
RELEASABLE

DOC-CR-SP-89-004

USERS GUIDE TO VERSION 2
OF THE

CASE BASED PLANNING SYSTEM

Prepared for: Dept. of Communications

Ottawa, Ontario

SKL Document 11500-19-004.01.0

Copy #5 	31 March 1989

ClapilignIONS „NM 1

25 1990

61111.0"-diUUE

• RELEASABLE '

I.D0C-CR-SP-89-004 '

TL
797
U74
1989

16-Cirei7Cee
Library

Queen
sEp 16 1998

InCiustrie
Canada E3iblloth,eque. Queen

USERS GUIDE TO VERSION 2
OF THE

CASE BASED PLANNING SYSTEM/

Prepared for: Dept. of Communications
Ottawa, Ontario

SKL Document 11500-19-004.01.0
Copy #5 	31 March 1989

erl
V-

) K')

.-) 	, D

USERS GUIDE TO VERSION 2

OF THE

CASE BASED PLANNING SYSTEM,/

Contract #36001-8-3580

31 idàrdh 1989

Prepared for:

Department of Communications
Ottawa, Ontario

Prepared by:

Software Kinetics
65 Iber. Road, P.O. Box 680
Stittsville, Ontario Canada

KOA 3G0

Software Kinetics Document #1500-19-004.01.0

Project Manager:

Document Approval Sheet

for the

USERS GUIDE TO VERSION 2

OF THE

CASE BASED PLANNING SYSTEM

Document No: 1500-19-004.01.0

Document Name: Users Guide to Version 2 of the Case
Based Planning System

Approvals Signature 	Date

Software Specialist: 312Mtn

Document Revision History

Revision 	Reason for Changes Origin Date

01 	New Document Issued 	31 March 1989

Government Gouvernement
of Canada 	du Canada

Department of Communications

DOC CONTRACTOR REPORT 	 DOC-CR-SP-89-004

DEPARTMENT OF COMMUNICATIONS - OTTAWA - CANADA

SPACE PROGRAM

TITLE: Users Guide to Version 2 of the Case Based Planning System

AUTHOR(S): S. F. Northover

ISSUED BY CONTRACTOR AS REPORT NO: 1500 - 19 - 004

PREPARED BY: Software Kinetics Ltd.

65 lber Road,

Stittsville, Ontario,

KOA 3GO.

DEPARTMENT OF SUPPLY AND SERVICES CONTRACT NO: 36001 - 8 - 35 80

DOC SCIENTIFIC AUTHORITY: Peter Adamovits

Computer and Intelligent Systems Group,

Space Mechanics Directorate.

CLASSIFICATION: Releasable

This report presents the views of the author(s). Publication

of this report does not constitute DOC approval of the reports

findings or conclusions. This report is available outside the

department by special arrangement.

DATE: March 31, 1989

- 	

--

d

Users Guide to Version 2

of the

Case Based Planning

System

Author: 	Stephen Northover (Software Kinetics)
Contract: 	The Evaluation of a CBPS with Respect to MSS Applications (1500-19)
Date Prepared: March 31, 1989

Executive Summary

This document describes the implementation and operation of version 2 of

the Case Based Planning System (CBPS) based on the conceptual design developed

at Carleton University by D.L. Deugo and F. Oppacher [2]. Version 2 of the

CBPS was implemented in the computer languages Smalltalk and PROLOG from

the original specification of the CBPS [2]. Version 2 of the Case Based Planning

System consists of a user environment intended for the development of domain

independent planning applications.

During development, a simplified test environment from the domain of

power management on an orbiting spacecraft as described by Adamovits [4] was

used as a test bed. Simple planning problems in the domain of power management

have been solved.

The concept of a planning environment has been introduced to allow for the

representation of domain dependent knowledge in a domain independent manner.

The use of task and plan rules allows the domain independent representation of

relationships within tasks and between ta. sks in a plan.

Special attention has been taken with respect to program modularity and the

separation of user-interface from planning code with the view to facilitate future

enhancements.

2

3

Page

4

5

5

12

14

15

17

19

21

23

23

26

28

32

Table of Contents

1. Introduction

2. The CBPS Objects

2.1 Tasks, Plans, and the Plan Library

2.2 The CBPS Object

2.2.1 Specification of a Plan

2.2.2 Plan Selection

2.2.3 Plan Execution

2.2.4 Replanning

2.2.5 Plan Evaluation

PROLOG Predicates for Task and Plan Rules

Sample Demonstration

The CBPS Planning Classes

Source Code

3. The CBPS User Interface Objects

3.1 The CBPSBrowser

3.2 The PlanBrowser

3.3 The LibraryBrowser

4. Summary

References

Glossary of Terms

Appendices

Appendix A:

Appendix B:

Appendix C:

Appendix D:

Section 1 - Introduction

•

•

This document describes the implementation and operation of version 2 of

the Case Based Planning System. It is assumed that the reader is familiar with case

based reasoning, Smalltalk and PROLOG, as well as the work of D.L. Deugo and

F. Oppacher in the area of case based planning. For a more information on

planning systems and case based reasoning see references [1], [2], and [3].

Version 1 of the CBPS, developed by D.L. Deugo [3], bears little resemblance to

the system described here. Version 1 was designed to demonstrate concepts and

lacked the mechanisms required to model a reasonably complex problem. As

robustness and ease of modification were not features of version 1 of the CBPS, it

was decided to discard version 1 and reimplement the CBPS from the original

design.

Section 2 provides a description of the objects that implement case based

planning in version 2 of the CBPS. A discussion of the objects that provide a user

interface to the CBPS can be found in section 3. Section 2 begins with a brief

review of case based reasoning in order to provide background information for the

following subsections.

Section 2.1 describes the concepts of a task, plan and the plan library as

implemented in version 2 of the CBPS. These are the basic objects that the CBPS

manipulates from the users point of view.

Section 2.2 describes the CBPS object. The CBPS object performs all of

the activities normally associated with case based reasoning in version 2 of the

CBPS. Section 2.2.1 describes the specification of a plan, often referred to as

operator input. The specification of a plan is used to drive the plan selection

process. Section 2.2.2, 2.2.3, 2.2.4, and 2.2.5 detail the Plan Selection, Plan

Execution, Replanning, and Plan Evaluation subsystems of the CBPS respectively.

Section 3 provides a description of the objects that implement the user

interface to version 2 of the CBPS.

Section 3.1 describes the operation of the CBPSBrowser. The

CBPSBrowser provides the user interface to the CBPS object as described in

section 2.2. The CBPSBrowser allows the user to manipulate a CBPS object and

perfoiTn case based reasoning with that object.

Section 3.2 describes the PlanBrowser object. The PlanBrowser object is

used to view and edit plans but more importantly allows the input of the

speccation of a plan.

Section 3.3 discusses the LibraryBrowser. The LibraryBrowser allows the

user to create and edit plan libraries. A description of the browser and its

functionality is provided.

Section 4 is a brief conclusion that touches on the major topics covered by

this document.

PI
Section 2- The CBPS Objects

Introduction

The approach that case based planning systems take to planning is case

based and makes use of dynamic memory techniques [1, 2]. With respect to the

CBPS, this means that based on planning requirements, plans are selected from a

plan library. The plan library consists of a collection of predetermined plans that

are expected to work in certain situations with some known level of success. If no

plan is available to match the requirements, a plan that partially matches may be

modified or an entirely new plan constructed to meet the current requirements.

After the plan selection, creation and modification process has occtured, the plan is

executed. During plan execution, success and failure information is gathered for

the plan. Using past history information for each plan, new planning requests may

be better satisfied in the future. Over time, the CBPS should adapt to its

surroundings by learning to use the most suitable plan in a given situation.

The following section describes the basic objects used to implemènt version

2 of the CBPS. Users that are familiar with these objects and wish to explore the

user interface to version 2 of the CBPS are encouraged to skip this section and

proceed to section 3. For users that wish to see a quick demonstration of the

CBPS, Appendix B provides a step by step guide that solves one particular

planning problem.

2.1 Tasks. Plans and the Plan Library

This section describes the implementation and functionality of tasks, plans

and the plan library. The user is expected to be familiar with the concepts of a task

6

1

and a plan as described in reference [2]. A detailed description will not be provided

here.

The task, plan and plan library objects are the basic building blocks of the

CBPS. It is important that the user have a clear understanding of how these objects

function before attempting to use the Case Based Planning System. A

LibraryBrowser is provided as a means of creating and editing tasks, plans and the

plan library. A detailed discussion of the LibraryBrowser is deferred to section

3.3.

Tasks

Every task has a name, a start time, a duration, resources to be acquired and

released during execution, and some task rules to represent relationships internal to

the task. Tasks are stored in an OrderedCollection [5] within a Plan. Plans will be

discussed in detail in the next section. Figure 1 shows a typical task.

Name 	 taskl

Start Time 	?

Duration 	 10

Resources 	Power 	20

taskl (taskl) :- between (1, 20, start)
Rules 	 task (task1, start, 10) ... etc

Figure 1 - Task "taskl"

The task name is expected to follow the Smalltalk/V convention for valid variable

names [5]. It must begin with a lower case letter and contain only letters and digits.

The start time and duration, when provided, are numbers that represent units of

time along the planning horizon. When asked to execute, the task will expect to

start at its start time and last as long as its duration. It is also possible to leave these

values unspecified. A more detailed discussion of unspecified values is deferred

until section 3.2. '

Resources are named values that use numbers to specify the quantity of the

resource that is required by the task when it executes. For example, a resource

named "Astronaut", with some specified qualifications, that has a value of "2"

means that the task requires two astronauts before it can start. When the task starts,

it will acquire the two astronauts from the available astronauts in the environment.

If none are available, the task will not start. When the task ends, the two astronauts

are released back to the env-ironment for use by other tasks.

Task rules are expressed in the form of PROLOG predicates [6]. Task rules can

express any relationship internal to the task but are expected to provide numerical

bounds on the start time and duration of the task. The bounds for start time and

duration usually take the form of a range of acceptable values. These ranges are

normally expressed using the "between" and "member" PROLOG predicates. A

more complete description of the available PROLOG predicates for use with task

rules can be found in Appendix A.

Task rules must have the same name as the corresponding task. It is

essential that this naming convention is not violated. The task name is used to

locate the PROLOG predicate when the predicate is required. Each predicate must

take exactly one parameter. When the predicate is executed, this parameter will be

the PROLOG representation of the task. For example, the following is a task rule

for a task named "task54":

task54 (task54) :-

member ([0, 20, 40, 60], start),

between (30, 40, duration),

task (task54, start, duration).

8

This rule states: "Task54 must start at time 0, 20, 40, or 60. It has a

duration that varies between 30 and 40 time units.". The first two statements

specify a range for the values of the start time and duration of the task. The last

statement uses a special predicate called "task" to unify these values with the

parameter "task54". Appendix A describes the "task" predicate in detnil.

Task rules are used by the CBPS to both verify and generate values for the

start time and duration of a task. When a start time or duration is specified for the

task, task rules are used to ensure that this value is valid. In the example above, the

PROLOG variable "task54" might have a start time of 20 and a duration of 35 when

the predicate is evaluated. The last statement in the example will check the values of

the variables "start" and "duration", as generated by the back tracldng of the

"between" and "member" predicates, against the start tirne and duration found in the

variable "task54". Task rules used in this context will verify the correctness of the

start tirne and duration of the task.

When a start time or duration is not specified, task rules are used to generate

valid candidates for the missing value. In the above example, start time and

duration in the PROLOG variable "task54" would be unbound when the rule was

evaluated. The values of "start" and "duration" generated by the "between" and

"member" predicates would then get bound to the start and duration required by the

variable "task54". On back tracking, new values are generated. Values for start

and end time can be used to fit the task into a plan. Task rules that generate values

schedule the task within the plan.

Plans

Every plan has a unique name with respect to other plans in the plan library,

a start time and end time that are automatically calculated, a collection of tasks that

are to be executed, an execution history, and plan rules to specify relationships

between tasks in the plan . Plans are stored in an OrderedCollection that is used by

9

the CBPS to represent the plan library. The plan library will be discussed in detail

in the next section. Figure 2 shows a typical plan.

Name 	 plan9

Start Time

End Time 	 61

Tasks 	#(taskl task27 task54 task100)

History 	10 success(s), 	3 failure(s)

plan9 ([taskl,task27, task54, ...) :-
Rules 	overlaps (taskl, task100), ... etc

Figure 2 - Plan "plan9"

The plan name is expected to follow the Smalltalk naming conventions for variable

names. It must begin with a lower case letter followed by any number of letters or

digits.

Plan start times and end times can not be directly manipulated by the user. It is

the start time of the fi rst task and the end time of the last task that define the start

and end dine of the plan.

The collection of tasks in the plan consists of tasks as described in section 2.1. It

is possible to add and delete tasks from this collection. Plan start and end times are

recalculated every time a task is added or deleted from the plan.

The Plan history can not be directly manipulated by the user. It is updated when

the plan executes by the Plan Execution module of the CBPS as described in section

2.2.3. The purpose of the Plan history is to record success and failure information

for the plan.

Plan rules are used to order tasks within a plan. Plan rules, like task rules, are

expressed in the form of PROLOG predicates. The name of the predicate must be

the same as the name of the plan. This name is used to locate the predicate when

required. Plan rules take exactly one parameter. This parameter is a list of every

task in the plan. The order of the tasks in this list is immaterial. For example, a

plan rule for a plan called "plan9" that has 4 tasks named "task1", "task54",

"task100", and "tas1c27" could be:

plan9 ([taskl, task27, task54, task100]) :-

overlaps (taskl, task100),

distinct (task27, task54),

precedes (task27, task54),

task (taskl, 	, endl),

task•(task54, ena, _).

This rule states: "Plan9 is a plan that contains taskl, task27, task54; and

task100. Taskl and task100 overlap. This implies that some portion of taskl must

happen at the same time as task100. Task27 and task54 are distinct and therefore

do not overlap. Task27 starts before task54 and the end time of taskl is the same as

the start time of task54."

Most of the predicates in the above expression are self explanatory with the

exception of the last two. The statement "task (taskl, „ „ end1)" extracts the end

time of "taskl" and places it in the variable named "endl". The statement "task

(task54, endl, ,)" compares the end time extracted from "taskl" with the start time

that would be extracted from "task54" with the variable "endl", for equality. A

more complete definition of the available PROLOG predicates for use with plan

rules can be found in Appendix A.

Plan rule predicates involving tasks that are no longer present in a plan will

always succeed. This is a feature of the implementation. For example, if "task100"

was removed from "plan9" in the above example, the predicate that forces "taskl"

to overlap "task100" will always succeed. This has the effect of removing the

restriction that "task100" and "taskl" overlap.

11

A LibraryBrowser (section 3.3) can be used to edit the plans, tasks, and

plan rules. The head of the plan rule is automatically generated and updated when

tasks are added and deleted. The user is only required to enter the body of the rule.

For example, one need never type in "plan9 ([taskl , ...". It is sufficient to type

"plan9 () ..." and then the rule body. When the rule is saved, the rule head will

be generated automatically to contain a list of every task in the plan. A restriction

on the user of the LibraryBrowser is that the plan is not verified when it is entered

into the plan library. The LibraryBrowser assumes that only valid plans will be

added to the library. A complete description of the LibraryBrowser can be found in

section 3.3.

The Plan Library

The plan library is stored as an OrderedCollection of plans. The plan

library is assumed to contain only valid plans. This means that the plan verification

process as performed by the Plan Selection module of the CBPS (section 2.2.2)

should always succeed on these plans. Task and Plan rules for the plan should

never be violated for a plan that is a member of the plan library.

The LibraryBrowser is an object that adds, deletes and updates plans stored

in a plan library. A complete description of the LibraryBrowser can be found in

section 33.

2.2 The CBPS Object

The CBPS (Case Based Planning System) object accesses and coordinates

the activities of each of the four subsystems of version 2 of the CBPS. These

subsystems are the Plan Selection module, the Plan Execution module, the

Replanning module, and the Plan Evaluation module. Figure 3 shows the

12

Plan
Library

Case Based Planning System

Replanner

Plan

Failures

Replannér

Actions

141/4 Plan Selectim
Verified

—11. n 	

Locator 	Plan

Constructor

	./

Plan

r Plan
Execution

Executor

Evaluator

Updater

o

a

o

Plan Selection
Knowledge

Base

r s state

I Model

Action for

Library

NoteTaker

Executed t Plan r Plan
Evaluation

Domain•

Knowledge

Plan Specification

1104
o

Domain

Knowledge

state

state

slat

Domain

Knowledge Plan Evaluation
Knowledge

Base

Replanning
Knowledge

Base

relationship of these modules within a CBPS object. For a more detailed

description of the behaviour of each of the modules, see reference [2] .

13

Figure 3 - The Case Based Planning System

A CBPS object accesses the current plan, the current plan library (perhaps

created by the LibraryBrowser), the environment of execution, a Selector object to

select and verify the plan, an Executor object to execute the plan and gather

execution statistics, and an Evaluator object to evaluate these statistics and update

the plan library. The Selector object uses a model of the environment to simulate

plan execution as part of the plan verification process.

A CBPSBrowser is provided as a means of viewing and manipulating

CBPS objects. The CBPSBrowser provides a windowing interface to a CBPS

object and is used to manipulate the environment and invoke all the functions of a

CBPS object. The CBPSBrowser allows the user to watch the Case Based

Planning System in action. The CBPSBrowser will be discussed in detail in

section 3.1.

2.2.1 The Specification of a Plan

The specification of a plan is perhaps the most important part of the Case

Based Planning System from a users perspective. The specification of a plan is the

mechanism that the user employs to tell the CBPS what to do. It is this

specification that drives the other modules of the CBPS.

When the user wishes to plan an activity, he specifies what to do by

supplying the tasks he wants to execute subject to certain constraints. For example,

he may wish to execute "task27" and "task54" such that "task27" starts some time

before "task54". He may wish to assign particular start times, durations and

resource requirements for these tasks or let the CBPS assign these values.

The specification of a plan in the CBPS takes the form of a special kind of

plan called an "unordered" plan. An "unordered" plan is simply a plan that may or

may not bear some resemblance to any of the plans in the plan library. An

"unordered" plan can contain any number of tasks. The start times, durations and

resource requirements of these tasks may or may not be specified. Plan rules can

be used to indicate how tasks in the "unordered" plan interrelate. The tasks

themselves may be copies of existing tasks or completely new tasks.

An "unordered" plan can best be desciibed as a plan that requires the

services of a Selector object to make it ready for execution. A PlanBrowser is

provided for creating and editing "unordered" plans. The PlanBrowser is described

in section 3.2.

14

Edit Plan to Better
Match Specificatior

Plan If

Apply Task and
Plan Rules

Plan

Plan

Plan
Library

2,2,2 Plan Selection

Plan Selection is performed by the Selector object. Figure 4 shows the

functionality of the Selector. A Selector object requires the current environment to

access available resources and extract the "unordered" plan and an Executor to be

used during the plan verification process. The Selector object performs both the

actions of the Locator and Constructor subsystems [2]. There are no explicit

Locator or Constructor objects in version 2 of the CBPS. A detailed description of

the Selector can be found in reference [2].

The introduction of a Plan Selection Knowledge Base, as implemented by

the SelectorRules object, allows domain dependent knowledge to enter into the plan

selection process. This knowledge base was not included in the design or

implementation of version 1 of the CBPS.

15

Search Plan Library
for Best Match

Plan Selector

failed

Plan
Verify in Model

state

0

a

o

Plan Selection
Knowledge

Base

Model

Plan

Specificationei»

Plan suceeded

Verified Plan

Figure 4 - The Plan Selector

The Locator portion of the Selector is responsible for selecting a plan from

the plan library that best matches the operators requirements as specified by the

"unordered" plan. The Constructor portion of the Selector is responsible for taking

the plan from the Locator and massaging it to better match the requirements of the

operator.

The Locator uses the same criteria to locate plans that was used in version 1

of the CBPS. However, these criteria are implemented, in a domain independent

manner, as PROLOG predicates in the class SelectorRules. When the plan library

is searched, a 3-tuple predicate named "better" is invoked in the SelectorRules

object with para_meters supplied by the Locator. The first two parameters are plans,

the third parameter is the current environment. The "better" predicate succeeds if

the first plan is a better match than the second plan with respect to the "unordered"

plan and the environment. Using the "better" predicate, domain dependent criteria

for matching plans can be introduced into the Locator, in a domain independent

manner.

The Constructor will add and remove tasks in a manner similar to version 1

of the CBPS but mechanisms are in place to dis allow this practice if necessary. For

some plans, removing or adding tasks may be inappropriate. When the Constructor

wishes to remove a task from a plan, a 2-tuple predicate named "canBeRemoved" is

invoked in the SelectorRules object. The first parameter in the predicate is the task

to be removed and the second is the current environment. If the "canBeRemoved"

predicate succeeds, the Constructor will remove the task. A similar predicate called

"canBeAdded" is invoked when the Constructor wishes to add a task. These two

predicates allow domain dependent criteria for modifying plans to be introduced

into the Constructor, in a domain independent manner.

Access to the SelectorRules object is provided by the LogicBrowser. The

LogicBrowser can be used to edit the plan selection rules stored in the

SelectorRules object. The LogicBrowser is discussed in reference [5].

16

The approach to plan verification used by the Constructor is completely

different from the approach used by version 1 of the CBPS implementation. The

verification process involves first satisfying pl an and task rules, and then simulating

the execution of the plan in a model of the environment. Any failures in the

simulated execution of a task do not invoke the Replanner as did the version 1 of

the CBPS [3]. Instead, the Constructor will try different candidate values for the

start time and duration for each of the tasks until the simulation of plan execution

completes without failure. Replanning, in version 2 of the CBPS, is the function of

the Replanner object (section 2.2.4) and is only performed when the plan executes.

Unlike version 1 of the CBPS, version 2 is capable of constructing and verifying a

completely new plan using plan and task rules and a model of the environment.

The Selector object answers a plan that is ready to execute or the nil object

[5] if the plan could not be verified. A plan can fail verification for two reasons:

1). If task or plan rules are specified such that they can never succeed, plan

verification can never succeed. For example, a plan rule that

states "taskl must follow task2 and task2 must follow taskl" will

always cause plan verification to fail.

2) If an ordering for tasks within a plan cannot be found such that

environmental resources are available when needed, plan verification

will fail. For example, a task that requires 2 astronauts can never

execute in an env-ironment where only one astronaut is ever available.

2.2.3 Plan Execution

Plan Execution is performed by the Executor object. Figure 5 shows the

functionality of the Executor. Task success and failures are recorded by the

NoteTaker [2] object as they occur during task execution. The plan history found

in every plan is actually an instance of a NoteTaker that records execution

17

information for the plan. A detailed description of the Executor can be found in

reference [2].

18

Plan Executor

Failed

Task

Verified Plan from

Selector

Replanner Actions

Plan Failures

Execute Tasks One
at a Time as per

Current Plan

Taski

Check Task
Status

Task S Suceeded

No More Tasks? Execute

state V

o

Another

Task

Executed Plan

Figure 5 - The Plan Executor

In order to begin execution, the Executor requires a plan and an

environment. The Executor keeps track of the task that is about to execute, the

tasks that have successfully executed and the tasks that are cuiTently executing.

When a task fails to start, the Replanner object is invoked with the name of the

resource that was not available, the task that requested this resource, and the

Executor itself. By supplying the Executor as a parameter, the Replanner has the

opportunity to access information stored in the Executor. This information could be

in the form of the current environment or the collection of tasks that are currently

executing. Details of the Replanner are presented in the next section.

Replanner

Plan Failures
Identify
Failure Knowledge

Domain Replanning
Knowledge

Base

Take
Correcting

Action

Replanner Actions Environment

Task Failure

Information state

2,2,4 Replanning

The functionality of the Replanner is provided by the Replamer object.

Figure 6 shows the behaviour of the Replanner. A detailed description of the

Replanner can be found in reference [2].

Figure 6- The Replanner

The job of the Replanner is to perform an action that will allow the plan to

continue after a task failure. To do this, a 3-tuple PROLOG predicate named

"failure" is invoked in the Replanner object with parameters supplied by the

Executor. The first parameter is the name of the resource that could not be

acquired. The second parameter is the task that failed. The third paxameter is the

Executor that attempted to execute the task.

The following rule will retry a failed task one minute later in the plan, if the

failed task is named "task54" and it was unable to acquire enough of the resource

named #Power from the environment:

19

failure (#Power, task, executor) :-

is (#task54, task name),

is (_, executor scheduleTask: task

atTime: executor time 4. 1).

Currently, The Replanner has a choice of telling the executor to drop the

current plan, drop the current task, or reschedule the failed task at some future tirae.

These actions are implemented as the Smalltalk messages #scheduleTask:atTime:,

#dropTask: and #dropPlan to be sent to the Executor object.

Be,cause the Executor object contains the current e.nvironraent as well as task

execution information, replanning rules can easily be made more sophisticated than

those in the example. Using the special PROLOG predicate "is", one can execute

any Smalltalk expression and have the answer imported back into PROLOG. For

example, the following expression could be part of a task failure rule:

is (1, executor environment resources at: #Satellite),

is (true, executor executedWasks includes: task15),

These two statements will succeed if the environment contains exactly one

satellite and the executor has successfully executed "task15".

Presently, any actions taken by the Replanner are not automatically verified

by the Replanner or the Executor. It is therefore possible to reschedule a failed task

at a time that is not valid for the task or at a time that violates a plan rule. As the

Replanner is expected to supply an action quickly, the often lengthly process of

plan verification is deferred until plan evaluation (section 2.2.4). The Replanner is

primarily intended to provide a "quick fix" in order to get the plan back on its feet.

A more sophisticated approach to replanning could be added at a later date.

Access to the Replanner is provided by the LogicBrowser. The

20

Plan Evaluation
Knowledge

Base state

Plan Evaluator

Executed Plan

Plan
Library

Ji Check Task
andPlan Rules

Valid Plan

Plan is
Successful

Action for

Library

LogicBrowser can be used to edit failure rules for the Replanner class. The

LogicBrowser is discussed in reference [5].

2.2.5 Plan Evaluation

An Evaluator object performs the process of plan evaluation as described in

reference [2]. Figure 7 shows the relationship of the components within an

Evaluator. Updating the library is done by the Evaluator object. There is no

Updater object, as described in reference [2], in version 2 of the CBPS. For more

information about the Evaluator, see reference [2].

The introduction of a Plan Evaluation Knowledge Base, as implemented by

the EvaluatorRules object, allows domain dependent knowledge to enter into the

plan evaluation process. This knowledge base was not included in the design or

implementation of version 1 of the CBPS.

21

Figure 7 - The Evaluator

o

n.

The Evaluator requires the executed plan, the plan library, and the current

environment. Presently, the state of the environment is not considered when

determining the success of the e. xecuted plan but is provided for future use. For

example, a perfectly good plan with no task or plan rule violations used to capture

and repair a satellite could fail miserably if the satellite could not be captured. In

this case, the environment could be examined to see if the satellite was captured and

a decision to remove the plan from the library could be overturned.

The first action of the Evaluator is to verify that plan and task rules have not

been violated during plan execution or replanning. This differs from the

implementation of the Evaluator in the version 1 of the CBPS [3]. In version 2 of

the CBPS, when a task or plan rule violation was detected, the evaluation process is

instantly aborted. A plan that contains tasks that violate any rules for the plan

should never be added or updated in the plan library. Such a plan could never pass

the verification process of the Selector.

The criteria for plan evaluation are similar to those used by version 1 of the

CBPS [2]. The execution history as recorded by the NoteTaker [2] object is used

to determine the worth of the plan. Currently, environmental factors are not

considered in the decision. However, these criteria are implemented, in a domain

independent manner, as PROLOG predicates in the class EvaluatorRules. When a

plan is to be evaluated, a 3-tuple predicate called "evaluate" for the EvaluatorRules

object is invoked. The first parameter is the plan to be evaluated. The second

parameter is the plan library. The last parameter is the evaluator object.

Currently, the evaluate predicate has a choice of telling the evaluator to add

the plan to the library, forget the plan, remove the plan from the library, or update

the plan in the library. These actions are implemented as the Smalltalk messages

#addPlan, #forgetPlan, #removePlan and #dropPlan to be sent to the Evaluator

object.

22

Access to the EvaluatorRules object is provided by the LogicBrowser.

Section 3 - The CBPS User Interface Objects

Introduction

The following section describes the objects used to implement the user

interface to version 2 of the Case Based Planning System. Users that are not

familiar with the basic CBPS objects described in section 2 should read that section

before proceeding. For a quick demonstration of the CBPS, see Appendix B.

3,1 The CBPSBrovvser

The CBPSBrowser provides a user interface to a CBPS object. The

CBPSBrowser is the main user interface to version 2 of the Case Based Planning

System. Figure 8 shows a typical CBPSBrowser. A CBPSBrowser is created by

the following expression:

CBPSBrowser new openOn: (CBPS new) .

The expression "CBPSBrowser example" will open a CBPSBrowser that

uses the plan library returned by the expression "CBPS exampleLibrary". A default

"unordered" plan and a default environment with an available resource called

"Power" is also provided. It is a good idea to explore the operation of the CBPS

object and CBPSBrowser using this example.

Within the CBPSBrowser, there are 6 subpanes. Four of these panes are

labelled "Plans", "Env Vars", "Env Values" and "Status". The other 2 unlabelled

panes are used to display tasks and resource usage of the current plan, over the start

and end time of the plan. The two unlabelled panes are for output only.

23

il
24

1
MMM PP

„7„ee-meulcumaema. ,umok 	Et emee me-,,mme emeemeeeesemeAesegeiene
tl%ailauyaaree.b.

Case 	laming 	m Syste

t Re-1MM 	 Tmrle.r. emx "xlmx,"

plan3

plan4

plans
planG

plan?
plan8

plan9

View/Edit Plan
Plan Selector
Plan Executor
Plan Evaluator

Ren v U ars env Ualues ‘.m4,,ues, ,.;k 	t a t us sseeseeek›a'aeea ›wakomieMa

LMM ptamee st ekte*MMMS;b4ty" 	 H

Power executed plan2: [8-70], 8 task(s)
8 success(s), B failure(s)

Figure 8 - The CBPSBrowser

1
1

The pane labelled "Plans" shows the available plans in the plan library.

Selecting one of these plans will set the "operator input" for the CBPS equal to the

selected plan.

The "View/Edit Plan" option of the pop-up menu for the "Plans" pane will

allow you to edit a current plan to create an "unordered" plan by adding or

removing tasks or altering task parameters. When "View/Edit Plan" is selected, a

PlanBrowser (section 3.2) is created to do the editing. When you are finished

specifying the requirements for the plan, you should close the PlanBrowser

window.

The "Plan Selector" option of the pop-up menu for the "Plans" pane will

perform the actions of the Selector object with the current "unordered" plan. The

selected plan will appear highlighted in the "Plans" subpane to indicate that it is the

current plan. New plans constructed from existing plans talce the name of the old

plan with an "x" appended to the end. For example, if a new plan was constructed

by editing a plan from the library called "plan9", the name of the new plan would be

"plan9x". During the operation of the Selector, the pane labelled "Status" and the

two unlabelled panes will be updated to show the progress of the Selector.

The "Plan Executor" option of the pop-up menu for the "Plans" pane will

execute the selected plan. Task execution, replanning, and resource usage are

graphically displayed while the plan executes.

The "Plan Evaluator" option of the pop-up menu for the "Plans" pane

invokes the Evaluator for the selected plan. The results of plan evaluation are

displayed in the pane labelled "Status". The "Plans" pane is updated to show the

action that the Evaluator performed on the library.

The subpanes labelled "Env Vars" and "Env Values" show the available

resources and the amount of those resources in the current environment. These two

panes operate in the same manner as the "Resource Name" and "Resource Values"

25

subpanes of the PlanBrowser and LibraryBrowser (sections 3.2 and 3.3).

Changing the available resources in the environment can be used as a method of

introducing plan failures. Reducing the amount of an environment resource may

cause a previously good plan to fail during execution, forcing replanning to occur.

The subpane labelled "Status" provides a transcript of the actions of the

CBPSBrowser. The plan selection, execution, and evaluation processes write to

this pane to show their progress. The "Status" pane should always display the

results of the last action that was taken. If the last action was to execute a plan, the

"Status" pane will show the plan name, number of tasks, number of task successes

and number of task failures.

3,2 The PlanBrowser

The PlanBrowser can be used to manipulate complete and "unordered"

plans. Normally, it is used to create or edit "unordered" plans from within the

CBPSBrowser object (section 3.1). Figure 9 shows a typical PlanBrowser as

invoked from a CBPSBrowser. A PlanBrowser can be created with the following

expression:

PlanBrowser new openOn: (Plan new name: 'plan1').

The PlanBrowser object has a similar appearance and functionality to that of

the LibraryBrowser (section 3.3) with the exception that:

1) the "Plans" subpane is missing and,
2) the edit fields labelled "Start Time:" and "Duration:" in

the "Task Values" subpane will accept a single "?" as
well as integer values.

A "?" in the start time or duration edit field indicates that the actual value for

the field is unknown at this time but may be derived during the plan verification

process (section 2.2.2) from task rules, plan rules and the simulation of plan

execution.

26

plan1
• b 1 a rt7

Plan Browser

.*•,,lenaMMWŒMe-m\s'r"tane , .'.. , , ,,<.k.ekesdeebe\W‘e, `<sne"
,,,megustue\sekuteiskene.

Case Based Planning Sgstem
PlansM Ta51es fnr "r1an2"

muter/we ask Ualues U‘'WtekUtteee maKe‘WW6\MI:Me ask Rules M 'UMW&

e.oad1 (load1) :-
member ([30, 40], start),
task (load1, start, 10).

‘...neeee'mwemeeen....3.
lan (E loadl, load2, load3, load4a., boat

not (overlaps (loadi, load2)),
task (load3, endl,),
task (loadi, 	-énd1).

loadi

Power

me:

art Time:

Duration:

MEnV Uità&SN v V zt tatu.i; »MUM Cs.f.tik

executed plan2: (0-701, 8 task(s)
8 success(s), 0 failure(s)

4#4engee

eeteamm•;. , ,,A;etzememume :r ,
eemenemea!,.,„:4...MWS,

Mee

:.MageMee: .e'eMeseMier esource Name lan Rules meelummegemcleee

Add Task
Remove Tas
toactqc
load4d
load5a
load5b

loadl

40

10

MUMM. tLIResource UalueMIMMU

27

Figure 9 - The PlanBrowser

3.3 The Library Browser

The plan library is implemented as an OrderedCollection [5] of plans. In

order to create a plan library, you must first create the OrderedCollection that will

contain the plans. Normally, this OrderedCollection is stored in a global variable.

This will make the plan library available for use by other CBPS objects at a later

time.

A plan library is created using the LibraryBrowser by executing the

following expression (and answering "yes" to the question "Declare MyLib as

global"):

MyLib := OrderedCollection new.

LibraryBrowser new openOn: 	MyLib

The expression "CBPS exampleLibrary" answers an OrderedCollection of

plans that can be used as an example library when first exploring the system. Any

changes that you make to this example library will not be saved. However, if you

execute the following expression instead of the one above, you will be provided

with a LibraryBrowser to examine this sample library:

LibraryBrowser new openOn: CBPS exampleLibrary

Figure 10 shows a typical LibraryBrowser. Each of the subpanes are

labelled at the top to indicate their function. The following section will describe the

functionality of each of the subpanes of the LibraryBrowser.

The subpane labelled "Plans" shows a complete list of every plan presently

in the library. Like all ListPanes [5] in the CBPS, this pane is scrollable. Selecting

a plan from the list, indicates that you wish to view or edit this plan. Selecting a

plan will cause the pane labelled "Tasks" to display the tasks for the selected plan.

The pane labelled "Plan Rules" displays the plan rules associated with the selected

plan.

28

1

1

1

Figure 10 - The LibraryBrowser

1

1
1

Class Hierarchy Browser

Librarg Browser
W_WEEPne ke askMa,eA as]< ValuesMe' ,eks ,\,t, 	as]< Rules's.uu*eletRea

plan 	load2 	2oad4b (load4b) :-
plan2 	load3 	

Name 	load4b 	
task (load4b, 20, 1). :

plan3 	load4a

plan4 	load4b 	Start Ti t e: 	20

p1an5 	load4c 	Duration: 	1
plan6 	load4d

plan? 	load5a
plan0 	load5b

plan9
Ufflesource Namereffletà‹eksvlan Rules kk

Power 	pani (Eload2, 	load3, 	load4a3 	load4
Add Plan 	 distinct (loadl, 	load2) 1
Remove Hal 	 task (load3, end1 1),

task (load1,_, _, ènd1).
%nkvesource Ualuegag

P

A'»neefflxueeweeu:'oeeeukw.,em,twKN\de,
MeMee,M:

.....,,... ...--- ..—
1

11n11

1

1
1

1
1
1

1
1

1

urce

1.1'P

Mtele\"'."M'esneZe.'' eeM , zpe

1
29

The pop-up menu in the "Plans" pane allows you to add new plans or delete

the cturently selected plan from the library. The other panes in the browser refresh

automatically when aplanis added or deleted.

Selecting a task from the pane labelled "Tasks" will cause the panes labelled

"Task Values", "Resource Names", "Resource Values", and "Task Rules" to be

updated with the values corresponding to the selected task. The pop-up menu for

the "Tasks" pane allows you to add new tasks or delete the currently selected task

from the current plan. The other panes in the browser refresh automatically when a

task is added or deleted.

The pane labelled "Task Values" provides edit fields to enter and modify

task name, start time, and duration for the currently selected task. Selecting a field

with the mouse will allow you to edit the value in that field. Typing <Return> will

accept the new value. The fields labelled "Start Time:" and "Duration:" expect

integer values. All values that you enter are verified against the task rules displayed

in the pane labelled "Task Rules". If a value is not accepted from an edit field, the

value that was entered has violated these rules.

The pane labelled "Resource Name" lists the resources that are required by

the task. Selecting a resource from this pane will display the value of the resource

in the pane labelled "Resource Values". The pop-up menu for this pane allows you

to add a new resource or remove the currently selected resource. The affected

panes will refresh accordingly.

After selecting a resource name from the "Resource Names" pane, editing

the value found in the "Resource Values" pane and selecting "save" from the

pop-up menu in this pane will cause the selected resource to get the new value. If

you do not "save" the value in this pane, the new value for the selected resource

will not be accepted.

30

Task rules are edited in the "Task Rules" pane. After editing the rule and

selecting "save" from the pop-up menu in the pane, the system will attempt to

accept the rule. You will be informed of any PROLOG syntax errors in the rule that

may exist and will be asked to correct them.

Plan rules are edited in the "Plan Rules" pane. After editing the rule and

selecting "save" from the pop-up menu in the pane, the system will attempt to

accept the rule. You will be informed of any PROLOG syntax errors in the rule that

may exist and will be asked to correct them. The head of the plan rule that you

enter is automatically updated to accept a list of every task in the plan.

31

Section 4 - Summary

Version 2 of the Case Based Planning System as described in this document

provides the framework for developing domain dependent applications that use case

based reasoning in a domain independent manner. The domain of power

management on an orbiting spacecraft has provided an initial test environment for

the CBPS. Knowledge from this domain has been encoded in an example plan

library and was used to pose simple planning problems.

The critical concept of a planning environment allows the representation of

domain dependent knowledge within the CBPS as rules and parameter values. Plan

and task rules allow the relationships within tasks and plans to be easily expressed.

The dynamic nature of the CBPS allows the user to examine and modify these rules

on the fly in order to create different planning scenarios.

A CBPS has been implemented that is robust, extensible and independent of

any particular user interface. The PlanBrowser, LibraryBrowser, and

CBPSBrowser objects, supplied with the CBPS, provide one possible user

interface. These objects make use of the Smalltalk windowing interface to provide

easy access to the CBPS and present information graphically.

32

References

[1] Oppacher F., Deugo D., Thomas D., School of Computer Science,
Carleton University, "Planning Techniques Survey: Their Applicability to the
Mobile Servicing System", Department of Communications, Ottawa, Canada,
DOC-CR-SP-88-005, 1988.

[2] Oppacher F., Deugo D., School of Computer Science, Carleton
University, "A Proposed Approach For Scheduling Applications (With Respect to
the Mobile Servicing System)", Department of Communications, Ottawa, Canada,
DOC-CR-SP-88-006, 1988.

[31 	Oppacher F., Deugo D., School of Computer Science, Carleton
University, "A Dynamic Case Based Planning System for Space Station
Applications: Software and Operation Description", DOC-CR-SP-88-007,
Department of Communications, Ottawa, Canada, 1988.

[4] Adamovits P., Communications Research Centre, "Generic Spacecraft
Power Subsystem Domain Description", Technical Memo, DOC-DSM-86-36,
Department of Communications, Ottawa, Canada, January 21, 1987.

[5] Digitalk Inc., "SmalltalkIV Tutorial and Programming Handbook", 9841
Airport Boulevard, Los Angeles, California 90045, 1986 (Smalltalk/V version 1.2,
release disks, and update notices).

[6] Clocksin W.F, Mellish C.S., Univeristy of Oxford, University of
Edinburgh,"Programming in PROLOG", Springer - Verlag, Berlin, 1981.

33

Glossary of Terms

action - An action is the domain specific activity of a task (see task). For

example, a task may represent the action of moving a robot arm to capture a

satellite.

constraint - A constraint is a boolean valued expression that specifies a

relationship between properties found in tasks, plans, or the environment. At any

particular time, a con,straint may be satisfied or violated with respect to a task, plan

or the environment.

environment - The environment represents the application domain in

which the planner operates. It may be modified by the execution of a plan or task

(see plan execution and task execution) or by some external force. For example, a

task may modify the environment to indicate that it has completed; or an eclipse

may occur, and modify the environment to inform the planner that it is operating in

darkness.

plan - A plan is an ordered sequence of tasks. It is provided to a planner to

be executed (see plan execution) in an environment. A plan may have properties or

constraints associated with it that assist the planner when ordering tasks. The

plan's properties and constraints often relate the plan to the current state of the

environment.

plan execution - A plan executes by executing the tasks in the plan in

the order defined in the plan. The execution of a plan may modify the properties of

the plan or the state of the environment. The execution of a plan will always result

in plan success or plan failure.

plan failure - A plan failure means that the execution of the plan did not

Glossary - 2

proceed as expected. This may occur when a task failed within the plan and could

not be corrected by replanning or a constraint was violated.

plan rule - A plan rule is a special type of constraint that is associated with

a plan and specifies relationships between the tasks within the plan. Plan rules can

be used to order tasks within a plan.

plan success - A plan success means that the execution of the plan

proceeded as expected.

planner - A planner is the entity that is responsible for producing a plan in

some manner based on certain requirements. These requirements are provided in

the form of constraints and properties that operate within tasks, plans and the

environment.

planning - The activity performed by a planner.

property - A property is a named data value associated with a task , a plan,

or the environment. For example, a task may have the property that it expects to

begin execution at 12:00 (see task execution). A plan may have the property that it

includes a task named "fred54" that has failed ten times. The environment may

have the property that a machine is broken.

replanning - Replanning is the activity performed by a planner when a

task fails (see task failure or plan failure). This may involve planning.

resource - A resource is a special type of properly (see property) of a task

or an environment. When associated with a task, the named data value is acquired

and released from the environment when the task begins and ends execution. If the

resource is unavailable, the task is not able to start. When associated with an

environment, the named data value is made available for tasks that require resources

of the same name to start.

Glossary - 3

task - A task is a unit of activity within a plan. A task represents a domain

specific action that cannot be further decomposed. A task may have properties or

constraints associated with it that assist the planner to position it among other tasks

in a plan. The execution of a task (see task execution) may alter the properties of

the task or the environment. A task may require resources in the environment in

order to execute. These resources may be properties of the environment that are

subject to some constraints imposed by the task.

task execution - The activity associated with the task is performed. This

can be anything from a machine turning on to an astronaut positioning a robot arm.

The execution of a task may modify the properties of a task or the state of the

environment. The execution of a task will always result in a task success or a task

failure.

task failure - A task failure means that the activity associated with the

task, when executed, was not performed satisfactorily. This implies that the action

associated with the task was not completed, did not start, or did not finish at the

expected time. A task failure causes the planner to perform a replanning action.

task rule - A task rule is a special type of constraint that is associated with

a task and is used to specify relationships within the task. Task Rules are used to

both verify and generate the task properties known as start time and duration.

task success - A task success means that the activity associated with the

task, when executed, was performed satisfactorily. This implies that the time for

the task to perform and complete the associated action was as expected in the plan.

Appendix A: PROLOG Predicates for

Task and Plan Rules

Introduction

The following list of predicates have been added to the PROLOG

environment for use in task and plan rules. This section will first describe the

predicates intended for task rules. These predicates may also be used in the

definition of plan rules.

Task Rudes

between (start, end, number) :-

1) When start, end and number are bound to integers, the between

relation succeeds if. (start <= number <= end) and fails

otherwise.

2) When start and end are bound to integers and number is

unbound, the between relation binds number to start and

succeeds. On back tracldng, number is bound to (number + 1).

• When (number> end), the between relation fails.

member (list, element) :-

1) When /ist is bound to a list and element is bound to any object,

the member relation succeeds if element is equal to any element

in the list.

2) When /ist is bound to a list and element is unbound, the between

relation binds element to the first member in the list and

succeeds. On back tracking, element is bound to subsequent

Appendix A - 2

elements in the list. When the list becomes empty, member will

fail.

multiply (a, b, c) :-

1) When a, b and c are bound to numbers, the multiply relation

succeeds when (a* b = c) is true.

2) When any one of a, b, c is unbound, the multiply relation binds

this value to a number such that (a* b = c) is true.

sum (a, b, c) :-

1) When a, b and c are bound to numbers, the sum relation

succeeds when (a + b = c) is true.

2) When any one of a, b, c is unbound, the sum relation binds

this value to a number such that (a + b = c) is true.

task (task, start, duration) :-

1) When task is unbound, the task/3 relation succeeds.

2) When task is bound to a list of the form [name, duration, start],

start and duration are unified with the members of the list. The

task/3 relation is therefore capable of getting, setting and

testing the values of start and duration.

task (task, start, duration, end) :-

1) The task/4 relation behaves the same way as task/3 but uses the

sum relation to enforce the constraint (start + duration= end).

The task/4 relation is normally used instead of task/3 when the

end time of a task is required.

Appendix A - 3

Plan Rules

distinct (taskl, task2) :-

1) When either taskl or task2 is unbound, distinct succeeds.

2) When both taskl and task2 are bound, the distinct relation

succeeds when the time periods that taskl and task2 execute

within do not overlap.

follows (taskl, task2)

1) When either taskl or task2 is unbound, follows succeeds.

2) When both taskl and task2 are bound, the follows relation

succeeds when taskl begins after task2 has ended.

overlaps (taskl, task2) : -

1) When either taskl or task2 is unbound, overlaps succeeds.

2) When both taskl and task2 are bound, the overlaps relation

succeeds when the time periods that taskl and task2 execute

within overlap.

precedes (taskl, task2) : -

1) When either taskl or task2 is unbound, precedes succeeds.

2) When both taskl and task2 are bound, the precedes relation

succeeds when taskl ends before task2 starts.

1

Appendix B: Sample Demonstration

Introduction

This document is intended to provide a quick walk through of the CBPS in

order to demonstrate some of the features. The user is expected to be familiar with

the Smalltalk/V environment, the PROLOG language, Case Based Planning, and

this document, the "Users Guide to Version 2 of the Case Based Planning System".

Demonstration

In any text pane, execute the follow-ing:

CBPSBrowser example

This expression will create a CBPSBrowser with a default plan library of

plans named "planl" to "plan9", a default environment with 50 units of #Power

available and a default "unordered" plan containing 5 tasks named "loadl", "load2",

"load3", "load4a" and "load4b". These tasks are contained in some of the plans in

the default library.

1.0 Plan Specification

Select "View/Edit Plan" from the pop-up menu in the "Plans" pane. A

PlanBrowser will be created to edit the "unordered" plan (see section 2.2.1). You

will see the five tasks in the pane labelled "Tasks". Select the task "loadl" and

enter a "?" in the start time field if one is not there already. When you enter the "r,
you are specifying that the start time of "loadl" is not known at this time but can be

Appendix B - 2

derived by the CBPS when required. Do the same thing for the tasks "load2" and

"load3". Next, edit the plan rules in the "Plan Rules" pane for the "unordered

plan". Enter for the body of the plan rule (if not already there) the clauses:

precedes (loadl, load2),

distinct (load2, load3).

Select the "save" option from the pop-up menu in the "Plan Rules" pane.

NOTE: Be careful when entering plan rules. There is no

check to ensure that the predicates that you intend to call are

defined. This type of error is uncovered only when the predicate is

invoked.

After performing the above modifications to the "unordered" plan, the

CBPS will be required to find a plan that:

1) contains the tasks "loadl", "load2", "load3", "load4a" and "load4b",

2) such that "loadl", "load2" and "load3" can start at any time that is valid

with respect to the task rules for the task and

3) within the plan, "loadl" must end before "load2" starts and

4) "load2" and "load3" cannot overlap.

You should close the PlanBrowser and select the CBPSBrowser before

preceding.

2.0 Plan Selection

Bring up the pop-up menu for the "Plans" pane and select the option titled

"Plan Selection". This will invoke the Plan Selection module (section 2.2.2) of the

CBPS. Observe the "Status" and unlabelled panes.

Appendix B - 3

First, the Selector will attempt to locate the plan from the library that best

matches your requirements. It should locate "plan6" as the best match and tell you

so in the "Status" pane. Next, the Selector will construct a new plan called

"plan6x" by deleting any extra tasks found in "plan6". Filially, the unlabelled pane

that displays tasks will show intermediate plans, as the plan is verified.

3.0 Plan Execution

Bring up the pop-up menu for the "Plans" pane and select the option titled

"Plan Execution". This will invoke the Plan Execution module (section 2.2.3) of

the CBPS. Observe the "Status" and unlabelled panes.

As tasks are execute, they will change colour in the unlabelled task pane. A

black task is finished executing. A grey task is currently executing. A white task

has yet to execute. Any replanning actions would be shown as they occur in this

pane. The execution of "plan6x" should not cause replanning.

3.0 Plan Evaluation

Bring up the pop-up menu for the "Plans" pane and select the option titled

"Plan Evaluation". This will invoke the Plan Evaluation module (section 2.2.3) of

the CBPS. Observe the "Status" pane.

The plan "plan6x" should be added to the library. If "plan6x" was to be

executed again and then evaluated, it would be updated in the library to reflect both

executions. If "plan6x" was considered to be a bad plan, it might have been

removed or forgotten from the plan library.

gi in

To get a quick demonstration of plan failure and replanning, select "plan2"

Appendix B - 4

from the "Plans" pane. This will make "plan2" the current "unordered" plan.

Next, select the item called "Power" from the pane labelled "Env Vars". The pane

labelled "Env Values" should display the number 50. Change this number to 45

and select "save" from the pop-up menu for the pane. When you save this value,

the unlabelled pane that plots power usage over time should be redisplayed.

NOTE: Do not forget to select "save" from the pop-up menu in

the "Env Values" pane after editing the resource. If you do not

", save" the new value, the selected resource will not be altered.

Finally, execute "plan2". You will see "load4b" fail and be rescheduled at a

later time in the execution of the plan. This is the default action for any task that

fails to start.

5.0 Miscellaneous

You could now try evaluating "plan2". Because the replanning caused task

"load4c" to be rescheduled at a tirne that is not valid for the task, the plan evaluation

process should indicate this in the "Status" pane and abort the evaluation.

Please feel free to experiment by adding, removing and editing tasks in the

"unordered" plan, changing plan and task rules, and defining new plan libraries.

Appendix C: The CBPS Planning Classes

- Introduction

This sections briefly describes each of the objects that implement planning
in version 2 of the CBPS. The CBPS user interface objects are not described here.
Unfortunately, there was no time to produce a complete programmers reference
manual. It is hoped that this guide, along with the rich Smalltalk programming
environment, will provide some assistance for future programmers.

2 - PROLOG Classes

Five PROLOG classes are implemented within the CBPS: CommonRules,
EvaluatorRules, Replanner, SelectorRules and TaskRules. The PROLOG class
EvaluatorRules is used to implement the domain specific knowledge required when
evaluating plans. The PROLOG class Replanner is used to implement replanning
rules for the CBPS. The PROLOG class SelectorRules is used to implement the
domain specific portion of the Selector. The PROLOG class TaskRules implements
task and plan rules and contains the PROLOG and Smalltalk code used to generate
and verify plans. The PROLOG class CommonRules is the super class of the other
four. It contains the PROLOG predicates described in Appendix A of this
document. These predicates may be accessed by any of the five subclasses.

2.1 CommonRules

CommonRules implements PROLOG predicates that are intended for use by
the classes Replanner and TaskRules. A complete description of these predicates
can be found in Appendix A of this document.

Class Name: 	 CommonRules
SuperClass: 	 Prolog
SubClasses: 	 (Replamer TaskRules)
Instance Variables:
Class Variables:
Pool Dictionaries:

Class Methods:
None.

Appendix C - 2

Instance Methods:
between (start, end, number) :-

A general purpose integer generator/tester.
distinct (taskl, task2) :-

Succe,ed if the tasks are distinct (do not overlap) or if there is no
taskl or task2.

follows (taskl, task2) :-
Succeed if taskl starts after task2 ends.

member (list, element) :-
A general purpose set membership generator/tester.

multiply (a, b, c) :-
A general purpose multiply relation.

overlaps (taskl,task2) :-
Succeed if the tasks overlap or if there is no taskl or task2.

precedes (taskl, task2) :-
Succeed if taskl ends before task2 starts or if there is no taskl or
task2.

sum (a, b, c) :-
A general purpose sum relation.

task (task, start, duration) :-
Get/Set task values.

task (task, start, duration, end) :-
Get/Set task values.

Example:
The following code fragment will computes all integers between 1 and 5

that are also members of the list [2, 4, 6, 8] and answer an Array of answers.
Each member of the Array is an Army containing one answer, the current value of
the PROLOG variable "x". This expression will return ((2) (4)).

CommonRules new : ?

between (1, 5, ac),
member ([2, 4, 6, 8], z).

2 .2 EvaluatorRules

• "generàte"
"test" .

EvaluatorRules implements PROLOG predicates that are intended to contain
the domain specific knowledge needed to evaluate plans. The predicate "evaluate"
is called by the Evaluator when it is asked to evaluate a plan.

Class Name:
SuperClass:
SubClasses:
Instance Variables:
Class Variables:

EvaluatorRules
CommonRules
o
o
o

Appendix C - 3

Pool Dictionaries:

Class Methods:
None.

Instance Methods:
criteria (plan, successes, failures) :-

This predicate succeeds if the plan can provide values for the number of
task successes and failures. These values are unified with the PROLOG
variables "successes" and "failures".

evaluate (plan, library, evaluator) :-
This predicate evaluates the plan with respect to a plan library. The
evaluation action (ie. add plan to library) is a method for the evaluator
that is invoked by this predicate.

newPlan (plan, library) :-
This predicate succeeds if the plan is not found in the library.

Example:
None.

2 .3 Replanner

Replanner implements PROLOG predicates that are intended for use when a
task fails during plan execution. By convention, the 3-tuple predicate failure() is
called with the failure information. The first member of the tuple is a Symbol that is
the name of the resource that failed. The second is the instance of the Task object
that failed to start. The last parameter is the instance of the Executor that was
attempting to execute the task that failed.

Class Nanae: 	Replanner
S uperClass: 	CommonRules
S ubClasses:
Instance Variables: ()
Class Variables: 	()
Pool Dictionaries: ()

Class Methods:
None.

Instance Methods:
failure (resource, task, executor) :-

This code gets executed when a task fails to acquire a resource.

Example:
None.

Appendix C - 4

2 . 4 SelectorRules

SelectorRules implement PROLOG predicates that are intended to contain
the domain specific lcnowledge needed to locate and construct plans. The predicate
"better" is called by the Selector when it is asked to compare two plans. The
predicates "canBeAdded", "canBeRemoved" and "canOccur" are called by the
Selector when asked to construct a plan.

Class Name: 	SelectorRules
SuperClass: 	CommonRules
SubClasses:
Instance Variables: 0
Class Variables:
Pool Dictionaries:

Class Methods:
None.

Instance Methods:
better (planl, plan2, environment) :-

This predicate succeeds if the planl is better than plan2 with respect to
some criteria contained in the environment. The environment contains
the "unordered" plan that is matched against both plans.

canBeAdded (task, environment) :-
This predicate succeeds if the task can be added by the Selector.

canBeRemoved (task, environment) :-
This predicate succeeds if the task can be removed by the Selector.

canOccur (task, environment) :-
This predicate succeeds if the task can be occur in the environment.

criteria (plan, environment, extra, missing, failures) :-
This unifies the values of extra, missing, and failures with the extra
tasks and missing tasks with respect to the "unordered" plan and the
total task failures of the plan.

Example:
None.

2.5 TaskRules

TaskRules implements PROLOG predicates and Smalltalk code that verifies
a plan using the task and plan rules for the plan. An Executor is used to simulate

Appendix C - 5

a plan using the task and plan rules for the plan. An Executor is used to simulate
the execution of the plan in a copy of the environment. This class is composed of
both Smalltalk methods and PROLOG predicates.

The main entry point is the predicate verify(). This predicate is called with
the PROLOG representation of a Plan. This is a list of lists. Each sub-list is a List
that represents a Task in the Plan. The predicate schedule() is used by verify() to
generate/test the values for start time and duration for each sub-list using the task
rules for each task. Next, the list of lists is turned back into a Smalltalk Plan and
the execution of the plan is simulated in a copy of the environment. The SmalltaLk
method #executePlan does the simulated execution. This method answers true or
false and exits at the first task failure. Finally, the plan rules are executed.

At any time, verify() or any of the predicates it calls may fail and back track.
This will attempt to find a new schedule for the tasks within the current plan.

Class Name: 	TaskRules
SuperClass: 	CommonRules
SubClasses:
Instance Variables : (plan executor environment)
Class Variables: 	()
Pool Dictionaries: ()

Class Methods:
None.

Instance Methods:
default (task) :-

This is the default task rule that all tasks will execute if no rule for
the task is specified.

environment: anEnvironment
Set the environment of verification.

execute (task) :-
Execute one task triple. If there is no rule for the task, use the
default rule. Because cut() does not work quite right in
PROLOG/V, the #respondsTo: code is repeated in both predicates.

executePlan
Execute the plan in a copy of the .environment. At the fi rst failure of
any kind, answer false and abort the plan execution. The original
event queue for the simulation is saved in order to preserve any
events that are originally scheduled. These events could update the
screen to show the progress of the verification.

executor: anExecutor
Set the plan executor.

schedule (list) :-
Execute each of the task triples in the list as a PROLOG predicate.
Succeed if every predicate succeeds.

Appendix C - 6

setPlan: aPlan
Set the plan to be verified.

verify (list) :-
Verify that the tasks in the list can execute properly. First create a
schedule of tasks, place them in the current plan, then execute the
plan. Exit with success with the first valid plan stored in the list.

Example:
The following code fragment will check to see that the task triples (the

PROLOG representation of a Smalltalk task) do not overlap. This expression will
fail and therefore answer nil (taskl and task2 overlap from time 7 to time 10).

TaskRules new :?

distinct (ataskl, 5, 10], [#task2, 7, 15]).

3 - Smalltalk Classe

The following 9 nine classes implement the Smalltalk portion of the CBPS:
CBPS, Environment, Evaluator, Executor, NoteTaker, Plan, Selector, Simulation
and Task.

3.1 CBPS

The CBPS is the main object that implements case based reasoning. In
order to plan, it requires only a plan library and environment. Using instances of
the Selector, Executor and the Evaluator, the CBPS object can choose and edit a
plan from the library, execute the plan and evaluate the results of the execution.
Instances of the above objects are created automatically when a CBPS is created.

Class Name: 	CBPS
SuperClass: 	Object
SubClasses:
Instance Variables: (plan library environment selector executor planner evaluator)
Class Variables: 	()
Pool Dictionaries: ()

Class Methods:
example

This method executes a canned CBPS example.
exampleCBPS

This method answers an example CBPS object.
exampleLibrary

This method answers a library of plans. Uncomment the rule code
the first time this code is run.

new
Answer a new instance of the receiver and initialize it.

Appendix C - 7

Instance Methods:
doPlanning

Perform the activities that make up Case Based Reasoning.
Select a plan from the plan library, execute it (perhaps failing
at some tasks), and evaluate the results.

environment
Answer the current CBPS environment.

environment: anEnvironment
Set the current CBPS environment.

evaluatePlan
Evaluate the current plan using an Evaluator.

evaluator
Answer the plan Evaluator ready to evaluate the current plan with
respect to the cunent environment and plan library.

executePlan
Execute the current plan using an Executor. 	•

executor
Answer a plan Executor ready to execute the current plan in the
current environment

initialize
Initialize the instance variables. Create a default empty plan, a
default environment, a default empty library and the Selector,
Executor, and Evaluator objects that will perform the basic CBPS
functions.

library
Answer the current plan library.

library: aPlanLibrary
Set the plan libraiy.

plan
Answer the current plan for the CBPS.

plan: aPlan
Set the current plan for the CBPS.

selector
Answer the plan Selector ready to select a plan based on the current
environment and plan library.

selectPlan
Select a plan using a Selector.

Example:
The following code fragment will do one complete iteration of case based

reasoning. The initial plan library is created by the expression "CBPS
exampleLibrary". This expression answers an OrderedCollection of plans. The
required tasks are set to the tasks at location 1, 3, 4 and 5 from the collection of
tasks of the first plan in the library. A planning environment is created and 50
units of #Power are made available. The CBPS is instructed to plan using these
initial conditions. The last stateMent invokes an inspector on the CBPS object so

"create new env"

50. "50 units available"

"set required tasks"

› "do the planning" 	•

"inspect the results" -

Appendix C- 8

that the CBPS object may be exatnined to see what happened. A new plan should
be created, executed without failure and added to the plan library.

I planner env lib required 1

planner := CBPS new.

lib := CBPS exampleLibrary.

required := #(1 3 4 5) collect:

(:i 1 lib first tasks at: i].

env := Environment new.

env resources at: #Power put:

env requiredTasks: required.

planner

library: lib;

environment: env;

doPlanning;

inspect

3.2 Environment

The class Environment implements the planning environment for the CBPS
objects. The environment is used when executing tasks or simulating the execution
of tasks to acquire and release resources. It can be used as a "black board" for
tasks to communicate or for planning rules to access to deterrnine the current state
of the planner. It is used to hold the "unordered" plan.

When a task fails, it is the failBlock within the Environment that is
executed. The failBlock is a Block with no arguments. Normally, this block is set
to a block•that will invoke a Replanner. However, the verification process within
TaskRules sets this block to be a block that jumps out of the Environment and
answers false. This mechanism is used to abort the simulated execution of the plan
after the first task failure (see #executePlan for TaskRules).

The important method #isBetterPlanahanPlan: is used to compare plans
when searching the plan library. This method allows for domain knowledge to
enter into the plan selection process by invoking the "better" predicate for the
PROLOG class SelectorRules.

"create planner"

"get example lib"

"get tasks 1,3,4,5"

Class Name:
SuperClass:
SubClasses:
Instance Variables:
Class Variables:
Pool Dictionaries:

Environment
Object
0
(unorderedPlan resources failBlock)
0
0

Class Methods:

Appendix C - 9

new
Answer a new instance of the receiver and initialize it.

Instance Methods:
acquireAmount: aValue ofResource: aName

Use up some of the available resource named by aName if possible.
Answer true if the resource was acquired, else false. Execute the fail
block if no resources were available.

Answer a copy of the receiver. Be sure to create a deep copy of the
resources of the receiver. Otherwise, copies of the receiver can
destructively modify these resources.

failBlock: aB lock
Set the failBlock of the receiver. The failBlock is executed every
time a resource cannot be acquired from the receiver.

initialize
Initialize the instance variables. Create a default (empty)
unorderedPlan, a failBlock that does nothing and an empty
dictionary to hold resources.

isBetterPlan: planl thanPlan: plan2
Answer true if planl is the better of the two plans with respect to
plan2 and the receiver. This method creates an instance of a
SelectorRules object to evaluate the PROLOG predicate "better".
Answer true if the predicate succeeds.

releaseAmount: aValue ofResource: aName
Release some of the available resource named by aName back to the

receiver.
requiredTasks

Answer a collection of the tasks that are required to execute in the
receiver. These are the tasks of the unorderedPlan.

requiredTasks: tasks
Set the collection of the tasks that must execute in the receiver.
These are the tasks of the unorderedPlan. Any previous task are
removed and copies of new tasks are added to the unorderedPlan.

resources
Answer the dictionary of available resources.

resources: aDict
Set the dictionary of available resources.

unorderedPlan
Answer the unordered plan. This plan represents the current
requirements of the operator.

Example:
The following code fragment will create a new environment and make 50

units of power available for consumption, make 'task54' a requirement and set the
failBlock to issue a message to the user:

CO py

"starts at 10"

"last 20 units"

51.

task54).

w; "empty library"

"do planning"

"inspect results"

Appendix C- 10

I env task54 I
"create new env"

50. "50 units available"

"prompt on failure"

put:

env requiredTasks: (Array with:

CBPS new

library: OrderedCollection ne

environment: env;

doPlanning;

inspect

3.3 Evaluator

The Evaluator object implements the plan evaluation module of the CBPS.
It requires the plan to be evaluated, the plan library and the environment of
execution.

The actual evaluation is performed in the method #evaluatePlan. This
method first verifies that task and plan rules for the plan have not been violated.
Domain knowledge is accessed in #evaluatePlan by invoking the "evaluate"
predicate in the PROLOG class EvaluatorRules.

env

env

env

'task

task54 := Task

task54

startTime: 10;

duration: 20.

task54 resources at: #Power

:= Environment new.

resources at: #Power

failBlock: [: resource

Menu message:
failed to acquire # 1 , resource].

new name: 'task54'. "create task"

put:

Class Name:
SuperClass:
SubClasses:
Instance Variables:
Class Variables:
Pool Dictionaiies:

Class Methods:
None.

Evaluator
Object
o
(plan library environment)
o
o

Instance Methods:
addPlan

Add a new plan in the library.
environment: anEnvironment

Set the environment of evaluation.
evaluatePlan

This method evaluates the plan and takes an action with respect to

Appendix C- 11

the plan library. The PROLOG predicate "evaluate" is invoked in
the class EvaluatorRules to perform the actual evaluation.

forgetPlan
Do nothing. Do not add, remove, or update the original plan in the
plan library.

hasViolations
Answer true if the plan has any kind of plan or task rule violations.

library: aPlanLibrary
Set the plan library.

plan: aPlan
Set the plan to be evaluated.

planViolation
Answer true if the plan rules for the current plan have been
violated.

removePlan
Remove the plan from the plan library.

task Violations
Answer a collection of the tasks that have task rule violations.

updatePlan
Add a the updated plan to the library. First remove the original plan
(if any) from the plan library and then add the current plan. The
plan that the Evaluator massages is always a new instance of a plan,
even if it is equal to a plan already in the library.

Example:
The following code fragment will evaluate a plan:

Evaluator new

plan: aPlan;

environment: environment;

library: aPlanLibrary;

evaluatePlan,

"create new instance"

"set the plan"

"set the environment"

"set the plan library"

"do the evaluation"

3.4 Executor

The Executor is responsible for executing every task in a plan. It requires
the plan to be executed and the environment of execution. The executor uses an
instance of a Simulation to schedule the start and end times of the tasks. When a
failure occurs, the Replanner can get invoked depending on the failBlock in the
Environment.

The main entry point to the Executor is the method #executePlan. The

Appendix C - 12

methods #replanOnFailure and #doNothingOnFailure set the environmental
failBlock to invoke the Replanner or do nothing respectively.

The methods #beginTask: and #endTask: are scheduled to occur in the
simulation at the start and end time of each task in the plan.

The inethods #dropPlan, #dropTask: and #scheduleTask:atTime: are
intended to be called from the replanner.

Class Name: 	Executor
SuperClass: 	Object
SubClasses:
Instance Variables:

(plan environment simulation currentTask executingTasks executedTasks)
Class Variables: 	0
Pool Dictionaries: ()

Class Methods:
new

Answer a new instance of the receiver and initi.alize it.

Instance Methods:
beginTask: aTask

Start aTask in the receiver. This method is executed by the
simulation when aTask starts. Set the current task to be aTask and
ask it to start. If aTask cannot start, do a task failure action. If the
task starts, update the executing tasks collection and schedule the
task end in the simulation.

currentTask
Answer the task that is about to start in the receiver.

doNothingOnFailure
Do nothing if a failure happens in the environment. This method
sets the environment failBlock to a block that does nothing.

dropPlan
Forget the executing the rest of the plan. Release any resources that
may be acquired by the tasks that are currently executing and
reinitialize the receiver.

dropTask: aTask
Drop aTask from the receiver. A task is assumed to be the current
task. The task is removed from the collection of tasks executing and
tasks executed (if present) and then removed from the plan.
Because the task was unable to start, it also did not schedule and end
event for itself in the simulation.

endTask: aTask
End aTask in the receiver. This method is executed by the
simulation when aTask ends. Remove aTask from the collection of
tasks that are currently executing and add it to the collection of tasks

Appendix C- 13

that have been executed. Note that the task has succeeded.
environment

Answer the environment of execution.
environment: anEnvironment

Set the environment of execution.
executePlan

Execute the plan in the receiver. Schedule the start event for each of
the tasks in the plan. Run the simulation for the start and end time
of the plan.

failTask: aTask 	 -
Indicate that aTask has failed. Ask the plan history to record the
failure.

initialize
Initialize the receiver. Create a simulation to simulate the execution
tasks. Initialize the collections of tasks that are executing and tasks
that have been executed to be empty. Set the sortBlock of the
simulation to be a block that ensures that when a #startTask: and
#endTask: occur at the same time, the #endTask: is processed first
This is done to ensure that resources are released before they are
acquired if events happen at the same tin-ie.

Answer the current plan.
plan: aPlan

Set the plan for the receiver to execute.
reinitialize

Reinitialize the receiver. Ask the simulation to be reinitialized (clear
event queues, current time, etc.) and set the collections of tasks
executing and executed to be empty. This method should be called
before executing another plan.

replanOnFailure
Set the receiver to invoke the Replamer when a failure occurs. This
method sets the failBlock of the environment to invoke the
Replanner.

scheduleTask: aTask atTime: aTime
Schedule aTask to occur in the simulation at aTime. Set the start
time of aTask to be aTime. Update the start and end tirnes of the
current plan.

simulation
Answer the simulation used by the receiver to simulate the execution
of tasks.

succeedTask: aTask
Indicate that aTask has succeeded. Tell the plan history to record
the success.

tasksExecuted
Answer, a collection of the tasks that have been executed.

tasksExecuting
Answer a collection of the tasks that are currently executing.

plan plan

Appendix C- 14

tasksToExecute
Answer a collection of the tasks that have yet to be executed. This
collection is computed from the plan and the other two task
collections.

time
Answer the current time. This is the current time in the simulation.

Example:
The following code fragment will execute a plan. When a task fails, the

Replamer will be invoked.

Executor new 	 "create new instance"

plan: aPlan; 	"set the plan"

environment: environment; "set the environment"

replanOnFailure; "when tasks fails, invoke replanner"

executePlan. 	"execute the plan"

3.5 NoteTaker

The NoteTaker is responsible for recording task failures and successes for a
plan. It uses the instance variables "successes" and "failures" as counters to record
the number of task successes and failures for the plan. A NoteTaker object can be
found in the instance variable called "history" for every plan.

Class Name: 	NoteTaker
SuperClass: 	Object
SubClasses: 	nil
Instance Variables: (plan successes failures)
Class Variables:
Pool Dictionaries: ()

Class Methods:
new

Answer a new instance of the receiver and initialize it.

Instance Methods:
failTask: aTask in: anEnvironment

Record the fact that aTask has failed in anEnvironment This method
increments the failure counter.

failures
Answer the number of failures.

initialize
Initialize the instance variables. Set failures and successes to zero.

plan: aPlan

Appendix C - 15

Set the current plan for the receiver.
printOn: aStream

Append the ASCII representation of the receiver on aS tream. Show
the number of successes and failures.

succeedTask: aTask in: anEnvironment
Record the fact that aTask has succeeded in anEnvironment. This
method increments the success counter.

successes
Answer the number of successes.

Example:
The following code fragment will record that a success in a new instance of

a NoteTaker, for the first task in "planl", in an environment called "env":

1 history plan env 1

env := Environment new. 	"create env"

plan := CBPS exampleLibrary first. 	"get first plan"

history := NoteTaker new plan: planl."create plan"

planl history: history. 	"set the history"

history

succeedTask: (planl tasks first)"first task succeeds"

in: env.

history

3.6 Plan

The Plan class implements objects that represent plans in the CBPS. All
plans have a name, some tasks, a start time, an end time and a history. Associated
with the plan name are a set to plan rules implemented in the PROLOG class
TaskRules.

The plan comparison method #= is used when the plan library is searched to
see if the plan is present in the library.

Tasks are added and removed from a Plan using the methods #addTask and
#removeTask. Both these methods call #calculateTimes to keep the start time and
end time of the plan up to date.

The methods #asList and #fromList: convert a plan to and from the
PROLOG representation of a plan.

Class Name: 	 Plan
SuperClass: 	 Object
SubClasses:
Instance Variables: 	(name tasks startTime endTime history)
Class Variables:

Appendix C - 16

Pool Dictionaries:

Class Methods:
new

Answer a new instance of the receiver and initialize it.

Instance Methods:
= aPlan

Answer true if the receiver is equal to aPlan. This method returns
true if the receiver and aPlan have equal names.

addTask: aTask
Add aTask to the receiver. Recalculate the start and end times of the
receiver.

asList
Answer the receiver as a list of lists. Each of the lists is a task in the
receiver that has been converted into a list. This is the PROLOG
representation of a plan.

ealculateTimes
Calculate the start and end times for the receiver. Select the
minimum and maximum times from the tasks that have defined start
and end times.

copy
Answer a deep copy of the receiver. It is essential that any copy of

. the receiver also have its own copy of the plan history. Otherwise,
the receiver and the copy will share the exact same history object that
is updated by both.

endTime
Answer the endTime of the receiver.

extraTasks: someTasks
Answer a collection of extra tasks in the receiver with respect to the
tasks found in someTasks.

failures
Answer the number of failures for the receiver. Ask the plan
history.

fromList: aList
Set the tasks in the receiver from a list of tasks where each task is a
list. For each list in the list, find the task in the receiver that
corresponds to the list and ask it to initialize itself from the list. The
list of lists is the PROLOG representation of the receiver.

history
Answer the history of receiver.

history: alloteTaker
Set the history of receiver.

initialize
Initialize the instance variables. Create an empty collection of tasks,
a new history and set the start and end time to zero.

missingTasks: someTasks

1 Appendix C- 17

Answer a collection of missing tasks in the receiver with respect to
the tasks found in someTasks.

name
Answer the name of the receiver.

name: aString
Set the name of the receiver. The name of the receiver must be a
symbol since it is used to access the plan rules for the plan. If
aString is not,a Symbol, it is converted into one.

printOn: aStream
Append the ASCII representation of the receiver on aStream. Print
plan name, starttime and end time and the number of tasks on
aStream.

removeTask: aTask
Remove aTask from the receiver. Complain if the task cannot be
removed or is not found in the receiver. Recalculate the start and
end times of the receiver.

replacellead: aString
Replace the head of the rule (PROLOG horn clause) found in
aString with the a new rule head that has the same name as the
receiver and talces a single list of the tasks in the receiver as a
parameter. Answer the new rule.

ruleHead
Answer a string that is the head of the plan rule (PROLOG horn
clause) with the tasks of the plan in a list

rules
Answer the PROLOG code that is associated with the receiver. This
is a horn clause in the class TaskRules that has the same name
as the receiver.

rules: aString
Set the PROLOG code that is associated with the receiver. This is a
horn clause in the PROLOG class TaskRules that has the same name
as the receiver. Replace the head of the rule and compile and install
the new rule in the class TaskRules.

startTime
Answer the startTime of the receiver.

tasks
Answer the tasks of the receiver.

verify
Verify the that the plan rules for the receiver succeed. If there is no
plan rule for the receiver, succeed. Otherwise, execute the
PROLOG horn clause that has the same name as the receiver in the
class TaskRules after converting the receiver into a list of lists.
Answer true or false.

Example:
The following code fragment will create a new instance of a plan and

initiali7e it:

20. 	•

"add task to plan"

will be replaced)"

task3).'.

Appendix C- 18

I plan task i 1

plan := Plan new name:

i := 1.

#(0 20 35 40) do: (:start

task := Task new

name: itaski,i printString.

task startTime: start; duration:

plan addTask: task.

i := i -1- 1].

plan rules: 	"set plan rules

([]) :- distinct (task2,

'plan54'.

(rule head

'plan54

plan inspect

"create plan"

"create tasks"

3.7 Selector

The Selector object implements the Selector module of the CBPS. By
extracting the "unordered" plan from the environment and matching it against the
plan library, the instance variable plan is initialized to the plan that best matches the
requirements. The instance of the executor is supplied for plan verification
purposes.

The main entry point to the Selector is the method #selectPlan. This method
calls the methods #locatePlan, #constructPlan and #verifyPlan to do the actual
work. These three methods may be called independent of #selectPlan.

The plan that the Selector answers is always a new instance of a plan. Even
if it is equal to a plan in the plan li brary. Plans in the library are considered to be
read only by the CBPS.

Class Name:
SuperClass:
SubClasses:
Instance Variables:
Class Variables:
Pool Dictionaries:
Class Methods:

Selector
Object
o
(plan environment library executor)
o
o

Instance Methods:
addMissingTasks: aPlan

Add any missing tasks to aPlan.
constructPlan

Adds missing tasks, removes extra tasks, and replace equal tasks.
Answers a new plan with a new name that has an 'x' appended to
the end. This plan should next be verified.

environment: anEnvironment

Appendix C- 19

Set the environment of the receiver.
executor: anExecutor

Set the plan executor. This executor will be used during the plan
verification process. It gets invoked after the task and plan rules for
the receiver have been satisfied.

library: aPlanLibrary
Set the plan library to be searched for the best match of the operator
requirements by the receiver.

locatePlan
Answer the best matching plan in the plan library with respect to the
requirements. A new (and empty) plan is answered if the library is
empty or the requirements are empty. Otherwise, the actual plan
from the library is answered. If you modify this plan directly
(ie. don't make a copy) the library will get destructively updated
because this is the actual plan that can be found in the library.
The methods of the receiver are careful not to do this.

removeExtraTasks: aPlan
Remove any extra tasks from aPlan.

replaceEqual: aPlan
Replace any tasks in aPlan with equal tasks from the operator input.
This will allow the operator to unbind any variables in the plan that
was selected from the library.

selectPlan
Attempt to locate a plan that best matches the operator requirements
from the plan library. Add missing tasks, remove extra tasks, and
replace equal tasks. Next, verify that the plan will work in the
environment. This is the main entry point of the receiver. Answer
nil or a new plan.

verifyPlan
Verify that the plan is expected to work in the environment. This
involves creating a new instance of the task and plan rule base
(called TaskRules), setting the current plan and environment as well
as any executor that may be provided in this rule base, and issuing a
PROLOG query that calls the verify() predicate in TaskRules.
Answer the plan if the verify succeeded, else answer nil.

Examp
The following code fragment will locate, construct and verify a plan:

I selector lib env 1

lib := CBPS exampleLibrary. 	"get example lib"

env := Environment new. 	"create environment"

env resources at: #Power put: 50.

env requiredTasks:

(lib first tasks copyFrom: 2 to: 4).

Selector new

library: lib; 	 "set plan library"

Appendix C - 20

environment: env; 	"set environment"

selectPlan 	 "select plan"

3.8 Simulation

The class Simulation implements a standard discrete event simulation that
has a current time, end time, event queue and a "when" queue. The current time is
used to store the current simulation time. The end time stores the time that the
simulation should end.

The event queue is a SortedCollection of pairs that is sorted on the first
element in each pair. The first element of each pair is the time that the event will
occur. The second member of the pair is either a Block with no arguments or a
triple of the form #(object message arguments). When the event is processed, it is
removed from the event queue and the block is evaluated or the triple is executed
using the expression "object perform: message withArguments: arguments"

The "when" queue is an OrderedCollection on pairs. Each member of the
pairs is a block. After the execution of an event from the event queue, the "when"
queue is processed by executing the second block in each pair for every first block
of the pair that evaluates to true.

The simulation ends when the current time is greater that the stop time and
there are no more events in the event queue.

Class Name: 	Simulation
SuperClass: 	Object
SubClasses:
Instance Variables: (stopTime currentTime eventQueue whenQueue)
Class Variables: 	()
Pool Dictionaries: ()

Class Methods:
new

Answer a new instance of the receiver and initialize it.

Instance Methods:
atEnd

Answer true if the receiver is finished. The receiver is over when
current time is greater than stop time and the eventQueue is empty,
or the eventQueue runs out.

atTime: aTime doAction: anAction
Schedule an event to occur in the receiver. anAction is added to the
events calendar for future processing.

doAction: anAction
Schedule an event to occur now in the receiver. anAction is added

Appendix C - 21

to the events calendar for processing at the current time.
eventQueue

Answer the event queue.
eventQueue: aQueue

Set the event queue.
executeAction: anAction

Execute anAction. anAction can be a Block with no arguments or an
Array of the form #(object message arguments). This method will
execute either representation.

initialize
Initialize the receiver. Set current time and stop tirne to zero. Create
a new eventQueue and whenQueue.

nextEvent
Answer the nextEvent to be processed by the receiver. Remove it
from the events calendar. Check for attempts to set the simulated
time backwards or no next event in the queue. Set the current time
to be the time of the event.

plusTime: aTime doAction: anAction
Schedule an event to occur in the receiver. anAction is added to the
events calendar for future processing at the current time plus aTime.

processEvent: anEvent
Process the next event. Execute the action found in anEvent.
Evaluate the condition blocks for each member of the whenQueue.
For each of these that evaluates to true, evaluate the actionBlock.

runFrom: startTime to: endTime
Run the receiver from startTime to endTime. Process events while
the receiver is not at its end. This is the main entry point for the
receiver.

reinitialize
Reinitialize after the simulation finishes in preparation for the next
simulation.

sortBlock: aBlock
Add aBlock as an additional sort for the eventQueue to be invoked if
the time of the actions in the queue are equal. Resort the queue.

time
Answer the current simulation time.

whenBlock: conditionBlock doBlock: actionBlock
When conditionBlock evaluates to true, execute actionBlock.
conditionBlock is evaluated after the execution of every event on the
receiver.

Example:
The following code will run a single server single queue simulation from

time 0 to time 60. Clients will arrive starting at time 3 with an interarrival time of
exactly 5. Service begins when the server is not busy and there is a client waiting
in the queue. Service takes exactly 10 time units.

Appendix C - 22

1 sim queue start end busy 1
busy := false. 	"Server start off idle"

queue := OrderedCollection new. "Queue starts off empty"

sim := Simulation new.

start := [

queue addLast: #client. "EnQueue client"

sim time < 60 ifTrue: ["Schedule next client"

sim plusTime: 5 doAction: start]].

end := [busy := false]. "End of service, free server"

sim

whenElock: 	"-- can we process client?"

[queue notEmpty & busy not]

doBlock: ["-- yes, so start service"

queue removeFirst."DeQueue client"

busy := true. 	"Server is now busy"

sim 	"Schedule end of service"

plusTime: 10

doAction: end].

sim atTime: 3 doAction: start. "Schedule first event"

sim runFrom: 0 to: 60 	"Run the simulation"

3.9 Task

Task objects implement the basic unit of activity within a plan. Every task
has a name, a start time, a duration and some resources. Associated with the task
name are a set of task rules implemented in the PROLOG class TaskRules.

The special class method #scheduleForLoads answer a collection of nine
tasks that have been initialized for the load management domain.

Tasks are compared using the #= operation.

The methods #beginExecution: and #endF.xecution: are called at the start and
end of the execution of the task. These methods attempt to acquire and release
resources from the environment. They answer true or false to indicate that the task
could start and end properly. ,

The methods #asList and #ft 	omList: convert a task from the Smalltalk to the
PROLOG representation of a task.

Class Name: 	Task
SuperClass: 	Object
SubClasses:
Instance Variables: (name startTime duration resources)
Class Variables: 	()

Appendix C - 23

Pool Dictionaries: ()

Class Methods:
new

Answer a new instance of the receiver and initialize it
scheduleForLoads

This method answers a collection of loads that are initialized to
solve a load scheduling problem. Uncomment the code that sets
load rules the first time this code is executed.

Instance Methods:
<= aTask

Answer true if the receiver is less than or equal to aTask. This
method returns true if the receiver starts before aTask.

= aTask
Answer true if the receiver is equal to aTask. This method returns
true if the receiver and aTask are considered the same (have the same
name)

>= aTask
Answer true if the receiver is greater than or equal to aTask. This
method returns true if the receiver ends before aTask.

acquireResources: anEnvironment
Attempt to acquire all the resources from anEnvironment that the
receiver needs in order to begin execution. If any one resource is
not acquired, release any successfully acquired resources and
answer false.

asList
Answer the receiver as a list of instance variable values or unbound
PROLOG variables (LogicRefs). The list is always a triple of the
form #(name startTime duration). When a start time or duration is
nil, an unbound PROLOG variable is placed in the list.

beginExecution: anEnvironment
Begin the execution of the receiver in anEnvironment. Answer true
if the receiver can begin in anEnvironment. This method acquires
any required environmental resources.

canBeAdded: anEnvironment
Answer the true if the receiver can be added to a plan with respect to
anEnvironment. Create an instance of the PROLOG object
SelectorRules and invoke the predicate "canBeAdded". Answer true
if the predicate succeeds.

canBeRemoved: anEnvironment
Answer the eue if the receiver can be removed from a plan with
respect to anEnvironment. Create an instance of the PROLOG
object SelectorRules and invoke the predicate "canBeRemoved".
Answer true if the predicate succeeds.

canOccur: anEnvironment
Answer the true if the receiver can occur in an anEnvironment.

Appendix C - 24

Create an instance of the PROLOG object SelectorRules and invoke
the predicate "canOccur". Answer true if the predicate succeeds.

Answer a copy of the receiver. This is reimplemented as a
deepCopy to ensure that the resources are also copied. Otherwise
the receiver and its copy would share the same instance of a resource
dictionary and may be destructively modified.

duration
Answer the duration of the receiver.

duration: aTime
Set the duration of the receiver.

endExecution: anEnvironment
End the execution of the receiver in anEnvironment. This method
releases any acquired environment resources.

endsBefore: aTask
Answer true if the receiver ends before aTask ends.

endTime
Answer the endTime of the receiver. This value is calculated by

« adding startTime and duration.
fromList: aList

Set the receiver from a list of values. The list is always a triple of
the form #(name startTime duration). The startTime and duration in
the list may be PROLOG variables. If so, they need to be evaluated
to get their Smalltalk values.

initialize
Initialize the instance variables. Create an empty resource
dictionary.

interval
Answer the interval over which the receiver occurs (start time to end
time).

name
Answer the name of the receiver.

name: aString
Set the name of the receiver. The name of the receiver must be a
symbol. If aString is not a Symbol, convert it into one.

nonIntersections: anInterval
Answer a collection of intervals that represent the non-intersections
of the interval that the receiver occurs on and anInterval.

overlaps: aTask
Answer true if the receivers start and end time overlap aTask's start
and end times.

printOn: aStream
Append the ASCII representation of the receiver on aStream. Print
task name and start and end time on aStream.

releaseResources: anEnvironment
Attempt to release all the resources that were acquired by the receiver
back into anEnvironment.

copy

Appendix C - 25

I

1

resources
Answer the resources used by the receiver.

rules
Answer the PROLOG code that is associated with the receiver. This
is a horn clause in the class TaskRules that has the same name as the
receiver.

rules: aString
Set the PROLOG code that is associated with the receiver. This is a
hom clause in the class TaskRules that has the same name as the
receiver. Compile and install the code.

startsBefore: aTask
Answer true if the receiver starts before aTask starts.

startTime
Answer the startTime of the receiver.

startTime: aTime 	.
Set the startTime of the receiver.

stopTime
Answer the endTime of the receiver.

unbind
Unbind instance variables. Set the start time and duration of the
receiver to nil. When these are nil, the #asList method for the
receiver will replace them with unbound PROLOG variables.

verify
Verify the that the lask rules for the receiver succeed. If there is no
task rule for the re,ceiver, succeed. Evaluate the PROLOG predicate
in the class Tas1cRules of the same name as the receiver. Answer
true or false.

Example:
The following code fragment will create a new instance of a task called

"task54" with start time 5, duration 20. Valid values for start time will be in the
range 5 to 10.

I task rule I
task := task new name: 'task54'.

rule :=
Ttask54 (task54) :-

between (5, 10, start),

task (task54, start, 20).'.

task
"task starts at time 5"

"task lasts for 20 time

"set the task rule"

task

"create task"

"create rule string"

startTime: 5;

duration: 20;

rules: rule.

units"

Appendix D: Source Code

The Smalltalk objects that implement cased based reasoning within the Case
Based Planning System can be found in the following files on the CBPS Version 2
source disk:

CBPS 	 cbps.cls

CommonRules 	- 	commnrls.cls

Environment 	_ 	envrnmnt.cls

Evaluator 	- 	evaluatr.cls

EvaluatorRules 	- 	evltrrls.cls

Executor 	- 	executor.cls

NoteTaker 	- 	notetakr.cls

Plan 	 _ 	plan.cls

Replanner 	- 	replannr.cls

Selector 	- 	selector.cls

SelectorRules 	- 	slctrrls.cls

Simulation 	- 	simulatn.cls

Task 	 _ 	task.cls

TaskRules 	- 	taskruls.cls

file influe 	cbps.st

misc , methods 	 cbps.mth

The Smalltalk objects that implement a user interface to the Case Based
Planning System can be found in the following files on the CBPS Version 2 source
disk:

Cl3PSBrowser 	- 	cbpsbrws.cls

DialogBox 	 dialogbx.cls

FieldEditor 	 fildedtr.cls

Field 	 field.cls

LibraryBrowser - 	lbrrybrw.cls

PlanBrowser 	 pinbrwsr.cls

PlotPane 	 plotplane.cls

TaskBrowser 	 tskbrwsr.cls

file in file
misc , methods
title pane goodie

cbpsuser .st

cbpsuser.mth

titlepan.prj

CBPS

Planning Objects

Source Code

Listing

cbps.els 	 1

Object subclass: #CBPS

instanceVariableNames:

'plan library environment selector executor planner evaluator '

classVariableNames: "

poolDictionaries: " !

!CBPS class methods !

example

"CBPS example."

(self exampleCBPS)

doPlanning;

inspect!

exampleCBPS

"CEPS example."

1 env t 1

t := Task scheduleForLoads.

env := Environment new.

env resources at: *Power put: 50.

env requiredTasks:

(t copyFrom: 1 to: 5) deepCopy.

'self new

environment: env;

library: self exampleLibrary!

exampleLibrary

"CBPSLibraryBrowser exampleLibrary

answers a library of plans. Uncomment

the rule code the first time this code

is run."

I lib plan sched name 1

sched := Task scheduleForLoads.

lib := OrderedCollection new.

1 to: 9 do: [:i I

plan := Plan new

name: (name := 'plan', i printString).

sched do: [:1 1

plan addTask: 1 copy].

lib add: plan.

plan removeTask: (plan tasks at: i)].

^lib!

new

"Answ'er a new instance of the

receiver and initialize it."

"super new initialize! !

!CBPS methods !

doPlanning

"Perform the activities that make

up Case Based Reasoning. Select a

plan from the plan library, execute

cbps.cls 	 2

it (perhaps failing at some tasks),

and evaluate the results."

self

selectPlan;

executePlan;

evaluatePlan.

"plan!

environment

"Answer the current CEPS environment."

^environment!

environment: anEnvironment

"Set the current CBPS environment."

environment := anEnvironment!

evaluatePlan

"Evaluate the current plan

using an Evaluator."

self evaluator evaluatePlan!

evaluator

"Answer the plan Evaluator ready to evaluate

the current plan with respect to the current

environment and plan library."

evaluator

environment: environment;

library: library;

plan: plan.

^evaluator!

executePlan

"Execute the current plan

using an Executor."

self executor executePlan!

executor

"Answer a plan Executor ready to execute

the current plan in the current environment."

executor

environment: environment;

plan: plan.

^executor!

initialize

"Initialize the instance variables. Create

a default empty plan, a default environment,

a default empty library and the Selector,

Executor, and Evaluator objects that will

perform the basic CBPS functions."

plan := Plan new.

environment := Environment new.

library := OrderedCollection new.

selector := Selector new.

executor := Executor new.

"planner := Planner new."

evaluator := Evaluator new!

cbps.cls

library

"Answer the plan library."

. ^library!

library: aPlanLibrary

"Set the plan library."

library := aPlanLibrary!

plan

"Answer the current plan for the CEPS."

^plan!

plan: aPlan

"Set the current plan for the CEPS."

plan := aPlan!

selector

"Answer the plan Selector ready to select

a plan based on the current environment

and plan library."

selector

executor: executor;

environment: environment;

library: library.

^selector!

selectPlan

"Select a plan using a Selector."

plan := self selector selectPlan.

^plan! !

commnrls.cls 	 1

Prolog subclass: #CommonRules

instanceVariableNames: re

classVariableNames: "

poolDictionaries:

!CommonRules class logicMethods ! !

!CommonRules logicMethods !

"A general purpose integer generator/tester."

"This is the tester part of the between relation.

If the arguments are all known, simply do the test.

This is reimplemented only for efficiency."

between (start, end, next) :-

.nonvar (start), nonvar (end), nonvar(next),

le (start, next), le (next, end), !!.

"This is the generator portion of the between

relation. It will answer successive values of

'next' when called with 'start' and 'end' bound."

between (next, end, next).

between (start, end, value) :-

is (next, start + 1), le (next, end),

' 	between (next, end, value).!

"Succeed if the tasks are distinct

(do not overlap) or if there is no

taskl or task2."

distinct (task1, task2) :-

or (var (taskl), var (task2)), !!.

distinct (taskl, task2) :-

not (overlaps (task1, task2)).!

"Succeed if taskl starts after task2 ends."

follows (taskl, task2) :-

precedes (task2, task1).!

"A general purpose set membership generator/tester."

member ([first I rest], first).

member ([first I rest], element) :-

member (rest, element).!

"A general purpose multiply relation."

multiply (a, b, c) :-

nonvar (c), nonvar (b), is (a, c / b), !!.

multiply (a, b, c) :-

nonvar (c), nonvar (a), is (b, c / a), !!.

- 1

1

commnrls.cls 	 2

multiply (a, b, c) :-

nonvar (a), nonvar (b), is (c, a * b), !!.!

"Succeed if the tasks overlap or

if there is no taskl or task2."

overlaps (task', task2) :-

or (var (taskl), var (task2)), !!.

overlaps (taskl, task2) :-

task (taskl, si, _., el),

task (task2, s2, 	e2),

not (or (le (e2, si), ge (s2, el))).!

"Succeed if taskl ends before task2

starts or if there is no taskl or task2."

precedes (taskl, task2) :-

or (var (taskl), var (task2)), !!.

precedes (tabkl, task2) :-

task (taskl, el),

task (task2, s2,

le (el, s2).!

"A general purpose sum relation."

sum (a, b, c) :-

nonvar (c), nonvar (b), is (a, c - b), !!. '

sum (a, b, c) :-

nonvar (c), nonvar (a), is (b, c - a), !!.

sum (a, b, c) :-

nonvar (a), nonvar (b), is (c, a + b), !!.!

"Get/Set task values."

task (task, start, duration) :- var (task), H.

task ([name, start, duration], start, duration) :- H.

task (task, start, duration, end) :- var (task), H.

task ([name, start, duration], start, duration, end) :-

sum (start, duration, end).! !

envrnmnt.cls 	 1

Object subclass: #Environment

instanceVariableNames:

'unorderedPlan resources failBlock '

classVariableNames: "

poolDictionaries: " !

!Environment class methods !

new

"Answer a new instance of the.

receiver and initialize it."

"super new initialize! !

!Environment methods !

• acquireAmount: aValue ofResource: aName

"Use up some of the available resource

named by aName if possible. Answer true

if the resource was acquired, else false.

Execute the fail block if none available."

1 available 1

available := resources at: aName ifAbsent: [^false].

available - aValue < 0

ifTrue: [

(failBlock value: aName) notNil

ifTrue: [^false]].

available := available - aValue.

resources at: aName put: available.

^true!

copy

"Answer a copy of the reciever. Be sure

to supply a deep copy of the resources in

the receiver. Otherwise, copies of the

reciever can destructively modify these

resources."

I copy I
copy := super copy.

copy resources: resources deepCopy.

^copy!

failBlock: aBlock

"Set the failBlock of the receiver.

The failBlock is executed every time

a resource cannot be acquired from

the reciever."

failBlock := aBlock!

initialize

"Initialize the instance variables.

Create a default (empty) unorderedPlan,

a failBlock that does nothing and an

empty dictionary to hold resources."

failBlock := [:resource I].

of the tasks

execute in

are the tasks
. 1 1

envrnmnt.cls

unorderedPlan := Plan new

name: 'plan' asSymbol.

resources := Dictionary new!

isBetterPlan: planl thanPlan: plan2

"Answer true if piani is the better of

the two plans with respect to plan2 and

the receiver. This method uses the same

criteria that Dwight uses."
I T

	 OLD CODE 	

1 el ml e2 m2 requiredTasks I

requiredTasks := self requiredTasks.

el 	(planl extraTasks: requiredTasks) size.

e2 := (plan2 extraTasks: requiredTasks) size.

ml := (planl missingTasks: requiredTasks) size.

m2 := (plan2 missingTasks: requiredTasks) size.

(el = e2 and: [ml = m2]) ifTrue: [

^planl failures < plan2 failures].

"(el <= e2) and: [ml <= m2]

	 END OLD CODE 	

I pl p2 I
pl := planl. p2 := plan2.

^(SelectorRules new :?

better (pl, p2, self),

exit ()) notNil!

releaseAmount: aValue ofResource: aName

"Release some of the available resource

named by aName back to the receiver."

I available 1

available := resources at: aName ifAbsent: [sfalse].

available := available + aValue.

resources at: aName put: available.

^true!

requirèdTasks

"Answer a collection

that are required to

the receiver. These

of the unorderedPlan

^unorderedPlan tasks!

requiredTasks: tasks

"Set the collection of the tasks

that must execute in the receiver.

These are the tasks of the unorderedPlan.

Any previous task are removed and copies

of new tasks are added."

unorderedPlan tasks copy do: [:aTask 1

unorderedPlan removeTask: aTask].

tasks do: [:aTask I

unorderedPlan addTask: aTask copy]!

resources

"Answer the dictionary of available resources."

envrnmnt.cls

^resources!

resources: aDict

"Set the dictionary of available resources."

resources := aDict!

unorderedPlan

. "Answer the unordered plan. This plan

•

	

	represents the current requirerdents of the

operator."

^unorderedPlan! !

evaluatr.cls 	 1

Obfect subclass: #Evaluator

instanceVariableNames:

'plan library environment '

classVariableNames: "

poolDictionaries: " !

!Evaluator class methods ! !

!Evaluator methods !

addPlan

"Add a new plan in the library."

1 code 1

code := (Plan new name: *plan) rules.

library add: (plan rules: code)!

environment: anEnvirOnment

"Set the environment of evaluation." .

environment := anEnvironment!

evaluatePlan

"This method evaluates the plan and

takes an action with respect to the

plan library."

1 notes 1

self hasViolations

ifTrue: [Aself].

	 OLD CODE 	

notes := plan history.

plan tasks isEmpty

ifTrue: ["self forgetPlan].

(library includes: plan) not

ifTrue: [

notes successes >= notes failures

ifTrue: ["self addPlan].

"self forgetPlan].

notes failures > notes successes

ifTrue: ["self removePlan].

self updatePlan

	 END OLD CODE 	

EvaluatorRules new :?

evaluate (plan, library, self),

exit () .!

forgetPlan

"Do nothing. Do not add, remove, or update

the original plan in the plan library."!

hasViolations

"Answer true if the receiver has any

kind of plan or task violations."

"(self taskViolations notEmpty or:

evaluatr.cls 	 2

[self planViolation])!

library: aPlanLibrary

"Set the plan library."

library := aPlanLibrary!

plan: aPlan

"Set the Plan to be evaluated."

plan := aPlan!

planViolation

"Answer true if the plan rules

for the current plan have been

violated."

'plan verify not!

removePlan

"Remove an old plan from the plan library."

library remove: plan ifAbsent: [

self error: plan name, ' is missing from libr]!

taskViolations

"Answer a collection of the tasks

that have task rule violations."

^plan tasks reject: [:aTask I aTask verify]!

updatePlan

"Add a the updated plan to the library.

First remove the original plan (if any)

from the plan library and then add the

current plan."

library remove: plan ifAbsent: 1].

library add: plan! !

evltrrls.cls 	 1

éommonRules subclass: #EvaluatorRules

instanceVariableNames: "

classVariableNames: "

poolDictionaries: " !

!EvaluatorRules class logicMethods ! !

!EvaluatorRules logicMethods !

"Succeed if plan can provide the

criteria for evaluation."

criteria (plan, successes, failures) :-

is (successes, plan history successes),

is (failures, plan history failures).!

"Evaluate the plan with respect to

a plan library and an evaluator."

evaluate (plan, library, evaluator) :-

newPlan (plan, library),

criteria (plan, successes, failures),

ge (successes, failures),

is (..._, evaluator addPlan), !!.

evaluate (plan, library, evaluator) :-

newPlan (plan, library),

is (_, evaluator forgetPlan), !!.

evaluate (plan, library, evaluator) :-

criteria (plan, successes, failures),

gt (failures, successes),

is 	evaluator removePlan), !!.

evaluate (plan, library, evaluator) :-

is 	evaluator updatePlan).!

"Succeed if plan is a new plan With

respect to the plans in the library."

newPlan (plan, library) :-

is (true, (library includes: plan) not).! !

•1

executor.cls

Object subclass: #Executor

instanceVariableNames:

'plan environment simulation currentTask executingTasks executedTasks

classVariableNames: "

poolDictionaries: " !

!Executor class methods !

new

"Answer a new instance of the

receiver and initialize it."

^super new initialize! !

!Executor methods !

beginTask: aTask

"Start aTask in the reciever. This method is

executed by the simulation when aTask starts.

Set the current task to be aTask and ask it to start.

If aTask cannot start, take a task failure action.

If the task starts, update the executing tasks

collection and schedule the task end in the

simulation."

1 action 1

currentTask := aTask.

(aTask beginExecution: environment)

ifFalse: [self failTask: aTask].

executingTasks add: aTask.

action := OrderedCollection new.

action

add: self; add: #endTask:;

add: (Array with: aTask).

simulation

atTime: aTask endTime

doAction: action!

currentTask

"Answer the task that is about

to start in the receiver."

"currentTask!

doNothingOnFailure

"Do nothing if a failure happens

in the environemnt. This method

sets the environment failBlock

if a block that does nothing."

environment failBlock: [:resource 1]!

dropPlan

"Forget the executing the rest of the plan.

Release any resources that may be acquired

by the tasks that are currenly executing and

reinitialize the reciever."

executingTasks do: [:aTask 1

_

• executor.cls 	 2
•

aTask releaseResources: environment].

self reinitialize!

dropTask: aTask

"Drop aTask from the receiever. A task is

assumed to be the current task. The task is

removed from the collection of tasks executing

and tasks executed (if present) and then removed

from the plan. Because the task was unable to

start, it also did not schedule and end event

for itself in the simulation."

self tasksExecuting

remove: aTask ifAbsent: [].

self tasksExecuted

remove: aTask ifAbsent: [].

plan removeTask: aTask!

endTask: aTask

'"End aTask in the reciever. This method

is executed by the simulation when aTask

ends. Remove aTask from the collection of

tasks that are currently executing and add

it to the collection of tasks that have

been executed. Note that the task has

succeeded."

aTask endExecution: environment.

executingTasks remove: aTask ifAbsent: (].

executedTasks add: aTask.

self succeedTask: aTask.!

environment ,

"Answer the environment of execution."

^environment!

environment: anEnvironment

"Set the environment of execution."

environment := anEnvironment!

executePlan

"Execute the plan in the receiver. Schedule

the start event for each of the tasks in the

plan. Run the simulation from the start and

end time of the plan."

plan tasks do:'[:aTask I
self scheduleTask: aTask

atTime: aTask startTime].

simulation

runFrom: 0 "plan startTime"

to: plan endTime!

failTask: aTask

"Indicate that aTask has failed. Ask the

plan history to remember the failure."

plan history

failTask: aTask

in: environment!

executor.cls 	 3

initialize

"Initialize the receiver. Create a simulation

to simulate the execution tasks. Initialize the

collections of tasks that are executing and tasks

that have been executed to be empty. Set the

sortBlock of the simulation to be a block that

ensures that when a #startTask: and EendTask: occur

at the same time, the #endTask: is processed first.

This is done to ensure that resources are released

before they are acquired if events happen at the

same time."

simulation := Simulation new.

simulation sortBlock: [:a :b 1

((a at: •2) = #endTask:)].

executingTasks := OrderedCollection new.

executedTasks := OrderedCollection new!

plan

"Answer the current plan.

"plan!

plan: aPlan

"Set the plan for the reciever to execute."

plan := aPlan!

reinitialize

"Reinitialize the receiver. Ask the

simulation to be reinitialized (clear

event queues, current time, etc.) and

set the collections of tasks executing

and executed to be eMpty. This method

should be called before executing another

plan."

simulation initialize.

simulation sortBlock: [:a :b 1

((a at: 2) = #endTask:)].

executingTasks := OrderedCollection new.

exedutedTasks := OrderedCollection new.

currentTask := nil!

replanOnFailure

"Set the receiver to invoke the

Replanner when a failure occurs.

This method sets the failBlock of

the environment to invoke the

Replanner."

I task I
environment failBlock: [:resource I

task := self currentTask.

Replanner new :?

failure (resource, task, self),

exit ()]!

scheduleTask: aTask atTime: aTime

"Schedule aTask to occur in

the simulation at aTime. Set

the start time of aTask to

executor.cls 	 4

VI

be aTime. Update the start

and end times of the current

plan."

1 action 1

aTask startTime: aTime.

plan calculateTimes.

action := OrderedCollection new.

action

add: self; add: #beginTask:;

add: (Array with: aTask).

simulation atTime: aTime

doAction: action!

simulation

"Answer the simulation used by the

receiver to simulate the execution

of tasks."

"simulation!

succeedTask: aTask

"Indicate that aTask has succeeded. Tell

the plan history to remember the success."

plan history

succeedTask: aTask

in: environment.!

tasksExecuted

"Answer a collection of the tasks

that have been executed."

"executedTasks!

tasksExecuting

"Answer a collection of the tasks

that are currently executing."

^executingTasks!

tasksToExecute

"Answer a collection of the tasks
that have yet to be executed. This

collection is computed from the plan

and the other two task collections."

1 toExecute 1

toExecute := OrderedCollection new

plan tasks do: [:aTask I
((executingTasks includes: aTask) or:

[executedTasks includes: aTask])

ifFalse: [toExecute add: aTask]].

"toExecute!

time

"Answer the current time. This is

the current time in the simulation."

'simulation time! !

notetakr.cls 	 1

Object subclass: #NoteTaker

instanceVariableNames:

'plan successes failures '

classVariableNames: "

poolDictionaries: " !

!NoteTaker class methods !

new

"Answer a new instance of the

receiver and initialize it."

. ^super new initialize! !

!NoteTaker methods !

failTask: aTask in: anEnvironMent •

"Record the fact that aTask has

failed in anEnvironment."

failures := failures + 1!

failures

"Answer the number of failures."

^failures!

initialize

"Initialize the instance variables.

Set failures and successes to zero."

successes := failures := 0!

plan: aPlan

"Set the current plan for the reciever."

plan := aPlan!

printOn: aStream

'"Append the ASCII representation

of the reciever on aStream. Show

the number of successes and failures."

aStream

nextPutAll: successes printString, ' success(s), ';

nextPutAll: failures printString, 	failure(s)'!

succeedTask: aTask in: anEnvironment •

"Record the fact that aTask has

succeeded in anEnvironment."

successes := successes + 1!

successes

"Answer the number of successes."

^successes! !

plan .cls

Object subclass: #Plan

instanceVariableNames:

'name tasks startTime endTime history '

classVariableNames: "

poolDictionaries: " !

!Plan class methods !

new

"Answer a new instance of the

receiver and initialize it."

^super new initialize! !

!Plan methods !

aPlan

"Answer true if the receiver is

equal to aPlan. 	This method returns

true if the receiver and aPlan have

the equal names and equal collections

of tasks."

I block I

block := [:a :b 1 a name <= b name].

^name = aPlan name and:

[(tasks asSortedCollection: block) —

(aPlan tasks asSortedCollection: block)]!

addTask: aTask

"Add aTask to the receiver. Recalculate

the start and end times of the receiver."

tasks add: aTask.

self calculateTimes!

asList

"Answer the receiver as a list of

lists. Each of the lists is a tasks

in the reciever that has been converted

into a list."

^(tasks collect: [:aTask I aTask asList]) asList!

calculateTimes

"Calculate the start and end times

for the receiver. Select the minimum

and maximum times from the tasks that

have defined start and end times."

startTime := endTime := nil.

tasks do: [:aTask 1

(aTask startTime notNil and: [

aTask duration notNil]) ifTrue: [

startTime := (startTime isNil

ifTrue: [aTask startTime]

ifFalse: [startTime min: (aTask startTime)]).

endTime := (endTime isNil

ifTrue: [aTask endTime]

plan.cls

ifFalse: [endTime max: (aTask endTime)])]]

startTime isNil ifTrue: [startTime := 0].

endTime isNil ifTrue: [endTime := 0]!

COpy

"Answer a deep copy of the receiver. It is

essential that any copy of the receiver also

have its own copy of the plan history.

Otherwise, the receiver and the copy will share

the exact same history."

1 copy 1

copy := self class new

name: name;

history: history copy.

tasks do: [:aTask 1

copy addTask: aTask copy].

^copy!

endTime

"Answer the endTime of the receiver."

^endTime!

extraTasks: someTasks

"Answer a collection of extra tasks

in the receiver with respect to the

tasks found in someTasks."

^tasks select: [:aTask I
(someTasks includes: aTask) not]!

failures

"Answer-the number of , failures for

the reciever. Ask the plan history."

^history failures!

fromList: aList

"Set the tasks in the receiver from a list of

tasks where each task is a list. For each list,

find the task in the reciever that corresponds

to the list and ask it to initialize itself from

the list."

1 newTasks newTask aTask I

newTasks := aList asArray.

newTasks do: [:list 1
newTask := list asArray.

aTask := tasks

detect: [:t I t name = newTask first]

ifNone:

aTask notNil ifTrue: [

aTask fromIist: list]]!

history

"Answer the history of receiver."

^history!

history: alloteTaker

"Set the history of receiver."

history := alloteTaker!

plan:cis 	 3

initialize

"Initialize the instance variables.

Create an empty collection of tasks,

a new history and set the start and

end time to zero."

name := '*Unknown*r.

tasks := OrderedCollection new.

history := NoteTaker new plan: self.

startTime := endTime := 0!

missingTasks: someTasks

"Answer a collection of missing tasks

in the receiver with respect to the

tasks found in someTasks."

"someTasks select: [:aTask !

(tasks includes: aTask) not]!

name

"Answer the name of the receiver."

^name!

name: aString

"Set the name of the receiver. The name

of the receiver must be a symbol. "

name := aString asSymbol!

printOn: aStream

"Append the ASCII representation

of the reciever on aStream. Print

plan name, start time and end time

and the number of tasks."

aStream

nextPutAll: name,': ';

nextPutAll: '[',startTime printString,'-',

endTime printStfing,q, ';

nextPutAll: tasks size printString, ' task(s) '", ';

nextPutAll: history printString"!

removeTask: aTask

"Remove aTask to the receiver. Complain

if the task cannot be removed. Recalculate

the start and end times of the receiver."

tasks remove: aTask ifAbsent: [

"self error: 'removing unknown task'].

self calculateTimes!

replaceHead: aString

"Replace the head of the rule found

in aString with the a new rule head

that has the same name as the receiver

and takes a single list of the tasks

in the receiver as a parameter. Answer

the new rule."

I aStream exit code

exit := false.

aStream := ReadStream on: aString.

plan.cls 	 4

[exit not & aStream atEnd not] whileTrue: [

[aStream atEnd not and: [aStream next -= $:]]

whileTrue: [].

aStream peek = $- ifTrue: [exit := true].

aStream atEnd ifFalse: [aStream next]].

exit ifFalse: ["].

code := self ruleHead, (aStream copyFrom:

aStream position + 1 to: aString size).

^code!

ruleHead

"Answer a string that is the head of

the plan rule with the tasks of the

plan in a list."

1 head 1

head := name, ' (
[r•

tasks do: [:aTask 1

head := head, aTask name.

aTask = tasks last ifFalse: [

head := head, ', r]].
head := head, '])

^head!

rules

"Answer the PROLOG code that is associated

with the receiver. This is a horn clause

in the class TaskRules that has the same

name as the receiver."

^TaskRules sourceCodeAt: (self name,':') asSymbol!

rules: aString

"Set the PROLOG code that is associated

with the receiver. This is a horn clause

in the class TaskRules that has the same

name as the receiver. Replace the head

of the rule and compile and install the

new rule in the class TaskRules."

I result code aStream I
(code := self replaceHead: aString) isEmpty

ifTrue: [^self].

(code = self ruleHead) ifTrue: [

aStream := WriteStream on: ".

aStream

nextPutAll: code; cr;

nextPutAll: ' 	!!.'.

code := aStream contents].

result := TaskRules compileLogic: code.

result isNil ifTrue: [^self].

Smalltalk

logPrologSource: code

forSelector: result key

inClass: TaskRules!

startTime

"Answer the startTime of the receiver."

^startTime!

plan.cis 	 5

tasks

"Answer the tasks of the receiver."

^tasks!

verify

"Verify the that the plan rules for

the reciever succeed. If there is

no plan rule for the receiver, succeed.

Answer true or false."

list

(TaskRules canUnderstand: (name,r:') asSymbol)

ifFalse: ["true]. "no rules => values OK"

list := self asList.

^(TaskRules new :? plan (list), exit()) notNil! !

1

b:replannr.cls 	 1

CommonRules subclass: #Replanner

instanceVariableNames:

classVariableNames: "

poolDictionaries: " !

!Replanner class logicMethods ! !

!Replanner logicMethods !

"This code gets executed when a task fails to

acquire a resource."

"Drop the entire plan if #Power fails for any task."

"failure (#Power, task, executor) :-

is (_, executor dropPlan)."

"Drop the task if #Power for #load3 fails."

"failure (#Power, task, executor) :-

is (#load3, task name asSymbol),

is (_, executor dropTask: task)."

"Default is to wait 1 minute and reschedule

the failed task. This may violate task and

plan rules. No check is made on the new task

start time until plan evaluation is done."

failure (resource, task, executor) :-

is (_, executor

scheduleTask: task value

atTime: executor time + 1).! !

'I

selector.cls

Object subclass: #Selector

instanceVariableNames:

'plan environment library executor '

classVariableNames: "

poolDictionaries: " !

!Selector class methods ! !

!Selector methods !

addMissingTasks: aPlan

"Add any missing tasks to aPlan."

I missing 1

missing := aPlan missingTasks:

(environment requiredTasks).

• missing do: [:aTask 1

(aTask canBeAdded: environment)

ifTrue: [aPlan addTask: aTask]]!

constructPlan

"Adds missing tasks, removes extra tasks, and

replace equal tasks. Answers a new plan with

a new name that has an 'x' appended to the end

to be verified."

I newPlan names I

newPlan := plan copy.

self

addMissingTasks: newPlan;

removeExtraTasks: newPlan.

plan — newPlan ifFalse: [

newPlan

name: (plan name, 'x');

history: NoteTaker new.

names := library collect: [:p 1 p name].

[names includes: newPlan name] whileTrue: [

newPlan name: (newPlan name, 'x')]].

self replaceEqual: newPlan.

plan := newPlan.

'plan!

environment: anEnvironment

"Set the environment of the reciever."

environment :=.anEnvironment!

executor: anExecutor

"Set the plan executor. This executor

will be used during the plan verification

process. It gets invoked after the task

and plan rules for the reciever have been

satisfied."

executor := anExecutor!

library: aPlanLibrary

"Set the plan library to be

selector.cls

searched for the best match

by the receiver."

library := aPlanLibrary!

locatePlan

"Answer the best matching plan in the plan library

with respect to the requirements. A new (and empty)

plan is answered if the library is empty or the

requirements are empty. Otherwise, the actual plan

from the library is answered. If you modify this

plan directly (dont't make a copy) the library will

get destructively updated. The methods of the receiver

are careful not to do this."

1 bestPlan requiredTasks I

(library isEmpty or: [

(requiredTasks := environment

requiredTasks) isEmpty])

ifTrue: Usplan := Plan new].

bestPlan := library first.

library do: [:aPlan 1

(environment isBetterPlan: aPlan

thanPlan: bestPlan) ifTrue: [

bestPlan := aPlan]].

plan := bestPlan.

^plan!

removeExtraTasks: aPlan

"Remove any extra tasks from aPlan."

I extra I

extra := aPlan extraTasks:

(environment requiredTasks).

extra do: [:aTask I

(aTask canBeRemoved: environment)

ifTrue: [aPlan removeTask: aTask]]!

replaceEqual: aPlan

"Replace any tasks in aPlan with equal

tasks from the operator input. This will

allow the operator to unbind any variables

in the plan that was selected from the library."

1 tasks 1

tasks := environment requiredTasks.

tasks do: [:aTask I

(aPlan tasks includes: aTask)

ifTrue: [

aPlan

removeTask: aTask; "remove equal task"

addTask: aTask]]!

2

selectPlan

"Attempt to locate a plan

the operator requirements

Add missing tasks, remove

equal tasks. Next, verfy

the environment."

self

locatePlan;

that best matches

from the plan library.

extra tasks, and replace

that the plan will work in

selector.cls 	 S 	 3

I I

constructPlan;

verifyPlan.

"plan!

verifyPlan

"Verify that the plan is expected to

work in the environment. This involves

creating a new instance of the task and

plan rule base (called TaskRules), setting

the current plan and environment as well

as any executor that may be provided, and

issuing a PROLOG query that calls the

verify() predicate. Answer the plan if

the verify succeeded, else answer nil."

1 list ruleBase 1

list := plan asList.

ruleBase := TaskRules new.

ruleBase

setPlan: plan;

environment: environment;

executor: executor.

(ruleBase :? verify (list)) isNil

ifTrue: [Anil].

"plan! !

slctrrls.cls 	 1

CommonRules subclass: #SelectorRules

instanceVariableNames: "

classVariableNames: "

poolDictionaries: " !

!SelectorRules class logicMethods ! !

!SelectorRules logicMethods !

"Succeed if planl is better than

plan2 with respect to an environment."

better(planl, plan2, env) :-

criteria (planl, env, extra, missing, faill),

criteria (plan2, env, extra, missing, fail2),

!!, lt (faill, fail2).

better(planl, plan2, env) :-

criteria (planl, env, extra', missingl, _),

criteria (plan2, env, extra2, Missing2,

.le (extra', extra2), le (missingl, missing2).!

"Succceed if the task can be added

to a plan in the environment."

canBeAdded (task, environment).!

"Succceed if the task can be removed

from a.plan in the environment."

canBeRemoved (task, environment).!

"Succceed if the task can

occur in the environment."

canOccur (task, environment) .!

"Succeed if the criteria for plan .

selection can be obtained from the

plan and the environment."

criteria (plan, env, extra, missing, failures) :-

is (extra, (plan extraTasks: env requiredTasks) size),

is (missing, (plan missingTasks: env requiredTasks) size),

is (failures, plan failures).! !

111

simulatn.cls 	 1

Object subclass: *Simulation

instanceVariableNames:

'stopTime currentTime eventQueue whenQueue '

classVariableNames: "

poolDictionaries: " !

!Simulation class methods !

new

"Answer a new instance of the

receiver and initialize it.".

 ^super new initialize! !

!Simulation methods !

atEnd

"Answer true if the receiver is finished.

The receiver is over when current time is

greater that stop time and the evéntQueue

is empty, or the eventQueue runs out."

^(currentTime > stopTime

and: [eventQueue isEmpty])

or: [eventQueue isEmptyl!

atTime: aTime doAction: anAction

"Schedule an event to occur in

the receiver. anAction is added

to the events calendar for future

processing."

eventQueue add:

(Array

with: aTime

with: anAction)!

doAction: anAct ion

"Schedule an event to occur now in

the receiver. anAction is added to the

events calendar for processing at the

current time."

self

atTime: currentTime

doAction: anAction!

eventQueue

"Answer the event queue."

^eventQueue!

eventQueue: aQueue

"Set the event queue."

eventQueue := aQueue!

executeAction: anAction

"Execute anAction. anAction can be a

Block with no arguments or an Array of

simulatn.cls 	 2

of the form #(object selector arguments).

This method will execute either."

(anAction isKind0f: Context)

ifTrue: [AanAction value].

(anAction at: 1) perform: (anAction at: 2)

withArguments: (anAction at: 3)!

initialize

"Initialize the receiver. Set current

time and stop time to zero. Create a

new eventQueue and whenQueue."

currentTime := stopTime := O.

whenQueue := OrderedCollection new.

eventQueue := SortedCollection sortBlock:

[:a :b 1 a first <= b first]!

nextEvent

"Answer the nextEvent to be processed

by the receiver. Remove it from the

events calendar. Check for attempts

to set the simulated time backwards or

no next event in the queue. Set the

current time to be the time of the

event."

1 nextEvent nextTime 1

eventQueue isEmpty ifTrue: [

"self error: 'No next simulation event'].

nextEvent := eventQueue removeFirst.

nextTime := nextEvent first.

nextTime < currentTime ifTrue: [

"self error: 'Attempt to set clock back'].

currentTime := nextTime.

AnextEvent!

plusTime: aTime doAction: anAction

"Schedule an event to occur in

the receiver. anAction is added

to the events calendar for future

processing at the current time

plus aTime."

self

atTime: currentTime aTime

doAction: anAction!

processEvent: anEvent

"Process the next event. Execute the

action found in anEvent. 	Evaluate the

condition blocks for each member of the

whenQueue. For each of these that evaluates

to true, evalute the conditionBlock."

self executeAction: (anEvent at: 2).

whenQueue do: [:pair 1

pair first value ifTrue: [

(pair at: 2) value]]!

runFrom: startTime to: endTime

"Run the receiver from startTime to

simulatn.cls 	 3

endTime. Process events while the

receiver is not at its end.

Reinitialize after when the simulation

finishes in preparation for the next

simulation."

1 nextEvent 1

stopTime := endTime.

currentTime := startTime.

[self atEnd] whileFalse: [

nextEvent := self nextEvent.

self processEvent: nextEvent].

self initialize!

sortBlock: aBlock

"Add aBlock as an additional sort

for the eventQueue to be invoked

if the time of the actions in the

queue are equal. Resort the queue."

1 value 1

eventQueue := eventQueue

asSortedCollection: [:a :b 1

value := a first <= b first.

a first — b first ifTrue: [

value := (aBlock value: (a at: 2)

value: (b at: 2))].

value]!

time
"Answer the current simulation time."

AcurrentTime!

whenBlock: conditionBlock doBlock: actionBlock

"When conditionBlock evaluates to true, execute

actionBlock. conditionBlock is evaluated after

the execution of every event on the receiver."

whenQueue add:

(Array

with: conditionBlock

with: actionBlock)! !

task.cls 	 1

Object subclass: *Task

instanceVariableNames:

'name startTime duration resources

classVariableNames: '

poolDictionaries: " !

!Task class methods !

new
"Answer a new instance of the

receiver and initialize it."

^super new initialize!

scheduleForLoads

"Load scheduleForLoads answers a collection

of loads that are initialized to solve a

load scheduling problem. Uncomment the code

that sets load rules the first time this

code is executed."

! 11 12 13 14 15 loads c name

loads := OrderedCollection new.

loads add: (11 := Task new

name: rloadlr;

rules:

iloadl (loadl) :-

member ([30, 40], start),

task (loadl, start, 10).';

startTime: 40;

duration: 10).

11 resources at: #Power put: 10.

loads add: (12 := Task new

name: "load2';

rules:

load2 (load2) :-

member ([30, 40], start),
task (load2, start, 10).';

startTime: 30;

duration: 10).

12 resources at: *Power put: 10.

loads add: (13 := Task new

name: 'load3';

rules:

'load3 (load3) :-

member ([40, 50], start),

task (load3, start, 10).';
't

startTime: 11 endTime;

duration: 20).

13 resources at: #Power put: 2.

I .

task.cls

rules:

II
(name, ' (',name,") :-

task (',name,',',st printString,',1).');
IT

C := 0.

#(0 20 40 60) do: [:st 1

loads add: (14 := Task new

name: (name := 'load4', (#(a b c d) at: (c := c + 1)));

startTime: st;

duration: 1).

14 resources at: #Power put: 40].

c := 0.

#((1 19) (21 9)) do: [:pair 1

loads add:

(15 := Task new

name: (name := 'load5e, (#(a b) at: (c := c + 1)));

rules:

(name, ' ('name,') :-

task (r,name,'„ 1 ,pair first printString,',',

(pair at: 2) printString,').');

startTime: pair first;

duration: (pair at: 2)).

15 resources at: *Power put: 40].

"loads! !

!Task methods !

<= aTask

"Answer true if the receiver

is less than or equal to aTask."

"self startsBefore: aTask!

= aTask

"Answer true if the receiver is

equal to aTask. 	This method returns

true if the receiver and aTask are

considered the same."

name -= aTask name ifTrue: [Afalse].

"(startTime notNil and: [aTask startTime notNi1])

ifTrue:

startTime = aTask startTime

ifFalse: ["false]].

(duration notNil and: [aTask duration notNil])

ifTrue: [

duration = aTask duration

ifFalse: [Afalse]]."

"truej

>= aTask

"Answer true if the receiver

is greater than or equal .to aTask."

"self endsBefore: aTask!

task.cls 	 3

acquireResources: anEnvironment

"Attempt to acquire all the resources

from anEnvironment that the receiver

needs in order to begin execution. If

any one resource is not acquired, release

any successfully acquired resources and

answer false."

I acquired 1

acquired := OrderedCollection new.

resources associationsDo: [:assoc 1

(anEnvironment

acquireAmount: assoc value

ofResource: assoc key) ifFalse: [

acquired do: [:name 1

(anEnvironment releaseAmount:

(resources at: name)

ofResource: name)].

^false].

acquired add: assoc key].

^true!

asList

"Answer the receiver as a list of

instance variable values or unbound

PROLOG variables (LogicRefs). The

list is always a triple of the form

#(name startTime duration). When a

start time or duration is nil, an unbound

PROLOG variable is placed in the list."

I start dur I

(start := startTime) isNil

ifTrue: [start := LogicRef new].

(dur := duration) isNil

ifTrue: [dur := LogicRef new].
^(Array

with: name

with: start

with: dur) asList!

beginExecution: anEnvironment

"Begin the exectution of the receiver

in anEnvironment. Answer true if the

reciever can begin in anEnvironment.

This method acquires any required

environmental resources."

'(self canOccur: anEnvironment) and:

[self acquireResources: anEnvironment]!

canBeAdded: anEnvironment

"Answer the true if the receiver can

be added to an anEnvironment."

1 env 1

env := anEnvironment.

A(SelectorRules new :?

canBeAdded (self, env),

exit()) notNil!

task.cls

canBeRemoved: anEnvironment

"Answer the true if the receiver

can be removed from an anEnvironment."

I env
env := anEnvironment.

^(SelectorRules new :?

canBeRemoved (self, env),

exit()) notNil!

canOccur: anEnvironment

"Answer the true if the receiver

occur in an anEnvironment."

1 env 1

env := anEnvironment.

^(SelectorRules new :?

canOccur (self, env),

exit()) notNil!

copy

"Answer a copy of the receiver. This is

reimplemented as a deepCopy to ensure that

the resources are also copied. Otherwise

the receiver and its copy would share the

same instance of a resource dictionary and

may be destructively modified."

"self deepCopy!

duration

"Answer the duration of the receiver."

^duration!

duration: aTime

"Set the duration of the receiver."

duration := aTime!

endExecution: anEnvironment

"End the exectution of the receiver

in anEnvironment. This method releases

any acquired environment resources."

"self releaseResources: anEnvironment!

endsBefore: aTask

"Answer true if the receiver

ends before aTask ends."

"self endTime <= aTask endTime!

enchime

"Answer the endTime of the receiver. This

value is calculated by adding startTime and

duration."

"self startTime + self duration!

fromList: aList

"Set the receiver from a list of instance

variables values. The list is always a

triple of the form ii(name startTime duration).

The startTime and duration in the list may

task.cls. 	 5

be PROLOG variables. If so, they need to

be evaluated to get their values."

1 values I

"evaluate any LogicRefs"

values := aList asArray collect: [:v I

(v isKind0f: LogicRef) ifTrue: [

v value] ifFalse: [v]].

self

name: (values at: 1);

startTime: (values at: 2);

duration: (values at: 3)!

initialize

"Initialize the instance variables.

Create an empty resource dictionary."

name := self class name asLowerCase, 'X'.

resources := Dictionary new!

interval

"Answer the interval over which the

receiver occurs (start time to end

time)."

^startTime to: self endTime!

name

"Answer the name of the receiver."

^name!

name: aString

"Set the name of the receiver. The name

of the receiver must be a symbol.

name := aString asSymbol!

nonIntersections: anInterval

"Answer a collection of intervals that

represent the non-intersections of the

interval that the receiver occurs on

and anInterval."

I myInterval 1

myInterval := self interval.

^Array

with: ((myInterval first min: anInterval first)

to: ((myInterval first max: anInterval first)

min: (myInterval last min: anInterval last)) - 1)

with: ((((myInterval last min: anInterval last)

max: (myInterval first max: anInterval first)) -1- 1)

to: (myInterval last max: anInterval last))!

overlaps: aTask

"Answer true if the recievers start

and end time overlap aTask's start

and end times."

anInterval I

anInterval := aTask interval.

^(startTime

between: anInterval first

and: anInterval last - 1) or: [

task.cls 	 6

self endTime

between: anInterval first + 1

and: anInterval lastn

printOn: aStream

"Append the ASCII representation

of the reciever on aStream. Print

• task name and start and end time."

1 start end 1

startTime isNil
ifTrue: [start := f?']

ifFalse: [start := startTime printString].

(duration isNil or: [startTime isNil])
ifTrue: [end := '?']

ifFalse: [end := self endTime printString].

aStream

nextPutAll: name,': ';

nextPutAll:

resources associationsDo: [:assoc 1

aStream

nextPutAll: 	';

nextPutAll: assoc key, ' r ;

nextPutAll: assoc value printString]!

releaseResources: anEnvironment

"Attempt to release all the resources

that were acquired by the receiver back

into anEnvironment."

resources associationsDo: [:assoc 1

(anEnvironment

releaseAmount: assoc value

ofResource: assoc key)

ifFalse: [^false]].

^true!

resources

"Answer the resources used by the receiver."

^resources!

rules

"Answer the PROLOG code that is associated 	'

with the receiver. This is a horn clause

in the class TaskRules that has the same

name as the receiver." •

"TaskRules sourceCodeAt: (self name,':') asSymbol!

rules: aString

"Set the PROLOG code that is associated

with the receiver. This is a horn clause

in the class TaskRules that has the same

name as the receiver. Compile and install

the code."

1 result 1

result := TaskRules compileLogic: aString.

result isNil ifTrue: ['Self].
Smalltalk

logPrologSource: aSt ring

task.cls

forSelector: result key

inClass: TaskRules!

startsBefore: aTask

"Answer true if the eceiver

starts before aTask starts."

AstartTime <= aTask startTime!

startTime

"Answer the startTime of the receiver."

^startTime!

startTime: aTime

"Set the startTime of the receiver."

startTime := aTime!

stopTime

"Answer the endTime of the receiver."

"self endTime!

unbind

"Unbind instance variables. Set the start

time and duration of the receiver to nil.

When these are nil, the #asList method for

the receiver will replace them with unbound

PROLOG variables."

startTime := duration := nil!

verify

"Verify the that the task rules for

the reciever succeed. If there is

no task rule for the receiver, succeed.

Answer true or false."

1 list I

(TaskRules canUnderstand: (name,':') asSymbol)

"ifFalse: (^true]. "no rules => values OK"

list := self asList.

^(TaskRules new :? schedule ([1ist]), exit()) notNil! !

taskruls.cls

CommonRules subclass: #TaskRules

instanceVariableNames:

'plan executor environment '

classVariableNames: "

poolDictionaries: " !

!TaskRules class logicMethods ! !

!TaskRules logicMethods !

"This is the default task rule that

all tasks will execute if no rule for

the task is specified."

default (aTask) :-

member ([0, 20, 40, 60], start

task (aTask, start, 15).!

"Execute one task triple. If there is

no rule for the task, use the default

rule. Because cut() does not work quite

right in PROLOG/V, the #respondsTo: code

is repeated in both predicates."

execute ([pred 1 rest]) :-

is (true, self respondsTo: (pred, ':') asSymbol),

univ (rule, [pred, [pred 1 rest]]),

call (rule).

execute ([pred 1 rest]) :-

is (false, self respondsTo: (pred, ':') asSymbol)

univ (rule, [#default, [pred 1 rest]]),

call (rule).!

load10 (loadl) :-

member ([30, 40], start),

task (loadl, start, 10).!

loadl (load') :-

member ([30,

task (loadl,

load2 (load2) :-

member ([30,

task (load2,

load3 (load3) :-

member ([30,

task (load3,

40], start),

start, 10).!

40], start),

start, 10).!

40, 50", 60],

start, 20).!

start),

load4a (load4a) :-

task (load4a, 0, 1).!

load4b (load4b)

task (load4b, 20, 1).!

taskruls.cls 	 - 2

load4c (load4c) :-

task (load4c, 40, 1).!

load4d (load4d) :-

task (load4d, 60, 1).!

load5a (load5a) :-

task (load5a, 1, 19).!

load5b (load5b) :-

task (load5b, 21, 9).!

planl ([load2, load3, load4a, load4b, load4c, load4d, load5a, load5b]) :-

distinct (loadl, load2),

task (load3, endl, _),

task (loadl, 	end1).!

plan ([load', load2, load3, load4a, load4b]) :-

!!.!

"Execute each of the task triples in the

list as a PROLOG predicate. Succeed if

every predicate succeeds."

schedule ([]).

schedule ([task j tail]) :-

execute (task),

schedule (tail).!

"Verify that the tasks in the list

can execute properly. First create

a schedule of tasks, place them in

the current plan, then execute the

plan. Exit with success with the

first valid plan stored in the list."

verify (list) :-

schedule (list).

is (_, plan fromList: list),

is (true, self executePlan),

plan (list),

exit ().! !

!TaskRules methods !

environment: anEnvironment

"Set the environment of verification."

environment := anEnvironment!

executor: anExecutor

"Set the plan executor."

executor := anExecutor!

executePlan

"Execute the plan in a copy of the environment.

At the first failure of any kind, answer false

taskruls.cls 	 3

and abort the plan execution. The original event

queue for the simulation is saved in order to

preserve any events that are originally scheduled.

These events could update the screen to show the

progress of the verication."

1 env exec history originalQueue 1

env := environment copy.

history := plan history copy.

(exec := executor) isNil

ifTrue: [exec := Executor new].

originalQueue := exec simulation eventQueue.

originalQueue := originalQueue asArray

asSortedCollection: originalQueue sortBlock.

env failBlock: [:resource 1

exec reinitialize.

exec simulation eventQueue: originalQueue.

plan history: history.

^false].

exec

plan: plan;

environment: env;

executePlan;

reinitialize;

environment: environment.

exec simulation eventQueue: originalQueue.

plan

history: history;

calculateTimes.

^true!

setPlan: aPlan

"Set the plan to be verified."

plan := aPlan! !

cbps.st 	 1

"This file will install in all of the source

files for the Case Based Planning System (CEPS)

objects. The user-interface to CBPS objects

can be found in the file 'cbpsui.st'.

Edit #FileIn be the path were the source files

are contained and then execute the following:

! dir !

dir := Smalltalk at: #FileInDir put:

(Directory pathName: 'a:\ ').

(dir file: 'cbps.st')

file In;

close.

Smalltalk removeKey: #FileInDir.

For an example that tests to test the code

try:

CEPS example

This expression will create a CEPS, set a

default unordered plan and library, and

invoke the Selector, Executor and Evaluator.

! bytes stream !

Transcript cr; show: 'Filing in CEPS objects '.

bytes := O.

#('simulatn.cls'

'commnrls.cls'

'slctrrls.cls'

revltrrls.cls'

'replannr.cls'

'executor.cls'

'taskruls.cls'

'task.cls'

'notetakr.cls'

'plan.cls'

'envrnmnt.cls'

'selector.cls'

'evaluatr.cls'

'cbps.cls'

'cbps.mth') do: [:name !

Transcript show: '.'.

(stream := FileInDir file: name)

fileIn; close.

bytes :- bytes + stream size].

Transcript cr; show: 'CEPS objects (',

bytes printString, ' bytes) installed.r.

cbps .mth

!Prolog logicMethods !

"Convert a structure to a list (=..)."

univ(structure, list) :-

nonvar(structure),

is(true, structure value class == Relation)

is(x, "self allValue:" structure),

is(list, List

head: x value head

tail: x value tail).

univ(structure, [head ! list]) :-

atom(head),

is(x, "self allValue: "list),

is(structure, Relation

head: head value

tail: x value).! !

1

1

CBPS

User Interface Objects

Source Code

Listing

b:cbpsbrws.cls 	 1

Object subclass: #CBPSBrowser

instanceVariableNames:

'aCBPS currentTask,currentEnvResource taskPicture executing text '

classVariableNames: "

poolDictionaries: ri !

!CBPSBrowser class methods !

example

"Open up an example CBPSBrowser."

self new openOn: CEPS exampleCBPS! !

!CBPSBrowser methods !

II 	
acceptEnv: aString from: aDispatcher

"Accept aString as the new contents

of the environment resource text pane.

II 	

Answer true if the string was an

acceptable value, else answer false."

I newValue currentEnv 1

11 	

currentEnv := self currentEnv.

(currentEnv isNil or: [currentEnvResource isNill)

ifFalse: [

newValue := Compiler evaluate: aString.

11 	

currentEnv resources

at: currentEnvResource put: newValue].

executing := false.

II 	

self

changed: #envText;

updatePictures.

^true!

addEnvResource

"Add a new resource to the current environment."

1 name currentEnv 1

(currentEnv := self currentEnv) isNil
ifTrue: [Aself].

(name := Prompter prompt: 'Name ?'

default: 'Power') isNil
ifTrue: ['self].

currentEnv resources at: name asSymbol put: 5.

currentEnvResource := name asSymbol.

self

updateEnvResources;

changed: #plot!

allTasksBound

"Answer true if all tasks in

the current plan are bound."

1 plan 1

plan := self currentPlan.

plan tasks do: [:aTask I
(aTask startTime isNil or: [

aTask duration isNil]) ifTrue: [

^true!

^false]].

b:cbpsbrws.cls 	 2

II cbpsMenu

1
"Answer the main menu that allows the

user to maipulate the CEPS object."

^Menu

labelArray: #('View/Edit Plan' 'Plan Selector"Plan Executor"Plan Evaluator')

lines: #()

selectors: *(editPlan selectPlan executePlan evaluatePlan)!

II currentEnv

"Answer the current environment of the CBPS."

^aCBPS environment!

currentLib

"Answer the current plan- library of the CBPS."

^aCBPS library!

currentPlan

"Answer the current plan in the CEPS."

^aCBPS plan!

displayPlanOn: aForm

"Answer a Form that has each of the tasks

in the current plan displayed as a bar and

has a nice title." 	-

I plan planForm h w scanner blt

title label labels p box curFont I

plan := self currentPlan.

scanner := CharacterScanner new

initialize: aForm boundingBox

font: (curFont := Font eightLine)

dest: aForm.

(plan isNil or: [plan tasks isEmpty])

ifTrue: [title := 'lc No Tasks * 1]

ifFalse: [title := 'Tasks for ", plan name,'"].

scanner

display: title

at: (p := (aForm width - (curFont

stringWidth: title)) // 2 @ 4).

(Pen new: aForm)

place: (p + (0 @ (curFont basePoint y + 1)));

goto: (p + ((curFont stringWidth: title)

@ (curFont basePoint y + 1))).

planForm := Form

width: (w := aForm width * 7 // 10)

height: (h := aForm height * 7/I 10).

plan isNil ifFalse: [

self displayTasksOn: planForm].

planForm

border: planForm boundingBox

rule: Form over

mask: Form black.

(blt := BitBlt destForm: aForm sourceForm: planForm)

destX: (aForm width - w // 2);

destY: (aForm height -h // 2);

b:cbpsbrws.cls 	 3

copyBits.

executing ifFalse: Usself].

bit destX: 20;

destY: (aForm height - 2 - curFont height).

labels := #('Executed Task"Executing Task' 'Unexecuted Task')

1 to: labels size do: [:i 1

box := Form width: curFont height

height: curFont height.

box perform: (#(black gray white) at: i).

box

border: box boundingBox

rule: Form over

mask: Form black.

label := labels at: i.

bit

sourceForm: box;

copyBits;

destX: (bit destX + 20).

scanner display: label

at: (bit destX @ bit destY).

bit destX: (bit destX + 30 +

(curFont stringWidth: label))].

"aForm!

displayTasksOn: aForm

"Display each of the tasks on aForm. If

we are executing the plan, shade the task

bars to indicate executed, executing, and

unexecuted tasks."

1 currentPlan scale height bit bar tasks start duration

(currentPlan := self currentPlan) isNil

ifTrue: [Aself].

tasks := currentPlan tasks.

tasks isEmpty ifTrue: [Aself].

bit := (BitBlt destForm: aForm sourceForm: nil).

currentPlan endTime = currentPlan startTime

ifTrue: [^self].

scale := (aForm width / (currentPlan endTime

currentPlan startTime)).

height := ((aForm height // tasks size) - 4) min: 10.

tasks do: [:aTask 1

(duration := aTask duration) isNil

ifTrue: [duration := 1].

bar := Form

width: (duration * scale) truncated

height: height.

executing ifTrue: [

• (aCBPS executor tasksExecuted includes: aTask)

ifTrue: [bar black].

(aCBPS executor tasksExecuting includes: aTask)

ifTrue: [bar gray]].

bar

border: bar boundingBox

rule: Form over

mask: Form black.

(start := aTask startTime) isNil

ifTrue: [start := 0].

1

envResources

"Answer a collection of the names of

the resources in the current environment."

1 env 1

env := self currentEnv.

^env resources keys asArray!

envText

"Answer the contents of the

environment resources text pane."

1 currentEnv 1

currentEnv := self currentEnv.

(currentEnv isNil or: [currentEnvResource isNil])

ifTrue: [^"].

^(currentEnv resources

at: currentEnvResource

ifAbsent: [^"]) printString!

evaluatePlan

"Evaluate the current plan. Invoke the

evaluator associated with the CBPS and

show partial results in the status pane."

I eval lib aStream I
(self allTasksBound) ifFalse: [

"self text: 'You must first invoke Plan Selector.'].

lib := self currentLib.

lib remove: aCBPS plan ifAbsent: [

"self text: 'You must first invoke Plan Selector.'].

eval := aCBPS evaluator.

self

changed: #plans;

b:cbpsbrws.cls 	 4

bit

II editPlan

"Allow the user to input the specification

for a plan. This is an unordered plan that

is placed in the current environment. Open

a PlanBrowser to do the actual editing."

self changed: #plans.

PlanBrowser new openOn:

(self currentEnv unorderedPlan)!

II envResourceMenu

"Answer the Menu for the pane that

lists the resources of the current

environment."

"Menu

labelArray: #('Add Resource"Remove Resource')

lines: *()

selectors: #(addEnvResource removeEnvResource)!

sourceForm: bar;

destY: (bit destY + 2);

destX: (start - currentPlan

startTime * scale) truncated;

copyBits;

destY • (blt destY + bar height + 2)]!

I

1

1

1

1

b:cbpsbrws.cls 	 5

updateStatus: 'Evaluating'.

CursorManager execute change.

eval hasViolations

ifTrue: [

aStream := WriteStream on: ".

aStream

nextPutAll: 'Plan Violation : 	eval planViolation printString; Cr.

eval taskViolations do: [:aTask I
aStream nextPutAll: 'Task Violation : 	aTask printString; cr].

self text: aStream contents.

Menu message: 'Continue ...']

ifFalse: [eval evaluatePlan].

self changed: #plans.

(lib includes: aCBPS plan)

ifFalse: [

self updateStatus: 'Forgot/Removed'.

aCBPS plan: Plan new.
•

aCBPS environment requiredTasks: #()]

ifTrue: [

self updateStatus: 'Added/Updatedq.

executing :- false.

self updatePictures.

CursorManager normal change!

executePlan

"Execute the current plan using the

executor associated with the current

CEPS. Show partial results in the

status and picture panes."

(self allTasksBound) ifFalse: [

"self text: 'You must first invoke Plan Selector.'

executing := true.

self updateStatus: 'Executing'.

CursorManager execute change.

self updatePictures.

CursorManager normal change.

self updateStatus: 'Executedr!

initWindowSize

"Answer the initial window size of

the receiver. This method is used

by v286."

"(Display width * 7 // 8) @

(Display height * 6 // 7)!

openOn: aCaseBasedPlanner

"Open the receiver on aCaseBasedPlanner.

Allow the user to perform the activities

of Case Based Planning using the reciever

as a user interface."

1 aTopPane 1

text :- ".

executing := false.

aCBPS := aCaseBasedPlanner.

aTopPane := TopPane new.

aTopPane

label: 'Case Based Planning System';

b:cbpsbrws.cls 	 6

minimumSize: (self initWindowSize);

model: self.

aTopPane

addSubpane:

(ListPane new

title: 'Plans':

model: self;

name: #plans;

change: #selectPlan:;

menu: #cbpsMenu;

framingRatio: (0@0 corner: (1/10)@1)).

aTopPane

addSubpane:

(GraphPane new

model: self;

name: #taskPicture:;

change: #selectTaskPicture:;

menu: #cbpsMenu;

framingRatio: ((1/10)@0 corner: 1@(2 1 5))).

aTopPane

addSubpane:

(PlotPane new

model: self;

name: #plot;

change: #selectPlot;

• 	menu: #cbpsMenu;

font: Font eightLine;

title: 'Resource Usage':

xTitle: 'Time':

yTitle: 'Resource';

xRange: (0 to: 100 by: 10);

yRange: (0 to: 100 by: 10);

framingRatio: ((1/10)@(215) corner: 1@(4/5))).

aTopPane

addSubpane:

(ListPane new

title: 'Env Vars':
model: self;

name: #envResources;

change: #selectEnvResource:;

menu: #envResourceMenu;

framingRatio: ((10/100)@(4 1 5) corner: (251100)@l)).

aTopPane

addSubpane:

(TextPane new

title: 'Env Values':

model: self;

name: #envText;

change: #acceptEnv:from::

framingRatio: H25/100)0(4/5) corner: (40 1100)@1)).

aTopPane

addSubpane:

(TextPane new

title: 'Status';

model: self;

name: #text;

framingRatio: ((40/100)@(4/5) corner: 1@1)).

b:cbpsbrws.cls 	 7

aTopPane dispatcher open scheduleWindow!

plans

"Answer the a collection of the names

of the plans in the current plan library."

I library I

library := self currentLib.

^(library collect: [:plan 1 plan name])

asSortedCollection!

plot

"Answer a collection of collections that

are points for each of the lines in the

plot pane. These lines are the resource

usage and maximum resources available over

time for each of the resources."

1 env rawPoints points result plan history pens i

available start end time max amount sorrePoints mask I

((plan := self currentPlan) isNil or: [

self allTasksBound not]) ifTrue: [^#()].

aCBPS executor reinitialize.

available := (env := self currentEnv) resources deepCopy.

pens := Dictionary new.

rawPoints := Dictionary new.

i := 0.

available keysDo: [:resource 1

(Smalltalk includesKey: #BiColorForm)

ifTrue:

mask := Display compatibleMask color:

(#(1 11 2 8 13 0) at: (i + 1 \\ 6 + 1))]

ifFalse: [

mask := (Form perform:

(#(black darkGray gray lightGray)

at: (i \\ 4 + 1)))].

i := i + 1.

pens at: resource put: (Pen new mask: mask).

rawPoints at: resource put: Dictionary new].

executing

ifTrue: [aCBPS executor replanOnFailure]

ifFalse: [

history := plan history copy.

aCBPS executor doNothingOnFailure].

aCBPS executor simulation

whenBlock: [true]

doBlock: [

executing ifTrue: [self updateTaskPicture].

available keysDo: [:resource 1

(rawPoints at: resource)

at: (time := aCBPS executor time)

put: (time @ (env resources at: resource))]].

aCBPS executePlan.

executing ifFalse: [aCBPS plan history: history].

aCBPS executor reinitialize.

end := max := 0.

result := OrderedCollection new.

available keysDo: [:resource I

amount := available at: resource.

b:cbpsbrws.cls 	 8

somePoints := (rawPoints at: resource)

asSortedCollection: [:ptl :pt2 I ptl x <= pt2 x].

somePoints := somePoints collect: [:pt

pt x @ ((amount - pt y) max: 0)].

somePoints isEmpty ifFalse: [

points := OrderedCollection new.

points add: somePoints first.

2 to: somePoints size do: [:i I
points

add: (somePoints at: i) x

@ (somePoints at: i - 1) y;

add: (somePoints at: i)].

max := ((points inject: points first y into:

[:maxSoFar :pt 1 pt y max: maxSoFar])

max: amount) max: max.

result add: points.

start isNil

ifTrue: [start := points first x]

ifFalse: [start := points first x min: start].

end := points last x max: end.

points addFirst: (pens at: resource)]].

(start isNil or: [end - start = 0]) ifFalse: [

available keysDo: [:resource

amount := available at: resource.

result add:

(Array

with: (pens at: resource)

with: start @ amount

with: end @ amount)].

self

changed: #plot

with: #xRange:

with: (start to: end by:

(end - start / 10)).

self

changed: #plot

with: #yRange:

with: (0 to: max + 10 by: 10)].

^result!

plotOLD

"Answer a collection of collections that

are points for each of the lines in the

plot pane. This method knows too much about

plotting of the special resource named #Power.

It should be modified to be able to plot any

resource."

1 env rawPoints points result plan history power start end time max

(plan := self currentPlan) isNil ifTrue: [^#0].

aCBPS executor reinitialize.

power := (env := self currentEnv)

resources at: #Power ifAbsent: [^#()].

rawPoints := Dictionary new.

executing

ifTrue: [aCBPS executor replanOnFailure]

ifFalse: [

history := plan history copy.

b:cbpsbrws.cis

aCBPS executor doNothingOnFailure].

aCBPS executor simulation

whenBlock: [true]

doBlock: [

executing ifTrue: [

self updateTaskPicture].

rawPoints at: (time := aCBPS executor time)

put: (time @ (env resources at: #Power))].

aCBPS executePlan.

executing ifFalse: [

aCBPS plan history: history].

aCBPS executor reinitialize.

rawPoints := rawPoints asSortedCollection:

[:ptl :pt2 1 ptl x <= pt2 x].

rawPoints := rawPoints collect: [:pt 1

pt x @ ((power - pt y) max: 0)].

rawPoints isEmpty ifTrue: [^#()].

points := OrderedCollection new.

points add: rawPoints first.

2 to: rawPoints size do: [:i 1

points

add: (rawPoints at: i) x

@ (rawPoints at: i - 1) y;

add: (rawPoints at: i)].

max := points inject: points first y into:

[:maxSoFar :max 1 max y max: maxSoFar].

result := OrderedCollection with: points.

result add:

(Array

with: (start := points first x) @ power

with: (end := points last x) @ power).

end - start = 0 ifTrue: [^#()]. 	•

self

changed: #plot

with: #xRange:

with: (start to: end by: (end - start / 10)).

self

changed: #plot

with: #yRange:

with: (0 to: (max max: power) + 10 by: 10).

^result!

• removeEnvResource

"Remove the current resource from the

current environment. Update any panes

affected."

1 currentEnv 1

currentEnv := self currentEnv.

(currentEnv isNil or: [

currentEnvResource isNil])

ifTrue: ["self].

currentEnv resources removeKey: currentEnvResource.

currentEnvResource := nil.

self

updateEnvResources;

changed: #plot!

b:cbpsbrws.cls 	 10

selectEnvResource: aSt ring

"The resource pane has been selected so

show the value of the resource on the

environment resource text pane."

currentEnvResource := aString.

self changed: #envText!

selectPlan

"There is an unordered plan in the

environment that is a specification

of the operators requirements.

Perform the CEPS plan selection module

functions using the unordered plan and

the selector for the CBPS."

1 newPlan env lib selector extra missing aStream 1

env := self currentEnv.

selector := aCBPS selector.

CursorManager execute change.

newPlan := selector locatePlan.

CursorManager normal change.

extra := (newPlan extraTasks: env requiredTasks) size.

missing := (newPlan missingTasks: env requiredTasks) size.

aStream := WriteStream on: ".

aStream

nextPutAll: 'Located 	newPlan printString; cr;

nextPutAll: ' 	', extra printString, ' extra task(s), ';

nextPutAll: missing printString, ' missing task(s)'; cr;

nextPutAll: ' 	1 , newPlan history printString; or.

self text: aStream contents.

Menu message: 'Continue ...".

newPlan := selector constructPlan.

aStream := WriteStream on: ".

aStream

nextPutAll: 'Constructed ', newPlan printString; or;

nextPutAll: 	removing ', extra printString, ' extra task(s), '; or;

nextPutAll: ' 	adding ', missing printString, ' missing task(s)'.

self text: aStream contents.

((lib := self currentLib) includes: newPlan)

ifFalse: [lib add: newPlan].

self changed: #plans

with: #restoreSelected: 	 •

with: newPlan name.

Menu message: 'Continue ...r.

aCBPS plan: newPlan.

self updateStatus: 'Verifying'.

CursorManager execute change.

aCBPS executor reinitialize.

aCBPS executor simulation

atTime: (newPlan startTime)

doAction: (Array with: self

with: #updateTaskPicture with: #()).

b:cbpsbrws.cls 	 11

selector verifyPlan isNil

ifTrue: [

self text: 'Verify failed : 	newPlan printString.

Menu message: 'Continue ...'].

CursorManager normal change.

executing := false.

aCBPS. executor reinitialize.

self updateStatus: 'Selecting'.

self

updateEnvResources;

updatePictures!

selectPlan: aString

"The plan library pane has been selected.

Search the plan library for the plan that

has the same name as aString name. Update

the other panes accordingly."

1 plan library env 1

CursorManager execute change.

library := self currentLib.

plan := library

detect: [:plan 1

plan name — aString]

ifNone: ['Self].

env := self •currentEnv.

env requiredTasks: plan tasks.

env unorderedPlan rules: plan rules.

aCBPS plan: plan copy.

executing := false.

self

updateStatus: 'Selecting';

updatePictures.

CursorManager normal change!

selectPlot

"The plot pane has been selected.

Do nothing."!

selectTaskPicture: aPoint

"The task picuture pane has been selected.

Do nothing."!

taskPicture: aRect

"Answer a Form for the task picture pane

and display the form as the contents of

the pane."

1 aForm 1

aForm := Form

width: aRect width

height: aRect height.

self displayPlanOn: aForm.

aForm displayAt: aRect origin.

taskPicture := aForm.

^aForm!

text

b:cbpsbrws.cls 	 12

"Answer the contents of the

environment resouce text pane."

^text!

text: aString

"Set the contents of the environment

resource text pane and update the pane

to show aString."

text := aString.

self changed: *text!

updateEnvResources

"Refresh the environment resource panes."

currentEnv 1

currentEnv := self currentEnv.

I

((currentEnvResource notNil and: [currentEnv notNil]) and: [

currentEnv resources keys includes: currentEnvResource])

ifTrue: [

self changed: #envResources

with: #restoreSelected:

ifFalse:

with: currentEnvResource]

[self changed: #envResources].

self changed: #envText!

updatePictures

"Refresh the picture panes."

self

updateTaskPicture;

changed: #plot!

updateStatus: action

"Refresh the status pane."

1 aStream plan 1

plan := self currentPlan.

' aStream := WriteStream on: ".

aStream

nextPutAll: action, ", plan printString; Cr;

nextPutAll: ' 	', plan history printString.

self text: aStream contents!

updateTaskPicture

"Refresh the task picture pane."

self displayPlanOn: taskPicture white.

self changed: #taskPicture:! !

dialogbx.cls 	 1

SubPane subclass: #DialogBox

instanceVariableNames:

'contents '

classVariableNames: "

poolDictionaries:

'FunctionKeys ' !

!DialogBox class methods ! !

!DialogBox methods !

defaultDispatcherClass

"Answer GraphDispatcher which is the

default dispatcher of a DialogBox."

^GraphDispatcher!

displayItem: anItem at: aPoint

"Display the item at aPoint."

(anItem isKind0f: String)

ifTrue: [

paneScanner display: anItem at:

(aPoint - frame origin)']

ifFalse: [anItem displayAt: aPoint]!

displayItems

"Show the items in the pane."

I offset max w h I

Pane windowClip: paneScanner frame.

offset := frame origin + 2.

contents do: [:line I

max := line inject: 0 into: [:maxSoFar :item I

maxSoFar max: (self itemHeight: item)].

line do: [:item I
w := self itemWidth: item.

h := self itemBeight: item.

self

displayItem: item

at: (offset x @ (offset y

+ (max - h // 2))).

offset x: (offset x + w)].

offset x: frame left + 2;

y: offset y + max + 2].

Pane initWindowClip!

initialize

"Initialize the pane instance variables."

super initialize.

topCorner := 101.

curFont := ListFont!

itemHeight: anItem

"Answer the height of the item."

(anItem isKind0f: String)

ifTrue: [scurFont height].

dialogbx.cls 	 2

^anItem extent y!

itemWidth: anItem

"Answer the width of the item."

(anItem isKind0f: String)

ifTrue: ("curFont stringWidth: anItem].

^anItem extent x!

open

"Open the pane."

contents := (name notNil and: [model notNil])

ifTrue: [model perform: name]

• ifFalse: [Array new].

contents := contents collect: [:line 1

line collect: [:item 1

• (item class == String) ifTrue: [item]

ifFalse: [model perform: item]]]!

scrollHand: oldPoint to: newPoint

"Do nothing. This method

is used by v286."!

scrollLeft: anInteger

"Do nothing. This method

is used by v286."!

scrollTopCorner: anInteger

"Do nothing. This method

is used by v286."!

scrollUp: anInteger

"Do nothing. This method

is used by v286."!

selectAtCursor

"Select at the current location in the pane.

Search for an item that contains the current

location of the cursor and inform it that it

has been selected."

contents do: [dine 1

line do: [:item I
(item respondsTo: #containsPoint:)

ifTrue: [

(item containsPoint: Cursor offset)

ifTrue: [

Pane windowClip: frame.

item selectAtCursor.

"Pane initWindowClip]]]]!

showWindow

"Display the receiver pane

and the selection."

Display white: paneScanner clipRect.

self

displayItems;

border: frame;

border!

dialogbx.cls 	 3

topCorner

"Answer the topCorner."

^topCorner!

totalLength

"Answer the height of the pane.

This method is used by v286."

^frame height // curFont height!

update

"Update the contents of the

receiver pane."

self

• open;

showWindow! !

1

fildedtr.cls 	 1

PromptEditor subclass: #FieldEditor

instanceVariableNames:

tstrokeBlock '

classVariableNames: "

poolDictionaries:

'FunctionKeys CharacterConstants ' !

!FieldEditor class methods ! !

nnn

!FieldEditor methods !

processFunctionKey: aCharacter

"Private - Process function keys

from the keyboard or mouse."

aCharacter == CycleFunction

ifTrue: ["self accept].

aCharacter == WindowMenuRequest

ifTrue: ["self accept].

(aCharacter == SelectFunction

or: [aCharacter == PaneMenuRequest])

ifTrue: [

pane hasCursor ifFalse: [

"self accept]].

super processFunctionKey: aCharacter!

processInputKey: aCharacter

"Private - Check to see whether the

character is permissable."

(strokeBlock isNil or:

[(strokeBlock value: aCharacter)])

ifTrue: [super processInputKey: aCharacter]

ifFalse: [Terminal bell]!

strokeBlock: aValue

"Set the value of strokeBlock"

strokeBlock:= aValue! !

field.cls 	 1

Object subclass: *Field

instanceVariableNames:

'model changeSelector offset width default font resultClass acceptBlock strokeBlock '

classVariableNames: "

poolDictionaries:

'CharacterConstants ' !

!Field class methods !

new

"Create a new instance of the

receiver and initialize it."

"super new : initialize! !

!Field methods !

acceptBlock: aValue

"Set the value of acceptBlock"

acceptBlock:= aValue!

boundingBox

"Answer the frame that contains

the field and its contents."

"offset extent: ((width A- 1 *

font width) @ (font height I- 4))!

change

"Answer the value of changeSelector"

^changeSelector!

change: aValue

"Set the value of changeSelector"

changeSelector := aValue!

containsPoint: aPoint

"Answer true if the receiver

contains aPoint."

"self boundingBox containsPoint: aPoint!

default

"Answer the value of default"

^default!

default: aValue

"Set the value of default"

default := aValue!

display

"Show the field. Draw two

lines around the aRectangle."

self displayClipRect: Pane windowClip!

displayAt: aPoint

"Show the field. Draw two

field.cls 	 2

lines around the aRectangle."

offset := aPoint.

self display!

displayClipRect: clipRect

"Show the field. Draw two

lines around the aRectangle."

I aRectangle scanner!

aRectangle := self boundingBox.

scanner := CharacterScanner new

initialize: aRectangle

font: font.

scanner

clipRect: (clipRect intersect: aRectangle);

display: default

from: J.

at: 2@2.

Display border: aRectangle

clippingBox: clipRect

rule: Form over

mask: Form black.

Display

border: (aRectangle insetBy: 1@l)

clippingBox: clipRect

rule: Form over

mask: Form white!

edit

"Allow the user to edit the

contents of the field."

! replyPane topPane aStringl

topPane := TopPane new.

topPane addSubpane:

(replyPane := TextPane new

model: self;

name: #default;

dispatcher:

(FieldEditor new

strokeBlock: strokeBlock);

font: font).

replyPane

reframe: (self boundingBox

intersect: Pane windowClip);

open;

showWindow;

selectAtCursor.

replyPane dispatcher processInput.

aString := replyPane contents trimBlanks.

(acceptBlock value: aString)

ifTrue: [default := aString]

ifFalse: [replyPane cancel].

replyPane

refreshAll;

selectAfter: 0@1;

forceSelectionOntoDisplay;

hideSelection;

close.

field.cls 	 3

Dependents removeKey: self ifAbsent: [].

self update.

^default!

extent

"Answer the extent of

the field and its contents."

^((width + 1 * font width) @ (font height + 4)

initialize

"Initialize the instance variables

of the receiver"

default := ".

width := O.

offset := 0 @ O.

font := "Font eightLine" SysFont.

acceptBlock := [:aValue 1 true].

strokeBlock := [:aChar 1 true]!

model

"Answer the value of Model"

^model!

model: aValue

"Set the value of model"

model:= aValue!

offset

"Answer the value of offset"

"offset!

offset: aValue

"Set the value of offset"

offset:- aValue!

resultClass: aClass

"Set the value of resultClass"

resultClass:= aClass!

select

"Edit the contents of the field."

"self edit!

selectAtCursor

"Edit the contents of the field."

"self edit!

strokeBlock: aValue

"Set the value of strokeBlock"

strokeBlock:= aValue!

update

"The default value has changed

update the model if there is one."

(model notNil and: [changeSelector notNil])

ifTrue: [

model

!

field.cls 	 4

perform: changeSelector

with: default]!

width

"Answer the value of width"

"width!

II width: aValue

"Set the value of width"

width:= aValue! !

ibrrybrw.cls 	 1

PlanBrowser subclass: #LibraryBrowser

instanceVariableNames:

'library '

classVariableNames: "

poolDictionaries: " !

!LibraryBrowser class methods ! !

!LibraryBrowser methods !

addPlan

"Add a new plan to the current library. Make

sure the name is unique with respect to the

other plans and refresh affected panes."

1 name newPlan 1

(name := Prompter prompt: . 'Name ?'

default: 'PlanX') isNil

ifTrue: (^self].

library do: [:aPlan 1

aPlan name = name ifTrue: [

Menu message: 'The name 1", name, '" is already taken, choose another name.'.

"self]].

newPlan := Plan new name: name.

library add: newPlan.

currentPlan := newPlan.

currentTask := currentResource := nil. 	-

self

changed: #plans

with: #restoreSelected:

with: name;

changed: #tasks;

changed: *taskDialog;

changed: *resources;

changed: #resourceText;

changed: #taskText;

changed: #taskRule;

changed: #planRule!

openOn: aLibrary

"Open a browser on a plan library. Provide

a user interface to an OrderedCollection of

Plan objects."

1 aTopPane 1

library := aLibrary.

aTopPane := TopPane new.

aTopPane

label: 'Library Browser';

minimumSize: (self initWindowSize);

model: self.

aTopPane

addSubpane:

(ListPane new

title: 'Plans':

model: self;

lbrrybrw. cls 	 2

name: #plans;

change: #selectPlan:;

menu: #planMenu;

framingRatio: (0@0 corner: (1/9)@1)).

aTopPane

addSubpane:

(ListPane new

title: 'Tasks';

model: self;

name: *tasks;

change: #selectTask:;

menu: #taskMenu;

framingRatio: ((1/9)@0 corner: (2 1 9)@1)).

aTopPane

addSubpane:

(DialogBox new

.title: 'Task Values';

model: self;

name: #taskDialog;

framingRatio: ((2/9)@0 corner: (1/2)@(1/2))).

aTopPane

addS'ubpane:

(ListPane new

title: 'Resource Namer;

model: self;

name: *resources;

change: #selectResource:;

menu: #resourceMenu;

framingRatio: ((2/9)@(1/2) corner: (1/2)@(3 1 4))).

aTopPane

addSubpane:

(TextPane new

title: 'Resource Value';

model: self;

name: #resourceText;

change: #acceptResource:from:;

framingRatio: ((2/9)@(3/4) corner: (1/2)@1)).

aTopPane

addSubpane:

(TextPane new

title: 'Task Rules';

model: self;

name: #taskRule;

change: #acceptTaskRule:from:;

framingRatio: ((1/2)@0 corner: 1@(1/2))).

aTopPane

addSubpane:

(TextPane new

title: 'Plan Rulesr;

model: self;

name: #planRule;

change: #acceptPlanRule:from:;

framingRatio: ((1 12)@(1 1 2) corner: 1@1)).

aTopPane dispatcher open scheduleWindow!

planMenu

"Answer the Menu for the pane that

lbrrybrw.cls 	 3

lists the plans in the plan library."

"Menu

labelArray: #('Add Plan' 'Remove Plan')

lines: #()

selectors: #(addPlan removePlan)!

plans

"Answer the a collection of the names

of the plans in the plan library."

^library çollect: [:plan 1 plan name]!

removePlan

"Remove the selected plan from the

plan library. Refresh affected panes."

library remove: currentPlan.

currentTask := currentPlan := nil.

self

changed: #plans;

changed: #tasks;

changed: #taskDialog;

changed: #resources;

changed: #resourceText;

changed: #taskText;

changed: #taskRule;

changed: #planRule!

selectPlan: aSt ring

"The plan library pane has been selected.

Search the plan library for the plan that

has the same name as aString. Refresh any

other panes affected and set the selected

plan."
1 plan 1
plan := library

detect: [:plan 1

plan name = aString]

ifNone: [^self].

currentPlan := plan.

currentTask := currentResource := nil.

self

changed:

changed:

changed:

changed:

changed:

changed:

changed:

#tasks;

#taskDialog;

#resources;

#resourceText;

#taskText;

#taskRule;

#planRule! !

1

1
1
I

pinbrwsr.cls

TaskBrowser subclass: #PlanBrowser

instanceVariableNames:

'currentPlan r

classVariableNames: "

poolDictionaries: " !

!PlanBrowser class methods ! !

!PlanBrowser methods !

acceptPlanRule: aString from: aDispatcher

"Accept aString as the new contents

of the plan rule text pane. Answer true

if the string was acceptable. Compile

and install the PROLOG code."

1 result code 1

currentPlan isNil ifTrue: [^false].

aString isEmpty

ifFalse: [

code := currentPlan replaceHead: aString.

result := TaskRules

compileLogic: code

notifying: aDispatcher.

result isNil

ifTrue: (^ false].

Smalltalk

logPrologSource: code

forSelector: result key

inClass: Tas kRules.

currentPlan name: (result key copyFrom: 1

to: result key size - 1)].

self changed: #planRule.

^true!

acceptTaskRule: aString from: aDispatcher

"If the super class says the string was

acceptable, refesh some panes and answer

true."

(super acceptTaskRule: aString from: aDispatcher)

ifFalse: ["false].

self

changed: #tasks

with: #restoreSelected:

with: currentTask name.

^true!

addTask

"Add a new task to the current plan. Make

sure the name is unique with respect to the

other tasks and refresh affected panes."

I name newTask tasks I
currentPlan isNil ifTrue: [^self].

(name := Prompter prompt: 'Name ?'

default: rtaskX') isNil

pinbrwsr.cls 	 2

ifTrue: ["self].

tasks := currentPlan tasks.

tasks do: [:aTask 1

aTask name = name asSymbol ifTrue: [

Menu message: 'The name ", name, '" is already taken, choose another name.'.

"self]].

newTask := Task new name: name.

currentPlan addTask: newTask.

currentTask := newTask.

self

changed: #tasks

with: #restoreSelected:

with: currentTask name.

self

changed: #taskDialog;

changed: #resources;

changed: #resourceText;

changed: #taskRule.

CursorManager execute change.

self .

acceptPlanRule: self planRule

from: nil.

CursorManager normal change!

defaultPlanRule

"Answer the default rule for the

plan. This is a PROLOG horn clause."

1 aStream 1

currentPlan isNil ifTrue: [^"].

aStream := WriteStream on: ".

aStream

nextPutAll: currentPlan ruleHead; cr;

nextPutAll: ' 	!!.r. 	'

^aStream contents!

nàmeFromString: aString

"Set the duration of the receiver

from a String representation. Call

the super and refresh panes."

super nameFromString: aString.

self

changed: #tasks

with: #restoreSelected:

with: currentTask name!

openOn: aPlan

"Open a browser on aPlan. Provide a

user interface to a Plan object."

1 aTopPane I

currentPlan := aPlan.

aTopPane := TopPane new.

aTopPane

label: 'Plan Browser':

minimumSize: (self initWindowSize);

model: self.

aTopPane

addSubpane:

pinbrwsr.cls

(ListPane new

title: 'Tasks':

model: self;

name: #tasks;

change: #selectTask:;

menu: #taskMenu;

framingRatio: (0@0 corner: (1/8)@1)).

aTopPane

addSubpane:

(DialogBox new

title: 'Task Values':

model: self;

name: #taskDialog;

framingRatio: ((1/8)@0 corner: (1/2)@(1/2))).

aTopPane

addSubpane:

(ListPane new

title: 'Resource Name':

model: self;

name: #resources;

change: •selectResource:;

menu: #resourceMenu;

framingRatio: ((1/8)0(1 12) corner: (1/2)@(3/4))).

aTopPane

addSubpane:

(TextPane new

title: 'Resource Value';

model: self;

name: #resourceText;

change: #acceptResource:from:;

framingRatio: ((1/8)@(3/4) corner: (1/2)@1)).

aTopPane

addSubpane:

(TextPane new

title: 'Task Rules';

model: self;

name: #taskRule;

change: #acceptTaskRule:from:;

framingRatio: ((1/2)@0 corner: 1@(1/2))).

aTopPane

addSubpane:

(TextPane new

title: 'Plan Rules';

model: self;

name: #planRule:

change: #acceptPlanRule:from:;

framingRatio: ((1/2)@(1/2) corner: 1@1)).

aTopPane dispatcher open scheduleWindow!

planRule

"Answer the contents of the plan rule pane."

I text I

(currentPlan isNil or: [

(text := currentPlan rules) asString

= (currentPlan name,':')])

ifTrue: ['self defaultPlanRule].

^text!

pinbrwsr.cls 	 4

removeTask

"Remove the current selected task from

the current plan. Refresh panes."

(currentPlan isNil or:

[currentTask isNil])

ifTrue: ["self].

currentPlan removeTask: currentTaSk.

currentTask := currentResource := nil.

self

changed: #tasks;

changed: #taskDialog;

changed: #resources;

changed: #resourceText;

changed: #taskRule.

CursorManager execute change.

self

acceptPlanRule: self planRule

from: nil.

CursorManager normal change!

selectTask: aString

"The task pane has been selected.

Display the task information in the text

pane. Refresh any other panes and set

the selected task."

1 tasks I

currentPlan isNil ifTrue: ["self].

tasks := currentPlan tasks.

currentTask := tasks

detect: [:task I

task name — aString]

ifNone: ["self].

self changed: #taskDialog.

(currentResource isNil or: [

(currentTask resources includesKey:

currentResource) not])

ifTrue: [self changed: #resources]

ifFalse: [

self changed: #resources

with: #restoreSelected:

with: currentResource].

self

changed: #resourceText;

changed: #taskText;

changed: #taskRule!

taskMenu

"Answer the Menu for the pane that

lists the task in the current plan."

"Menu

labelArray: #('Add Task' 'Remove Task')

lines: #()

selectors: #(addTask removeTask)!

tasks

"Answer a collection of the task

pinbrwsr.cls 	 5

names that belong to the selected

plan."

currentPlan isNil ifTrue: [^#()].

^(currentPlan tasks

collect: [:aTask 1 aTask name])

asSortedCollection! !

plotpane.cls

SubPane subclass: #PlotPane

instanceVariableNames:

'title xTitle yTitle xRange yRange plotPen lines graphOrigin

classVariableNames: '

poolDictionaries: if !

!PlotPane class methods !

plotTest

"PlotPane plotTest"

1 aTopPane 1

aTopPane := TopPane new.

aTopPane

label: 'Testing Plot Pane';

model: aTopPane dispatcher;

minimumSize: 24@48;

addSubpane:

(PlotPane new

model: self;

title: 'Plot Test';

xTitle: 'x';

yTitle: 'y';

name: #points).

aTopPane dispatcher open scheduleWindow!

points

I items I
items := OrderedCollection new.
items

add: 0@0;

add: S@3;

add: 5@5;

add: l0@5.

'items! !

!PlotPane methods !

computeOrigin

"Compute the origin of the axis."

Iwhl
w := frame width. h := frame height.

graphOrigin := frame origin +
(w * 3 // 20 @ (h •* 17 // 20))!

defaultDispatcherClass

"Answer GraphDispatcher which is the

default dispatcher of a PlotPane."

^GraphDispatcher!

displayPoint: aPoint

"Answer aPoint scaled to fit on the

plotting surface."

IxY1

plotpane.cls 	 2

x := graphOrigin x + ((aPoint x - (xRange first))

/ ((xRange size - 1) * xRange increment) *

(frame width * 7 // 10)).

y := graphOrigin y - ((aPoint y - (yRange first))

/ ((yRange size - 1) * yRange increment)

* (frame height * 7 // 10)).

"(x @ y) truncated!

initialize

"Initialize the pane instance variables."

super initialize.

topCorner := 101.

curFont := ListFont.

plotPen := Pen new.

xTitle := yTitle := title := ".

xRange := yRange := 0 to: 10.

lines:= Array new!

lines: someLines

"Set the lines to be plotted by the receiver."

lines := someLines!

open

"Open the pane. Get the lines

to be plotted by the reciever."

lines :=

(name notNil and: [model notNil])

ifTrue: [model perform: name]

ifFalse: [Array new]!

plotLines

"Plot the lines in the pane. See if

there is more that one line to be plotted
and plot them accordingly."

(lines notEmpty and: [

lines first isKind0f: Point])

ifTrue: ["self ploti)oints: lines].
lines do: [:line 1

self plotPoints: line]!

plotPoints: somePoints

"Plot the points in the pane."

1 pts aPen 1

somePoints isEmpty ifTrue: ["self].

 (somePoints first isKind0f: Pen)

ifTrue: [

pts := somePoints copyFrom: 2

to: somePoints size.

aPen := somePoints first

clipRect: plotPen clipRect;

destForm: plotPen destForm]

ifFalse: [

aPen := plotPen.

pts := somePoints].

self plotPoints: pts withPen: aPen.!

plotPoints: somePoints withPen: aPen

plotpane.cls 	 3

"Plot the points in the pane."

somePoints isEmpty ifTrue: ['Self].

aPen place: (self displayPoint: somePoints first).

somePoints do: [:aPoint 1

aPen goto: (self displayPoint: aPoint)]!

plotTitle

"Plot the title of the pane."

1whpl

w := frame width. h := frame height.

title isEMpty ifFalse: [

paneScanner

display: title

plot:en

(p := (w - (curFont stringWidth: title)) // 2 @ 4).

place: (frame origin + p + (0 @ (curFont basePoint y + 1)));

goto: (frame origin + p + ((curFont stringWidth: title)

@ (curFont basePoint y + 1)))]!

plotXScale

"Plot the x-scale of the pane."

I w h stringWidth 1

w := frame width.

h := curFont height // 2.

plotPen place: graphOrigin.

xRange do: [:x 1

plotPen

goto: (graphOrigin x + ((x - xRange first) * (w * 7 // 10)

// ((xRange size - 1) * xRange increment)) @ graphOrigin y);

tick].

paneScanner

display: xTitle

at: (frame width - ((curFont stringWidth: xTitle) + 2))

@ (frame height - (curFont height + 2)).

"at: (frame width + (curFont stringWidth: xTitle)

// 2 @ (2 * h plotPen location y - frame top))."

stringWidth := curFont stringWidth: xRange last printString.

paneScanner

display: xRange last printString

at: (plotPen location - frame origin

+ (stringWidth // -2 @ h)).

stringWidth := curFont stringWidth: xRange first printString.

paneScanner

display: xRange first printString

at: (graphOrigin - frame origin

+ (stringWidth // -2 @ h))!

plotYScale

"Plot the y-scale of the pane."

1 w h stringHeight 1

h := frame height.

yRange do: [:y 1

plotPen

goto: graphOrigin x @ (graphOrigin y

- ((y - yRange first) * (h * 7 // 10)

// ((yRange size - 1) * yRange increment)));

tick].

plotpane.cls 	 4

1

paneScanner

display: yTitle

at: 2 @ (plotPen location y - (frame top

+ curFont height + 8)).

stringHeight := curFont height.

w := ((curFont stringWidth: yRange last

printString) + curFont width) negated.

paneScanner

display: yRange last printString

at: (plotPen location - frame origin

+ (w @ (stringHeight // -2))).

w := ((curFont stringWidth: yRange first

printString) + curFont width) negated.

paneScanner

display: yRange first printString

at: (graphOrigin - frame origin

+ (w @ (stringHeight // -2)))!

scrollHand: oldPoint to: newPoint

"Do nothing. This method

is used by v286."!

scrollLeft: anInteger

"Do nothing. This method

is used by v286."!

scrollTopCorner: anInteger

"Do nothing. This method

is used by v286."!

scrollUp: anInteger

"Do nothing. This method

is used by v286."!

selectAtCursor

"The pane has been selected.

Inform the model (if necessary)"

changeSelector notNil ifTrue: [

model perfôrm: changeSelectorl!

showWindow

"Display the receiver pane

and the selection."

Display white: paneScanner clipRect.

plotPen clipRect: paneScanner clipRect

self

computeOrigin;

border;

plotTitle;

plotXScale;

plotYScale;

plotLines!

title: aString

"Set the value of the title."

title := aString!

plotpane.cls 	 5

topCorner

"Answer the topCorner."

^topCorner!

totalLength

"Answer the height of the pane.

This method is used by v286."

^frame height // curFont height!

update

"Update the contents of the

receiver pane."

self

open;

showWindow!

xRange: aCollect ion

"Set the value of the xRange."

xRange := aCollection! .

xTitle: aString

"Set the value of the xTitle."

xTitle := aStting!

yRange: aCollect ion

"Set the value of the yRange."

yRange := aCollection!

yTitle: aString

"Set the value of the yTitle."

yTitle := aString! !

tskbrwsr.cls 	 1

Object subclass: #TaskBrowser

instanceVariableNames:

'currentTask currentResource '

classVariableNames: "

poolDictionaries: " !

!TaskBrowser class methods ! !

!TaskBrowser methods !

acceptResource: aString from: aDispatcher

"Accept aString as the new contents

of the resource text pane. Answer true

if the string was acceptable."

I newValue 1

(currentResource isNil or: [currentTask isNil])

ifFalse: [

newValue := Compiler evaluate: aString.

currentTask resources at: currentResource put: newValue].

self changed: #resourceText.

^true!

acceptTaskRule: aString from: aDispatcher

"Accept aString as the new contents

of the task rule pane. Answer true if

the string was acceptable. Compile

and install the PROLOG code."

I result I

currentTask isNil ifTrue: [^false].

result := TaskRules

compileLogic: aString

notifying: aDispatcher.

result isNil

ifTrue: [^false].

Smalltalk

logPrologSource: aString

forSelector: result key

inClass: TaskRules.

currentTask name: (result key

copyFrom: 1

to: result key size - 1).

self

changed: #taskDialog;

changed: #taskRule.

^true!

addResource

"Add a new resource to the task."

I name I

currentTask isNil ifTrue: [^self].

(name := Prompter prompt: 'Name ?'

default: 'Power') isNil

ifTrue: ["self].

currentTask resources at: name asSymbol put: 10.

tskbrwsr.cls 	 2

currentResource := name asSymbol.

self

changed: #resources

with: #restoreSelected:

with: currentResource;

changed: #resourceText!

default: aSymbol

"Answer the default value for the

instance variable of the task that

is extracted by executing the method

named aSymbol in the current task."

1 value 1

(value := currentTask perform: aSymbol) isNil

ifTrue: [^'?'].

(value isKind0f: String)

ifTrue: ['value].

' value printString!

defaultTaskRule

"Answer the default task rule for the

task. This is a PROLOG horn clause."

• 1 name 1

currentTask isNil ifTrue: [^ 11].

name := currentTask name. •

^name, ' (r, name, ') :-

member ([0, 20, 40, 60], start),

task (r, name,', start, 10).'!

durationField

"Answer the field that will be used

to edit the duration of the current

task in a Dialog with the user."

'Field new

model: self;

change: #durationFromString:;

default: (self default: #duration);

width: 6!

durationFromString: aString

"Set the duration of the receiver

from a String representation. Verify

the new value and accept a '7" to mean

that the variable is to be unbound (nil)."

1 number oldValue 1

aString trimBlanks = '?'

ifTrue: ["currentTask duration: nil].

number := aString asInteger.

number = (oldValue := currentTask duration)

ifFalse: [currentTask duration: number].

currentTask verify ifFalse: [

currentTask duration: oldValue.

self changed: #taskDialog]!

initWindowSize

"Answer the initial window size of

the receiver. This method is used

tskbrwsr.cls 	 3

by v286."

"(Display width - 20) @

(Display height * 2 // 3)!

nameField

"Answer the field that will be used

to edit the name of the current task

in a Dialog with the user."

'Field new

model: self;

change: #nameFromString:;

default: currentTask name;

width: 6!

nameFromString: aString

"Set the name of the current task from a String."

aString = currentTask name

ifFalse: [currentTask name: aString].

self changed: #taskRule!

openOn: aTask

"Open a browser on aTask. Provide

a user interface to a Task object."

I aTopPane 1

currentTask := aTask.

aTopPane := TopPane new.

aTopPane

label: 'Task Browser';

minimumSize: (self initWindowSize);

model: self.

aTopPane

addSubpane:

(DialogBox new

title: 'Task Values';

model: self;

name: #taskDialog;

framingRatio: (0@0 corner: (1/2)0(1/2))).

aTopPane

addSubpane:

(ListPane new

title: 'Resource Namer;

model: self;

name: #resources;

, change: #selectResource:;

menu: #resourceMenu;

framingRatio: (0@(1/2) corner: (1/2)@(3/4))).

aTopPane

addSubpane:

(TextPane new

title: 'Resource Value';

model: self;

name: #resourceText;

change: #acceptResource:from:;

framingRatio: (0@(3 14) corner: (1/2)@1))

aTopPane

addSubpane:

(TextPane new

tskbrwsr.cls 	 4

title: 'Task Rules';

model: self;

name: #taskRule;

change: #acceptTaskRule:from::

framingRatio: ((1/2)@0 corner: 1Q1)).

aTopPane dispatcher open scheduleWindow!

removeResource

"Remove the current resource from the

current task. Refresh affected panes."

(currentResource isNil or: [

currentTask isNil or: [

(currentTask resources

includesKey: currentResource) not]])

ifTrue: ["self].

currentTask resources removeKey: currentResource.

currentResource := nil.

self

changed: #resources;

changed: #resourceText!

resourceMenu

"Answer the Menu for the resource pane that

lists the resources in the current task."

"Menu

labelArray: #('Add Resource"Remove Resource')

• 	lines: #()

selectors: #(addResource removeResource)!

resources

"Answer a collection of the names of

the resources for the current task."

currentTask isNil ifTrue: [^#0].

AcurrentTask resources keys asArray!

resourceText

"Answer the contents of the resource text pane."

(currentResource isNil or: [currentTask isNil])

ifTrue: [^"].

^(currentTask resources at: currentResource

ifAbsent: [^"]) printString!

selectResource: aString

"The resource pane has been selected so

show the value of the resource that has

the same name as aString in the resource

text pane."

currentResource := aString.

self changed: #resourceText!

startField

"Answer the field that will be used

to edit the start time of the current

task in a Dialog with the user."

"Field new

model: self;

change: #startTimeFromString::

tskbrwsr.cls 	 5

default: (self default: #startTime);

width: 6!

startTimeFromString: aString

"Set the start time of the receiver

from a String representation. Verify

the new value and accept a '2' to mean

that the variable is to be unbound (nil)."

1 number oldValue 1

aString trimBlanks = '?'

ifTrue: [scurrentTask startTime: nil].

number := aString asInteger.

number — (oldValue := currentTask startTime)

ifFalse: [currentTask startTime: number].

currentTask verify ifFalse: [

currentTask startTime: oldValue.

self changed: #taskDialogl!

taskDialog

"Answer the contents of a dialog

pane that will be used to edit

the current task."

currentTask isNil ifTrue: [^#()].

^#((")
('Name: 	' nameField)

('Start Time: ' startField)

('Duration: 	durationField))!

taskRule

"Answer the contents of the task rule pane."

I . text 1

currentTask isNil ifTrue: [^"].

(text := currentTask rules) asString

= (currentTask name,':')

ifTrue: (^self defaultTaskRule].

"text! !

cbpsuser.st 	 1

"This file will install in all of the source

files for the Case Based Planning System (CBPS)

user-interface objects. The CEPS objects

can be found s in the file fcbps.str.

Edit #FileIn be the path were the source files

are contained and then execute the following:

1 dir 1

dir := Smalltalk at: #FileInDir put:

(Directory pathName: f a:\').
(dir file: 'cbpsuser.st')

fileIn;

close.

Smalltalk removeKey: #FileInDir.

For an example that tests to test the code

try:

CBPSBrowser example

This expression will create a CBPS, set a

default unordered plan and library, and

invoke the Selector, Executor and Evaluator.

It

1 bytes stream 1

Transcript Cr; show: 'Filing in CBPS user-interface '.

bytes := O.

#("fildedtr.cls'

'field.cls'

'dialogbx.cls'

'plotpane.cls'

'titlepan.prj'

ftskbrwsr.cls'

'pinbrwsr.cls'

'lbrrybrw.cls'

'cbpsbrws.cls'

'cbpsuser.mth') do: [:narre I
Transcript show: '.'.

(stream := FileInDir file: name)

fileIn; close.

bytes := bytes + stream size].

Transcript Cr; show: 'CBPS user-interface (1 ,

bytes printString, ' bytes) installed.'.

cbpsuser.mth 	 1

II !Pane methods !

font: aFont

"Set curFont, the font currently

associated with the receiver pane."

curFont := aFont! !

!Pen methods !

tick
"Draw a cross at the current location."

1 loc tick 1

tick := 2.

loc := self location.

self

goto: loc x - tick @ loc y; goto: loc;

goto: loc x + tick @ loc y; goto: loc;

goto: loc x @ (loc y - tick); goto: loc;

goto: loc x @ (loc y + tick); goto: loc! !

!TextPane methods !

acceptP rompt

"Private - Accept the prompted string."

(changeSelector isNil or: [model isNil])

ifTrue: [^true]

ifFalse:

^model

perform: changeSelector

with: (textHolder lineAt: 1)

with: dispatcher]!

accept

"Private - Save the currently edited text."

name == #yourself

IfTrue: [

model := textHolder string.

^true].

(changeSelector isNil or: [model isNil])

ifTrue: [^true]

ifFalse: [

^model

perform: changeSelector

with: textHolder string

with: dispatcher]! !

titlepan.prj 	 1

It

**
Project : TitlePane

Date 	: Oct 28, 1987

Time 	: 16:45:34

Globals :

Classes :

Methods : 	 •

#deactivatePane defined in SubPane.

#reframe: defined in SubPane.

#displayTitle defined in SubPane.

#title: defined in SubPane.

#displayWindow defined in SubPane.

#grayTitle defined in SubPane.

#reverse defined in DisplayMedium.

#reverse: defined in DisplayMedium.

#activatePane defined in SubPane.

#graySelection defined in SubPane.

#graySelection defined in ListPane.

#graySelection defined in TextPane.

#graySelection defined in GraphPane.

**

!SubPane methods !

deactivatePane

"Reverse the contents of the title."

1 titleFrame clipRectl

super deactivatePane.

titleFrame := (frame origin - ((AM

extent: (frame width @ 8)).

clipRect := WindowClip intersect: titleFrame.
margin isNil

ifFalse: [Display reverse: clipRect]! !

!SubPane methods !

reframe: aRectangle

"Change the frame rectangle of the receiver pane
based on aRectagle. Also initialize the scroll
bar and the characterScanner."

1 width origin 1

frame := (framingBlock value: aRectangle)

insetBy: (margin isNil ifTrue: [202]

ifFalse: [2012 corner: 282]).

paneScanner := CharacterScanner new

initialize: frame

font: curFont;

setForeColor: self topPane foreColor

backColor: self topPane backColor.

titlepan.prj

width := 10.

origin := frame corner x - width

@ frame origin y.

scrollBar := BitBlt new

destForm: Display

sourceForm: '(Form new

width: width height: frame height * 3;

offset: origin)

halftone: nil

combinationRule: Form over

destOrigin: origin

sourceOrigin: 0 @ 0

extent: width @ frame height

clipRect: (origin extent:

width @ frame height)! !

!SubPane methods !

displayTitle

"Display the title of the

SubPane (if one is present)."

1 titleFrame clipRectl

titleFrame := (frame origin - (0811)

extent: (frame width 8 8)).

clipRect := (WindowClip intersect: titleFrame).

margin isNil

ifFalse: [self border: (titleFrame expandBy: 282).

Display gray: (titleFrame intersect: clipRect).

CharacterScanner new initialize: titleFrame

font: Font eightLine;

"setForeColor: Form white

backColor: Form black;"

"blank: 080 width: titleFrame width;"

display: margin

• at: (titleFrame width - (Font eightLine

• stringWidth: margin) // 2) @ 0]! !

!SubPane methods !

title: aString

"Set the title of the subpane.

Here we are being a bit gross

by using the instance variable

'margin' (which is not used

anywhere) to hold the title."

margin := aString! !

!SubPane methods !

displayWindow

"Display the portion of the receiver

pane that intersects with WindowClip."

(WindowClip intersects: (frame expandBy: 2 8 2))

titlepan.prj 	 3

• 1

ifTrue: [

self displayTitle.

paneScanner isNil

ifTrue: [self showWindow]

ifFalse: [

paneS canner clipRect:

(WindowClip intersect: frame).

self showWindow.

paneScanner clipRect: frame]]! !

!SubPane methods

grayTitle

"Gray the title of the

SubPane (if one is present)."

titleFrame clipRectl

titleFrame := (frame origin - (0811)

extent: (frame width @ 8)).

clipRect := WindowClip intersect: titleFrame.

margin isNil

ifFalse: [

CharacterScanner new initialize: clipRect

font: Font eightLine;

, gray: (080 extent: clipRect extent)1! !

!DisplayMedium methods !

reverse

"Set aRectangle in the receiver to black."

self

fill: (080 extent: self extent)

rule: Form reverse

mask: nil! !

!DisplayMedium methods !

reverse: aRectangle

"Set aRectangle in the receiver to black."

self

fill: aRectangle

rule: Form reverse

mask: nil! !

!SubPane methods !

activatePane

"Reverse the contents of the title."

I titleFrame clipRectl

super activatePane.

titleFrame := (frame origin - (0811)

extent: (frame width @ 8)).

clipRect := WindowClip intersect: titleFrame.

margin isNil

titlepan.prj 	 4

ifFalse: [Display reverse: clipRect]! !

!SubPane methods !

graySelect ion

"Change the visual clue of the selection

to reflect a deactivated window.

Default is do nothing."

self grayTitle! !

!ListPane methods !

graySelection

"Change the visual clue of the selection

to reflect a deactivated window."

super graySelect ion.

selection notNil

• ifTrue: E .

paneScanner gray:

• (self lineToRect: selection)]! !

!TextPane methods !

graySelection

"Display the selection in

gray color."

super graySelection.

selection gray! !

!GraphPane methods !

graySelect ion

"Private - Window has been deactivated, save

the pane contents in the backup form."

(self respondsTo: #saveGraph)

ifTrue: [self saveGraph]

ifFalse: [self scrollBarInit].

^super graySelection! !

Future Work

Author: 	Stephen Northover (Software ICineties)
Contract: 	The Evaluation of a CBPS with Respect to MSS Applications (1500-19)
Date Prepared: 	April 7, 1989

The following have been identified as potential areas for improvement in
Version 2 of the Case Based Planning System:

- add plan execution KB for extra control over when a task can start. For example, a task
may need a satellite to begin even though enough power is available. The plan execution KB
could encode such rules.

- plan generation and verification using PROLOG rules is inherently inefficient due to the
chronological back tracking. Investigate other means for plan generation (island building,
dependency directed back tracking, lcnowledge based approach, constraint based approach). Write a
better planner for use by the Constructor.

- plan verification is not performed after a replanning action. If the verify fails, should we call
then replanner again or take some other action? This issue needs investigation.

- examine replanning. What is the appropriate method to replan? Should an actual planner
be used instead of PROLOG rules? Is t,his the same kind of planner that could be used by the
Constructor during plan generation.

- generalise plans in the library. The plan library may become clogged with many similar
plans. The issue of library maintenance could be explored.

- add subtasks and subplans for Plan and Task objects.

- expand the implementation of the Model of the environment. Currently, the model is an
exact copy of reality. Create a Model object that knows about recurring tasks, detects patterns in
the environment, etc. and makes use of this information when planning.

- use a more complex domain and test the CBPS by simulation. Simulate planning
requests, task failures, environmental conditions etc. Attempt to encode the various KB% for the
domain. This should point out weaknesse,s in the CBPS design and implementation.

- add new types of resources. Presently, all resources are renewable (acquired/released).
Create a hierarchy of Resource objects to model other types of resources (vary over time,
non-renewable, etc.)

- verify plans when using the LibraryBrowser before entering them into the plan library

\1\1
180

\11\

USERS GUIDE TO VERSION 2 OF THE
CASE BASED PLANNING SYSTEM

--- 	- - -,,,

	

11 	TL 	.

	

1 	797

	

1 	, , 	1 H
I 'I 1989

DATE DUE

Êî

e.

à

:1 n

ï-
,J
11!

I

-

PI! 	.

.•

F. 	•

JR,
-

