer begin yes))

Y

H Rule sequencing:fR questicn about ?feature can be
H asked if it has not already beewn
H asked and its precuscr has been
H answered correctly.

5
¢

defpred {(askable FEATURE ?f)
{({- (askable ?feature)
(and (next-gquesticrn ?prev ans ?features)
{ariswer ?prev 7Yans)
(thrmot (arnswer ?feature Pyw))))
)

Now we define the correspondence between animals
and features.

&3 A8 &

5
(duclare animal (furn PROF (ANANIMAL)Y ()))
(2:2: animal template :::

({aniimal ?a) (Pa " is the animal™)))

(rule its—a-worm
({~ (arnimal worm)
(arnd (arnswer backbore wo)
(ariswer fly na)))
)

(rule its—a—-mosquito
({= (animal mosgquitc)
(and (answer backbore ra)
(ariswer . fly yes)))
)

(rule its—-a-srake
' ((- (ariimal snake)
(and (ariswer backborme yes)

{(answer warm—blocded nco)
{answer gills no)
(answer gills—then-lungs nc)
(ariswer legs nao)))

)

(rule its—-a-—-crocodile
({- (animal crocodile))
(ard (answer backbone yes)
(answer warm-blocded nc)
(answer gills nco)
{answer gllls—then-lungs nc)
(ariswer lepgs yes)))

T gl

|

(rule its—-a—-frog
((- (arnimal

frong)

— e (arnd — -—(answer

(ariswer
(arnswer
(arnswer

(rule its—a—tuna
({~ (arnimal
(and

)

(rule its—a—-chicken
((- (arnimal
(and

)

(rule its—a—rabin
((~ (arnimal
(awnd

)

{(rule its—a-tiger
({—- (animal
(and

)

{(rule its—-a-duog
{ {— (animal
' (and

tuma)

(answer
(answer
{answer

chicken)

(answer
(arswer
(answer
(answer

rabin)d

(arnswer
(answer
{(answer
(arnswer

3

tiger)

{answer
(answer
(ariswer
(answer
(answer

dog)

(answer
(answer
(answer
(answer
(answer

-backborne yes) e memem e o e e e e -

warm—blocded no)
gills no)
gillg—-thern—lungs ves)))

backbore yes)
warm—blooded no)
gills yes)))

backbone yes)
warm-blooded yes)
nurse o)

fly ro))

backbore yes)
warn-blooded yes)
nurse o)

fly ves)))

backbone yes)
warmn—blooded yes)
nurse yes)

water ro)
domesticated rnad))

backbone yes)
warm-blooded yes)
nurse yes)

water)
domesticated yes)))

(rule its—a—-dolphin

({— (arnimal
(and
)
(rule its—a—whale
({—~ {(animal
(and

(= first—-dp¥* dp¥*)

(de whatanimal ()
(do [(a—ams

(dp=*

La—ars

(for—first—-ars
(for—Ffirst-—ans

{cond [(is—yes

)
)
(de animals ()
(do C(la nil)3
Cwmilld
{(prirnc

(cornd [(is-yes

(fetch

{(progm

dalphin)
(arnswer
{answer
(ariswer
{answer
(arnswear

whale)

(arswer
(answer
{answer
(arnswer
(answer

(cadr

(princ

T (amimal ?x))
(dp—push first—-dp*))]
(dp—kill dp=*)
(asscc ' x

(fetch

backbove yes)
warm-=blooded yes)
riurse yes)

water yes)

huge na)))

backbore yes)
warmn—-blooded yes?
nurse yes)

water yes)

huge yes)))

(fetch

(caar a—ans)))1l

{(premiss ' (answar

* (amimal ?x)))

* (agskable ?feature))

(fetch ! (gquestion ?featuwre ?english))
Teviglish)
(read))

?feature yes))l

[t (premiss ? (answer ?feature o)))

)

"Do yool want
(read))
(whatarnimal))

(= la
(terpr)
(terpr)
(prirc

te play animal?")

"The Animal is a ")

(princ la)

(princ "

{(terpr)
{(terpr)l

[t (return)ld)

)
)

(princ "ANIMAL.DUC Loaded")

(terpr)
{prirc
(terpr)

"TYRE

(armimals) ")

t)

! |
|
|
18
|

|
|
L
|

=) {animals). ___ ___..

Do yau want to play animal?yes

Does it have & backbone?yes

*Is it a warm—=blooded animal?yes

*Does it nurse its young with milk?yes
17997 Does it live in the water?na
1ls-it a-commonly domesticated

animal 2w
9935319

The Animal is a tiger !

Do you want to play animal?yes

Does it have a backbore?yes

*Is it a warmn—blooded animal?yes
'Does it rnurse its young with milk?no
TCam it Ffly?wmo

T39%

The Amimal is a chickew !

Do you wanmt to play animal?yes
Does it have a backbone?wo
Carn it fly?vo

19

The Animal is a worm !

Do you want to play animal?yes
Does it have a backbome?yes
*Is it a warm—-blocded animal?no

"Daes it have gills and live all its life iw the water?vo
Does it start life with gills and thenm becaome anm air breather?wo

'Does it have legs?yes
199919

The Amnimal is a crooodile !
Do you want to play animal?na
nil

=) (exit)

R

3.353.35.2 Data pool control

A test program was written and run to test the
datapool +feature of DUCK. In DUCK, datapool is used jointly
with the truth maintenance system to maintain dependency
directed backtracking. With this mechanism, changes to data
can be reflected throughout the data base.

In the following example, situations created in a
"block’s world" that has three boxes A, B, and C is saved in
different data pools. For instance, data pool 1 records a
situation in which the three boxes are placed side by side on
the +table, as ahown in Figure 3.3a, while data pool 3 has

: : i : : :
i A i i B H i C :
a. Data pool 1

H H

i B H

S e ———
] 1 - =
H H } :
i A H i € :

b. Data pool 2

0

o)

¢ ww wa m-

>

c. Data pool 3

Figure 3.3 A block’'s world example

A-—q-————-.\-——_—.
B TN B EE aEm s

-

—

e

them stacked up in the order of A. B, and C, from the surface
of the table up. These situations may depict intermediate
states created by a robot executing a task. The task could be
"Begin with situation in datapool 1 and end with a situation
in which box C sits on top of A and box A sits on top of box
B.

The DUCK's truth maintenance system would allow the
robot to ‘go back® to an earlier situation and try a
different sequence of actions from there. Such switching of
context without tracing back actions taken in the past in
reverse chronological order, can be done if a history of data
dependencies is maintained. The reasoning mechanism of DUCHK
may switch data pools and conduct inference on assertions
particular to the context represented by the new data pool.

The program shown below demonstrates creation of three
data pools. Note in a logic programming system without this
facility, contradiction among assertions, such as "B is on A"
as 1in data pool 2 and 3 and "B is on table” as in data pool
i, cannot be tolerated, drastically limiting the real-world
applicability of the approach.

Data pools

P LR T IRV T

workspace—-push 'datapool)

({deftype object 8SYMEOL) . _ . e et L e e

(duclare obgect table A B O)
(defpred (ON object ?x aobject ?y))
(2= first—-dp dp#*)

(premiss T (ON A table))
(premiss Y (ON B table))
(premiss * (ON C table))

(terpr)
(princ "¥*%%% Contents of data pool 1 *%x%%") (terpr)
(terpr)
(for-each—ars (fetch * (ON ?x ?y))
(princ * ")
(princ ?x)
(prinec " is on ")
(princ ?y)
(princ ".")
(terpr) (terpr)

(:= second—dp (dp—-push dp¥*))

(let ((dp¥* secocnd—dp))
(premiss ' (ON B A))
(erase " (ON B table))

(princ "#%%%¥¥ Contents of data pool 2 #%%x%") (ferpr)

(terpr)

(terpr)

(for—each—ans (fetch ! (ON ?7x ?2y))
(princ " ")
(princ 7x)
(princ " is an ")

(princ ?y)

(princ ". ")

(terpr) (terpr)
)

(z= third-dp (dp—pusn dp%))

(let ((dp¥* third-dp))
(premiss " (ON C R))
(erase "(ON C table))

(terpr)

(privic "¥x¥x% Corntents of data pool 3 *%%%x")

(terpr) (terpr)

(Tar—each—arms (fetch * (ON ?x ?y))

(prinmc ")
(princ 7x)
(princ " is an ")

(princ y)

(princ ".")

(terpr) (terpr)
)

(térpr)

(princ M%%¥x%¥% Contents of data pool 1 #xx%*")

(terpr) (terpr)

(for—each—ans (fetch ? (ON ?7x ?y))

(prirnc ¥ ")
{(princ 7x)
(princ " is an ")

(princ 2y)
(princ "."M)
(terpr) (terpr)

E3

=) _(load *datapoalg.duc) .
IN WORHKSFACE datapuool

Autosave made:
31%1

*%%%% Comtents

B is on

A is on

5339
*#%%x%% Contents

B is an

A is on

C is on

k]

save

af data

——eeee Cis on_table. -

table.

table.

of data
A.
table.

table.

p P] l

*#%%%% Contents of data pool

C is omn

B is on

A is o

*%%%% Contents

C is an

B is on

A is aown

E.
A.

table.

of data
table.
table.

table.

PO 1

1]

1]

* ¥ ¥ X*

XK K KN

¥ K ¥ ¥

e K K

3b

l

- y ama—

o

e

r

-

p—

-

4. The Semantic Network paradigm
4.1 SANS
4.1.1 Semantic network and SANS

Semantic - network is a knowledge representation
technique initially proposed in the early 6&0s. The idea
originated from the Cognitive Science camp of a then laoosely
formulated school of Al The formalism has fundamental
psychological and physiological overtones. The approach of
capturing and accessing human thought processes based on a
method similar to that found in these sciences caught
popularity but died away by the early 70s. Failure was due to
weakness in formalism and too much flexibility in the
interpretation of the meaning provided by semantic network.

A new breed of semantic networks began to reappear in
the latter half of the 70s following Minski’s historical
‘“frames’ declaration of 1975 [Minsky 791. Semantic network
approach was then re—-instated with ‘frames’ as its central
concept. One of the weaknesses of the earlier semantic
network was the loose and freer definition of nodes and arcs
in the network. If one replaces arbitrarily defined nodes
with frames, and arcs with taxonomical and
similarity/dissimilarity 1links among frames, an entirely new
type of semantic network formalism is created. This is indeed
what was done.

KL-OME, or Knowledge Language One [Brachman 78] is the
first well known semantic network system of this generation.
Others include Carnegie-Mellan University’'s Schema
Representation Language, or SRL LFox 781, Stanford
University’'s UNITS system [Stefik 801, and Schubert ‘s efforts
[Schubert 761. Current research centers arcund the methods of

procedural attachment to slots of a frame, of including.

stronger . deduction mechanisms to the network and of
interconnecting frames using production rules. Toronto
University's PSN [Mylopoulos et al 831, Krypton being
developed at Schlumberger Palo Alto Research (SFAR) [Brachman
et al 831, and KEE 20 system developed by IntelliCorp [Kun=z
et al 841, respectively, are examples of current development
projects.

SANS is a +Fframe based semantic network (called
associative network in the SANS for historical reasons)
system developed for tutorial purposes. It is mostly aimed at
deepening the understanding of the semantic network concept,
while allowing development of simple applications using

———r 1 :
R TOE EE e

|
[

sempantic network representation. Basic concepts of semantic
network organization, generic vs. instantiated nodes, valued
slots of a node, property inheritance, and demons as a form
of procedural attachment are all included in the systems.

SANS uses nodes, slots, values, and demons to
construct a semantic network. A node is also called an
object, much in the same sense +the term is used in
pbject-oriented programming. Objects, or nodes are described
in SANS in terms of their properties and the relationships
among them. Further details of the SANS’ features and its
access commands are found in the manual [Hayes 831 (Appendix
*2) and a tutorial note [RBerg 841 (Appendix *1).

Mot all reascning problems are suitable for semantic
network representation. In fact, the present application of
semantic network is still very limited because of its limited
ability +to represent. Only classification problems and
certain types of diagnosis problems are effectively solved
using semantic network approach. SANS has the limitation too.
It is best suited in problems where there 1is a strong
taxonomy in the application. Basic understanding of the
semantic network paradigm can be obtained by reading text
books [Winston 84al] (Chapter 8), [Winston 84bl (Chapter 22),
Nilsson 801 (Chapter 9), [Cohen and Figenbaum 821 (All three
volumes, use index to look for ‘semantc network’).

Assuming that an a&appropriate application domain is
defined, 1in order to develop a SANS-based system, one
proceeds as follows: '

(1) Describe the application in the form of a taxonomy. This

may involve clarification and definition of basic
concepts (=g., managers, wor kers, superiors,
subordinates, departments, merchandise, customers,
equipment, etec.) and their relationships to the other
concepts, ' '

) Develop a template node structure using commands in SANS

for that purpose. The template node defines a generic
concept in the system in terms of attribute slots and
their detfault values. Template nodes for all basic

concepts evident in the application must be developed.
Then they must be connected according to the taxonomy
~developed in step (1).

(3) Define and implement, again using SANS commands,
procedures to be attached in the form of demons to some
of the slots in the template nodes,

5 L f Prm— " k d

(4) Using system commands provided in SANS for that purpose,
develop an instantiated node structure that corresponds
to actual instances of the template node (generic
concept) structure. For example, the concept of ‘APEX
Corporation’ may be developed as an instantiated case for
the generic concept ‘company’, and ‘Shipping dept.’ for
‘department ’,

(3) Using commands to activate demons, execute attached
procedures and compute values or cause actions desired. A
possible action may be to fill a slot of another node.

4.1.2 Using SANS on VAX/VMS

The S8T tutorial software (ASFTP, SANS, OFSS, ATM) is
stored under directory

SYS$EYSDISK: [PACKAGE. 88T. TUTORIAL.SSTC.AICL .

Follow the steps shown 1in Section 3.2.3 above until the
tutorial software menu is displayed.

—-r {(sans) :
Select SANS. All inputs in
lower case.

[fasl sst$lib:rsans. Ol

Leaving Workspace: background
In Workspace: sans

Leaving Workspace: sans

In Workspace: background

Type {(rstest) to load in example associative network
nil

-> {(workspace ‘mysans) _
Define your own workspace.

=» {load ‘<file specification>)

Load predefined SANS program.
This command may not succeed i+f
the user does not have
sufficient priviledge. Use SANS
interactively, if not.

—e

-

p—

' I ' . v . -

SANS commands follow.

4.1.3 SANS program examples

The following is an example SANS program which .deals
with basic gtatistiecs of Canadian provinces. Two sets of
nodal {(or frame) structures are constructed: template and

instance. For each structure, nodes {(or frames) are created
by defining their slots and the value of the slots. Lisp
functions are written to go around the defined

frames and collect statistics by tabulating wvalues from a
specified slot.

Both template and instance frames are displayed
below, followed by the results of the run.

SANS example

An asscciative network foor gecgraphical
informaticon about proviwmces in Canada

PR PR TN PR T e

i
H
I
|
|
i

g}

{Wworkspace mysans)

Define Template—nodes and slots

M IR g3 am

(make-templéte eountry "riil)
(add—slot courntry *capital @)

(make—template ’province ?cocuntry)

(add-slat 'province ?provincial-capital @)
(add-slct ! pravince !area @)

(add—slaet 'province Ypopulation @)

(add—-slot ?praovince * floral-emblem @)
(add-slet ?province 'date—become-province @)

Define Iﬁstance—nodes

SN SN am

(make—instance ?'wil ?ecountry ?Canada)
(put—value ’capital '0Ottawa *Canada)

)) ‘ l - -' - -.‘ - -

(make~instarce 'Canada *province 'E.C.)
(make=-instance 'Canada 'provivice 'ALTA.)
(make—instance ’Canada *province *Sask.)
(make—-instance 'Carada ?province !Man.)
(make—-instarnce *Canada !provivice *0nt.)
(make—instance 'Canada 'province 'P.G.)
(make-instance 'Canada *province *Nfld.)
(make—instarce *Canada '"province 'N.E.)
(make—instance 'Canada ! pravince TN.S.)
(make-instance 'Canada ! province *P.E. IL)

(put—value ’'pravincial—-papital *Victoria 'R.C.)
(put-value 'provincial=-capital ?*Edomonton "Alta.)
(put-value ’"provinmcial—-capital *'Regina 'Sask.)
(put—value ?provincial—-capital "Wirmipeg ?Man.)
(put—value 'proavincial-capital ' Toronts 20nt.)
(put—value ?provincial-capital *Quebec *F.G.)
(put-value 'provincial-capital ?8T.Johns *Nfld.)
(put—-value ?*pravincial-capital ?Fredericton *N.E.)
(put—-value "provincial—-capital *Halifax 'N.S.)
(put-value 'provincial-capital "Charcttetown P.E.I.)

(put-value *area ?'94852€ "E.C.)
(put-value Tarea 661185 'Alta.)
(put—-value Tarea 651990 'Sask.)
(put-value 'area ?'E3QA87 ?Mar.)
(put—-value Tarea 1268582 *'0Ont.)
(put-value 'area '1954268@ *pP.G0.)
{put—-value *area '424517 "Nfld.)
(put—value ?area '73437 'N.ER.)
(put—value ‘*area '595492 "N.S.)
——¢put-value— area-'95657 Y P.E.-I.) S e mm e e

(put—value *population 2184621 TE.C.)
(put—value *population ? 1627874 'Alta.)
(put—value Tpopulation ?2ISE24E * Sask.)
(put—-value 'population ?988&47 *Marn.)
(put—-value paopulation *77@318E 0Ont.)
C . (putmvalue._!population TERE77E4 TR.G.)
(put-value 'population 'SE21@4 YNfld.)
(put=-value ?population ?YE34557 YNJE.)
(put~value 'population ?'788%&€2 "N.S.)
(put-value 'populatiorn *111641 'R.E.IL)

(put—value 'Floral—-Emblem 'Flowering—Dogwood *E.C.)
(put—-value ‘*'Floral-Emblem *"Wild-Rose 'Alta.)
(put=valug 'Floral—-Emblem 'Prairie-Lily '8ask.)
(put—-value ?'Floral-Emblem ?FPasqueflcwer ?Mamn.)
(put—value 'Floral—-Emblem *White-Trillium *0nt.)
(put-value 'Floral-Emblem 'White~Garder—Lily *P.Q.)
{(put-value ‘'Floral—Emblem *Pitcher—-Plant 'Nfld.)
(put=-value 'Floral~-Emblem ?Violet ?N.B.)

(put—-value 'Floral—-Emblem ? Trailing—Arbutus *N.S8.)
(put—value 'Floral-Emblem *Ladys—Sipper 'P.E.I.)

4 =&

® L, s [

EE R R A R

(put—-value
(put-value
(put-value
(put-value
(put—-value
(put—-value
(put-value
(put=-value
(put-value
(put=-value

' Date—Recome—Frovirce
' Date-Recome—Froavince
' Date—ERecome-Fravince
' Dat e-Recome—Fravince
' Date-~-Become-Frovince
' Date—Hecome-Fraovince
' Date-Recome-Mrovince
' Dat e~Recome—-Fraovince
' Date-Become—-FProvince
! Date—~HBecaome-FPravince

LISF functions

(de provincial=—-capital (x)

(get-value

(de area

(%)

(get-value ‘?area x))

(de population (x)
{get-value ?'populaticrn x))

(de Floral-Emblem (x)
{get-value *Floral-Emblem x)

(de Date—Recome-Fravince (x)

(get-value

11871
i 8=l
' 13ag
Y1872
T1867
1867
1947
1867
Y1867
11873

'provincial-capital x)

)

' Date—-Recome—Frivince x)

TR.C.)
Alta.)
'Sask.)
' Man.)
"Ont.)
TR.QL)
"Nfld.)
*N. B.)
M. S.)
'PLE.IL)

)

.

ﬁ |
-

-

-

,___,

o

=2 f{provincial-capital

vietoria

-y (proavimcial—-capital

edmarnt ow

al B.C.)
A

lta.)

- (orovivnecial-capital Maw.)

wirmipen

=) (provinecial-—-capital N,S.)

halifax

=) (oprovincial-capital Ont.)

Toromta
-~ (area
B4B536

oy

31

-y {area {[lta.?}

€61188

-y (area Mav?}

Sheinlul= g

-y (area N.S5.)

De43a

-y (area Ont.)

12068582
-y (pomulation
2184621
-} (population
1627874
~ (nopulation
288247
- (populaticnm
78826
-~ (populatiom
77AZ186

D)

B.CW)

Aita.)

Mar.)

N' Sh)

Ormt.d

-y (Floral-Emblem EB.2.)
flowering—dogwood
=) (Floral—-Emblem Alta.)}

wild-rose

-y (Floral-Emblem Mar.)

pasaueflower

-) (Fleral—Emblem N.S.)

trailirng—arbutus

-) (Floral=Emblem Ont.)

white—-trillium

- (Date-Recome-proavince R.C.D

1871

- (Date-Hecome-province Alta.?

1345

-) {Date~EBecome—-Fraovimce Mar.)

187&

-) (Date-Recome—-Frovirce N« 8.)

1867

-) (Date-~-RBecone-Frovince Ont.)

ise7

e | e

!

3

- ..

- - - — . ‘) .)) i

——

-

2

[

F

4.2 FSN
4.2.1 Features of FSN

Based on Hecter Levesgue’s 1977 proposal, Frocedural
Semantic Metwork has been developed at the Computer Science
Department of the University of Toronto under Prafessors John
Mylopoulos and John Tsotsos during the past saven years,
invelving many research staff at the department. The system
is one of the most sophisticated and advanced Knowledge
Represantation (KR) systems in the world today. While presant
implementation of the language is not efficient enough to be
used in a great number of applications, it has already been
proven useful in large scale prototypes of advanced expert
systems [Tsotsos 8131 [Shibahara et al 831. '

The most salinus aspect of PSN is its rigid definition
of the structural aspects of knowledge. Classes and relations
are defined as entities representing generic concepts — 1like
person, house, flower - while relations represent generic
relationships such as parent_of, above, and citizen_of.
Tokens and 1links are instantiated entities corresponding to
classes and relations. Procedural elements are introduced
into the language in terms of four access primitives attached
to a class: TO-GET, TO-REM, TO-TST, and TO-PUT, for creating,
deleting, testing and collecting objects.

There are three fundamental relationships defined in
the PSN: IS-A, INSTANCE-OF, and PART-0OF. OFf these, IS5-A
relation is similar to that in many other semantic network
systems and implies a generalization/specialization taxonomy.
PART-OF relation is for aggregation/division, and INSTANCE-OF
for catagorization. Most other semantic network languages,
including - the popular KL-ONE, do not distinguish the
taxonomical differences as in PSN, which are very subtle and
hard +to handlie properlvy. An application system with very
elaborate descriptions of its components and relationships
may be constructed using PSN. However, the performance of
such a system will be poor and impractical for running on a
VAX-11/780.

PSN has a hierarchical structure. Each layer of the
hierarchical 1language offers a set of representational
features that includes features of an inner layer. PSN/O 1s
the most fundamental layer supporting only the INSTANCE-OF
relation. FSN/1 adds IS-8& and a simple form of PART-0OF to
depict organizational knowledge in a system. PSN/2 introduces
the more sophisticated FART-0OF, along with similarity links
and exceptions. Similarity links connect classes of similar
attributes, and suggest other classes to be tried when a
match fails between a given class and input data. When a

— o}
[

[

match failure occurs, an exception is raised. It Betermines
which similarity link should be used to suggest other classes
to be tried for matching. Although the development group has
plans for further expansion (ie., PSN/3 on}), it is unlikely
that such development will happen.

Appendix #4 is a copy of FPSN User s Manual.
4.2.2 Using FSN on VAX/VMS

There are two versions of FPSN interpreter, FPFSN1I and
FSNZ, installed on A&SL VAX-11/780. Use FSNZ2 as follows:
Fpsn2
77800 bytes read into 2c00 to 7a3ff
Note Franz Lisp is also loaded.

{include <user psn source fileX>)

Use include command to load FSN
definitions.

[*#1list:4365{68%3; fixnum:2{0%3; 1
C*list:446{67%43; fixnum:2{0%L3; 1]
[*#1listr486{66%4Y; fixnum:2{0¥%3; 1

t User PSN file loaded.
—» (Flora—-Emblem Alta.) |
Floral emblem of Alta. is Wild-Rose
PSN is ready for access using
user defined knowledge base.
4'2f3 FSN program example
An example very similar to the one made for the SAaNS

(Section 4.1) is written for FSN. The knowledge base stores
in a structure, facts about Canada: population, 1land aresa,

floral emblem, capital. Same sets of information are also

stored for the provinces. A set of Lisp functions are

provided to access the classes (frames) in which this
4 -9

E EE BN EE EE an

-~

knowledge is stored. Some of them simply retrieve the
knowledge, while others compute a value {(eg., population
density). In the last set of examples, FSN's own fetch
function (%) 1is used to retrieve information from frames.
Shown below is the knowledge base developed, and the results
of runs performed using the developed knowledge.

EETIRN 73

SN example

A procedural semantic vnetwork for gpecgraphical
imformation about pravivnces in Canada

PET IR TRV TRVt

Class definition for various gecgraphical elements

B aBs WE e B AR B

{1+ class (idevit Name) wil mil wil)

(:+ class (ident Geographical-unit)
*((to—put stdputms))
* {class)
* ((Head—-slot slot)))

(idernt Head-slot)
{(:+ class (ident Geographical—-ewtity) wil wil wil)

(:+ Geocgraphical-unit (ident Provivnees) nil
' {Gecgraphical—entity)
* ({Pravincial—capital Name)
{Area rumber) -
(FPopulation rnumber)
(Floral—-Emblem Name)
(Date—-Recame—Province wumber)))

(ident Provivnecial—-capital Area Fopulation
Floral—Emblem Date-—-Recome-FProvinee)

(:+ Head-slot Frovince Fravincial—-capital)

(:+ Geographical-unmit (iderit Country) nil
' (Gecgraphical—-entity)
* ({(Capital Name)
{(Area number)
(Populaticon number)
(Natiomal—-Emblem Name)
))

2 am

AEE o8 IN AEE ANE A8 -HE B3 T

1

83 X 2p -x3

(idernt Capital Natiowmal-Emblem)
(:+ Head-slot Country Capital)
(:+ relaticon (ident Cantains)

* ({domain Gecgraphical-erntity)
(ranige Gecgraphical—-entity)) wmil)

Knowledge base defiwition

(ident Victoria Edomonton Regivia Wirnmipeg Toronmto
Guebec 8T.Johns Fredericton Halifax
Charottetown)

tident Flowering-Dogwood Wild-Rose Prairie-Lily
Fasgueflower White-Trillium White—GBardern—Lily
Fitcher—-RPlant Vizlet Trailing—Arbutus
Ladys—-S8ipper)

N{ident Canada)

(ident E.C. Alta. Sask. Man. Ont. F.G. Nfld. N.E.
N. 8. P.E.IL)

(mapcar (f:l (rmame) (:+ Name name nil))

' (Victoria Edomonton Regina Wirmipeg Toromto
Quebhec ST.Johns Fredericton Halifax
Charcttetown
Flowering-Dogwood Wild—Rose Prairie-Lily
Fasqueflower White-Trillium White-Garden—Lily
Fitcher-Flant Violet Trailing—Arbutus
Ladys—Sipper Ottawa Maple))

Class '"Canada"®

(:+ Courtry Canada ? ((Capital Ottawa)
(Area F370227)
(Population S18322212)
{(Natiowvial-Emblem Maple)))

i
i
L
L
i

i~

23 ER a8

Provirnces defined as a class

(z+

Frovince

Pyovines

Proavince

Frovince

Froviree

Fyovirce

Frovivice

E.C. ' ({(Provirncial—-capital Victoria)
(Area B48326)
(Population S1846321)
(Floval—-Emblem
Flowering-Dogweoad)
(Date-Become-Frovince
1871)))

Alta. " ({(Pravincial-capital Edomarntorn)
(Area 661185
(Population 1627874)
{(Floral—-Emblem
Wild—-Rose)
{Date—-EBecome-Frovince
19@35)))

Sask. ' ((Frovincial—-capital Regirna)
{(Area &31°95a&)
{(Fopulaticon 326243)
(Floral-Emblem
Frairie-Lily)
(Date-Recome—Province
125)))

Mar. ? ((Pyavincial—-capital Wirmipeg)
(Area 65SQR87)
(Fopulation 288247)
(Floral-Emblem Fasqueflower)
{Date-Eecome—-Fravince 187@)))

Ornt. ! ({(Frovincial—capital Torento)
(Area 1@6838:)
(FPopulation 7783126)
(Flowal=Emblem White-Trillium)
(Date—EBecome—Pyavince 1867)))

F.Q. " ((Provirncial—capital Quebec)
(Avrea 1954Q68Q)
{(Population EQ27764)
{(Floval—Emblem
White-Garden—-Lily)
(Date-EBecome-Frovince 1867)))

Nfld. ' ((Pravincial—-capital S5T.Johns)
(Area 404317)
(Populaticon SSR21@4)
(Floral—Emblam
Fitcher—-Flant)
(Date—-Eecome—Praovince 1947)))

4 - 12

‘

t AR NES an am

.

38 AR A3 A e

(2+ Province NJ.E. " {({(Fravincial-capital Fredericton)
~ (Area 73437) '
(Fopulationm 834557)
(Floral-Emblem
Viclet) : .
(Date—-Recome-Frovivrce 18&7))

(:+ Provinee No8S. * ((Provincial—-capital Halifax)
(Area 5545@)
(Fopulation 7883820
(Floral—-Emblem
Trailing—Arbutus)
(Date-Become-Frovince 18&87)))

(z+ Frovivnee P.E.I. ? ((Fravincial—-capital.
Charottetown)
(Area S6357)
"A{Populaticon 111641)
(Flmral-Emblem
Ladys—8ipper)
(Date-RBecome-Frovince 1873)))

Canada - Pravinces taxoromy

'
|
1

Cortains Canada R.C.)
Contains Carnada Alta.)
Coritains Camada Sask.)
Contains Carada Mar.)
Corntains Camada Ont.)
Cortains Carada P.QL)
Certains Canada Nfld.)
Comtainsg Camada. NOE.)
Contains Camada N.S.)
Cormtains Camada F.E. I1.)

P e T T S N e e
R

LISF furictions to feteh the contents of PSN

s S a8

To calculate the populatiorn dernsity.

(defun Fopulaticon-Density () - _
(Fopulatior—-Density—of F) (terpri) (terpri))

4 - 1>

|
B
i
|
i
[
|
I

EE a8 ER e

[CTRRY T ey

a2 ax

1]

=<8

(defur Populatiorn—Density-—of (F)

(terpri) (terpri)

(prive "Fopulation density
(princ

(prime " is ")

(prime (quotient (26 Population P wil) (2% Arvea & #il)))
(prine " persons per square kilometer.") (terpri)

To caleculate the population demsity of all

provivees of country.

(defurn Natiorwide-Fopulation-Dernsity—Ffor ()

2f "

(foreach provivnece (% Contaims O

(Fopulaticr=—-Density—of provivnee)) (tevpri) (terpri))

To get the National emblem

(defurn Natioval-Emblem (C)
{(terpri) (terpri)
(prinec "Natiovmal emblem of
(privnc ©)
(prinec " is ")

Il)

wiild

(princ (:$ Natiomal-Emblem € nil))

(terpri) (terpri) (terpri))

To get the Floral emblem of province

(defun Floral—-Emblem (R
(terpri) (terpri)
(prive "Floral emblem of ")
(privc F)
(prine " ig ")
(privec (1% Floral—-Emblem R
(terpri) (terpri) (terpri))

mil))

—

s

-

- (Natiocwmal—-Emblem Carada)

National emblem of Carada is Maple

nil
=) _(Flaral-Emblem Nfld.)

Flcvral emblem of Nfld. is Fitcher-Flant

nil

-) (Populatiorn—Density Ont.)

Fopulatior density of Ont. is 7 persons per sgquare kilometer.
nil ‘

=) (Populatior—Density FP.E. I.)

Population density of P.E.I. is 19 perscns per square kilometer.
nil

-> (Nationwide—-Fopulatior—-Density—far Canada)

Population density of P.E.I. is 13 persocns per square kilometer.
Population density of N.S. is 14 persons per square kilometer.
Fopulation density of N.B. is 8 persons per sguare kilometer.
Fopulation dernsity of Nfld. is 1 persons per sguare Kiloameter.
Fopulationm density of F.Q. is 3 persaons per sguare kilaometer.
Fopulation density of Ont. is 7 persons per sguare kilometer.

Fapulation density aof Man. is 1 perscons per sguare kilometer.

Sask. is 1 persons per sqguare Kilometer.

0
—fl

Populaticw denmsity
Fopulation density of Alta. is 28 persoms per square kilometer.

Population density of B.C. is & persons per square kilometer.

4 - A

P ad v i

|

=) (:% Capital Canada nil)

Ottawa

=) (2% Area Canada nil)

372021

=) (2% Populaticoen Carnada nil)
21832027

=) (:% Naticnmal-Emblem Carnada rmil)
Maple _

=) (4% Provincial-capital N.S. nil)
Halifax

=) (:$ Area N.S. nil)

554390

=» (:4$ Population N.S. nil)

788560

=) (2% Floral—-Emblem N.S. wnil)
Trailing—Arbutus

-) (3% Date—ERecome—Frovince N.G§. nil)
1867

- (exit)

4 - 16

—

| WR e o

.

|

-

5. The production system paradigm
S.1 CLisp
S.1.1 Feature of ClLisp

ClLisp was developed between 1979 and 1983 by a group
at Computer and Information Science Department of the
University of Massachussets at Amherst. It is aimed to be run
on VAX-11 family of computers running under VMS operating
system. This is the first serious non—-UNIX Lisp for this
computer before Common Lisp. It has been the base language
for a numnber of Al projects at that department, 1including
the well-known HEARSAY-1I speech understanding system project
conducted there by Prof. Victor Lesser and Dr. Dan Corkill.

Clisp has an extensive on-line help facility which
explains virtually all built-in functions. Entering

(help)
user gets a list of Ffunctions explainedA by the facility.
According to (help HELF), one of the explanations under this
facility, help +Ffor a particular CLisp function can be
obtainad by typing:

(help <category> <functionX}
if the user is not using CLisp editor, or

(clisp—help <category*> <functionx*)

from within Clisp, anywhere. A& {category> <function}» may be
of the following fromat: :

- an alphanumeric string,
-~ a match—-al (wildcard) symbol, “#",
- any of the above folowed by "..."

Examples are :

{help misc func) Prints out the description of
the function ‘func’® from
category miscellaneous.

(help :Dnstru:tdrs *) will print out the descriptions

of all constructor functions -
functions that returns lists,

e,

-” - - -“

S—expressions, attribute-lists,
from their arguments.

Prints out the names of all
input output functions.

(help input_output ...}

(help * fc—average) Prints out the description of
function fc—avarage, looking

under all categories.

thelp 777) Prints out the names of all
categories without help
informatiaon. S

{(help *...) Prints out the entire help

document.

In additiuh, the Clisp help facility follows the
identical control/display format as the VMSE Help facility.

User can access hierarchically structwed help information

selecting them +from the list of topics on which additional
information is available. Frompts such as @ ‘Topics?® and
‘Subtopc?’ guide the process, as in the VMS Help facility.
S.1.2 Using ClLisp on VAX/VUMS

CLisp interpreter may be accessed by entering the
following sequence to a VMS prompt:

¥ clisp

Clisp: B Enter Lisp functions ...
Typically, one or more of the
following functions are entered
at the beginning of a Clisp
sessS1ion.

Clisp: (load—-file ‘<fil=name>)

Reads in file <{filenamer. File
type must be .LSP.

CLisp: (create—file ‘<filenamelX)

Defines a new file to be created
in the session.

CLigp: (defun <fuction name> ({arguments>)
(<function definition> . . .

Defines a new function. More

or

-

L, —.
Ul UE Il IBE IR Em e

.

It

»

-

definitions or executions of a
function follow

CLisp: (help <topic?)
Frints out information on the
use of CLisp in gensral and on
~all of its functions.

CLisp: {(exit) Terminates a session.

End CLisp Run

dd-mmm—vyyyy hh:mm:ss.xx Date and time of termination
CPU Time (seconds) = 12.32 and system statistics.
Fagefaults = 931

Garbage Collections = &
End CLisp run '
F Back to VMS.

S.1.F CLisp program example

The well—-known monkey and banana problem is chosen to
demonstrate CLisp in ptroblem solving.

At the beginning, a monkey, a table, and a banana all
are located separately in any of the three rooms, room 1, 2,
or 3. The banana is hung from the ceiling and monky may move
the table from ay other room to reach at it. The problem is
to write a program that predicts the monkey’s movement.

The following rules apply:

~ If the monkey, the banana, and the table are all in
the same room, the monkey will reach out and eat
the banana

— If the monkay and the banana is in the same room,
but the table is in another room, the monkey goes to
that room to get the table. Then the above rule
applies.

- If the monkey, the banana, and the table are all in
different room (the initial condition), the monkey
first goes to the room where the table is. Then the
above rule applies.

- U IR = EE W

SR UG BN D BN

Using these rules, a program shown below is written in
CLisp:

Clisp: (print-file ?monkey)

USER$DISK1: [AIBYSE. SSTIMONHKEY. LSF & modified: 7-JAN-1985 @8:55:134. 44

cmﬁtewts:

monkey—-and—banana
rew-—world

place

_/asSs0C

get—-barmana

morkey-—and-—barnarna t modified: E-JAN-1385 16:22:24.49
(lambda (L)
(cond
((equal (place L 'barana) (place L *monkey))
(cond

((equal (place L ?table) (place L Ymorkey))
(cons (list "monkey *eats Ybarama) wmil))
(t (cons (list Ymornkey
moves
(place L "monkey)
Tho
(place L 7table)
? and
' brivgs
*table
T Frazam
(place L "table)
*tao
(place L "monkey))
(monkey—and—barnana (new—world L
'table
(place L 'monkey)))
Y2)
(t (cons (list ?morikey
' maves
¥ fram
(place L ?*mornkey)
Tt
(place L ?'baranal)-
{monkey—and-banara (new-world L
Y mornikey
(place L "barnanal)l)))i))

riew—waor ld mxdifieds: E-~JAN-1385 16:82:E4. 6

(lambda (L X Y)
(covmd ((mull L)Y wmil)
- = - {({equal (caar L) X) (coms (list (caar L) Y) (edr LY
(t (coms (car L) (rnew—world (edr L)Y X Y)))))

place modified: E-JAN~1985 1&:22:124. 65

(lambda (L X)
(car (assoc X L))

assoe ' medified: E-JAN-1985 1G6:E8:54.64

(lambda (X L)
(cond ((equal X (caar L)) (edar L)) (t (asscoe X (edr LY

get—-barnana moadified: 7-JAN—-13985 0B:55:34.87

{lambda (L) .
(mape (momkey—and-banana L)
' {lambda (Z)
(terpri)
(terpri)
(print Z3))
(terpri)
(terpri)
(terpril)

("USER$DISK1 s LAISYSE. SSTIMONKEY,. LSF3&")

S—0

Tem— - — :
E IS EE B =a

P
-

. i

Three sets of initial conditions shéwn in

are chosen to test the program.

;—;nam 1 ; room 2
" :
; (monkey) ; {banana)
; 1
b U
; (table)
; room 3
Case 1
E room 1 : room 2
; 1
; {monkey) % {(table?
g
b e b e
; (banana)
; room 3
o Case 2
; room 1 ; room 2
')
(table) (banana)
: ;
AR f————
t
H (monkey)
; room 3
Case 3

Figure S.1

At AU B T I T

5-0-—-—-{‘----!

Figure

S.

Monkey and banana problem initial conditions

1

The results of the three runs are shown below:

CLisp: (get—baﬁaha ! ({monkey voomn—1) (banana room—2) (table vroom—3)))
(morikey moves from voomn-1 to room-2)

(morikey moves voom—2 to room—3 and brings table from rooo—3 to room—2)
(momkey eats banana)l

nil

CLisp: (get-banana ?* { (monkey room—1) (table room—2) (banama room—3)))
(mormkey maves From room—1 to room—3)

(mornkey moves room—3 to room—2 and brings table from room—2 to room—-3)
(monkey eats barnana)

nil

ClLisp: {(get—barana ? ({(table room—1) (banana roon—32) (monkey woom—3)))
(morkey moves from voom—3 to room—2)

(monkey moves room=2 to room—1 and brings table from room-1 o room-2
(monkey eats barnana)

nil

CLisp: (exit)

S5.2 0OPSS
Se2.1 Features of 0OFSS

OFSsS is a Production Language developed at
Carnegie-Mellan University (CMU) by John McDermott and.
Charles Forgy. The term production is used in Cognitive

Science, and is synonym of ‘rule’ or ‘rule—-based’. It is
specifically designed for building expert systems based on
the theoretical study by Allan Newell and Hubert Simon of
CMu.

OFSS may be considered a Fortran of - Al languages in
its practicality and ease of use. One can write expert
systems in Fortran, albeit with a great difficulty. The major
difference between writing expert system in Fortran (Pascal,
Bliss, or C, for that matter) and in 0OFSS is that in Fortran,
the programmer, acting as an expert or expert’s interpreter
must code the intelligence in the program as a series of
instiructions fixed and executed the way it was written. In
OFSS, the intelligence lies mostly in the knaowledge that is
captured and stored separately, and completely detached from
the control structure. This form of processing intelligence
is much closer to (what we know of) the model of human
intelligence.

OFSS has a working memory (WM) filled with working
memory elements. The WM is often related to the human short
term memory. It has productions which are if-then rules of
the Fform IF Ci...Cn THEN Al...Am, where Cl...Cn i=s a list of
conditional elements and Al...Am a list of actions. Ci...Cn
is called the Left Hand Side (LHS) of the production and
Al...Am the Right Hand Side (RHS).

The conditional elements of the production (synonym of
rule’ are compared against the WM elements. If +they
simul taneously match some constellation, then the actions can
be performed. The set of productions whose conditional
elements .are satisfied is called the conflict set. It is
called so because only one of them can be chosen for
execution at a time. A conflict resolution strategy, which is
modifiable, is used to select the production to run next from
the conflict set. Running the production m=ans performing
actions specified by its RHS. Froductions can be removed from
and added to the conflict set due to actions modifying the
WM. The entire set of coded productions is stored in a
knowledge base, which is analogous to the long term memary in
the model of human thought process.

The default conflict resolution strategy of 0OFSE is

described below:

1. Avoid simple infinite 1loops by never running a
production on the identical constellation of the WM
elements.

bk

. Give preference for productions that match more
recently defined WM zlements.

A4
L]

Give preference for productions with longer LHSs that
match WM elements of the same age. ‘

4. Randomly pick a production from the set that survive
condition 4.

An action on the RHS of a production can be to call a
LISF function to:

— create new WM elements
- interrogate knowledge bases

— perform specialized input or output functions for
user inferface '

WM elements can have status "unasked”, "T user", "nil
user”, or "T PN" or "nil PN" where "user" means the user gave
this information and PN means the element was modified
directly by a production and FN is its name.

Another function allows 1list represantations of
slightly modified Fortran format statements to be printed out
at the terminal.

Special WM elements may have to be created to enforce
sequentiality if a number of if-then statements must be
executed in a particular order. The extra elements added +o
the appropriate RHS and LHS are called control slements
because they encode the state of the production system rather
than actually representing the description of the problem or
solution.

Looping is also implemented using control elements. I
productions can be used for this:

—one to initialize the loop by creating a control
element

—another to perform the looping function

|
{
|
[
|

ll

]

-a final one to terminate the loop and remove the
control elament

A double loop is implemented with a '"same—-name" loop
to avoid having to introduce new names when updating fields.
Both the "loop trick® and the "conditional sequencing trick™
are used to do this.

A menu loop is implemented where the user is shown =
menu and can choose which item he would like to see next. The
user can continue to get information until he types the item
that stops the loop.

The syntax of a production (rule}) is of the form:

{p rule-name
(function 1)

—

(function 2)
(function 3
)

A
~

This would read:

Rule-~name is the name of the production. If function
1 ig true then do function 2 and function 3.

Any explanation, user dependent or not, must be
specially coded into an OFSS based expert system. The
standard OFSZ debugging aid is to run the system and watch
which productions run and what changes in the WM. No good
explanation facility exists for OFGS.

There is an Eécape hatech in OFSS which allows =
production to call LISP functions. This allows databases of
knowledge to be addressed without filling up WM.

5.2.2 Using OFSS on VAX/VMS
Follow th steps described in Section 3.2.2 and obtain

the 88T Tutorial software menu. Select OFSS by entering

=> (OFS83)
Efasl sstFlib:ivpsZ.ol
[fas]l sst¥Flib:opsSe.ol

&- 10

Leaving Workspace: background
In Workspace: opsS

Leaving Workspace: opsS

In Workspace: background

TYPE (ops—hanoi) to load Tower of Hanoi in OPSS
(ops—robotl) to load Simple Robot in OFSS
(ops—tobotl) to load Robot Froblem #2 in OPSS

nil

—> (load “<0OFSS application file specification})

User will requitre suffucuent
priviledge to maintain a file
on the system disk where OFSS
resides. Inteiractive sessions
do not reguire the load. -

Leaving Workspace: background
In Workspace: <{user defined waorkspacs>

*rrule—1 defined.
*¥rule—=2 defined.

#*rule—-xx defined.

“workspace name> Loaded
User defined productions are
read in.

Type (run) to run <problem namelX

A file—based OPSS session
begins.

The session ends and exit
brings the user back to the
* VMS environment.

5.2.3 Example 0OPSS program

The following is an example OPS program which works as
a descrimination expert. Similar to the descrimination expert

,l discussed in Section 3.3.3, it asks a number of gquestions and

l" determines what the user has in mind. The mini-expert system

{) identifies provinces of Canada. The results of a couple of
I runs are shown following the program listings.

provivnce. ops OFSS implementaticorm of PROVINCE
Giver hints the program will guess the chosen province.

ELERCT |

workspace—-push ?aps—province)

Create the gquesticorm working memocry and initiate processing.

This program will be dome first after start is added to the working
memory and the comments on haw to run PROVINCE is ocutput. Start is
deleted from working memory here as it will no longer be needed in
this rur. The gquestiorns are all added as elements to the working
mencry with status unasked.

o~ KE SER WXE A8 a2z IR E X6 AR

definepr setup—-p

(start)
1

(remove 1)

- {make oeceans unasked "Is it rext to the Atlantic or Pacifiec ccean” "72')
1I (make loyalist urnasked "Was it settled by laoyalists" "7?7'")

{make great_lakes unasked "Does it comtain any great lakes" "7%)

{make island uwnasked "Is it anm island" "?2'")

(make potatoes unasked "Are potatoes a major crop® "2')

{make maritimes unasked "Is it part of the Maritimes" "?2")

{(make atlarntic urnasked "Is it part of the Atlantic provirnces" "2")
{make bilivigual unasked "Is it bilingual" "2") :

(make french unasked "Is its official language French" ")

(make erpglish unasked "Is its official lampguage Enolish® “?')
(make prairies unasked "Is it part of the Prairies" "?")

{(make oil unasked "Does it contain the tar sands" "7?")

(rmake rockies unasked "Does it contain part of the Rocky Mountains" "?2Y)
{make north unasked "Is it morth of the tree line” "2%)

{make trees unasked "Are trees plentiful"” "2")

{make east unasked "Is it easterly” "2")

Sequernicing and Choosivg of Appropriate Questions

g s X8

If the anmswer to the very first question which is cceans is true then
erwise prairies is asked.
The rnext—gquestions are all added as elements to the workivng memory.

(make rext—guestion cldgquestiorn cldarnswer rewguestion)

If rext—gquestions are riot used then the guestions are asked in the
crder of last input (most eurrvent). That would be east first.

A8 AES S AN ad

& - 12

(make
(make
{(make
{make
(make
(maka
(make
(make
(make
(make
(make
(make
(make
(make
(make
(make
(make
(make
(make
(make
(make
(write
(make
)

rnext—qguestion
rext—questicon
rext—question
next—guest ion
next—qguestion
next—question
rnext—guestion
next—guestion
rext—question
rext—guestion
rext—qguestion
rext—guestiomnm
riext—question
next—guestion
rext—guestion
next-guestion
rext—qgquestion
rext—qguestion
rext—guestion
rnext—question
rnext—question

(crlf)
gmal restart)

"Arnswer questions with yes, no,

coceans yes atlantic)
oceans nd prairies)
prairies yes rockies)
prairies rm great_lakes)
great_lakes yes english)
agreat_lakes ro french)
atlantic yes island)
atlantic no vrockies)
rockies yes oil)

rockies v trees)

trees yes french)

trees o marth)

rorth yes east)

island yes maritimes)
islarnd wo maritimes)
maritimes yes bilingual)
maritimes vo english)
biliwgual yes loyalist)
bilirngual rno english)
english yes potatoces)
french no trees)

o stop

(er1F))

is cho

N1 ECT TR VT aRY T

"
y

SEeYl.

(question_name status senmtence punctuation)

(defirepr guestiorn—asker

(g=al
{(ques
((pro
{(prov
—-—)
(writ
(remo
(rodi
)

proavince)
tion {prop))
p) unasked {(questicr) <{markd)
ince)
e {questicr) (mark))
ve &)
fy 3 2 (accept))

In the production question—asker the goal is ta find out which province
The variable prop signifies the guestion to be asked.
Thus the guestion has the form:

et -— —— —_—

If the user inputs stop then the program terminates early.

=
%
"
ki
e
"
(

defivrepr bail-out

(goal
({pro
-—>

(wrvite (orlf)

proavince)
p> stop)

{(crlf)

"Bye " (crlf)) -

(modify 1 2 restart)

(halt
)

)

||

a8 &R .38 A8 .XE SSZ .an AN

-
K

Here some error checking is dome on user iwmput.

The braces {F are used to indicate that a value in a working memory _
element must match several thirngs simultaneously. The predicate () means
that it will match anythinmg that is wmot equal to the current bivding of
what is after it. All the known values are checked for. The bad answer
is thrown away. The status of the guestion just asked is set back to
being unasked. The guestion is added to worbking memory agair.

(defirnepr bad-answer

+32 .mE BB X3 -E% .am 38 5% A8 .xp 23

a8 .xs

=
4

(goal province)
({¢) goal O provimee O gquestion O next-guestion {(prop)?
{£¢) unasked O yes & rno O stopk)

——>

{write (orlf) “"Sorry, but the only legal arnswers are:”

{crlf) "ves,wnz, or stop.")

{maodify & & unashked)

(make questiom (propd)

)

This sequerce rule implements random guestiom ordering in the system.
Without the rext—guestion mechanism s2t up we wounlid check if the
guestion-rname was urnasked and put the questicwn-—wname in the variable prop.
It would be on the LHS and have the form:

(€{ ¢ pzal & province & gquestion (prapd} unasked)

Then on the RHS the guestion would be added to working memory:

(make aquestion (prop?) ~

This production sequence-rule gets the value for the rnext-guestiocn which
nas the form:

{(rnext—-question gquestion answer nextguestion)

it asks the guestion and if it succeeds with the correct answer then it
adds the wnextgquestion to working memory as the current gquesticor.

{(defirepr sequence-—rule

.
4
.
3
.
3
3
.
3
(

(next—guestion (propd (answer) mext-prood)
{({propd {(answery)

-

(maka questicorn (mext—-prop?)

) - .

These productions specify the 1@ pravinces and the 2 territories.
Wher the if-part of the rule succeeds then the ther—part will
add the element of provivce to the the working memory.

— s oo vove -— oo e _— —— - . v e ot o o oS " o v o b o S oo s Sereh Srend S S Mo Bt Srtay i R Rt et G St R

definepr its_briticshcolumbia

(g=al province)

(coeans yas)

(atlantic ra)

(rockies yes)

-

(make praviwmece britishcolumbia) .
) .

& -4

an

{definepr its_alberta
{(goal provinee)
(ooceans o)
(prairies yes)
(=il ye=s)
(make praovince alberta)
)]

{defirepr its_saskatchewan
(goal provines)
(zceans o)
(prairies yes)
(rackies rex
(trees no)
-
(make province saskatchewarn)
)

-z

(definepr its_manitoba
{gmal provinces)
{ooeans o)
(prairies yes)
(rockies o)
(trees yes)
-=2
(make province manitobal
)

H

(definepr its_ontaric
(goal province)
(oreat_lakes yes)
(english yes?
—-=)
(make province ontarico)
)

1

(definepr its_guebec
{gzal province)
(Frernch yes) -
(ooeans yes)
{at lantic wnao)
-3
(maka province guebec)
)

(definepr its_rewbrunswick
{goal province)
(bilingual yes)
(loyalist yes)
(maritimes yes)

e TERY e e e e e e .. .
(make province rnewbrunswick)
}

(i
| |
! |
| |
|
[

H
{(definepr its_rovascotia
(gmal pravince)
(maritimes yes)
(bilirmgual ru
(island rz)
-
(make praovince rnovascootia)l
)

"
(definepr its_princeedwardisland

(goal proavince)
(maritimes yes)
(igland yes)
{(potatoes yes)
—=>
(make provimca prirvnceedwardisland)
)
(definepr its_rewfouwrdland
(gmal provinee)
(maritimes »no)
(atlarmtic yes)
(island yes)
(potatoes no)
(moeans yes)
——}
(make province wnewfoundland)
)

k]
(definepr its_yukown
(goal province)
{(rizrth yes)
(2ast yes)
(trees i)
-2
(make province yukon)
)
3 .
(defirnepr its_morthwestterritories
(gmal province)
(rizrth yes)
(east no)
(trees o)
——>
(make pravince rorthwestterritories)

9 .
5 This prints out the answer.

: (remove 2) deletes the valuwe for province from working memnsry i an
;3 attempt to start cleaning it up for a rnew rum. Its value stays in (x?
E
§

~For—the-write-statement—regardless of-the. Wworking memory.-—
(halt) is reeded t= avoid a loap onm the final decision.

{ |

|
| |
|
||
L
|

i

L
|
|
(]
|
||
il

(defivrenr all—-over

"
1
»
k]
"
4
»
]
P
"

s

ST R [L]

{goal provinee)
(pravince (X))

—=>

(razdify 1 "2 restart)
(ramove &5

(write (orlf) "—————e (o1)
(crlf) The provivece is (x> "!'" (orif))
(thalt)
)
The RHS of this production will be downe whew the goal is restart anc
the user’s irput matches an acceptables value. It changes the status of

the current guestiowm to being wrashked.

definepr cleavn—up—rule

{(goal restart)

{({prop) {{yes rno staopdld)’
-3

{(modify 2 2 unasked)

{make guestion cceans) adds the element that the guestion is cceans to
working memory thereby causing cceans to become the very firvst guestion
to be asked. All subseguent guestions are chosern o the basis of the
answer to occeans.

e St T s st st Ett res Ete mree e St b S gyt T Frv ey S48 St M Ents M by 406 Sest Sest M PR s St Bt Bt eSS et ST PR R R PR Moo PRI hd R St PR S ESS M S A e S e Mt firt) S S M St Bt S Seimh SAe Bt wemon Aom bt i hatt tharn

(definepr restart

-
1
»
k]
-
"

“
7

(goal restart)

({prop} {{yes no stapd?)
—=>

(madify 1 2 province)
(make guestiow oceans)

)

start is added as an element to the workivng memory. It is done fivst
because it is umcowditioral.

(make start)

k]
-
%
-
9
-
9

=
k]

These alsw are unconditional outputs so they are donme before the other
pragrams start. I there was rno halt then (ruwm 34) would run bhe New
Erunswick case iw that many steps.

{(privic "OPS—-FROVINCE Loaded™)
{terpr) .

(prive "Choose a province of Carnada and I will try to guess which one™)
(terpr)

(princ "Type (run) to run PROVINCE™)

{(terpr)

OFS—FROVINCE Loaded

Choose a province of Camada and I will try to guess which one
Type (run) to run FROVINCE

t

=¥ {run)d

1. setup-p 1

Answer guestions with yes,nz, oo~ staop

restart 40 .
guesticon—asker 42 43 3 Is it rnext to the Atlantic or Pacific ccean ??yes
sequence—rule 19 46 '
guestion—asker 42 47 9 Is it part of the Atlantic provivnces ?ves
sequence-rule 25 D@
guestion—asker 42 51
. sequence-rule 32 54
« questicon—asker 42 35 8 Is it part of the Maritimes %yes
segquence-rule 34 T8
il. guestion—asker 42 59 1@ Is it bilingual ?rna
1. sequence-rule 37 &2 .
13. auestiarn—asker 42 &3 12 Is its official language Ernglish ?yes
14, seguernce-rule 38 66

Pre - otatoes o W'\m.io\" Crop ?yes
16€. its_prirceedwardisland 42 58 54 7@
17. all—-over 42 71

ik

Is it an island ?ves

U0~ m ok

o
=
.

the province is prirnceedwardisland !

end —— explicit halt

22 productions (1793 //7 237 nodes)

17 fivirngs (74 vrhs actioms)

36 mean working memory size (39 maxinam)

I mean conflict set size (1 maximum)

78 mearn token memory size (84 maximum)
riil .
-» (exit)
Before EXITing: Please tell me where fto save the

' following workspaces. If you type
MIL, I will throw it away.

Where should I save workspace: aps—-province ?nil

& - 1%

{ |

iy Ry

,." e i T AR,

$_lisp.. o o . .
S4c? bytes read into S2c@@ to S77FF
Frarnzs Lisp, Opus 34

SMART SYSTEMS TECHNOLOGY
Artificial Intelligence Course
A. 1. Course Software Selections
Type (asptp) for ASFTRP deductive retriever
(cpsd) Ffoor OFST producticon system
{sans) for SANS assaociative rnetwork system
{parser) for an ATN rnatural language parser
{lcadloop) for examples of control structures
=) (oped)
[fasl sst$lib:vpsd.od
[fasl sst$libiopsSe. ol

Leaving Workepace: background
In Workspace: opsS

l.eavirng Workspace: opsS

In Workspace: backpround

TYRE {(mps—hawnci) to load Tower of Hanoi ivn ORSS
{cps—robotl) to load Simple Robot in OFRBS
(ops—vobot®) to load Robot Problem #2 in OFSS

il

-) (load ?porovince. ops)

! eavirng Workspace: backoround

In Workspace: ocps—orovince

*getup—p defired.

®*quest ion—asiker defined.

*¥bail-cut defined.

#bhad-arswer defired.

¥*seauence-rule defined.

#itg_britisheolumbia defined.

#its_alberta defined.

#it 5 _saskatchewan defined.

*its_manitoba defined.

#ite_onmtario defined.

*its_guebec defined. -

#its_newbrunswick defired.

*#its_novascotia defined.

#its_princeedwardisland defined.

*¥its_mewfoundland defived.

#its_yukon defined.

*its_rorthwestterritories defined.

¥all=-aover defined.

¥clean—-up—rule defined.

rrestart defined.

OFS~RPROVINCE Loaded

Choose a provimee of Canada and I will try to guess which

Type (rurm) to run PROVINCE ‘

t

& =19

e

L
i
!
|
! |
|
| |
| |
|

,
T N A

& . =

R .

->
1-
Arie

S
= L]

n

o e QI @D~ MU D

0

the

end
=l
17
3G
b
73

vil

-

Bef

Whe

(v
setup—p 1
wer questiorns with yes,no, or stop

restart 412

question—asker 42 43 3 Is it rnext to the Atlamtic or

sequence-rule =@ 46

Pacific

guesticor—asker 42 47 13 Is it part of the Prairies ?rno

sequence-rule =2 S@
questicr—asker 42 51 5 Does it contain any preat
sequence-rule 24 54

lakes ?rno

questicn—asker 42 55 11 Is its official larguage Frernch 7rno

seguence-rule 39 S8

auesticn—asker 42 59 17 Are trees plentiful 2no
secuerce~rule 32 62
question—asker 42 €3 16 I
sequence—-rule 31 6&
guestion—asker 42 67 18 Is it easterly %Pyes
ite_yukorm 42 €8 7@ 62

all—aver 42 71

it north of the tree

]

pravince is yukow !

—— explicit nalt

productions (179 // 297 nodes)

firivos (74 rhs actions)

mearn working memory size (32 maximum)
mean conflict set size (1 maximum)

mearn token memory size (81 maximun)
{exit)
ore EXITing: FPlease tell me where to save the

following workspaces. IT you type
NIL, I will throw it away.
re should I save workspace: ocps—-province ?nil

livme

Tves

cooean

EY

~

" T e, s, T et ~

et pm—

&. Natural Language Frocessing
4.1 The S85T ATN tutor
Gd.1.1 Features of the 85T ATN tutor

Thea SsT ATN tutor 1is a software package that
demonstrates the principle of the Augumented Transition
Metwork grammar, first proposed by William Woods [Woods 7013
then of Bolt Beranek and Newman Inc. This method of parsing
natural language inputs is still a mainstay of the parsing
methods used widely in today ‘s Natural Language (NL) systems.
In order to benefit from the tutorial software, the user must
have a basic understanding of the ATN grammar and how it is
used in a typical ML processing system. Chapter 2 of [Winston
84al] and also Chapter ? of [Rich 831 constitute an adeqgquate
introduction to the theory of parsing, in particular, that of
ATM. To those with the basic grasp, the package will act as
an effective tool +to enhance the understanding of the NL
processing methodology.

The parser basically takes in input sentences and
parses them. The user will learn if the input was
successfully parsed or not. In cazse of a failure, the user is
naotified of how the process failed. A successful completion
creates a parse tree in memory, which is displayed at the end

‘of the parsing. Unlike actual NL systems which, for sxample,

frant-end & database, thisz tutorial system does not have a
code genetrator for a specific application. This means that,
while the parser parses input strings, it doezs not convert
the csemantics of the input sentence into an actual command
saquencea. This is because there is no gspecific application
for which the parser was designed. Instead, it retuwrns a
parsed tree in & predicate form.

“John bit the dog" S (syntactic tree)
{ VAN
H / \
v Np Vo
Syntactic = !/ /S N\
parser / / \
John verb Nd -
/ FAREAN =x» Semantic
/ /! N\ Farser
bit the dog H
v

(bit john dog?

Figure 6.1 Two phases of ATN parsing

The parsing is performed in two steps: tha syntactic
and the semantic parsing. The first parser parses an input
sentence and developes a syntactic tree. The second phase
takes in the syntactic tree and creates a predicate calculus
representation of the input sentence. For example, an input
sentence "John bit the dog" will turn into (bit John dog)
atter the two phases of parsing. This process is shown in
Figure &.1.

In addition to parsing input sentences, and observing
how parsing is done, the user can also modify the structure
of the network (ie., ATN}), the contents of the dictionary,
the description of the grammar, and the definition of
semantics, all part of the parser. Any such alteration
affects the way the parsing is conducted. There are a small
numbar of commands for carying ocut such manipulations. See
S8T ATMN Manual (Appendix *&) Ffor further detaile of how to
conduct these operations. Some of these operations are guite
involved. ‘

6.1.2 Using the ATN tutor on VAX/VMS

In porder to create an environment for the ATN tutor,
execute the steps shown in Section 3.2.2, up to the point
where the tutorial software menu is displayed. Select ATN by
entering '

-+ (parser)
A succession of workspace
management commands are
executed. to load necessary
modules.

Leaving Workspace: background
In Workspace: parser

L.eaving Werkspace: parser
In Workspace: background

The syntactic parser is 1paded.

Leaving Workspace: background
In Workspace: sematn

Leaving Workspace: sematn
In Workspace: background
The semantic parser follows.

Leaving Workspace: background
In Workspace: grammar

Leaving Workspace: grammar

In Workspace: background
The grammar and dictionary are
loaded.

Type (lsemantics) to load semantics

nil
Semantic parser is not locaded
unless specified. See Section
6.1.3.3 for running ATN with
the semantic parser.

The ATN parser is now ready to
process requests.

—» (atn “(the boy saw me))

Entering a request for parsing
a simple sentence. See Section
6.1.3.1 for the result af this
request.

~>» (words ‘<classx)
List all words in the
dictionary that belong to
syntactic class <class>.

—>» (all-words? :
This command displays all the
words the parser knows. Outputs
from this and other display
commands are shown in Section

6.1.3.2. Also shown there is
how to modify the dictionary.
The size of the present

dictionary is very limited.

There is a set of commands in the S5T &TN for defining
the ATN itself, its dictionary, and semantic meanings +to be
attached to the nodes of the ATN. These commands are
described below. The details of the commands are not covered
in this document but described in the SST ATN Manual.

—» (defnet ‘<network node specification?)

Defines a node of ATN. An ATHN

¥

may be constructed by a set of
defnet commands.

-> (defword ‘<word specification>)

Defines a mew word in the
dictionary.

.,

—» (defsem ‘<description of semanticsX)
Defines semantics to be
attached to a sentence or a
noun phrase.
6.1.3 Example sessions using the ATM tutor
The parser may be used for parsing a sentence, or for
directly modifying its dictionary, grammer, or semantics and
examining the effects of modifications 1in subsequent
parsings. Both methods of using the parser are described
below.

6.1.3.1 Parsing a simple sentence

—>» (atn ’‘'(The boy saw me))
Trving to parse a simple sentece:

"The boy saw me".
All the words in this sentence
are known to be in the
dictionary.
Farsing {(the boy saw me) as np
ATN tries to parse the sentence
as a noun phrase, without
success.
Parsing (the boy saw me) as vg
Then as a verb group, in vain.
Farsing (the boy saw me) as np-head
As a noun phase at the

beginning of & sentence
(np—head).

”

3> the (det in np-head)

>> boy {(noun in np-head)
Parsing (boy saw me) as ap¥
Found np—head (the bay)
Left to parse: (saw me)
Farsing (saw me) as ppf

Found np (the boy)

Assuming that ‘the’ is a
determinant of the np-head.

Assuming ‘boy’ as a noun in the
np—head.

Trying to see if (boy saw ame)
as an adjective phrase, in vain

NMow ATN is sure "the boy’ is a
np—head.

This is what’‘'s left to be
accounted for.

FParsing it as a prepositional
phrase, in vain.

Now it thinks “the boy’ is &
noun phrase.

Left to parse: {(saw me) Oops (s np) (saw me)

Farsing (saw me) as vg

>» saw (verb in vg)

Found vg (saw)

Left to parse: (me)
Disagreement compl nil t
Disagreement trans t nil Oops
Farsing (me) as np

Parsing (me) as np-—head

>> me (pronoun in np-—head)

Found np-head (me)
Left to parse: nil

Found np (me)

Checking if ‘saw me’ can be a
verb group.

Then, saw must be a verb -—
ves, the dictionary says so.

Only ‘saw’ accepted as
belonging to a verb group.

One more word to go.

{(s) {(me)
‘me’ is a valid noun phrase.
Can ‘me’ be another np-head?
‘me’ surely can be a pronoun in
an np-—head.

.

Lets assume "'me” is an np-head.
Then there is none left to
support the np-head assumption.

‘me’ must be Just a noun
phrase.

! |
! |
|

Left to parse: nil Oops (s np) nil
Nothing more to parse.

Parsing nil as pp# ATN is checking if nil can be
interpreted as a prepositional
phrase. No. :

Found 5 (the boy saw me) Mow the entire sentence (s) is
parsed.

At this point the parser displays the syntactic parse
tree. A terse description of the format of the parse tree is
given in +the ATN Manual. Readers may require a good
undarstanding of ATN parsers to fully understand the trese.
The parser also outputs the summary of the parse following
the display of the tres.

Result:
(s nil
((tns past) (stype decl) (numbers (1 3)))
(subj nil {({(numpers (1 3))) (np—head nil {((numpers (1 3)))the boy))
{vg nil
({compl nil)
(tns past) |
(vihumpers (or (1 1) (2 1) (1 2) (2 2) (1 3 (2 3)))
{(trans &) |
saw)
(obj nil ((numpers (1 1))) {(np—head nil {((numpers (1 1))) me)))

6.1.3.2 Listing the dictionary

Words in the dictionary are defined with its class
(syntactic role of the word) and other attributes using the
defword command (See the 55T ATM Manual for the detailed
description of the command). As mentioned in Section &.1.2
above, there are commands to display and manipulate the
cantents of the dictionary. They are:

(all-words) " Lists all words in the
: dictionary

{words ‘<class?) Lists words that belong to
Kclass>r. Classes are: noun,
pronoun, verb, adj, det, prep,
relpro(relative pronoun).

These display commands are tested belaw. Note the
results of exscuting the commands do not show the contents of

"

;e

|

-

the dictionary themselves but only its entries. The
dictionary contents itself are more elaborate, as shown in
the manual.

= {(words ‘noun) . ;
(block—n blocks—n boy boys fritter—-n girl park sheep stand-n
stands—n telescope unknown—noun)

<noun’ >—-n or <noun’X-noun is a
notation to mark the word to
be a noun, while it can belong
to different classes.

—» {(words ‘pronoun)
(he her him i me she them they us we you)

—» {words °‘verb) ‘
{be block—-v blocked blocks—v fritter—-v saw see sees sleep
sleeps slept stand-v stands—-v stood unknown—verb)

nil <verbX¥-v or {verbi -verb
distinguishes them as verb,
while the same word may belong
to other classes. The nil 1in
the output has no significance.

-*» (words ‘adj)
{angi-y big colorless green happy heavy red unknown—adli)

nil
- (words ‘det)
{a every some the)

nil
—» (words- ‘prep)
{(by for in of on over to under with)

nil
=¥ {(words ‘relprao)
(that)

Finally, all the entries of the dictionary is listed
by {(all-words) command:

->» {all-words)

(unknown—-noun unknown-verb a i block angry unknown—word heavy
happy fritten—-n fritten—v green colorless every fritter be he
by sheep me in of on blocks we to us sleep slept under stand

stood blocks—-n blocks-v girl boys john park sees that them
block-n they block-v over some with big her boy him blocked
for red see she saw the stand—-n stand-v sleeps stand-n vou
stands—v telescope stands unknown—adj))

The defword command may be used to add to the
vocabulary, as shown in the command sequence below:
—% (words ‘pronoun)
List all pronouns that are in
the dictionary.

(he her him i me she them they us we you)

nil Notice a rather limitad
vocabulary of pronouns.

~> {(daefword ‘(my (class pronocun)))

Defining a new pronoun.

my Done.
~* (words ‘pronoun? Confirming the addition to the
dictionary.

{he her him i me my she them they usiwe yqu)

Entered, alphabetically sorted.

Another way of defining a word in the dictiocnary is by
running the parser with a sentence which includes a undefined
word. See the following exagmple:

{atn " (Theé boy saw a kangaroco))
Farsing ...

I DON'T KNOW WORD: kangaroco

Retype it

or type T and I will define it as noun
or type NIL and I will punt. >T

A new noun is defined during a
parse. The word will remain in
the dictiocnary beyond this
parse.

ﬁ

— e,

”~

-

Found s (the boy saw a kangaroo)

And the parsing completed Oi.

&.1.3.3 Farsing with the semantic parser

The ATN parser may be run as a combined syntactic and

semantic parser. This 1is accomplished by executing the
(lsemantics) command and then issuing the (atn ‘<sentenceX)
command. It lpads three files (sst¥libssem.1l,

sst¥lib:besem.l, and sst¥lib:gosem.l) which define semantics
for the ATN as defined in the present tutor and by the
attached dictionary. The folliowing is the summary of a run
with both the syntactic and the semantic parser:

(lsemantics)
Loading semantic parser and
definitions.

Leaving Workspace: Background
In Workspace: sem
Entering workspace for
semantics.
Moving: unknown—nown from Workspace: grammar to Workspace: sem
Moving: unknown-verb from Workspace: grammar to Workspace: sem

Moving: the from Workspace: grammar to Workspace: sem

Moving: a from Workspace: grammar to Workspace: sem

Moving: telescope from Workspace: grammar to Workspace: sems

Moving: park from Workspace: grammar to Workspace: sems

Words in the dictionary are
redefined with semantics.
Note there are two workspaces
that deals with semantics.

(atn " (The boy saw me))
FParsing the same sentense.

Parsing (the boy saw me) as np

Found np (the baoy?
5OT: {person age young sex male ref def) Score = 0

fis the semantics for ‘boy’ was
defined in the network, the
semantic parser cuts into the
parsing sequence and providas a
semantic interpretation of
‘boy’. The samantics normally
affects the further parsing.

Left to parse: (saw me) Oops (s np) (saw me)

- The syntactic parsing continues

Found s (the boy saw me)
B0T: (do action mtrans instr (do action attend organ eye) to
{(head (¥same actor)) time past) Score = 1000

A8 semantic interpretation of
‘saw’ 1s given.

The parse tree created during the parse is again
displayed at the conclusion of the process. This time it will
have a distinct difference in appearance, representing the
effect of semantic parsing. Compare the tree below with the
one shown in Section 6.1.3.1. Lines that differ from the
syntax only parsing are marked by an asterisk(x).

Result:

(s (do action
mtrans
instr
(do action attend organ eyel
to
(head (#*same actor))
time
past)

((tns past) (stype decl) {(numpers (1 3)))
(subj (person age young sex male ref def)
(numpers (1 3)))

* k% k% % % Kk %

* K

-y

g -]

(vg nil

(np—head nil ((numpers (1 3))) the baoy))

({compl nil)

(tns past)

(viiumpers (or (1 1) (2 1) (1 2) (2 2) 1 Z) (2 3
(trans %)) ' e

Saw)
(obj nil

((numpers (1 1))) (np-head nil ((numpers (1 1)))me)))

)

- N TN .

N om

B
B
[
s

REFERENCES

[Berg 831 _
Berg, Bradley, "SANS Associative MNetwork Tutorial®, Wang
Institute of Graduate Studies, August 83, Revision 1.0.

[Cohen and Feigenbaum 821 : . ~
Cohen, Paul R., and Feigenbaum, Edward A., "The Handbook
of Artificial Intelligence, Volumes 1, 2, & 3", William
taufmann, Inc., Los Altos, California.

LFox 821
Fox, M.S5., "SRL: Schema Representat1un Language"
Technical Report, Robotics Institute, Carnegle-ﬁellan
University, Fittsburg, FA.

fBrachman et al 831 ‘
Brachman, Ronald J., Fikes, Richard E., and lLevesgue,
Hector J., "Krypton: & Functional Approach to kKnowledge
Representation”. In Computer, Vol. 1&6, Npo. 10, October,
1287, 1EEE, pp. &67-73. ’

CHayes 831 . ‘
Hayes, Kenneth C., "S5ANS: Simplifi=sd Associative Network
System". Smart Systems Technology, February 1983.

[Kunz =t al 841
Kunz, John C., Kehler, Thomas P., Williams, Michael D.,
"Application Development Using a Hybrid Al Development
System". In The Al Magazine, Fall 1984 Issue,
American Association for Artificial Intelllgence, PpR-
41-54. :

[lLogicware 841

Logicware Inc., “MPROLOG Manuals", Version 1.4, Augﬁst,
1934.

[Nilsson 801
Nilsson, Nils J., "Principles of Artificial
Intelligence". Tioga Publishing Co., Palo Alto

IMylopoulos et al 831 o
Mylopoulos, John, Shibahara, Tetsutaro, and Tsotsos,
John, "Building kKnowledge-Based Systems: The FSN
Experience". In Computer, Vol. 168, No. 10, October,
1983, IEEE, pp. 83-89. . . ’

-~ .
S O N UE 00 B Gl BN O BN e o e

o

L - ?

[Rich 8Z3
Rich, Elaine, "Artificial Intelligence," McGraw-Hill
Series in Artificial Intelligence, 1983.

[Schubert 7&1
Schubert, L.E., "Extending the expressive power of
semantic networks." Artificial Intelligence, 7, pp.
1463-98. -

[Shibahara et al B3] '
Shibahara, Tetsutaro, et al., "CAA: A Knowledge-Basad
System with Causal Knowledge to Diagnose Rhythm
Disorders in the Heart," Proc. Int’l Joint Conference on
Artificial Intelligence, 1983 (IJCAI-83)

[Stefik BO1 ' ,
Stefik, M., "Planning with Constraints," Report No. 784,
Computer Science Department, Stanford University.

[Tsotsos 811
Tsotsos, John, “Temporal Event Recognition: An
Application to Left Ventricular Performance Evaluation,®
In Proc. Int’l Joint Conference on értificial
Intelligence, 1981 (IJCAI-81)

[Winston B4al
Winston, Patrick Henry, "Artificial Intelligence, Second
Edition," Addison—Wesley Series in Computer Science,
Michael A. Harrison Consulting Editor. Addison-Wesley
Publishing Company, Reading MASS5, Palo Alto, London,
Amsterdam, Don Mills, Sydney, 1984 ‘

[Winston 84b1
Winston, Fatrick Henry, "LISF, Second Edition,"
Addison-Wesley Publishing Company, Reading MASS, Palo
Alto, London, Amsterdam, Don Mills, Sydney, 1784

[Woods 701 .
Woods, William, “Transition Network Grammars for Natural
Language Analysis." CACM, Vol 13, No. 10, October 1970,
Pp- S91-&604.

Hiiin

GOMI, T.
--An experimental expert system

development enVirom_nent: .

DATE DUE

DATE DE RETOUR

LOWE-MARTIN No. 1137

