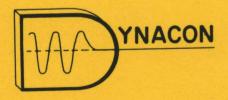
DEVELOPMENT OF FLEXIBLE SPACECRAFT CONTROL SYSTEMS:

ACCELEROMETER INSTALLATION

DYNACON REPORT DAISY-21 (DOC-CR-SP-86-007)

TL 796 \$563 1986

Ī


- to

5

Γ

ſ

F

RELEASABLE DOC-CR-SP-86-007

18 Cherry Blossom Lane Thornhill, Ontario L3T 3B9 (416) 889-9260

TL 796 S563 1986

Industry Canada Library Queen

SEP 1 6 1998

Industrie Canada Bibliothèque Queen

DEVELOPMENT OF FLEXIBLE SPACECRAFT CONTROL SYSTEMS:

ACCELEROMETER INSTALLATION

DYNACON REPORT DAISY-21 (DOC-CR-SP-86-007)

W. G. Sincarsin

March 1986

Dynacon Report DAISY-21 [DOC-CR-SP-86-007] . . .

and a second and a second a s Second a s

:

Th DD 9643300 796 DL 9663.716 5563 1986

.

.

.

. . . .

.

Government Gouvernement of Canada du Canada

Department of Communications

· •

DOC CONTRACTOR REPORT

DOC-CR-SP-86-007

DEPARTMENT OF COMMUNICATIONS - OTTAWA - CANADA

SPACE PROGRAM

TITLE: DEVELOPMENT OF FLEXIBLE SPACECRAFT CONTROL SYSTEMS: ACCELEROMETER INSTALLATION

AUTHOR(S): W. G. Sincarsin

ISSUED BY CONTRACTOR AS REPORT NO:

Dynacon Report DAISY-21

PREPARED BY: Dynacon Enterprises Ltd. 18 Cherry Blossom Lane Thornhill, Ontario L3T 3B9

DEPARTMENT OF SUPPLY AND SERVICES CONTRACT NO: 06ST. 36001-4-1212

DOC SCIENTIFIC AUTHORITY: A. H. Reynaud (Communications Research Centre)

CLASSIFICATION:. Unclassified

This report presents the views of the author(s). Publication of this report does not constitute DOC approval of the reports findings or conclusions. This report is available outside the department by special arrangement.

DATE: March 1986

SUMMARY

A subset of the motion sensors required to fully instrument DAISY, a dynamic emulator used to study the control of large flexible space structures, is discussed. The sensors under consideration are those required to detect DAISY rib motions. These motions have low natural frequencies, are lightly damped and experience small angle perturbations. Accelerometers are chosen for this purpose. In fact, two such devices were purchased and installed on one rib. Preliminary sets of data obtained from these accelerometers, that confirm them to be functioning correctly, are also presented.

PREFACE

This work was sponsored by the Department of Communications under Contract No. 06ST.36001-4-1212.

Acknowledgements

The author is pleased to thank A. H. Reynaud of the Communications Research Centre, the Scientific Authority for this contract, for his assistance and advice over the duration of this project.

The author also thanks R. Hui for performing software modifications to the TAURUS data aquisition programs, Mrs. J. Hughes for assistance in typing this report and Mrs. I. Krauze for preparing the figures.

Units and Spelling

1

This report uses British units and North American spelling.

TABLE OF CONTENTS

	SUMMARY	(iii)
	PREFACE	(iv)
1.	INTRODUCTION	1
2.	RIB SENSOR REQUIREMENTS	4
3.	SENSOR IMPLEMENTATION	9
4.	CONCLUSIONS	14
5.	REFERENCES	15
	APPENDIX A	16

1. INTRODUCTION

DAISY is a facility for testing the control of large flexible space structures. It is a dynamic emulator with twenty-three degrees of freedom, two degrees for each of ten ribs connected to a hub, and three for the hub about its mounting gimbal (see Fig. 1.1). Each rib is connected to the hub by two orthogonal pivots, although the hub and ribs themselves are rigid. One pivot allows in-cone the other out-ofcone motion. These have stiffnesses and low damping factors that produce rib resonances similar to those projected for large flexible space structures. By properly locating sensors and actuators on DAISY, a control system can experimentally simulate the dynamic responses one would anticipate for such structures. This report is concerned with the choice and placement of the rib sensors for DAISY. The hub sensors have already been chosen and positioned as described in Sincarsin and Sincarsin [1985].

To produce coupled motion and clustered resonant frequencies, each rib is connected to its two adjacent ribs by weak springs. Though modal identification may be accomplished without a sensor on every rib, each is assumed to be instrumented for simplicity.

Although many types of sensors are available for the ribs, some are not applicable to spacecraft. If DAISY is to accurately simulate a large space structure, its sensors must be indicative of such systems. For example, while potential rib sensors include devices such as accelerometers, angular encoders, inclinometers, linear variable differential transformers (LVDTs), l.e.d. and laser optical sensors or gryos (integrating, rate, rate-integrating), spacecraft sensors form only a subset of this list. The inclinometer can be eliminated immediately for space use since its operation requires a strong force from a gravity field, something not available in the 'zero-g' environment of orbit. An angular encoder can measure rib motion about "a pivot, but the rib motion simulates a flexing member on a spacecraft that has no pivot. Implementation of this sensor becomes complex if no

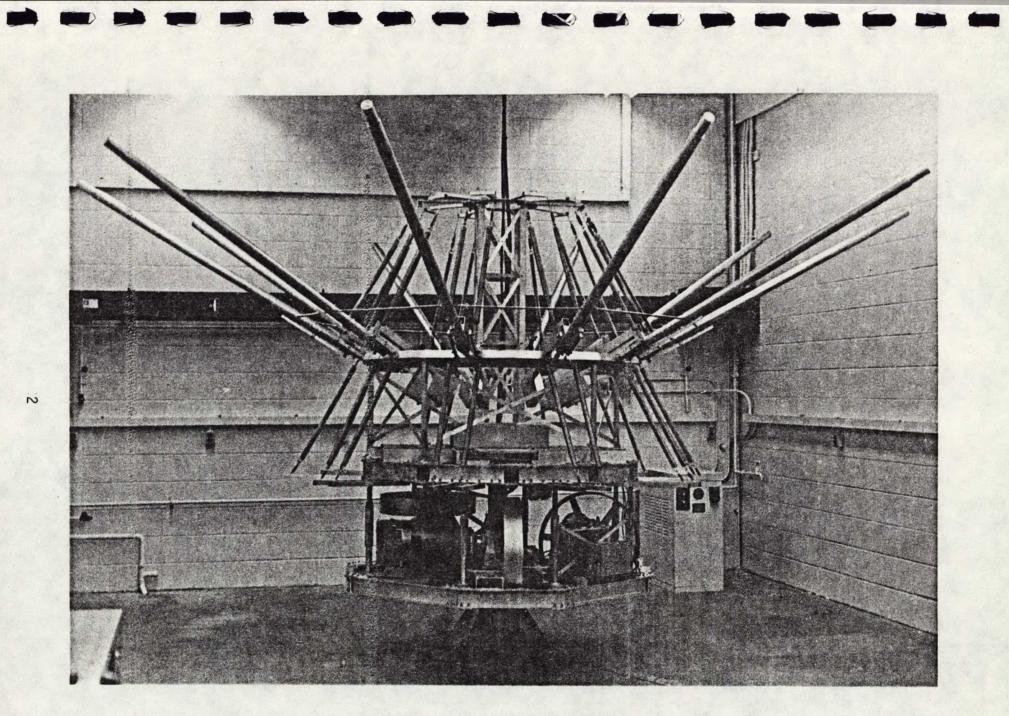


Figure 1.1: The DAISY Structure

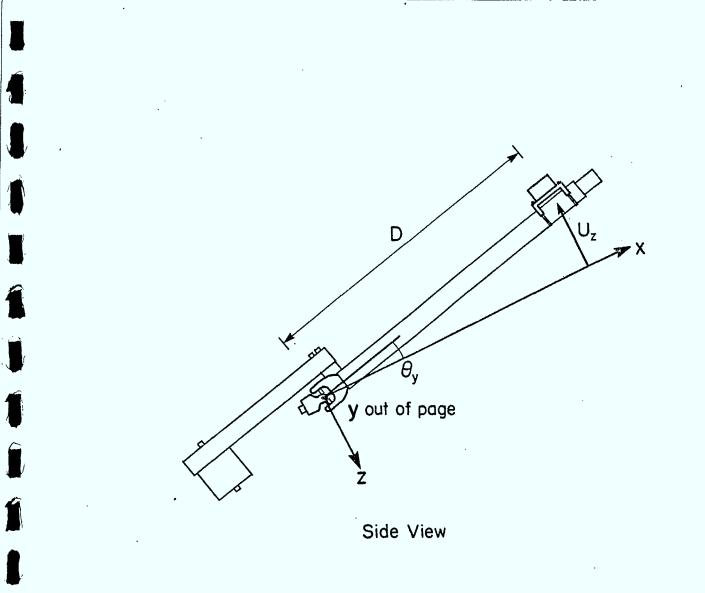
pivot is present. An LVDT gives a local displacement relative to some reference point. This means a secondary structure must be created in space to produce the reference point, again a difficult system to implement. The three remaining sensors, accelerometers, optical sensors and gyros, are all applicable from the viewpoint of the intended research. At present, however, no sensibly-priced 'off-theshelf' optical system exists that can be used on DAISY (the submission of a proposal to develop a custom laser optical system is being considered). Furthermore, because accelerometers are typically lighter and less exspensive than gyros, they were selected as the Daisy rib sensors.

2. RIB SENSOR REQUIREMENTS

As stated in the previous section, accelerometers are the sensor of choice for use on the simulated flexible components of DAISY, The required threshold and range of namelv the ribs. the accelerometers can be obtained by considering the motion of a single rib in conjunction with the resolution limits now inherent in the control system. To keep the entire facility as uniform as possible, from the perspective of sensor resolution, it was decided that the accelerometers should have a resolution that matched or was better than the present limiting case. Now while an accelerometer typically produces an analog output, ultimately a digital signal is required before the control computers can utilize it. Thus a conversion that establishes the upper resolution possible must be performed. This is accomplished, in the case of DAISY, by a 12 bit A/D converter in the Taurus data aquisition system. The result is a resolution of one part in 4096 (1:4096). However, although only a 12 bit A/D conversion is possible, the Taurus can handle 16 bit numbers (1:65,536 resolution) and transmit them to the main computer (a PDP 11/73) by making two 'calls' to its internal 8 bit bus. The PDP is capable of doing double precision calculations. The hub sensors are absolute encoders that represent one complete revolution by the 16 bit number 65536. Since the hub is restricted to move ±14 degrees this translates into a integer value between ±2549 (1:5098 resolution). Hence, because of the limitations of the Taurus A/D converter, it is not possible ,at present, to match the accelerometer resolution with that of the hub Still. since hardware modifications may improve this encoders. situation in the future the accelerometers are assumed to have to yield a resolution of 1:5098.

Now, given the motion of the rib can be linearized for small angles about its rest position and assuming the damping is negligable, the equations of motion become

$$J_{y,z}^{\theta}y,z + k_{y,z}^{\theta}y,z = 0$$
 (2.1)


with the solution

$$\theta_{y,z} = \theta_{y,z}^{0} \sin \omega_{y,z} t$$
 (2.2)

where $J_{y,Z}$ and $k_{y,Z}$ are the inertia and stiffness about the y and z axis, respectively (see Fig. 2.1). $\theta_{y,Z}^0$ is the maximum amplitude of the oscillations about each of the axes, $\theta_{y,Z}$ is the angular rotation about y and z, with the corresponding derivatives given by $\dot{\theta}_{y,Z}$ and $\dot{\theta}_{y,Z}$. Here, $\omega_y = (k_y/J_y)^{\frac{1}{2}}$ and $\omega_z = (k_z/J_z)^{\frac{1}{2}}$. Since most accelerometers measure linear acceleration in a preselected direction, the magnitude of the reading from an accelerometer mounted on one of DAISY's ribs will depend on its position and orientation on the rib. As implied above, accelerations will be measured both in the local y and z rib directions. Thus, each of the two accelerometers is mounted so as to align with one of these directions. To permit the maximum output and therefore the maximum resolution, for a given acceleration, these accelerometers are placed at the rib tip. The linear acceleration then becomes

 $\ddot{u}_{z,y} = D_{\theta} \overset{o}{y}_{,z} \overset{2}{\omega} \overset{o}{y}_{,z} \sin \omega_{y,z} t$ (2.3)

where $\ddot{u}_{Z,Y}$ is the linear acceleration in the z and y directions and D is the distance from the rib pivot to the accelerometers. For the present DAISY ribs the maximum acceleration is 80.8 mg in the ydirection and 8.89 mg in the z-direction, when (2.3) is evaluated at $t = \pi/(2\omega_z)$ and $t = \pi/(2\omega_y)$, respectively.

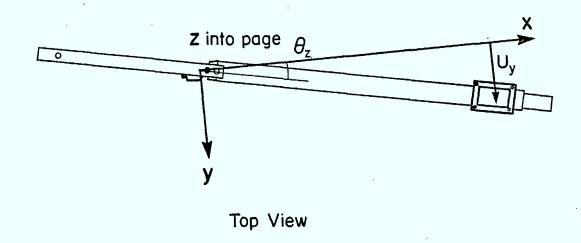


Figure 2.1: DAISY's Rib Parameters

With a maximum acceleration of 8.89 mg and a required resolution of one part in 5098, the threshold of the accelerometer becomes 1.7 μ g at the rib resonant frequency of 0.1 Hz. This approaches the limit of present day off-the-shelf technology, as well as typical values anticipated for large flexible space structures. The upper limit must be greater than 80.8 mg. but still be capable of reading down to 1.7 μ g. The upper limit must extend well above 80.8 mg. since higher frequency oscilations, which are also of interest, correspond to larger accelerations. Ranges of tens of g's are easily obtainable from many accelerometers so that this requirement does not pose a problem.

The availability of accelerometers with approximately a 1 $_{11}$ g threshold, at low operating frequencies, has already been investigated for CRC by Ancon Ltd. A table of companies, from G. B. Lang [1982], that responded to their inquiries is reproduced in Table 2.1. Onlv five companies produce individual accelerometers with such a low threshold. Even though Marconi Avionics Limited has a electronics division in Canada it does not have a components representative on this continent, Thus it was excluded from further consideration. 0f the four remaining companies, the cheapest accelerometer capable of the 1 $_{\rm U}$ g threshold was the Sunstrand QA2000, which was adopted as the rib sensor. It is a 'Q-flex rebalance' type of device. It uses a proof mass mounted on a thin flexing quartz bar which acts as a hinge. The output is related to the electrostatic force used to rebalance (or null balance) the proof mass. The specifications of the QA2000 are given in Appendix A.

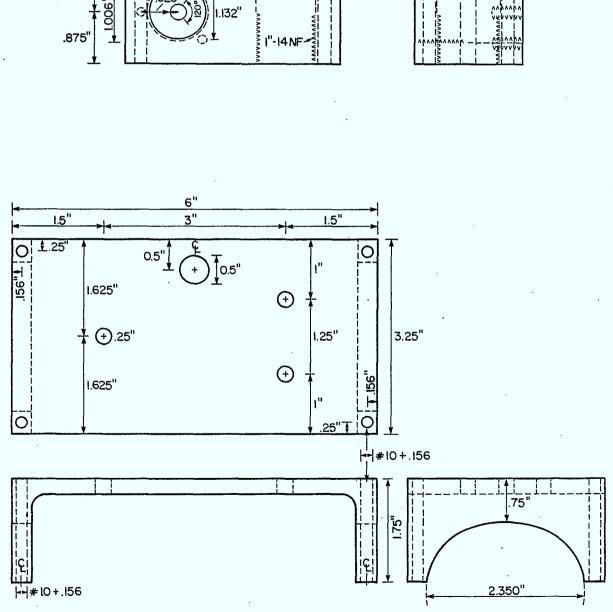
Table 2.1

1

Î

Î

1

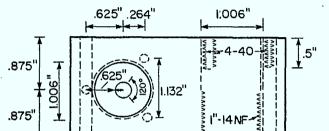
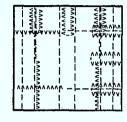
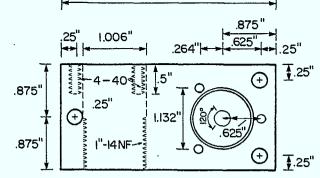

ANCON's Vendor Response

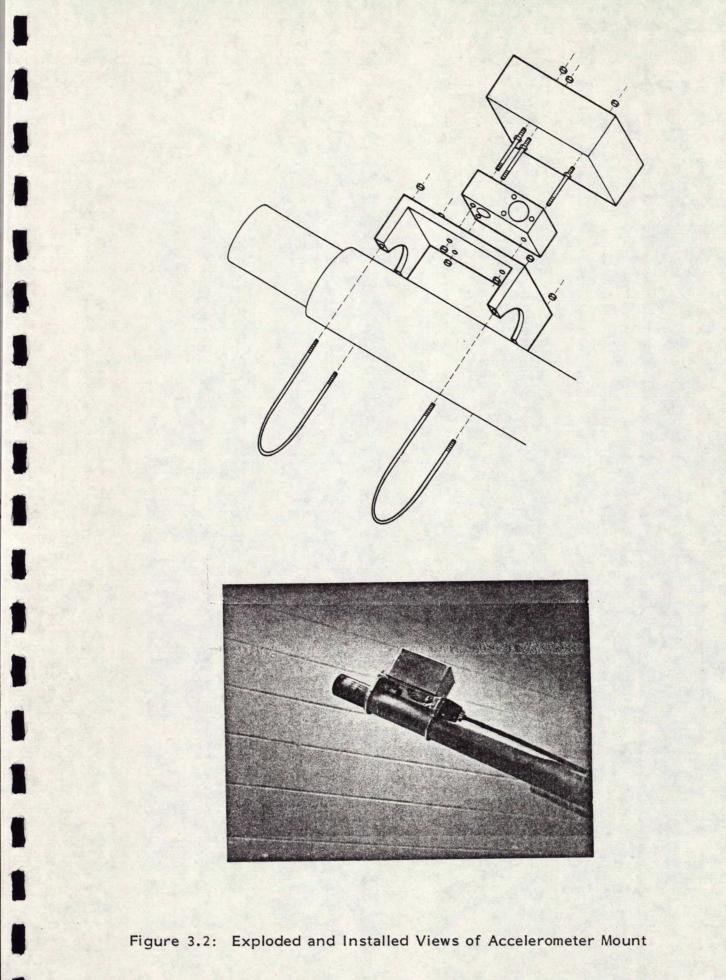
Summary

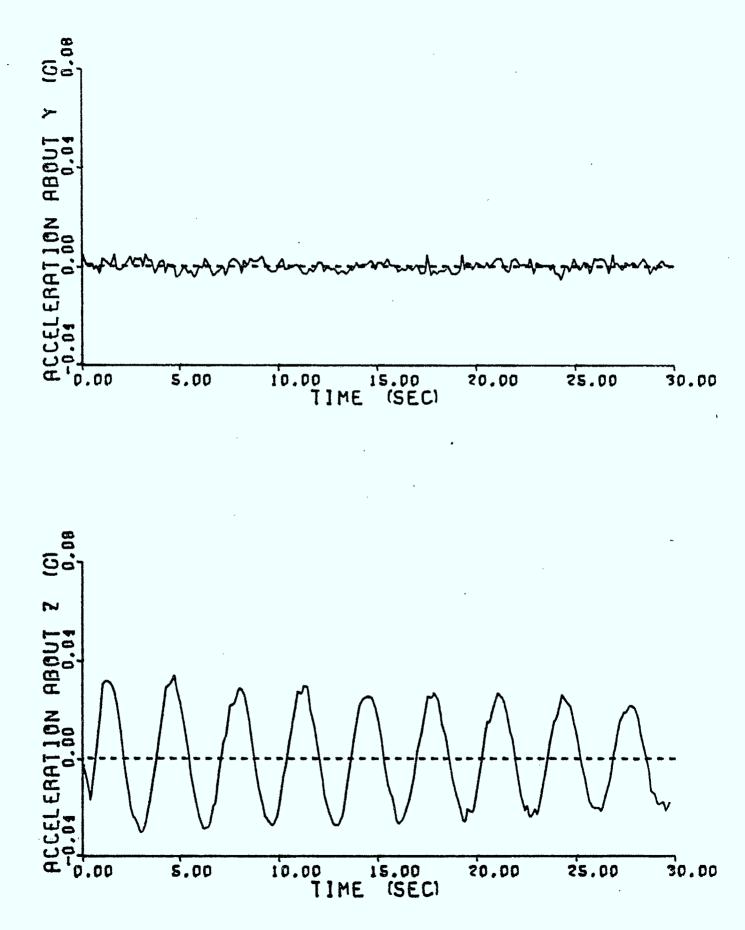
	Vendor	Potential Supplier	Comments .
1.	British Aerospace	No	None for space applications
2.	Delco Electronics	No	Systems supplier, not components
3.	Durham Instruments	Yes	Canadian representatives for Schaevitz
4.	Endevco	No	Piezoelectric and pizoresistive
5.	General Electric	No	None to suit space applications
6.	Honeywell	No	Systems only, not components
7.	Humphrey Inc.	No	Potentiometric- unsatisfactory
			resolution
8.	Litton Systems Canada Li	tdYes .	1 mu-g resolution with A-2 and A-4
		•	(triad)
9.	Marconi Avionics Ltd	Yes	SUPERGEE has 10 mu-g resolution
			AP-G6 has 2 milli-g accuracy;
			improvement possible
			AP-S1 has 0.1 milli-g resolution
10.	Misner Marketing Ltd	No	Canadian representative for Endevco
11.	Northrop	No	Systems only, not components
12.	Schaevitz Engineering	Yes	LSM series has 2.5 mu-g resolution
13.	Singer, Kearfott Divisio	on Yes	C70 2401 MOD II- threshold < 0.1 mu-g
			space proven
			K120A029- threshold <1 mu-g
			K120A027- threshold <1 mu-g
			K120A007- threshold <10 mu-g
14.	Sunstrand	Yes	979-0148 and 979-0138 recommended
			QA-1100, QA-1200, QA-1300- 1 mu-g
			threshold
			QA-1400, QA-2000- <1mu-g threshold

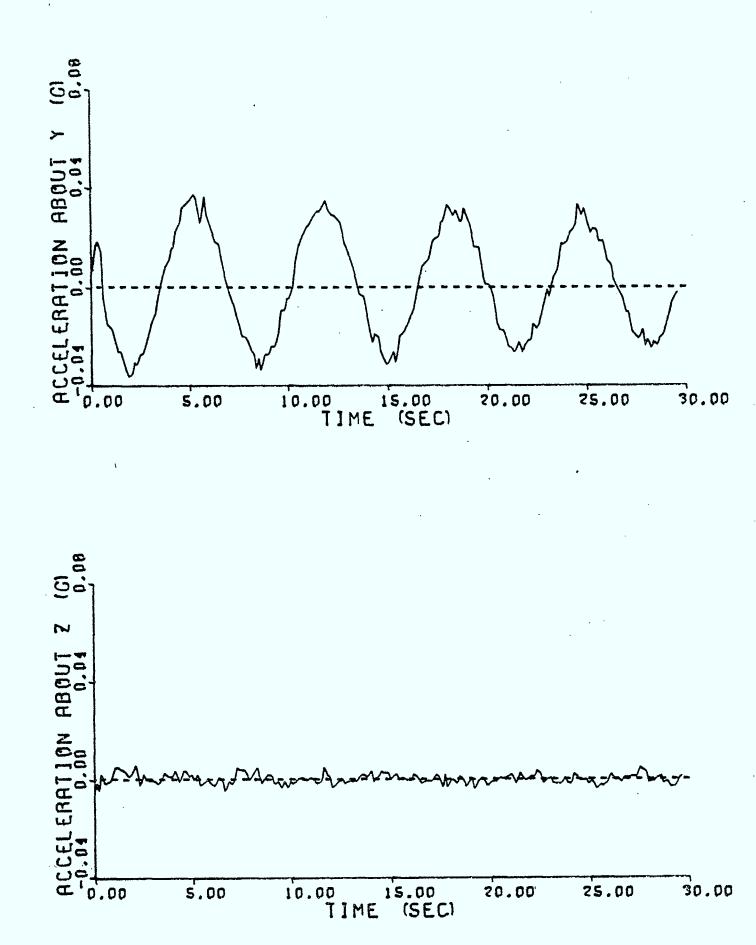
3. SENSOR IMPLEMENTATION

The dimensions of the accelerometer chosen as the rib sensor are given in Appendix A. Each accelerometer is worth \$4.300 net. in Canadian dollars. Twenty accelerometers, the full compliment for DAISY, would cost \$86,000, a very large investment. At present one rib hence only two accelerometers are instrumented. is used. А satisfactory mounting mechanism for a pair of accelerometers was not available from Sunstrand so a custom device was built. The two major components of the device, a mounting 'block' and 'rib saddle' are shown in Fig.3.1, with an exploded view and a photograph of the installation provided in Fig. 3.2. The cable links neccessary to permit the Taurus data aguisition to read the output of the two through two of A/D input ports have also been accelerometers completed. In addition, a small software program has been written that can read and plot the accelerometer outputs using existing driving routines. Two tests were conducted. In each case the hub was restrained and only the instrumented rib was free to move. In the first test a perturbation about the z axis was applied, while in the second the perturbation was provided in the y direction. The plots obtained from these tests are given in Fig. 3.3 and 3.4. The perturbations were induced by physically moving the rib by hand. Hence, activation of only one degree of freedom at a time was virtually impossible. Thus small oscillations are apparent in the 'unperturbed' degree of freedom in each plot. The large sinusoidal signals in the two figure correspond, to the in-cone and out-of-cone resonant frequencies of a single rib, respectively, with all other Higher frequency oscillations of about 3 Hz. are ribs fixed. noticeable for both degrees of freedom in each figure. Although an indepth analysis has not yet been accomplished, it is believed that this is a resonant frequency of the long y-axis (out-of-cone) springs.

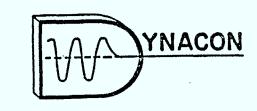





Figure 3.1: Accelerometer Mounting Block and Rib Saddle


10



3.5 "


4. CONCLUSIONS

Two of the twenty sensors required to measure the rib motion of DAISY, the simulated flexible components of a large space structure, have been obtained and installed. These two sensors, Sunstrand QA2000 accelerometers, are used to instrument one of the ten DAISY ribs. They have a 1µg threshold and a maximum output of 40g's. Using existing driver routines the output from the accelerometers, for a one-rib-free case, has been read by the control computer and plotted. At present, an indepth analysis has not been performed on the data; however, there does appear to be at least one higher-frequency non-rib resonance present. Ideally, with one rib free, there should be only one resonant frequency for the rib in each of the two excited degrees of freedom. It is believed that the additional resonant frequency corresponds to a spring mode, all of which are not modeled in the baseline DAISY dynamics model. A later version of this model does incorporate some spring modes, but not those due to the rib root-springs. In any case, it is worrisome that any spring modes can become large enough in magnitude to flood acceleration readings from small-amplitude rib This potential problem warrants further investigation. motions.

Still, the two rib accelerometers that have been procured, mounted, interfaced and tested are performing well. In fact, a possible problem area has already been identified based on their initial outputs.

5. REFERENCES

- (1) Sincarsin and Sincarsin, [Sept. 1985] Dynacon Enterprises Ltd.;
 "Fabrication of DAISY Structure", Dynacon Report DAISY-17, DOC-CR-85-067.
- (2) Lang G. B., [Aug. 1982] Ancon Ltd.; "Report on the Result of an Accelerometer technology survey",Ancon-R.815 DOC-CR-SP-82-060.

.

.

.

. .

. .

Appendix A

.

Accelerometer Specifications

.

. . .

.

.

·

. .

DESCRIPTION

The Sundstrand Data Control QA-2000 accelerometer is a state-of-the-art devélopment in cost-effective inertial grade accelerometers.

This accelerometer has evolved during the past ten years of refinements to Sundstrand's Q-Flex^{***} product line - QA-1100, QA-1200, and QA-1300.

The QA-2000 is an inertial grade accelerometer that has been designed and tested to meet the stringent requirements of military usage.

The QA-2000 is being utilized on the AV8B aircraft, lhe 757, and 767 aircraft in inertial reference systems.

The QA-2000 utilizes a highly stable, linear current output temperature sensor mounled directly on the internal magnet structure. One year stability of the accelerometer is better than 60 µ g bias. 150 ppm scale tactor and 80 µ radians axis alignment. For fast reaction unheated systems operating from -55 to 95°C, the temperature sensor allows accurate error compensation with temperature modeling. Operation to 125°C for special applications is available with the QA-2000.

A keyed, high-mass, lhree point mounting flange has been designed to assure stable performance, mount-tomount repeatability, and to reduce axis alignment error. This offers a dual advantage of more rigidity and less susceptibility to mechanical constraints due to uneven surface mounting, and thus prevents stress transmitted to the sensor.

The QA-2000, with current output for acceleration, is usuable over a wide dynamic range with voltage scaling determined by a single precision resistor. In addition, the QA-2000 is enclosed in a hermelicallyseated, laser-welded case to assure performance in severe environments.

MODELING

18

The QA-2000 is a high precision, temperature modeled Q-Flex® Servo Accelerometer. The QA-2000 is tested and modeled over its operating temperature range by computerbased test equipment which controls temperature, positions the accelerometer and measures and calculates the accelerometer's parameters. Typical data recorded from this test are bias, axis alignment and scale factor as a function of the temperature sensor output.

This highly accurate profile is then provided to the customer for use in total system integration.

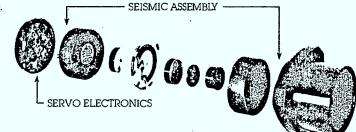
TECHNICAL DESCRIPTION

The QA-2000 is a complete, self-contained miniature servo mechanism weighing less than 80 grams and measuring approximately 25mm in diameter.

SENSOR KEY ELEMENTS:

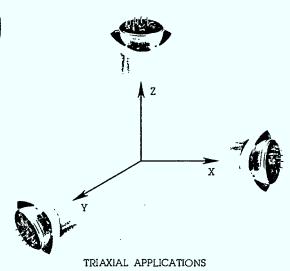
4

٩,


The sensor consists of the following key elements:

A PICKOFF that can sense extremely small displacements of the proof mass

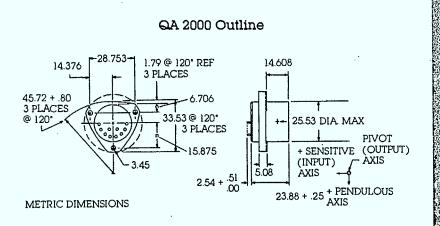
A RESTORER CIRCUIT, or servo electronics, that produces a proportional electrical current through the lorquer coll in response to the pickoff signal. The resulting electromagnetic force exactly balances the inertial reactive lorces.

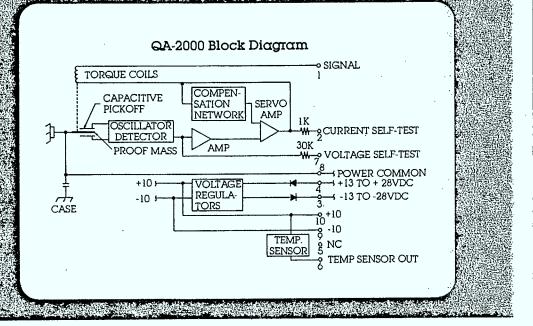

A TORQUER COIL positioned within a permanent magnetic field and attached to the proof mass.

A PROOF MASS, pendulously supported and ideally constrained so as to allow only one degree of freedom about a well defined axis.

FEATURES

- COMPLETELY ELASTIC SEISMIC SUSPENSION, Amorphous Quartz
- SENSOR DESIGN For Long Term Bias and Scale Factor Stability
- PRECISION 3-POINT MOUNTING FLANGE Assures Stable Alignment Performance. Mount-to-Mount Repeatability
- ADVANCED HYBRID ELECTRONICS Combine All Functions
 On A Single Ceramic Substrate
- CURRENT OUTPUT TEMPERATURE SENSOR For Precise Thermal Modeling of Bias, Scale Factor, and Axis Alignment
- LASER WELDED HERMETIC PACKAGE Meets Stringent Military and Space Environments
- DUAL SELF TEST Capability
- SELF-CONTAINED SEISMIC SYSTEM and Servo Electronics




AJBH (CARADICAL)

Leiteste alleieinein Kitterelaist, (ie ite alleit المارها (ح) والمرحيل المارية (ما المتعالية مارها (ح) (ح) والمراج المارها (مارها ا

- L (Certa (c)) + (CV(C)) in the test of a local interest (c) is the ودو المراجع المال الموالي الالتكاف المالية

(a) eliste less alles

JOHN DEGROOT ASSOCIATES BOX 241, POSTAL STATION A SCARBORGUGH, PNT. 418-431-9331 M1K 5C1

For additional information on specific requirements, contact Marketing Department, Instrument Division, Sundstrand Data Control.

2177/181

Printed in U.S.A.

Copyright Sundstrand Data Control, Inc.

ACCEPTANCE TEST DATA SUNDSTRAND DATA CONTROL

P/N 979-2000-001

SENSOR S/N: GGJBH HYBRID S/N: 259/ DATE: 10/02/84

7527

PARAMETER (per979-2000-700)	UNITS	LIMITS	ACTUAL I	QA Stamp
BIAS: Bias BTC BTH (p-p)	l lug lug∕degC lug	 max 4000 max 30 max 200	-1541 3 120	
SCALE FACTOR: SF SFTC SFTC (p-p)	⊨ mA/g ppm/degC ppm	1.20 to 1.46 max 180 max 400	1.27 102 93	
AXIS ALIGNMENT: MIP MIH MIPTC MIHTC MIPTH (p-p) MIHTH (p-p)	IUR IUR IUR∕degC IUR∕degC IUR IUR	 max 1000 max 1000 max 5.0 max 5.0 max 100 max 100	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	
VIBRATION 5g peak RECTIFICATION	 ug	 max +/-1.875	per per	Ø
EXAMINATION OF PRODUCT		l per 979- 1 2000-201		a6
ATTACH DATA Sheets from 979-2000-700		I ATTACHED AND I IDENTIFED	check ()	<u> </u>

S/N GGJBH does meet -001 limits.

50-0780-000 revB)

.

979-2000-701 SHEET A1

ACCEPTANCE TEST DATA

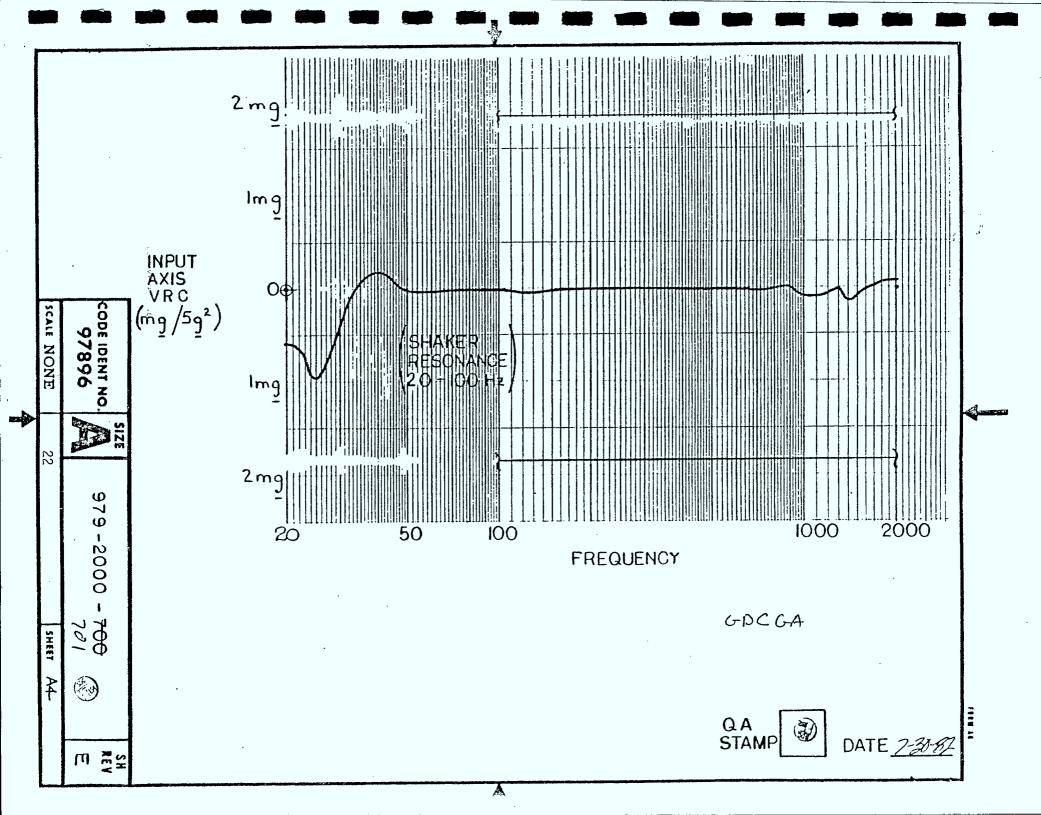
SUNDSTRAND DATA CONTROL

P/N 979-2000-001

5/N 394

SENSOR S/N: GDCGA

HYBRID S/N: 1366 DATE: 09:29:82


PARAMETER (per979-2000-700)	UNITS	I LIMITS I	ACTUAL I	QA STAMP
BIAS: Bias BTC BTH (p-p)	Mg Ug∕degC Ug	max 4,0 max 30 max 200	-0.6 -0.6 -0 35	
SCALE FACTOR: SF SFTC SFTH (p-p)	mA∕g ppm∕degC ppm	 1.20 to 1.46 max 180 max 400	1.42 82 74	
AXIS ALIGNMENT: MIP MIH MIPTC MIHTC MIPTH (p-p) MIHTH (p-p)	MR MR UR∕degC UR∕degC UR UR	max 1.0 max 1.0 max 1.0 max 5.0 max 5.0 max 100 max 80	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	
VIBRATION 5g peak RECTIFICATION	l l ug	 max +/-1875	950	B
EXAMINATION OF PRODUCT	,	per 979- 2000-201		(SOC) 39
ATTACH DATA Sheets from 979-2000-700	 	I ATTACHED I I AND I I IDENTIFED I	check I (/) I	

A: Accept, parameter meets -001 limit.

R: Reject, parameter does not meet -001 limit.

979-2000-701

AI

	Y	FORM AS
	ACCEPTANCE TEST DATA	
	SUNDSTRAND DATA CONTROL	
	P/N 617-4096-001	
	SENSOR S	N GDCGA
	HYBRID S/	'N 1366
	SEQUENTIAL DISK NUMBER	
	QA STAMP DAT	TE 09/30/82
6.2	INSULATION RESISTANCE	
	res = <u>> 20</u> Megohms (limit: 20 megohms minimum)	
6.3	HERMETICITY	
	Leak rate $\angle 1 \sqrt{10^{-6}}$ cc/sec (limit: $\leq 1 \times 10^{-6}$ cc/sec)	<u> </u>
6.4	PERFORMANCE	
	Acceptance by 076-0408	
6.5	EXAMINATION OF PRODUCT	
	Workmanship	39
	Dimensional	(39)

.

·

2

CODE IDENT NO. 97896	SIZE		979- 200)0- 700- 701		SH REV F
SCALE NONE		23		SHEET	AZ	

î

T3 TEST DATA SHEET 076-0414 Rev B

5/N 394

979-2000-701

SENSOR SZN:	GDCGA	RUN DATE:	0872	9782 (LOCAL g:	980,70	8 cm/sec-sec
TEMPERATURE (degrees-C)		BIAS (ug)	•	SCALE FACTOR (ma/g)		EMP. SENSOR micro-amps)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		-725 -102 518 1180 1888 2687 1898 1171 479 -187 -717 525		1,298647 1,293506 1,289117 1,285700 1,283362 1,282345 1,283414 1,285764 1,289196 1,293593 1,298652 1,289123		369.350 339.950 310.300 281.020 251.540 221.580 250.960 310.250 340.020 369.350 310.310
		COEFFICIENT (02930-amps		COEFFICIENTS (02930-amps))EFFICIENTS 20degrees-C)
CONSTANT: 1st DPDER: 2nd ORDER: 3rd ORDER: 4th ORDER:	B0= B1= B2= B3= B4=	893 -23.17 20.7E-03 -10E-06 114E-08	C 0= C 1= C 2= C 3= C 4=	1,287016 114,06E-06 586,8E-09 -1221E-12 144E-14	A0= A1=	295,756 0,98636
TEMPERATURE (degrees-C)		RESIDUALS (u-g)		RESIDUALS (ppm)		RESIDUALS (u-amps)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		-4 42 19 -6 0 5 -4 -21 -42 4		-2 -30 -32 -28 -19 0 20 20 26 35 29 2		$ \begin{array}{c} -0.2\\ 0.0\\ 0.1\\ 0.2\\ 0.1\\ -0.4\\ 0.1\\ 0.2\\ 0.1\\ 0.2\\ 0.1\\ 0.0\\ -0.2 \end{array} $
SHIFT:		8		4		0.0
HYSTERESID: Temp= 64.84 Temp= 34.63 Temp= 4.87 Temp=-24.89		-91 -45 -14 9		55 64 53 39		0.0 0.0 0.0 0.0

·	AXIS ALIGNMENT	DATA SUM	MARY 076-0414 Re⊍		· ə.,
SUPPOR SZNI GDO	CGA RUN DAT	FE; 08/18	6/82	5/10	394
***PENDUL	_UM AXIS (MIP)-		***HINGE AX	IS (M1H)	××××
DVEN TEMP (deg-C) T 1 94.88 T 2 64.67 T 3 34.71 T 4 4.71 T 5 -24.95 T 6 -54.76 T 7 -24.67 T 8 5.32 T 9 35.39 T10 65.05 T11 94.88	ALIGN- MENT (u-rad) -78 -114 -197 -265 -1 -1 -1 -260 -196 -131	TEMP SENSOR (u-amp) 369.180 339.590 310.190 280.360 251.410 221.270 251.980 280.980 310.820 339.930 369.180	OVEN TEMP (deg-C) 94.89 64.59 34.59 34.57 4.58 -24.98	ALIGN- MENT (u-rad) 169 167 217 261 0 1 1 290 253 185	TEMP SENSOR (u-amp) 369.140 339.510 310.060 280.300 251.530 251.530 251.460 252.000 281.090 310.850 339.960 369.140
X		MODELED (COEFFICIENTS		×
	PENDULUM AXIS (@2930-amp) -255 ==P0 -1.676 ==P1 134.6E=03 ==P2 242E=06 ==P3 -1755E=08 ==P4	-13	HINGE AXIS (@293u-amp) 280 =H0 2.369 =H1 6.2E-03 =H2 267E-06 =H3 853E-08 =H4	TEMP SEN (020dec 275,504 0,98615	j−C) ≕A0
×		RES	IDUALS		· *
TEMP	MENT (u-rad) 8 -15 48 -51 22 -5 25 -44 46 -33 2 6	SENSOR (u-amp) -0.2 0.0 0.2 -0.1 0.2 -0.5 0.5 0.5 0.5 0.1 0.0 -0.2	(deg-C) 94,89 -64,59 34,57 4,58 -24,98 -54,77 -24,74 5,36 35,41 65,08 94,89	MENT	
×		HYSTI	ERESIS		
OVEN TEMP (deg-C) 64.86 35.05 5.01 -24.81	ALIGN- MENT (u-rad) -23 -5 5 2	TEMP SENSDR (u-amp) -0,0 -0,0 0,0 0,3	DVEN TEMP (deg-C) 64.83 34.99 4.97 -24.86	ALIGN- MENT (u-rad). 23 40 26 -2	TEMP SENSOR (u-amp) -0.0 -0.0 0.0 0.2
BLOCK POSITION:	2	25		979-2000-	701

..........

(Transity)

211-222-24-4-1

ş

	J J	11-26-75
		LAST REVISION INCORPORATED
1		SEE SHEET 3 FOR REVISIONS
	· · · · · · · · · · · · · · · · · · ·	
	TITLE SHEET	
	INDEX	
		SHEET NO.
	TITLE SHEET (INCLUDES INDEX) INDEX OF REVISIONS	
	REVISIONS	
	DOCUMENT	1
-	·	
	· ·	
	·	· · · ·

.

	CONTRACT NO		Sundstrar	nd Data Cont		S.
	DRAWN 87001	/28/80 HI	GH PERFORM	ANCE MODEL LEROMETER	LED Q-FLEX	•
	CHECK Delooper	/28/80 MO			DESCRIPTION	
	ENGR 22051	1/28/80				
WPC: 32/272	MFG 52-4	1/20/80 SIZE	CODEIDENT	1 070	9-2000-602	•
CHANGE	QA FMAIT	130/80 A	9789	5		
CATEGORY	APPO RALL'S	26/180 26		·	SHEET 1 of	7 -
	V		L'Anten	NUUUE		

REV SHEET S
$ \begin{array}{c c} B & 1-3 \\ \hline C & 1-3 \end{array} $
6 C 1-3

Æ

.

******)

		REVISIONS		
SYM	SHEET	DESCRIPTION	DR/CHK	APPROVED/DATE
A	1-3	SEQ NO. IOOI33 ADCN 1) SEE ADCN FOR CHANGES EFF PT: VIII DISP: NONE	10/8	R. Hulsing DCCoopey
В	6	SEQ NO. I01281 ADRN 2 Specification changes SFTC 120 MAX was 180 MAX SFTC Stab ±5 was ±10		87005 DLCoopen Stoots DLCoopen
С	6	SEQ NO. 102435 ADRN 3 Seal 1 x 10 ⁻⁶ was 5 x 10 ⁻⁸	6/30/82 6/12/82	8700t= D/Coope
	1		1	
		SIZE		SH

HIGH PERFORMANCE MODELED Q-FLEX ACCELEROMETER MODEL QA2000 PRODUCT DESCRIPTION

1.0 SCOPE

This document describes a high performance, single axis accelerometer with integral servo electronics. Typical use of this accelerometer is in digital strapdown inertial reference systems.

2.0 APPLICABLE DOCUMENTS

The following documents form a part of this product description to the extent specified herein. In event of conflict between the referenced documents and this document, this document will be considered superseding.

2.1 Sundstrand Data Control Drawings:

979-2000	Top Assembly
979-2000-201	Outline
979-2000-701	ATP

2.2 Government Documents

Specifications

MIL-C-45662A	Test Equipment, Calibration and Certification of		
MIL-E-5400R	Electronic Equipment, Airborne, General Specification for		
MIL-P-9024F	Packaging, Materials Handling and Transportability, System and System Segments, General Specification for		
MIL-Q-9858A	Quality Control Requirments, General		
MIL-S-83490	Specifications		

CODE IDENT NO. 97896	SIZE	979-2000-602		SH REY
SCALE NONE	29	•	SHEET	

FORM AL

÷.

FREM AR

٠

Standards	
MIL-STD-129E	Marking for Shipment and Storage
MIL-STD-143B	Standards and Specifications, Order of Precedence for the Selection of
MIL-STD-454E	Standard General Requirements for Electronic Equipment
MIL-STD-965 Rev. NEW	Parts Control Program
MIL-STD-883	Test Methods, Procedures for Micro- electronics
Commercial Decument	

2.3 Commercial Documents

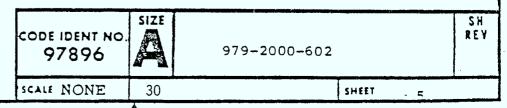
C 1 - 7 - · · 7

RTCA DO-160	Environmental Conditions and Test
	Procedures for Airborne Electronics/
	electrical Equipment and Instruments.

2.4 Abbreviations and Symbols

The abbreviations and symbols used herein are defined as Standard Accelerometer Terminology by the Gyro and Accelerometer Panel of Accelerometer Parts Committee, Aerospace Industries Association.

3.0 GENERAL DESCRIPTION


The performance required of this accelerometer is achieved by analytically modeling bias, scale factor and alignment over temperature. These serialized polynomial models accompany the serialized accelerometer as a composite deliverable assembly.

The pendulous inertial sensor employs a quartz flexure suspended proof mass in an air damped mechanism. Proprietary hybrid microelectronics servo the proof mass, producing an acceleration output current independent of output load.

Also included is an internal temperature sensor which produces a current output as a function of temperature. This current (approx. $luA/^{*}K$) is used as the basis for the bias, scale factor and alignment models.

4.0 MODELS

Bias and Scale Factor are modeled with 4th order polynomials. Hinge and Pendulous Alignment are modeled with best fit straight lines. These models are given as a function of temperature sensor current output, normalized at 293uA. A straight line model is also provided of temperature sensor current output as a function of flange temperature, normalized at 20°C.

5.0 PERFORMANCE

:

_ *****}

•

· ·

.

۰.

:-

.

۰.

PARAMETER	ហ	NITS		LIM	ITS	
BIAS:						
4 <u></u>				1 0		
Bias BTC		m <u>g</u> µ <u>g</u> ∕•C		4.0)	max	
BTH (p-p)		μ <u>α</u> / C	120		max max	
Bias Stability (1 year	•)	<u>чд</u> иа	±140		max	
BTC Stability (1 year)	,	ug/•C	±2		max	
Input Voltage Sensitiv	rity	ид /v ид va ид va	10		max	
SCALE FACTOR:						
SF		mA/g	1.20 to 1	1.46	max	
SFTC		ppm ⁷ °C	120		max	
SFTH (p-p)		ppm) .	max	
SF Stability (1 year)		ppm	±400		max	
SFTC Stability (1 year	•)	ppm/°C	±=		max	
Input Voltage Sensitiv	ity	ppm/V	20)	max	
AXIS ALIGNMENT: (For ea	ch axis)					
Alignment		mR	3	1.0	max	
AATC		µR/°C	4	4.0	max	
AATH (p-p)		μR		5	max	
AA Stability (1 year)		μR	±110		max	
AATC Stability (1 year	•)	µR/°C	±l	1.0	max	
Frequency Response (±5%)		Hz	300)	min	
Natural Frequency		Hz	800)	min	
Damping Ratio		-	0.3 to 0	.7		
Vibration Rectification		ug/g ² (peak)) 20)	max	
Linearity		ug/g ² (peak)) 25	5	max	
@ Max g Level		ਰ ਤ	25		max	
-					m 2 v	
Shock		đ	100		max	
Seal		cc/sec	1 X J	L0-6	max	
Threshold & Resolution		hā	I	L.O	max	
Temperature Range		•C	-5	55 to	+95	
Weight		grams	70)	nominal	
2		grams	80)	max	
·				· · · · · · · · · · · ·		
		SIZE				SH Rev
k	ODE IDENT NO		979-2000-602	2		
	97896					С
s	CALE NONE	31		SHEET	6	
					والمتحريفة النبية بمعتبد بججوري	

¥

F828.44

				7921 12
TEMPERA	TURE SENSOR:			
Curre Tempe	nt Output @ 20°C rature Coefficient t Load Requirement	uA uA/°C ohms	290 to 297 1.0 10KΩ	nominal ±5%
SELF TE	ST - Voltage or Current	Torque avai	lable	
6.0	EXCITATION			
	±15VDC ±5% (Will operate over ±	13 to ±28VDC	range)	
7.0	ATP			
	Vibration Rectificat Insulation Resistanc Hermeticity Temperature Modeling Examination of Produc	e	ent	
		SIZE		
	CODE IDENT 97896	NO.	979-2000-0	
	SCALE NON	E 32		

÷

SINCARSIN, W.G. Development of flexible spacecraft control systems : accelerometer installation					
TL 796 S563 1986					
		DAT	E DUE		
	MAY 1	4 1991			
_					
-					

