
An experimental expert system

development environment for the

VAX computer operating under the VMS

operating system

/ by T. Gomi, N. Nakamura

P

91

.C655

à6453

1985

Govemment Gouvernement
of Canada 	du Canada

PREPARED BY: Applied Al Systems, Inc.
P.O. Box 13550
Kanata, Ontario
K2K 1X6

Industrie Canada
Bibliotheaue

Queen Ii

5/85 DATE:

Department of Communications

DOC CONTRACTOR REPORT 	 DOC-CR-SP -85-046

DEPARTMENT OF COMMUNICATIONS - OTTAWA - CANADA

SPACE PROGRAM

TITLE: 	AN EXPERIMENTAL EXPERT SYSTEM DEVELOPMENT ENVIRONEMENT FOR THE VAX
COMPUTER OPERATING UNDER THE VMS OPERATING SYSTEM .

AUTHOR(S):T. Gomi
N. Nakamura

In

Library Que,en

ISSUED BY CONTRACTOR AS REPORT NO: AAIS 84-005
S'ilittE 2 0 1998

DEPARTMENT OF SUPPLY AND SERVICES CONTRACT NO: 06ST.36001-3-4454

DOC SCIENTIFIC AUTHORITY: R.A. Millar

CLASSIFICATION: UNCLASSIFIED

This report presents the views of the author(s). Publication
of this report does not constitute DOC approval of the reports
findings or conclusions. This report is available outside the
department by special arrangement.

An Experimental Expert System Development

NO 	65

MARY - BIBLIOTHWE\

By

Is)

L(6) ")
T. Sàmi

--- •
n• Nakamura

645-.

1111

Environment • or the
-/

VAX Computer operating

under the VMS Operating Systey

1 [;, • .;

.;
Tecfinical Report No. AAIS-84-005

Applied Al Systems, Inc.
P.O. Box 13550
Kanata, Ontario

K2K 1)(6.

Under DSS/DOC contract 06ST.36001-3-4454

Version: 20PEB85

r 1
J.) 0

5"(((.7

CONTENTS

Page

Glossary iii

Acknowledgements

Summary 	 vi

1. Introduction 	 1-1

2. The over-all structure of the expert system
development environment

2.1 Objectives of the environment

2.2 Structure of the environment 	2-4

3. The Logic programming paradigm 	3-1

3.1 MPROLOG 	 7-2
3.1.1 Features of MPROLOG

3.1.2 Using MPROLOG on VAX/VMS 	3-4
3.1.3 Examples of MPROLOG programs 	3-7

3.1.3.1 Predicate to compute length of
a list 	 3-7

3.1.3.2 Family tree problem 	3-9

3.2 ASPTP 	 3-16
3.2.1 Features of ASPTP 	 3-16
3.2.2 Using ASPTP 	 3-16
3.2.3 ASPTP program example 	 7-20

3.3 DUCK 	 3-24
3.3.1 Features of DUCK 	 3-24

' Using DUCK on VAX/VMS 	3-26
3.3.3 Examples of DUCK program

3.3.3.1 A classification expert 	3-27
3.3.3.2 Data pool control 	3-33

4. The Semantic network paradigm 	 4-1

4.1 SANS 	 4-1
4.1.1 Semantic networks and SANS 	4-1
4.1.2 Using SANS on VAX/VMS 	4-3
4.1.3 SANS program example 	 4-4

-1

1.

5-_1
5-1
C. _J .-
5-3

4.2 PSN 	 4-8

4.2.1 Features of PSN 	 4-8

4.2.2 Using PSN on VAX/VMS 	 4-8

4.2.3 PSN program example 	 4-8

5. The production system paradigm

5.1 CLisp
5.1.1 Features of CLisp
5.1.2 Using CLisp on VAX/VMS
5.1.3 CLisp program example

5.2 OPS5 	 5-8

5.2.1 Features of OPS5 	 5-8

5.2.2 Using OPS5 on VAX/VMS 	5-10

5.2.3 Example OPS5 program 	 5-11

6. Natural language processing 	 6-1

6.1 The SST ATM tutor 	 6-1

6.1.1 Features of the SST ATM tutor 	6-1

6.1.2 Using the ATN tutor on VAX/VMS 	6-2

6.1.3 Examples of sessions using the ATM tutor
6-4

6.1.3.1 Parsing a simple sentence 	6-4

6.1.3.2 Listing the dictionary 	6-6

6.1.3.3 Parsing with the semantic parser 6-9

References 	 R-1

GLOSSARY

AASC Advanced Autonomous Spacecraft Computer, a spacecraft
computer system concept developed at CRC (CRC/AASC)

AI 	Artificial Intelligence, a subdiscipline of Computer
Science (Computer Science/AI)

ASPTP Almost as Simple as Possible Theorem Prover, an AI
tutorial theorem prover developed for Smart Systems
Technology by Drew McDermott of Yale University.
(AI/Languages/ASPTP)

ATM 	Augmented Transition Network, a language parsing
methodology proposed by William Woods, then of BBN.
Here, ATM is a tutorial software system developed for
Smart Systems Technology by Drew McDermott of Yale
University designed to teach and explore the basic

concepts of ML parsing.(AI/NL/ATN/"ATN')

CLisp A dialect of LISP, and its language system including
an interpreter developed at the University of
Massachusetts at Amherst (AI/Languages/LISP/CLisp)

CMU 	Carnegie-Mellon University

CRC 	Communications Research Centre, Department of
Communications (DOC/CRC),

DOC 	Department of Communications, Government of Canada

DUCK A deductive retrieval system developed by Drew
McDermott of Yale University. It is an AI system

language with the ability to develop non-monotonic
logic systems. (AI/Languages/DUCK)

KBS 	Knowledge-Based System (AI/KBS). Synonym for Expert

System, except in the KBS the knowledge source is not
necessarily attribUted to an expert.

MIT 	Massachussets Institute of Technology

MPROLOG A prolog language system developed and marketed by

Logicware of Toronto. A Prolog dialect (AI/Languages/
Prolog/MPROLOG).

NL 	Natural Language

OPS5 A production system development language developed by
Carnegie-Mellon University (AI/Languages/OPS5).

PDSS Program Development SubSystem, a software development
environment for MPROLOG (AI/Environment/PDSS).

POC 	Proof of Concept.

PSN 	Procedural Semantic Network. A semantic network
description language developed at the University of
Toronto (AI/Languages/PSN)

SANS Spacecraft Autonomy Management System, a substructure
of the hierarchical design of the AASC (AASC/SAMS)

SANS Simplified Associative Network System, a simplified
semantic network language developed by Kenneth Hayes
of Smart Systems Technology. (AI/Languages/SANS)

WM 	0P55 Working Memory (AI/Languages/OPS5/WM)

iv

Acknowledgements

The Spacecraft Autonomy Management System (SAMS) was

developed by the authors for the Communications Research

Centre (CRC) of the Federal Department of Communications

(DOC) under contract to the Department of Supply and Services
(Contract Number (MST.36001-3-4454). Authors are thankful for

the support given by Dr. S.P. Altman and Mr. R.A. Millar of
the Communications Research Centre.

Summary

The SANS is conceived as the top layer of the Advanced

Autonomous Space Computer (AASC) hierarchy developed at the

CRC during the past three years. The SANS layers are

characterized by their use of Artificial Intelligence (AI)

techniques. A set of expert systems were developed in 1984 as

a Proof of Concept (POC) experimental system, and a series of

experiments were conducted using them.

This document describes the software development

environment used for developing the expert system and other

AI systems. The environment was established on the VAX-111780

computer (running VMS) at the Simulations & Analysis

Laboratory of the CRC at Shirleys Bay, Ottawa, Canada. This
work was accomplished during the course of the POC
experimental system development. The environment exists as a

collection of AI languages and tools. Example programs are

given for each of the software packages that constitute the

environment.

vi

1. Introduction

Early AI development environments were constructed on
main frame computers such as Digital Equipment Corporations
PDP-10. The DEC-20 series of computers such as DEC 2060 was
another AI standard in earlier days.

In 	1980, 	MIT completed the first Lisp machine
prototype. This was quickly taken up by two commercial
interests, Lisp Machine Inc, now of Los Angeles California,
and Symbolics Inc. of Cambridge, Massachusetts. Both
companies are today successfully marketing these machines
after several revisions of hardware and software. The most
important difference between this class of machine and a
conventional computer is that in ' these machines Lisp
functions are directly executed by the microcoded or
hard-wired control units of the hardware, rather than by
software emulation. One of the major drawbacks of this class
of machine, however, is an extremely poor cost performance.
Imported price of an avarage AI work station is about
$200,000. Yet such a workstation only supports one user per
installation. Multi-user versions of these machines started
to appear in the market, but per user cost is still much
higher than in conventional workstations for non-AI
computing.

In spite of impressive throughputs and amenities
offered by AI workstations, the Lisp machine has had a
limited penetration into the AI communities of North America
and of the world. The rest of the communities have gradually
shifted from mainframe machines to super minicomputers, most
notably, Digital Equipment Corporations VAX-11 family of
machines. This shift became dominant in the late 70s and
early 80s. That happened to be the period when UNIX was
gaining popularity, first in universities, then in industry
and government agencies, as students trained in UNIX became a
main force in non-academic computing. 	Development by the
Universit 	of California at Berkley of Franz Lisp, and its
inclusion into the Berkley UNIX created a standard AI
development environment which was accepted by many university
departments, corporate laboratories, and government agencies.

However, UNIX never gained popularity as an operating
system for real-time applications. As the popularity of VAX
computers itself increased, and their use in on-line,
real-time applications grew, the relative importance of VMS
as a real-world operating system increased. Still very
limited in number and variety, there are now several software
packages that can be used under a VMS operating system as AI
development tools.

An AI development environment built on a VAX machine
is far less costly than the AI workstations mentioned above.
It is most suitable for the earlier phases of building up an
in-house AI capability. Building fair size prototype AI
systems or small target AI systems can be done without
draining system resources. However, once a major target
system begins its production run, the squeeze is often felt
by itself and other programs running on the same machine.
Hence a large VAX machine, either running UNIX or VMS, can be
made into a multi-user AI development system for several
users safely, but never as a satisfactory AI target system.

An 	important development in AI software is the
emergence of industrial grade AI system shells (expert system
shells and natural language shells). These software packages
can be fitted with a knowledge base specifically developed
for an application domain, and made into a more or less
customized AI system. ,This approach not only cuts short the
development time for AI systems drastically, but also in most
cases increases the reliability of the developed AI system.

Software development for AI systems, such as expert
systems, requires a set of tools somewhat different from
conventional programming tools. Most of the differences are
found in the nature of AI processes which are drastically
different from conventional numerical computation. The
language for developing expert systems and other AI systems
used to be almost exclusively Lisp. The situation has changed
after the growth in popularity of Prolog and other logic
programming languages. Another trend is the use of
conventional computer languages such as FORTRAN, PASCAL, C,
BLISS, etc., in the implementation of AI systems. These are
often a second implementation of a system first built in
Lisp. Hence the emphasis in these cases is on performance and
increased portability.

2. The over-all structure of the expert system development
system

2.1 Objectives of the environment

The expert system development environment described in
this document has been developed to fulfill the following

objectives:

(1) To allow construction of expert systems rich enough to be
considered a proof of concept system.

Simple AI programs can be easily written using basic AI
languages like Lisp or Prolog. These languages may be

used to construct more serious applications, but that

often takes more'experience in knowledge representation
and reasoning techniques. High level AI languages or

expert system shells may be useful to guide initial
attempts at programming.

(2) To provide a reasonably easy entry point for those who

intend to enter the field of AI programming.

Programming AI systems such as expert systems is

non-trivial to programmers experienced only in
conventional programming methods. Software packages that
can demonstrate the significance of the difference

readily will be highly educational.

(3) To cover all major approaches of expert system building
(software packages selected for the aproach are shown in
bracket):

- rule-based knowledge representation and reasoning
(CLISP, OPS5, DUCK, MPROLOG),

- logic programming (ASPTP, DUCK, MPROLOG),

- problem solver (ASPTP, DUCK),

- inference network (DUCK, SANS, MPROLOG),

- frame-based semantic network (SANS, PSN),

- introductory parsing techniques (ATN).

Earlier expert systems almost exclusively used rules or

productions as the basic knowledge representation

mechanism. Most commercially available expert systems in

2- L

the market today adopt this knowledge representation.
Semantic network representation, which was popular but
experienced a failure in the late-60s, is making a come
back with the improved nodal expression and enhanced
taxonomy, and is often used in conjunction with a
production system.

It is now well understood that, in order to create 'deep'
or detailed causal models of an expertise, production
systems are not adequate. Frame-based semantic networks
are often viewed as vehicles to support such serious,
sophisticated, and richer knowledge representation
concepts.

The present state of the art in semantic networks is
still far from practical. This is in spite of intensive
R&D activities in the subfield 	of 	knowledge
representation. In order to make the new representation
techniques feasible, one may need the fifth generation
computer hardwares with massively parallel computational
elements. However, this is not a valid excuse for not
pursuing this technique using whatever is available
today. It is the theoretical understanding and
acquisition and fluent usage of design know-how that will
take the longest time. These studies can easily take
longer than the development of the first highly parallel
fifth generation hardware.

Logic programming has been 'discovered' by several large
scale AI projects, such as national Fifth Generation
Computer Systems (FOCS) projects of several countries.
These projects' basic premise is that logic is probably
the most important single area of study in AI system
development. With the emergence of more implicit logic
and re-investment'in the study of common sense, their
claim seems to have a foundation.

With the increased understanding of the capabilities and
the limitations of existing expert system technology, and
with existing pressure to bring expert systems into
practical application, many will begin to realise that
interfacing expert systems to a real-world application is
often more important than issues internal to expert
systems themselves. Language parsing technique is a basis
of Natural Language (NL) systems. NL systems may be
connected to expert systems to create an intelligent
interface, .and hence their technical bases must be
understood.

(4) To construct an AI programming environment that is highly
cost effective.

An AI workstation costs between $35,000 and $200,000.
They are designed primarily for single users, those which
are not are very expensive. Today, not many can justify
the expense when nobody has successfully demonstrated the
universal usefulness of the expert system technology.

Depending solely on basic AI languages, such as Lisp and
Prolog, on the other hand, costs the developer a long
build up time. By carefully selecting a set of software
tools, a less expensive but moderately powerful

development environment may be created using a popular

multi-user computer.

2.2 Structure of the environment

The development environment consists of a number of .
software packages. They are additional layers to the VMS
operating system running on a VAX-11/7130 super minicomputer,
as shown in Figure 2.1. All of them may be used to develop an
expert system. The height in the diagram indicates the level
of abstraction the software package represents. For example,
using PSN, one can represent events and objects more abstract
than those representable by SANS, and OPS5 than CLISP.

PDSS is not a programming language, but is a
development support system for MPROLOG. However, since they
together create an appearance of a more abstract language
interface to the user, it is represented in the diagram as it
is.

The version of Franz Lisp, a famous Lisp dialect, used
here as a basis for a number of AI languages is a private
copy of the language which was developed at Carnegie-Mellon
University (CMU) in the late 70s. While it can be accessed
from languages that lay an top of it, it is an older version
(Opus 34) and some aspects of the language are already
different. Similarly, NISP is an understructure of DUCK (a
macro library) and again accessible from DUCK. Because of the
nature of Lisp, a macro, or a compound command automatically
becomes a command that operates at a higher level of
abstraction. These two software packages are not treated as
independent software modules. •

1 / / / / / / / / / / / / / / / / / / / :
1/ / / / / I• (expert system applications) / / / /:

: / / / / / / / / / / / / / / / / / / I:
:i / . 	. 	./ / / / / . 	./ / . 	I
:/ / /1 DUCK 1 	1 	/ / / / 	1 	1 	/ 	: PDSS ' 1
1 	/ ./ 1 	lapes: 	 . 	1 PSN 	

, 1 / / :(NISP)1 	: ASPTP 1 SANS 1 	: ATN 1 	1
1 	+ 	+ 	+ 	+ 	+ 	+ 	1 MPROLOG 1
1 CLISP 1 	(Franz Lisp) 	:

! 1 	+ 	
, , 	 VMS Operating system 	 .

1 	 1
. 	 VAX-11 Hardware 	 . ,

Figure 2.1 The expert system development environment

2 - 4

CUSP is a Lisp dialect developed at the Computer
Science department of the University of Massachussets at
Amherst for the past several years. It has relatively limited
facilities but runs efficiently in a VAX/VMS environment.

DUCK is an AI language system developed by Prof. Drew
McDermott of the Massachusetts Institute of Technology (MIT)
and Yale University. 	Its truth maintenance features are
unique among expert system shells. 	It has rather limited
input/output capabilities and command syntax is terse. DUCK
has a natural way of merging different programming styles
such as logic programming, functional programming, and
rule-based system descriptions.

OPS5 was originally developed by John McDermott and
Charles Forgy of CMU as a series of production system
languages (OPSn). Its theoretical background goes back to
Simon/Hubert's study ,of human reasoning models studied in
Cognitive Science. The language has gained popularity
recently, particularly after the success of XCON (R1) and
XSEL expert systems written in OPS5. Its weakness is the lack
of truth maintenance features and ability to handle
uncertainties. The former is being tackled by a group in IBM
Yorktown. There are commercialized versions of this software
available in the market which offer improved performance and
technical support. Unless immediate major expert system
development is planned using the language, it is the opinion
of the authors that the current version described herein is
sufficient for research purposes.

ASPTP is a tutorial problem solver developed for Smart
Systems Technology (SST) and is based on a logic programming
paradigm. Its formalism is much like that of DUCK, simply
because it was developed by the same author as a simplified
version of DUCK. It allows both forward and backward chaining
and serves as a good introductory logic programming language/
problem solver.

SANS was also developed for SST by Dr. Ken Hayes. It
is a simple frame-based semantic network language for
constructing small ta medium size semantic networks. Though
relatively simple, it possesses all the basic features a
semantic network language should have.

PSN, on the other hand, is a highly elaborate and
sophisticated version of a frame-based semantic network
system. It has been developed at the University of Toronto
over the past several years. Portions of PSN are still under
development. It is suitable for studying highly complex
semantic network systems. A large and rich system may be
developed using PSN, but its performancé on VAX computers is
limited because of its complexity.

ATN parser is not directly connected to expert system
building. It is a tutorial parser written by Drew McDermott
for SST for educational purposes. It has basic mechanisms to
practice both syntactic and semantic parsing.

MPROLOG is a dialect of Prolog developed in Europe
during the last few years and imported to North America by
Logicware of Toronto. It is a well-debugged, well-packaged
production quality AI language. Compared to some other
versions of Prolog, such as Sigma Prolog of the U.K., it may
be judged less elegant. However, its strengths are a facility
to allow modular construction of Prolog programs (original
Prolog is not modular), and a very rich set of well-appointed
built-in predicates. PDSS is built around MPROLOG and serves
as an environmental support to the user of the language.

3. The logic programming paradigm

Logic programming is an approach to AI, originating in
Europe. It is currently used in various AI projects in
Britain, other European countries and Japan, including the
Fifth Generation Computer System (FGCS) projects of these
countries. Its application in North America has been limited
because of the dominance of Lisp as the standard AI language.
However, there is a move there to reevaluate its potential.
Universities (Stanford, Syracuse, among others) and private
companies (IBM, SRI International, Honeywell, and several
others) have been showing an active interest in the logic
programming approach to AI.

The concept of logic programming can also serve as a
unifier of recent innovations in the field of software
engineering, database technology, computer architecture, and
AI. Logic programming is also the missing link between
knowledge engineering, a powerful but an expensive process,
and parallel computing, a known solution to some computing
power problems. It also bridges the gap between the new
software technology based on reasoning and the new computer
architecture epitomized by the recent emergence of non-Von
Neuman machines. A paper by Kowalski [Kowalski 83] (attached
as Appendix *5) of Imperial College, London, gives a concise
summary of the programming method.

Prolog is a language system that implements a notion
of logic programming called Horn clause logic programming. It
is important that the two are not confused.

3 - 1

3.1 MPROLOG

3.3.1 Features of MPROLOG

MPROLOG is a dialect of Prolog which originated at the
University of Edinburgh in the mid-1970s. A version of
Edinburgh Prolog was transported to Hungary by visiting
researchers, and developed there from 1979-83. Currently the
language system is being developed for enhancements and North
American adaptation by Logicware Inc. of Toronto.

A Prolog program consists of a collection of
predicates formed into Horn clauses. A predicate can either
be a rule (often called an implication) or an assertion.
Rules are stored in rule bases, while assertions are stored
in a scratch pad memory, a temporary storage, or a database.

MPROLOG is easily transportabile and is currently
implemented on several machines including the following:

- IBM VM/CMS,

- DEC VAX-11/750, 780, 782, running under VMS or UNIX,

- Motorola 68000 based machines such as SORD and the
SUN Micro work station,

- Tektronix 4404 AI Workstation,

- IBM PC and XT.

Except for the IBM PC version, MPROLOG software is
accompanied by a comprehensive software development
environment called the Program Development Sub-System (PDSS).
It contains the MPROLOG interpreter, a pretranslator, a
consolidator (linker), an editor, a tracer, a librarian, a
help facility, a run control mechanism, and a module
management facility. A compiler is to be added to some
versions in the future (VM/CMS version of PDSS has a compiler
now).

The PDSS features the following:

- Interactive program editor,

- On-line help facility,

- Program trace,

- User-defined exception handling,

3 - 2

- Windowing,

- Automated garbage collection,

- About 240 built-in predicates (except for the IBM PC

version)

MPROLOG programs may be developed in modules using the
module management facilities of the PDSS and MPROLOG. Modules

are connected non-hierarchically and argument values

exchanged via inter-module channels created by pdss'

import/export, global/local, visible/hidden, and other

interface commands.

Interlanguage communication supports in MPROLOG are

very limited. An MPROLOG-FORTRAN linkage is about to be

completed on the VM/CMS version, followed by other versions

(except for IBM PC version). For the VAX/VMS version,

attempts to link modules written in different languages using

the mailbox facility has been successful. This approach will

allow, for example, a module written in PASCAL to exchange

parameters with an MPROLOG program. Since logic programming,

particularly its Horn clause subset represented by Prolog has

its limitations, it is desirable to establish generous

inter-language links. More effort will be necessary to

improve this capability of the language.

Another limitation is the language's ability to handle

numbers. 	There is presently no provision for handling

floating point numbers in MPROLOG. 	Hence, no built-in

functions such as trigonometric functions exist. All

representations and calculations of numbers must be done

using integers, the maximum absolute value of which must be

less than 1000000 (i the VMS implementation). Again, work is

underway at Logicware to support floating point numbers and

operations using them.

• 	The original Edinburgh's DEC-10 Prolog syntax may be

made acceptable to MPROLOG by using a switch in the PDSS. The

switch has an additional position at which rules can be

expressed in pseudo-English style of "If...Then..." format.

However, the switch controls the over-all PDSS environment.

No mixture of formats is allowed among modules or within a

modules.

The planned future enhancements of the MPROLOG

language system Includes the following:

- semi-intelligent tracing

- compiler

- screen-oriented editor

- window management

- optimizer

3.1.2 Using MPROLOG on VAX/VMS

The MPROLOG commands are documented in "MPROLOG
Language reference" and the PDSS commands in "MPROLOG
Development System reference" manuals CLogicware 847.
Assuming that PDSS and MPROLOG are installed and made

available to the user, the following steps exemplify a
typical PDSS/MPROLOG session:

$ pdss 	. Invoking PDSS

MPROLOG (Vx.y) Program Development SubSystem x.y Rev.
(c) 1984 LOGICWARE Inc., Toronto Canada

Herald message, x.y = version number.
PDSS prompts the user with a ':'.

• :consult <file specification>

Bringing in file(s) containing user's
developed MPROLOG codes, rules, and

assertions. 	This command will be
omitted when building an entirely new
program.

<a list of predicates being loaded>

Predicates are displayed as they are

read in in the form

<predicate-name/N>

where,

N = number of arguments.

<file specification> CONSULTED.

J -4-

End of a consultation sequence. 	Any
number of consult commands may be
issued.

:‹pdss commands>

PDSS commands are used to create,
modify, and delete MPROLOS
predicates.

:?<predicate>

Request to the PDSS for the execution
of a predicate. In place of 'I", the
following prompts may be used:

Also, any of the PDSS commands may be
issued here to further edit the
predicates created or consulted.

:bye

Terminates a PDSS session.

Normal exit from MFROLOG PDSS

Termination Message by system

End of a PDSS session. Back to VMS
environment.

During the PDSS session described above, a user may
enter thé VMS DCL (Digital Command Language) environment by
pressing the ENTER key ta the ':' prompt. Any of the VMS
commands may be issued then, including another PDSS. A LOGOFF
command brings the user back ta the last PDSS environment.

A PDSS session may be interrupted by an exception. For
example, upon reaching the alloted call count limit (the
number of times a predicate is invoked), the PDSS interrupts
the session by informing,

3

li

111

li

111
Ii

call limit reached
, In call of <predicate which was interrupted>

Lic#t = 10000

Function (h for help)?

By entering h, one gets the following menu of commands
which can be used to manage the interruption:

• - enter new PDSS level
backtrace

a - abandon execution
• - continue
~ - fail
s - contents of the stack
• - redo the broken call

- user handled interrupt
h - help

Function (h for help)?

In addition to this set of exception management
commands, invoking a second copy of PDSS (use p command), the
PDSS commands may be issued to modify or inquire about the
PDSS run time environment. Issuing a PDSS command without
creating a second copy of PDSS will result in an automatic
termination of the current run followed by the execution of

the entered PDSS command.

Entering level 2 of PDSS

From within the new PDSS level, the PDSS set command
may be used to change the parameters of the old PDSS run time
environment. For example, the call limit (number of predicate
invocations) may be increased from the default (10000 calls)
by enterihg,

set/ call_limit = 100000

call_limit = 100000

A bye and a c command (continue) must be entered to resume
the interuupted PDSS session.

bye

II

li 3 -

Exit from level 2 of PDSS
Function (h for help)?

Alternatively, the run may be terminated by entering
an a command upon interruption. The rationale for the call
limit provision is to provide a way of regaining control from
an infinite loop, which may be caused by an error in a
predicate definition. Another commonly used way of causing an
exception in PDSS execution is to arbitrarily interrupt a run
using ctrl-c:

. •
external interrupt

In call of <interrupted predicate>
Function (h for help)?

The procedure explained above for examining or
altering the PDSS run time environment is applicable here.

3.1.3 Examples of MPROLOS program

3.1.3.1 Predicate to compute length of a list

A predicate which computes the length of a list is
presented as a simple example of MPROLOS program. The
predicate, list_length, takes two arguments: the length of
the list, and the list itself. The example demonstrates
Prolog's power in defining 'what should be calculated' as
opposed to 'how should be calculated'. It simply states that,

- the length of a list is zero, if it is empty

- otherwise, if the length of the tail of the list is
L, then the length of the list itself including the
head will be L+1.

The predicate uses a recursion. However, unlike more
common tail-recursion, it recurses on a clause which is not
the last element of the predicate. The program listing is
followed by an example run, which was traced using the PDSS
trace facility to show the step-by-step execution of the
recursion.

list_length(0,C3) .
list_length(Z,CXIY]) :-

list_length(L,Y), plusUL,Z) .

plusl(L,Z) :-
plus(L,1,Z)

3 -

b, 	f, g,h]).

OK

L,= 8

Continue (yin) ?

trace list length

1 ist_lengtFI/2 TRACED

trace plusl

plus1/2 TRACED

?list length (L, Ca, b, c, d, e, f, g, h]).

> 1 	length (311, Ca, b, c, d, e, f, g,)

> 	length7 346, [b, c, d, e, f, g, h])

> 1 is 7i. length 7 380, Cc, d, e, f, g, h])

> 	length7 414, Cd, e, f, g, h3)

> 1 ist- length7 448, Ce, f, g, h3)

> 1 	length7 482, [f, g, h])

> list- length7 516, Cg, h])

> 	length7 550, [h])

> 1 is 7i_length7 584, [J)

+ list len gth CV-i, C])

> plusT (0, _550)

+ plus1 (0,1)

+ list length (1, Ch3)

> plusi (1,_516)

+ plusl (1,2)

+ 1 ist length (2, Cg, h]

> plusT. GE', _482)

+ plus1 (2,3)

+ list length (3, Cf, g, h])

pl usi- (3, _448)

+ plus1 (3,4)

+ list length (4, Ce, f, g, h3)

> plusi. (4, 2+14)

+ plusi (4,5)

+ 1 ist length (5, Cd, e, f, g, h])

) plus-1 (5, _380)

plus1 (5,6)

+ list length (6, Cc, 	e, f, g, h])

> plus-1 (6, _346)

+ plus1 (6,7)

+ 1 ist length (7, [b, c, 	e, f, g, h])

> plus-1 (7, _311)

plusi (7,8)

+ 1 ist_length (8, Ca, b, c, d, e, f, g,

L =

Continue (yin) ?

n -

OK

3 -

3.1.3.2 Family tree problem

A relatively large family tree or a lineage is created
in terms of assertions, such as father (Bob, John)., and
relations or rules, such as:

grandfather (A, 	:- father (A, C), father (C, B).

The relations are common to all family trees that may
be built and examined using this program, while the
assertions are particular to an individual family tree. As
described earlier, the former will be stored in a knowledge
base, while the latter will be placed in a database in the
toy expert system. The example chosen here is a family tree
of some of the Greek gods. The structure of the tree is shown
in Figure 3.2.

Crenus

LQVO

Umm.AS

Other 	Tit airts

/4>< I
Denneirej Fierstra. 	se.i <loin 	 Haclez 	Ntitis 	ti c.

J .
fet-seye ,Aphrod;te

-7..Ares 1-lefhaesrEe 1-lerel es A-thena, A ?

liceemo•n n cn

Akeiffi

----> =emdemy,

p.

4,t-S

Figure 3.2 Family tree of Greek gods

a - I

Rules

/*
/*

/*

*/

*/

*/

.S-ty-greek.-log
/***/

/* 	 */

/* 	MPROLOG example of family relationships 	 */

/* 	 */
/***/

father (F, C) :-

parent (F, C) , male (F) .

mot her (M, C) :-

parent (M,.C) , female (M) .

grandfather (GF, BC) :-

parent (GF, P) ,

parent (P, BC),

male (9F).

grandmother (GM, SC):-

parent (GM, P) ,

parent (P, SC),

female (GM) .

siblings (SX, SY) :-

mother (M, SX) , mother (M, SY) .
siblings(SX, SY) :-

father (F, SX), father (F, SY) .

immediateSibl ings (I_SX, I_SY) :-

mother (M, I_SX)

mother (M, I_SY) ,
father (F, I_SX) ,
father (F, I_SY).

ancestor (A, D) :-

parent (A, D)

ancestor (PI, D) :-

parent (2, D) , ancestor (A, Z) .

chi 16(C, P) :-

parent (P, C) .

descendant (D, A) :-

child (D, A).

descendant (D, A) :-

child (Z, P), descendant (D, Z) .

/* 	 */
JAL. 	listing of_conclution. 	 */ 	

/* 	 */

is_parent_of(Child,Parent_list):-
setof(X,parent(X I Child),Parent_list).

is_parent_of(Child_list,Parent):-
	_metof£X,parentXParent,X),Child_list).

is_child_of(Parent,Child
setof(X,child(X,ParenÎ),Child_list).

is_child_of(Parent_list,Child):-
setof(X,child(Child,X),Parent_list).

is_grandfather_of(Grandchild,GrandFather_list):-
setof(X,grandfather(X,Grandchild),
GrandFather_list).

is_grandfather_of(Grandchild_list,Grandfather):-
setof(X,grandfather(Grandfather,X),
Grandchild_list).

is_grandmother_of(Grandchild,Grandmother_list):-
setof(X,grandmother(X,Grandchild),
Grandmother_list).

is_grandmother_of(Grandchild_list,Grandmother):-
setof(X,grandmother(Grandmother,X),
Grandchild_list).

is_siblings_of(Sibling,Sibling_list):-
setof(X,siblings(X,Sibling),Sibling_list).

is_immediateSiblings_of(I_sibling,I_sibling_list):-
setof(X,immediatesiblings(X,I_sibling),
l_sibling_list).

' is_ancestor_of(Descendant,Ancestor_list):-
setof(X,ancestor(X I Descendant),
Pncestor_list).

' is_ancestor_cif(Descendant_listocIncestor):-
setof(X,ancestor(Ancestor,X),
Descendant_list).

is_descendant_of(Ancestor,Descendant_list):-
setof(X,descendant(X,Ancestor),
Descendant_list).

is_descendant_of(Ancestor_list,Descendant):-
setof(X 7 descendant(Descendant,X),
nncestor_list).

f

/* 	 */
_4*. 	 Database—of the_Seeek_Gods 	*/
/* 	 */

parent(gaea,cronus).
parent(gaea,rhea).
parent(gaea,other).
parent.(ueanus,cronus).
parent(uranus,rhea).
parent(uranus,titans).
parent(cronus,demeter).
parent(cronus,hestia).
parent(cronus,zeus).
parent(cronus,poseidon).
parent(cronus,hera).
parent(cronus,hades).
parent(rhea,demeter).
parent(rhea,hestia).
parent(rhea,poseidon).
parent(ehea,zeus).
parent(rhea,hera).
parent(rhea,hades).
parent(other,metis).
parent(other,maia).
parent (titans,metis).
parent(titans,maia).
parent(demeter,persephone).
parent(herà,ares).
parent(hera,hephaestus).
parent(metis,athena).
parent(maia,hermes).
parent(aphrodite,harmonia).
parent(zeus,ares).
parent(zeus,hephaestus).
parent(zeuS,hermes).
parent(zeus,athena).
parent(zeus,apollo).
parent(zeuS,artemis).
parent(zeus,dionysius).
parent(leto,apollo).
parent(leto,artemis).
parent(ares,harmonia).
parent(harmonia,semele).
parent(semele,dionysius).

-f ernal e (ciaea
f emal e (rhea) .
female (other) .
fernal e (demet er)
female (hera) .
female (met is)
-female (ma ia) 	
female (aphrodite) .
fernale (let o) .
female (harmon a) .

female (semele) .

female (hest i a) .
female (persephone) .
female (at hena)
female (art em s).

male (uranus) .
male (cronus) .
male (t t ans) .

male (zeus) .

?is_parent_of(hestia,X).
X = [cronus,rhea]

ContinuP (y/n)...2.__ 	 —
?is_parent_of(X,cronus).
OR

X = [demeter,hades,hera,hestia,poseidon,zeus]
Continue (y/n) ?
?is_child_of(rhea,X).
OR

X = [demeter,hades,hera,hestia,poseidon,zeus]
Continue (yin) ?
?is_child_of(X,zeus).
OK

X = Ccronus,rhea3
Continue (y/n) ?
?is_grandfather_of(hera,X).
OR

X = [uranus]
Continue (yin) ?
?is_grandfather_of(X,uranus).
OK

X = Cdemeter,hades,hera;hestia,maia,metis,poseidol'1,zeus3
Continue (y/n) ?
?is_grandmother_of(hera,X).
OR

X = Cgaea3
Continue (yin) ?

• ?is_grandmother_of(X,gaea).
OK

X = Cdemeter,hades,hera,hestia,maia,metis,poseidon,zeus3
Continue (yin) ?
?is_siblings_of(athena,X).
OR

X = Capollo,ares,artemis,athena,dionysius,hephaestus,hermes]
Continue (yin) ?
?is_imffiediatesiblings_of(ares,X).
OK

X = Cares,hephaestus3
Continue .(yin) ?
?is_ancestor_of(harmonia,X).
OK

X = [aphrodite,ares,cronus,gaea,hera,rhea,uranus,zeus]
Continue (y/n) ?
?is_ancestor_of(X,rhea).
OR

X = [apollo,ares,artemis,athena,demeter,dionysius,hades,harmonia,
hephaestys,hera,hermes,hestfa,persephone,poseidon,semele,zeus]

Continue (y/n) ?
?is_descendant_of(X,zeus).
OK

- X = Ccronus,gaea,rhea,uranus7
Continue (y/n) 2

?is_descendant_of(uranus,X).

OK- 	
X = Eapollo,ar,es,artemis,athena,cronus,demeter,dionysius,

hephaestus,hera,hermes,hestia,maia,metis,persephone,poseidon,
rhea,semele,titans,hades,harmnnia, ...]

Continue (yin) ?
?is_descendant_of(X,zeus).

OK
X = Ccronus,gaea,rhea,uranus]

Continue (yin) ?

3.2 ASPTP

3.2.1 Features of ASPTP

ASPTP is a problem solver included in the SST tutorial
software package. It is written entirely in Lisp and allows
the user to conduct simple problem solving sessions. A
session is conducted interactively, and consists of entering
facts and rules in the form of assertions, and then posing
questions in the form of a hypothesis (or a theorem) to be
proven. The sessions are effctive as a tutorial of the
theorem proving paradigm, and as an introduction to the more
sophisticated problem solver, DUCK.

There are only two commands (predicates) in the ASPTP:
assert and bc. Facts are entered as a simple assertion using
the assert command, while a rule is entered as a Horn clause,
again using the same command. A hypothesis to be proven is
presented as a goal of a goal-driven inference, using the bc
(backward chainig) command. A rule may be presented either as
a backward or a forward chaining rule. When a forward
chaining rule is added to the database, new assertions may be
made using that and other rules which may become relevant
because of the new rule. There will be no automatic
assertions when a backward chaining rule is added. It will be
invoked only in the process of proving a theorem.

3.2.2 Using ASPTP

The SST tutorial software (ASPTP, SANS, OPS5, ATN) is
stored under the directory

SYS$SYSDISK:EPACKAGE.SST.TUTORIAL.SSTC.AIC17

The following sequence of commands, which is common to all of
the tutorial software, must be issued to access them:

$ set default sys$sysdisk:Cpackage.sst.tutorial.sstc.aic1J

User's default directory is set
to that of the tutorial software

$ @sstcourse

Assigns a version of Lisp that
is appropriate to the tutorial
package. System responds with
the following:

3 - (6

Previous logical name assignment replaced
Previous logicà1 name assignment replaced
Previous logical name assignment replaced
Previous logical name assignment replaced

$ lisp

Enter the lisp environment.

54c00 bytes read into 2c00 to 577ff
Franz Lisp, Opus 34

SMART SYSTEMS TECHNOLOGY
Artificial Intelligence Course

A.. I. Course Software Selections
Type (asptp) for ASPTP deductive retriever

(ops5) 	for OPS5 productive system
(sans) 	for SANS associative network system
(parser) for an ATN natural language parser
(loadloop) for examples of Control structures

Note: above steps must be
followed by all SST Tutorial
software.

-> (asptp)
Select ASPTP. Note all inputs
are in lower case letters.
ASPTP responds with its herald
messages:

Efasl sst$lib:asptp.03

Leaving Workspace: background
In Workspace: asptp

Leaving Wdrkspace: asptp
In Workspace: background
Type (navig) to load in the NAVIG database

(arith) to load in arithmetic plus and times
(family) to load in the Family Tree database

nil
->

Assert faCts and rules using the assert predicate of
ASPTP to the prompt "->", to construct a problem, and then to
activate the theorem prover by entering one or more of the bc

3 -

predicates. The assert predicate has the following format:

- > (assert '<assertion>)

where, <assertion> is either a fact or an implication (rule).
Examples of a fact would be:

(brother ted chris) 	Ted is a brother of Chris, or
Chris is a brother of Ted.

(is-east-of victoria vancouver)

Victoria is located east of
Vancouver.

(meaner_than lucy marcie)

Lucy is meaner than Marcie.

Rules are, in general, defined using a variable. 	A
variable is any lowercase alphanumeric string preceded by a
"?". Examples of an implication would be:

(<- (wife 7x ?y) (and (spouse ?x ?y) (female ?x)))

If x is a spouse of y and x is
a female, then x is y's wife.

(-> (is female 7p) (is woman ?p))

If p is a female then p is a
woman.

In.these examples the relational operator "<-" implies
a backward chaining or a goal driven inference, while "->"
means a forward chaining, or data driven inference. In ASPTP,
there is no distinction between a knowledge base and a
database. Both rules and facts are written into a database.

In forward chaining, when a rule is asserted, any
facts that may be justified by the new rule will be asserted
in the database automatically. In the above forward chaining
example, if the database already had an assertion

(female alice)

3 -

then an assertion

(woman alice)

will be made immediately after the rule is asserted.

Once facts and rules are entered in the database, one
can request the ASPTP's resolution mechanism to prove various
hypotheses. The format of the request is:

(bc '<hypothesis>)

where, bc stands for backward chain, signifying the fact that
the ASPTP tries to resolve a hypothesis using a goal-driven
inference.

A hypothesis has the identical format as an assertion
discussed above. In fact, there is no actual distinction
between the two. In problem solving, one tries to prove that
there are supporting evidences (assertions) that can be used
to prove a hypothesis (assertion). The process may chain to
whatever depth necessary using available rules.

As one might suspect from the syntax of the ASPTP, the
problem solver is implemented entirely in Lisp, as a set of
Lisp functions. As such, other Lisp functions may be used in
conjunction with the ASPTP codes.

Also available to the ASPTP and other SST tutorial
software (OPS5, SANS and ATN), and the DUCK is the Lisp
Workspace Manager. A workspace is a set of related functions
and data that are in the main memory. A workspace can be
entered by executing (workspace '<workspace name>). Anything
defined after this will be done so in the workspace. In order
to preserve a workspace, execute (wsave '<file
specification>). The current workspace will be saved in file
<file namé>. A sister function (load '<file specification>)
will load the file and restore the workspace. When switching
a workspace, issue (workspace '<workspace name>). Issue as
many (wsave '<file specification>) as necessary to save
functions defined thereafter. The rule applies to assertions,
productions, and grammars defihed in ASPTP and DUCK, 0P55,
and ATN parser, respectively. In order to detatch a session
from all workspaces, execute (workspace nil).

The function (wsym '<symbol>) associates <symbol> with
the current workspace. All its properties will be saved with
the workspace. The default saving monitor normally saves any

symbols that are likely to become necessary in future
sessions. (unwsym '<symbol>) flushes <symbol> from the
current workspace. (cursyms) returns the symbols in the
current workspace. Functions editp and edit+ permit in-memory
editing of predicates (assertions) and Lisp 	functions,
respectively. 	(workspace-push '<workspace name>) pushes the
current workspace on a stack and goes to a new workspace,
<workspace name>. 	(workspace-pop) 	restores the last
workspace. (wsmerge '<workspace name>) merges the current
workspace with workspace <workspace name> and makes it
current.

ASPTP program example

The sequence below demonstrates a simple ASPTP
session:

- > (assert '(is a fred male))

"Fred is a male" is entered as
a fact.

Asserting (is_a -Fred male))
asserted

System confirms what is
asserted by reciting.

- > (assert '(-> (is_a 7x male) (is_a .7x human)))

"If x is a male, x is a human."
is entered as a rule.

Asserting (-> (is_a (171 x) male) (is_a (171 x) human))

System confirms.

Asserting (is_a fred human)
asserted

Because the rule is a forward
chaining one, "then Fred is a
human" is implied and asserted
automatically by the system.

- > (assert '(<- (is_a 7x human) (is_a 7x female)))

A rule which says, "If x is a
female then x is a human" is
entered as a backward chaining
rule.

Asserting (<- (is_a (:?: x) human) (is_a xF x) feMale))
asserted

System recites, but since the
rule is a backward chaining
one, no implication occurs.

-> (assert '(is_a lucy female))

"Lucy is a female" entered.

Asserting (is_a lucy female)
asserted

-> (bo "(is a fred human))

An enquiry, "Is Fred a human?".

Goal: (is_a fred human) 	Queue length: 0
(nil)

System takes up the hypothesis
as a goal to be solved. However,
this goal has been asserted
as a result of the forward
chaining rule.

Nota: (nil) in ASPTP means a
"Yes". Some intermediate
results are not shown here.

-> (bc '(is_a lucy-human))

"Is Lucy a human?" is asked.

Goal: (is_a lucy human) 	Queue length: 0
Implication: (<- (is_a (:?: v1) human) (is_a (I?: v1) female))

A rule that supports the goal
is found. It is a backward
chaining rule,

Subgoal: ((is_a lucy female))

of which condition is "If x is
a female." This now becomes a
goal to be proven. Since this
is one of the assertions
entered,

Discharged: (is_a lucy human)

the original goal is now
proven.

Goal: (is_a lucy female) 	Queue length: 0
Assertion (is_a lucy female)

RESULT: nil

System also tries to prove the
enquiry directly, by looking
for the goal itself in the
database. Since this assertion
does not exist there,

"no" is returned from this
search. Note: - (nil) = "Yes",
nil = "No".

Discharged: (is_a lucy female)

1 Chainings
(ni 1)

-> (bc '(is_a bill human))

And the attempt is given up.

Number of inferences reported.
The over-all answer to the
question is a "Yes".

"Is Bill a humman?"

nil 	 System does not know anything
about "bill". So it answers no.

-> (bc '(is_a ?x human))
A question "Who are human?" is
asked.

Goal: (is_a (1?: x) hùman) 	Queue length: 0

System tries to find a straight
assertion of the form "x is a
human."

Assertion: (is_a fred human)

And finds the one asserted as
a result of the firing of the
forward chaining rule.

RESULT: ((x -Fred))
x = Fred is given as an answer.

Implication: (<- (is_a (171 v1) human) (is_a (:?: v1) female))

322.

The backward chaining rule
picked up.

Subgoal: ((is_a (:fl x) female))

The rule has "If x is a female"
as a condition.

Goal: (is_a (171 x) female) 	Queue length: 0

Which is posted as a goal to
be proven.

Assertion: (is_a lucy female)

An assertion which matches the
goal is found in the database.

RESULT: ((x lucy))
x = Lucy is found.

Discharged: (is_a (111 1 x) female)

The goal discharged.

1 Chainings.
(((x lucy)) (tx fred)))

-> (bc '(is_a 7x person))

nil

Answers listed.

"Who is a person?"

ASPTP does not know any
"person" as that concept does
not exist in database.

3.3 DUCK

3.3.1 Features of DUCK

DUCK is a hybrid AI language for developing
predicate-calculus rules that may consist of one or more of
the following programming styles.

- Rule-based knowledge representation,

- Logic programming,

- Functional programming.

DUCK is best suited for constructing non-monotonic
reasoning systems and intelligent databases in which
deductive retrieval of information is conducted using
built-in inference rules. The consistency of the database is
maintained using a truth maintenance system. DUCK is
currently the only commercially available system which can
handle non-monotonic logic. Other AI programming applications
in which Lisp or Prolog is normally used can also be written
in DUCK. Its drawback is in its slow execution.

DUCK was developed during the past decade both at the
MIT and Yale University. by Professor Drew McDermott. The
software is now being marketed by Smart Systems Technology of
McLean Virginia, and runs on VAX/VMS, VAX/UNIX, and Symbolics
3600 Series computers.

DUCK combines four programming paradigms successfully
used in AI applications:

(1) Logic Programming

First order predicate calculus is supported. 	Both
conjunctive (AND) and disjunctive (OR) operators are used to
form relations to be stored in the knowledge base, and to
issue queries. 	Unification and backtracking are used as in
Prolog as the basic execution control mechanisms. 	In fact,
these are about the only execution control mechanisms in
DUCK. Semantic information is separated from the algorithm in
knowledge and data bases, unlike conventional procedural
languages. This is a strength DUCK and other logic
programming languages share, and it makes program update
easier.

One of - the applications of DUCK based on this
characteristic is rapid prototyping. Rules and assertions are
defined in knowledge and data bases, after their extraction
from an expert. Subsequent testing is easy using DUCK's
control mechanisms.

3

(2) Rule-based systems

Unlike conventional databases or systems built around
a database, DUCK builds a rule-based system. A rule here can
be thought of as a deduction: a conclusion of true beliefs
from true premises. Rules offer a significant increase in
computational power over conventional databases. DUCK allows
data to be deduced, rather than explicitly stored or computed
by procedures. Such a data form based on rules is sometimes
called virtual data. Structural changes to virtual data need
not be explicitly made. Since rules are, as described in (1)
above, independent from program control structure, they can
be added or altered more easily than in conventional
procedural programming.

(3) Non-monotonic reasoning

Handling of reasoning with assumptions or inconsistent
information is achieved through a technique called . dependency
directed backtracking. DUCK maintains a history of data
dependencies during its reasoning, so that changes to an
earlier assumption can be reflected throughout the database.
Considering that human reasoning includes many adjustments in
its process due to newly discovered assertions or data, this
feature is very important in creating highly flexible
intelligent systems. In fact, non-monotonicity of a reasoning
mechanism will likely become a basic requirement in future AI
system design. DUCK is most advanced in this respect among
similar AI tools.

Using the truth maintenance system, DUCK can at first
assume default values for variables whose values are unknown.
These values are traced throughout subsequent deductive
processes. If at a later time an assumption is found to be
wrong, the correct 'value is assigned and corresponding
updates are made to other assertions in the database.

DUCK also maintains 'data pools'. 	This mechanism
allows hypothetical 'what if' situations to be specified in
the database. In effect, a data pool creates a copy of the
data base by saving the differences between the original.
This mechanism provides an opportunity to explore several
hypothetical situations with minimum memory overhead.

(4) Deductive search

DUCK uses both forward and backward search techniques.
The chaining process begins when rules invoke other rules in
the knowledge base. In forward chaining, the implications of
a given predicate are added to the database. Backward

3 -

3

chaining begins with a goal and searches for assertions which
will support that goal. The processing time required for many
applications using searches increases exponentially as the
size of the search tree grows. By mixing forward and backward
chaining strategies, DUCK reduces significantly the amount of
search. This contrasts with Prolog's backward chaining only
control strategy (though Prolog may be used to program a
strategy to do otherwise) and OPS5's forward chaining only
control strategy.

In addition, heuristic search may be performed under
the user's
control by using facilities provided in DUCK. This may
(depending on the heuristics introduced) result in a further
reduction in search time. Also, DUCK has a mechanism to allow
partial searches. This feature not only reduces the search
time but also aids the debugging.

Further details on the language system are described
in CMcdermott 831 (Appendix *3). Unfortunately, this rather
unreadable manual/functional description is the only document
available for the system.

Using DUCK on VAX/VMS

Assuming that DUCK is installed in a system directory,
the following sequence initiates a DUCK session:

$ DUCK (or duck)

154c00 bytes read into 2c00 to 1577-FF
duck version IDUf3-4.131:

.DUCK herald message. User may
require an additional memory
allotment from the system
manager. DUCK uses an arrow
(->) as prompt.

- > (load '<file-specification>)

The contents of a file (DUCK
predicates) are loaded into
memory. This may not be the
case when starting an entirely
new DUCK program.

- >
enter, modify, or delete

predicates in knowledge
base using commands available
under DUCK.

-> (exit)

Exiting DUCK.

Back to the VMS.

3.3.3 Examples of DUCK program

Two programs are shown below as examples of a DUCK
program.

3.3.3.1 A classification expert

This program has a small amount of knowledge in its
knowledge base to conduct simple discrimination tasks among
animal s.

At the beginning of a session the user imagines an

animal in his/her mind. The program asks the user a number of
questions concerning the features of the animal that the user
chose. The sequence with which these questions are asked is
governed by a set of rules so that unintelligent questions
such as "Does it nurse its young with milk?" be asked
following a "no" answer to "Is it a warm blooded animal?".
The user must answer these questions consistently in regard

to the animal.

Answers to these questions are stored in templates in

the database. The template has a structure:

(answer <question-id> <reply>)

where,

question-id is an identifier of the question asked,
reply is a yes/no answer to the question.

The filled template then becomes a clause in the antecedent
of rules which are used to identify animals. Matching is
sought in backward chaining to identify the animal.

Obviously, only a rule with all its AND conditions asserted
fires.

Shown below is a program listing, followed by a log of
trial sessions:

3 - 27

A classification expert

(workspace-push , duck-dumd-animal)

Define the various animals

(defsymtype ANANIMAL SYMBOL)
(duclare ANANIMAL chicken crocodile dog dolphin froc mosquito
robin snake tiger tuna whale worm)

.Define the various , features of animals

(defsymtype FEATURE SYMBOL)
(duclare FEATURE backbone warm-blooded nurse
water huge domesticated gills

gills-then-lungs legs begin fly)

Define the questions

(defpred (question FEATURE ?f STRING ?q)
(question backbone "Does it have a backbone?")
(question warm-blooded "Is it a warm-blooded animal?")
(question nurse "Does it nurse its young with milk?")
(question water "Does it live in the water?")
(question huge "Is it huge?")
(question domesticated "Is it a commonly domesticated
animal?")
(question fly "Cari it fly?")
(question gills

"Does it have gills and live all its life in the water?")
(question gills-then-lungs

"Does it start life with gills and then become an air breather?")
(question legs "Does it have legs?")

, 	Define what is allowed for answers

(defsymtype YNANSWER SYMBOL)
(duelare YNANSWER yes no)

Define question order

(defpred (next-question FEATURE ?old YNANSWER ?tnil FEATURE ?new)

(next-question begin yes backbone)

(next-question backbone no fly)

(next-question backbone yes warm-blooded)

(next-question warm-blooded yes nurse)

(next-question warm-blooded no gills)

(next-question nurse yes water)

(next-question nurse no fly)

(next-question water yes huge)

(next-question water• no domesticated)
(next-question gills no gills-then-lungs)

(next-question gills-then-lungs no legs)

User responses are kept as ANSWERs

Cdefpred(answer_FEATURE _?f_YNANSWER ?yesno)
(answer begin yes))

Rule sequencing:A question about ?feature can be
asked if it has not already been
asked and its precusor has been
answered correctly.

(defpred (askable FEATURE ?f)
(<- (askable ?feature)

(and (next-question ?prey ?ans ?feature)
(answer ?prey ?ans)
(thnot (answer ?feature ?yn))))

We use begin as a way to start questions

Now we define the correspondence between animals
and features.

(duclare animal (fun PROP (ANANIMAL) ()))
(::: animal template
((animal ?a) (?a " is the animal")))

(rule its-a-worm
(<- (animal worm)
(and (answer backbone no)

(answer fly no)))
)

(rule its-a-mosquito
(<- (animal mosquito)
(and (answer backbone no)

(answer-fly yes)))

(rule its-a-snake
(<- 	(animal snake)

(and 	(answer backbone yes)
(answer warm-blooded no)
(answer gills no)
(answer gills-then-luncs no)
(answer legs no)))

(rule its-a-crocodile
(<- 	(animal crocodile)

(and 	(answer backbone yeS)
(answer warm-blooded no)
(answer gills no)
(answer gills-then-lungs no)
(answer legs yes)))

(rule its-a-frog

(<- 	(animal frog)

(and.---(answer.backbone yes) - ---
(answer warm-blooded no)

(answer gills no)

(answer gills-then-lungs yes)))

)

(rule its-a-tuna

(<- 	(animal tuna)
(and 	(answer backbone yes)

(answer warm-blooded no)

- 	. 	. 	(answer gills yes)))
)

(rule its-a-chicken

(<- 	(animal chicken)
(and 	(answer backbone yes)

(answer warm-blooded yes)

(answer nurse no)

(answer fly no)))

)

(rule its-a-robin

(animal robin)

(and 	(answer backbone yes)

(answer warm-blooded yes)

(answer nurse no)

(answer fly yes)))

)

(rule its-a-tiger

(<-

(animal tiger)

(and 	(answer backbone yes)

(answer warm-blooded yes)

(answer nurse yes)

(answer water no)

(answer domesticated no)))

)

(rule its-a-dog

(<- 	(animal dog)
(and 	(answer backbone yes)

(answer warm-blooded yes)

(answer nurse yes)

(answer water no)

(answer domesticated yes)))

(<-

)

(rule its-a-dol phin
((- 	(animal dolphin)

(and 	(answer backbone yes)
(answer warm-blooded yes)
(answer nurSe yes)
(answer water yes)
(answer huge no)))

(rule its-a-whale
(animal
(and

whale)
(answer backbone yes)
(answer warm-blooded yes)
(answer nurse yes)
(answer water yes)
(answer huge yes)))

(< -

(:= first-dp* dp*)

(de whatanimal
(do Na-anis (fetch 5 (animal ?x)) (fetch , (animal ?x)))

(dp* (dp-push first-dp*))]
Ca-ans (progn (dp-kill dp*)

(cadr (assoc 'x (caar a-ans)))]
(for-first-ans (fetch ' (askable ?feature))
(for-first-ans (fetch ' (question ?feature ?english))

(princ ?english) 	 •
(cond C(is-yes (read)) (premiss /(answer ?feature yes))3

Et (premiss ' (answer ?feature no))3)

)

(de animals ()
(do [(la nil):

. 	Enill
(princ "Do you want to play animal?")
(cond C(is-yes (read))

(:= la (whatanimal))
(terpr)
(terpr)
(princ "The Animal is a ")
(princ la)
(princ " !")
(terpr)
(terpr)3

Et (return)3)
)

(princ "ANIMAL.DUC Loaded")
(terpr)
(princ "TYPE (animals)")
(terpr)

-

Ii

1
- 	32. 3

II

11

11

li

II

11

II

Do you want to play animal?yes
Does it have a backbone?yes
Is it a warm-blooded animal?yes

'Does it nurse its young with milk?yes
'""Does it live in the water?no

14 s-it a-commonly domesticated
animal?no

717711

The Animal is a tiger !

Do you want to play animal?yes
Does it have a backbone?yes
Is it a warm-blooded animal?yes

'Does it nurse its young with milk?no
'Can it fly?no
11171

The Animal is a chicken !

Do you want to play animal?yes
Does it have a backbone?no
'Cari it fly?no
117

The Animal is a worm !

Do you want to play animal?yes
Does it have a backbone?yes
Is it a warm-blooded animal?no

'Does it have gills and live all its life in the water?no
'Does it start life with gills and then become an air breather?no
'Does it have legs?yes

The Animal is a crocodile !

Do you want to play animal?no
nil
-> (exit) 	-

. 	 .
I I I
I I I

I I I 	B a 	 I I

• • •

•

•

B

a 	 a

A

3.3.3.2 Data pool control

A test program was written and run to test the
datapool feature of DUCK. In DUCK, datapool is used jointly
with the truth maintenance system to maintain dependency
directed backtracking. With this mechanism, changes to data
can be reflected throughout the data base.

In the following example, situations created in a
"bl oc k s world" that has three boxes A, B, and C is saved in
different data pools. For instance, data pool 1 records a
situation in which the three boxes are placed side by side on
the table, as ahown in Figure 3.3a, while data pool 3 has

a. Data pool 1

b. Data pool 2

• C

I 	B

A

c. Data pool 3

Figure 3.3 A block's world examp.le

3 -

them stacked up in the or-der of A. B, and C, -F rom the surface
of the table up. These situations may depict intermediate
states created by a robot executing a task. The task could be
"Begin with situation in datapopl 1 and end with a situation
in which box C sits on top of A and box A sits on top of box
B.

The DUCK's truth maintenance system would allow the

robot to 'go back' to an earlier situation and try a
different sequence of actions from there. Such switching of
context without tracing back actions taken in the past in
reverse chronological order, can be done if a history of data
dependencies is maintained. The reasoning mechanism of DUCK
may switch data pools and conduct inference on assertions
particular to the context represented by the new data pool.

The program shown below demonstrates creation of three
data pools. Note in a logic programming system without this
facility, contradiction among assertions, such as "B is on A"
as in data pool 2 and 3 and "B is on table" as in data pool
1, cannot be tolerated, drastically limiting the real-world
applicability of the approach.

Data pools

(workspace-push 'datapool)

.(deftype object_SYMBOL)
(duclare object table A S C)

(defpred (ON object ?x object ?y))

(:= first-dp dp*)

(premiss '(ON A table))
(premiss '(ON B table))
(premiss '(ON C table))

(terpr)
(princ "***** Contents of data pool 1 *****")(terpr)
(terpr)
(for-each-ans (fetch '(ON ?x ?y))

(princ "
(princ ?x)
(princ " is on ")
(princ ?y)
(princ ".")
(terpr)(terpr)

3 - 34-

(:= second-dp (dp-push dp*))
(let ((dp* second-dp))

(premiss '(ON B A))
(erase , (ON B table))

(terpr)
(princ "***** Contents of data pool 2 *****")(terpr)
(terpr)
(for-each-ans (fetch 1 (ON ?x ?y))

(princ "
(princ ?x)
(princ " is on ")
(princ ?y)
(princ ".")
(terpr)(terpr)

)
(:= third-dp (dp-Push dp*))
(let ((dp* third-dp))

(premiss , (ON C B))
(erase '(ON C table))

(terpr)
(princ "***** Contents of data pool 3 *****")
(terpr)(terpr)
(for-each-ans (fetch '(ON ?x ?y))

(princ "
(princ ?x)
(princ " is on ")
(princ ?y)
(princ ".")
(terpr)(terpr)

)

(terpr)
. (princ •"***** Contents of data pool 1 *****")

(terpr)(terpr)
(for-each-ans (fetch '(ON ?x ?y))

(princ ")

(princ ?x)
(princ " is on ")
(princ ?y)
(princ ".")
(terpr)(terpr)

-

_'_datapoolg.duc) _
IN WORKSPACE datapool
Autosave mode: save
7111

***** Contents of data pool 1 *****

	C _is .on_table. _

B is on table.

A is on table.

1 1 I 1 1

***** Contents of data pool 2 *****

B is on P.

A is on table.

C is on table.

***** Contents of data pool 3 *****

C is on B.

B is on A.

A is on table.

***** Contents of data pool 1 *****

C is on table.

B is on table.

A is on table.

4. The Semantic Network paradigm

4.1 SANS

4.1.1 Semantic network and SANS

Semantic network is a knowledge representation
technique initially proposed in the early 60s. The idea
originated from the Cognitive Science camp of a then loosely
formulated school of AI. The formalism has fundamental
psychological and physiological overtones. The approach of
capturing and accessing human thought processes based on a
method similar to that found in these sciences caught
popularity but died away by the early 70s. Failure was due to
weakness in formalism and too much flexibility in the
interpretation of the meaning provided by semantic network.

A new breed of semantic networks began to reappear in
the latter half of the 70s following Minski's historical
'frames' declaration of 1975 [Minsky 753. Semantic network
approach was then re-instated with 'frames' as its central
concept. One of the weaknesses of the earlier semantic
network was the loose and freer definition of nodes and arcs
in the network. If one replaces arbitrarily defined nodes
with frames, and arcs with taxonomical and
similarity/dissimilarity links among frames, an entirely new
type of semantic network formalism is created. This is indeed
what was done.

KL-ONE, or Knowledge Language One [Brachman 78] is the
first well known semantic network system of this generation.
Others include Carnegie-Mellon University's Schema
Representation Language, or SRL [Fox 783, Stanford
University's UNITS system [Stefik 80], and Schubert's efforts
[Schubert 76]. Current research centere around the methods of
procedural attachment to slots of a frame, of including
stronger .deduction mechanisms to the network and of
interconnecting frames using production rules. Toronto
University's PSN [Mylopoulos et al 83], Krypton being
developed at Schlumberger Palo Alto Research (SPAR) [Brachman

et al 83], and KEE 20 system developed by IntelliCorp [Kun
et al 84], respectively, are examples of current development
projects.

SANS is a frame based semantic network (called
associative network in the SANS for historical reasons)
system developed for tutorial purposes. It is mostly aimed at
deepening the understanding of the semantic network concept,
while allowing development of simple applications using

4 -

semantic network representation. Basic concepts of semantic

network organization, generic vs. instantiated nodes, valued

slots of a node, property inheritance, and demons as a form

of procedural attachment are all included in the systems.

SANS uses nodes, slots, values, and demons to

construct a semantic network. 	A node is also called an

object, much in the same sense the term is used 	in

object-oriented programming. Objects, or nodes are described

in SANS in terms of their properties and the relationships

among them. Further details of the SANS features and its

access commands are found in the manual [Hayes 83] (Appendix

*2) and a tutorial note [Berg 84] (Appendix *1).

Not all reasoning problems are suitable for semantic

network representation. In fact, the present application of

semantic network is still very limited because of its limited

ability to represent.' Only classification problems and

certain types of diagnosis problems are effectively solved

using semantic network approach. SANS has the limitation too.

It is best suited in problems where there is a strong

taxonomy in the application. Basic understanding of the

semantic network paradigm can be obtained by reading text

books [Winston 84a] (Chapter 8), [Winston 84b] (Chapter 22),

Nilsson 80] (Chapter 9), [Cohen and Figenbaum 82] (All three

volumes, use index to look for 'semantc network').

Assuming that an appropriate application domain is

defined, in drder to develop a SANS-based system, one

proceeds as follows:

(1) Describe the application in the form of a taxonomy. This

may 	involve 	clarification and definition of basic

concepts 	(eg., 	managers, 	workers, 	superiors,

subordinates, departments, merchandise, customers,

equipment, etc.) and their relationships to the other

concepts,

(2) Develop a template node structure using commands in SANS

for that purpose. 	The template node defines a generic

concept in the system in terms of attribute slots and

their default values. 	Template nodes for all basic

concepts evident in the application must be developed.

Then they must be connected according to the taxonomy

developed in step (1).

(3) Define and 	implement, 	again using SANS commands,

procedures to be attached in the farm of demons to some

of the slots in the template nodes,

(4) Using system commands provided in SANS for that purpose,
develop an instantiated node structure that corresponds
to actual instances of the template node (generic
concept) structure. For example, the concept of 'APEX
Corporation may be developed as an instantiated case for
the generic concept 'company . , and 'Shipping dept.' for
*department',

(5) Using commands to activate demons, execute attached
procedures and compute values or cause actions desired. A
possible action may be to fill a slot of another node.

4.1.2 Using SANS on VAXIVMS

The SST tutorial software (ASPTP, SANS, OPS5, ATN) is
stored under directory

SYS$SYSDISK: [PACKAGE.SST.TUTORIAL.SSTC.AIC13.

Follow the steps shown in Section 3.2.3 above until the
tutorial software menu is displayed.

- > (sans)
Select SANS. All inputs in
lower case.

Efasl sstlelib:rsans.0]

Leaving Workspace: background
In Workspace: sans

Leaving Workspace: sans
In Workspace: background
Type (rstest) to load in example associative network
nil

- > (workspace 'mysans)
Define your own workspace.

- > (load '<file specification>)

Load predefined SANS program.
This command may not succeed if
the user does not have
sufficient priviledge. Use SANS
interactiyely, if not.

4 - 3

SANS commands follow.

4.1.3 SANS program examples

The following is an example SANS program which deals
with basic statistics of Canadian provinces. Two sets of
nodal (or frame) structures are constructed: template and
instance. 	For each structure, nodes (or frames) are created
by defining their slots and the value of the slots. 	Lisp
+unctions 	are written to go around the defined
frames and collect statistics by tabulating values from a
specified slot.

Both template and instance frames are displayed
below, followed by the results of the run.

SANS example

An associative network for geographical
information about provinces in Canada

(workspace 'mysans)

Define Template-nodes and slots

(make-templ'ate 'country 'ru 1)
 (add-slot 'country 'capital 0)

(make-template 'province 'country)
(add-slot 'province 'provincial-capital 0)
(add-slot 'province 'area 0)
(add-slot 'province 'population 0)

(add-slot 'province /floral-emblem 0)

(add-slot 'province 'date-become-province 0)

Define Instance-nodes

(make-instance 'nil 'country 'Canada)
(put-value 'capital /Ottawa 'Canida)

-4-4

(make-instance
(make-instance
(make-instance
(make-instance
(make-instance
(make-instance
(make-instance
(make-instance
(make-instance
(make-instance

' Canada '

Canada 7

' Canada
'Canada
'Canada 9

• Canada '

' Canada /

Canada 7

7 Canada

Canada

province
province
province
province
province
province
province
province
province
province

' B. C.)

' ALTA.)

' Sask.)

/ Man.)
/ Ont.)

' P. Q.)

' Nfld.)

N. B.)

N. S.)

 ' P. E. I.)

(put-value

(put-value

(put-value

(put-value

(put-value

(put-value

(put-value

(put-value
(put-value

(put-value

'provincial-capital Victoria ' B .C.)

provincial-capital ' Edomonton ' Alta.)

provincial-capital Regina Sask.)

provincial-capital Winnipeg Man.)

provincial-capital "Toronto Ont.)

provincial-capital Quebec P. 0.)

provincial-capital ST. Johns Nfld.)

provincial-capital ' Fredericton N. B.)
provincial-capital Hal i fax ' N. S.)

provincial-capital Charott et own ' P. E. I.)

(put-value ' area 7 948596 B. C.)

(put-value 	area 661185 ' l ta.)

(put-value ' area 651900 Sask.)

(put-value ' area '650087 'Man.)
(put-value ' area 1068582 Ont.)

(put-value ' area 1540680 P. Q.)

(put-value 	area 404517 Nfld.)

(put-value ' area '73437 ' N. B.)

(put-value ' area '55490 ' N. S.)

---fput-value—' area 5657 -1 P. E.-I.)

(put-value 'population ' 2184621 B. C.)

(put-value 'population 1627874 Alta.)

(put-value 'population 926242 Sask..)

(put-value 'population 988247 ' Man.)

(put-value 'population 7703106 Ont.)

(putrr_val popul at ion '_6027764 P. Q.)

 (put-value 'population 522104 Nfld.)

(put-value 'population 634557 'N. B.)

(put-value 'population '788960 N. S.)

(put-value ' populat ion ' 111641 P. E. I.)

(put-value
(put-value
(put-value
(put-value

(put-value

(put-value

(put-value

(put-value

(put-value
(put-value

Floral-Emblem Flowering-Dogwood B. C.)

' Floral-EmiDlem Wild-Rose "Alta.)

Floral-Emblem / Prairie-Li 1 y Sask.)

Floral-Emblem Pasqueflower ' Man.)

Floral-Emblem / White-Trillium Ont.)

Floral-Emblem 9 White-Garden-Li ly P. Q.)

7 Floral-Emblem Pit chér -P I ant 9 Nfld.)

Floral-Emblem ' Violet N. B.)

Floral-Emblem Trai 1 ing-Arbut us N. S.)

Floral-Emblem Ladys-Sipper 1 P. E. I.)

(put-value
(put-value
(put-value
(put-value
(put-value
(put-value
(put-value
(put-value
(put-value
(put-value

'Date-Become-Province
'Date-Become-Province
'Date-Become-Provincé

'Date-Become-Province
'Date-Become-Province
'Date-Become-Province
'Date-Become-Province
'Date-Become-Province
'Date-Become-Province
'Date-Become-Province

1871

'1905

1905

1870

1867

1867

1947

1867

1867

'1873

' B. C.)
Alta.)

e Sask.)

Nan.)

Ont.)

P. O.)

Nfld.)

N. B.)

'N. S.)

P. E. I.)

LISP functions

(de provincial-capital (x)

(get-value 'provincial-capital x))

(de area (x)

(get-value 'area x))

(de population (x)

(get-value 'population x))

(de Floral-Emblem (x)

(get-value 'Floral-Emblem x)

(de Date-Become-Province (x)

(get-value 'Date-Become-Privince x))

111

1
ti

II

ii

ii

[11

II

II

II

111

-) (provincial-capital 	B.C.) _ _ 	_ _ . _ 	_ . . . _
victoria
-) (provincial-capital 	Pita.)
edmonton

- > (provincial-capital 	Man.)
winnipeg

-> (provincial-capital 	N.S.)
halifax

-) (provincial-capital 	Ont.)
toronto

-) (area B. C..
948596

- > (area Plta.)

661185

-) (area Man.)
650087

-> (area N. S.
55490

- (area Ont.)
1088582

-> (population B. C.
2184621

-> (population Pita.)
1627874

-> (population Man.)
988247

-> (population N.S.)

788960

-> (population Ont.)
7703106

-> (Floral-Emblem B. C.
flowering-dOnwood

-) (Floral-Emblem Plta.)

wild-rose
- > (Floral-Emblem Man.)
pasqueflower

-) (Floral-Emblem N.9.)

trailing-arbutus
-) (Floral-Emblem Ont.)
white-trillium
-> (Date-Become-province 	B. C.
1871

-> (Date-Become-province 	Plta.)
1905

-) (Date-Become-Province 	Man.)
1870

-> (Date-BecOme-Province 	N. S.

1867

-> (Date-Become-Province 	Ont.)
1857

4.2 PSN

4.2.1 Features of PSN

Based on Hecter Levesque's 1977 proposal, Procedural
Semantic Network has been developed at the Computer Science
Department of the University of Toronto under Professors John
Mylopoulos and John Tsotsos during the past seven years,
involving many research staff at the department. The system
is one of the most sophisticated and advanced Knowledge
Representation (KR) systems in the world today. While present
implementation of the language is not efficient enough to be

used in a great number of applications, it has already been
proven useful in large scale prototypes of advanced expert
systems ETsotsos Ohl EShibahara et al 93].

The most salinus aspect of PSN is its rigid definition
of the structural aspects of knowledge. Classes and relations

are defined as entitieS representing generic concepts - like
person, house, flower - while relations represent generic
relationships such as parent_of, above, and citizen_of.

Tokens and links are instantiated entities corresponding to
classes and relations. Procedural elements are introduced

into the language in terms of four access primitives attached
to a class: TO-GET, TO-REM, TO-TST, and TO-PUT, for creating,
deleting, testing and collecting objects.

There are three fundamental relationships defined in

the PSN: IS-A, INSTANCE-OF, and PART-OF. Of these, IS-A
relation is similar to that in many other semantic network
systems and implies a generalization/specialization taxonomy.
PART-OF relation is for aggregation/division, and INSTANCE-OF

for catagorization. 	Most other semantic network languages,
including 	the popular KL-ONE, do not distinguish the

taxonomical differences as in PSN, which are very subtle and

hard to handle properly. An application system with very
elaborate descriptions of its components and relationships
may be constructed using PSN. However, the performance of
such a system will be poor and impractical for running on a

VAX-11/790.

PSN has a hierarchical structure. Each layer of the
hierarchical language offers a set of representational
features that includes features of an inner layer. PSN/0 is

the most fundamental layer supporting only the INSTANCE-OF

relation. PSN/1 adds IS-A and a simple form of PART-OF to
depict organizational knowledge in a system. PSN/2 introduces

the more sophisticated PART-OF, along with similarity links

and exceptions. Similarity links connect classes of similar

attributes, and suggest other classes to be tried when a

match fails between a given class and input data. When a

match failure occurs, an exception is raised. It determines

which similarity link should be used to suggest other classes

to be tried for matching. Although the development group has

plans for further expansion (ie., PSN/3 on), it is unlikely

that such development will happen.

Appendix *4 is a copy of PSN User's Manual.

4.2.2 Using PSI'! on VAX/VMS

There are two versions of PSN interpreter, PSNI and

PSN2, installed on A&SL VAX-11/780. Use PSN2 as follows:

Spsn2

77800 bytes read into 2c00 to 7a3ff

Note Franz Lisp is also loaded.

(include <user psn source file>)

Use include command to load PSN

definitions.

(*list:4364:68 7.] ; fixnum:24:07); 3

Eigist:446C67%); fixnum:2C0n; 3

[*list:4561:66%); fixnum:2{07.};

User PSN file loaded.

-> (Flora-Emblem Alta.)

Floral emblem of Alta. is Wild-Rose

PSN is ready for access using

• 	 user defined knowledge base.

4.2.3 PSN program example

An example very similar to the one made for, the SANS

(Section 4.1) is written for PSN. The knowledge base stores

in a structure, facts about Canada: population, land area,

Floral emblem, capital. 	Same sets of information are also

stared for the provinces. 	A set of Lisp functions are

provided to access the 	classes (frames) in which 	this

4-

knowledge is stored. 	Some of them simply retrieve the
knowledge, while others compute a value (eg., population
density). In the last set of examples, PSN's own fetch
function (:$) is used to retrieve information from frames.
Shown below is the knowledge base developed, and the results
of runs performed using the developed knowledge.

PSN example

PI procedural semantic network for geographical
information about provinces in Canada

Class definition for various geographical elements

(:+ class (ident Name) nil nil nil)

(:+ class (ident Geographical-unit)
1 ((to-put stdputms))
1 (class)
' ((Head-slot slot)))

(ident . Head-slot)

(:+ class (ident Geographical-entity) nil nil nil)

(:+ Geographical-unit (ident Province) nil
, (Geographicàl-entity)
, ((Provincial-capital Name)

(Area number) 	-

. (Population number)
(Floral-Emblem Name)
(Date-Become-Province number)))

(ident Provincial-capital Area Population
Floral-Emblem Date-Become-Province)

(:+ Head-slot Province Provincial-capital)

(:+ Geographical-unit (ident Country) nil
, (Geographical-entity)
, ((Capital Name)

(Area number)
(Population number)
(National-Emblem Name)
))

4 — to

(ident Capital National-Emblem)

(:-1- Head-slot Country Capital)

(:-F. relation (ident Contains)
1 ((domain Geographical-entity)

(range Geographical-entity)) nil)

Knowledge base definition

(I dent Victoria Edomonton Regina Winnipeg Toronto
Quebec ST. Johns Fredericton Halifax
Charottetown)

(ident Flowering-Dogwood Wild-Rose Prairie-Lily
Pasqueflower White-Trillium White-Garden-Lily
Pitcher-Plant Violet Trailing-Arbutus
Ladys-Si pper)

(ident Canada)

(ident B. C. Alta. Sask. Man. Ont. P. Q. Nfld. N. B.
N.S. P.E.I.)

(mapcar (f:1 (name) (:-1- Name name nil))
' (Victoria Edomonton Regina Winnipeg Toronto
Quebec ST. Johns Fredericton Halifax

• Charottetown

Flowering-Dogwood Wild-Rose Prairie-Lily
Pasqueflower White-Trillium White-Garden-Lily
Pitcher-Plant Violet Trailing-Arbutus
Ladys-Sipper Ottawa Maple))

Class "Canada"

(:-1- Country Canada ' ((Capital Ottawa)
(Area 9970000)
(Population 21830000)
(National-Emblem Maple)))

-4- -

Provinces defined as a class

(:+ Province B.C. '((Provincial-capital Victoria)
(Prea 948598)

(Population 2184621)
. (Floral-Emblem

Flowering-Dogwood)
(Date-Become-Province
1871)))

(:+ Province Alta. '((Provincial-capital Edomonton)

(Area 661185)
(Population 1627874)
(Floral-Emblem
Wild-Rose)
(Date-Become-Province
1905)))

(:+ Province Sask. '((Provincial-capital Regina)
(Prea 651900)

(Population 926242)
(Floral-Emblem
Prairie-Lily)
(Date-Become-Province
1905)))

(:+ Province Man. /((Provincial-capital Winnipeg)
(Area 650087)
(Population 988247)
(Floral-Emblem Pasqueflower)
(Date-Become-Province 1870)))

(:+ Province Ont. '((Provincial-capital Toronto)

(Area 1068582)

. (Population 7703106)
(Floral-Emblem White-Trillium)

• 	 (Date-Become-Province 1867)))

(:+ Province P.O. '((Provincial-capital Quebec)
(Area 1540680)
(Population 6027764)
(Floral-Emblem
White-Garden-Lily)
(Date-Become-Province 1867)))

(:+ Province Nfld. '((Provincial-capital ST.Johns)

(Area 404517)
(Population 522104)
(Floral-Emblem
Pitcher-Plant)
(Date-Become-Province 1947)))

111

Ii

HI
HI
LI

II LISP functions to fetch the contents of PSN.

II
(defun Population-Density (P) -

(Population-Density-of P)(terpri)(terpri))

(:+ Contains Canada B.. C..
(:+ Contains Canada Alta.)

Contains Canada Sask.)
(:+ Contains,Canada Man.)
(:+ Contains Canada Ont.)
(:+ Contains Canada P. Q.

(:+ Contains Canada Nfld.)
(:+ Contains Canada.N.B.)
(:+ Conta iris Canada N. S.

 (:+ Contains Canada" P.E.I.)

To calculate the population density.

Canada - Provinces taxonomy

II

Ii

Ii

Ii

ii

(:+ Province N.B. ' ((Provincial-capital Fredericton)
(Area 73437)
(Population 634557)
(Floral-Emblem
Violet)
(Date-Become-Province 1867)))

(:+ Province N.S. 	((Provincial-capital Halifax)
(Area 55490)
(Population 788960)
(Floral-Emblem
Trailing-Arbutus)
(Date-Become-Province 1867)))

(:+ Province P.E.I. 	((Provincial-capital _
Charottetown)

(Area'5657)

(Population 111641)

(Floral-Emblem
Ladys-Sipper) .

(Date-Become-Province 1873)))

II

II -

(de fun Population-Density-of (P)
(terpri)(terpri)
(princ "Population density of ")
(princ P)
(princ " is ")
(princ (quotient (:$ Population P nil)(:$ Area P nil)))
(princ " persons per square kilometer.")(terpri)

To calculate the population density of all
provinces of country.

(defun Nationwide-Population-Density-for (C)
(foreach province (:$ Contains C ni l)

(Population-Density-of province))(terpri)(terpri))

To get the National emblem

(defun National-Emblem (C)
(terpri)(terpri)
(princ "National emblem of ")
(princ C)
(princ " is ")
(princ (:$ National-Emblem C nil))
(terpri)(terpri)(terpri))

To get the Floral emblem of province

(defun Floral-Emblem (P)
(terpri)(terpri)
(princ "Floral emblem of ")
(princ P)
(princ 	")
(princ (:$ Floral-Emblem P nil))
(terpri)(terpri)(terpri))

4

-> (National-Emblem Canada)

National emblem of Canada is Maple

nil
.-->-(Floral-Emblem Nfld.)

Floral emblem of Nfld. is Pitcher-Plant

nil
-> (Population-Density Ont.)

Population density of Ont. is 7 persons per square kilometer.

nil
-> (Population-Density . P.E.I.)

Population density of P.E.I. is 19 persons per square kilometer.

nil
-> (Nationwide-Population-Density-for Canada)

Population density of P.E.I. is 19 persons per square kilometer.

p lation density of N. S. is 14 persons per square kilometer.

Population density of N. B. is 8 persons per square kilometer.

Population density of'Nfld. is 1 persons per square kilometer.

Populatian density of P.O. is 3 persons per square kilometer.

Population density of Ont. is 7 persons per square kilometer.

Population density of Man. is 1 persons per square kiloffieter.

Population density of Sask. is 1 persons per square kilometer.

Population density of lta. is 2 persons per square kilometer.

Population density of B. C. is 2 persons per square kilometer.

(:$ Capital Canada nil)

Ottawa

-> (:$ Area Canada nil)

9970000

- > (:$ Population Canada nil)

21830000

~ (.4$ National-Emblem Canada nil)

Maple

-> (:$ Provincial-capital N.S. nil)

Halifax

- > (:$ Area N.S. nil)

55490

- > (:$ Population N.S. nil)

788960

-> (:$ Floral-Emblem N.S. nil)

Trailing-Arbutus

- > (:$ Date-Become-ProVince N.. S. nil)

1867

-> (exit)

4-1e

5. The production system paradigm

5.1 CLisp

5.1.1 Feature of CLisp

CLisp was developed between 1979 and 1903 by a group
at Computer and Information Science Department of the
University of Massachussets at Amherst. Et is aimed to be run
on VAX-11 family of computers running under VMS operating
system. This is the first serious non-UNIX Lisp for this
computer before Common Lisp. It has been the base language
for a numnber of AI projects at that department, including
the well-known HEARSAY-II speech understanding system project
conducted there by Prof. Victor Lesser and Dr. Dan Corkill.

CLisp has an extensive on-line help facility which
explains virtually all lauilt-in functions. Entering

(help)

user gets a list of functions explained by the facility.
According to (help HELP), one of the explanations under this
facility, help for a particular CLisp function can be
obtained by typing:

(help <category> <function>)

if the user is not using CLisp editor, or

(clisp-help <category> <function>)

from within CLisp, anywhere. A <category> <function> may be
of the following fromat:

• - an alphanumeric string,

- a match-al (wildcard) symbol, "*".

- any of the above folowed by "..."

Examples are :

(help misc func) 	Prints out the description of
the function 'func' from
category miscellaneous.

(help constructors *) will print out the descriptions
of all constructor functions -
functions that returns lists,

-

S-expressions, attribute-lists, or
from their arguments.

(help input_output ...) 	Prints out the names of all
input output functions.

(help * fc-average)

(help 'TM))

(help *...)

Prints out the description of
function fc-avarage, looking
under all categories.

Prints out the names of all
categories without help
information.

Prints out the entire help
document.

In addition, the CLisp help facility follows the
identical control/display format as the VMS Help facility.
User can access hierarchically structured help information
selecting them from the list of topics on which additional
information is available. Prompts such as 'Topics?' and
'Subtopc?' guide the process, as in the VMS Help facility.

5.1.2 Using CLisp on VAX/VMS

CLisp interpreter may be accessed by entering the
following sequence to a VMS prompt:

$ clisp

Clisp: Enter Lisp functions ...

Typically, one or more of the
following functions are entered
at the beginning of a Clisp
session.

CLisp: (lcad-file '<filename>)

Reads in file <filename>. File
type must be .LSP.

CLisp: (create-file '<filename>)

De-fines a new file to be created
in the session.

CLisp: (de -Fun <fuction name> (<arguments>)
Kfunction definition> . 	.

Defines a new function. More

definitions or executions of a

function follow

CLisp: (help <topic>)
Prints out information on the
use of CLisp in general and on
all of its functions.

CLisp: (exit) 	Terminates a session.

End CLisp Run
dd-mmm-yyyy hh:mm:ss.xx 	Date and time of termination

CPU Time (seconds) = 19.32 	and system statistics.
Pagefaults 	= 931
Garbage Collections = 6
End CLisp run

Back to VMS.

5.1.3 CLisp program example

The well-known monkey and banana problem is chosen to
demonstrate CLisp in problem solving.

At the beginning, a monkey, a table, and a banana all
are located separately in any of the three rooms, room 1, 2,
or 3. The banana is hung from the ceiling and monky may move
the table from ay other room to reach at it. The problem is
to write a program that predicts the monkey's movement.

The following rules apply:

- If the monkey, the banana, and the table are all in

the same room, the monkey will reach out and eat
the banana

- If the monkey and the banana is in the same room,
but the table is in another room, the monkey goes to
that room to get the table. Then the above rule
applies.

- If the monkey, the banana, and the table are all in
different room (the initial condition), the monkey
first goes to the room where the table is. Then the
above rule applies.

3

II

Ii

tll
ii

Using these rules, a program shown below is written in
CLisp:

CLisp: (print-file 'monkey)

	

USERSDISK1:CAISYS2.SST7MONKEY.LSP:6 	modified: 7-JAN-1965 08:35:34.44

It 	
fil contents:

monkey-and-banana

new-world

place

assoc

get-banana

monkey-and-banana 	 modified: 	6'--J3N-1985 16:22:24.49

(lambda (L)

(cond

((equal (place L 'banana) (place L 'monkey))
(cond

((equal (place L 'table) (place L 'monkey))
. 	(cons (list 'monkey 'eats 'banana) nil))

(t (cons (list 'monkey

'moves

(place L 'monkey)
'to

(place L 'table)
'and

bri n s

'table
'from

(place L 'table)

'to

(place L 'monkey))
(monkey-and-banana (new-w or ld L

'table
(place L 'monkey)))

))))

(t (cons (list 'monkey

'Moves

'from

(place L 'monkey)

'to

(place L , banana))-

(monkey-and-banana (new-world L

'monkey

(place L ,banana)))))))

fi

II
II

ii

II

li

li

- 4

/I new-world 	 modified: 	6-JAN-1985 1622:24.60

(lambda (L X Y)
_e_nd ((null L) ni 1)

- ((equal (caar L) X) (cons (list (caar L) Y) (cdr L)))

(t (cons (car L) (new-world (cdr L) X Y)))))

11

to
place 	 modified: 	6-JAN-1985 16:2224.62

(lambda (L X)
(car (assoc X L)))

assoc 	 modified: 	6-JAN-1985-16:22:24.64

(lambda (X L)

(cond ((equal X (caar L)) (cdar L)) (t (assoc X (cdr L)))))

11
g et -banana

1 11

modified: 	7-JAN-1985 08 :55:34.87

(terpri)

(terpri)

(terpri))

(lambda (L)

(mapc (monkey-and-banana L)

'(lambda (Z)

(terpri)

(terpri)

(print Z)))

(111 ("USERSDISK1:CAISYS2.SSTJMONKEY.LSP;8")

11

11

e

room 1

(monkey)

I room 3

1 room 2
1

(table)

(banana)

Three sets of initial conditions shown in Figure
are chosen to test the program.

%...1 • 1

1 room 1 	I room 2
. 	.. 1

. . 	(monkey) 	. 	(banana) I
8 . 	. .

+ 	+ 	--

(table)

1 room 3

Case 1

Case 2

	+ 	.
I room 1 	1 room 2 	.
• I 	I . 	. 	.
: 	(table) 	(banana) 	1
. I 	I I 	. 	.
+ 	.1. 	4.

I I 	 1

I . 	(monkey) 	.
. 	 1
I room 3 	 .
._

Case 3

Figure 5.1 Monkey and banana problem initial conditions

The results pi the three runs are shown below:

CLisp: (bet-banana /((monkey room-1)(banana room- E) (table room-3)))

(monkey moves from room-1 to room-2)

(monkey moves room-2 to room-2 and brings table from room-3 to room-2)

(monkey eats banana)

nil

CLisp: (et -banana 1 ((monkey room-i)(table room- 2) (banana room-3)))

(monkey moves from room-I to room-3)

(monkey moves room-3 to room-2 and brinds table from room-2 to room-3)

(monkey eats banana)

CLisp: (et -banana ((table room-1) (banana room-2) (monkey roc:m-3)))

(monkey moves from room-3 to room-2)

(monkey moves room-2 to room-1 and brings table from room-I to room-2)

(monkey eats banana)

nil

CLisp: (exit)

Ls?

5.2 OPS5

Features of OPS5

OPS5 is a Production Language developed at

Carnegie-Mellon University (CMU) by John McDermott and
Charles Forgy. The term production is used in Cognitive
Science, and is synonym of 'rule' or 'rule-based'. It is

specifically designed for building expert systems based on
the theoretical study by Allan Newell and Hubert Simon of
CMU.

OPS5 may be considered a Fortran of AI languages in
its practicality and ease of use. One can write expert
systems in Fortran, albeit with a great difficulty. The major
difference between writing expert system in Fortran (Pascal,

Bliss, or C, for that matter) and in OPS5 is that in Fortran,
the programmer, acting as an expert or expert's interpreter
must code the intelligence in the program as a series of

instructions fixed and executed the way it was written. In
OPS5, the intelligence lies mostly in the knowledge that is
captured and stored separately, and completely detached from
the control structure. This form of processing intelligence
is much closer to (what we know of) the model of human
intelligence.

OPS5 has a working memory (WM) filled with working
memory elements. The WM is often related to the human short
term memory. It has productions which are if-then rules of
the form IF Cl...Cn THEN Al...Am, where Cl...Cn is a list of
conditional elements and Al...Am a list of actions. Cl...Cn
is called the Left Hand Side (LHS) of the production and
Al. .Am the Right Hand Side (RHS).

The conditional elements of the production (synonym of
rule) are compared' against the WM elements. If they

simultaneously match some constellation, then the actions can
be performed. The set of productions whose conditional

elements -are satisfied is called the conflict set. It is

called so because only one of them can be chosen for
execution at a time. A conflict resolution strategy, which is
modifiable, is used to select the production to run next from
the conflict set. Running the production means performing
actions specified by its RHS. Productions can be removed from

and added to the conflict set due to actions modifying the
WM. The entire set of coded productions is stored in a
knowledge base, which is analogous to the long term memory in
the model of human thought process.

The default conflict resolution strategy of OPS5 is

described below:

1. Avoid 	simple 	infinite loops by never running a
production on the identical constellation of the WM
elements.

2. Give preference for productions that match more
recently defined WM elements.

3. Give preference for productions with longer LHSs that
match WM elements of the saine age.

4. Randomly pick a production from the set that survive
condition 4.

An action on the RHS of a production can be to call a
LISP function to:

- create new WM elements

- interrogate knowledge bases

- perform specialized input or output.functions for
user inferf ace

WM elements can have status "unasked", "T user", "nil
user", or "T PN" or "nil PN" where "user" means the user gave
this information and PN means the element was modified
directly by a production and PN is its name.

Another 	function 	allows list representations of
slightly modified Fortran format statements to be printed out
at the terminal.

Special WM elements may have to be created to enforce
sequentiality if a number of if-then statements must be
executed in a particular order. The extra elements added to
the appropriate RHS and LHS are called control elements
because they encode the state of the production system rather
than actually representing the description of the problem or
solution.

Looping is also implemented using control elements. 3
productions can be used for this:

-one to initialize the loop by creating a control
element

-another to perform the looping function

-a final one to terminate the loop and remove the
control element

A double loop is implemented with a "same-name" loop

to avoid having to introduce new names when updating fields.

Both the "loop trick" and the "conditional sequencing trick"
are used to do this.

A menu loop is implemented where the user is shown a
menu and can choose which item he would like to see next. The
user can continue to get information until he types the item
that stops the loop.

The syntax of a production (rule) is of the form:

(p rule-name

(function 1)

-->

(function 2)

(function 3)

This would read:

Rule-name is the name of the production. If function
1 is true then do function 2 and +unction 3.

Any explanation, user dependent or not, must be

specially coded into an OPS5 based expert system. The
standard OPS5 debugging aid is to run the system and watch

which productions run and what changes in the WM. No good

explanation facility exists for OPS5.

There is an escape hatch in OPS5 which allows a
production to call LISP functions. This allows databases of
knowledge to be addressed without filling up WM.

5.2.2 Using OPS5 on VAX/VMS

Follow th steps described in Section 3.2.2 and obtain

the SST Tutorial software menu. Select OPS5 by entering

-› (OPS5)

Cfasl sstSlib:vps2.o]

Efasl sstSlib:ops5e.o3

Leaving Workspace: background
In Workspace: ops5

Leaving Workspace: ops5

In Workspace: background
TYPE (ops-hanoi) to load Tower of Hanoi in OPS5

(ops-robotl) ta load Simple Robot in OPS5
(ops-robot2) to load Robot Problem 4 2 in OPS5

nil
- > (load '<OPS5 application file specification>)

User will require sùffucuent
priviledge to maintain a file
on the system disk where OPS5
resides. Interactive sessions
do not require the load..

Leaving Workspace: background
In Workspace: <user defined workspace>

*rule-1 defined.
*rule-2 defined.

*rule-x> defined.
<workspace name> Loaded

User defined productions are
read in.

Type (run) to run <problem name>

A file-based OPS5 session
begins.

(exit)

The session ends and exit
brings the user back to the
VMS environment.

5.2.3 Example OPS5 program

The following is an example OPS program which works as
a descrimination expert. Similar to the descrimination expert

fi

li

1.11

ii

Ii

11

El

II

discussed in Section 3.3.3, it asks a number of questions and
determines what the user has in mind. The mini-expert system
identifies provinces of Canada. The results of a couple of
runs are shown following the program listings.

province.ops OPS5 implementation of PROVINCE
; Given hints the program will guess the chosen province.

(workspace-push , ops-province)

; Create the question working memory and initiate processing.
; This program will be done first after start is added to the working

; memory and the comments on how to run PROVINCE is output. Start is
; deleted from working memory here as it will no longer be needed in
; this run. The questions are all added as elements to the working
; memory with status unasked.

(definepr setup-p
(start)
-->
(remove 1)
(make oceans unasked "Is it next to the Atlantic or Pacific ocean" "?")
(make . loyalist unasked "Was it settled by loyalists" "?")
(make great_lakes unasked "Does it contain any great lakes" "?")
(make island unasked "Is it an island" "?")
(make potatoes unasked "Are potatoes a major crop" "?")
(make maritimes unasked "Is it part of the Maritimes" "2 H)
(make atlantic unasked "Is it part of the Atlantic provinces" "?")
(make bilingual unasked "Is it bilingual" "?")
(make french unasked "Is its official language French" "?")
(make english unasked "Is its official language English" "7")
(make prairies unasked "Is it part of the Prairies" "?")
(make oil unasked "Does it contain the tar sands" "7")
(make roqkies unasked "Does it contain part of the Rocky Mountains" "7")

. (make north unasked "Is it north of the tree line" "7")
(make trees unasked "Are trees plentiful" "?")
(make east unasked "Is it easterly" "7")

Sequencing and Choosing of Appropriate. Questions

; If the answer to the very first question which is oceans is true then
erwise prairies is asked.

; The next-questions are all added as elements to the working memory.

; (make next-question oldquestion oldanswer newquest'ion)

; If next-quest ions are not used then tile questions are asked in the

; order of last input (most current). That would be east first.

e - 12

(make next-quest ion oceans yes atlantic)
(make next-question oceans no prairies)
(make next-question prairies yes rockies)
(make next-question prairies no great_la .kes)
(make next-question great_lakes yes english)
(make next-quest ion areat_lakes no french)
(make next-question atlantic yes island)

(make next-question atlantic no rockies)
(make next-quest ion rockies yes oil)
(make next-question rockies no trees)
(make next-question trees yes french)
(make next-quest ion trees no north)
(make next-question north yes east)
(make next-quest ion island yes maritimes)
(make next-quest ion island no maritimes)
(make next-quest ion maritimes yes bilingual)
(make next-quest ion maritimes no english)
(make next-question bilingual yes loyalist)
(make next-question bilingual no english)
(make next-question English yes potatoes)
(make next-quest ion french no trees)
(write (cri, f) "Answer questions with yes,no, or stop" (cri f))
(make goal restart)

; In the production question-asker the goal is to find out which province
; is chosen. The variable prop signifies the question to be asked.
; Thus the question has the form:

(question_name status sentence punctuation)

(definepr question-asker
(goal province)

(question (prop>)
((prop> unasked (question> <mark>)

(province)
•

(write (question> (mark>)
(remove 2)
(modify 3- "s2 (accept))

; If the user inputs stop then the program terminates early.

(definepr bail-out
(goal province)
((prop> stop)

-->
(weite (celf) (crlf) "eye " (crlf))
(modify 1 	restart)
(halt)

; Here some error checkinm is done on user input.
; The braces .C1 are used to indicate that a value in a working memory

; element must match several thinms simultaneously. The predicate (> means

; that it will match anything that is not equal to the current bindinm of

; what is after it. Pill the known values are checked for. The bad answer

; is thrown away. The status of the question just asked is set back to

;. being unasked. The question is added to working memory again.

(definepr bad-answer
(goal province)
(-CO goal () province (> question (> next-quest ion <prop)}

-CO unasked () yes (> no (> stop))
--)
(write (crlf) "Sorry, but the only legal answers are:"

(cri f) "yes,no, or stop.")
(modify 2 '2 unasked)
(make question <prop>)

; This sequence rule implements random question ordering in the system.

; Without the next-question mechanism set up we would check if the

; question-name was unasked and put the question-name in the variable prop.

; It would be on the LHS and have the form:

; KC> goal (> province (> question <prop)} unasked)

; Then on the RHS the question would be added to working memory:

; (make question <prop>)
; This production sequence-rule mets the value for the next-question which

; has the form:
; (next-question question answer nextquestion)

; it asks the question and if it succeeds with.the correct answer then it

; adds the nextquestion to working memory as the current question

(definepr sequence-rule
(next-question (prop> (answer> <next-prop>)

((prop> <answer>)
--)
(make question (next-prop>)
) 	• 	. 	.

; These productions specify the 10 provinces and the 2 territories.

; When the if-part of the rule succeeds then the then-part will

; add the element of province to the the working memory.

(definepr its_britishcolumbia
(goal province)

(oceans yes)
• (atlantic no)

(rockies yes)
--)
(make province britishcolumbia)

s-f4-

;
(definepr its_alberta

(coal province)

(oceans no)

(prairies yes)
(oil yes)

--)
(make province alberta)
)

1:iefinepr its_saskatchewan
(goal province)

(oceans no)

(prairies yes)
(rockies no)
(trees no)

-->
(make province saskatchewan)
)

(definepr its_manitoba
(goal province)

(oceans no)
(prairies yes)
(rockies no)
(trees yes)

--)
(make province manitoba)
)

(definepr its_ontario
(goal province)
(great_lakes yes)
(English yes)

-->
(make province ontario)
)

(definepr its_quebec
(goal province)

(french yes) -

(oceans yes)

(atlantic no)

-->
(make province quebec)
)

(definepr its_newbrunswick
(goal province)
(bilingual yes)

(loyalist yes)

(maritimes yes)

(make province newbrunswick)
)

-

(definepr its_novascotia
(cal province)
(maritimes yes)
(bilincual no)
(island no)
-->
(make province novascotia)
)

(definepr its_princeedwardisland
(goal province)
(maritimes yes)
(island yes)
(potatoes yes)
--)
(make province princeedwardisland)
)

(definepr its_newfoundland
(coal province)
(maritimes no)
(atlantic yes)
(island yes)
(potatoes no)
(oceans yes)
--)
(make province newfoundland)
)

(definepr its_yukon
(goal province)
(north yes)
(east yes)
(trees no)
--)
(make province yukon)
)

(definepr its_northwestterritories
(coal province)
(north yes)
(east no)
(trees no)

• --)
(make province northwestterritories)
)

; This prints out the answer.
; (remove 2) deletes the value for province from working memory in an

; attempt to start cleaning it up for a new run. Its value stays in (>0
;--for-the-wrIte-statement-repardless of-the.Working-memory-
; (halt) is needed to avoid a loop on the final'decision.

- tG

(defineor all-over

(goal province)
• (province (x))
--)
(modify 1 '2 restart)
(remove 2)
(write (crlf) " 	 " (crif)

(crlf) 	The province is (x) "!" (crif))
(halt)

; The RHS of this production will be dore when the goal is restart and
; the user's input matches an acceptable value. It changes the status of
; the current question to being unasked.

(definepr clean-up-rule
(goal restart)
((prop> ((yes no stop)))'
--)
(modify 2 '2 unasked)

; (make question oceans) adds the element that the question is oceans to
; working memory thereby causing oceans to become the very first question
; to be asked. Pli subsequent questions are chosen on the basis of the
; answer to oceans.

(definepr restart
(goal restart)
-
((prop> ((yes no stop)))
--)
(modify 1 '2 province)
(make question oceans)

; start is added as an element to the workinm memory. It is done first
; because it is unconditional.

(make start)

; These also are unconditional outputs Sc' they are done before the other
; programs start. If there vas no halt then (run 34) would run the Nev
; Brunswick case in that many steps.

(princ "OPS-PROVINCE Loaded")
(terpr) 	•
(princ "Choose a province of Canada and I will try to guess which one")
(terpr)
(princ "Type (run) to run PROVINCE")
(terpr)

-

OPS-PROVINCE Loaded
Choose a province of Canada and I will try to guess which one
Type (run) to run PROVINCE

-> (run)
1. setup-p 1

Answer questions with yes,no, or stop

2. restart 40

3. question-asker 42 43 3 Is it next to the Atlantic or Pacific ocean ?yes
4. sequence-rule 19 46
5. question-asker 42 47 9 Is it part of the Atlantic provinces ?yes
6. sequence-rule 25 50
7. question-asker 42 51 6 Is it an island - ?yes

8. sequence-rule 32 54
9» question-asker 42 55 8 Is it part of the Maritimes ?yes
10. sequence-rule 34 58
11. question-asker 42 59 10 Is it bilingual ?no
12. sequence-rule 37 62
13. ouestion-asker 42 63 12 Is its official language English ?yes
14, sequence-rule 38 66 . L

Ph-e;p0T-eiOeS 	 trop ?yes
16. its_princeedwardisland 42 58 54 70

17. all-over 42 71

the province is princeedwardisland !

end -- explicit halt
20 productions (179 // 297 nodes)
17 firings (74 rhs actions)
36 mean working memory size (39 maximum)
1 mean conflict set size (1 maximum)
75 mean token memory size (84 maximum)

nil
-> (exit)
Before EXITing: Please tell me where to save the

.

fol lowing workspaces. If you type
NIL, I will throw it away.

Where should I save workspace: ops-province ?nil

. 	.

54cOO bytes read into 2c00 to 577ff
Franz Lisp, Opus 34

SMART SYSTEMS TECHNOLOGY
•Artificial Intelligence Course

----------. - 	_ _ _

P. I. Course Software Select ions

Type (asptp) for ASPTP deductive retriever

(ops5) 	for OPS5 production system

(sans) 	for SPNS associative network system

(parser) for an PTN natural language parser
(loadloop) for examples of control structures

-> (ops5)

Efas1 sstSlib:vps2.o3

Cfas1 sstSlib:ops5e.o3

Leaving Workspace: background
In Workspace: ops5

Leaving Workspace: ops5

In Workspace: background
TYPE (ops-hanoi) to load Tower of Hanoi in OPS5

(ops-robotl) to load Simple Robot in OPS5

(ops-robot2) to load Robot Problem #2 in OPS5 •

nil
-> (load 'province.ops)
Leaving Workspace: background
In Workspace: ops-province
*setup-p defined.
*question-asker defined.
*bail-out defined.
*bad-answer defined.
*sequence-rule defined.
*its_britishcolumbia defined.
*its_alberta defined.
*itssaskatchewan defined.
*its_manitoba defined.
*its_ontario defined.
*its_quebec defined. •

*its_newbrunswick defined.
*its_novascotia defined. 	 •

*its_princeedwardisland defined.
*its_newfoundland defined.
*its_yukon defined.
*its_northwestterritories defined.
*all-over defined.
*clean-up-rule defined.
*restart defined.
OPS-PROVINCE Loaded
Choose a province of Canada and I will try to guess which one

Type (run) to run PROVINCE

-> (run)

1. setup-p 1

Pnswer questions with yes,no, or stop

2. restart 40

3. question-asker 42 43 3 Is it next to the Atlantic or Pacifi e ocean ?no
4. sequence-rule 20 46

5. question-asker 42 47 13 Is it part of the Prairies ?no
6. sequence-rule 22 50

7. question-asker 42 51 5 Does it contain any mreat lakes ?no

8. sequence-rule 24 54

9. question-asker 42 55 11 Is its official lannuane French ?no

10. sequence-ride 39 58
11. question-asker 42 59 17 Pre trees plentiful ?no
12. sequence-rule 20 62

13. question-asker 42 63 16 Is it north of the tree line ?yes
14. sequence-rule 31 66

15. question-asker 42 67 18 Is it easterly ?yes

16. its_yukon 42 66 70 62

17. all-over 42 71

the province is yukon !

end -- explicit halt

20 productions (179 II 297 nodes)

17 firinms (74 rhs actions)

36 mean working memory size (39 maximum)

1 mean conflict set size (1 maximum)
73 mean token memory size (81 maximum)

nil

-> (exit)

Before EXITing: Please tell me where to save the
fol lowing workspaces. If you type
NIL, I will throw it away.

Where should I save workspace: ops-province ?nil

-

_2o

6. Natural Language Processing

6.1 The SST ATM tutor

6.1.1 Features of the SST ATM tutor

The SST ATN tutor is a software package that
demonstrates the principle of the Augumented Transition
Network grammar, first proposed by William Woods [Woods 70]
then of Bolt Beranek and Newman Inc. This method of parsing
natural language inputs is still a mainstay of the parsing
methods used widely in today's Natural Language (ML) systems.
In order to benefit from the tutorial software, the user must
have a basic understanding of the ATM grammar and how it is
used in a typical ML processing system. Chapter 9 of [Winston
84a7 and also Chapter 9 of ERich 537 constitute an adequate
introduction ta the theory of parsing, in.particular, that of
ATM.. To those with the basic grasp, the package will act as
an effective tool to enhance .the understanding of the ML
processing methodology.

The parser basically takes in input sentences and
parses them. The user will learn if the input was
successfully parsed or not. In case of a failure, the user is
notified of how the process failed. A successful completion
creates a parse tree in memory, which is displayed at the end
of the parsing. Unlike actual NL systems which, for example,
front-end a database, this tutorial system does not have a
code generator for a specific application. This means that,
while the parser parses input strings, it does not convert
the semantics of the input sentence into an actual command
sequence. This is because there is no specific application
for which the parser was designed. Instead, it returns a
parsed tree in a predicate form.

. "John bit the dog" 	S 	(syntactic tree)
. 	 / \

1 	/ 	\

v 	Np 	Vp
Syntactic => 	/ 	/ \

parser 	/ 	/ 	\

	

John verb 	Nd 	,
/ 	/ \ 	=> Semantic

. 	
/ 	/ 	\ 	Parser

- 	 bit 	the 	dog 	,

(bit John dog)

Figure 6.1 Two phases of ATN parsing

The parsing is performed in two steps: the syntactic
and the semantic parsing. The first parser parses an input
sentence and developes a syntactic tree. The second phase
takes in the syntactic tree and creates a predicate calculus
representation of the input sentence. For example, an input
sentence "John bit the dag" will turn into (bit John dog)
after the two phases of parsing. This process is shown in
Figure 6.1.

In addition to parsing input sentences, and observing
how parsing is done, the user can also modify the structure
of the network (je., ATN), the contents of the dictionary,
the description of the grammar, and the de-finition of
semantics, all part of the parser. Any such alteration
affects the way the parsing is conducted. There are a small
number of commands for carying out such manipulations. See
SST ATN Manual (Appendix *6) for further details of how to
conduct these operatiohs. Some of these operations are quite
involved.

6.1.2 Using the (TN tutor on VAX/VMS

In order to create an environment -for the ATN tutor,
execute the steps shown in Section 3.2.2, up to the point
where the tutorial software menu is displayed. Select ATN by
entering

—> (parser)
A succession of workspace
management commands are
executed. to load necessary
modules.

Leaving Workspace: background
In Workspace: parser

Leaving Workspace: parser
In Workspace: background

The syntactic parser is loaded.

Leaving Workspace: background
In Workspace: sematn

Leaving Workspace: sematn
In Workspace: background

The semantic parser follows.

Leaving Workspace: background
In Workspace: grammar

Leaving Workspace: grammar

In Workspace: background
The grammar and dictionary are
loaded.

Type (lsemantics) to load semantics

nil

Semantic parser is not loaded

unless specified. See Section

6.1.3.3 for running ATM with
the semantic parser.

The ATM parser is now ready to
process requests.

-> (atn '(the boy saw me))

Entering a request for parsing
a simple sentence. See Section
6.1.3.1 for the result of this
request.

- > (words '<class>)

List all words in the
dictionary that belong to

syntactic class <class>.

- > (all -words)
This command displays all the
words the parser knows. Outputs
from this and other display

commands are shown in Section

6.1.3.2. . Also shown there is

how to modify the dictionary.
The size of 	the present

dictionary is very limited.

There is a set of commands in the SST ATN for defining
the ATN itself, its dictionary, and semantic meanings to be
attached to the nodes of the ATN. These commands are
described below. The details of the commands are not covered
in this document but described in the SST ATM Manual.

-> (defnet '<network node specification>)

Defines a node of ATM. An ATM

may be constructed by a set of

def net commands.

-> (defword '<word specification>)

Defines a new word in the

dictionary.

(defsem '<description of semantics>)

Defines semantics to be

attached to a sentence or a

noun phrase.

6.1.3 Example sessions using the ATN tutor

The parser may be used for parsing a sentence, or for

directly modifying its dictionary, grammer, or semantics and

examining the effects of modifications in subsequent

parsings. Both methods of using the parser are described

below.

6.1.3.1 Parsing a simple sentence

- > (atn '(The boy sa W me))
Trying to parse a simple sentece:

"The boy saw me".

All the words in this sentence

are known to be in the

dictionary.

Parsing (the boy saw me) as np

ATN tries to parse the sentence
as a noun phrase, without

success.

Parsing (the boy saw me) as vg

Then as a verb group, in vain.

Parsing (the boy saw me) as np-head

As a noun phase at the

beginning of a sentence

(np-head).

>> the (det in np-head)
Assuming that 'the' is a

determinant of the np-head.

>> boy (noun in np-head) 	Assuming 'boy' as a noun in the

np-head.

Parsing (boy saw me) as ap* Trying to see if (boy saw me)

as an adjective phrase, in vain

Found np-head (the boy) 	Now ATN is sure 'the boy' is a
np-head.

Left to parse: (saw me) 	This is what's left to be

accounted for.

Parsing (saw me) as pp* 	Parsing it as a prepositional

phrase, in vain.

Found np (the boy) 	Now it thinks 'the boy' is a

noun phrase.

Left to parse: (saw me) Dope (s np) (saw me)

Parsing (saw me) as vg

>> saw (verb in vg)

Found vg (saw)

Left to parse: (me)

Checking if 'saw me' can be a

verb group.

Then, saw must be a verb -

yes, the dictionary says so.

Only 'saw' accepted as

belonging to a verb group.

One more word to go.

Disagreement compl nil t
Disagreement trans t nil Clops (s) (me)

Parsing (me) as np

Parsing (me) as np-head
>> me (pronoun in np-head)

Found np-head (me)

Left to parse: nil

'me' is a valid noun phrase.

Can 'me' be another np-head?
'me' surely can be a pronoun in

an np-head.

Lets assume 'me' is an np-head.
Then there is none left to

support the np-head assumption.

Found np (me) 	 'me' must be just a noun

phrase.

Left to parse: nil Dope (s np) nil

Parsing nil as pp*

Nothing more to parse.

ATN is checking if nil can be
interpreted as a prepositional

phrase. No.

Found s (the boy saw me) 	Now the entire sentence (s) is

parsed.

At this point the parser displays the syntactic parse

tree. A terse description of the format of the parse tree is

given in the ATN Manual. Readers may require a good

understanding of ATN parsers to fully understand the tree.

The parser also outputs the summary of the parse following

the display of the tree.

Result:

(s nil
((tns past) (stype dec1) (numbers (1 3)))
(subj nil ((numpers (1 3)))(np-head nil ((numpers (1 3)))the boy))
(vg nil

((compl nil)

(tns past)
(vnumpers (or (1 1) (2 1) (1 2) (2 2) (1 3) (2 3)))
(trans t))

saw)

(obi nil ((numpers (1 1))) (np-head nil ((numpers (1 1))) me)))

6.1.3.2 Listing the dictionary

Words in the dictionary are defined with its class

(syntactic role of the word) and other attributes using the

defword command (See the SST ATN Manual for the detailed

description of the command). As mentioned in Section 6.1.2
above, there are commands to display and manipulate the

contents of the dictionary. They are:

(all -words) 	Lists all words in the

dictionary

(words '<class>) Lists words that belong to

<class>. Classes are: noun,

pronoun, verb, adj, det, prep,

relpro(relative pronoun).

These display commands are tested below. 	Note the

results of executing the commands do not show the contents of

the 	dictionary 	themselves but only its entries. 	The
dictionary contents itself are more elaborate, as shown in
the manual.

-> (words 'noun)
(block-n blocks-n boy boys fritter-n girl park sheep stand-n
stands-n telescope unknown-noun)

<noun>-n or <noun>-noun is a
notation to Mark the ward to
be a noun, while it can belong
to different classes.

-> (words 'pronoun)
(he her him i me she them they us we you)

- > (words 'verb)
(be block-v blocked blocks-v fritter-v saw see sees sleep
sleeps slept stand-v stands-v stood unknown-verb)

<verb>-v or <verb>-verb
distinguishes them as verb,
while the same word may belong
to other classes. The nil in
the output has no significance.

-> (words 'adj)
(angry big colorless green happy heavy red unknown-adj)

nil
-> (words 'det)
(a every some the)

nil
7> (words.'prep)
(by for in of on over to under with)

nil
-> (words 'relpro)
(that)

Finally, all the entries of the dictionary is listed
by (all-words) command:

-> (all-words)
(unknown-noun unknown-verb a i block angry unknown-word heavy

happy fritten-n fritten-v green colorless every fritter be he

by sheep me in of on blocks we to us sleep slept under stand

nil

6

stood blocks-n blocks-v girl boys John park sees that them
block-n they block-v over some with big her boy him blocked
for red see she saw the stand-n stand-v sleeps stand-n you
stands-v telescope stands unknown-adj)

The defword command may be used to add to the

vocabulary, as shown in the command sequence below:

- > (words 'pronoun)

List all pronouns that are in

the dictionary.

(he her him i me she them they us we you)

nil 	 Notice a rather limited

vocabulary of pronouns.

-> (defword "(my (class pronoun)))

Defining a new pronoun.

my 	 Dane.

- > (words 'pronoun) Confirming the addition to the

dictionary.

(he her him i me my she them they us we you)

Entered, alphabetically sorted.

Another way of defining a word in the dictionary is by

running the parser with a sentence which includes a undefined

word. See the following exaqmple:

(atn '(The boy saw a kangaroo))
Parsing ...

•

I DON'T KNOW WORD: kangaroo

Retype it

or type T and I will define it as noun
or type NIL and I will punt. >1

A new noun is defined during a

parse. The word will remain in

the dictionary beyond this

parse.

Found s (the boy saw a kangaroo)

And the parsing completed OK.

6.1.3.3 Parsing with the semantic parser

The ATM parser may be run as a combined syntactic and
semantic parser. This is accomplished by executing the
(lsemantics) command and then issuing the (atn '<sentence))
command. It loads three files (sstlelib:sem.1,
sstSlib:besem.1, and sstSlib:gosem.1) which define semantics
for the ATN as defined in the present tutor and by the
attached dictionary. The following is the summary of a run
with both the syntactic and the semantic parser:

(lsemantics)

Loading semantic parser and
de-finitions.

Leaving Workspace: Background
In Workspace: sem

Entering workspace for
semantics.

Moving: unknown-noun from Workspace: grammar to Workspace: sem

Moving: unknown-verb from Workspace: grammar to Workspace: sein

Moving: the from Workspace: grammar to Workspace: sem

Moving: a from Workspace: grammar to Workspace: sem

Moving: telescope from Workspace: grammar to Workspace: seins

Moving: park from Workspace: grammar to Workspace: sems

Words in the dictionary are
redefined with semantics.
Note there are two workspaces
that deals with semantics.

(atn '(The boy saw me))
Parsing the same sentence.

Parsing (the boy saw me) as np

Found np (the boy)

GOT: (person age young sex male ref def) Score = 0

As the semantics for 'boy' was
defined in the network, the
semantic parser cuts into the
parsing sequence and provides a
semantic interpretation of
'boy'. The semantics normally
affects the further parsing.

Left to parse: (saw me) Oops (s np) (saw me)

The syntactic parsing continues

Found s . (the boy saw me)
GOT: (do action mtrans instr (do action attend organ eye) to
(head (*same actor)) time past) Score = 1000

A semantic interpretation of
'saw' is given,

The parse tree created during the parse is 'again
displayed at the conclusion of the process. This time it will
have a distinct difference in appearance, representing the
effect of semantic parsing. Compare the tree below with the
one shown in Section 6.1.3.1. Lines that differ from the
syntax only parsing are marked by an asterisk(*).

Result:

(s (do action
mtrans

instr

(do action attend organ eye)
to

(head (*same actor))

time

past)
((tns past) (stype decl) (numpers (1 3)))

(subi (person age young sex male ref de-F)
 (numpers (1 3)))

- Io

(np—head nil ((numpers (1 3))) the boy))

(vg nil
((compl nil)

(tns past)
(vnumpers (or (1 1) (2 1) (1 2) (2 2) (1 3) (2 3)))
(trans t))
saw)

(obi nil ((numpers (1 1)))(np—head nil ((numpers (1 1)))me)))

6 -G1

REFERENCES

[Berg 83]
Berg, Bradley, "SANS Associative Network Tutorial", Wang
Institute of Graduate Studies, August 83, Revision 1.0.

[Cohen and Feigenbaum 82]
Cohen, Paul R., and Feigenbaum, Edward A., "The Handbook
of Artificial Intelligence, Volumes 1, 2, & 3". William
Kaufmann, Inc., Los Altos, California.

[Fox 82]

Fox, M.S., "SRL: Schema Representation Language".
Technical Report, Robotics Institute, Carnegie-Mellon
University, Pittsburg, PA.

EBrachman et al 83]

Brachman, Ronald J., Fikes, Richard E., and Levesque,
Hector J., "Krypton: A Functional Approach to Knowledge
Representation". In Computer, Vol. 16, No. 10, October,
1983, IEEE, pp. 67-73.

[Hayes 83]
Hayes, Kenneth C., "SANS: Simplified Associative Network
System". Smart Systems Technorogy, February 1983.

[Kunz et al 84]
Kunz, John .C., Kehler, Thomas P., Williams, Michael D.,
"Application Development Using a Hybrid AI Development
System". In The AI Magazine, Fall 1984 Issue,
American Association for Artificial Intelligence, pp.
41-54.

[Logicware 84]

Logicware Inc., "MPROLOG Manuals", Version 1.4, August,
1984.

[Nilsson 80]
Nilsson, Nils J., "Principles of Art“icial
Intelligence". Tioga Publishing Co., Palo Alto

[Mylopoulos et al 83]

Mylopoulos, John, Shibahara, Tetsutaro, and Tsotsos,
John, "Building Knowledge-Based Systems: The PSN
Experience". In Computer, Vol. 16, No. 10, October,
1983, IEEE, pp. 83-89.

R - 	1

0 -

[Rich 83]
Rich, Elaine, "Artificial Intelligence," McGraw-Hill
Series in Artificial Intelligence, 1983.

[Schubert 76]
Schubert, L.K., "Extending the expressive power of
semantic networks." Artificial Intelligence, 7, pp.
163-98..

[Shibahara et al 83]

Shibahara, Tetsutaro, et al., "CAA: A Knowledge-Based
System with Causal Knowledge to Diagnose Rhythm
Disorders in the Heart," Proc.• Int'l Joint Conference on
Artificial Intelligence, 1983 (IJCAI-83)

[Stefik 80]
Stefik, M., "Planning with Constraints," Report No. 784,

Computer Science Department, Stanford University.

[Tsotsos 81]

Tsotsos, John, "Temporal Event Recognition: An
Application to Left Ventricular Performance Evaluation,"
In Proc. Int'l Joint Conference on Artificial
Intelligence, 1981 (IJCAI-81)

[Winston 84a]
Winston, Patrick Henry, "Artificial Intelligence, Second
Edition," Addison-Wesley Series in Computer Science,
Michael A. Harrison Consulting Editor. Addison-Wesley
Publishing Company, Reading MASS, Palo Alto, London,
Amsterdam, Don Mills, Sydney, 1984

[Winston 94b]
Winston, Patrick Henry, "LISP, Second Edition,"
Addison-Wesley Publishing Company, Reading MASS, Palo
Alto, London, Amsterdam, Don Mills, Sydney, 1984

[Woods 70]
Woods, William, "Transition Network Grammars for Natural
Language Analysis." CACM, Vol 13, No. 10, October 1970,
pp. 591-606.

alrf

GOMI, T.
--An experimental expert system

development environment...

91
C655

G6453
1985

DATE DUE
DATE DE RETOUR

LOWE-MARTIN No. 1137

