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ABSTRACT 

The objective in machine learning is to develop programs which 

::an  improve their performance by learning. The focus of the report 

is on learning by analogy, one of the most powerful, yet least 

investigated, forms of learning. For people, analogy plays an 

important role in creativity, in scientific discovery, in 

language, and in common-sense reasoning. The extent to which 

machines can capitalize on this source of power presumably depends 

on the extent to which those characteristics that make analogical 

reasoning a source of power in human thinking can be implemented 

in machine form. We argue that programs that learn by analogy have 

been relatively unsuccessful. Our diagnosis suggests that the 

problem arises from an inadequate understanding of the nature of 

analogy and of analogical reasoning. Our prescription for 

remedying the probl.em is to examine in some depth the concept of 

analogy from the perspective of both machine learning and 

psychology. This examination reveals fundamental differences in 

the definitions of analogy between the two fields. From a 

psychological perspective, these differences indicate that the 

implemented programs learn by a process more akin to 

generalization -- literal similarity -- than by analogy. More 

recent theoretical developments in the field of machine learning 

come much cl oser to what we understand by analogical processes in 

human cognition, but they have yet to be implemented in program. 

form. We conclude, therefore, that the ideas which have been 

implemented do not involve learning by analogy, while the ideas 

that involve learning by analogy have not been implemented. 
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1. INTRODUCTION 

Artificial intelligence (AI) is the study of how to make' 

computers do things at which,  al; the moment, people are better 

(Rich, 1983). One respect in which people are markedly superior to 

computer programs is their capacity to learn. Most programs today 

perform a given task in the same way every  i. me  they are used. 

Performance of such programs can only be improved by the 

time-consuming, costly process of reprogramming. They cannot learn 

from experience, from past mistakes, or from observing the 

behaviour of others. Even minor changes in task can require major 

changes in programming, changes which must be made by programmers 

and not by the program itself. In short, most programs do not 

learn. 

Machine learning, a relatively new  arc a in AI, attempts to 

redress this deficiency. The objective is to develop programs 

which can improve their performance by learning. But learning 

can take many different forms: rote learning (memorization), 

learning from instruction, learning from examples, learning by 

discovery and observation, and learning by analogy, for example. 

The focus of the present  paper is on the last of these 

alternative ways of learning -- learning by analogy. For people, 

analogy plays an important role in creativity (Evans, 1968; 

Billow, 1977), in scientific discovery (Oppenheimer, 1956; 

Dreistadt, 1960; Hesse, 1970), in language and how we perceive the 

world we use language to talk about (Ortony, Reynolds, 	Arter, 

1978; Billow, 1977), and in common-sense reasoning (Carbonell & 

Minton, 1988). The ubiquity of metaphor in everyday language and 
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reasoning',', for example, is easily demonstrated by counting the 

1: 
'nCuilber of Metaphors and analogies on a newspaper or magazine page. 

As analogy plays suçh a central ro 	n um le i 	han learning, :11;1 s 

important that mac 	o hine prgr 	 so c o 	o ams tap the same 	ure f pwer. 

Un 11  recently, however, machine learning confined its 

attention primarily to the simpler, more basic forms of learning 

•such as rote learning (or memorization); Attesting to -this is the 

fact that in 1902 the Handbook  of Artificial  Intelli_gence (Cohen 

J.  Feigenbaum, 1902, vol .3), while noting the area's potential 

importance, included no material on the topic, since "... this 

area has not received much attention" (p.334). This situation has 

changed markedly since 1900, however. Analogy  ha  s assumed a 

central role in more recent machine learning programs, even to the 

extent of being elevated to the status of one of  ni ne  "sources of 

power", or keys, to intelligent problem solving (Lenat, 1984). 

Undoubtedly, a stimulus for this dnterest is the belief that 

analogical reasoning is an important component of human thought 

processes. Carbonell (1903), for example, states that "... analogy 

is one of the central inference methods in human cognition..." 

(p.137). For Lenat (1904), the ability to understand and reason by 

analogy is the "... source of power at the heart of human 

intelligence..." (p.209). Winston (1900) makes the more modest 

claim, that "Much thinking is done by analogy"  

The extent to which machines can capitalize on this source of 

power presumably depends on the extent to which those 

characteristics that make analogical reasoning a source of power 

in human thinking c an  be implemented in machine for m. Do we know 

enough about what these characteristics are to achieve non-trivial 
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implementations of analogical reasoning? Assumi .ng that we. di :d 

indeed know enough to Model analogical reasoning, at least.in 

outline,  tir  e may remain problems associated with modelling the 

component processes. It is widely accepted that analogical 

reasoning involves the comparison or mapping of one domain to 

another. Do we know enough about the cognitive encoding of these 

domains . to establish knowledge representations which can capture 

the essential characteristics of analogical reasoning? Similarly, 

do we know enough about the comparison or mapping processes 

involved? 

The following paper attempts to address these questions froaL 

both a machine learning and a psychological perspective, and 

indicates some of the differences which appear to exist between 

these approaches to the understanding of analogy. The next section 

specifically addresses the issue of program performance.  We  shall 

argue that the Machine learning programs that learn by analogy 

have been relatively unsuccessful. Our diagnosis suggests that the 

problem arises not so much from deficiencies in the size of 

knowledge' base utilized -- as has been suggested by others such as. 

Lenat (1984) -- hut from an inadequate understanding of the very 

nature of analogy. Our prescription for remedying the situation, 

therefore, is to examine the concept of analogy in some depth. The 

thtrd sectiOn of the paPer addresses the issue of what exactly an 

analogy is. Succeeding sections consider the mapping processes in 

analogical reasoning, the representation of knowledge in 

analogical reasoning, and some general conclusions. Appendix A 

provi  des a more technical review of these and related issues 

machine learning for the interested reader. 1 
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2. PPOGRAM  PERFORMANCE  

Ex•ravagent claims have sometimes been made for the power and 

accomplishments of AI programs, and the field of machine learning 

:i. i; no exception. Performances of learning-by-analogy programs 

simply do not match the claims made for them. We have often found 

the examples cited by the authors provide a more accurate 

reflection of a program's power and performance. With this caution 

in mind we will examine the programs created by four of the major 

researchers in the field -- Evans, McDermott, Carbonell, and 

Lenat. 

Early wo•k on programming analogical reasoning focused on the 

kind of artificial situation presented in creativity and 

intelligence tests (Evans, 1968). Evans' program was capable of 

recognizing analogies between geometric figures. Problems were of 

the form "A is to B as 0 is to ??", and five possible responses 

were provided in a 'multiple-choice format. .The program could not 

be generalized to other, more realistic problem domains, however. 

McDermott's (1979) program, ANA, was designed to learn how to 

do new tasks by "analogy" with similar known tasks. When given an 

unfamiliar task, the program searches for a highly similar task 

which it already knows how to do, and modifies the method slightly 

to accomplish the new task. Ti:  illustrate the operation of his 

program, McDermott described an example in which AMA, already 

knowing how to "paint table" was confronted with the new taskof 

having to learn how to paint a blue chair red. Although ANA did 

learn to "paint chair" successfully, the example serves to 

illustrate several limitations of the program. First, the program 



1 

1 

dj,d not really learn to "paint chair" in any detailed  sens

Rthr it learned to construct.a new command, "paint chair", 

which had the effect of changing the colour of the item painted. 

Second, the program depends critically on the existence of a store 

of "almost adequate methods". If an almost identical method is not 

already known, then the program cannot learn the new task. Third, 

learning to "paint chair" when one already knows how to "paint 

table" does not seem much of an accomplishment. 

Carbonell (1903) describes an application of his program MEA 

in which it proved that the product of two odd numbers is odd 

after being instructed how to prove that the product of two even 

numbers is even. This was accomplished by applying almost exactly 

the same method used to prove the first theorem to the second • 

theorem. As for ANA, the two situations must be highly siMilar for 

the program to work. 

Lenat (1977, 1903a, 1903b, 1904) has developed two learning 

programS, each of which incorporates learning by analogy' as one of 

several learning techniques. AM was developed to "discover" 

concepts and conjectures in elementary mathematics. The program 

appeared to be qui te successful. To quote Lenat (1977)g 

"AM began with scanty knowledge of a hundred elementary concepts 

of fini te set theory. Most of the obvious set-theoretic concepts 

and relationships were quickly found (e.g. de Morgan's laws, 

singletons)... Prime pairs, Diophantine equations, the unique 

factorization of numbers into primes, Goldbach's conjecture -- 

these were some of the nice discoveries." (p.839) 



The success of AM appears, however, to have more to- do with 

the fact that LISP, the programming language on which AM was 

based, possesses a mathematical structure that embodies much that 

was discovered (Lenat, 1903a; Ritchie & Hanna, 1984). Moreover, 

according to Ritchie and Hanna, "analogies are one of the less 

satisfying parts of AM" (p.262), for it is not at all clear how 

the program actually uses analogies in mathematical reasoning. As 

even Lenat (1903a) admits "AM's ultimate failure apparently was 

due  • o its inability to discover new, powerful, domain-specific 

heuristics for the various new fields it uncovered." (p.61). 

EURISKO was designed to avoid some of the problems associated 

with AM. This program applies "analogical" reasoning in different 

task domains. For the purposes of exposition we confine our 

discussion to a task domain in which . EURISKO is  :':'n si derd to have 

made a major contribution -- the design of naval fleets in the 

TOTS (Traveller Trillion Credit Squadron) wargame. EURISKO won 

both national (USA) championship tournaments (1981 and 1902) for 

which it designed a fleet of ships. Given that Lenat had never 

played the game before or seen a competition, the per 	of 

the program appears impressive. However, cl oser examination of the 

tournament games suggest that the wins may be more easily 

attributable to the exploitation by EURISKO of the finer details 

of the game than to its analogical reasoning engine. In Lenat's 

(1903a, p.83) own words; "What EURISKO found were not fundamental 

rules for fleet and ship design; rather, it uncovered anomalies, 

fortuitous interactions among rules, .unrealistic loopholes that 

hadn'st been forseen by the designers of the TCS simulation 

system." 
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To summarize, learning-by-analogy programs have tackled 

problems of analogy in intelligence tests, naval wargames, 

household tasks such as painting chairs, computer chip design, and 

elementary number theory. It would be misleading to assert that 

•hes( programs have accomplished little, for much has been 

learned. Nevertheless, compared to human learning-by-analogy, 

program performance to date has been rather poor. 

Why is performance so poor.? Researchers in the field, such as 

Lenat (1904), have advocated expansion of the knowledge base to 

improve program performance. In defence of this position, they 

have argued that people can access millions of situations, 

actlons, objects, and concepts upon which analogies can be based. 

Programs, on the other hand, lack this rich store of information. 

Researchers,  si: the argument runs, have not only failed to provide 

programs with such large stores of "experiences" but have also 

failed  • o provide them with the capacity for storing large numbers 

of experiences as they occur. These programs may store experiences 

over short periods of time, but are typically restarted on new 

problems with most or all of their memories erased, Moreover, even 

such memories that are retained over time are impoverished 

relative to those of people, 

While the size of knowledge base may, indeed, limit the 

effectiveness of learning-by-analogy programs, a more fundamental 

problem may underlie their poor performance. We shall argue that 

the real problem• lies in the question of what constitutes an 

analogy. Most current programs perform poorly because they fail to 

capture the essential nature of analogy. Ortony et al. (1978, 

p.921) suggested essentially the same reason for the .1. 1::  of 
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progress among philosophers on the nature of metaphore "It .  is 

our contention that a prime reason for this Elack of progress:1 

is the relative inexactness and inadequacy of the dominant 

philosophical theories and definitions of metaphor. A good 

definition is needed..." To explore this issue, we shall first 

compare the definitions and theories of analogy as used in 

machine-learning programs with those from psychology. 



3. WHAT IS AN ANALOGY? 	 11 
Within both the Al and psychological communities, it appears 

11 to be generally held that analogy, simile, and metaphor 'axe 

closely related phenomena involving a comparison between objects 	

11 
(or their attributes, feature sets, predicates, structural 

properties, etc.) or,  a comparison between relations between 

objects (Carbonell & Minton 1903; Miller, 1979). While in-a 

strict sense, analogies are associated with a comparison of 	11 

relations between objects, this distinction is not considered to 

11 be of theoretical significance to an understanding of the 

psychological processes involved (Ortony, 1979b). Consequently, we 

will use "analogy" in the broad sense in which similes and 

metaphors are both considered to express analogies (Miller„ 

1979). 

• In their simplest form, similarity statements of this kind 

involve two terms, traditionally -  known as the "topic" and 

"vehicle", though in Al. parlance, "target" and "source" . have more 

currency. 	In the analogy "the brin  is  11 ::e a computer", the 

first term is the topic or target, the second the vehicle or 

source. 

It is widely recognized in the psychological literature that 

the relationship between source and target is asymmetrical— The 

transfer of information is generally from source to target, 

(although interactions may  brie  involved. See, for example, 

Black, 1962). This me ns  that reversing the positions of the terms 

may result in a loss or change of meaning. For exampleg 

"The old lady fought like a prizefighter" 

has a very different meaning from 



• 	"The prizefighter fought lika.an old lady". 

In general, it appears that asserting that A is like 3 is not 

necessarily equivalent to a string  that  3  is like A. This type of 

asymmetry poses serious problems for some psychological theories 

of analogy. For example, Rumelhart & Abrahamson (1973) proposed a 

model of analogical reasoning in which the similarity between 

objects was a direct function of their psychological distance in 

multidimensional space. One difficulty for this type of 

geometrical approach is that the distance (A,B) equals the 

distance (B,A), which makes it difficult to account for the 

asymmetry of analogY statements, or indeed of similarity 

statements more generally. 

Tversky's (1977) theory of similarity provided a partial 

resolution to the problem of asymmetry. In this formulation, if A 

represents the set of all features in the target, and B the set of 

all features in the. source, then the similarity of source to 

target, S(a,b), is given  by  

 1f(A0B)-"f(A-B)-af(B-A) 

That is, the similarity of a to b is a weighted function of the 

number of common features minus weighted functions of the 

distinctive features of a and of b. It follows from this that 

S(b,a) if either ' = a, which implies that the task is 

non-directional (ie. in what ways are a and b alike, rather than 

in what ways is a like b?), or if  f(AB) - f(B-A), which implies 

that the feature sets A and P. are of equal size. Otherwise the 

similarity will be asymmetrical. 

A case where Tversky's approach runs into difficulty occurs 

1f the analogy creates the perceived overlap, rather than reflects 



an existing overlap. (Black, 1962; Ortony, 1979b). Ti::  take an 

extreme example, the concept "zaglob": may havé no features for 

English speakers, and-consequently no.shared features. It's 

similarity with other concepts will therefore be zero, using 

Tversky's masure. However, the simile "zaglobs are like 

giraffes" may provide information for English speakers, even in 

the absence of any a priori shared features between the two 

•1; ii; 	What appears to occur is that salient characteristics of 

the source are attributed to the target, rather than selected from 

a pre-existing feature set. The similarity is created, rather 

than recognized, which Ortony (1979b) refers . to as 

"attribute-introduction" as opposed to "attribute-promotion". 

The relative salience or importance of both objects•and 

object attributes is another concern which psychological 

approaches to analogy typically attempt to grapple with. With 

respect to objects, people show decided preferences when asked to 

complete similarity statements of the form "A 	is like a 	In 

general, they appear to prefer placing the "better exemplar", or 

bel; sr  pattern" OY more "meaningful" term in the second, source, 

position. For example, Rosch (1975) found that when subjects were 

asked to place a pure focal red and a slightly "off" red stimulus 

in these relative positions, they exhibited strong preferences for 

placing the focal red in the second position. Similar results were 

obtained using numbers and line orientations as stimuli. In a 

pilot study at the University of Victoria, we obtained extreme 

examples of asymmetries of a similar kind. The stimuli were 

nonsense syllables, which varied in terms of high or low 

"meaningfulness" ratings. When presented with a high and low 
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pai,•, subjects exhibited a preference to place the more 

"meaningful" nonsense syllable in the source position, the less 

"meaningful" in the target position". 

With respect to the salien :  of object attributes, similar 

directional characteristics are evident, in that the more 

salient characteristics of the source term serve to select or 

"promote" less salient at tributs in the target term. Tc use the 

previous example of the prizefighter and the old lady, to say that 

"the old lady fought like a prizefighter" attributes to the old 

lady wha •  are high-probability or highly salient prizefighter 

properties. When comparing the prizefighter's performance to that 

of an old lady, the opposite attributiOns occur. Ortony (1979a) 

reports data which support this point. 

The fact that the source draws out or highlights what were 

previously non-s1 ient or even non-existent properties of the 

target serves to illustrate another point: that analogies are not 

concerned with the similarities between two similar domains but 

rather with drawing out certain similarities between two otherwise 

dissimilar domains. Tc:'  illustrate, "birds" and " ha  t engines" are 

not superficially alike. Birds have wings, feather„ beaks, eat 

worms, and si::  on; heat engines are typically metallic, have 

polished exterior  sur faces ?  are large and heavy, consume fossil 

fuels, etc. The analogy that "birds are like heat engines" does 

not invite us to attempt to match up these salient 

characteristics, but rather draws attention to certain less 

salient characteristics of birds in such a manner as to expose or 

suggest unknown or unrealized properties. The analogy proposes 

that we use heat engines, and their thermodynamic properties, as 



a model which applies to certain characteristics of birds. Ti::' the 

extent that the model is a "good" one, it will suggest hypotheses 

or explain facts about birds- which wer• not part of Ole-  previous 

knowledge about birdsg for  xample, that there must be a lower 

limit to the viable size of birds, that smaller birds will consume 

more calories per gram of body weight than large birds, that small 

birds will be less common in extreme latitudes, and so on. It is 

in this sense, of analogies as models, that practicing scientists 

as well as psychologists appear to understand the essential nature 

of analogical reasoning. Craik, for example, asserts that models 

are analogies, and that a model is "...any physical or chemical 

system which has'a similar relation-structure to that of the 

process it imitates...The model need not resemble the real object 

pictorially...but it works in the same way in certain essential 

respects" (Craik, 1968, p.284). Oppenheimer proposes a similar 

interpretation, that by analogy he means "...a special kind of 

similarity, which is the similarity of structure, the similarity 

of form, a similarity of constellation between two sets of 

s I; ructures, two sets of particulars, that are manifestly very 

different but have structural parallels. It has to do with 

relation and interConnection" (Oppenheimer, 195S, p. 129). 

In answer to the question of what is an anlogy, therefore, 

there are certain characteristics on which there is wide 

agreement in the psychological literature. Analogies are based on 

similarity, but not the similarity of appearance, or the 

similarity between highly salient properties of source and 

target. They are based on a similarity of structure, of "inner 

form" or process, which is more characteristic of, or more clearly 
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. represented in the source than in the target. The source 

therefore acts as a model which "maps on" to the target. FOY this 

reason, the similarity relationship is directional, not 

symmetrical. 

In contrast, on examining the descriptions of 

learning-by-analogy programs, we were struck (a) by the general 

lack of clarity in defining analogy, (b) by the discrepancy 

between stated definitions of analogy and what actually seems 

implemented in a program when analogy is defined, and (c) by the 

rather naive view of analogy implemented in many of these 

programs. Given the centrality of the notion of analogy to these 

programs, one might be forgiven for expecting the concept of 

analogy to be clearly defined by each author. Al 1.  too frequently 

theHterm "analogy" has been used with little or no explication 

(McDermott, 1979; Cohen & Feigenbaum, 1983; Lenat, 1983a,•1984; 

Lent  a! Brown, 1983g Carbonell, 1903; Winston, 1900). 

Descriptions of the programs and illustrative examples 

provide some indication of the concept of analogy employed in a 

particular program. The prevalent view implemented in these 

programs is that analogy-equals similarity (Winston, 1980; Lenat, 

1904; McDermott, 1979). According to this view, the more similar 

two situations are, the more likely some form of profitable 

analogy might be found. For example, Winston (1900, p.693) asserts 

that "Analogy is based on the assumption that if two situations 

are similar in some respects, then they must be similar in other 

respects as well." Fr :'in  his description of the "mat cher" component 

of his program, it seems that he counts the number of shared 

relations 1n common and makes an analogy on the basis of the 



permutation having the greatest score, For-Lenat (1984,, p.213) "it 

is meaningful between two concepts only if they share many of the 

same attribute names, and it is useful or cost-effeCtive if in 

addition the concepts are actually similar in some of their 

dualities, that is, if certain of their attribute values are 

comparable." Carbonell (1982, 1983) hypothesizes that analogical 

prôblem solving is a four-step process with the first step being 

the recall of one or more past problems that bear strong 

similarity to the new Problemu "When encountering a new problem 

situation, a person is reminded of past situations that bear 

strong similarity to the present problem." 

- More recent theories of analysis proposed by AI researchers 

,(e.g., Gentner, 1983; Carbonell & Minton, 1983) have been much 

closer .to the psychological theories discussed earlier. For 

example, Gentner (1983) has proposed that the domain of a concept 

should be represented as a system of objects, object  attrib ut s , 

 and relations between,objects. This view is shared by Gick 

Holyoak (1980, 1983) and resembles the representation suggested by 

Carbonell .(1982, 1983)'. 

• 	Gentner, in furthering his proposal, suggests that it is the 

relati.onal 'characteristics that play an important role in an 

analogy. For-example, an electric battery is like a reservior 

because they both represent a source of energy being held by a 

container. He also .  atteMpts to distinguish the differences between 

an . analogy, a literal similarity, and an abstraction, An analogy, 

as defined by Gentner, iS a comparison in which most relational 

characteristics are shared between the concepts, but few or no 

object attributes are matched,. A literal similarity statement 
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differs from an analogy in that it has more of the object 

attributes matched. Hence, the statement "The X12 star system in 

the Andromeda galaxy is like our solar system" is not an analogy 

because the X12 star and our sun have a lot of object attributes 

in common. An abstraction is distinguished from an analogy by the 

fact that one of the concepts must be an abstract relational 

structure with generalized physical entities and that all objects 

and relational features should be matched. For example, the 

statement "The hydrogen atom is a central force system" is an 

abstraction. Even though these distinctions may be semantically 

correct, they are rarely regarded in the modelling of analogical 

reasoning. This departure in defining analogy can be seen in an 

example provided by Carbonell (1903). The example involves a 

person planning to travel  • rom Pittsburgh to New York city. This 

person usually travelled by planes but had discovered that all the 

flights were booked. He had never travelled using the intercity 

train, but by analogical problem solving, he could reason that he 

needed to withdraw sufficient money from the bank  te:'  buy a ticket, 

find out where to buy the ticket, call the ticket office to make a 

reservation, and later go to the station to board the train. In 

this example, the target problem and the analou have a'lot of 

object attributes in common - the per son, Pittsburgh, New York 

city, and the bank are identical in both situations; the'ticket 

offices could be expected to have many shared physical featu.r. 

even the train and the airplane are both made of metal and 

supported by wheels. Applying Gentner's definitions, this example 

may be interpreted as a case of literal similarity.  rather than an 

analogy. 



Carbonell & Minton (1983) also deviate from the,..simplistic 

view of analogy as similarity. Although analogy also seems equated 

with similarity for them ("Analogical reasoning is the process by 

which one recognizes that a new situation is similar to some 

previously encountered situation ...), they go further in. 

exploring the idea that analogy is based on structural similarity, 

that the role of analogy is'to transler information from familiar 

situations to unfamiliar situations, and that only the salient , 

features of the source are transferred to the target. 

Thus, both 0entner's (1903) and Carbonell 	Minton's (1983) 

theories of analogy reflect many of the considerations  rai sed  by 

the psychological literature. Neither researcher, however, has yet 

developed a program implementing these new ideas.  (Ses  Appendix 

A, pages 12-1B for additional technical information.) 

Given some agreement between the more recent learning theories 

(which remain to be implemented) and the psychological theories, 

the next section addresses the issue of how characteristics are 

mapped from the source to the target. 1 
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4. MAPPING PROCESSES IN ANALOGICAL PEASONING 

Carbônell (1902, 1903), Gentner (1903), and Gick and Holyoak 

(1900, 1903) have all proposed that -the recognition of an analogy 

occurs through a mapping process. There is considerable agreement 

amongst their theories and the main points of similarity are 

listed below: 

(1) The mapping process involves comparing features of two 

domains. 

(2) If one says that a T is like a B, the mapping is from B • 

to T. 8 will be called the base or source, and T the 

targe . . 	 • 

(3) The object features are the least important ones in the 

mapping. 

(4) The relational features (Gentner, 1903) or structural 

similarities (Carbonell, 1903) are the important 

characteristics. 

(4) Learning can be facilitated by transferring features . 

from the source domain to the target domain. 

(6) In or der to have learning facilitated, the source must 

be a well-understood domain and the target a 

comparatively ill-structured one. 

Gentner appears to hold the view that the strength of an 

analogy is dependent on the degree of overlap of the relational 

1 eat1.1 -res. However, there is no clear indication of the amount of 

overlap required to distinguish an analogy which "works" from one 

which fails. 

Carbonell (1903) provides a more detailed plan for assessing- 
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the similarities in an analogy. His theory is a modifj.c.i.,:xtion of 

the traditional means-ends analysis of Newell & Simon (1972). 

Means-ends analysis (MEA) identifies the , domain of a problem as a, 

problem space which consists ofg 

. 	(1) A set of possible problem stal.  ss  

(2) One state designed as the initial state. 

(3) One or more states (if there is more than one solution) 

designated as goal states. 

(4) A set of Operators with known preconditions that 

transform one state into another in the 

(5) A difference function that computes differences between 

two states. 

(6) A method for indexing operators as a function of the 

difference between the current and the goal states they 

can reduce. 

(7) A set of global path constraints that must be satisfied 

in order for a solution to be viable 

Carbonell's modification involves comparing the following 

fv.atures between the source and the target domains: 

(1) the initial states, 

(2) the final states, 

(3) the path constraints, 

(4) proportions of preconditions of the transferred operators 

satisfied in the two domains. 

Carbonell refers to this as a comparison of structural 

similarity. It is obvious that the elements being compared are 

al s:  relational features, using Gentner's terminology. Since an 

analog is not identical to its target, features of the  ana log 
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when mapped ont:'  the target, may be varied in order to satisfy 

the current constraints. In a study -of two hundred metaphors, 

Carbonell . (1982) discovered . that certain kinds of features are 

less likely to vary in the mapping process. Based on this .ftnding, 

Carbonell proposes that a "hierarchy of relative invariance" can 

be created by listing the features according to its tendendy to 

remain unchanged in a mapping process. This suggests that the 

strength of an analogy  cari  be assessed by measuring the invariance 

at each level of the hierarchy, presumably with the higher level 

•eatures being given more weight. The following is a hierarchy 

proposed by Carbonell: 

(1) Goal expectation - if the analogy implies a 1; as:  to be 

done, the goal of the actor is usually preserved in the 

mapping (e .g. "inflation is like a disease" - the goal is 

to cure and be healthy). 

(2) Planning and counterplanning strategies - the means for 

achieving the goal (e.g controlling the growth of virus 

to cure disease implies controlling money supply to 

hamper inflation). 

(3) Causal structures - the cauSe and effect relationships 

(e .d. medicine cures  di 	se  hence economic  meures 

 will hamper inflation). 

(4) Functional attributes - the function of objects involved 

(e.g. a doCto to administer medicine; hence the finance 

ministry to plan economic policies)« 

(5) Temporal orderings - the order of events to occur. 

(6) Natural tendencies - the natural laws governing the 

behaviour of the objects. 
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(7) Soçial. roles - the social relations between the actors. 

(8) Structural relations - the physical relations between 

objects. 

(9) Descriptive properties - physical attributs  of the 

objects (i.e. object features). 

(10) Object identity - this is very rarely mapped in an 

analogy. 

The proposals made by Carbonell, Gentner, and Gick and Holyoak 

all represent a means for assessing the similarity between the 

source and target domains. However, these are only applicable when 

both the l arget problem and the potential analog are given. The 

. problem remains of how can a potential analog be retrieved from 

the memory. I •  would be impractical to search through all events 

in the memory to find an analogy. Sternberg (1977) . !.ulggests that 

an analogy can be identified by asking "if A is like 1-3, what is 0 

like". The problem of this method is that it required a parallel 

analogy to be created first. It would be as difficult to find an 

applicable parallel as to find an analogy for the target. Besides, 

this approach wOuld limit the kind of analog available to be 

retrieved (Gick 	Holyoak, 1983). Carbonell (1903) Proposes a 

practical method for narrowing the search paths  :Dy  generalizing 

solution plans that bear strong similarities. thin suggestion is 

consistent with Kintsch and Van Dijk's (1970) theory of prose 

representation and Gick and Holyoak (1980, 1903)'s notion of a 

schema Gick and Holyoak used Duncker's (1945) "radiation problem" 

to obtain empirical proof that generalization procedures are 

actually adopted in human reasoning. Duncker's problem involves a 

doctor faced with a patient with a malignant tumor. It is 
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impossible to operate on the patient, but the patient will die if 

- the tUmor were not destroyed. There is a kind of ray that can 

destroy the tumor, but the rays with intensity high enough to kill 

the tumor will destroy the healthy tissue at the same time. The 

question is how can the tumor be destroyed without hurting the 

tissue. In the experiments, Gick and Holyoak provided subjects 

with military stories about how a fortress can be captured. Their 

findings suggest that subjects generalize the radiation problem 

and the military stories to form a convergence sch•ma similar to 

the one presented below: 

- Initial state 

Goal: Use force to overcome a central target. 

Resources: Sufficiently great force. 

Constraint: Unable to apply full force along one'path. 

- Solution plan: Apply - weak forces along multiple paths 

simultaneously. 

- Outcome: Central target overcome by forcf.: 

Kintsch and Van Dijk's theory involves the application of a 

set of inference rules to generate an abstract macrostructural 

representation of a problem. This process would produce an output 

similar to Gick and Holyoak's schema. Gick and Holyoak suggest 

that the schema would have a perfect ovarlap with the target 

domain since only the matched features are being generalized. This 

implies not only a saving on memory space and search time but also -

an improvement of decision quality, if only the schema are 

stored. 

Carbonell's generalization procedures are more complicated 

1; han 31ck and Holyoak's schema and Kintsch and Dijk's prose 



representation, He suggests that all solution plans be f•d into an 

. inductive Machine (Diette•ich & Michalski, 1903 Michalski, 1903) 

which would'cluster similar plans together to form generalized 

cf  

-plans that resemble Schank's notion of a script (Schank & Abel son, 

1977; Schank, 1900), More specifically, Carbonell's suggestion 

involves the following procedures: 

(1) When an analogical plan is created for a new problem, the 

plan has to be tested in the external enviroment. 

(2) Feedback should be obtained to indicate whether the plan 

is sucessful. 

(3) The successful and unsuccessful plans are fed into a 

inductive machine which generates a plan encompassing all 

the successful solutions and none of the unsuccessful 

ones. 

(4) A comparison between the successful plans and the 

unsuccessful ones to identify features that would 

discriminate the plans. 

(5) If the machine fails to generate a solution frOM an 

analogy, it indicates that the difference function (for 

measuring the differences between states) must have 

omitted some crucial aspects of the analogy and the 

function criterion should be refined, 

Since Carbonell's model involves generalizing a class of 

problem solutions to form a plan, the generalized plan should 

. represent a higher level of abstraction than flack and Holyoak's 

schema or Kintsch and Van Dijk's prose representation. 

Consequently, more interpretation would be required in the mapping 

process. Carbonell's model, on the other hand, should have the 



advantage of further reducing search time. It is unclear whether 

these generalized plans can be categorized  i. nt::' a hierarchical. 

structure to facilitate a faster search process. In the case of a 

very complicated problem for which*an analogy cannot be found, 

Carbonell suggests that the problem may be decomposable into sub-

problems for some of which analogies may be obtainable. This 

suggestion introduces flexibility  1. nt': the learning system and 	, 

allows it to handle a large variety of tasks. 

There is another advantage and disadvantage to the system 

proposed by Carbonell. The advantage is that the system is'an 

adaptive one which allows it to broaden its applicability and 

improve its decision quality as more problems are solved. The 

disadvantage is that the model requires human assistance to 

provide feedback for the systeM. One may argue, however, that 

interaction with an external environment is a necessary condition 

for the acquisition of knowledge, and need not be.regarded as a 

weakness. 

Most of the research on analogical learning (Gentner, 1983; 

Gick and Holyoak, 1980, 1983) has been psychological in its focLts. 

Consequently, the models created in these studies may be expressed 

in abstract terms that are difficult to translate intG alqorithms 

suitable for machine processing. While there are a number of 

models expressed in formai loqic (Kling, 1971; Stelzer, 1903), 

these models solve mainly problems in mathematics, the domain of 

which is well defined. One model that does handle ill-defined 

domains can be found in the framework proposed by Carbonell 

(1903). This framework provides a detailed description of the 

steps required to transfer operators from the analod . to the 
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target. As men“oned 	a• generalized plan for aciass of 

problems can be developed by an inductive machine. The generalized 

plan should consist of a sequence of states and operators. When 

presented with a n • w problem, the problem sol ver would try to 

search for a plan that begins with the same initial 	ate and ends 

with a state closer to the desired goal. The ending state of the 

plan would then become the current state in the new problem space. 

The search process would begin again to  fi id a plan that would 

further narrow the gap betWeen the current and the goal states. 

This process would continue until the goal state is at • ained. By 

this method, a new problem space would be created with a number of 

retrieved plans connected together. Carbonell refers to this space 

as the analogy transform problem spac •  (T • space). The retrieved 

plans would become the states in this space. 

• Carbonell's approach may appear to resemble the notion of a 

macro-operator (Korf, 1905; Fikes 	Nilsson, 1971) but there are 

distinct differences between them. A macro-operator, like a 

solution plan, is represented by a sequence of states and 

operators. One distinct characteristic of a macro-operator is that 

i •  allows certain (non-serializable) subgoals of the problem to be 

temporally violated in its application. This characteristic  3. 1::w 

 macro-operators to become extremely useful in solving problems 

like Rubik's Cube. Macro-operators, however, are not applicable in 

Carbonell's model for sevelal reon.s. First, macro-operators 

perform very specific tasks. A slight variation in the problem 

situation would require new macro-operators to be formed. In order 

to solve problems that have many variations, the system would have 

to store a large number of nacro-M;ors. The combinatorics 
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involved in storing and Searching all these operators could-easily 

b: ':in  unmanageable. Second, the application of macro 	operators 

does not consider path constraints. A macro-operator would easily 

become invalid since a new problem usually carries a different set 

of path constraints. Third, there is no provision for adding, 

deleting, or substituting operators in a macro 	operator. These 

operations are crucial elements in Carbonell's model. 

Carbonell allows a set of operators for shaping the retrieved 

plans ;i ni.:'  potential solution sequences. To avoid confusion, these 

operators are referred to as T-operators. The following are some 

of the functions these T-operators can performg 

(1) insertion of a new operator into a sequence.. 

(2) Deletion of an operator from a sequence. 	. 

(3) Subsititioon of an  or 	operator by another 

operator or a sequence of operators 	. 

(4) Concatenation of one solution sequence to another. 

* (5) Merging of two sequences to form a new sequence. 

(6) Reordering of operators in a sequence« 

(7) Substitution of an object in the original problem with 

an object in the new problem. 

(8) Truncation of a sequence of operators from the original 

sequence. 

(9) Inversion Of the or der of the operators in a sequence. 

Carbonell suggests that T-operators may be indexed in a 

difference table. Entries in this table would take the form  "Tc:' 

 reduce X, apply a member of T-operator set Y". Since these 

T-operators do not involve performance in the external world, they 

are not subjected to the restriction of any path constraints. 



Carbonell suddests to incorporate the path constraints in the 

difference table. He proposes that the comparison of the initial 

states, final states, path const'raints in the two domains, 

applicability of the retrieved solution in the new problem 

scenario should individually be represented by a difference 

function. These four functions should be combined to form a 

difference matrix to represent the differences between the 

retrieved solution. and the desired solution. A viable solution is 

said to have been found if all the • e functions indicate a zero 

difference. (The reader is referred to pades 12-10 in Appendix A 

for additional technical information relevant to this section.) 
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5 , INOWLEDGE PEPPESENTATION IN ANALOGICAL PEASONING 

Tc the extent that analogical reasoning is based on a 

recognition of structural similarity, then machine implementations 

capable of this type of reasoning must have (a) knowledge 

representation which embodies the relevant structural 

characteristics, and (h) operators which are capable of extracting 

t • em. Are some forms of knowledge representation likely to be 

more useful in this respect than others? 

There haS been considerable debate among cognitive 

psychologists in recent years concerning knowledge representation 

in humans, and two points of view have emerged, the 

"propositional" and the "analog". The propositional view holds 

• hat knowledge is encoded in an essentially language-like medium 

in which both objects and relations between objects are 

represented symbolically. The "analog" view holds that 

representations are in some sense "spatial", in which both objects 

and their relationships are intrinsic to the representation. That 

is, the "image" represents the objects in relationships which are 

functionally equivalent to the relationships which they hold in 

the external world. 

One proposed difference betwe • n these approaches is Mlat- of 

extrinsic. versus intrinsic rePresentation of relations. In the 

propositional approach, relationships 'are "extrinsic" in the se • se 

that they are "added-on" as relational elements to the set of 

object elements. In analod representations, the relationships are 

diven  1 n the same representation  55 the objects, and are.therefore 
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considered to be "intrinsic" (Palmer, 1979). However,  :1 1;  is 	be 

possible to imagine propositional representations in which 

non-represented relationships can nevertheless be dertved. For 

example, "the catsat on the st ove and the dog lay on the rUg" 

'::'::u1 (:1  be represented propositionally by six elements, four object 

elements and two relational elements. An additional relation, that 

the cat is probably higher than the dog, could be derived from 

knowledge of the given elements. The non-represented relationship 

is therefore intrinsically available in the knowledge 

representation. The real difference may have more to do with the 

fact that in the propositional representation, the additional 

relationship must be inferred, whereas in an analog 

representation, this knowledge is held to be given immediately in 

the representation, rather than extracted by deduction. 

A related difference between the two approaches has to do 

with the types of constraint which exist within the 

representational medium itself (Shepard, 1901). Propositional 

media are highly unconstrained, in the sense that, in principle, 

any object may be related to any other object by any available 

relation. The medium itself imposes no constraints on the 

combinatoric possibilities. On the other hand, analog media 

themselves possess a structure Which constrains the forms of 

representation possible. As a low-level xample, the perception 

of smell involves the "fit" between specific moleculular 

structures and specific receptors of complementary structure. At, 

the level of visual perception, this point of view implies that 

the representational medium itself contains structure which is 

isomorphic to structure in the world it represents 	For example, 
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it may contain an "up" and "down" or a functionally equivalent 

dimension. The representation of objects in this dimensional 

medium would consequently preserve their dimensional relationships 

simply as "part of the picture". 

These points of view are not mutually exclusive, and :1. 1;  is 

quite possible for a cognitive system to be endowed with both 

analogical and propositional forms of representation, in which the 

first system for ms  images, and the second system dgspribgs them 

(At•neave, 1901). Howeve•, it is )robably no accident that 

proponents of the propositional view typically try to model 

cognitive events using a highly unstructured'medium (computer 

models) while proponents of the analog view typically employ. 

physical or physicalistic types of model (Palmer, 1970). As a 

cOnsequence, the field of Al has adopted an almost exclusively 

propositional approach to knowledge representation. It is 

possible, however, that the form of analogical reasoning that is 

"powerful" in humanS dei :1 	more from an analog for  of 

representation. If t•is is the case, then it will be necessary to 

build structure into knowledge representations. The remainder of 

the paper considers several extended examples of how this might be 

achieved in simple cases. 

The first example begins with a consideration of Gibson's 

(19G6) view of visual perception. Gibson proposed that perception 

is "di:rect". That is, the perceptual system does not "model" OY 

"structure" the external world, it simply "picks-up" information 

which is already structured. He considered that this structure 

was preserved in the ambient light array. However, si n:: the 

perceiver i i .  typically in motion, this information undergoes 



continual transformation as the visual "station-point" changes. An 

important coMponent of Gibson's theory was the view that what was 

extracted by the perceptual syste tïi .  were those stimulus 

characteristics which remained invariant as the stimulus a ri  ay 

changed :ver time, which Gibson referred to as "higher-order 

invariants". ( The idea recalls Carbonnell's notion of a 

"hierarchy of relative invariance"). Consider, for example, a 

perceiver walking down a long corridor,with doorways,on each  

si de. The projection of the optical array on a two-dimensional 

plane. will undergo continuous transformations in which the far end 

wall gradually swells in Si ze. Distant si de doorways first appear 

as slits which gradually resolve into trapezoidal shapes, and so 

on. Out of this visual flux, the perceiver picks-up certain 

invariant relationships which afford the . perception of a stable 

corridor with rectangular doorways at each  si de. 

For present purposes, an interesting consequence of this 

point of view is that one can consider that the "structure" of the 

space itself undergoes transformation, in that any object placed 

in the corridor ci 1].  undergo analagous transformation. Thus, 

although the specific changes which occur :i. 11  depend on the 

objects themselves, any object placed in the same pace. will 

undergo the same general transformation, 

One method by which changes in the "structure" of space may 

be represented was introduced by D'Arcy Thompson (19É1) ih a 

different context. He attempted to demonstrate relationships 

between different species by illustrating that the form of a body 

part, or in some cases the whole body, when replotted on a 

transformed co-o .rdiruitte .  system, yielded the form of another 

1 
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species. Figure 1 shows one illustration of the technique, where 

the second form is a point-for-point mapping of the first form 

ont::'  the transformed co-ordinate system. 

This general technique ha  s been employed by Pittenger, Shaw 

and Mark (1979), in an attempt to explain the fact that we can 

generally recognize people's faces despite changes caused by 

the process of aging. They showed that at least one change. related 

•o aging is a continuous topological transformation of head shape 

which can be represented by changes in a co-ordinate system using 

Thompson's method. Figure 2 illustrates the application of this 

transformation to cartoon drawing of the heads of three species. 

People judge the ages of the animals in order from top to bottom, 

the top being younger. Given the consistency of these judgments, 

we would expect people to be able to solve proportional analogies 

using this type of stimulus, where the relationship that has to be 

extracted has to do with the topological transformation which has 

Peen appliedu for example, the top bird is to the bottom bird as 

the top dog is to the bottom dog. It is difficult to see how 

existing Al programs based on purely propositional forms of 

representation could extract this relationship. 

The second example we wish briefly to explore begins with 

a method of solving proportional analogies proposed by Klein 

(1982), and based on a proportional form of stimulus 

representation 1 . 

1 We are indebted to W. Treurniet for introducing us to this 

example, and for his participation in developing it. 
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The methoclappljes to stimuli which can be described in terms 

of sets of binary featLires. Figure 2a shows an example of a 

feature set of this kind, with the values on each feature 

represented by 0 or 1. Form A in Figure 3b can therefore be 

represented as 1000, form B as 1110, and form 0 as 0001. Klein's 

algorithm solves for D in the proportional analogy A is to 8 as 0 

is to D. It does so by comparing A and 8 and extracting an 

operator based on the logical operation of exclusive disjunction, 

which defines the transformation required to change A to B. This 

operator is then applied to 0 to  sol. V5  for D, as illustrated 

below. 

A 	8 	Onerator 	r 	Operator 	D 

1 	1 	1 	0 	1 	0 

O 1 	' 0 	0 	0 	1 

O . 	1 	0 	0 	0 	1 

O 0 	1 	1 	1 	1 

The procedure appears to work for stimulus sets of  1.; 111s  kind, 

but fails when a spatial component is entered into the analogy. 

For,example, consider the proportional analogy below, in which the 

value 1 represents a filled cell, the value 0 an empty cell in a 

3x3 matrix. 

iS tO 

A 

1 0 0 

'1 	0 	0 

1 0 0 

0 

O 0 	1 	1 	1 	1 

O .01as '000 	is to 	? 

O 0 1 	0 0 0 



1 

1 

1 

1 

II 

1 

0 

1 

0 

0 

1 

0 

0 

0 

1 

Cl 

1 

1 

1 

Reading the values across the rows and applying Klein's 

procedure yields:1 

1 	0 	0 	J. 

O 0 	1 	1 

O J. 	0 	J. 

1 	0 	0 	0 

O 0 	1 	0 

O 1 	0 	0 

J. . 	0 	0 	0 

O 0 	1 	0 

O 1 	0 • 	0 

This produCes the apparently anomalous solutionr. 

0 1 0 

1 	0 	J. 

1 	0 	1 

If, however, C is encoded by reading off the values vertically 

rather than horizontally and if, after applying the operator, ID is 

'decoded in a similar manner, then we obtain the intuitively 

more acceptable solution 



0 0 0 

0 0 0 

1 	1 

The difficulty arises from the fact that the encoding of the 

in 	fails to preserve the structure necessary for the 

solution, that is the distinction between the vertical and 

horizontal dimensions. Only by providing the necessary rotation 

through 90,c,  -- by changing the order of reading the data from 

rows to columns -- is the procedure able to find the Solution. The 

example serves to illustrate once again the distinction between 

propositional and analog forms of representation. 

However, by incorporating directional information into the 

coding scheme, it is possible to adapt Klein's procedure so that 

it can successfully solve spatial analogies of this type. › 

Consider, for example, the analogy shown in' Figure 4. People tend 

to produce either of two possible solutions to this problem, 

illustrated here as Di or 02.. Di is obtained in the following 

way. A is transformed into B by mapping point 1 in A to point 1 

in D and rotating the figure through 90° in the plane. The 

analogous transformation is then applied to C, to,give 01. 1)2 is 

obtained by mapping point 5 in A tO point 1 in B and performing 

a rotation through the third dimension. 02 is then obtained by 

performing the analagous operation to C. 

Coding the line segments to produce solutions of this kind 

can be achieved by arbitrarily assigning binary values to the 

cardinal points of the compass, such that N 



:1.0 

10 

00 

and W = 11. 

Encoding the line segments in A using  ;hi  s scheme gives, 

reading from point 1, 	A = 01, 00, 01 7  10 7  01. Similarily, 

=10,  01, 10, 11, 10. Mapping Al to Bl, we obtain the 

transformation table (liven below: 

Value in A Val!..te_Ln_B____Oner_egr 

0 0 	 01 

01 	 10 

10 	11 

11 	00 

Encoding C by reading from point 1, and applying the same 

transformational operator gives D1, as illustrated below: 

C 	Onerator  	1) 1 

00 	10 	01 

01 	00 	10 

10 	10 	11 

01 	00 	10 

01 	00 	10 

Decoding D1 gives the form D1 shown in Figure 4. 

The alternative solution is obtained by following the same 

procedure, but mapping'A5 to Bl.  Tc  do so, A is read from AS, 

providing the code A = 11, 00, 11, 10, 11. The code for 

B remains unchanged, resulting in a new operator, shown below: 



00 

o 1 

1 0 

1 1 

01 	10 

00 	10 

11 	10 

10 	10 

Similarily, C is read from C5 and the operator appliedg 

C 	OLerator 	1)2 

11 	10 	10 

11 	:10 	10  

0 0 	1 0 	01 

11 	10 	10 

10 	10 	11 

This provides the flyrm'shown as 1)2 in Figure 4. 

The present section began with a discussion of propositional 

versus analog for ms of knowledge representation, and proposed that 

these need not be regarded as mutually exclusiveg a cognitive 

system may be endowed with both forms,. However, it was suggested 

1; 1;  present AI applications, tend to focus almost exclusively on 

propositional forms. 	:c 1;  was proposed that analog for ms of 

- representation might be better suited to certain for ms of 

analogical reasoning, particularly those which embody structural 

components of a spatial for m. Several exaMples were proposed of 
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how coding and mapping schemes might be develOped which have a 

spatial component. 



6. CONCLUSION 

The paper focussed oh machine learning by analogy as a 

potentially powerful technique for creating artificial 

intelligence systems capable of learning from experience. A 

review of the psychological l'iterature indicated that analogical 

and metaphorical processes in human cognition are understood to 

involve: 

(1) a mapping of "elements" from a source to target domain, 

where 

(2) the "elements" are typically relational or structural 

rather than simply featural, and where 

(3') the initial overall .similarity between the two domains 

is 10w: that is, the domains are highly dissimilar, 

except for the analogical relationships. 

A ravi «w of analogical learning programs which have been 

implemented indicated that analogies, as operationalized, 	. 

involve: 

• (1) a mapping of eleMents from a source to target domain, 

where 

(2) the elements are typically fe ,atu,r, rather than 

relational or structural, and where 
, 

(3) the initial overall similarity between the two domains 

is high, and indeed must be high for the analogy to be 

recognized. 

From a psychological  per 	these differences in 

definition indicate that the implemented programs learn by a 

prOcess more akin to generalization -- literal similarity-- than 



by analogy as understood in human cognition. This in itself may 

be a useful and worthwhile development, but it is unlikely to taP 

what the program developers seem to mean by the "powernof human 

analogical reasoning. In the human sense, the power and economy 

of a good analogy can to some extent be gauged by the degree to 

which it surprises us, and evokes insight. The programs 

implemented to date show little potential for doing either. 

HoWever, more recent developments in cognitive science. 

approaches indicate an awareness of a need to go beyond literal 

similarity. Gentner (1903) and Carbonnell (1903) emphasize 

relational and structural characteristics, and relegate featural 

similarity to the least important role in analogy recognition. 

Carbonnell's model allows features to be relaxed during the 

mapping process, which allows for the possibility that invariants 

may be recognized in mapping two otherwise dissimilar domains The 

idea of a hierarchy of invariance further allows for the 

possibility that a small set of overlapping properties, provided 

that they are sufficiently high in the hierarchy, could trigger 

the recognition of an anlogy between highly dissimilar 'domains. 

These developments seem highly promising, and come much closer to 

what we understand by analogical processes in human cognition. 

However, they do not appear to have been implemented as 

operational programs. 

The distinction between literal and non-literal similarity 

represents one area in which machine learning has not yet grasped 

the full complexity of human learning by analogy. A second 

important distinction is between propositional and analogical 

for ms of knowledge representation. Existing programs rely 
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exclusively on propositi -onal representati 	However, it may be 

that uman analogical reasoning especially where spatial 

components are ibvolved, is better represented analogically. 

Conjecturally, certain types of scientific and mathematical 

problem solving may depend on just such forms of spatial 

reasoning, and it may be that if the full power of human 

analogical reasoning is to be tapped; then analogical as well as 

propositional forms of knowledge representation will have to be 

explored. 
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1 

1 
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Figure 1: Anal ogous 'forms produced by topological transformation 

of the co-:ordinate system (from Thompson, 1961). 
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Abstract 

A selective review of machine learning summarizes a new approach to learning realized 

in two different production systems, two approaches to learning by analogy, and presents 

one example of a connectionist model» The section on production systems describes 

learning by knowledge compilation in ACT' (Anderson, In Press) and learning by the 

chunking of subgoals in Soar. Both systems learn by combining productions that realize 

contiguous goals and focus attention on information related to those goals. An analysis of 

metaphor in comrtion sense reasoning indicates the need for a complex representation in 

analogy (Carbonell & Minton, 1983) and how pragmatic considerations help analogical 

reasoning (Holyoak, In Press) (Holyoak, ress). The connectionist Boltzmann Machine (Hinton, 

Sejnowski & Ackley, 1984) model of the micro-structure of cognition demonstrates how a 

learning mechanism can adapt to any new situation by building and modifying connection 

strengths between individual processing units. 

1
Prepared under contract to the Communications Research Centre in Ottawa for Or. Brian A. Schaefer. The 

original papers, although liberally para-phrased here to facilitate description, should be consulted for a deeper 

appreciation of the complexity of each theory. 
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Introduction 

Machine learning is experiencing perhaps the greatest growth period of all the fields in 

Artificial Intelligence because programs that can adapt have definite advantages over those 

that cannot. More people have become interested in machine learning since the publication 

of Machine  Learning:  An Artificial Intelligence Approach  (Michalski, Carbonell & Mitchell, 

1983). An expanded version of the first chapter of the book appeared in an article in Al 

Magazine (Carbonell, Michalski & Mitchell, 1983). The article mentions two reasons why 

human learning is important to machine learning: (1) humans are our best examples of 

complex learning mechanisms and (2) learning machines must be understable to the humans 

with whom they must interact. The articles reviewed in this section all reflect some degree 

of concern with human learning. 

• In the article Carbonell, Michalski, and Mitchell (1983) identify two major components 

of learning: knowledge acquisition and skill refinement. Knowledge acquisition is learning 

which allows the learner to explain more situations with greater accuracy, i.é., to be a better 

predictor of its environment. Skill refinement is "the gradual improvement of motor and 

cognitive skills through practice." Knowledge acquisition is argued to be a conscious. 

symbolic process and skill refinement an unconscious, non-symbolic process but most human 

learning is regarded as a mixture of both. The non-symbolic nature makes skill acquisition 

more difficult to capture by Al techniques but Newell and Rosenbloom (1981) developed a 

successful symbolic model of skill refinement. An adapted version of the learning mechanism 

used by Newell and Rosenbloom is incorporated in the Soar architecture, one of the new 

production system approaches to learning reviewed below. 

Carbonell et al. (1983) chose three dimensions to describe machine learning research. 

One dimension was the type of knowledge or skill required by the learner, that is, the 

representation of knowledge. One form of knowledge representation is the rules used in 

production systems. Each of these rules embody a set of conditions and a set of actions. 

If all the conditions of a rule are true then it becomes "instantiated" and its actions are 

taken. 2  Knowledge of the world, then, is represented by production rules where the variety 

of detectable situations is represented by the conditions and range of responses is 

represented by the actions of production rules. The world is decribed by a set of assertions 

2 1n many production systems only one rule is actually fully instantiated. for example OPS5, requiring a 

conflict resolution strategy to chooSe which of the ".partially" instantiated rules will become fully instantiated. 

Parallel production systems, for example CAPS, fully instantiate all rules whose conditions are met. 
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in working memory and all conditions test some aspect about working memory; for example, 

that a particular thing is there or not there, that one thing is greater than another, and so 

on. Actions typically add, remove, or change things in working memory, some of which may 

be, enable, or disable conditions of other production rules. There are four basic methods 

of acquiring new, or refining old, knowledge. 

1. Creation of a new rule. 

2. Generalization of a rule to apply to a wider range of situations. 

. 	 3. Specialization or discrimination of a rule to apply to a narrower range of 

situations. 

1 
	

4. Composition of one or more rules to create a new rule to permit faster reaction 

to a particular situation, since only one rule needs to be instantiated. 

1 . 
Both the knowledge compilation technique used by Anderson in the ACT" production system 

and the Soar architecture accomplish generalization as a side-effect of creating new rules. 

I Anderson (In Press) has suggested that the same approach may be applied to 

discrimination. Anderson's approach is the other production system we review. While ACT* 

1 	
and Soar are based on production systems both super-impose additional structure on the 

.  
production system. Each super-imposes a goal structure, ACT adds an additional long 

. 

 1 	
memory structure, and Soar adds other structure described below. 

-: 

A second dimension used by Carbonell et al. (1983) to describe machine learning 

I 	
research concerned how much inference the underlying learning strategy applied to input 

information, ranging from the total lack of inference in rote learning through increasing 

degrees of inference in learning from instruction, learning from analogy, learning from 

I examples, and learning from observation and discovery. Most work on machine learning has 

focused on learning from examples but learning by discovery and learning by analogy has 

Il recently been attracting more interest. 	Two approaches reflecting the complexities in 

representing and applying analogies are reviewed here (Carbonell & Minton, 1983; Holyoak, 

I In Press) 

Carbonell et al. (1983) sketch a history of machine learning centred around three 

I paradigms. Early attempts used general purpose learning mechanisms with little task or 

domain-specific knowledge, called neural nets or self organizing systems, the best examples 

111 	

of which are Rosenblatt's perceptrons and Selfridge's pandemonium. The approach ended 

in failure and was dismissed (Rich, 1983) but has been revived in the form of connectionist 

I
models. 	We will review ,  one particularly promising connectionist model, the Boltzmann 
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Machine (Hinton, Seinowski & Ackley, 1984). 

Contiguous Learning in Production Systems 

Brownston, Farrell, and Kant (In Preparation) provide an overview of learning methods 

in production systems. The most common are generalization, discrimination, composition, 

and proceduralization. In generalization a new rule is built from other rules or by learning 

from examples. The new rule will be applicable in all the situations that the old rules were, 

and possibly more. The most common technique is to delete a condition which does not 

apply very often, or applies to some situations but not others. Unfortunately the deletion 

technique often leads to overly general productions which apply in too many situations. In 

discrimination the system creates one or more variants of a rule, usually by adding 

conditions, so that each variant is instantiated in fewer situations. 	Discrimination is, 

therefore, the process of restricting an overly general production. 	Composition is a 

mechanism which creates a new rule by combining the conditions and actions (removing 

redundant elements) of two production rules which are instantiated in sequence. When the 

new rule is instantiated it will be favoured by conflict resolution because of its greater 

specificity (i.e., more detailed conditions) in situations where the old rules are also 

instantiated. Proceduralization is a learning mechanism that attempts to reduce the size of 

composed productions. Variables in conditions and actions are replaced by the actual values 

so that the next time the conditions arise long term memory 3  need not be accessed. 

Anderson (In Press) has argued that the processes of composition and proceduralization, 

collectively termed knowledge compilation, can account for inductive learning. 

Knowledge Compilation in ACT* 

Anderson (In Press) recently noted that most learning systems implicitly assume that 

inductive learning cannot occur by association through contiguity. These systems assume that 

noncontiguous examples must be compared to formulate hypotheses and then take 

appropriate actions. But two papers at the 1983 Machine Learning Conference, one by 

Anderson and the other by Fiosenbloom and Newell adopted the contiguity character. The 

common ground for the two different approaches was that (1) behaviour was controlled by a 

hierarchical goal structure used in problem solving rather than by specific inductive 

3Remember that Anderson's ACT" uses a separate long term memory in addtion to working memory. 
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processes, and (2) learning occurred by creating single production rules that accomplished 

the task previously requiring multiple rules. Anderson argued that these two architectural 

assumptions are sufficient to account for inductive learning within the scope of the ACT' 

theory of learning (Anderson, 1983). 

In ACT* a learner begins with declarative knowledge relevant to the execution of a 

skill and general interpretive procedures to apply to these facts. Knowledge compilation 

operates on the traces of two interpretive procedures, general problem-solving procedures 

and general analogy procedures, to create more efficient productions specific to the task 

domain. Knowledge compilation is subdivided into two subprocesses called composition and 

proceduralization which operate as described above. 

Anderson drew several conclusions from analysis of a subject's protocol 4  during a lisp 

programming episode which was simulated using GRAPES, a representation of ACT* used to 

simulate programming episodes. The first conclusion emphasized the importance of structural 

analogy in bridging the gap between current and desired behaviour. Knowledge appears to 

be isolated, requiring something, such as analogical processing, to transfer from one context 

to another. The second conclusion was that problem-solving for novice programmers is 

organized as a hierarchical goal structure in which the goals are expanded in a depth-first 

and left-to-right manner. This implies that novices follow the imPlications of one goal as far 

as possible before processing related goals that could be explored at each level in the goal 

hierarchy. This is important because the structure of the hierarchical goal tree is crucial to 

the compilation process because it identifies which parts of the problem-solving episode 

belong together and which do not. Anderson notes that a breadth-first expansion has been 

found for experts (Jeffries. Turner, Atwood & Poison, 1981). The third conclusion was that 

knowledge compilation is an important mechanism for building new productions which can 

streamline ater performance. The subject's learning and the GRAPES simulation could be 

described as an episode of inductive learning but problem solving through analogy coupled 

with knowledge compilation are sufficient to explain the results without recourse to explicit 

inductive mechanisms. 

GRAPES distinguishes between inherent goals, intrinsic parts of the task whose 

achievement solves part of the original problem. and planning goals goals whose results 

guide the solution process but are not part of the problem solution itself. One way to 

4A protocol is a subject's monologue of what 'comes to his mind as he is working through a problem. 
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perform composition is to eliminate the planning goals intermediate between two inherent 

goals. Knowledge compilation produces new rules which preserve the inherent goals specific 

to the task domain and lose the goals from general processes like structural analogy. 5  

The interesting observation is that compilation results in clause deletion and 

replacement of constants with variables. 	Compilation deletes clauses associated 

with omitted goals and with planning. 	Variables from planning productions cari  

remain in the compiled productions. This is how we are able to get the effect of 

generalization through compilation. ... Specifically, it appears that generalizations 

can be formed through the process of compiling analogies. 

This path to generalization is distinguishable from the standard inductive path because it is 

generated from a single item 6  and it has added flexibility because of its problem-solving 

origins. 

Discrimination is handled by having the system deliberately follow the steps to form a 

discrimination, i.e., through problem-solving productions rather than an automatic process 

"watching" the system. If a sequence of productions results in a discrimination then 

compiling the sequence results in a discriminate production. This requires that the system 

must make an error, correct that error, and identify the relevant features distinguishing the 

current instance from prior instances in that category (i.e., make a deliberate hypothesis). 

Lewis and Anderson report experimental evidence that these conditions are met when 

discrimination occurs. Anderson makes the following conclusion: 

The fundamental point then is that the induction process occurs as a conscious 

problem-solving effort to find a basis for dealing with a new case. ... The 

fundamental category of behaviour is problem-solving not induction. This theory is 

not one of learning by temporal contiguity but learning by contiguity in the problem-

solving goal structure. There is no such thing as unconscious induction of 

features. 

Universal Subgoaling and Chunking in Soar 

A recent approach to both problem solving and learning is represented by the Soar 

architecture. Soar combines ideas from two doctoral theses supervised by Newell (Laird. 

1984. Rosenbloom, 1983). Production systems were viewed as efficient but computationally 

5
New rules, it should be emphasized, supplement old rules in special circumstances rather than replacing 

them. 

6Explicit generalization mechanisms require more than one item in order to generalize ,  i.e.. they replace a 

number of different constants with a single variable descriptor. 
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limited representations of knowledge so additional structure was super-imposed on a 

production system 7  to build a general problem solver called Soar. 

Attention in Laird's Soar is focused by a current context and much processing during 

problem solving concerns search for the appropriate elements to fill the slots in the current 

context. The slots in the current context are the goal of problem solving, the problem 

space in which problem solving occurs, the state describing the problem, and the operator. 

or action, which changes (or adds some aspect to) the state. The problem space is the 

set of states that can be generated given the set of operators and an initial state. Problem 

solving stops when the current state satisfies the goal; until then apropriate elements must 

be chosen to fill the slots in the current context. Soar detects difficulties stemming from 

any slot of the current context (regardless of the slot's particular content) or difficulties in 

specifying slot membership for the next problem solving cycle and generates a goal to 

resolve the difficulty; thus Soar is a reflective problem solver because it can reason about 

its own problem solving activity. Since all goals are generated in this fashion regardless of 

the specific problem domain Soar is said to exercise Universal Subgoaling. 

Rosenbloom developed a learning algorithm which modeled the power law of practice 

and was based on the chunking 8  theory of learning (Newell & Rosenbloom, 1981). 

Performance gradually improved as newly built productions based on chunks required less 

frequent subgoal decomposition. Laird. Rosenbloom, and Newell (1984) hypothesized that 

bombining their general problem solver and chunk-based practice mechanism may produce a 

general intelligent agent capable of more interesting types of learning than just speeding up 

performance (as in practice). Chunks in the combined system were built based on the 

parameters and results of goals experienced during problem solving. 

The current context focuses attention in Soar because problem solving can only occur 

on one goal, in one problem-space, on one state with one operator at a time. 9  

Membership for the current context slots is determined by preferences. A major function of 

production rules in Soar is to make preferences for particular items to occupy the current 

context slots at particular points during problem solving. Making preferences for some 

7A modified version OPS5 with conflict resolution removed. 

8
A chunk (Miller, 1956) is a single unit previously recognizeable only as distinct units. For example. a useful 

chunk using the letters B, I, and M might be IBN1. 

9
Actually the most recent version of Soar allows some operators to be instantiated in parallel. 
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elements rather than others constrains search (i.e., they reduce the set of candidates for a 

slot) so productions that make" preferences control search. and thus problem solving. 

There are two major processing phases in Soar. an elaboration phase when the state 

is manipulated and preferences are made, and a decision phase when items are chosen to 

fill each slot in the current context for the next elaboration-decision cycle. During elaboration 

the state may be manipulated (i.e., some attributes added or changed) but the major aim of 

the elaboration phase is to build preferences for the slots in the current context, I. e., what 

should be the next goal, problem-space, state, or operator. A preference for an item 

specifies the slot for which it is preferred, the context in which it is preferred (i.e., the value 

of the other slots), the value of the preference (acceptable, reject), and perhaps a partial 

ordering compared to other preferences (worst. worse, equal, indifferent, better, best). A 

special value (parallel) allows some operators to be processed simultaneously, effectively 

permitting multiple objects in the operator slot. 

The decision phase decides which items should fill the slots in the current context on 

the next elaboration-decision cycle. The Soar archictecture follows a fixed procedure for this 

determination based on the knowledge encoded in preferences. If preferences do not 

isolate a unique object for a slot, or no preferences exist for any slot, Soar detects a 

difficulty and creates a subgoal to resolve it. 	This is the only way to create a goal in 

Soar; deliberate subgoaling is not permitted. 	Earlier versions of Soar permitted deliberate 

subgoaling in user-defined productions but, and as somewhat of a surprise, it was found 

that the situations requiring deliberate subgoals were detectable as difficulties by Soar. Soar 

recognizes four difficulties concerning the items in the current context slots: resolve-tie, 

resolve-no-change, resolve-rejection, and resolve-conflict. A resolve-tie subgoal is created 

if the preferences for a slot do not lead to the selection of a single object; a resolve-no-

change subgoal is created if there is no change during a decision cycle, a resolve-rejection 

subgoal is created if all objects with acceptable preferences for a slot also have reject 

preferences, and a resolve-conflict subgoal is created if at least two objects have conflicting 

preferences. Soar maintains special goals and problem-spaces designed to resolve each of 

these difficulties. 	They are special only because Soar automatically generates them when 

the difficulties arise. 	It should be noted that detection of difficulties and resolution of 

preferences is independent of domain knowledge. 

The basic assumption underlying Soar as a general learning mechanism is that all 

complex behaviour, including learning, occurs as search in problem spaces (Newell, 1980). 

Learning is simply a recorder of experience which determines the form of what is learned. 
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Since chunking acts as a recorder of goal-based experience it is a good candidate for a 

learning mechanism. Chunking caches the processing of a subgoal so that a chunk can 

substitute for the usual processing of the subgoal the next time it, or a similar one. is 

generated. The operation is task-independent. occurring during processing through experience 

with processed goals, and requires no extensive analysis either before, during, or after 

performance. Only goal-related things are chunked, or learned so superficial, non-goal-

related variations are irrelevant to a chunked production rule, providing an implicit 

generalization mechanism. To become a general learning mechanism, however, the chunking 

learning algorithm must be combined with a general problem solver. A good candidate is 

Soar, a "reflective" problem solver which can reason abàut its own problem solving 

behaviour by creating subgoals (in the same format as subgoals for other problem solving 

activities) to do so. Laird. Rosenbloom, and Newell (1984) note four contributions towards 

chunking as a general learning mechanism accomplished by implementing chunking within 

Soar. 

1. Chunking can be applied to a general solver to speed up its performance. 

2. Chunking can improve all aspects of a problem solver's behaviour. 

3. Significant transfer of chunked 	knowledge is possible via the 	implicit 

generalization of chunks. 

4. Chunking can perform strategy acquisition. leading to qualitatively new behaviour. 

In summary, in Soar both problems and routine tasks are formulated as heuristic 

search. A problem-space consists of a set of states and a set of operators that transform 

one state into another. 	Problem solving begins with an initial state and proceeds through 

• the application of operators to a desired state. 	Operators, tests for goal satisfaction or 

failure, and search control are implemented as productions. Domain dependent knowledge 

can guide search control (through preferences) but spaces vvhich have only operators and 

goal recognizers will work correctly given enough time (or production cycles). Directly 

available knowledge (i.e., that available within the current context) may not be sufficient to 

resolve search control or to apply an operator to a state. Soar recognizes such a difficulty 

and creates a subgoal to resolve it, just as for any other problem: i.e.. Soar selects a 

problem-space for the subgoal where success is finding a state which resolves the subgoal. 

Thus, Soar builds a hierarchy of goals and problem-spaces. The hierarchy contains special 

goals and problem-spaces (special only in the sense that Soar automatically generates then 

when difficulties arise) to resolve difficulties that can occur in any domain. In this 
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organization all aspects of the system's behaviour are open to problem solving when 

necessary; this is called universal subgoaling. 

Universal subgoaling and learning by chunking is a potentially powerful combination 

which may encompass forms of learning previously thought too complex for a simple 

chunking algorithm. The learning algorithm can be simple because what is learned is 

determined by the goal-related problem solving. 

The power of chunking in Soar stems from Soar's ability to automatically 

generate goals for problems in any aspect of its problem-solving behavior: a goal 

to select among alternatives leads to the creation of a production that will later 

control search; a goal to apply an operator to a state leads to the creation of a 

production that directly implements the operator; and a goal to test goal-satisfaction 

leads to a goal-recognition production. 	As search-control knowledge is added, 

performance improves via a reduction in the amount of search. 	If enough 

knowledge is added, there is no search; what is left is a method -- an efficient 

algorithm for a task. In addition to reducing search within a single problem space, 

chunks can completely eliminate the search of entire subspaces whose function is 

to make a search-control decision, apply an operator, or recognize goal-satisfaction. 

Because of the uniformity of its problem-space representation and universal subgoaling 

Soar can produce within task and across task learning without explicitly attempting to do 

so. A task that shares subgoals with another task can produce chunks that are useful for 

the other, yielding across task transfer of learning. Within task learning occurs when a 

subgoal arises more than once while attempting to solve the task. Since many aspects of 

the context in which a chunk was created are ignored (i.e., those irrelevant to the goal) 

generalization to similar situations sharing the same goal-related objects but possessing 

superficial differences occurs implicitly without an explicit attempt to do so. In other words. 

the chunk ignores all irrelevant information and is instantiated in all situations where the 

relevant information is present. An unfortunate problem with chunking (from the 

programmer's perspective but perhaps not from the psychological modeler's viewpoint) is that 

it produces overly general productions, a problem leading to negative transfer in humans. 

Methods of recovery from overly general productions are required. Laird, Rosenbloom, and 

Newell (1984) suggest that the way humans recover from over-generalization should be 

investigated so that the problem solving activities involved in the recovery can be used to 

build chunks which will override the over-general ones. 

Soar has demonstrated its application to learning in typical vehicles for computer 

learning programs (e.g., tic-tac-toe, eight-puzzle) and in a complex problem solving 

environment: a version of the R1 program for configuring computers at Digital Equipment 
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Corporation was converted to Soar (Flosenbloom. Laird, McDermott & Newell, 1984). Van de 

Brug and Rosenbloom (In Preparation) have extended the R1-Soar implementation and 

investigated several configurations of problem-spaces for learning and processing efficiency. 

The work identified a number of positive properties of Soar: 

1. The modularity of problem-spaces, which allows local reasoning and can broadly 

resemble the human components of a task, facilitates both maintenance of the 

system and investigation of various potential approaches to task solution. 

2. Rules tend to be similar within each problem-space, each having rules to 

initialize the problem-space and states, propose acceptable operators, implement 

search control, apply operators, and recognize success (or failure). 

3. Control knowledge is clearly separated from domain knowledge. 	Conflict 

resolution is replaced by the preference system. 

4. The representation leads to a separation of "active" from "passive" (or volatile 

versus fixed) state information. 

A Note About ACT* and Soar 

Soar and ACT* are  similar in their learning strategy in that they compose productions 

which act on goals contiguous in the goal hierarchy and only include items in the new 

productions which are goal-relevant. However, the two systems are quite different. ACT' 

was designed as a model of human cognition but the designers of Soar, while cognizant of 

human cognitive psychology, were after a system which could approximate an ideal, general 

intelligent agent, human or not. Soar does not posit an additional long term memory as 

ACT does, and its goal differentiation is different from ACTh 's (e.g., there are no inherent 

or planning goals). The uniform representation in problem-spaces and the reflective nature 

of Soar also differs from ACT*. As Soar and ACT' are extended to a wider variety of 

problems, and thus a greater overlap, comparison should elucidate the advantageous parts 

of each approach. 

Learning by Analogy 

Anderson considered analogy to be one of the basic problem-solving methods available 

to the human learner. The structural analogy process which he described, however, is the 

simplest. Carbonell and Minton (1983) focus on the mapping problem in analogy, i.e., the 

determination of what parts of one situation are relevant to another, and how pragmatic 

information can aid the process. They also argue that a complex representation of the 
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mapping process itself facilitates analogical reasoning. Holyoak (In Press), in concert with a 

nurnber of colleages and expressed in a forthcoming book (Holland, Holyoak. Nisbett & 

Thagard, In Preparation), has developed an approach which de-emphasizes the syntactic 

description of analogy and emphasizes the goal-related problem solving nature of analogical 

processing. Holyoak also emphasizes how pragmatic information can aid analogical 

reasoning. 

Metaphor and Common Sense Reasoning 

Carbonell and Minton (1983) think the weight of empirical evidence has not yet "tipped 

the academic scales" in favour of metaphor and analogy as the basic process involved in 

common sense reasoning, perhaps a good use of a pun since the focus of their 

investigation was on the use of the balance scales analogy. It plays a major role, however, 

as evidenced in a report published by Carbonell only a month later (Carbonell. Larkin & 

Reif, 1983) describing the general reasoning processes involved in scientific endeavour. 

Carbonell and Minton's central hypothesis is the: 

Experiential reasoning hypothesis: 'Reasoning in mundane, experience -rich 

recurrent situations is qualitatively different from formal, deductive reasoning evident 

in more abstract, experimentally contrived, or otherwise non-recurrent situations 

(such as some mathematical or puzzle-solving domains). 

The authors claim that formal modes of thought are not dominant in mundane 

situations because they are seldom necessary and require more effort when used than 

analogical reasoning, which is at least partly responsible for common sense reasoning. 

Analogical reasoning is defined roughly as "the process by which one recognizes that a new 

situation is similar to some previously encountered situation, and uses the relevant prior 

knowledge to structure and enrich one's understanding of the new situation." Metaphorical 

reasoning is "that subset of analogical reasoning in which the analogy is explicitly stated or 

othervvise made evident to the understanderer." 

Analogy requires access to large amounts of past knowledge, reaching conclusions 

without benefit of formal deductive reasoning, and consists of a target, a source. and an 

analogical mapping. One particularly prevalent metaphor concerns reasoning about abstract 

entities as if they were weights, i.e., using the balance principle as an analogy. Based on 

the observation that language is heavily endowed with words that describe physical attributes 

and people use these words to describe abstract entities, Carbonell and Minton propose 

another hypothesis: 
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Physical metaphor hypothesis: Physical metaphors directly mirror the underlying 

inference processes. Inference patterns valid for physical attributes are used via 

the analogical mapping to generate corresponding inferences in the target domain. 

The inference pattern for the balance principle is straight forward. 	Given an input set of 

signed quantities, whose magnitudes are analogous to the "weights" and whose signs are 

analogous to the sides of a binary issue, the side with the greatest weight is chosen with a 

corresponding qualitative calculation of how far out of balance the system is. Carbonell and 

Minton argue that this simple analogy accounts for human inferences in many situations and 

summarize the four stages in Carbonell's (1983) model of analogical problem solving: 

1. Recalling one or more past problems that bear strong similarity to the new 

problem. 

2. Constructing a mapping from the old problem solution process into a solution 
process for the new problem. exploiting known similarities in the two problem 

situations. 

3. Instantiating, refining and testing the potential solution to the new problem. 

4. Generalizing recurring solution patterns into reusable plans for common types of 

problems. 

The greater part of processing in that model concerned building a mapping from the similar 

past problem situation to help in the new•situation. The role of metaphor is to capture and 

communicate mappings from well known experiential situations to new, less structured 

domains. Although such mappings often fail to provide deep insight into the new situation 

they often convey quick, superficial understanding sufficient for normal everday functioning. 

The central issue in metaphor comprehension is the analogical mapping problem. i.e., 

the identification of the relevant parts of the source to map to the appropriate parts of the 

target. A mapping based on simple similarity is not sufficient to capture the complexity of 

most analogies. 	The matching process used in mapping must be focused to eliminate 

spurious, unimportant similarities from consideration. 	Focusing strategies utilize pragmatic 

considerations to enormously constrain the matching process. 	First, the typical use of the 

metaphor may be known, i.e., the methaphor is at least partially frozen, reducing the 

number and allowable elements to be matched. Second. salient features can guide 

matching in the mapping process when novel metaphors are used. Finally, an analysis of 

more complicated extended metaphors, such as scientific analogies, shows that not all 

details of the mapping are needed; the establishment of "beachheads" enables the gist of 

the metaphor and allows further elaboration as required. 
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Analogies require a link between two domains. Single LIKE links are too simplistic to 

capture the complexity of analogical processing and multiple sets of LIKE links are 

insufficient because they rely on a reductionistic representation of analogy. A mapping 

structure allowing only explicitly specified information to be transferred from one domain to 

another is proposed. The mapping structure implements the LIKE relation, can contain meta-

information about the mapping, and can be identified as the source of new inferences in the 

target domain made as as result of the analogy. The analogy can therefore be extended 

incrementally over time making inapplicable parts susceptible to retraction processes. In 

inheritance networks complex IS-A relations allow the specification of exactly what information 

to transfer, and what not to transfer, from a particular superordinate to members of a class. 

Both LIKE and IS-A relations require a mapping between concepts. Carbonell and Minton 

(1983) refer to the analogical mapping process as lateral inheritance as opposed to the 

vertical inheritance of IS-A relations. 

The Pragmatics of Analogical Transfer 

Holyoak (In Press) begins with the observation that current expert systems typically do 

not learn from experience because their brittleness (Holland, In Press) prevents the transfer 

of experiential knowledge to novel situations. He integrates studies of analogical problem-

solving with a pragmatic framework for induction . (Holland et al., In Preparation) which argues 

that progress has been slowed by misguided attempts to specify purely syntactic contraints 

on induction without considering the goals of the system or the dontext in which induction 

occurs. 

From the pragmatic perspective, the central problem of induction is to specify 

processing constraints ensuring that the inferences drawn by a cognitive system will 

tend to be (a) relevant to the system's goals and (b) plausible. What inductions 

should be characterized as plausible can only be determined with reference to the 

current knowledge of the system. Induction is thus highly context dependent, being 

guided by prior knowledge activated in particular situations that confront the system 

as it seeks to achieve its goals. The study of induction becomes the study of how 

knowledge is modified through its use. 10  The key ideas are that induction is (a) 

directed by problem solving activity and (b) based on feedback regarding the 

success or failure of predictions generated by the system. 

10 1n a related view Scott and Vogt (Scott & Vogt, 1983, Scott, 1983) argue that the goal of learning is the 

construction of an organized representation of experience rather than improved performance. This vievv is 

particularly important when considering the Boltzmann Machine which focuses on learning rather than expert 

performance. 
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A mental model is a representation that makes predictions about some part of the 

environment and the purpose of induction is • to refine mental models. Internal mental 

models can be described in terms of morhpisms. A morphism is a set of states and a 

transition function T that relates each state to its successor. The components of 

environmental states and system outputs are organized into categories by a mapping 

function h: category members are indistinguishable to the system. Homomorphic models 

are commutative: a transition in the environment and determination of the resulting state's 

category is the same as determining the category of the initial state and then carrying out 

the transition in the model. Commutativity will sometimes fail in realistic mental models 

because a prediction of the model does not match receptor input, triggering inductive 

change. A basic inductive change involves generating new subcategories for abberant cases 

and refining the transition function, i.e., discrimination. As with new rules in knowledge 

Compilation the new, specialized part of the transition function need not replace the more 

general one. The old, general expectations can act as defaults in cases where they are not 

overridden by more specific expectations. 

The characterization of mental models as morphisms is important for an account of 

analogical problem solving for the following reasons. First, a solution plan can be viewed 

as a model in which the initial state is a problem representation, the final state is a 

representation of the class of goal satisfying states, and the transition function specifies a 

plan for transforming the former into the latter. Second, an analogy can itself be viewed as 

a morphism which can help separate the important from the less important differences 

between analogs. Finally, the initial solution plan constructed from an analogy is often 

imperfect in much the same way as a mental model may in general be imperfect, triggering 

more inductive corrections. 

The mapping function h and the transition function T are represented by condition-

action rules in a production system". There are three types of rules in the system: (1) 

empirical rules describing the environment and its behaviour, (2) diachronic rules describing 

the transition function and generating temporal expectations about the behaviour of the 

environment, and (3) synchronic rules describing the mapping function and performing 

temporal categorizations of the components of environmental states. Synchronic rules 

capture the kind of categorical and associative information often representated in static 

semantic networks while diachronic rules represent information about the expected effects of 

11 
 Specifically, the model is couched Holland's production system. 
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system actions, such as problem-solving operators. A example of a synchronic rule is "If an 

object is small, feathered. and builds nests. then it is a bird" whereas an example of a 

diachronic rule is "If an object is a bird. and it is chased, then it will fly away." The 

common rule format subjects both types of information to the same inductive pressures and 

the same processing constraints determine their activation. 

Several principles govern the organization and processing of rules (Holland, In Press). 

Rules, receptors, and declarative memory stores can post messages that guide system 

behaviour. Active messages are matched against rule conditions and those rules completely 

matched compete for execution by placing bids. 12  Three factors determine the size of bids: 

the specificity of the rule, the strength of the rule (a numerical value based on past 

usefulness), and the support accruing to the rule from the messages that matched it (a 

measure of the current activation level of the messages satisfying the rule's condition). Rules 

thus compete for the "right" to post messages. Inductive mechanisms favour the 

development of clusters of rules that often work well together. Conflict resolution is 

minimized because rules only post messages, and contradictory messages can coexist until 

one attains sufficient support to suppress its alternatives or until the need for an effector 

actions demands a decision. Goal attainment is the basic source of "reward". 

Analogy aids the construction of new rules in a novel domain by transferring knowledge 

from a better understood source domain. 	The overall similarity of target and source 

domains varies from the mundane to the methaphorical. 	Examples, according to Holyoak, 

are commonly used as analogical models for problem solving when overall similarity is 

mundane 13 . Holyoak's own experience' has been in the metaphorical end of the continuum. 

Analogy differs from other inferential mechanisms because it does not dwell on the 

immediate problem situation but requires information outside the immediate problem. 

Precisely because few strong rules are available to apply to an ill-defined problem. weak 

synchronic rules that activate associations to the target can direct processing. Four basic 

steps are involved in analogical problem solving: 

1. Constructing mental representations. 

12
The number of rules acting simultaneously is limited. 

13
For example, student's solutions of ge9metry or computer programming problems as in the knowledge 

compilation section above (PiroIli & Anderson.Fress). 
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2. Selecting the source as a potentially relevant analog to the target. 

3. Mapping the components of the source and the target. 

4. Extending the mapping to generate a solution to the target. 

Holyoak uses variations of the convergence analogy in his experiments and illustrations. 

In one example the target domain requires a stomach tumour to be irradiated (surgery is 

impossible) or the patient will die. However, the ray intensity needed to destroy the tumour 

is too intense for intervening tissue (Duncker, 1945). The solution is to use many weaker 

rays to converge on the same spot. A similar source domain is presented to some subjects 

but not others. Here a general Wishes to capture a fortress in the centre of a country but 

cannot send all his troops down one road or rail line. The solution is to use many paths 

to the fortress. The abstract structure common to the two problems is a schema for 

convergence problems, i.e., a class of problems for which the convergence solution may be 

possible. Analogy is thus closely related to the induction of categories by generalization. 

Because the information in a problem schema can be represented by a set of interrelated 

synchronic and diachronic rules, a schema is represented as a rule cluster. 

Two pragmatic 'problems concerning analogical problem solving are the efficient 

retrieval of a relevant source analog and the determination of which properties of the source 

analog to use in developing a model of the target problem. Useful source analogs share 

multiple, goal-related properties with the target. Goal-related diachronic rules of the source 

analog provide the basis for generating new diachronic rules appropriate to the target 

problem. 	Therefore, syntactic approaches to analogy (e.g., Gentner, 1983), which do not 

consider the impact of goals on analogical transfer. fail. 	Syntactic approaches miss the 

fundamental relation between synchronic and diachronic rules, i.e., between the mapping and 

the transition functions, which are affected by goals in particular problem contexts. 

Analogy involves "second-order modeling", i.e., a model of the target domain is 

constructed by "modeling the model" of the source domain. The ideal case occurs when 

the mapping is one-to-one, or isomorphic. Even in the ideal case not all elements must be 

transferred to the target domain. Only the parts relevant to the solution plan are needed. 

These are the goal which is the reason for it. the resources which enable it. the contraints 

which prevent alternative plans, and the outcome which is the result of executing the plan. 

The definition of analogy as a relation between problem models makes it possible to specify 

the information transferred from source to target in a principled manner. 

17 

The initial mapping typically involves detection of an abstract similarity between 
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corresponding goals, constraints, object descriptions, and operators common to the two 

analogs. Once established the inital mapping can be extended. As the source is unpacked 

a model is built of the target. Unpacking continues until a solution is found or the analog 

begins to break down. Two important mapping relations are structure preserving differences 

which allow construction of corresponding operators and structure violating differences 

which prevent the construction of corresponding operators. An analogy breaks dovvn at the 

level where differences prove to be mostly of the structure violating type and the 

completeness of an analogy is measured by the degree to which all differences are 

structure preserving. 	However, the usefulness of an analogy is determined by pragmatic 

considerations. 	Imperfect analogies can be useful for first approximations which lead to 

further refinements. 

When do people notice the relevance of potential analogies? A summation principle 

ensures that analogs sharing multiple properties with the target domain will be activated. 

Superficial similarities do play a role. although a minor one because goal-related properties 

tend to dominate. Plausible source analogs share multiple components with the target 

problem. For example, a source activated by both an intial state and goal state is likely to 

have common diachronic rules transforming the initial state to the goal state. Remote 

analogs are more difficult to retrieve specifically because they share few surface properties 

but greater concentration of solution-related (or structural) features helps to retrieve a 

remote, but useful, source analog. The definition of a feature as surface or structural 

depends on the problem solver's goal (i.e., a structural similarity in one situation may be a 

surface similarity in another) and a person's ability to distinguish them is imperfect (otherwise 

no need to employ an analogy). Once retrieved, surface properties have less impact on the 

mapping process than structural features; i.e., they have a greater impact in the selection of 

a source analog than on the mapping. Experimental evidence supporting these views is 

presented. 

A Connectionist Model: Learning in a Parallel Network 

As we discussed in the introduction connectionist models are not new. Connectionist 

models are comprised of simple processing units connected by links which can vary in 

association strength. A unit is activated if the sum of its input links exceeds a threshhold 

value and activation is passed along output links moderated by the strengh of the link. A 

"symbol" in such a network is usually described by a "pattern" of activity in a number of 

units. The Boltzmann Machine (Hinton, Sejnowski & Ackley, 1984), which we describe belovv, 
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has this basic organization except that all links between units are symmetrical so there is no 

conception of input and output. per se, to a single unit. Although we concentrate on the 

Boltzmann Machine much related work is available. 14  

The Boltzmann Machine 

The Boltzmann Machine is a massively parallel network of simple "neuron-like" units in 

which knowledge is stored in the strengths of the associations between units. Some tasks 

that require massive amounts of similar computations (e.g., vision) can be tremendously 

speeded if the computations can be accomplished as simultaneously as possible. 

Propagating constraints between units is one way of accomplishing simultaneity but the paths 

for constraint propagation must be known in advance to set up a useful network. The 

Boltzmann Machine is a massively parallel network which can learn constraint paths between 

appropriate units. It can adapt its  internai structure to any problem by simply being shown 

examples from the domain. From these "lessons" the network adjusts its connection 

strengths so that it can produce examples with the same statistical probability as found in 

the domain. However, although the learning algorithm used in the Boltzmann Machine is 

guaranteed to build an appropriate internal representation, it is very slow. 

Constraint satisfaction methods typically involve strong constraints (Waltz. 1975, 

\Winston, 1984) that must be satisfied by any solution but the Boltzmann Machine is b"etter 

suited to tasks involving weak constraints that involve some cost if violated. but are not 

rejected by such violation. A weak constraint can be seen as a matter of degree whereas 

a strong constraint is absolute. The quality of any solution is measured by the total cost of 

violations and is reflected in its plausibility. The mechanics of the Boltzmann Machine is 

described in the extended quotation below which, because of the technical nature of the 

Boltzmann Machine, is reprinted almost in its entirety. 

The machine is composed of primitive computing elements called units that are 

connected to each other by bidirectional links. A unit is always in one of two 

states, on or off, and it adopts these states as a probabilistic function of the 

states of its neighboring units and the weights on its links to them. The weights 

,can take on real values of either sign. A unit being on or off is taken to mean 

that the system currently accepts or fejects some elemental hypothesis about the 

14
This and other work is described in two forthcoming volumes edited by D. E. Rumelhart and 

J. L. McClelland under the title Parallel Distributed Processing:  Explorations  in the Microstructure  of Cognition. 

 Cambridge: MA, Bradford Books, In Press. See also (Feldman & Ballard, 1982, Sutton & Barto, 1981a. Sutton 

& Barto, 1981b, Klopf, 1979, Klopf79b, Granger, 1983. Granger & McNulty, 1984). 
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domain. The weight on a link represents a weak pairwise constraint between two 

hypotheses. A positive weight indicates that the two hypotheses tend to support one 

another; if one is currently accepted, accepting the other should be more likely. 

Conversely, a negative weight suggests. other things being equal. that the two 

hypotheses should not both be accepted. Link weights are symmetric. having the 

same strength in both directions (Hinton & Sejnowski, 1983). 

The resulting structure is related to a system described by Hopfield (1982), and 

as in his system, each global state of the network can be assigned a single 

number called the "energy" of that state. 	With the right assumptions, the 

individual units can be made to act so as to minimize the global energy. 	If 

some of the units are externally forced or "clamped" into particular states to 

represent a particular input, the system will then find the minimum energy 

configuration that is compatible with that input. The energy of a configuration can 

be interpreted as the extent to which that combination of hypotheses violates the 

constraints implicit in the problem domain, so in minimizing energy the system 

evolves towards "interpretations" of that input that increasingly satisfy the 

constraints of the problem domain. 

A simple algorithm for finding a combination of truth vaues that is a local 

minimum is to switch each hypothesis into whichever of its two states yields the 

lower total energy given the current states of the other hypotheses. If hardware 

units make their decisions asynchronously, and if transmission times are neglibible, 

then the system always settles into a local energy minimum (Hopfield, 1982). 

Because the .connections are symmetric, the difference between the energy of the 

whole system with the kt h  hypothesis rejected and its energy with the kth  hypothesis 

accepted can be determined locally by the kth  unit (i.e., the energy gap). 	•.. 

Therefore, the rule for minimizing the energy contributed by a unit is to adopt the 

on state if its total input from the other units and from outside the system exceeds 

its threshold. This is the familiar rule for binary threshold units. 

The simple, deterministic algorithm suffers from the standard weakness of 

gradient descent methods: It gets stuck in local minima that are not globally 

optimal. This is not a problem in Hopfield's system because the local energy 

minima of his network are used to store "items": If the system is started near 

some local minimum, the desired behavior of to fall into that minimum, not to find 

the global minimum. For constraint satisfaction tasks. however, the system must try 

to escape from local minima in order to find the configuration that is the global 

minimum given the current input. 

A simple way to get out of local minima is to occasionally allow jumps to 

configurations of higher energy. An algorithm with is property was introduced by 

Metropolis et al. (1953) to study average properties of thermodynamic systems 

(Binder, 1978) and has recently been applied to problems of constraint satisfaction 

(Kirkpatrick. Gelatt & Vecchi, 1983). We adopt a form of the Metropolis algorithm 

that is suitable for parallel computation. ... 

The decision rule ... is the same as that for a particle which has two energy 

states. A system of such particles in contact with a heat bath at a given 

temperature will eventually reach thermal equilibrium and the probability of finding 
the system in any global state will then obey a Boltzmann distribution. Similarly, a 

network of units obeying this decision rule will eventually reach "thermal 

equilibrium" and the relative probability of two global states will follow the 

Boltzmann distribution. 
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The Boltzmann distribution has some beautiful mathematical properties and it is 

intimately related to information theory. In particular, the difference in the log 

probabilities of two global states is just their energy difference (at a temperature of 

1). 15  The simplicity of this relation and the fact that the equilibrium distribution is 

independent of the path followed in reaching equilibrium are what make Boltzmann 

machines interesting. 

At low temperatures there is a strong bias in favor of states with low energy, but 

the time required to reach equilibrium may be long. At higher temperatures the 

bias is not so favorable but equilibrium is reached faster. A good way to beat this 

trade-off is to start at a high temperature and gradually reduce it. 	This 

corresponds to a physical annealing system (Kirkpatrick et al., 1983). 	At high 

temperatures, the network will ignore small energy differences and will approach 

equilibrium rapidly. In doing so it will perform a search of the coarse overall 

structure of the spacé of global states, and will find a good minimum at that 

coarse level. As the temperature is lowered, it will begin to respond to smaller 
energy differences and will find one of the better minima within the coarse-scale 

minimum it discovered at high temperature. Kirpatrick et al. (1983) have shown 

that this way of searching the coarse structure before the fine is very effective for 

combinatorial problems like graph partitioning, and we believe it will also prove 

useful when trying to satisfy multiple weak constraints, even though it will clearly 

fail in cases where the best solution corresponds to a minimum that is deep, 

narrow" and isolated. 

One of the more. interesting aspects of the Boltzmann Machine is its domain 

independent learning algorithm which modifies connection strengths such that the network 

adopts an internal model capturing the underlying structure of the environment. For complex 

learning a network must contain elements which are not directly constrained by the input but 

also identify which connections were at fault when the network does something wrong. This 

credit assignment problem led to the demise of Perceptrons (Rosenblatt, 1961) which could 

guarantee the training of a single layer of decision units but not of the hidden units in 

multiple layers required for complex learning. The Boltzmann Machine can solve this credit-

assignment problem by running the appropriate stochastic decision rule and running the 

network until it reaches equilibrium. Because the energy is a linear function of the weights 

in the network there is a simple relationship between the log probabilities of global states 

and the individual connection strenghs. 

The units of a Boltzmann Machine partition into two functional groups, a non-

empty set of visible units and a possibly empty set of hidden units. The visible 

units are the interface between the network and the environment; during training all 

the visible units are clamped into specific states by the environment: when testing 

15
The temperature, T, is one of the variables used in the equations; it indicates the degree of "shaking" 

applied to prevent entrapment by local minima. 

1 

1 
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for completion ability any subset of the visible units may be clamped. The hidden 

units, if any, are never clamped by the environment and can be used to "explain" 

underlying constraints in the ensemble of input vectors that cannot be represented 

by pairwise constraints among the visible units. A hidden unit would be needed. 

for example, if the environment demanded that the states of three visible units 

should have even parity -- a regularity that cannot be enforced by pairwise 

interactions alone. Using hidden units to represent more complex hypotheses about 

the states of the visible units, such higher-order constraints among the visible units 

can be reduced to first and second-order constraints among the whole set of units. 

Hinton et al. (1984) describe an information-theoretic measure G of the discrepancy 

between the network's internal model and the environment which includes components 

reflecting the probability of the state of visible units when their state is determined by the 

environment and the probability of the state of visible units when the network is running 

freely with no input from the environment. The G metric is sometimes called asymmetric 

divergence. or information gain. Since the components of G reflecting the probability of 

visible states depends on the weights between units G can be altered. Hinton et al. (1984) 

use a rule to minimize G which depends on the probability of two units both being on when 

the environment is clamping the visible units and the corresponding probability when 

environmental input is absent. 

The surprising feature of the rule is that is uses only locally available 

information. The change in a weight depends only on the behavior of the two units 

it connects, even though the change optimizes a global measure, and the best 

value for each weight depends on the values of all the ,other weights. If there are 

no hidden units, it can be shown that G-space is concave (when viewed from 

above) so that simple gradient descent will not get trapped at poor local minima. 

With hidden units, however, there can be local minima that correspond to different 

ways of using the hidden units to represent the higher-order constraints that are 

implicit in the probability distribution of environmental vectors. ... Once G has 

been minimized the network will have captured as well as possible the regularities 

in the environment. and these regularities vvill be enforced when performing 

completion. 

Hinton et al. (1984) investigate the ability of the Boltzmann Machine to learn what they 

refer to as the encoder task. The reader is referred to the original report for a description 

of the task and the learning process but a few points are recounted here. Hinton et al. 

(1984) believe that the G-spaces for which the learning algorithm is well-suited are those 

involving many possible solutions but the very best one is not essential. For large networks 

to a learn in a reasonable amount of time a sufficient number of units and weights and a 

liberal specification of the task are required so that no single unit or weight is essential. 

Good performance on completion tests requires a gentle annealing schedule. As the 
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annealing rate increases the error rate also increases reflecting the speed/accuracy tradeoff 

often observed in human reaction time experiments. Finally, later in the report another task 

(the shifter task) is used to demonstrate the necessity of hidden units for complex learning, 

a task that simple Perceptrons could not learn. 

Connectionist models.  can differ in their representation. The Boltzmann Machine adopts 

a distributed representation where a concept is represented as a pattern of activity over a 

group of units and alternative concepts are different patterns of activity over the same units 

(Hinton, 1981) as opposed to a local representation where the activation of one or a few 

units represents a concept ,(Feldman & Ballard, 1982). A good argument in favour of local 

representations is their modularity, making connections easy to modify. Distributed 

representations, while iess  susceptible to hardware damage, make modification more difficult. 

However, in a Boltzmann Machine a distributed representation corresponds to an energy 

minimum and the problem of creating a collection of good concepts is the problem of 

developing a good energy landscape; the learning algorithm used by the Boltzmann Machine 

is capable of solving this problem. 

Despite the fact that the tasks were small scale learning took a long time, a slowness 

which Hinton et al. (1984) use to raise several questions for vvhich they feel they do not 

have good answers. 

1. How does the learning time scale with the size of the problem? 

2. Can the learning algorithm be generalized to exhibit the kind of "one-shot" 
learning in which a person is told a fact once and then remembers it for a long 

time? 

3. How much faster is the learning when the connectivity of the netvvork and the 

initial values of the weights are approximately correct for the task at hand? 

4. Do good solutions generally have a particular statistical structure? 	If so, it may 

be possible to impose strong a priori domain-independent constraints on the 
values of the weights or the connectivity that vvill constrain the search for a good 

set of weights to a subspace. 

However, in the discussion follovving the presentation of the above questions Hinton et al. 

(1984) demonstrate the possibility of one-shot learning and identify the factors involved in the 

learning-time scaling problem to be the ratio of hidden to visible units. the ntimber of 

connections per unit, the number of constraints in which each visible unit is involved, the 

order of the underlying constraints, and the compatibility of the constraints. 

Hinton et al. (1984) note that the visible units in their simulations behaved correctly but 
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in large, practical problems this may be unreasonable. In these situations broad degenerate 

minima where visible units are not strongly constrained to be on or off may be sufficient. 

Broad minima would probably be easier to construct than narrow minima where the state of 

each visible unit is crucial. Within broad minima similar concepts can be differentiated by 

modifying the shape of the minimum's floor to establish a set of related minima separated 

by small energy barriers. 

Hinton et al. (1984) discuss the insufficiency of a similar formulation to the Boltzmann 

distribution, Bayes theorem. The Bayes rule is similar if the probability of a unit is identified 

with the probability of a hypothesis. However, Bayes rule is insufficient in that it provides 

no way for the negation of evidence to affect the probability of the hypothesis, it does not 

lead to symmetrical weights when two units affect each other, and although it can be 

generalized to cases where there are many independent pieces of evidence, it is more 

difficult to generalize to cases where pieces of evidence are dependent. The learning 

algorithm in the Boltzmann Machine focuses on the worst violations of independence and 

develops a set of "causal rules", represented as connections between visible and hidden 

units and each other, to explain them. 

The Boltzmann Machine with its symmetric links is incapable of sequential behaviour. 

Hinton et al. (1984) suggest that a set of symmetrically connected modules asymmetrically 

connected to one another could solve this problem. This is not unlike a "production syStem 

architecture in which all the heavy computational work is done by a parallel recognition 

process that decides which rule best fits the current state of working memory." Touretzky 

and Hinton are working on the implementation of a production system in a Boltzmann 

Machine architecture. 16  

The main points of the Boltzmann Machine are that noise can aid search, that credit 

can be assigned on the basis of local information, and that features can be created that 

model the external erviironment. The system learns to find the appropriate representation by 

finding the lowest point in an energy landscape. Ackley (1984) has proposed a Boltzmann-

like parallel machine. but using a reinforcement learning algorithm and backward propagation 

of feedback, to play the role of an evaluation function in an otherwise more traditional game 

playing program and has produced some interesting preliminary results. The Boltzmann 

Machine approach is clearly flexible, an important point given the current interest in building 

16
AI seminar at Carnegie-Mellon University. March 12. 1985. 
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parallel hardware: 7  

Many connectionist models rely on comparisons with the neuronal structure of the brain 

to partially justify their existence. Although the Boltzmann machine does not claim to model 

the functioning of the neuron it does claim to be a valid model of the micro-structure of 

cdgnition based, perhaps, on units larger than the single neuron. In this respect we note•

five devices identified by Crick and Asanuma (In Press) as favourites of theorists but not 

justified by physiological evidence. These are neurons which excite some cells and inhibit 

others, neurons which merely change sign, neurons which connect to all other cells of the 

same type, neurons with distinctive synapses which do elaborate computations, and a neuron 

which, by itself, can fire another cell. Two justified but absent features are (1) veto cells, 

which appear to veto many other cells and probably need the summed activity of several 

distinct inputs to fire them, and (2) the various diffuse inputs, from the brain stem and 

elsewhere, which may be important, not only for the general level of arousal of the cortex 

but also for potentiating the synaptic modification involved in laying down a memory. An 

additional point important for the Boltzmann Machine  organization is that most cortical 

projections are reciprocal if not symmetrical in all details. 

Perhaps more important to the Boltzmann machine is the parcellation process 

described by Ebesson (1984). The parcellation process involves increased neural migration 

and increased number of certain select neurons at the cost of selective loss of certain 

connections. The process occurs in both evolutionary and ontogenetic development of neural 

circuitry. - In many neural systems axons do not invade unknown territories but rather follow 

the path of their ancestors. 	If the connection is later lost it reflects neural specialization of 

function. 	It should be apparent that if weights in a connectionist model involve more than 

one connection then the selective growth and loss of connections is an important mechanism 

for adjusting weights, and therefore an important empirical finding. It is interesting that in 

the Boltzmann Machine a number of hidden units become obsolete (i.e., their connection 

strengths tend to zero) as learning progresses. Finally, brains seem to have an inherant 

capacity for the overproduction of neurons. An important finding by Hinton et al. (1984) was 

that larger networks with excess capacity speeded learning. 

17
For example. the Production System Machine at Carnegie-Mellon University, the Ultracomputer project at 

New York University. the Thinking Machine Company's connection-machine. and others. 
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Conclusion 

The selections in the current report indicate that goal-directed systems that learn as a 

side-effect of problem solving are good candidates for general machine learning systems. 

Explicit generalization and discrimination mechanisms become unnecessary and irrelevant, 

non-goal related features of the problem are automatically ignored. These systems should 

adapt well to the use of analogy which also appears best considered as a goal-related 

problem solving exercise. Even the Boltzmann Machine, with its very different architecture, 

maintains its own goal: that of minimizing total energy as seen from the local level. The 

Boltzmann machine has the added capability of developing new features in reaction to a 

new environment; this may prove to be its most important ability. 

The reflection of Soar on its internal state suggests that it is not just the detection of 

success or failure that is important in learning but the old problem of the correct feedback 

of some kind at the appropriate time. The occurrence of explicit feedback in the form of 

errors and positive results is salient because of observability. External feedback invokes the 

credit assignment problem at its maximum degree (i.e., the farthest from the source) and is 

probably much less frequent in real problem solving situations. Humans clearly obtain other 

forms of feedback, especially in extended problem solving episodes, and if we want our 

machines to be competent learners, they should too. Issuing feedback closer to the source 

would be an important aid to learning in any mechanism. Forms of internal feedback other 

than those present in Soar may be necessary. Holyoak's description of analogy breakdown 

may be helpful in developing a similar analysis which can be applied to general problem 

solving to provide internal feedback. Brown and Van Lehn's (1980) Repair Theory reacts to 

"impasses" in problem solving which indicate that an error exists in current hypotheses and 

repairs are required. 	Another possibility is the "adventurous coefficient" suggested by 

Berliner (1985) as a measure of making progress. 	Adventurousness in a game playing 

program is the ratio of acceptance of non-intuitive to good moves. 
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