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ABSTRACZT

The objective in machine learning is to develop programs which
can improve their per formance by learning. The foous of the report
ie on learning by analoqy, one of the most power ful, yvet least
investigated, forms of learnina. For peopls, analogy plays an
important role in creativity, in scientific discovery, in
language, and in common-sense reasoning. The extent to which
machines can capitalize on this source of power presumably depends
on the extent to which those characteristics that make analogical
reasoning a ssuwroe of power in human Ehinking can be inplemented
in machine form. We arg@e that programs that learn by analogy have
been relatively unsuccessful. Our diagnosis suggests that the
problem arises from an inadequates understanding of the nature of
analogy and of analogical reasoning. Our presoripbion for
remedying the prablem is to examine in some depth the wconcept of
analogy from the perspective of bobth machine learning and
pesychology. This examination reveals fundamental differsnces in
the definitions of analogy between the two fields. From a
peyohological perspective, thess differences indicate that the
implemented programs learn by & process more akin o
genaralization —— literal similarity - than by analogy. Mora
racent theoretical developments in the field of machine learning
comne muesho oo loser bto what we undsrsbtand by analogical prwcéﬁﬁwﬁ in
human ocognition, but they have yet to be implementsad in progeam .
foorm. We oconclude, therefore, that the ideas which have bhesn
impleanented do not involve learning by analogy, whils the iﬂ@aﬁ

That invealve learning by analogy have not been implasmented.



1. INTRODUCTION

srtificial dintelligence (AL is the study of how bto make
cmmputers do things at which, at the moment, people are bether
(Fdich, 1983). One respect in which people are markedly superior to
computer programs is bheir capacity to learn. Most programs boday
per form a given task in the same way every time they are used.

Fer formance of such programs can only be improved by the
Lime-zonsuming, costly process of veprogramming. They cannob learn
from experience, from past mistakes, or from observing the
behaviaour =f others. Even minor changes in task can reguire major
changes in programming, changes which must be made Dy programmers
and not by the program itself. In short, most progeams do nmt
learn.

Macrhine learning, a relatively new area in AL, attempis to
radress this deficiency. The objective is to develop programs
which can improve their per formance by learning. But learning
ran take many different forms: robte learning (memoeizabtiond,
learning from instruction, learning from examples, learning by
digcovery and observabtion, and learning by analogy, Tovr @xample.

The foows of the present paper is on the last of Lhese
alternative ways of learning - learning by analogy. For people,
analogy plays an important role in creativity (Evans, 13968)
Billow, 19773, in scientific discovery Oppenheimer, 1956;
Dreistad:, 1968; Hesse, 19707, in language and how we peroeive the
world we use language b talk about (Ortony, Rsynolds, % Arber,
1978 Rillow, 13773, and in common-sense resasoning (Carbonell

Minton, 1983). The ubigquity of metaphor in everyday language and
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creasoningy for awample, is sasily demonstrabed by counting ths
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Tnumber of metaphors and analogies on & newspapmr or magazine page.

.

As analogy plays such a central role in human learning, it is
impovtant that machine programs tap the same souroe of power.
Until vecently, however, machina learning confined its

attention primarily to the simpler, more basic forms of learning

Cswech oas robe learning Cor memorizabtiont. Attesting to this is the

Cmhien

fact that in 1982 the Handbook of Artifisial

% Feigenbawn, 1983, vol.3), while noting the area’s pobtential
importance, included no material on the topic, since ”.,; this
area has not received much attention” (p.334). This situation has
changed markedly since U980, howaver. Analogy has assumed a

central vrole in more recent machine learning programs, even to the

@xtent of being elevatad to the shtatus of one of nine "sowces of

power ™, or keys, bto intelligeht prablem solving (lenat, 1984,

Undoubtedly, a stimalus for this interest is the belief that
analogical reasoning is an important component of human thought
processes. Carbonsll (1E83), for emampla,'ﬁtat@s That "... analogy
i one of the central inference methods in buwnan cognibtion.. .o
Cpa 1370, For Lenat (19843, the ability to wnderstand and reaason by
amnalogy is the "... source of powsr at the heart of human
intelligenoe..." (p.2032. Winston (12803 makes the more modest
claim, that "Muoh thinking is done by analogy" (p.6EYY.

The extent o which machines can capitalize on this source of
poeny pﬁ@gumably clepends on the exwtent to which those
charatteristics that make analogioal remamnimg a wmouros of  power
in huhan thinking can be implemented in machine Torm. Do we know

enough about what these characteristices are o achiave non-trivial

o
o £



implementations of analogical reasoning? Assuming thalb we did

indead know enocugh to aodel analogical reasoning, at least in

cutling, there may remain problems associabed with modelling the

conponent processes. It is widely accepted that analogical

reascorning invelves the comparison o mapping of one domain bo

another. Do we know enough about the cogritive encoding of thess

domains to sstablish knowledae representations which ocan capbur

[

the essential characteristics of analogical reasoning? Similarly,

div we know enough about the comparison or mapping processmes

involved?

The following paper attempts to address these questions from.

heskh a machine learning and a peychological perspecbive, and

indicates some of the differences which appear to sxist between

these approaches to the undersbanding of analogy. The next section

gpeci fically addresses the issue of program per formance. We sha

argue that the machine learning programs that learn by analogy

have been relatively unsuccessful. Our diagnosis suggests that the

problen arises not so much from deficiencies in the sizs of

brmwled bame ubilized ~ as has been suggested by othars such

Lenat (L12684) - but from an inadwquafm understanding of Lhhe ver
rabure of amalmgyn O pr&ﬁﬁriﬁtimm for vemedying the sibuation
therefors, is to examine the concept of analogy In soms dephbi,

Lhird section of the paper addresses bthe issus of whab @iactly

analogy is. Suwooseding ﬁ@ukipﬁ% consider bThe mapping processes

analoglical rﬁaﬁmning, bhe representation of knowledge in

analogical reasoning, and some general concluasions. Appendix &

machine learning for the interesbed readsr.
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2. PROGRAM PERFOREMANCE

Extravagent -laims have somebtimes been made Tor the power and
acconplishments of ALl programs, and the field of machine lsarning
is no exception. Performances of learning-by-—analogy prograns
simply do not match the claims made for them. We have often found
the examples cited by the authorvs provide a more acourate
reflection of a program’s power and per formance. With this caution
in mind we will examine the programs created by fouwr of the major
researchers in the field -— Evans, MoDermott, Darbonell, and
Lenat.

Early work on programming analogical reasoning fousad on bthe
kind of artificial situatiﬁn presented in ocreativity and
int@lligancw tests (Evans, 1968). Evans’ program was capable of
recognizing analogies between geometric figures. Froblems were of
the form "A is to B as © is to 770, and five possible responses
ware provided in a multiple—choice format. The program could not
be generalized to other, more realistic problem domains, however.

MoDermott’s (1979) program, ANA, was designed to learn how Lo
do new tasks by "analogy” with similar known tasks. When given an
unfamiliar task, the program searches for oa highly similar task

which it alveady knows how to doy, and modi fles the method slightly

P F

*mmpliﬁh Lhe new task. To illustrate the operabion of his
program, MoDermott described an example in which AN&, alveady
krnowing how o "paint table" was confronted with the new task of
having to learn how to paint a blue chairv red. Althouwgh ANS did
learn to "paint chair” successfully, the example serves Lo

illustrate several limitations of LThe program. First, the program



did not really learn to Ypaint chair” in any detailed sense.
Father, it learned Lo consbtruct. a new command, "paint ochaiv",
which had the effect of changihg the colour of the item painbed.
Beconod, the program depends critically on the sxistence of & stors
af "aloost adequabts methodst. I an almost identical method is not
already known, then the program cannot learn the new Lbask. Thivd,
learning to "paint chairv' when one already Enows how o "paint
tabla" doss nob seem muwch of an accomplishonent.

CDarbonell (1983) describes an‘applicatimn of kis progeam MEA
in which it proved that the product of two odd nombers isoodd

after being instructed how to prove that the product of bwo gven

numbers is even. This was accomplished by applying almcf“ erachly
the same method used to prove the first theorem to the second
theorem. As Tor ANA, the LTwo situabions must be highly similar for
the program oo worvlk.

Lenat (1977, 1983a, 1983b, 1984) has developed two learning
programs, each of which incorporates learning by analogy as one of
several learning techniques. &M was developed tTo "disoover!
concepts and conjectures in slementary mathemabics. The program

appeared o be quite suwcessful. To ogquote Lenat (13773

”&M-bﬁgan with scanby knowledge of a hundred slesmentary concephs
of finite set theory. Most of the mbvimuﬁlﬁmtwthwmrwtic corsept s
and relationships were gquickly found (e.g. de Morgan®s Laws,
singletonsd. .. Frime pairs, Diophantine sguaticons, tThe unigue

factorization of numbers into primes, Goldbach’s conjechursa e

these were some of the nice discoveries." (p.83%)
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The success of &AM appears, however,; to have nove to do with
the fact that LIBF, the programming language on which AM was
based, possesses a mathematical structurs that embodies much that
was discoversd (Lenat, 1983a; Ritohie & Hanna, 1984). Moresover,
accmrding to Ritochie and Hanna, "analogies are one of the less
satisfying parts of AMY (p.REEY, for it is not at all clear how
the program actually uses analogiss in mathematical reasoning. As
aven Lenat (1%83a) admits "AM's ultimate Tailuwe apparently was
due to its inability to discover new, power Tul, domnadin-speci fic
Meuristics for the various new fields it uncovered.” (p.&l).

EURIBKD was designed to avoid some m% the problems associated
with AM. This program appliss "analogical' reasoning in different
task domains. For the puwrposes of exposition we confine o
discussion to a task domain in which EURISED is considered bo have
made & ma jor cmntributimn ~~~~~ the design of naval fleets in the
TCTS (Traveller Trillion Dredit B8guadron) wargams. EURISED waon
bth national (USAY championship tournaments (1981 and 1983 fmr.
which it designed a flest of ships. Given that Lenat had never
played the game bafore or ssen & competition, the per Tormance of

the program appears impressive. Mowever, oloser s@amination of the

tournament games suggest that the wins may be mors aasi

attributable to the exploitation by EURISHED of the finer details
of the game than to its analogical r@aﬁﬂﬁing Bngina. In Lanmt’ﬁ
CLHB3a, p.82) own words: MWhat BEURISEO found wers not fundamental
ruleas for fleet and ship designy vather, it unocovered anomalies,

Fortul tous interactions anong rules, wnrealistic loopholes that

hadntt been forssen by the desigrers of the TOS simulation

system. "



T summarize, learning-by-anal ogy programs have tackled
problems of analogy in intelligence tests, naval wargames,
household tasks such as painting chairs, computery chip design, and
elementary number th@ory. It would be misleading to assert bthat
these programs have accomplished 1ittle, for mush has been
learned. Neverthelsss, compared Lo human Learning-by--analogy,
program per formance Lo date has besn rather poor.,

Why is performance so poor’?  Researchers in the field, such as
Lenat 19840, have advocabed sxpansion of the knowledge base Lo
improve pragram per formance. In defence of this position, they
have argued that pesople can access millions of situations,
actions, objects, and concepts upon which analogies can be based.
Frograms, on the other hand, lack this rich store of information.
Fesearchers, so the argﬁment run%, have not only failed to provide
programs with suwih large stores of “emperiencés“ but havé al s
failed to provide them with the capacity for storing large numbers
of experiences as they oocur. These pfmgrams may shore experiences
over short periaode of time, bub are btypically restarted on new

problems with most or all of thsiv memoriss evased. Moveover, swven

such menories that are rebained over time arve Lmpoveris

velabive to those of pesople.

While the size of knowledge base may, indeed, limit the
pffectivensss of 1Earningwbywanalogy progyams, @ more fundamsnbal
praoblem may underlie their poor performance. We shall arvgue thab
the real problem lies in The guestion of what constitubss an
aﬁalﬁgyn Most current programs per form poorly because they fail to
capture the essential natuwe of analogy. Ortony eft al. (1973,

PRl suggested essentially the same reason for the lack of
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progress among philosophers on the nature of mebaphor: "It is
caty centention that & prime reason for this Dlack of progressl
is the relative inexactness and inadeqguacy of the dominant
philosophical theories and definitions of mebaphor. & good
definition is needed..." To axploreg this issue, we shall Tirst

compareg the definitions and theories of analogy as used in

machine~learning programs with thosse from psychology.
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3. WHAT IS AN ANALOGY?

Within both the ALl and psychological communities, it appears
o be generally held that analogy, simile, and metaphor are
closely related phenomena involving & comparison bebtweesn objects
tor bheir abbribubes, feabture seba, prediﬁ&t@ﬁ, shructural
properties, ebtoc.) or a comparison bebween relabions bebtwesn
ohjects (Carbonell & Minton, 19833 Miller, 19733, While in-a
gbtrict sense, analogies are associated with a comparison of
ralations between objects, this distinction is not considered fo
be of theoretical ﬁignificancm to an understanding of the
pesychological processes involved (Ortony, 1579h). Conseguently, we
will use "anélagy" in the broad sense in which similes and
metaphors are both considered o gxpress analogies (Miller,
1979, i

In their simplest form, similarity statements of this kind
invalve twa terms, traditionally known as the "topic" and
"vehicle", though in AL parlance, "target" and ”ﬁmurce”.hava Moy €
CLIT P ENIY . In the analogy "the braiﬁ is like é compuber ", the
first term is the topic or target; the second the vehicle or
BT E

Tt is widely vecognized in the psyohological literature thatb
Lhe relabtionship between sowoe and btarget is asyomebrical. The
transfer of information is generally from sowrcs bo target,
talthough interactions may be involwved., See, for example,
RBlaclk, 126%)., This means that veversing the positions of the bevog
may result in o a loss or change of meaninog.  For ewampless

"The old lady fought like a prizefighter”

has a very different meaning from

O
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"The prizefighter fought like an old lady".

In general, it appears that asserting that & is like B is not
necessarily eguivalent to asserbting that B is like A This btyps of
asymmatry poses serious problems for some psyochological theories
cof analogy.  For example, Rumslhart & Abvahamson (1373 proposed a
model of analogical rveasoning in which the similarity between
ch jects was a dirvect function of theiy psychological distancs in
multidimensional spece. One difficulty for this typs of
geometrical approach is that bthe distance A B sguals the
distance (H,4), which makes it difficult to account for the
asymmebtry of analmgy stabtements, or indeed of similarity
statements more generally.

Tversky’s (13977 theory of similarity provided a partial
resolution to the problem of asymmabry. In this formulation, 1T A
repraesents the set of all features in the target, and B the seb of
all featuwres in the souwrce, then the similarvity of sowroe Lo
target, Sta,bd, is given by:

SCa,b) = (fCAoBY~" T (A-RB)~aT(RB-A)
That is, bthe similarity of a to b is a weighted funoction of the
pumber of common features minus welahbed functions of tﬁm
cdistinotive featwes of a and of b. Tt follaows from this bthat
Bla,h) = 8h,a) if either ° = g, which implies that the task is
ponedirectional (le. in what ways are a and b alike, rather than
in what ways is a like b?), or 1F Fl&-BY = FOE-A), which implies
that the featuwre sets A and B are of squal size. Otherwise the
similarity will bes asymmebrical.

A case whers Tversky’s approach runs into difficulty ooours

if the analogy creates the peroelived overlap, rabther than reflects



An e#igting overlap. (Black, 19262; Ortony, 1973y, To takes an
gxbremns example, the concept "zaglob'™ may have no featuwes for
English speakers, and conseguently nooshared features. IL7s
similarity with other concepts will therefore bé EEYVD,  Lslng
Tvaersky’s measure. MHowesver, the simile "zaglobs are like
giraffes" may provide information for English speakers, sven in
the absence of any a priori shared featuwes bebtwesen the Lwo
tavms.  What appears o occwr is that salient charactevistics of
the sowroe are attribubed to the targebt, rather than sslected from
a pre-gxisting featuwre set., The similarity is created, rabther
than recoanized, which Orbony 10975030 refers to as
"attribute~introduction” as opposed to "attribute-promotion'.

The relative salience or importance of bobh objects and
ob jest attributes is ancther concern which psychological
approaches tq analogy typically attemptvtm grapple with., With
respect bto objects, people show decided preferences when asbked to
complete similarity statements of the form "A __ is like a __". In
gensral , they appear to prefer placing the "betlter exemplar', or
"hetbter patbtern" or more "meaningful” term in bthe ssoond, souroe,
position. For exampls, Rosch (1975 found bthat when sub jscts were
asked o place a pure Tocal red and a slightly "of " ved sbinulos

for

in these relative positions, they exbhibited strong prefarences
placing the focal red in the second position. Similar resulits wers
abhtained using numbers and line orisntations as stimwli. Tn a
pilok study at Lhe University of Yictoria, we obbtained sxirsmns
Emamplﬁﬁ of asymmetries of a similar kind. The stimuli were
rnonsense syllables, which vavied.in tevms of hibh Oy S T

"meaning fulness" ratings.  When presented with a high and low
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palr, subjects exhibited a preference to place the move
"meaning ful" ponsense syllable in the source position, the less
“meaning ful” in the target position.

With respect fHTo the salience of object abbributes, similar
divectional characteristics are evident, in that the mnore
salient characteristics of bths souwrce fterm serve bto select or
"promote’ less salient attributes in the target term. To use the
previouws exampls of the prizefighter and the old lady, o say that
“the old lady fought like a prizefighter" abttributes to the old
lady whalt are high-probability or highly salient prizefighter
properties.  When comparing the prizefighter?s per formance to bThat
of an old lady, the spposite attributions ooour.  Ortony (1979a)
raports data which support this point.

The fact that the souwrce draws out o highlights what were
praviously non-salient or @vén non-existent propevties of the
target serves to illustrate anobther point: that analogies are not
concerned with the similarities between two similar domains butb
rather with drawing oul cerbain similarities betwesn twe obherwise
dissimilar domains. To Lllustrate, "birds" and "heat sngines" arve
not super ficially alike. Firds have wings, feathers, beaks, eab
wovng,  and so oong heat snginess are typiocally metallic, have
pirl ished @mt@rimf sur Tacess, ara large and heavy, oconsumns fossil
fuaels, eto. The analogy that "hirds are like heat engines" does
b invite ws to atbtemph Lo matoh wp these salisnt
characteristics, but rabther draws atbtention o certain less
salient characteristics of birds in such a.m&ﬂnwr A5 Lo @xpose o
suggest unknown or unrealized propesrbies. The analogy proposes

that we wse heat engines, and their thermodynamic properitlss, as



a moadel whickh appliss to cerbain characteristics of bivds.  To Ltha

L

grtent that the model is a "good" one, it will suggesh hypobhe
oy sxplain facts abouwt bivds which were nobt pact of owe previoos
sl edage about bivds: for sxeample, that there must be a lower
Limit to the viable size of birvds, that gmaller birvds @ill oonsume
more calories per gram of body weight than large bivcs, bthat small
bhirds will be less common in extrems latitudes, and so on. Th i

in this sense, of analogies as models, that practicing scientists

as well as psychologists appear o understand the sssential nature
of analogical reasoning.  Craik, for example, asserts thet models
are analogies, and that a model is Y.o..any physical oo chemical
system which has "a similar relation-structure to that of the
process it imitabes...The model need not resemble Tthe real object
pictorially...but it works in the same way in cerbain sssential
vespectes" (Crailk, 13968, p.284). Oppenheimer proposss a simllar
interpretation, that by analogy he means "...a special kind o
similarity, which is the similarity of structuwre, bthe sinilarity
af form, a similarity of constellation betwsen two sebs of
structurass, btwo sets of particulars, that are manifﬁétiy VETY

di ffarsnt but have structural parallels. It has to do with

relation and interconnection’ (Oppenheinsec, 1996, p.
In answer to the question mf.what imoan anlmgy, Cheayveforas,
there are cervbain characteristics on which there iz wide
agreemant in the psychological literatuwe. dnalogies are based on
similarity, bubt nobt the Eimilarity of appearance, or bhe |

sl C e arcl

similarity betwesn highly salient properti

barget. They are based on a similariby of shrucbure, of “inner

form” or process, which s move charactevistic of, or oors ol ear )y
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rmpw@%mnﬁ@ﬁ in the source than in the target. The souros
herefors acts as & model which "maps on" to the btargsh. For this
reason, the similarity relationship is divectional, not
symmatrical. |

Im contrast, on examining the descriptions of
learning-by—analogy programns, we ware struck (a) by the gensral
lack of clarity in defining analogy, (b)) by the discrapancy

hetween stated definitions of analogy and what actually seems

i

implemsnted in a program when analogy is defined, and (o) by the
rather naive view of analogy implemented in many o7 these
programs, Hiven the centrality of the notion of analogy to these
programs, one might be forgiven for expecbting the concepl of
analogy to be clearly defined by sach author. ALL too frequently
the term "analogy" has been used with little or no explication
(MoDermott, 19795 Cohen % Feigenbaum, 1983; Lenat, 1983a, 1984
l.enat & Brown, 19383: Carbonell, 1983; Winston, 13800,
Descriptions of the programs and illustrative examples
provide some indication of the concept of analogy employvaed in a
particular program. The prevalent view implemented in these
programs is that analogy»@qualﬁ similarity (Winston, 19803 Lenat,
1984y MeDermott, 19790, According to this view, the more sismilar
twn situations are, the more likely some form oof profitable
analegy might be found. For example, Winston (1980, p.&38) asserts
that "Analogy is based on the assumpbion that if two situations
are similar in some respects, then they aust be similar in other
respects as well." From his description of Lhe "mabtohar® ocomponsnk

af his program, it seemns that he counts the number of shared

=]

relations in comnon and makes an analogy on the basis of the

]




perautatiosn having the greatest score. For Lenat (1984, p. 213y "it
i ﬁ@animgful batwesn btwe concepts only i they share many of the
gsame attribute naméﬁ, ancd it is useful or ﬁﬁﬁ%gﬁffwﬁtiVﬂ if in
addi tion the concepts are actually 5imilarviﬁ gome of their
gqualities, thabt ils, if cerbtain of btheilr abitribule valuess sare
ammparabla."kﬁarbmnall C198%, 1983) hypothesizes that analogical
problem solving is a f@urwﬁtwp ARl ]2 Qitﬁ the firet step beiog
the recall of one or more past problems that bear strong
Eimilarity Lo the HEw ot leme "When grnoountering a new prablem
situation, a person is remindsd of past situations that bear
shtrong similarity to the praesent problem.”

More recent theories of analysis proposed by A researchers

hawve besn mnuch

LEaley G@ntn@f; 1983; Carbonell & Minton,
closer to the ﬁﬁychmlmgical theories discussed sarlier. o
prample, Gentner (1983) has proposed that the domain of a concept
should be reprea@nted as a system of objects, object attributes,

and relations between objects. This view is shared by Glok &%

Mol yoalk 1280, 1988) and resembles the representabion suggeet

3

3.

192635

&

Carbhonaell L1867
Gentner, in furthsring his proposal, suggests that 14 is the

relabional charactesvistics that play an dmporbant vole in oan

analogy. For example, an electvic batbtery is like a
hacause LThaey bobh represent a ﬁmufce of energy lising held by oa
coant Al ney . Hé also attempbs bo diﬁtimguiﬁh the oi fferences bebtwasen
ar analogy, a libteral similarity, and an abstraction. an analogy,
as defined by Benthar, im a cwmpariﬁwn in whickh most relational
characteristics are shared et wsan the consgpts, bub fomw or no

el

ab ject attributes are matohed, & literal similarity s
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di ffers from an analogy in that it has more of the object
attributes matohed. MHence, Lthe sgatem@nt "The X132 star system in
the Andromeda galaxy is like our solar system" is nob an analogy
hecause the X122 star and owr sun have a lobt of object attribubes
in cmmmdn. An abstraction is distinguished from an anaiﬁgy by the
fact that one of the concepts must be an abstract relabional
structure with generalized physical entities and that all objects
and raelational features should be matched., For example, the
statement "The hydrogen atom is a central force system" is an
abstraction. Even bthough these distinctions may be samantical ly
covrect, they are rarely rvegardead in the modelling of analogical
reasoning. This departure in defining analogy can bhe seen in an
grample provided by Carbonell (1983). The example involvas a
person planning o travel from Filtbsburgh o New York ocity. This
person usually travelled by planes but had discovered that all the
flights were booked. He had never btravelled using the inbteroity
train, but by analogical problem solving, he could reason that he
neaded bto withdraw sufficient money from the bhanlk bo buy a bickst,
fimd out where to buy the tickeb, call the ticket office to make a

grvabion, and later geo to The station fo bosrd the train. In

v

this example, the target problem and the analog have a lab oof

by ject abbvibubes in common -~ the person, Flbtbhsburgh, Mew Yorlk

city, and the bank are identical in both situaticonsy the bticket
offices couwld be expected o have many shared physical Tfeatures;
aven the train and the aivplane are bhoth made of metal and
supported by wheels. Applying Hentner’s definitions, this example
may be interprated as a case of literal similarity rathey than an

analoy .



Carbonell & Minton 1983 also deviate from bthe sioplistic
view of analogy as similarity. Although analogy also seems squatbesd
With similarity for them ("Analogical reasoning is Uthe process by
whioh one recognizes that a new situwation is similay to sone
previously encountered situabion ..."3, bthey go furbther in.
pxploring the idea that analogy is based on structural similarvitby,
that the role of analogy is to transfer information from familiar
situwations to unfamiliar situations, and that only the salient
features of the source are trgnﬁf@rr@d Lo the btargelb. |

Thus, both G@entner’s (1983 and Carbonell & Minton’s Ciﬁﬁﬁ?
theories of analogy reflsct many of the considerations raised by
the psychological literabture. Meither researcher, however, has yeb
daveloped a program implementing these new ldeas. (Gee Appsndliz
A, padges 12-18 for additional technical information.?

Given some agreement betwesn the more recent learning theories
(which remain to be implemented) and the psychological theories,
Lhe next section addresses the issue of how characteristics are

mapped from the souwrce to the target.
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4. MAFPING FROCESSES IN ANALOSICAL REASONING

Carbonell (1282, 13830, Sentrner (19832, and Gick and

C1a80, 1983 have all proposed that the recognition of

Mol woak

an analagy

cezzurs theough a mapping process. There is considerable agreesmend

amongst their theories and the main points of similarity are

listed below:

(1Y The mapping process involves comparing fTeaturas

chiamalns.

G2y If one says that a T is like a B, the mapping

<

tix T B will be called the base o source, and

target.

i

T

(3 The object features are the least important ones

mapplng.

(42 The relational features (Gentner, 1983 or structural

simlilarities (larbonell, 1283) arse the lmportant

characteristics.

"3

¢4y Learning

from the souwrce domain fo the barget domain,

(Y In ordary o have learning facilitated, bthe sowos

be a well-understood domain and bthe target
conparatively ill-structured one.

Gentner appears bo hold the view that the strenghh

o f

e f

twim

from B

the

i the

can be facilitated by transferving feabtures

an

st

analogy is dapendent on the degres of overlap of the velational

featuwres. Mowvever, there s o olsar indicabion of bthe

avarlap required to digtinguish anm analogy which "work

which fails.

Carbonell (L1983 provides a more detalled plan for

iy
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the similarities in an analogy. HMis theory is a modi fication of
the traditional means-—-ends analysis of MNMewsll & Simon U372,

Maans-—ends analysis (MEAY identifiss the domain of a problem as a

problem spacse ywhich consists ofs

010 A smet of possible problem states.

C2) One shtate designed as The initial sbabe.

(3) One or move states (if there is more than one solubion)
designated as goal states.

(b) A set of osperators with known preconditions that
Transform one state into anobher in the space.

(5 & difference function that computes differences belwasen

[ g

twr states.

(6 & method for indexing opsrators as a function of the
difference betwesn the current and the goal states Lhey
can reduce.

(72 & set of global path constraints that must be satisfied

‘l

in order for a solubion o bhe viable,

Carbonell?’s modi ficabtion involves comparing the following

features bebwesn bthe source and the faroget domaines:

ﬁ

t1r the initial states,

P2y the final shtates,

(3 the path constraints,
) propovtions of preconditions of the transferrved cipey alton g
gatisfied in Lthe Ltws domains.
Carbonell refers to this as a comparison of struchbural
similarity. It is obvious that the elements being compares are
also relational features, using Senbner?!s LTevminol ogy. Siﬁﬁﬁ a&n

analog is not identical to its target, featuwres of the analog,

- (:) .
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when mapped onto the htarget, may bhe varisd in ovder o sabisfy

the current constraints. In a study of tws hundred snetaphors,

Carbonell (1988 discovered that certain kinds of ar
less likely to vary in the mapping process. Based on this finding,
Carbonell proposes that a "hierarchy of relabive invariance" oan
ba created by 1i§ting the featwes according to its tendendy to
vamain unchanged in a mapping proocess. This asuguests thalt the
strangth of an analogy can be assessed by measuring the invariance
at each level of the hierarchy, presumably with the higher level
features being given more weight. The following is a hisrarchy
proposad by Carbonell:
fl) Goal expectation - if the analogy implies a task to be

done, bthe goal of the actor 18 usually preserved in the

mapping (e.g. "inflation is like a dissase" -~ bthe goal is

ton cuwre and be healbthy?.

(2) Flanning and counterplanning strategies -~ the means for
achisving the goal (e.g. conbtrolling the growth of virvus
to cure disease implies contraolling money supply to
hampsr inflation?.

(3 Dausal structures — the cause and effect re

Lationships
teeg. medicine cures disease)] henos Soonomnlc measures
will hamper inflationi.

€4) Functional abivibutes -~ the function of objects involved
feag. & doctor to administer medicine; hence the finanoe

minlistry to plan economic policies).

i

Temporal orderings — the order of events to ooowe.

Matural tendencies ~ bthe natural laws governing bhe

!

behaviow of the objects.



(73 Bouzdal roles ~ the social relations between the actors.
€8 Structural velatlons ~ bthe physical relabtions
oby jents.,
(2 Descriptive properties — physical atbtributes of the
by jeacbes Cloe. objact feabturas).

CL0Y Object identity ~ this is very rarely mapped in an

analogy.

The proposals made by CQarbonell, Gentrner, and Gick and Holyoak
all represent a means for assessing the similarity between the
source and target domains. Mowever, these ar@vmnly applicable when
broth the target problem and the potential analog ars glven. The
problem remains of how can a potential analog be thvigvad'fvmm
Lthe memory. It would be impractical to search through all evenbts
in the memory to find an analogy. Stevnberg (1977) suggests thatb
an analogy can be identified by asking "if A ﬁﬁ Like B, what is O
Lika". The problem of this mebthod is that it reguived a2 parallel
analogy to be created firet., Tt would be as difficult bto find an
applicable parallel as to find an analogy for the target. Besides,
this approach would Limit the kind of analog available Lo be

vetrieved (Gick & MHolyoalk, 19835, Carbonell (19853 proposes

[31 dl

Lical method for narvowing the sral lzing

golubion plans that bear strong simdlarities. This suggestion is

coptsisbant with Eintsch and Van DL JjkTs (L3978 btheory of pro

BE3es mebion of g

represantaticon and Gick and Holyoalk (1980, 1

aschema. Hick and Molyoabk used Duncker’s "vadiabion problam!
to abtain empivical proof that generalization procedures arve

actually adopted in human veasoning. Dunckerfs problem involyves a

gooctor faced wWwith & patient with a malignant tumor. T4 is

i e

o hn =w




impossible to operate on the patient, but the patient will die if
the tumor were nobt destroyed. Thers is a kind of ray that can
destvyoy the tuwnor, but the rays with intensity high enough to kill
thg tumor will destroy the healthy bilissue at the same time. The
guastion is how can the tunor be destroyved without bhurting the
tissue. In the experiments, GHick and Holyoalk provided subjects
with military stories aboult how a fQFtV@%%‘Cﬂh be captured. Their
findings suggest that subjects generalize the radiabion probleam
and the military stories to form a convergence schema similar oo
the one presented below:
- Initial state
Goal: Use Torce to overcome a central targetb.
Fesources: Sufficiently great foroe.
Comstraint: Unable to apply full force along one path.
= SGolubtion plan: Apply'weak forces along multiple paths
simultanéausly.
~ Dubteome: Zentral targelt overocome by foros.
Eintsch and Van Dijk¥s theory involves the applicatimn of &
;

st of inference rules to generabe an abstract masrosbhractural

vepresantation of a problem. This process would prodoaces an oubput

similar to Gick and Holyoak?s schema, Gick and MHolyoak soagy
that the schema wouwld have a perfect ovarlap with the targst

domain since only the matched fzabtuwres are being generalizsd. This

implies not only a saving on memory space and seavoch time bhut alsoo
i = 4

an improvement of decision guality, 1§ only the sohema are
s ed.
Darbonell?s gensralization procedures are move conplicabed

LThan EHick and Holwyoak®s schema and Kintsch and D4 Jjkts pross




reprassntation. Me suggests that &ll solubtion plams be fed inbo an

inductive machine (Distterich 2 Michalski, 1983y Michalski, 19833

which would cluster similar plans together to form gensral ized

4
-plans that resemble Schank?’s notion of a script (Schanl 2 Abel

5T
1977 Sohank, 19801, More specifically, Carbonell?s suggestion
involyes the following proceduress:

(LY When an anal&gic&l plan is created for a new problem, Lhe
plan has to be btested in the external Erviroment .

(2 Feedback should be cobtained to indicate whebther Lthe plan
is sucessful.

(33 The successful and unsuccessful plans are fed into a
inductive machine which generates a plan encompassing all
the suwoessTul solutions and none of the unsuccessful
CMEES .

¢y oA comparison betwsen the sucosssful plansg and the
unsuceessful ones to identify features that would
discriminate the plans.

¢y If the machine fails bto generabse a solubion from an

analogy, it indicates that the di fference funoction Ofor

mEasur g bThe di Fferences bebween shabesd mus
cmd bted some orucial aspects of the analogy and Bhe
furnction criterion showld be refinsd.

Since Carbonell’s model involves genevalizing a olass of

problem solutions bo form a plan, LThe generalized plan showlad

reprasent & higher level of abistraction than SHick and Molyoak?s
schamna or Kintsch and Van Dijlkfs prose representabtion.
Consequently, mors interpretabion would be veguirved in the oapping

process. Darbonsll’s model, on the obther hand, should have the

R
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advantage of furbther reducing search time. It is unolssr whether

these generalized plans can be categorized into a hierarachical
atrushure to facilitate a faster search process. In the case of a
vary complicated problem for which an analogy cannot be Tound,
Carbonell sugoests that the problen may be decomposable inbo sub-
problems for some of which analogies may be obtainable. This
suggestion introduces flexibility into the learning system and
allows it to handle a large variety of tasks.

There is another advantage and disadvantage to the system
proposed by Carbonell. The advantage is that the system is an
adaptive one which allows it to broaden its applicability and
improve its decision quality as more problems are solved. The

sistancs o

disadvantage is that the model reguires human as
provide feedback for the system. One may argue, howvever, that
interaction with an external environment is a necessary condition
for the acquisition of knowledge, and need not be regarded as a
waakness.

Most of the ressarch on analogical lesening (Gentner, 1983;
Gick and Holyoalk, 1980, 13832 has been psyohological in its foouws,
Conseguently, the models oreated in thess ﬁtﬁdim% may bhe awpressedd
in abstract bterms bthat are JdifFicuwly bo branslabe into algorl bhns
asWitable for machine processing. While there are a numbesr of
models expressed in formal logic (Bling, 1271 Stelser, 196832,
these models solve mainly problems in mathanatics, the domain of
which isg wall defined. DOne model thalt doss bhandle L11-defined
domains can be found in the framework proposed by Carbonel 1
1983y, This framework provides a detailed descripbion of the

steps regquired to transfer operators fron the analog to the

et e
W sad



target. A3 mentioned sarlier, a genevalized plan for oa ol

probplems can be developed by an inductive machine. Theé generaelis
plam shouwld consist of a ﬁ@quwnca aof states and operators. When
presented with a new problem, the problem ﬁmlvmr_wmulﬂ Lry Lo
gaarch for a plan that begins with the same initial state and ends
with a stabte closer to the desived goal. The ending Etaté of Lhe
plan would then become the swrent state in the new problem space.
The search process would begin again to find a plan that weould
further narrvow the gap between the cuwryvent angd the goal states.
This process would continoe until fhe anal state is atbtained. By
this method, & new problem space would be created with a number of
ratrieved plans connected together. Carbonell refars o this space
as the analogy bransform problemn space (T-spaceld. The retrisved
plans would becone the stabtes in this space.

Carbonell’s approach may appear to resemble the notion of a
macyoe-operabor (Morf, 1985; Fikes & Milsson, 19710 bub Lbhere are
distinct differences between them. A& macvo-operabor, like a
soluticn plan, is representsd by a seguence of sbtates and
opevyators. One distinoet characteristic of a macro-operator is that

it oallowe cerbain (non-serializable) subgoals of bthe probzlem to he

Tenporally violated in dts application, This oharac b G sl Do

masro-cperabors bo beocone sxbremely wseful in solving probleams

Viks Rubllk’s Cube. Macvo-oparabors, however, are mnob appli

Carbornell s model for sevorsl

s, Filvst, macro-oparat

per form veary specl fic tasks., & slight variabion in the problemn
situation would regquire new macro-opsevabors o be formed. In order
Loy solve prablems that have many variations, tha %yﬁtém wiptll of ave

Lo sbtore & large number of macvo-operators. The combinaborics
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invelved in storing and dearching a&ll these operabors could easily

doves not consider path constraints. & macvoe-operator woulod easily
become invalid since a new problem usually carvies a di ffevent set
ot path constraints. Thivd, fthere ia no provision for adding,
deleting, or substitubing operators in a macro-operabor. These
operabtions are orucial elements in Carbonell’s model.

Carbonell allows a set of operators for shaping the rebrisved
plans inba pobtential solubion segquences. To avold confusion, these
cparators are vefervred to as T-operators. The following are some
af fthe functions these T-operators uaﬁ ey Fiema

12 Insertion of a new operator into a seguenoe..

€2 Deletion of an operatar %rmm a geﬁu&nﬁe.

(3 Subsititiocon of an original opeavator by anobher
operator or a sequence of operators.

by Concatenation of one solubion sequence to another.

€5 Merging of btwo ﬁeﬁuenu@ﬁ Lo form a new sequence.

(6 Feordering of operators in a sequencas.

7Y Gubstibubion of an aobject in Thes original problem with
an object in the new proablem.

(8 Truncation of & sequence of operators from tThe original
BECLLE D E .

(3 Inversion of the order of the operabors in a SECHLENT .

Carbonell suggests that T-operabors may b2 indexed in a
di fference table. Entries in this table would take the form "To
reduce X, apply a member of T-operabor seh YV, Since these
Toperators do not dinvolve pery formance in bthe sxternal weoreld, they

are nob subjectad Lo the restriction of any path constraints.



Carbonell suggests to incorporats the path constraints in fhe

di fference table. He proposes that the comparison of the initial

states, final states, pabh constraints in the bwo chomal nes,
applicability of LThe retrieved solubtion in the new problen
soeEnario should individually be rvepregsented by a oi fference
function., These four Tuncbions should be ocombined to form a

cli fference matvris o represent bthe differences bebtwesn the
retrieved solution and the desirved solubion. & viable solubion

sald o have been found 1f all these functions indicabte a zero

difference. (The reader is referred to pages 15

foor additional technical information relevant Lo this section.)

i
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5. ENOWLEDSE REFRESENTATION IN ANALOGICAL REASONING

'Tm the sxtent that analogical reasoning is based on oa
racogni tion of structuwral similarity, then machine implenentations
capable of this type of reasoning must have (al knowl edge
rapresentation which embodies the relevant structural
characteristics, and h) operators which are capable of exbtracting
them. Are some forms of knowledge representabtion likely to be
more useful in this vespesolt than others?

Thare has been considerable debate among c@gnitivw
peychologists in recent years concerning knowledges representation
in humans, and two points of view have emerged, the
"propositional” and the “analog". The propositional view holds
that knowledge is encoded in an essentially language-—like medium
in which both objects and relations between objects are
represented symbolically. The “"analog" view holds that
representations are in some sense "spatial™, in which both objects
and their relationships are intrinsic to the representation.  That
is, the "image" represants the objects in relationships which are
functionally eguivalent to the relationships whickh they hold in
the external world.

One proposed ol fference between thasae apprﬁamhmﬁ iwm bhat of
extrinsic versus intrinsic representation of relations. In the
proposi tional approach, relationships are "extrinsis" in the sense
that they are "added-on" as relabtional elements to the sebt of
ob ject e@lements.  In analog representations, the r@iatimnﬁhipﬁ AYE

given in the same representabion as bhe objects, and are therefors



considered to be "intvinsic” (FPalmse, 1978, MHowever, 1t is gquite
possitile o dwagine propositional vrepresentabions imn whioh
nmhmrwpr@ﬁ@mt@d ralationships can nevertheless be derived. For
vvampla, “the cat sat on the stove and the dog lay on the vug

covuld be vepresented propositionally by sis elements, four object

elements and two vrelational elements. 4n additional velationy, that

the cat is praobably higher than bthe dmé, coailod be deriwved from
browladge of the given elements. The non-represented relabtionship
ig therefore intrinsically available in the knowledge
representation. The real difference may have more to do Qith ke
fact that in the propositional representation, the additional
raelationship must be inferved, whereas in an analog
representation, this knowledge is held to be given immediately in
the repre%enfatiﬁn, rather than extracted by deduction.

A related difference between bthe two approaches has o do
with the types of constraint which exist within thes
represantational medium itself (Shepard, 1981). Fropositional
madia are highly unconstrained, in the sense Lhat, in prinociples,
any ob ject may be relabted to any obther object by any available

p caonstraints on the

ralation.  The mediuwn itsel § impos
combinatoric possibilities. On Lhe obher band, analog media
themsel ves possess a structurs whickh consbtrains the forms of
r@prmﬁ@ntatimn’pﬁ%%ible. M oa low-level sxampls, the peecspbion

oof mmall involves the "fit" betwessn speci fic moleculul ar

7y

structurss and specific receptbors of complemsntary strucbure. AL

the level of viswal pereeption, this point of view ioplies that

the representabional mediuwn itsel T contains structure which is

el . Fov @

isomorphic to structure in the world it vepy ampl e,
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it may conbtaln an "up” and "down® oroa funoctionally eguivalant
dimension. The representabion of objects in this dimensional
meadium would conseguently preserve thelr dimensional ralationships
simply as "part of the pictura®.

These points of view are not mutually esxclusive, and it is
quite possible for a cognitive system o be endowved with-hmth
analogical and propositional forms of representation, in which the

ibhes them

first sysbem forms images, and the second system deg
CAttneave, 1981, However, it is probably no acoident that
proponents of the propositional view typically try to model
cognitive events wesing a highly unstructured medium Coompuber
models) while prﬁpunentm ot the analog view btypically smploy
physical or physicalistic types of model (Palmer, 1378). As a
consagquence, the fiald of AL has adopted an almost exclusively
propositional approach to knowledge representation, It is

sondng that is

paé%ible, howavar, that the form of analugiﬁal\w
Tpower Tul® dn humans derives more from an analog form oo
representation. If this is the case, then it will be necessary to
huilq sbtructure inta knowledge repressnbtations.  The remalnder of
bhe paper considers several extended swamples of how this might be
acrieved in simple Cases.
The first exanple begins with a considevation of Gibson®s

C1E66) view of visual perception. Sibson proposed ﬁhmt perception

im Ydivest".  That dis, the perceptual system doss nolb "model” or

Pgtructure” the external world, it sioply "pioks-up® information
which is already structured. He considered that this structurs

was praserved in the ambisnt light arvay. However, sinoeg bhe

percelver is btypically in motion, this information wandeygoes



continual transformation as the visual “"statior-point” changes. An

important component of Gibson’s theory was bhe visw Lbhat what wass

gxtracted by the perceptual system were those stinulus
characteristics which remained invariant as the stimulus array
changed over btime, which Gibson referved to as "highey—~order
invariants". ¢ The idea vecalls Carbonnell’s nobion of a
"hierarchy of relative invariance"). Donsider, for srample, a
perceiver walking down a long corvidor with doorwayve on sach

gide. The projection of the opbtical arrvay on a two-dimensional
plane will undergo continuous transformations in which the far end
wall gradually swells in size. Distant side doorways fivst appear
Aas a8lits which gradually resolve into trapesoidal shapes, and so
arne Dut of this visual flux, the perceiver picks-up certain
invariant relationships which afford The perception of a stable
corridor with rectangul ar doorways at each side.

For present purposes, an interesting consequence of this
print of view is thalt one can consider that the "structuwra” of the
gpace itsel f undergoes bransformation, in that any object placeard
in the corrvidoy will wndergo anal agows transformation. Thus,
although the specific changes which ooowy will depend on Dhe

ohjects themzelves, any object placed in the

me mpances. will

undergo the same general transformation.

Orier meathod by thch changes in bhe "structure" of space may
e repressnted was intvoduced by DPArcy Thompson (L9610 i a
diff@r&nt conbewt. Me attempted to demonstrabte relationships
between di ffevent speciss by illustrating that Tthe fora of a body

the whole boody, when rveplotied on a

part, «or in soms

Trarz formsd coe-ordinate system, yielded The form of anobher
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gspacies. Figure 1 shows one fllastrabion of the ftechnigue, whers

the second form is a point-for-point mapping of the first Torm

cnto the transformed co-ordinate system.
This gensral technigue has been employed by Fittenger, Shaw

amd Mark (197%), in an abtbtempt to explain the fact that we can

gensrally recognize people’s faces despite changes caused by

the process of aging. They showed that abt least one change relabte

to aging is a continuous topological transformation of head shape
which can be representsd by changes in a co-ordinate sysbem using
Thompson®s mathod.,  Figuwe 2 illustrabes the application of this
transformation to cartoon drawing of the heads of three spesoles,
Feople judgse the ages of the animals in order from top o bottom,
the top being younger. Given the consistency of these judgments,
wi would expect pecple to be able to solve proportional analogles
wsing thig type of stimuwlus, where the relationship that has o be
extracted has to do with the topological ﬂvanﬁfmrmatimn which has
been applied: fovr example, the top bivd is to the bobtom bivd as
the top dog is to the bobttom cdog.e It s difficult to see how
existing AT programs based on purely propositional forms of
ryprwﬁ@ntatimn could extract this relationship.

The second example we wish briefly Lo sxplore begins with
a mebhod of solving proportional analogies proposed by Klein

CLBE2r, and based on a proportional form of stiouwlus

representationl.

lwe are indebtad to W. Trewrniet for introducing us to this

prample, and for his participation in developing it.
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Thé m&t“wd'ﬂﬁﬁliMG To o stinuli which can be desceibesd in fterms
of sebs of binary features. Figur@ Sa shows an example of a
feature set of this kind, with The values on sach feature
represented by O or 1. Form & in Figure 3b can therefore be
vepresented as 1000, form B oas 1110, and form £ as DQOi. Elsints
algorithm solves for D in the proporéional amalogy A is to B oas O
ig Lo Do It dows so by cwmparing Aoand Boand esbtracting an
opavator based on the logical opsration of exclusive diejunction
which defings the bransformation reguired to change & fTo Be This
opaerator is then applied to O fto solve for D, as illustrated

helow.

The procedure appears to work for stimuwloes sets of this kind,
bt fails when a spatial component s enbered inkto the analogy.
Frov mmample, consider the propovbional amalogy bslow, dn whimh'thm
value 1 represents a filled cell, the valum.ﬁ art mamphy ocell dn oa
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Reading the values across bhe rows and applying Hlein®s

procedure yields:

A LB ODperator [ o | o33

This produces the apparently

1 G

anomalous soluabions:

O

Fonde

If, however, O is encoded by reading of f the values Lioal by
rathaer than horizontally and L7, afbter applying bthe operator, D is

decoded in & similsr manney, bthen wa obbtain the intuwitively

more acoceptable solublon:




0 0 0

The difficulty arises from the fact that the snooding of the
irformation fails to preserve the structurs necessery Tor the
goluticn, that is the distinoction betwsen the vertical and
hovizontal dimeénsions.  Only by providing the necessary votatlon
throuwgh 905 —— by changing the order of reading ﬁhe data from
riows Lo columns ~-— is the procedure able to find the solution. The
eunample serves to Lllustrats once again th@ gistinotion between
propositional and analog formsg of representalion.

However, by incovporating divectional informabion into the
coding scheme, it is possible to adapt Flein’s procedure so that
it can surcessfully solve spabtial analogiss of this type.
Consider, for esample, the analogy shown in Figure 4. FPeople btend
boy produse either of two possible solutions to fhis problam,
illustrated here as DI or DE. Dl is obtained in the fmilmwimg
WEAY « A is bransformed into B by mapping point 1odin & o point 1

i B oand vobtabting Lhe figure bHTheo LV R

o bhe plans. Tha

Lthen applisd So D, boogive DL I

jN

arial ogous bransformation

chtained by mapping point 5 in A ba point 1oin B oand per forming
a rotation through the thivd cdimension. DE is then ablbained by
per forming the analagous operabion bo

Cooding the 1im@Aﬁ@gm@ntﬁ Lo pre ol e %mlutimﬁﬁ of bthis kind
man he achieved by arbitrarily assigning binary values to LThe

cardinal points of the compass, such fthat N o= OO0, & = 01, & = 1d,

g

NS TP




and W = 11.
Encoding the line segments in & using this scheme gives,
veading from point 1, A = 0Ll, 00, 0, 10, 0l. Similarily,

B 10, O, 10, i, 10, Mapping AL to BL, we obtain the

Lrans formation table given belows

Q0 01 10
Ol 10 Q0
LG i1 1G

i1 00 Q0

Encoding & by reading from point 1, and applying the same

transformational operator gives DI, as illustrated below

o
0o 10 Gl
O 00 10

10 10 11

1 Q0 10

(621 Q0 10

Decoding DL gives the form DI shown in Figure .
The alternative solubtion is obbtained by following tha same
=

procaedure, but mapping A5 to EBl. Tix doo wo, A is read Trom &,

providing the oode A

it

14, 00, 11, 1o, 11. The code for

B oremains wanchanged, resulting in a new opevabor, shown belows

S e
P



11 10 10

Bimilarily, 12 is rvead from 25 and the operabor applied:

11 10 10

nle} 10 al
11 10 10

1o 10 i1

This provides the form shown as D2 in Figurs 4.

’
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st section began with a discussion of pyope

visrsus analog forms of bnowledge o IR Lh
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al mot be regarded as nutually exclusive: a cognitive
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ayahen may be endowed with both forms. Howsver, 1t was sugoeshe

that present AT applications tend to foous aloost sewolusively on

propositional Torms. It was proposed that analog forms of

VERDY

hation might be bebtbter suibted to cerbtain forms of

analogical veasoning, particularly those which sobody strucbural

conponsnts of a spatial form.  BSeveral examnples were proposed of
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gpatial component.

hemas might be developed which have



6. CONCLUSION

The paper fooussed on machine learning by analogy as a
pokentially  power ful technigue for creabting arbificial
intelligence systems capable of lsarning fr&m @xperienca. A
review of the psychological literature indicated that analogical
and metaphorical processes in humén cognition are understood to
inviolves:

1y a mapping of "elements” from & souroe b barget domadlrn,

whetre
£y the “elesments' are btypically relational or structural
rather than %imply foatural, and where
(3 the initial overall similarity between the two domains
is low: thabt is, the domains are highly dissinilar,
guoept for the analogical rvelationships.

A review of analogical 1earning programs which have been
implemented indicated that analogies, as operationalized,
involves

13 a mapping of elements from a souwrcs bto target domain,

ey

{2y bhie elements are btypically featural, rabther Than
relaticnal or structural, and whers

(30 the initial overall similarity betwsen the bwo donains

is hiogh, and indeed must be high for the analogy bto be

recognlsed.

From a psychological perspective, these differences in

definition indicate thalt the implemented programs learn by a

process more akin to generalization - Literal similarity-- e
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by analogy as understood in human cognition.  This in itself may
he a useful and worthwhile development, bulb it is unlikely to tap
what the program developers seem o mean by the "power"of human
analogical r&aémning. In the human sense, bthe power and economy
of a good analogy can to some extent be geuged by the degres Lo
which it swprises us, and svokes insight. The programs
implamented to date show little potential for doing miﬁhww;
Mowever, more vesent developments in ocognitive science
approaches iodicate an awér&n@sﬁ of a need to go beyond literal
similarity. Gentner (19832 and Carbonnell (1383 emphasize
relational aﬁd gtructural characteristics, and relegate fesatural
similarity to the least lmportant role in analogy recognitiaon.
Carbonnal 17s model allows featuwres to be relawed during the
mapping process, which allows for the possibility that invariants
may bz recognized in mapping two otherwise dissimilar domains. The
idea of a hierarchy of invariance further allows for the
possibility that a small set of overlapping properties, provided
that they are sufficiently high in the hierarchy, could trigoer
the recogrition of an anlogy between highly dissimilar domains.

These developmants seem highly promising, and come much ol aser o

what we understand by analogical processes in honan cognd bion.
Howaver, they do not appear to have besen implemented as
operational programs.

literal and non-literal similarity

The distincbion bebweer

reprasents one area in which machine lsarning has not yelb grasped
the full complaxity of human learning by analogy. A sedond
important distinction is between proposibional and analogical

forms of knowlaedge representation. BExisting programs vely

—— .;;l_ 't —



axclusively on propositional vepresentation.  However, it aiay

thalt human mn&logical reasoning, sspecially where spatial
components are involved, is better rvepresented analogically.
Conjecturally, certain btypes of scientific and mathemabical
problem solving may depend on just such forms of spalbial
reasoning, and it may bhe that if the full power of human
analogical reasoning is to be bapped, then analogic-al as well
propositional foras of knowledge representation will have to

@xp Lo ad.
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'Figure 2:  Analagous forms of cartoon profiles produced by
topological transformation of the co—ordinate

system (from Fittenger, Shaw % Mark, 19793).
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Abstract

A selective review of machine learning summarizes a new approach to learning realized
in two different production systems, two approaches to learning by analogy, and presents
one example of a connectionist model. ' The section on production systems describes
learning by knowledge compilation in ACT* (Anderson, In Press) and learning by the
chunking of subgoals in Soar. Both systems learn by combining productions that realize
contiguous goals and focus attention on information related to those goals. An analysis of
metaphor in common sense reasoning indicates the need for a co'mplex representation in
analogy (Carbonell & Minton, 1983) and how pragmatic considerations - help analogical
reasoning (Holyoak, In Press) (Holyoak, ress). The connectionist Boltzmann Machine (Hinton,
Sejnowski & Ackley, 1984) model of the micro-structure of cognition demonstrates how a
learning mechanism can adapt to any new situation by building and modifying connection

strengths between individual processing units.

1Prepared under contract to the Communications Research Centre in Ottawa for Dr. Brian A. Schaefer. The
original papers, although liberally para-phrased here to facilitate description, should be consulted for a deeper
appreciation of the complexity of each theory.
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Introduction

Machine Iearnihg is experiencing perhaps the greatest growth period of all the fields in
Artificial Intelligence because programs that can adapt have definite advantages over those
that cannot. More people have become interested in machine learning since the publication
of Machine Learning: An Artificial Intelligence Approach (Michalski, Carbonell & Mitchell,

1983). An expanded version of the first chapter of the book appeared in an article in Al
Magazine (Carbonell, Michalski & Mitchell, 1983). The - article mentions two reasons why
human learning is important to machine learning: (1) humans are our best examples of
complex learning mechanisms and (2) learning machines must be understable to the humans
with whom they must interact, The articles reviewed in this section all reflect some degree

of concern with human learning.

" In the article Carbonell, Michalski, and Mitchell (1983) identify two major components
of learning: knowledge acquisition and skill refinement. Knowledge acquisiﬁon is learning
which allows the learner to explain more situations with greater accuracy, i.e., to be a better
predictor of its environment. Skill refinement is “the gradual improvement of motor and
cognitive skills through practice.” Knowledge acquisition is argued to be a conscicus.
symbolic process and skill refinement an unconscious, non-symbolic pr'ocess but most human
learning is regarded as a mixture of both. The non-symbolic nature makes skill acquisition
more difficult to capture by Al techniques but Newell and Rosenblobm (1981) developed a
successful symbolic model of skill refinement. An adapted version of the learning mechanism
used by Newell and Rosenbloom is incorporated in the Soar architecture, one of the new

production system approaches to learning reviewed below.

Carbonell et al. {(1983) chose three dimensions to describe machine learning research.
One dimensidn was the type of knowledge or skill required by the learner, that is, the
representation of knowledge. One form of knowledge representation is the rules used in
production systems., Each of these rules embody a set of conditions and a set of actions.
If all the conditions of a rule are true then it becomes “instantiated” and its actions are

taken.?

Knowledge of the world, then, is represented by production rules where the variety
of detectable situations is represented by the conditions and range of responses is

represented by the actions of production rules. The world is decribed by a set of assertions

2In many production systems only one rule is actually fully instantiated. for example OPS35, requiring a
conflict resolution strategy to choose which of the "“partially” instantiated rules will become fully instantiated.
Parallel production systems, for example CAPS, fully instantiate all rules whose conditions are met.
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in working memory and all conditions test some aspect about working memory, for example,
that a particular thing is there or not there, that one thing is greater than another, and so
on. Actions typically add, remove, or change things in working memory. some of which may
be. enable, or disable conditions of other production rules. There are four basic methods

of acquiring new, or refining old, knowledge.

1. Creation of a new rule.
2. Generalization of a rule to apply to a wider range of situations.

3. Specialization or discrimination of a rule to apply to a narrower range of
situations. ,

4. Composition of one or more rules to create a new rule to permit faster reaction
to a particular situation, since only one rule needs to be instantiated.

Both the knowledge compilation technique used by Anderson in the ACT™ production system
and the Soar architecture accomplish generalization as a side-effect of creating new rules.
Anderson (In Press) has suggested that the same approach may be applied to
discrimination. Anderson's approach is the other production system we review. While ACT*
and Soar are based on production systems both super-impose additional structure on the
production system. Each super-imposes a goal structure, ACT~ adds ah additional long

memory structure, and Soar adds- other structure described below.

A. second dimension used by Carbonell et al. (1983) to describe machine learning
research concerned how much inference the underlying learning strategy applied to input
information, ranging from the total lack of inference in rote learning through increasing
degrees of inference in learning from instruction. learning from analogy, learning from
examples, and learning from observation and discovery. Most work on machine learning has
focused on leafning from examples but learning by discovery and learning by analogy has
recently ‘been attracting more interest. Two approaches reflecting the complexities in
representing and applying analogies are reviewed here (Carbonell & Minton, 1983; Holyoak,

In Press)

Carbonell et al. (1983) sketch a history of machine learning centred around three
paradigms. Eérly attempts used general purpose learning mechanisms with little task or
domain-specific knowledge, called neural nets or self organizing systems, the best examples
of which are Rosenblatt's perceptrons and Selfridge's pandemonium. The approach ended .
in failure and was dismissed (Rich, 1983) but has been revived in the form of connectionist

models. We will review. one particularly promising connectionist model, the Boltzmann
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Machine (Hinton, Sejnowski &- Ackiey, 1984).

Contiguous Learning in Production Systems

Brownston, Farrell, and Kant (In Preparation) provide an overview of learning methods
in production systems. The most common are generalization, discrimination, compaosition,
and proceduralization. In generalization a new rule is built from other rules or by learning
from examples. The new rule will be applicable in all the situations that the old rules were,
and possibly more. The most common technique is to delete a condition which does not
apply very often, or applies to some situations but not others. Unfortunately the deletion
technique often leads to overly general productions which apply in too many situations. In
discrimination the system creates one or more variants of a rule, usually by adding
conditions, so that each variant is instantiated in fewer situations. Discrimination is,
therefore, the process of restricting an overly general production. Composition is a
mechanism which creates a new rule by combining the conditions and actions (removing
redundant elements) of two production rules which are instantiated ir_1 sequence. When the
new rule is instantiated it will be favoured by conflict resolution because of its greater
specificity (i.e., more detailed conditions) in situations where the old rules are also
instantiated. Proceduralization is a learning mechanism that attempts to reduce the sizg of
composed productions. Variables in conditions and actions are replaced by the actual values
so that the next time the conditions arise long term memoryS need not be accessed.
Anderson (In Press) has argued that the processes of composition and proceduralization,

collectively termed knowledge compilation, can account for inductive learning.
Knowledge Compilation in ACT*

Anderson (In Press) recently noted that most learning systems implicitly assume that
inductive learning cannot occur by association through contiguity. These systems assume that
noncontiguous examples must be compared to formulate hypotheses aﬁd then take
appropriate actions. But two papers at the 1983 Machine Learning Conference, one by
Anderson and the other by Rosenbloom and Newell adopted the contiguity character. The
common ground for the two different approaches was that (1) behaviour was controlled by a

hierarchical goal structure used in problem solving rather than by specific inductive

3Hemember that Anderson’'s ACT* yses a separate long term memory in addtion to working memory.
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processes, and (2) learning occurred by creating single production rules that accompliéhed
the task previously requiring multiple rules. Anderson argued that these two architectural
assumptions are sufficient to account for inductive learning within the scope of the ACT”"

theory of {earning (Anderson, 1983).

In ACT* a learner begins with declarative knowledge relevant to the execution of a
skil and general interpretive procedures to apply to these facts. Knowledge compilation
operates on the traces of two interpretive procedures, general problem-solving procedures
and general analogy procedures, to create more efficient productions specific to the task
domain. Knowledge compilation is subdivided into two subprocesses called compasition and

proceduralization which operate as described above.

Anderson drew several conclusions from analysis of a subject's protocol* during a lisp
programming episode which was simulated using GRAPES, .a representation of ACT™ used to

simulate programming episodes, The first conclusion emphasized the importance of structural

analogy in bridging the gap between.current and desired behaviour. Knowiedge appears to

be isolated, requiring something, such as analogical processing, to transfer from one context
to another. The second conclusion was that problem-solving for novice programmers is
organized as a hierarchical goal structure in which the goals are expanded in a depth-first
and left-to-right manner. This implies that novices follow the implications of one goal as far
as possible before processing related goals that could be explored at each level in the goal
hierarchy. This is important because the structure of the hierarchical goal tree is crucial to
the compilation process because it identifies which parts of the problem-soiving episode
belong together and which do not. Anderson notes that a breadth-first expansion has been
found. for experts (Jeffries. Turner, Atwood & Polson, 1981). The third conclusion was that
knowledge compilation is an important mechanism for building new productions which can
streamline later performance. The subject’s learning and the GRAPES si.mulation could be
described as an episode of inductive learning but problem solving through analogy coupled
with knowledge compilation are sufficient to explain the resuits without recourse to explicit

inductive mechanisms.

GRAPES distinguishes between inherent goals, intrinsic parts of the task whose
achievement solves part of the original problem. and planning goals goals whose results

guide the solution process but are not part of the problem sofution itself. One way to

A protocol is a subject's monologue of what ‘comes to his mind as he is working through a problem,
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perform composition is to eliminate the planning goals intermediate between two inherent
goals. Knowledge compilation produces new rules which preserve the inherent goals specific

to the task domain and lose the goals from general processes like structural analogy.®

The interesting observation is that compilation results in clause deletion and
replacement of constants with variables. Compilation deletes clauses associated
with omitted goals and with planning. Variables from planning productions can
remain in the compiled productions. This is how we are able to get the effect of
generalization through compilation. ... Specifically, it appears that generalizations
can be formed through the process of compiling analogies.

This path to generalization is distinguishable from the standard inductive path because it is
generated from a single item® and it has added flexibility because of its problem-solving

origins.

Discrimination is handled by having the system deliberately follow the steps to form a
discrimination, i.e., through problem-solving productions rather than an automatic process
"watching”_ the system. If a sequence of productions results in a discrimination then
cbmpiling the sequence results in a discriminate production. This requires that the system
must make an error, correct that error, and identify the relevant features distinguishing the
current instance from prior instances in that category (i.e., make a deliberate hypothesis).
Lewis and Anderson report experimental evidence that these conditions are met when

discrimination occurs. Anderson makes the following conclusion:

The fundamental point then is that the induction process occurs as a conscious
problem-solving effort to find a basis for dealing with a new case. ... The
fundamental category of behaviour is problem-solving not induction. This theory is
not one of learning by temporal contiguity but learning by contiguity in the problem-
solving goal structure. There is no such thing as unconscious induction of
features. :

Universal Subgoaling and Chunking in Soar

A recent approach to both problem soiving and learning is represented by the Soar

architecture. Soar combines ideas from two doctoral theses supervised by Newell (Laird.

1984. Rosenbloom, 1983). Production systems were viewed as efficient but computationally:

5New rules, it should be emphasized, supplement old rules in special circumstances rather than replacing
them.

6Explicit generalization mechanisms require more than one item in order to generalize. i.e.. they replace a
number of different constants with a single variable descriptor.
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limited representations of knowledge so additional structure was super-imposed on a

production system’ to build a general problem solver called Soar.

Attention in Laird’s Soar is focused by a current context and much processing during
problem solving concerns search for the appropriate elements to fill the slots in the current
context. The slots in the current context are the goal of problem solving, the problem
space in which problem solving occurs, the state describing the problem, and the operator,
or action, which changes (or adds some aspect to) the state. The problem space is the
set of states that can be generated given the set of operators and an initial state. Problem
solving stops when the current state satisfies the goal; until then apropriate elements must
be chosen to fill the slots in the current context. Soar detects difficulties stemming from
any slot of the current context (regardiess of the stot's particular content) or difficulties in
specifying slot membership for the next problem solving cycle and generates a goal to
resolve the difficulty, thus Soar is a reflective problem solver because it can reason about
its own probiem solving activity. Since all goals are generated in this fashion regardless of

the specific problem domain Soar is said to exercise Universal Subgoaling:

Rosenbloom developed a learning algorithm which modeled the power law of practice
and was based on the chunking8 theory of learning (Newell & Rosenbloom, 1981).
Performance gradually improved as newly built prdductions based on chunks required less
frequent subgoal decomposition. Laird, Rosenbloom, and Newell (1984) hypothesized that
c'bmbining their general problem solver and chunk-based practice mechanism may produce a
general intelligent agent capable of more ihteresting types of learning than just speeding up
pérformance (as in practice). Chunks in the combined system were built based on the
parameters and resuits of goals experienced during. problem solving.

The current context focuses attention in Soar because problem solving can only occur
on one goal, in one problem-space, on one state with one operator at a time.?
Membership for the current context slots is determined by preferences. A major function of
production rules in Soar is to make preferences for particular items to occupy the current

context slots at particular points during problem solving.  Making preferences for some

7A modified version OPS5 with conflict resolution removed.

8A chunk (Miller, 1956) is a single unit previously recognizeable only as distinct units. For example, a useful
chunk using the letters 8, |. and M might be IBM.

9Actually the most recent version of Soar allows some operators to be instantiated in parallel.
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elements rather than others constrains search (i.e., they reduce the set of candidates for a

slot) so productions that make preferences. control search. and thus problem solving.

There are two major processing phases in Soar. an elaboration phase when the state
is manipulated and preferences are made, and a decision phase when items are chosen to
fill each slot in the current context for the next elaboration-decision‘ cycle. During elaboration
the state may be manipulated (i.e., some attributes added or changed) but the major aim of
“the elaboration phase is to build preferences for the slots in the current context, i. e., what
should be the next goal, problem-space, state, or operator. A preference for an item
specifies the slot for which it is preferred, the context in which it is preferred (i.e., the value
of the other slots), the value of the preference (acceptable, reject), and perhaps a partial
ordering compared to other preferences (worst., worse, equal, indifferent, better, best). A
special value (parallel) allows some operators to be processed simultaneously, effectively

permitting multiple objects in the operator stot.

The decision phase decides which items shouid fill the slots in the current context on
the next elaboration-decision cycle. The Soar archictecture follows a fixed procedure for this
determination based on the knowledge encoded in preferences. If preferences do not
isolate a unique object for a slot, or no preferences exist for any slot, Soar detects a
difficulty and creates/ a subgoal to resolve it. This is the only way to create a goal in
Soar; deliberate subgoaling is not permitted. Earlier versions of Soar permitted deliberate
subgoaling in user-defined productions but, and as somewhat of a surprise, it was found
that the situations requiring deliberate subgoals were detectable as difficulties by Soar. Soar
recognizes four difficulties concerning the items in the current context siots. resolve-tie,
resolve-no-change, resolve-rejection. and resolve-conflict. A resolve-tie subgoal is created
if the preferences for a slot do not iead to the selection of a single object. a resolve-no-
change subgoal'is created If there is no change during a decision cycle, a resolve-rejection
subgoal is created if all objects with acceptable preferences for a slot also have reject
preferences, and a resolve-conflict subgoal is created if at least two objects have conflicting
preferences. Soar maintains special goals and problem-spaces designed to resolve each of
these difficulties. They are special only because Soar automatically generates them when
the difficulties arise. It should be noted that detection of difficulties and resolution of

preferences is independent of domain knowiedge.

The basic assumption underlying Soar as a general learning mechanism is that all
complex behaviour, including learning, occurs as search in problem spaces (Newell, 1980).

Learning is simply a recorder of experience which determines the form of what is learned.
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Since chunking acts as a recorder of goal-based experience it is a good candidate for a

" learning mechanism. Chunking caches the processing of a subgoal so that a chunk can

substitute for the usual processing of the subgoal the next time it, or a similar one. is
generated. The operation is task-independent. occurring during processing through experience
with processed goals, and requires no extensive analysis either before, during, or after
performance. Only goal-related things are chunked, or learned so superficial, non-goal-
related variations are irrelevant to a chunked production rule, providing an implicit
generalization mechanism. To become a general learning mechanism, however, the chunking
Iéarning algorithm must be combined with a general problem solver. A good candidate is
Soar, a “reflective” problem solver which can reason about its own problem solving.
behaviour by creating subgoals (in the same format as subgoals for other problem solving
activities) to do so. Laird. Rosenbloom, and Newell (1984) note four contributions towards
chunking as a general learning mechanism accomplished by implementing chunking within

Soar.
1. Chunking can be applied to a general solver to speed up its performance.

2. Chunking can improve all aspects of a problem solver's behaviour.

3. Significant transfer of chunked knowledge is possible via the implicit
generalization of chunks.

4. Chunking can perform strategy acquisition. leading to qualitatively new behaviour.

In summary, in Soar both problems and routine tasks are formulated as heuristic

search. A problem-space consists of a set of states and a set of operators that transform

one state into another. Problem solving begins with an initial state and proceeds through

‘the application of operators to a desired state. Operators, tests for goal satisfaction or

failure, and search control are implemented as productions. Domain dependent knowledge
can guide search control (through preferences) but spaces which have only operators and
goal recognizers will work correctly given enough time (or production cycles).  Directly
available knowledge (i.e., that available within the current context) may not be sufficient to
resolve search control or to apply an operator to a state. Soar recognizes such a difficuity
and creates a subgoal to resolve it, just as for any other problem: ie.. Soar selects a
problem-space for the subgoal where success is finding a state which resolves the subgoal.
Thus, Soar builds a hierarchy of goals and problem-spaces. The hierarchy contains special
goals and problem-spaces (special only in the sense that Soar automatically generates then

when difficulties arise) to resolve difficuities that can occur in any domain. In this
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organization all aspects of the system's behaviour are open to problem solving when

necessary; this is called universal subgoaling.

Universal subgoaling and learning by chunking is a potentially powerful combination
which may encompass forms of learning previously thought too complex for a simple
chunking algorithm.  The learning algorithm can be simple because what 'is learned s

determined by the goal-related problem solving.

The power of chunking in Soar stems from Soar's ability to automatically
generate goals for problems in any aspect of its problem-solving behavior: a goal
to select among alternatives leads to the creation of a production that will later
control search; a goal to apply an operator to a state leads to the creation of a
production that directly implements the operator; and a goal to test goal-satisfaction
leads to a goal-recognition production. As search-control knowledge is added,
performance improves via a reduction in the amount of search. If enough
knowledge is added. there is no search; what is left is a method -- an efficient
algorithm for a task. In addition to reducing search within a single probiem space,
chunks can completely eliminate the search of entire subspaces whose function is
to make a search-control decision, apply an operator, or recognize goal-satisfaction.

Because of the uniformity of its problem-space representation and universal subgoaling
Soar can produce within task and across task learning without explicitly attempting to do
so. A task that shares subgoals with another task can produce chunks that are useful for
the other. vyielding across task transfer of learning. Within task learning occurs when a
subgoal arises more than once while attempting to solve the task. Since many aspects of
the context in which a chunk was created are ignored (i.e., those irrelevant to the goal)
generalization to similar situations sharing the same goal-related objects but possessing
superficial differences occurs implicitly without an explicit attempt to do so. In other words.
the chunk ignores all irrelevant information and is instantiated in all situations where the
relevant information is present. An unfortunate problem with chunking (from the
programmer’s perspective but perhaps not from the psychological modeler's viewpoint) is that
it produces overly general productions. a problem leading to negative transfer in humans.
Methods of recovery from overly general productions are required. Laird, Rosenbloom, and
Newell (1984) suggest that the way humans recover from over-generalization should be
investigated so that the problem solving activities involved in the recovery can be used to

build chunks which will override the over-general ones.

Soar has demonstrated its application to learning in typical vehicles for computer
learning programs (e.g.. tic-tac-toe, eight-puzzle) and in a complex problem solving

environment: a version of the R1 program for configuring computers at Digital Equipment
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Corporation was converted to Soar (Rosenbloom. Laird, McDermott & Newell, 1984). Van de
Brug and Rosenbloom (In Preparation) have extended the R1-Soar implementation and_
investigated several configurations of problem-spaces for learning and processing efficiency.

The work identified a number of positive properties of Soar:

1. The modularity of problem-spaces, which allows local reasoning and can broadly
resemble the human components of a task, facilitates both maintenance of the
system and investigation of various potential approaches to task solution.

2. Rules tend to be similar within each problem-space. each having rules to
initialize the problem-space and states, propose acceptable operators, implement
search control, apply operators, and recognize success (or failure).

3. Controt knowledge is clearly separated from domain knowledge. Conflict
resolution is replaced by the preference system.

4. The representation leads to a separation of "active” from “passive” (or volatile
versus fixed) state information.

A Note About ACT* and Soar

Soar and ACT* are similar in their learning strategy in that they compose productions
which act on goals contiguous in the goal hierarchy and only include items in the new

productions which are goal-relevant. However, the two systems are quite different. ACT"

. was designed as a model of human cognition but the designers of Soar, while cognizant of

human cognitive psychology, were after a system which could approximate an ideal, -generat

intelligent agent, human or not. Soar does not paosit an additional long term memory as

ACT- does, and its goal differentiation is different from ACT™'s (e.g., thare are no inherent

or planning goals). The uniform representation in problem-spaces and the reflective nature

'of Soar also differs from ACT*. As Soar and ACT- are extended to a wider variety of

problems, and thus a greater overlap, comparison should elucidate the advantageous parts

of each approach.

Learning by Analogy

Anderson considered analogy to be one of the basic problem-solving methods available
to the human Iearher. The structural analogy process which he described, however. is the
simpleét. Carbonell and Minton (1983) focus on the mapping problem in analogy, i.e., the
determination of what parts of one situation are relevant to another, and how pragmatic

information can aid the process. They also argue that a complex representation -of the
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mapping procéss itself facilitates analogical reasoning. Holyoak (In _Press). in concert with a
number of colleages.vand expressed in a forthcoming book (Holland. Holyoak. Nisbett &
Thagard, In Prepa‘ration). has developed an approach which de-emphasizes the syntactic
description of analogy and emphasizes the goal-related. problem soiving nature of analogical
processing. Holyoak _also emphasizes how pragmatic information can aid anaiogical

reasoning.
Metaphor and Common Sense Reasoning

Carbonell and Minton (1983) thirnk the weight of empirical evidence has not yet “"tipped
the academic scales” in favour of metaphor and analogy as the basic process involved in
common sense reasoning, perhabs a good use of a punls_ince the focus of their
investigation was on the use of the balance scales analogy. It plays a major role, however,
as. evidenced in a report published by Carbonell only a month later (Carbonell. Larkin &
Reif, 1983) describing the general reasoning processes involved in scientific endeavour.
Carbonell and Minton’s central ‘hypothesis is the: ‘ }

‘Experiential reasoning hypothesis: Reasoning in mundane, experience-rich

© recurrent situations is qualitatively different from formal, deductive reasoning evident

in more abstract, experimentally contrived, or otherwise non-recurrent situations
(such as some mathematical or puzzle-solving domains).

The authors claim that formal modes of thought are not dominant in mundane

situations because they are seldom necessary and require more effort when used than

analogical reasoning, which is at least partly responsible for common sense reasoning.
Analogical reasoning ié defined roughly as “the process by which one recognizes that a new
situation is similar. to some previously encountered situation. and uses the relevant prior
knowledge to structure and enrich one's understanding of the new situation.” Metaphorical
reasoning is “that subset of analogical reasoning in which the analogy is explicitly stated or

otherwise made evident to the understanderer.”

Analogy requires access to large amounts of past knowledge, reaching conclusions
without benefit of formal deductive reasoning. and consists of a target, a source. and an
analogical mapping. One particularly prevalent metaphor concerns reasoning about abstract
entities as if they were weights, i.e., using the balance principle as an analogy. Based on

the observation that language is heavily endowed with words that describe physical attributes

and people use these words to describe abstract entities, Carbonell and Minton propose

another hypothesis:
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Physical metaphor hypothesis: Physical metaphors directly mirror the underlying
inference processes. Inference patterns valid for physical attributes are used via
the analogical mapping to generate corresponding inferences in the target domain.

The inference pattern for the balance principle is straight forward. Given an input set of
signed quantities, whose magnitudes are analogous to the “weights” and whose signs are
analogous to the sides of a binary issue, the side with the greatest weight is chosen with a
corresponding qualitative calculation of how far out of balance the system is. Carbonell and
Minton argue that this simple analogy accounts for human inferences in many situations and

summarize the four stages in Carbonell's (1983) mode! of analogical problem solving:

1. Recalling one or more past problems that bear strong similarity to the new
problem.

2. Constructing a mapping from the old problem solution process into a solution
process for the new probiem. exploiting known similarities in the two problem
situations.

3. Instantiating, refining and- testing the potential solution to the new probiem.

4. Generalizing recurring solution patterns into reusable pians for common types of
probiems. ' :

. The greater part of processing in that model concerned building a mapping from the similar

past problem situation to help in the new situation. The role of metaphor is to capture and
communicate mappings from well known experiential situations to new. less structured
domains. Although such mappings often fail to provide deep insight into the new situation

they often convey quick, superficial understanding sufficient for normal everday functioning.

The central issue in metaphor comprehension is the analbgical mapping problem. i.e..
the identification of the relevant parts of the source to map to the appropriate parts of the
target. A mapbing based on simple similarity is not sufficient to capture the complexity of
most analogies. The matching process used in mapping must be focused to eliminate
spurious, unimportant similarities from consideration.  Focusing strategies utilize pragmatic
considerations to enormously constrain the matching process. First. the typical use of the
metaphor may be- known, i.e., the methaphor is at least partially frozen. reducing the
number and allowable elements to be matched.  Second. salient features can guide
matching in the mapping process when novel metaphors are used. Finally, an analysis of
more complicated exteﬁded metaphors, such as scientific analogies, shows that not all
details of the mapping are needed; the establishment of “beachheads” enables the gist of

the metaphor and allows further elaboration as required.
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Analogies require a-link between two domains. Single. LIKE links are too simplistic to
capture the complexity of analogical pfocessing and multiple sets of LIKE links are
insufficient because they rely on a reductionistic representation of analogy. A mapping
structure allowing only explicitly specified information to be transferred from one domain to
another is proposed. The mapping structure implements the LIKE relation, can contain meta-
information about the mapping, and can be identified as the source of new inferences in the
target domain made as as result of the analogy. The analogy can therefore be extended
incrementally over time making inapplicable parts susceptible to retraction processes. in
inheritance networks complex 1S-A. relations allow the specification of exactly what information
to transfer,‘ and what not to transfer, from a particular superordinate to members of a class.

Both LIKE and IS-A relations require a mapping between concepts. Carbonell and Minton

(1983) refer to the analogical mapping process as lateral inheritance as opposed to the .

vertical inheritance of 1S-A relations.
The Pragmatics of Analogical Transfer

Holyoak (In Press) begins with the observation that current expert systems typically do
not learn from experience because their brittleness (Holland, In Press) prevents the transfer
of experiential knowledge to novel situations. He integrates studies of analogical problem-
solving with a pragmatic framework for induction ‘(Holl.and et al., In Preparation) which argues
that progress has been slowed by misguided attempts to specify purely syntactic contraints
.on induction with'out considering the goals of the system or the context in which induction

occurs.

From the pragmatic perspective, the central problem of induction is to specify
processing constraints ensuring that the inferences drawn by a cognitive system will
tend to be (a) relevant to the system’s goals and (b) plausible. What inductions
should be characterized as plausible can only be determined with reference to the
current knowledge of the system. Induction is thus highly context dependent, being
guided by prior knowledge activated in particular situations that confront the system
as it seeks to achieve its goals. The study of induction becomes the study of how
knowledge is modified through its use.'0 The key ideas are that induction is (a)
directed by problem solving activity and (b) based on feedback regarding the
success or failure of predictions generated by the system.

100 4 related view Scott and Vogt (Scott & Vogt, 1983. Scott, 1983) argue that the goal of fearning is the
construction of an organized representation of experience rather than improved performance. This view is
particularly important when considering the Boltzmann Machine which focuses on learning rather than expert
performance. .
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A mental model is a representation that makes predictions about some part of the

environment and the purpose of induction is to refine mental modeis. Internal mental

models can be described in terms of morhpisms. A morphism is a set of states and a

transition function T that relates each state to its successor. The components of

environmental states and system outputs are organized into categories by a mapping

function h: category members are indistinguishable to the system. Homomorphic models
are commutative: a transition in the environment and determination of the resulting state's
category is the same as determining the category of the initial state and then carrying out
the transition in the model. Commutativity will sometimes fail in .realistic mentai models
because a prediction of the model does not match receptor input, tfiggering inductive
change. A basic inductive change involves generating . new subcategories for abberant cases
and refining the transition function, i.e., discrimination. As with new rules in knowiedge
(:ompilation the new, specialized part of the transition function need not replépe the mare
general one. The old, general expectations can act as defauits in cases where they are not

overridden by more specific expectations.

The characterization of mental models as morphisms is important for an account of
analogical problem solving for the following reasons. First, a solution pian can be viewed
as a model in which the initial state is a problem representation, the final state is a
representation of the class of goal satisfying states, and the transition function specifies a
plan for transforming the former into the latter. Second. an analogy can itself be viewed as
a morphism which can help separate the important from the less important differences
between analogs. Finally, the initial solution plan constructed from an anaiogy is often
imperfect in much the same way as a mental model may in general be imperfect. triggering

more inductive corrections.

The mapping function h and the transition function T are represented by condition-
action rules in a production system''. There are three types of rules in the system: (1)
empirical rules describing the environment and its behaviour, (2) diachronic rules describing
the transition function and generating temporal expectations about the behaviour of the'
environment, and (3) synchronic rules describing the mapping function and performing
temporal categorizations of the components of environmental states. Synchronic rules
capture the kind of categorical and associative information often representated in static

semantic networks while diachronic rules represent information about the expected effects of

”Specifically. the mode! is couched Holland's production system.
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system actions, such as problem-solving operators. A example of a synchronic rule is "If an
object is small, feathered. and builds nests. then it is a bird” whereas an example of a
diachronic rule is “If an object is a bird. and it is chased. then it will ﬂy away.” The
common rule format subjects both types.of information to the same inductive pressures and

the same processing constraints determine their activation.

Several principles govern the organization and processing of rules (Holland. In Press).
Rules, receptors, and declarative memory stores can post messages that guide system
behaviour. Active messages are matched against rule conditions and those rules compietely
matched compete for execution by piacing bids.'? Three factors determine the size of bids:
the specificity of the rule. the strength of the rule (a numerical value based on past
usefuiness), and the support accruing to the rule from the messages that matched it (a
measure of the current activation level of the messages satisfying the rule’s condition). Rules
thus compete for the “right” to post messages. Inductive mechanisms favour the
development of clusters of rules that often work well together. Conflict resolution is
minimized because rules only post messages. and contradictory messages can coexist until
one attains sufficient support to suppress its alternatives or until the need for an effector

actions demands a decision. Goal attainment is the basic source of "reward”.

Analogy aids the construction of new rules in a novel domain by transferring knowledge
from a better understood source domain. The overall similarity of target and source
domains varies from the mundane to the methapharical. Examples, according to Halyoak,
are commonly used as analogical models for problem solving when overall similarity is
mundane 'S, Holyoak's own experience has been in the metaphorical end of the continuum.
Analogy differs from other inferential mechanisms because it does not dwell on the
immediate problem situation but requires information outside the immediate problem.
Precisely because few strong rules are available to apply to an ili-defined problem. weak
synchronic rules that activate associations to the target can direct processing. Four basic

steps are invalved in analogical problem salving:

1. Constructing mental representations.

12The number of rules acting simultaneously is limited.

13For example, student’s solutions of gegmetry or computer programming problems as in the knowledge
compilation section above (Rirolli & Anderson.Fress).
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2. Selecting the source as a potentially relevant analog to the target.
3. Mapping the components of the source and the target.

4. Extending the mapping to generate a solution to the target.

Holyoak uses variations of the convergence analogy in his experiments and illustrations.
In one example the target domain requires a stomach tumour to be irradiated (surgery is
impossibie) or the patient wili die. However, the ray intensity needed to destroy the tumour
is too Intense for intervening tissue (Duncker, 1945). The solution is to use many weaker
rays to converge on the same spot. A similar source domain is presented to some subjects
but not others. Here a general wishes to capture a fortress in the centre of a country but
cannot send ali his troops down one road or rail line. The solution is to use many paths
to the fortress. The abstract structure common to the two problems is a schema for
convergence problems, i.e., a class of problems for which the convergence solution may be
possible.  Analogy is thus closely related to the induction of categories by generalization.
Because the information in a problem schema can be represented by a set of interrelated

synchronic and diachronic rules, a schema is represented as a rule cluster.

Two pragmatic problems concerning analogical problem solving are the efficient
retrieval of a relevant source analog and the determination of which properties of the source
analog to use in developing a model of the target problem. Useful source analogs share
hultiple, goal-related properties with the target. Goal-related diachronic ruies of the source
analog provide the basis for generating new diachronic rules appropfiate to the target
problem.  Therefore, syntactic approaches to analogy (e.g.. Gentner, 1983), which do not
consider the impact of goals on analogical transfer. fail. Syntactic approaches miss the
fundamental relation between synchronic and diachronic rules, i.e., between the mapping and_

the transition functions, which are affected by goals in particular probiem contexts.

Analogy involves “second-order modeling”, ie., a model of- the target -domain is
constructed by ”modeling the model” of the source domain. The ideal case occurs when -
the mapping is one-to-one, or iSOmbrphic. Even in the ideal case not all elements must be
transferred to the target domain. Only the parts relevant to the solution plan are needed.
These are the goal which is the reason for it. the resources which enable it. the contraints
which prevent alternative plans. and the outcome which is the result of executing the plan.
The definition of analogy as a relation between problem models makes it possible to specify

the information transferred from source to target in a principled manner.

The initial mapping typically involves detection of an abstract similarity between
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corresponding goals, constraints, object descriptions, and operators common to the two
analogs. Once established the inital mapping can be extended. As the source is unpacked
a madel is built of the target. Unpacking continues until a solution is found or the analog
begins to break down. Two important mapping relations are structure preserving differences
which allow construction of corresponding operators and structure violating differences
which prevent the construction of corresponding operators. An analogy breaks down at the
level where differences prove to be mostly of the structure violating type and the
completeness of an analogy is measured by the degrée to which all differences are
structure preserving. However, the usefulness of an analogy is determir{ed by pragmatic
congiderations.  Imperfect analogies can be useful for first approximations which lead to

further refinements.

When do people notice the relevance of potential analogies? A summation principle
ensures that analogs 'sharing multiple properties with the target domain will be activated.
Superficial similarities do play a role. aithough a minor one because goal-related properties
tend to dominate. Plausible source analogs share multiple components with the target
problem. For example, a source activated by both an intial state and goal state is likely to
have common diachronic rules transforming the initial state to the goal state. Remote
analogs are more difficult to retrieve specifically because they share few surface properties
but greater concentration of solution-related (or structural) features helps to retrieve a
remote, but useful. source analog. The definition of a feature as surface or structural
depends on the problem solver’'s goal (i.e.. a structural similarity in one situation may be a
surface similarity in another) and a person’s ability to distinguish them is imperfect (otherwise
no need to employ an -analogy). Once retrieved, surface properties have less impact on the
mapping process than structural features; i.e., they have a greater impact in the selection of
a source analog than on the mapping. Experimental evidence supporting these views is

presented.

A Connectionist Model: Learning in a Parallel Network

As we discussed in the introduction connectionist models are not new. Connectionist
models are comprised of simple processing units connected by links which can vary in
association strength. A unit is activated if the sum of its input links exceeds a threshhold
value and activation is passed along output links moderated by the strengh of the link. A
“symbol” in such a network is usually described by a “pattern” of activity in a number of

units. The Boltzmann Machine (Hinton, Sejnowski & Ackley, 1984), which we describe below,

|
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has this basic organization except that all links between units are symmetrical. so there is no
conception of input and output, per se, to a single unit. Although we concentrate on the

Boltzmann Machine much related work is available.'*

The Boltzmann Machine

The Boltzmann Machine is a massively parallel network of simple “neuron-like” units in
which knowledge is stored in the strengths of the associations between units. Some tasks
that require massive amounts of similar computations (e.g., vision) can be tremendously
speeded if the computations can be accomplished as simuitaneously as possible.
Propagating constraints between units is one way of accomplishing simultaneity but the paths
for constraint propagation must be known in advance to set up a useful network. The
Boitzmann Machine is a massively parallel network which can learn constraint paths between
appropriate units. It can adapt its internal structure to any problem by simply being shown
examples from the domain. From these “lessons” the network adjusts its connection
strengths so that it can produce examples with the same statistical propability as found in
the domain. However, although the learning algorithm used ih the Boltzmann Machine is

guaranteed to build an appropriate internal representation, it is very slow.

Constraint satisfaction methods typically involve strong constraints “(Waltz, 1975,
Winston, 1984) that must be satisfied by any solution but the Boltzmann Machine is better
suited to tasks involving weak constraints that involve some cost if violated. but are not
rejected by such violation. A weak constraint can be seen as a matter of degree whereas
a strong constraint is absolute. The quality of any solution is measured by the total cost of
violations and is reflected in its plausibility. The mechanics of the Boitzmann Machine is
described in the extended quotation below which, because of the technical nature of the

Boltzmann Machine. is reprinted almost in its entirety.

The machine is composed of primitive computing elements called units that are
connected to each other by bidirectional links. A unit is always in one of two
states, on or off, and it adopts these states as a probabilistic function of the
states of its neighboring units and the weights on its links to them. The weights
can take on real values of either sign. A unit being on or off is taken to mean
that the system currently accepts or fejects some elemental hypothesis about the

"“This and other work is described in two forthcoming volumes edited by D. E. Rumethart and
J..L. McClelland under the title Parallel Distributed Processing: Explorations in.the Microstructure of Cognition.
Cambridge: MA, Bradford Books, In Press. See also (Feldman & Ballard. 1982, Sutton & Barto, 1981a. Sutton
& Barto, 1981b, Klopf, 1979, Klopt79b, Granger. 1983. Granger & McNulty, 1984).




Machine Learning

domain. The weight on a link represents a weak pairwise constraint between two
hypotheses. A positive weight indicates that the two hypotheses tend to support one
another; if one is currently accepted, accepting the other should be more likely.
Conversely, a negative weight suggests. other things being equal. that the two
hypotheses should not both be accepted. Link weights are symmetric, having the
same strength in both directions (Hinton & Sejnowski, 1983).

The resulting structure is related to a system described by Hopfield (1982), and
as in his system, each global state of the network can be assigned a single
number called the “energy” of that state. With the right assumptions, the
individual units can be made to act so as to minimize the global energy. If
some of the units are externally forced or “clamped” into particular states to
represent a particular input, the system will then find the minimum energy
configuration that is compatible with that input. The energy of -a configuration can
be interpreted as the extent to which that combination of hypotheses violates the
constraints implicit in the problem domain, so in minimizing energy the system
evolves towards “interpretations” of that input that increasingly satisfy the
constraints of the problem domain.

A simple algorithm for finding a combination of truth vaues that is a local
minimum is to switch each hypothesis into whichever of its two States yields the
lower total energy given the current states of the other hypotheses. |f hardware
units make their decisions - asynchronously, and if transmission times are neglibible,
then the system always settles into a local energy minimum (Hopfield, 1982).
Because the .connections are symmetric, the difference between the energy of the

whole system with the ki hypothesis rejected and its energy with the k' hypothesis

accepted can be determined locally by the k™ unit (i.e., the energy gap).
Therefore, the rule for minimizing the energy contributed by a unit is to adopt the
on state if its total input from the other units and from outside the system exceeds
its threshold. This is the familiar rule for binary threshold units.

The simple, deterministic algorithm suffers from the standard weakness of
gradient descent methods: It gets stuck in local minima that are not globally
optimal. This is not a problem in Hopfield's system because the local energy
minima of his network are used to Store “items”: If the system is started near
some local minimum, the desired behavior of to fall into that minimum. not to find
the global minimum. For constraint satisfaction tasks. however, the system must try
to escape from local minima in order to find the configuration that is the global
minimum given the current input.

A simple way to get out of local minima is to occasionally allow jumps to

configurations of higher energy. An algorithm with is. property was introduced by .

Metropolis et al. (1953) to study average properties of thermodynamic systems
(Binder, 1978) and has recently been applied to problems of constraint satisfaction
(Kirkpatrick, Gelatt & Vecchi, 1983). We adopt a form of the Metropolis algorithm
that is suitable for parallel computation. ... .

The decision rule ... is the same as that for a particle which has two energy
states. A system of such particles in contact with a heat bath at a given
temperature will eventually reach thermal equilibrium and the probability of finding
the system in any global state will then obey a Boltzmann distribution. Similarly, a
network of wunits obeying this decision rule will eventually reach “thermal
equilibrium” and the relative probability of two global states will follow the
Boltzmann distribution.

20
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The Boltzmann distribution has some beautiful mathematical properties and it is
intimately related to information theory. In particular, the difference in the log
probabilities of two global states is just their energy difference (at a temperature of
1).'5 The simplicity of this relation and the fact that the equilibrium distribution is
independent of the path followed in reaching equilibrium are what make Boltzmann
machines interesting.

At low temperatures there is a strong bias in favor of states with low energy, but
the time required to reach equilibrium may be long. At higher temperatures the
bias is not so favorable but equilibrium is reached faster. A good way to beat this
trade-off is to start at a high temperature and gradually reduce it. This
corresponds to a physical annealing system (Kirkpatrick et al., 1983). At high
temperatures, the network will ignore small energy differences and will approach
equilibrium rapidly. In doing so it will perform a search of the coarse overall
structure of the space of global states., and will find a good minimum at that
coarse level. As the temperature is lowered, it will begin to respond to smalier
energy differences and will find one of the better minima within the coarse-scale
minimum it discovered at high temperature. Kirpatrick. et al. (1983) have shown
that this way of searching the coarse structure before the fine is very effective for
combinatorial problems like graph partitioning, and we believe it will also prove
useful when trying to satisfy multiple weak constraints, even though it will' clearly
fail in cases where the best solution corresponds to a minimum that is deep,
narrow and isolated.

One of the more. interesting aspects of the Boltzmann Machine is its domain
independent learning algorithm which modifies connection strengths such that the network
adopts an internal model capturing the underlying structure of the environment. For complex
learning a network must contain elements which are not directly constrained by the input but
also identify which connections were at fault when the network does sometﬁing wrong. This
credit assignment problem led to the demise of Perceptrons (Rosenblatt, 1961) which could
guaraniee the training of a single layer of decision units but not of the hidden units in
multiple layers required .for complex learning. The Boltzmann Machine can solve this credit-
assignment problem by running the appropriate stochastic decision rule and running the.
network until it reaches equilibrium. Because the energy is a linear function of the weights
in the network there is a simple relationship between the log probabilities of global states

and the individual connection strenghs.

The units of a Boltzmann Machine partition into two functional groups. a non-
empty set of visible units and a possibly empty set of hidden units. The visible
units are the interface between the network and the environment; during training all
the visible units are clamped into specific states by the environment: when testing

15The temperature, T, is one of the variables used in the equations; it indicates the degree of "shaking”
applied to prevent entrapment by local minima.
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for completion ability any subset of the visible units may be clamped. The hidden
units, if any, are never clamped by the environment and can be used to "explain”
underlying constraints in the ensemble of input vectors that cannot be represented
by pairwise constraints among the visible units. A hidden unit would be needed.
for example, if the environment demanded that the states of three visible units
should have even parity -- a regularity that cannot be enforced by pairwise
interactions alone. Using hidden units to represent more complex hypotheses about
the states of the visible units, such higher-order constraints among the visible units
can be reduced to first and second-order constraints among the whole set of units.

Hinton et al. (1984) describe an information-theoretic measure G of the discrepancy
between the network's internal model and the environment which includes components
reflecting the probability of the state of visible units' when their state is determined by the
environment and the probability of the state of visible units when the network is running
freely with no input from the environment. The G metric is sometimes called asymmetric
divergence. or information gain. Since the components of G reflecting the probability of
visible states depends on the weights between units G can be altered. Hinton et al. (1984)
use a rule to minimize G which depends on the probability of two units both being on when
'the environment is clamping the visible units and the corresponding probability when

environmental input is absent.

The surprising feature of the rule is that is uses only locally available
information. The change in a weight depends only on the behavior of the two units
it connects, even though the change optimizes a global measure, and the best
value for each weight depends on the values of all the other weights. If there are
no hidden units, it can be shown that G-space is concave (when viewed from
above) so that simple gradient descent will not get trapped at poocr local minima.
With hidden units, however, there can be local minima that correspond to different
ways of using the hidden units to represent the higher-order constraints that are
implicit in the probability distribution of environmental vectors. ... Once G has
heen minimized the network will have captured as well as possible the regularities
in the environment. and these regularities will be enforced when performing
completion.

Hinton et al. (1984) investigate the ability of the Boltzmann Machine to learn what they
refer to as the encoder task. The reader is referred to the original report for a description
of the task and the learning process but a few points are recounted here. Hinton et al
(1984) believe that the G-spaces for which ’the learning algorithm is well-suited are those
involving many possible solutions but the very best one is not essentiél. For large networks
to a learn in a reasonable amount of time a sufficient number of units and weights and a
liberal specification of the task are required so that no single unit or weight is essential.

Good performance on completion tests requires a gentle annealing schedule. As the
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annealing rate increases the error rate also increases reflecting the speed/accuracy tradeoff
often observed in human reaction time experiments. Finally, later in the report another task
(the shifter task) is used to demonstrate the necessity of hidden units for complex learning,

a task that simple Perceptrons could not learn.

Connectionist models can differ in their representation. The Boltzmann Machine adopts
a distributed representation where a concept is represent'ed as a pattern of activity over a
group of units and alternative concepts are different patterns of activity over the same units
(Hinton, 1981) as opposed to a local representation where the activation of one or a few
units represents a concept (Feldman & Ballard, 1982). A good argument in favour of local
representations is their modularity, making connections easy to maodify. Distributed
representations, while less susceptible to hardware damage. make modification more difficuit.
However, in a Boltzmann Machine a distributed representation corresponds to an energy
minimum and the problem of creating a collection of good concepts is the problem of
developing a good energy landscape; the learning algorithm used by the Boltzmann Machine

is capable of solving this problem.

Despite the fact thdt the tasks were small scale learning took a long time, a slowness
which Hinton et al. (1984) use to raise several questions for which they feel they do not

have good answers.

e

. How does the learning time scale with the size of the problem?

2. Can the learning afgorithm be generalized to exhibit the kind of “one-shot”
learning in which a person is told a fact once and then remembers it for a long
time? ,

3. How much faster is the learning when the connectivity of the network and the
initial values of the weights are approximately correct for the task at hand?

4. Do good solutions generally have a particular statistical structure? |f so. it may
be possible to impose strong a priori domain-independent - constraints on the
values of the weights or the connectivity that will constrain the search for a good
set of weights to a subspace.

However, in the discussion following the presentation of the abave questions Hinton et al.
(1984) demonstrate the possibility of one-shot learning and identify the factors involved in the
learning-time scaling problem to be the ratio of hidden to visible units. the number of
connections per unit, the number of constraints in which. each visible unit is involved, the

order of the underlying constraints, and the compatibility of the constraints.

Hinton et al. (1984) note that the visible units in their simulations behaved correctly but
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in large, practical problems this may be unreasonable. In these situations broad degenerate
minima where visible units are not strongly constrained to be on or off may be sufficient.
Broad minima would probably be easier to construct than narrow minima where the state of
each visible unit is crucial. Within broad minima similar- concepts can be differentiated by
modifying the shape of the minimum’s floor to establish a set of related minima separated

by small energy barriers.

Hinton et al. (1984) discuss the insufficiency of a similar formulation to the Boltzmann
distribution, Bayes theorem. The Bayes rule is similar if the probability of a unit is identified
~ with the probability of a hypothesis. However, Bayes rule is insufficient in that it provides
no way for the negation of evidence to ’affect the probability of the hypothesis, it does not
lead to symmetrical weights when two units affect each other, and although it can be
generalized to cases where there are many independent pieces of evidence, it is more
difficult to generalizé to cases where pieces of evidence are dependent. The learning
algorit‘hm in the Boltzmann Machine focuses on the worst violations of independence and
develops a set of “causal rules”, represented as connections between visible and hidden

units and each other, to explain them.

The Boitzmann Machine with its symmetric links is incapable of éequential behaviour.
Hinton et al. (1984) suggest that a set of symmetrically connected modules asymmetrically
connected to one another could solve this problem. This is not unlike a “production syétem
architecture in which all the heavy computational work is done by a parallel recognition
process that decides which rule best fits the current state of working memory.”  Touretzky
and Hinton are working on the implementation of a production system in a Boltzmann

Machine architecture.'®

The main points of the Boltzmann Machine are that noise can aid search. that credit
can be assigned on the basis of local infqrmation. and that features can be created that
model the external environment. The systemv learns to find the appropriate representation by
finding the lowest point in an energy landscape. Ackley (1984) has proposed a Boltzmann-
like parallel machine. but using a reinforcement learning algorithm and backward propagation
of feedback, to play the role of an evaluation function in an otherwise more traditional game
playing program and has produced some interesting preliminary results. The Boltzmann

Machine approach is clearly flexible, an important point given the current interest in building

161 seminar at Carnegie-Metlon University. March 12, 1985.




Machine Learning ' 25

parallel hardware.'”

Many connectionist models rely on comparisons with the neuronal structure of the brain
to partially justify their existence. Although the Boltzmann machine does not claim to model
the functioning of the neuron it does claim to be a valid model of the micro-structure of
cognition based, . perhaps, on units larger than the single neuron. In this respect we note
five devices identified by Criék and Asanuma {(In Press) as favourites of theorists but not
justified by physiologibal evidence. These are neurons which excite some cells and inhibit
others, neurons which merely change sign, neurons which connect to all other cells of the
séme type, neurons with distinctive synapses which do elaborate computations, and a neuron
which, by itself, can fire another cell. Two justified but absent features are (1) veto celis,
which appear to veto many other cells and probably need the summed activity of several
distinct inputs to fire them, and (2) the various diffuse inputs, from the brain stem and
elsewhere, which may be important, not only for the general level of arousal of the cortex
but also for .potentiating the synaptic modification involved in laying down a memory. An
additional point important for the Boltzmann Machine organization is that most cortical

projections are reciprocal if not symmetrical in all details.

Perhaps more important to the Boltzmann machine is the parcellation process
described by Ebesson (1984). The parcellation process involves increased neural migration
and' increased number of certain select neurons at the cost of selective loss of certain
connections. The process occurs in both evolutionary and bntogenetic development. of neural
circuitry. - In many neural systems axons do not invade unknown territories but rather follow
the path of their ancestors. If the connection is later lost it reflects neural specialization of
function. It should be apparent that if weights in a connectionist model involve more than
one connection then the selective growth and loss of connections is an important mechanism
for adjusting weights, and therefore an important empirical finding. It is interesting that in
the Boltzmann Machine a number of hidden units become obsolete (i.e.. their connection .
strengths tend to zero) as learning progresses. Finally, brains seem to have an inherant
capacity for the overproduction of neurons. An important finding by Hinton et al. (1984) was

that larger networks with excess capacity speeded learning.

'7For example. the Production System Machine at Carnegie-Mellon University, the Ultracomputer project at
New York University. the Thinking Machine Company's connection-machine. and others.
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Conclusion

The selections in the current report indicate that goal-directed systems that learn as a
side-effect of problem solving are good candidates for general machine learning systems.
Explicit generallization and discrimination mechanisms become unnecessary and irrelevant,
non-goal related features of the problem are automatically ignored. These systems shouid
adapt well to the use of analogy which also appears best considered as a goal-related
problem solving exercise. Even the Boltzmann Machine, with its very different architecture,
maintains its own goal: that of minimizing total energy as seen from the local level. The
Boltzmann machine has the added capability of developing new features in reaction to a
new ernvironment; this may prove to be its most important ability.

The reflection of Soar on its internal state suggests that it is not just the detection of
success or failure that is important in learning but the old problem of the correct feedback
of some kind at the appropriate time. The occurrence of explicit feedback in the form of
errors and- positive results is salient because of observability. External feedback invokes the
credit assignment problem at its maximum degree (i.e., the farthest from the source) and is
probably much less frequent in real problem solving situations. Humans clearly obtain other
forms of feedback, especially in extended problem solving episodes, and if we want our
machines to be competent learners, they should too. Issuing feedback closer to the source
would be an important aid to learning in any mechanism. Forms of internal feedback other
than those present in Soar may be necessary. Holyoak's description of analogy breakdown
may be helpful in developing a similar analysis which can be applied to general problem
solving to provide internal feedback. Brown and Van Lehn’s (1980) Repair Theory reacts to
"impasses” in problem solving which indicate that an error exists in current hypotheses and
repairs are required.  Another possibility is the “adventurous coefficient” suggested by
Berliner (1985) as a measure of making progress. Adventurousness in a game playing

program is the ratio of acceptance of non-intuitive to good moves.
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