
COMMUTES CANADA
R C

Pilyi 1987

i3RARY Bintetnn.

D OC- CR-TP-86-002

METHODOLOGY AND GUIDELINES FOR
APPLICATION PROTOCOL DEVELOPMENT

Inc—fiTSTr—y Canada

Library - Queen

APR 2 2013

Industrie Canada

Bibliothèque - Queen

by
D.A. MacKinnon

Prepared for the Department of Communications
Under Contract Number 0ER85-04016

March 25, 1986
COMPUTER GATEWAYS INC.

EXECUTIVE SUMMARY

In conjunction with the development of the‘ Reference Model
for Open Systems Interconnection (OSI), ISO TC97 has been
developing service definitions and protocol specifications
for each of the seven layers identified in the model.

The interest in OSI is rapidly spreading beyond the bounds
of ISO TC97. Both ISO TC68 (banking applications) and TC46
(bibliographic applications) have set up working groups to
consider the application of OSI to their environments.

A characteristic of existing work on OSI is that it has been
performed mainly by experts with a strong background in data
communications and who have made large investments in
learning OSI. This report presents a methodology and some
guidelines to assist applications-oriented developers in the
development of 051-consistent Application Layer services and
protocols.

This document is aimed principally at technical specialists
who are involved in application development, but it is also
of interest to managers and planners who have an interest in
distributed processing. A third group of potential readers
are those who have a general interest in OSI without any
particular application in mind; for such readers, this
document serves to integrate material from scattered
sources.

A prerequisite to the development of OSI service and
protocol specifications is an understanding of the upper
layer architecture of OSI.

Each of the Session, Presentation and Application Layers is
modelled in terms of a service provider which provides
communications services on behalf of service users. Each
layer has a different role. The Session Layer is responsible
for organizing and synchronizing the dialogue between two
systems and for managing the exchange of data. The
Presentation Layer provides for the representation of
information communicated between systems, that is it is
concerned with the syntax and not semantics of interchanged
information. The Application Layer contains all the
functions which imply communication between open systems and
are not already performed by lower layers.

CUliUN LAVA
c R

I int

fl‘ 	 -

Among the many concepts that are important to the
application designer are those pertaining to associations,
connections, application and presentation contexts, abstract
and transfer syntaxes, principles of naming, OSI management
and quality of service. Each of these is described in the
context of the upper layer architecture.

The methodology for developing Application Layer services
and protocols consists of four steps.

The starting requirement is an understanding of 	the
distributed application for which services and protocols are
to be developed. In particular, it is necessary to know
which processes require interaction, in the OSI sense, with
other. processes. This information is used to determine the
number of different protocols that are required and which of
those are to be standardized.

With this knowledge, the first step of the methodology is to
develop an OSI view of the application, in terms of service
users and service providers. The relationships among the
users are clarified and the principal conceptual data
structures are identified. Any need for sub-layering is
determined at this time.

The second step of the methodology is to identify the
service elements relevant to the application. 	Service
elements are the abstract elements 	of communications
functionality; they are identified on the basis of
operations on the conceptual data structures and other
communications services. Also determined as part of this
step is whether the application is connection-oriented,
connectionless or store-and-forward in nature.

The third step of the methodology is to prepare a formal
service definition according to the stated ISO guidelines.
This includes a formal description of all service
primitives, their parameters and their sequencing rules.

The fourth step of the methodology is to prepare a protocol
specification. Such a specification includes an
identification of the functions provided by the protocol, a
listing of the services assumed from lower layers, a
description of protocol behaviour and associated state
information, a specification of the abstract syntax and
associated transfer syntax(es), a set of protocol state
tables and an identification of the application context(s).
A formal specification of the protocol using an accepted
formal description technique is recommended.

• The entire methodology is illustrated using examples of
existing ISO and CCITT services and protocols. In addition,
a detailed example is provided of the application of the
methodology to a typical banking application, namely
interactive authorization.

It is 	important that validation of the protocol
specification be performed during the design phase. A
checklist is provided for performinq this validation.
Validation of protocol implementations is also required; the
principal aspects of such protocol conformance testing are
discussed.

A catalogue of services available to an application protocol
is provided. This catalogue lists the capabilities
available from the Session Layer, the Presentation Layer,
the Common Application Service Elements, and 	existing
Specific Application Service Elements. 	There is also a
discussion of connectionless data transfer, security issues,
multi-peer transmission and management information
services. The application designerr-needs to be aware of all
this information so that any new aPplication can take full
advantage of these capabilities and avoid duplication.

ISO has developed a number of concepts and tools which can
be of assistance to an application developer. A discussion
is provided of registration procedures, the Estelle and
LOTOS formal description techniques, the Abstract Notation
One, the ISO conformance testing methodology and some
possible specification analysis tools.

Some of the concepts and terminology used in this document
are not fully stable within ISO at this time. Therefore, it
is expected that this document will require updating as work
within ISO progresses.

Two areas where this methodology could usefully be applied
in the banking area are point-of-sale and key management.
Protocols are required in both of these areas on an urgent
basis and the application of this methodology to this
protocol development would be a valuable exercise.

•

• TABLE OF CONTENTS

EXECUTIVE SUMMARY

,
.1 	INTRODUCTION 	

.
2

1.1 	Background 	 2
1.2 	Purpose 	 3
1.3 	Approach 	 3

2 	CONCLUSIONS AND RECOMMENDATIONS 	 5
2.1 	Conclusions 	 5
2.2 	Recommendations 	 5

APPENDIX A - METHODOLOGY AND GUIDELINES FOR
APPLICATION PROTOCOL DEVELOPMENT

•

)

1. 	INTRODUCTION

1.1 Background

In conjuction with the development of the Reference
Model for Open Systems Interconnection (OSI), ISO TC97
has been developing service definitions and protocol
specifications for each of the seven layers Identified
in the model.

Within the Application Layer, there are two major
thrusts in the international standardization effort.
One is the development of common application services
and protocols which are useful in a variety of
applications. The other is the development of specific
application services and protocols which are intended
to satisfy particular requirements. ISO TC97/SC21 is
currently standardizing three such protocols, one for
file tranfer access and management, one for job
transfer and manipulation and one for virtual terminal
applications.

In addition to the work of TC97/SC21, OSI principles
are being used by CCITT and by ISO TC97/SC18 for the
development of electronic mail services and protocols.

The interest in OSI is rapidly spreading beyond the
bounds of TC97. Both TC68 (banking applications) and
TC46 (bibliographic applications) have set up working
groups to consider the application of OSI to their
environments.

A characteristic of existing work on OSI is that it has
been performed mainly by experts with a strong
background in data communications and who have made
large investment in learning OSI. As OSI concepts
become more widespread and is adopted by communities
(such as banks and libraries) which do not have the
same data communications background, then it becomes
important that there exist a methodology to assist
applications-oriented people in the development of OSI-
consistent protocols.

This need has 	been 	recognized by TC68/SC5/WG4
(Applications of OSI in Banking) and a request for
contributions has been sent to the member countries.
It is felt that such a methodology would be of wide
applicability among potential users of OSI services and
would hasten the widespread adoption of OSI to satisfy
business communications requirements. •

• During the previous 	contract performed for the
Department of Communications, a document 	entitled
"Evolving Toward OSI in Banking" was produced; in it, a
brief description of such a design methodology ws
provided, with an example drawn from the CCITT X.400
Recommendations.

1.2 	Purpose

The purpose of this project is to expand the
description of the methodology for developing
applications services and protocols to produce a
document in ISO Standard format for submission as a
contribution to ISO.

The 	resulting document is intended to act as a
"cookbook" for developers 	of Application Layer
standards.

1.3 Approach

The bulk of this report is a document in ISO standard
format which is to be submitted for consideration by
ISO. This document is attached as Appendix A to this
report.

This appendix covers four principal topics:

1) It provides an overview of architecture of the
upper three layers of the OSI model. This
establishes a context for the methodology, showing
where new Application protocols fit in the overall
OSI picture.

2) It describes 	the 	application 	development
methodology in a step-by-step manner. Examples
are provided of the application of the methodology
to existing standards. In addition, a detailed
explanation is provided of the development of a
common banking application, namely 	interative
authorization.

3) It provides a catalogue of existing Application,
Presentation and Session services and their
characteristics. The resulting catalogue acts as a
standard "parts list" for application protocol
design, helping the designer determine which
aspects can be resolved by existing mechanisms and
which aspects require specialized treatment.

• 4) 	It describes the set of available tools (such as
formal description techniques and conformance test
procedures) which can assist in successful
protocol development.

•

•

•

•

2. CONCLUSIONS AND RECOMMENDATIONS

2.1 	Conclusions

The nature of OSI is such that it is an ares of
endeavour that is constantly evolving. At
present, many concepts are well understood, while
others, notably relating to Application Layer
structure and to the relationship between
distributed application design and OSI protocol
development, are only now being studied in
earnest. It is natural then that a methodology
document such as this be dynamic in nature.
Modifications and extensions to this document
should be anticipated as the OSI work matures.

2. 	This document has 	attempted to provide a
consistent view of OSI concepts throughout. 	This
was not always easy. 	It required, that more
general definitions 	be provided 	for 	some
currently-used terms (e.g. service, service-
provider) so that they could be applied to
Application Layer services and protocols. It is
evident that at present, there is considerable
inconsistency in the use of terminology across the
wide range of OSI documents currently in
production and in use. This tends to confuse the
reader and has the potential of leading to
misinterpretation of the standards. Canada should
strongly urge that the current effort at achieving
consistency of terminology within the ISO
committees working on OSI be given urgent
priority.

2.2 Recommendations

There are a number of areas where work could profitably
be done in support of OSI in banking. The following
three are at this time likely the most valuable:

1. 	Ongoing Support for Methodology Document: If the
current methodology document is to progress
rapidly and effectively within ISO, then active
support must be provided to explain and promote
the methodology and to revise it in the light of
comments from the international community. Canada
should encourage the methodology work both within
TC68 and TC97.

•

2. Point-of-Sale Example: If the methodology is to
receive widespread acceptance, it is essential
that examples be provided of its application.
Point-of-sale processing is one such application.
In particular, no standard currently exists for
interactions between POS terminals and Card
Acceptors. The development of an OSI-compatible
protocol for this interaction would be a valuable
exercise. 	The existing work done by the
Australians in this area could serve as the basis.

3. Key Management Example: There is a recognized need
for key management within both the banking and OSI
communities. 	Work is underway within TC68 on key
management but not in the OSI context. A liaison
statement has been sent from ISO TC97/SC21/WG6 to
TC68/SC5/W4 regarding cooperation on 	security
aspects. 	Another group interested in security
issues is ISO TC97/SC18/WG4 dealing with office
communications; they are interested in developing
an addendum to their electronic mail standard to
incorporate security requirements. One of the
most important requirements relating to security
is key management. It is clear then than any work
done the application of OSI to key management
would be of interest to a wide community of
standards making people.

The base work for this effort could be ISO 8732,
which is a standard for key management derived
from ANSI X9.17.

APPENDIX A

METHODOLOGY AND GUIDELINES FOR
APPLICATION PROTOCOL DEVELOPMENT

ISO/TC68/SC5/WG4

APPLICATIONS OF OSI IN BANKING

-
Secretariat:: Canada (CBA)

ISO/TC68/SC5/WG4 N
MARCil 17 1986

I S 0
INTERNATIONAL ORGANIZATION FOR STANDARDIZATION
ORGANISATION INTERNATIONALE DE NORMALISATION

TITLE: 	Methodology and Guidelines for Application
Protocol Development

SOURCE: 	CANADA

•

•

• TABLE OF CONTENTS '

1 - 	INTRODUCTION 	. 	 4

2 .- 	SCOPE AND FIELD OF APPLICATION 	 6

3 	REFERENCES

4 	DEFINITIONS AND ABBREVIATIONS 	 9
4.1 	Definitions 	 9
4.2 	Abbreviations 	 10

5 	OVERVIEW OF THE UPPER LAYER ARCHITECTURE 	12
5.1 	Introduction 	 12
5.1.1 	Layering 	 12
5.2 	Session Layer 	 13
5.2.1 . 	Role of the Session Layer 	 13
5.2.2 	Service Model of the Session Layer 	13
5.2.3. 	Services of the Session Layer 	 13
5.3 	Presentation Layer 	 17
5.3.1 	Role of the Presentation Layer 	 17
5.3.2 	Service Model of the Presentation Layer 	17
5.3.3 ' 	Abstract Syntax, Transfer Syntax and

Presentation Context 	 17
5.3.4 • 	Layer Services 	 20
5.4 	Application Layer 	 21
5.4.1 	Role 	 21
5.4.2 	Model 	 21
5.4.3 	Modes of Communication 	 29

• 5.5 	General Concepts 	 32
5.5.1 	Relationship to Implementations 	 32
5.5.2 	Relationship Between Association,

Connection and Context 	 34
5.5.3 	Names, Titles and Addresses 	 35
5.5.4 	Embedding of Protocol Data Units (PDUs) 	37
5.5.5 	Directly Mapped Services 	 38
5.5.6 	Management 	 38
5.5.7 	Registration 	 42
5.5.8 	.Security 	 44
5.5.9 	Quality of Service 	• 	47
5.6 	Relationship Among Layers 	 50
5.6.1 	Session and Presentation Layers 	 50
5.6.2 	Presentation and Application Layers 	50
5.6.3 	Application and Session Layers 	 51

6 	METHODOLOGY FOR TE DEVELOPMENT OF SASE STANDARDS 	52
6.1 	Introduction 	 52

7

• 6.2 	Objective of Methodology 	 52
6.3 	Overview of Interactive Authorization Example 	53
6.4 	Starting Requirement 55
6.4.1 	Application to Interactive Authorization 	57
6.5 	Step 1: Develop OSI View of Aipplication 	57
6.5.1 	Relationships Among Users 	 59
6.5.2 	Identification of Principal Conceptual

. 	Data Structures 	-: 	,•, 	,, 	60
6.5.3 	Sub-layering , 	 62
6.5.4 	Step 1 for Interactive Authorization Example 	63
6.6 	Step 2: Identify Service Elements 	 66
6.6.1 	Criteria for Selection of Service Elements 	67
6.6.2 	Step 2 for Interactive Authorization Example 	69
6.7 	Step 3: Prepare Service Definition 	71
6.7.1 	Service Conventions 	 71
6.7.2 	Elements of a Service Definition 	73
6.7.3 	Application of Step 3 to Interactive Authorization 78
6.8 	Service Groupings 	 79
6.9 	Step 4: Prepare Protocol Specification 	92
6.9.1 	Protocol Model 	 92
6.9.2 	Elements of a Protocol Specification . 	93
6.9.3 	Step 4 for Interactive Authorization 	102
6.10 	Validation 	 106
6.10.1 	Validate the Protocol Design 	 107
6.10.2 	Validate Protocol Implementations 	108

7 	CATALOG OF SERVICES 	 • 	111
7.1 	Introduction 	 111
7.2 	Session Layer 	 111
7.2.1 	Capabilities of the Session Layer 	111
7.2.2 	Usage of the Session Layer 	 118
7.3 	Presentation Layer 	 120
7.3.1 	Capabilities of the Presentation Layer 	120
7.3.2 	Usage of the Presentation' Layer 	122
7.4 	Common Application Service Elements (CASE) 	124
7.4.1 	Capabilities of CASE 	 124
7.4.2 	Functional Units 	 124
7.4.3 	Usage 	 127
7.5 	Specific Application Service Elements 	130
7.5.1 	File Transfer, Access and Management (FTAM) 	130
7.5.2 	Job Transfer and Manipulation (JTM) 	132
7.5.3 	Virtual Terminal Protocol (VT) 	 134
7.5.4 	Message Transfer (MT) 	 135
7.6 	Other OSI Aspects 	 - 137
7.6.1 	Connectionless Data Transfer 	 137
7.6.2 	OSI Security 	 138
7.6.3 	Multi-peer Data Transmission (MPDT) 	139
7.6.4 	Management Information Services (MIS) 	142

8 	PROTOCOL DEVELOPMENT TOOLS 	 148

8.1 	Registration Procedures 	 148

ii

• 8.2 	Formal Description Techniques (FDTs) 	149
8.2.1 	ESTELLE 	 151
8.2.2 	LOTOS 152
8.2.3 	Checklist for an FDT-based Specification 	153
8.3 	Abstract Syntax Notation One'(ASN.1) 	154
8.4 	Conformance Testing Methodology 	 155
8.4.1 	Objectives of Conformance Testing 	155
8.4.2 	Abstract Testing Methodology , 	156
8.4.3 	Implications for Application Protocol Testing 	158
8.5 	Analysis Tools 	 158

ANNEX A - LIST OF SOURCE DOCUMENTS BY 'CATEGORY 	160

•

iii

PREFACE

The Reference Model for 'Open Systems Interconnection
(OSI) provides an architectural framework for the
development of protocols for systems interconnection.
This model describes the communications functionality
of an open system in terms of seven layers. Each layer
performs specific functions in support of the services
it provides to the layer above it. The seventh and
uppermost layer, the Application Layer, is an exception
in that it does not provide services to a higher layer,
but rather to the end user, which may be a human or an
application process.

The Application Layer probably provides the greatest
challenge to the protocol developer. If OSI is to
achieve rapid and widespread acceptance, then it must
be possible to develop application protocols for
specific industries in a straightforward manner. The
methodology described in this document attempts to
assist the application protocol developer in this task.

This document may be of interest to a variety of
readers. 	It 	is 	aimed primarily 	at technical
specialists who are involved in application
development, such as banking, and who are responsible
for developing distributed applications incorporating
OSI concepts. A background . in electronic data
processing (edp) and/or data communications will be
helpful in understanding some of the abstract concepts
which underpin OSI and the methodology described here.
The technical reader who is not well versed in OSI will
likely find all chapters useful. One who understands
the OSI architecture could skip clauses 4 and 5 and
proceed directly to the methodology clause (clause 6).

This document will also be of interest to managers and
planners concerned with distributed processing, as it
provides a framework for planning, developing and
evaluating projects involving distributed processing.
For these readers, the methodology clause (clause 6)
will be of greatest interest. The other clauses may be
of interest as sources of -background information.

A third group of interested parties may be those who
wish to better understand OSI concepts without any
particular application in mind. For such readers, this
document serves to integrate -together material from
scattered sources. Clauses 5, 7 and 8 will be of
greatest interest. As the level of technical detail in
Clause 5 varies, the reader who is interested,primarily
in basic concepts will derive the greatest benefit from
subclauses 5.1, 5.2.1, 5.2.2, 5.3.1, 5.3.2, 5.4, 5.5.1,
5.5.6, 5.5.7, 5.5.8, 5.5.9 and 5.6.

All readers are assumed to have a basic grasp of the
OSI Reference Model, to the point of understanding the
concept of layering and the general purpose of each
layer.

The intent of this document is that all or part of it
be submitted for consideration by ISO TC68/SC5/WG4, ISO

TC97/SC21/WG1 and ISO TC97/SC21/WG6 as a standard or
technical report.

2

• NOTICE TO READER

An effort has been made in the preparation of this
document to make consistent use of OSI terminology.
However, the many varied TC97/SC21 documents from which
material has been extracted are not themselves
consistent in their usage of terminology. This has
caused difficulty for certain' -terms and concepts,
particularly "service", "service provider", and
"service element". The definitions used in this
document are derived from those of ISO 7498, but
extended in some cases to improve clarity and to make
them applicable to the Application Layer.

All modified definitions or discussions of contentious
points are flagged as such.

•

1 0 	INTRODUCTION

The purpoSe of this document is-to proVide developers
of industry-specific service and protocol standards for
the.Applidation Layer with a step-by-step methodology.
This methodology will àsSist the developer im
concePtualizing a distributed' application in OSI terme, -
in identifying and formalizing the elements of service
that a communicating system provides to the end user,
in specifying the protocol actions and states required
to support the service and in identifying which
services of lower layers are required. As an
illustration of the application of the methodology, the
development of a protocol for interactive authorization
of a bank card transaction is described.

The methodology is essentially a process of top-down
decomposition and is influenced by the popular
electronic data processing (edp) concept of abstract
data types.

A pre-requisite to application protocol development is .
an understanding of the OSI Reference Model, and in
particular the architecture of the upper three layers.
A guide to this architecture is provided in Clause 5.
The material in this clause is related to ongoing work
within ISO TC 97/SC 21 dealing with upper layer
architecture 	and various 	specific architectural
questions such as Question 40, A General Model of
Service.

In addition to the step-by-step description of the
methodology, this document provides in Clause 7 a
catalogue of existidg Application, Presentation and
Session services and characteristics. This information
is helpful in ensuring that a protocol designer is
fully aware of the capabilities and restrictions of
these supporting services and therefore can properly
assess the impact of these services on the design of an
application protocol.

A set of development tools which can further assist the
protocol developer are described in Clause 8. 	These
tools 	include 	registration 	procedures, 	formal
description 	techniques, 	specification 	analyzers,

• conformance testing procedures and an abstract syntax
notation.

4

The emphasis in this document is on connection-oriented
applications; this reflects the more mature state
within ISO of concepts relating to connection-oriented
applications vis-a-vis connectionless ones.

It is anticipated that this document will require
periodic revision as" architectural concepts relating to
the Application'LayeÈ- stabilize and additional tools
are developed to aàsist the application development
process.

•

•

•

•

2. SCOPE AND FIELD OF APPLICATION

This document describes a framework and a methodology
for the development of industry-specific application
service and protocol standards.

In particular, it provides:

a) 	a 	tutorial 	overview of 	the 	architectural
principles affecting the upper three layers of the
OSI Reference Model;

h) 	a step-by-step methodology which describes how to
generate Application Layer service definitions and
protocol specifications which conform to OSI
architectural principles and that are in a format
suitable for international standardization;

c) a 	description 	of 	existing 	Application,
Presentation 	and 	Session Layer services and
characteristics;

d) a description of protocol development tools that
are in existence or under development.

This 	document 	is intended for use primarily by
application standards developers, e.g. for banking or
library 	communication, 	not 	directly involved in
original OSI standards development. The approach
described herein will also be acceptable for the
development of standards within ISO TC97/SC21.

This document does not specify how to implement
applications. It addresses only the development of
communications-related specifications which are to form
the basis for the design and validation of
implementations.

•

• *ISO DIS 8831 Information Processing Systems - Open
Systems Interconnection - Job Transfer
and Manipulation concepts and services.

*ISO DIS 8832 Information Processing Systems - Open
Systems Interconnection - Specification
of the Basic Class Protocol for Job
Transfer and-Manipulation.

ISO DIS 8822 Information Processing Systems - Open
Systems Interconnection - The
Presentation Service Definition

ISO 8326 Information Processing Systems - Open Systems
Interconnection - The Basic Connection
Oriented Session Service Definition.

*ISO DIS 8649/2 Information Processing Systems - Open
Systems Interconnection - Definition of
Common Application Service Elements -
Part 2: Association Control.

*ISO DIS 8649/3 Information Processing Systems - Open:
Systems Interconnection - Definition of
Common Application Service Elements -
Part 3: Commitment Concurrency and
Recovery

*ISO DIS 8824 Information Processing Systems - Open
Systems Interconnection - Abstract
Syntax Notation 1.

*ISO DIS 8825 Information Processing Systems - Open
Systems Interconnection - Basic encoding
rules for Abstract Syntax Notation 1

(ASN.1)

4. DEFINITIONS AND ABBREVIATIONS

4.1 	Definitions

,

4.1.1 Abstract syntax: the aspects of the rules used in the
formal specification of data which are independent of the
encoding technique used to represent the data.

4.1.2 Application: an information processing task.

4.1.3 Application association: a cooperative relationship
between two application entities.

4.1.4 Application-process: an element within a real open
system which performs the information processing for a
particular application.

4.1.5 Application entity: the. aspects of an application-
proc.ess pertinent to OSI.

4.1.6 Application context: an explicitly identified set of
Application Service Elements, and options selected,
available for use by the application entities during an
application association, together with any other information
necessary for their interworking.

4.1.7 Confirm (primitive): a service primitive issued by a
service provider to complete, at a'particular service-
access-point, some procedure previously invoked by a request
at that service-access-point.

4.1.8 Entity: an active element of a subsystem. An entity
is local to a layer or sublayer.

4.1.9 Layer Service: the set of services available at the
upper boundary of a layer. (Note: this is a new definition
which attempts to distinguish between individual services of
a layer and the global layer service).

4.1.10 Presentation context: an association of an abstract
syntax with a compatible transfer syntax. The transfer
syntax shall be compatible in the sense that it can be used
to express all the information transfer requirements of the
abstract syntax.

4.1.11 Request (primitive): a service primitive issued by a
service user to invoke some procedure.

9

4.1.12 Service: a capability of a service provider which is
provided at the upper service boundary to entities above
that boundary. (Note: this is a variation of the definition
in 7498 to include the Application Layer and CASE).

4.1.13 Service-access-point: the point where the services
of à layer are provided by an entity of that layer to an
entity in the layer above.

4.1.14 Service element: that part of an application entity
which provides an OSI environment capability, using
underlying services when appropriate. (Note: in this
document, service element is equivalent to application-
service-element as used in ISO 7498).

4.1.15 Service primitive: an elementary unit of interaction
between a service user and a service provider

4.1.16 Service provider: an abstract machine which models
the behaviour of the totality of the entities providing a
set of services at the upper boundary of the service
provider (Note: this is a variation of the definition in
8509 to indicate clearly that a service provider does not
provide a single service but a set of services).

4.1.17 Service user: an abstract representation of the
totality of those entities in a single system that make use
of a service through a single service-access-point.

• 	•
4.1.18 Transfer syntax: those aspects of the rules used in
the formal specification of data which embody a specific
representation of that data used in the transfer of data
between open systems.

4.2 Abbreviations

AA 	Application Association
AE 	- Application Entity
ASN.1 - Abstract Syntax Notation One
ASP 	- Abstract Service Primitive
ATM 	- Automatic Teller Machine
CASE 	- Common Application Service Element
CCR 	- Commitment, Concurrency and Recovery
CCS 	- Calculus of Communicating Systems
edp 	electronic data processing
FDT 	- Formal Description Technique
FTAM 	- File Transfer, Access and Management
IA 	Interactive Authorization
IUT 	Implementation Under Test

JTM 	- Job Transfer and Manipulation
LM 	- Layer Manager
MIB 	- Management Information Base
MIS 	- Management Information Services
MUS 	- Message Handling Systems
MPDT 	- Multi-peer Data Transmission
MT 	- Message Transfer
OSI 	- Open SyStems Interconnection
PCI 	- Protocol-control-information
PICS . 	- Protocol Implementation Conformance Statement
POS 	- 	Point-of-Sale s
PDU 	Protocol Data Unit
PE 	- Protocol Entity
QOS 	- Quality of Service
SAP 	- Service-access-point
SASE 	- Specific Application Service Element
SMAE 	- System Management Application Entity
VT 	- Virtual Terminal

•

•

•

5. OVERVIEW OF THE UPPER LAYER ARCHITECTURE

5.1 	Introduction

This clause provides a tutorial introduction to the
upper three layers of the Reference Model. An
understanding of this ai'dhitecture'is required for a
proper appreciation of the methodology described in
Clause 6.

This overview concentrates on the upper three layers as

these are most relevant to application standards
development. Of the seven layers defined in the
Reference Model, the bottom four, namely Physical, Data
Link, Network and Transport, deal with
telecommunications functions and in principle are
application independent. Thus, an application need not
be aware of which Transport layer protocol class is
being used during a connection, as long as the desired
quality of service is béing provided.

On the other hand, the upper three layers deal with
processing 	functions 	related to a distributed
application. These layers are inter-related, in that
the choice of Session and Presentation Layer functions
depends on the requirements of a particular
application.

5.1.1 	Layering

A key concept of the Reference Model is layering. 	The
purpose of layering is to group together similar
functions that are manifestly different from other
functions in the process performed or the technology
involved. This separation of function allows changes
to be made within layers, e.g. in the choice of
protocol, without affecting other layers, as long as
the interfaces to adjacent layers are not affected.

In the case of the upper three layers, the separation
of functionality is on the basis of 'dialogue management
(Session Layer), syntax transformation (Presentation
Layer) and functions not performed elsewhere
(Application Layer). Overall control of communications
is always vested in the Application Layer.

A more detailed look at the role of each layer is
provided in the following.

12

(

5.2 	Session Layer

5.2.1 	Role of the Session Layer

The Transport Layer provides a simple, reliable, full
duplex transmission service between two communicating
Systems. The Session Layer - builds on this capability
and provides to the Presentation Layer a set of
services for organizing and synchronizing the dialogue
between two systems and for managing . the exchange of
data.

5.2.2 Service Model of the Session Layer

The external, abstract view of the Session Layer is of
a Service Provider which interacts with Service Users
(SUs) at Service Access Points (SAPs), as shown in
Figure 5.1. Each capability provided to the Service
UserS is -:!alled a service. A service is described in
terms of a set of a group of abstract interactions
which are called service primitives. SAPs are
conceptually at the upper layer boundary, hence the
Service Users are located in the Presentation Layer.

The Session service is in practice provided by Session
Protocol Entities (PEs) making use of the services
available from the Transport Layer through Transport
SAPs., A Session Protocol Entity is the 'embodiment of
Session protocol functionality within an open system.
Figure 5.2 is equivalent to Figure 5.1, but provides
more detail. Each of the possible mappings between
Service User and Protocol Entity is illustrated. As can
be seen from this diagram, each SAP defines a one-to-
one relationship between a Protocol Entity and a
Service User, although a PE or a SU may be associated
with more than one SAP. Note that the Session Protocol
Entities act as Service Users for the Transport
Service.

5.2.3 Services of the Session Layer

In a connection-oriented environment, the services of
the Session Layer can be classified into the following
areas:

1. 	Connection Establishment which permits the
establishment of a session connection and the
negotiation of parameters related to the use of
various functions.

I t 	TRANSPORT
SERVICE
PROVIDER

r T— --T

•
I su I 	I su I 	I su I 	I 	su • 	I
I 	I 	I

-- —
I 	1 ' 	1 	I

T 	7—T— I 	
i____T I

--T-
1 I 	 I 	'I 	1 	i 	sAp
I 	 1 	 1 	'III

1 —1-__I 	 1 1. 	SESSION I 1 	1 T—T T T T-- 1
- I 	 SERVICE 	_ 	• 	.. 	I

• 1 PROVIDER 	 I
I 	 1

Figure 5.1 Model of Session Service

I 	I

1
1
r-

I —I5E — I
I 	I
--T—

I
—

I su 1 	1 su 1 	1 	su 	I
II 	I 	I 	I 	 I
—7.--- 	--1--- 	I 	I 	I

I 	I 	•. 	I 	I 	I 	..
I I 	'.., •1 	pi Session

7 T 	I I 	 I T—T T f T 	Service
T 	T 	 T T T 	Boundary

-r- I 	I 	---- 	I 	I
II 	 I 	-1-- 	I
1 	i 	i 	 I 	I

1 — PE— — I 	1 —PE- 1 I —Pi- 1
1 	1 	1 	1 	1 	1

	

I 	
__T..... 	___T_

Figure 5.2 Exploded View of Session Service Provider

2. Connection Release which permits session
disconnection. This disconnection can be:

orderly, where all data already in transit is
preserved; or

abrupt, where the session connection is
aborted and there may be loss of data.

3. Normal Data Transfer which permits the exchange of
data with usual dialogue and/or flow control.

4. Expedited Data Transfer which permits the exchange
of data where the exchange is not constrained by
the dialogue control or flow control of normal
data; in some instances, expedited data may bypass
previously transmitted normal data.

5. Token Management which permits the requesting and
transfer of tokens'-which control the exclusive
right to exercise certain lunctions. For example,
when token management is in effect, only the owner
of the data token may initiate a normal data
transfer.

6. Dialogue Control which permits a session to
operate either in a two way alternate style, where
only one of the systems (the owner of the data
token) has the right to send data at any
particular time, or a two way simultaneous style,
where both systems are permitted to send data at
any time. The two styles are called half-duplex
and full-duplex, respectively.

7. Synchronization which permits the placement of
synchronization marks in the data flow to mark and
acknowledge identifiable points. Should an error _
be detected, this function makes possible the
resetting of the session connection to a defined
state and agreement on a resynchronization point
(mark). Each mark has an associated serial number
which is unique within a given session connection.
The right to place such marks is controlled by the
assignment of the major/activity token.
Synchronization marks are of two types:

Major marks which permit a clear delineation
of the dialogue before and after the mark.
The major mark must be confirmed by the
receiver.

15

Minor marks which can optionally be
acknowledged by the receiver.

8. Resynchronization which permi - s a "roll back" in
the dialogue flow, i.e. designation of a
resynchronization point, discarding of part of the
data transfer and then a restart of the data
transfer as though-the data after the
resynchronization point had not been previously
sent. The resynchronization point in the dialogue
is identified by a serial number associated with a
(preceding) mark. It is not possible to
resynchronize to a point earliér than the last
confirmed major synchronization point. This style
of resynchronization is "restart". A second style
of resynchronization permits the present dialogue
to be "abandoned" and a new serial number (i.e.
one greater than any preceding serial number) to
be used for the next synchronization point. A
third style if resynchronization allows the serial
number to be "set" to any-value. Note that any
semantics attached to serial numbers and the
effect of resynchrOnization is left entirely to
the user of the Session Layer.

9. Activity Management is an extension of the major
synchronization concept. It provides the means to
break a dialogue into discrete activities. Each
activity can be regarded as a "separate" data
transfer; however, the activity management
function also has mechanisms which allow the
identification of a particular activity, the
transfer of data, interruption of the activity,
and then resumption of the àctivity at a later
time on the same or even on a different session
connection.

10. Exception Reportin9 permits notification of
unanticipated situations not covered by other
services, e.g. protocol errors.

11. Typed Data permits the transfer of transparent
user data independent of the token availability
and position.

12. Capability Data permits the transfer of a limited
amount of transparent data outside of an activity
for special control purposes.

•

13. Negotiated Release permits one system to refuse a
disconnect request and to continue in the data
transfer phase.

5.3 Presentation Layer

5.3.1 Role of the Presentation Layer

The Presentation Layer provides for the representation
of information that application-entities communicate
between themselves.

The Presentation Layer is concerned only with the
syntax, i.e. the representation of the data, and not
with its semantics, i.e. their meaning to the
Application Layer.

5.3.2 Service Model of the Presentation Layer

The model of the Presentation Layer is similar to that
of the Session Layer. The only distinction is that the
users of the Presentation Layer services are
Application Layer entities and the Presentation Layer
protocol entities are users of Session Layer services.

5.3.3 Abstract Syntax, Transfer Syntax and Presentation
Context

The central function of the Presentation Layer is
syntax transformation. The -concepts of abstract
syntax, transfer syntax and presentation context are
key to the understanding .of this function.

Formally, an abstract syntax is defined as the aspects
of the rules used in the formal specification of data
which are independent of the encoding technique used to
represent the data. Informally, an abstract syntax can
be viewed as describing the generic structure of data.
For example, an abstract syntax could be defined in
terms of a set of data type definitions.

Formally, a transfer syntax is defined as those aspects
of the rules used in the formal specification of data
which embody a specific representation of that data
used in the transfer of data between open systems.

17

•

It is concerned with the way in which data is actually
represented in terms of bit patterns while in transit.

For the purposes of transferring data between open
systems, it is necessary to identify the abstract
syntax being used and a transfer syntax that is capable
of representing data values that may be generated using
this abstract syntax. In general, there need not be a
unique abstract/transfer syntax combination. It may be
possible to support a specific abstract syntax with one
or more different transfer syntaxes. Also, it may be
possible to use one transfer syntax to support more
than one abstract syntax.

Figure 5.3 illustrates the case where the Presentation
Layer supports two transfer syntaxes for a single
abstract syntax. Transfer syntax A uses character
encoding for human readability while transfer syntax B
uses bit-level encoding for transmission efficiency.
The Application Layer provides identification of the
abstract syntax being used and supplies data items
encoded in the loca1 system syntax. A syntax
transformation module in the Presentation Layer accepts
this information and generates encoded data items in
one of the two transfer syntaxes. The choice of
transfer syntaxes is negotiated by the communicating
Presentation Layer protocol entities.

•

abstract 	data items
syntax 	encoded in

• information 	local syntax
Application 	I 	1
Layer 	I 	I 	'

I 	I

Presentation
Layer

SYNTAX
TRANSFORMATION

1

encoded data
items in selected.
transfer syntax

encoding rules for
	transfer syntax A

(character-oriented)

	encoding rules for
transfer syntax B
(bit-oriented)

•

•

Figure 5.3 Illustratioh of Possible Mapping of an Abstract
Syntax onto Multiple Transfer Syntaxes

A presentation context is definèd as a particular
abstract/transfer syntax combination that can be used
for the transfer of data using the presentation
service.

At least one presentation, context is required to
. provide an application with a fully-defined environment
for the transfer of data.

To define a presentation context, the service user
identifies an abstract syntax while the service
provider attempts to identify a transfer syntax which •
will both support the abstract syntax and be supported
by the cooperating open systems. The service provider
uses a negotiation mechanism to determine a mutually
acceptable transfer syntax.

For the context definition mechanism to work it is
necessary that both service users and the service
provider have knowledge of the abstract syntax to be
supported by the context. The presentation protocol
assumes that abstract syntax specifications can be
referred to by name. Moreover, the service provider
requires knowledge of transfer syntaxes (or
equivalently encoding rules) that may be associated
with an abstract syntax. Again, the presentation
protocol assumes these can be referred to by name.

19

'In defining a presentation context, the negotiation
mechanism enables the initiator to supply a list of
transfer syntaxes, any one of which may be selected by
the responder. The list of offered transfer syntaxes
is in a preference order, to assit the responder in
making a suitable selection in cases where more than
one offered syntax is supported.

5.3.4 Layer Services

In a connection-oriented environment, the services of
the Presentation Layer can be classified into the
following areas:

1. 	Connection Establishment which permits the
establishment of a Presentation Layer connection
and the specification and selection of a set of
initial transfer syntaxes.

-2. 	Connection Release which permits disconnection of
the Ptesentation Layer connection. This
disconnection can be

orderly, where all data already in transit is
preserved; or

abrupt, where the presentation connection is
aborted and there may be loss of data.

3. Context Management which permits the definition
and deletion of presentation contexts.

4. Data Transfer which permits'five forms of data
transfer:

- data transfer subject to token control,
depending on the selected session service;

- data transfer with no token control;

- expedited data transfer;

- capability data transfer;

- data transfer within "user data" fields of
some services, such as P-CONNECT and P-ABORT;

20

5. 	Dialogue Control which permits access to Session
dialogue control services.

5.4 Application Layer

5.4.1 	Role

The essential purpose of OSI is to support distributed
information processing. Such processing involves
interworking among two or more application-processes.
The Application Layer acts as the window between
interworking application-processes which permits the
exchange of meaningful information.

The Application Layer contains all functions which
imply communication between open systems and are not
already performed by the lower layers. These include
functions performed by programs as well as functions
performed by human beings.

It . is the only layer which directly provides services
to .application-processes and necessarily provides all
OSI services directly usable by such processes.

5,4.2 	Model

A distributed application may be modelled as a
collection of application-processes each of which
operates in two environments, as shown in Figure 5.4.
The Local System Environment (LSE) is where local,
communications-independent processing functions are
performed; there is one LSE for each system
participating in a distributed application. The Open
Systems Interconnection Environment (OSIE) is the union
of all communications functionality related to the
distributed application. There is only one OSIE.
Within a system, that part of the application-process
which is concerned with communications, and hence is
part of the OSIE, is called an application entity.

5.4.2.1 	Service Elements

An application entity consists of a single user element
and a set of application service elements. The term.
service element is used in this context to refer to a
divisible part of the object that the entity
represents; this is in contrast with the usage of the

21

AE
•••n•n

n••••

LS_ -
Local
System 	I

EnvironmentI
appli-
cation
process

OSI
EnvironmentI A-layer

• real
9Pen
system

I

P.- layer
boundary

•
Legend: A-layer = Application layer

P-layer = Presentation layer
LS 	= local system
AE 	= application entity

Figure 5.4 Local System and Open Systems
Interconnection Environments

•

• term service applied to other layers, which refers to
functional interactions that can be described at the
upper boundary of a layer.

Temporary Note: This interpretatio'n of service element
is consistent with its definition in ISO
7498, but differs from the usage in some ISO
working documents ,where service element is
equated with service. '

The user element calls upon various application service
elements to effect communication and application
service elements call upon each other and presentation
services to perform their functions. For convenience
in description and standards development two categories
of application service elements are recognized: Common
application service elements (CASE) and specific
application service elements (SASE). The acronyms CASE
and SASE are each used to represent a set of service
elements. A specific set of service elements is
identified by a modifier, e.g. CASE kernel, FTAM SASE.
ISO 7498 states that CASE provides capabilities that
are generally useful to a variety of applications; and
that a SASE provides capabilities required to satisfy
the particular needs of a specific application. The
distinction between the two categories is somewhat
arbitrary and reflects an intuitive judgment that CASE
provides services that will be used in most
applications regardless of their nature and that a SASE

.provides services that are specific to a given
application. Some SASEs are of broad utility and will
be subject to standardization. Other SASEs will be
specific to particular users and will not, in general,
be the subject of standardization.

Application service elements receive service requests
from each other and from the user element. Application
service elements receive indications of services
performed from each other and the attached presentation
service access point (PSAP).

The user element is the original initiator of requests
to the various application service elements and the
ultimate recipient of responses from the • various
application service elements. Each application service
element has a set of rules governing its use and use it
makes of other application service elements, regardless
of whether it is defined as a standard or privately
designed. It is the responsibility of the element
invoking or responding to application service elements
to do so in a sequence that conforms to the applicable
rules.

•

•

The Application Layer differs from other layers in that
its services are not provided to a higher layer; the
absence of an upper layer boundary means that there is
no Service Access Point through which services are made
available. Application service elements are considered
an integral part of the application-process.
Nevertheless, the service model used for the Session
and Presentaticin , Layers is still- applicable. The•

service users are the user elements and the service
provider is the totality of all service elements in the
application entities which participate in the
distributed application, plus all lower layers. In
this case, the concept of SAP is not applicable, but it
is possible to think in terms of a conceptual boundary
between the user elements and the service provider.
Figure 5.5 illustrates this.

Temporary Note: There is no agreed term for this
conceptual boundary at this time; some ISO
working documents use the term "service-
element-access-point".,

5.4.2.2 Application Context

An application entity includes all OSI-related aspects
of an application-process. An application-process may
have different communication requirements at different
points in its processing. For example, it may need to
interact with a remote terminal at one point and to
transfer a file at another.

Related service elements within an application entity
may be grouped together to form an application
context. An application contéxt is an explicitly
identified set of application service elements, and
options selected, available for use by communicating
application entities during an application
association, together with any other information
necessary for interworking.

Temporary Note: Other definitions exist in various ISO
working documents, but the essence remains
the same in all cases.

In the case of 	simple 	applications, 	a 	single
application context may be associated with an
application entity. For example, an appliqàtion
entity that performed only file transfers would have a
single application context. On the other hand, if an
application entity supported both remote terminal
access and file transfer, then two application contexts
could be defined.

1 	- 	1
1 	UE 	1
1 	- 	1

1 	1
UE

1 	1

1
1

Application
Layer.

1
lower
layers

• Application Entity

•

APPLICATION
SERVICE
PROVIDER

UE = User Element
se = service element

Figure 5.5 View of Application Service Provider

25

•

At any given instant during the lifetime of an
application association, there is only one application
context in use for a given direction of communication.
This application context may be altered dynamically by
mutual agreement of both application entities.

Temporary Note: The'capability to dynamically alter.
the application context is not a capability
of the current CASE kernel standard. This
capability is defined in a proposed addendum
to the CASE kernel to support context
management.

5.4.2.3 Association Establishment

In order for meaningful interaction to be possible
between application-entities, a cooperative
relationship must exist. Such a relationship is termed
an "application association" (AA). In a connection- -

 oriented environment, application associations are
established explicitly over a presentation connection.
A CASE service element exists for this purpose.

The process of association establishment is initiated
by the user element or some application service element
in the initiating application-entity issuing a request
for such an application association establishment to
the A-ASSOCIATE service element. The A-ASSOCIATE
service element then issues a P-CONNECT request across
the attached presentation-service-access-point - (PSAP).
This P-CONNECT request results in protocol actions
which trigger the occurrence of a P-CONNECT indication
at the requested PSAP in the receiving system.

The A-ASSOCIATE service element in the application
entity reached by this PSAP interacts with the service
user to determine whether or not to accept the
requested association and issues the appropriate
response over the established presentation connection.

Each of the CASE Kernel functional units is disjoint.
Among the parameters in an A-ASSOCIATE request is the
one identifying the CASE functional units selected.
Once an application association is established and this
parameter agreed, this set of CASE is available for use
over this association and is called the "default set of
CASE" for this association.

26

Temporary Note: The following discussion on AE-
Activations and the handling of multiple
dialogues is not yet' an agreed position
within ISO TC 97/sc 21.

.Only one dialogue is supported by a single application
association. Therefore, when an application-process
wishes to engage in multiple independent dialogues,
then separate Application Entity Activations 	(AE-
Activations) 	must be created to handle each
association. 	In this 	case, 	each AE-Activation
contains 	one 	full 	set of the service -elements

• associated with that application entity. This 	is
illustrated in Figure 5.6(a).

When an application process 	is involved in a
cooperative relationship with two or more other
application processes, then a separate association is

,established with each partner for each dialogue, but a
single AE-Activation is created '-to handle all the
related associations. In this case, each AE-Activation
would manage more than one association. Figure 5.6(b)
illustrates the case where three associations are
managed by one AE-Activation.

All of the presentation service elements are available
to the application service elements at the PSAP to
which the application entity is attached. 	Since a
single presentation 	connection supports a single
application association, the presentation-connection-
endpoint-identifier identifies, during the lifetime of
that presentation connection-, the application
association and thereby the AE-invocation which is the
source or sink for each presentation-service-data-unit
crossing the conceptual interface at the PSAP for that
connection. A parameter associated with each data value
identifies the application service element that is the
source or sink for this data value and through this
mechanism the Presentation Service takes the
responsibility for ensuring that the semantics of the
data are transferred unambiguously.

5.4.2.4 	Use of Services

A CASE makes direct use of the Presentation Service,
and provides services to a SASE.

•

•

PSAP

1
1 ,AE°
IActivaLI
I tion

o

1 	1
1 	•AE- 	I
IActiva -I
I tion I

1 1

UE

PCEPJ'

Figure 5.6 (a) Two Independent Dialogues with Separate
AE-Activations

UE

AE-Activation'

Association
Support se's

PSAP

SASE

1 	1

PCEP'

AE = Application Entity
PSAP = Presentation Service Access Point
PCEP = Presentation Connection Endpoint
SASE = SpeCific Application Service Element
UE = User Element

Figure 5.6 (h) Three Related Dialogues Managed by
One AE-Activation

•

•

A SASE makes use of the services of CASE or of the
Presentation Service interchangeably. A SASE may also
make use of the services of other SASEs. At any given
time, an AE-Invocation has a structure in the form as
shown in Figure 5.7, with a User 'Element interacting
with a controlling SASE, and -with CASE and other SASE
below. This structure is determined by the user element
inits choice of controlling SASE.

Temporary Note: In Figure 5.7, direct access 	to
Presentation services from a SASE is
permitted. This may require change, if CASE
incorporates these services as directly
mapped services.

5.4.2.5 	Relation - to Application Context

Temporary Note: At present, the CASE kernel supports
only one application context per
association. The ability to switch contexts
will be provided in the future via an
addendum to . the CASE kernel. The following
discussion presumes the existence of that
future capability.

Each SASE operates in a single application context
associated with that SASE and that SASE alone. This
application context continues to exist until the SASE
completes its function.

If a SASE calls on the services of CASE, this does not
affect the application context. •

IF a SASE calls on the services of another SASE, the
application context of the calling SASE is remembered,
but the application context for the called SASE is used
until that SASE completes its function, at which time
the application context of the controlling SASE becomes
effective again. The service elements for performing
context switching are provided by CASE.

5.4.3 Modes of Communication

There are three possible modes of communication between
open systems: connection-oriented, connectionless and
store-and-forward.

•

•
1 	UE 	• 	1
	 1

1

	 1 	
IcontrollingI
1 	SASE 	r

--+11 I

1 	I 	1 	

	

SASE 2 1 	1 	SASE 3 1

	

1 	I 	1 	1
1

1 	I 	1
1 	1 	1 	'

I — CASE -- I
1 	1

1
	1 	
PRESENTATION LAYER

Figure 5.7 Structure of an Application-entity Activation

•

Temporary Note: At this time, ISO TC 97/SC 21 is •
working only on the connection-oriented and
connectionless modes of communication. Work
on store-and-forward communication is being
performed by CCITT SC' VII and ISO TC 97/SC
•18, both in the areas of message handling
(electronic mail).

For all three modes, interworking between application-
entities depends on the existence of an application
association. There are differences, however, in how an
association is established.

In connection-oriented communication, an association is
established explicitly each time interworking is to
take place. It requires that the supporting layers 4
through 6 also be connection-oriented. Typically, the
establishment of an association involves the
establishment of connections in the supporting layers,
usually layers 3 through 6. In situations where
supporting connections already exist at one or more
layers, then only those 'connections not already in
place are built.

In connectionless and store-and-forward communication,
there is no concept of end-to-end connections, so it is

. not possible to establish associations each time
interworking is to take place. Instead, associations
must be established a priori, either through the use of
a directory service or through bilateral negotiation.

In.connectionless communication, there is no concept of
connection between any application entities. This mode
is intended for the transfer of - independent units of
information, each of which is self-contained. The
communications channel is potentially unreliable with
the possibility that units of information will be lost,
corrupted or received out of sequence. Architecturally,
it is possible to include sequencing and error
detection capabilities within individual layers, but at
present, no standardized connectionless protodols
include such functions. This mode of communication has
the advantage that it has the • least amount of
processing overhead and therefore is the most efficient
when sending small quantities of information. It is
appropriate when transmission efficiency is of
paramount concern and when transmission unreliability
is either unimportant or acceptably low. An example of
its use is for the remote acquisition of data samples
that are to be averaged over time. It is also
applicable for sending single units of information to

•

31

multiple destinations, particularly when the underlying
communications medium supports.broadcasting.

In store-and-forward communication, 	no end-to-end
connections are 	established, but connections are
established with intermediate systems which perform
Application Layer relaying. This is illustrated in
Figure 5.8. In effect, this mode isa mixture of the
connection-oriented and connectionless ones. The
highest level application protocol is connectionless on
an end-to-end basis while a lower-level application
protocol and all lower layers are connection-oriented
on a hop-by-hop basis.

Thus, transmission reliability equal to connection-
oriented communication is possible for each hop;
however, the relay systems potentially can be failure
points. This form of communication can be used when
response time requirements are low or when an end
system is not always available; in this case, the data
can be sent to the final relay system for retrieval by
the target system at its convenience.

Two implications, of this mode of communication are
that the amount of data that can be interchanged in
one message is usually restricted due to limited buffer
capacity of intermediate systems; and that there is no
longer a one-to-one relationship between application
association and traffic flow. Whereas in a connection-
oriented environment, related traffic between
application entities can be identified by connection-
endpoint-identifier . (which identifies the application
association), in a store-and-forward environment, the
existence of an association indicates only an ability
to communicate; there may be many different traffic
flows between two application entities taking place
concurrently. An additional mechanism is needed to
identify related messages, e.g. responses to requests.

5.5 General Concepts

5.5.1 Relationship to Implementations

The architecture described in this clause is conceptual
in nature and in no way constrains implementations.

32

lower
layers

End System Relay.System 	End System

End-to-end Protocol

IA-layer Relay Protocol Relay Protocol

Figure 5.8 Illustration of Store-and-forward environment

•

In the OSI world, implementations are constrained only
to the extent that implementations of protocols must
conform to the conformance clauses stated in the
corresponding standards. These conformance clauses
specify only the externally-visible behaviour to which
an implementation must adhere; and then only in terms
of syntax and sequencing of protocol-data-units.
There is no conformance .to service definition
standards.

This leaves the implementor considerable freedom.

In practice, service definition standards serve as a
useful 	interface 	specification 	for 	layer
implementations. With these standards, it becomes
possible to develop bindings for commonly-used computer
programming languages. A binding in this case is a
mapping of a service primitive or sequence of service
primitives into a 	language-specific procedure or
function specification. 	The availability of such
mappings in turn encourages the development of OSI
software libraries. Although not eligible for
standardization, language bindings for OSI services, if
they become widely accepted and available, can help
transform the aura of OSI 'software from "special
purpose and therefore expensive" to "utilitarian and
therefore inexpensive".

5.5.2 Relationship Between Association, Connection and
Context

An application association 	is 	a 	cooperative
relationship between two application entities.

There is a one-to-one mapping between an application
association and a Présentation Layer connection, and
similarly between a Presentation Layer connection and a
Session Layer connection.

The establishment of a Presentation Layer connection is
the first step in the process of establishing an
application association. It permits identification of
the cooperating application entities by their PSAP
addresses. The second step is the exchange of A-
ASSOCIATE protocol-data-units which serve to identify
the application entities by title and to identify the
application context that applies to the association.

•

The application context in turn identifies the set of
service elements that are potentially available during
the association. It acts as the frame of reference for
successful interworking between the application
entities.

5.5.3 Names, Titles and Addresses

In the OSI environment, names are linguistic constructs
which denote communications objects. There are two
classes of names: titles and addresses.

A title is a name given to an entity to identify it
unambiguously. For example, each application entity
has at least one title. A title is descriptive in
nature only; it does not identify the physical location
of an entity.

An address is a name used by a layer to identify a
service-access-point through which access to an entity
at the next higher layer can be obtained. An address
serves as input to the routing function which
determines how to access a given entity.

For an application entity, its application-entity-title
at any instant in time is bound to the presentation-
address of the PSAP td which the application entity is
attached. This binding is held by the application
.directory service which provides a title-to-address
mapping service. This directory service may be local
to the end system or it may be a separate entity
accessed by a specific protocol.

In the OSI environment, Network Layer addressing
normally is used to identify end systems uniquely.
Therefore, an addressing authority is needed to
allocate unique Network Layer addresses throughout the
entire OSI environment. For layers above the Network
Layer, addresses are under the control of local system
management. An address in this case is typically
hierarchical in nature, consisting of a Network Layer
address plus one or more selectors which identify a SAP
uniquely within a layer of that system. In the case of
a Session SAP address, it would consist of a Network

• address plus a Transport selector and a 	Session
selector. 	A Presentation SAP address would add a
Presentation selector to uniquely identify a PSAP among
all the PSAPs associated with the Presentation entity
identified by the Session SAP address.

35

For example, the process of establishing an application
association may proceed as follows:

- the user element supplies the title of the
application entity with whicli an association is
desired;

- the PSAP of that application entity is obtained by
inputing the application-entity-titlè to an
Application Layer directory function, 	which
provides a mapping from title to PSAP-address.

- another directory function, located in the Network
Layer, 	provides the mapping between the
destination NSAP-adress and routing information
which is required to select a sequence of relay
entities forming a path to the called NSAP.

- the entire PSAP-address is not conveyed in the
protocol-control-information of the Presentation
Layer. Instead, it is decomposed in the
initiating open system into its constituent parts
namely:

• Presentation-selector
• Session-selector
• Transport-selector
• NSAP-address

and these are conveyed, as addressing information
in the protocol-control-information of the
Presentation, Session, Transport and Network
Layers, respectively. At the recipient open
system, they are composed &gain into:

• the NSAP-address
• the pair (NSAP-address, transport-selector)
= TSAP-address

• the pair (TSAP-address, session-selector)
= SSAP-address

• the pair (SSAP-address, presentation-selector)
= PSAP-address

to refer to, respectively:

• a transport entity
• a session entity
• a presentation entity
• an application entity.

•

•

•

If it is necessary to confirm that the required
application-entity is still attached to the PSAP
identified by the presentation-address, then the

- application-entity-title can s be passed as part of
the A-ASSOCIATE'protocol-control-information.

' 5.5.3.1 	Naming Authorities

A name singles out a particular object from among a
collection of objects. Names are unambiguous, but not
necessarily unique. A name must certainly be
unambiguous, that is, denote just one object. However,
a name need not be unique, that is, be the only name
that unambiguously dendtes the object.

The requirement for unambiguity of names implies some
authority with control • over the allocation of names.
ISO has proposed a hierarchical naming convention such
that different naming authorities would have
responsibility for naming domains, corresponding to
different levels in the haming hierarchy.

The allocation of naming authorities remains to be
done.

Every local System manager will be a naming authority
for the naming domain consisting of SAP address
selectors within a given end system.

5.5.4 Embedding of Protocol Data Units (PDUs)

At any layer, the protocol data Units exchanged between
peer entities has two components: _protocol-control-
information relating to the operation of the protocol
and user data supplied by the service user. This user
data is not meaningful to the protocol entities and is
delivered intact to the recipient service user.

This fundamental concept of embedding is illustrated in
Figure 5.9 for connection establishment. In this
example, a user wishes to transfer a file using the
file transfer SASE. The first step is to initialize
the file transfer protocol. This results in the
generation of file transfer protocol-control-
information (PCI) which is supplied as user data to an
A-ASSOCIATE CASE request. CASE adds its own PCI to form
a CASE A-ASSOCIATE PDU. This PDU in turn becomes user
data of a P-CONNECT request. The resulting
Presentation PDU then becomes user data of an S-CONNECT

request. The resulting S-CONNECT PDU is sent as user
data of a T-DATA request after a Transport connection
has been established.

The example above illustrates the case where the
Application association and the Presentation and
Session connections are established at the same time.
In this situation, the failure of conriection
establishment in any layer causes failure in all of the
upper three layers.

It is not necessary that the upper layers establish
connections 	in 	unison. 	It is also possible to
establish layer connections sequentially. In this
case, the connect PDU of one layer is sent as user data
of a DATA PDU of the lower layer once the lower layer
connection is established; this corresponds to the
behaviour of the Session Layer relative to Transport
connection establishment.

5.5.5 Directly Mapped Services

Services provided by one layer may be offered by the
next higher layer to its user without any additional
value. These services are called directly mapped
services.

However, 	the invocation of some directly mapped
services may cause a change in the state of a service
provider even though it may not generate any additional
PCI to support the service. Those directly mapped
services which do not cause any change in the state of
a service provider are called pabs-through services.

5.5.6 Management

Within OSI, there are requirements for the planning,
organizing, supervision and contelling - of the
communications aspects of a distributed information
processing system.

These management aspects are decomposed into two sets
of activities:

a) 	OSI management, related to the interworking of OSI
Management-application-processes across open
systems. It provides the means by which management
information is distributed between open systems,
management information is accessed by remote open

•

e.g.: S-CONNECT

1 Session
1 PCI 	•

user data

e.g.: F-INITIALIZE

1 SASE PCI

e.g.: ,A-ASSOCIATE 	1

1 CASE kernel 'user data
1 PCI 	1

e.g.: P-CONNECT

Presentation 1 	user data
PCI 	1

PCI = Protocol Control Information

Figure 5.9 Example of Embedding of Protocol Data Units

systems 	and the execution of management
processing is controlled. 	An example of the
latter capability is initiation of accounting
activities.

h) 	open-system-management, related to the management
information needs of individual open systems. It
provides the means by which management information
is stored and retrieved and management information
is exchanged among the layers.

Architecturally, management functionality is divided
into system management and layer management.

5.5.6.1 	System Management

System Management in the OSI environment is achieved
through a set of application processes running in open
systems, which communicate with each other to support
the management activities described below:

There are. five different categories 	of 	system
managementi

1. Configuration 	Management: determination 	and
control of the logical and physical configuration

- of the system;

2. Performance Management: control and assessment of
the performance of the individual end systems and
relay systems of a network and of overall network
operation;

3. Fault Management: detection, 	diagnosis 	and
reporting of failures;

4. Access Management: control of access to resources
and processes;

5. Accounting Management: tracking and 	reporting
usage of the resources;

A system management process, like any other OSI
application process, consists of two parts: one, the
application entity, which resides in the Application
Layer, deals with communication aspects and is relevant
to OSI; the other handles local system management which
is outside the scope of OSI.

•

•

•

The system-management-application-entity (SMAE) handles
all inter-system'communication, including communication
relating to coordination of system managers and to
coordination of layer managers (see below).

Local system management has responsibilities for:

- starting up a system

- serving as the intermediary for the exchange of
management information between layers;

- initiating the layer manager for each individual
layer

- serving as the manager of management information
that is common to several layers or that is
supplied externally.

5.5.6.2 Layer Management

In keeping with the general-OSI princiPle that each
layer is independent of all others, each layer has its
own management function. Each OSI system has a layer
manager (LM) for each layer. Layer management is the
collection of LMs for a particillar layer.

A layer manager has the following roles:

1. it serves to coordinate the activities of the
entities within a layer. This is principally the
activation and deactivation of entities as
neèded.

2. it acts as the window to system management for
layer entities. For example, when an entity needs
access to an operating parameter stored in the
general management information base (MIB), e.g. a
timeout interval, the layer manager will retrieve
the information on behalf of the entity. 	Also,
when entities 	in different layers need to
communicate, they must do so via the local system
manager. (Direct communication between layers for
management purposes is forbidden in order to
prevent dependencies which could violate layer
independence).

3. 	it manages the layer. This is done in conjunction
with both system management and peer LMs. Note
that LMs within a layer communicate via the system
manager, i.e. via an Application Layer protocol. •

To gain access to the SMAE, an LM must act through
the local system manager. This is shown in Figure
5.10.

5.5.6.3 	Directory Service

An important aspect of OSI management is the directory
service. This service provides a common method for the
storage, manipulation and retrieval of information
concerning communications. It fulfils two essential
needs of OSI networks:

1. to allows clients (i.e. users and applications) to
rely on user friendly names;

2. to make the OSI network "self-configuring" in the
sense that addition, removal, and changes in the
physical location of objects do not affect network
operation.

The directory service provides its clients with dynamic
binding of names to- other names; names to groups of
names and properties of objects to the names of objects
with those properties.

An example of the name-to-ipther-name binding service is
the application-title to SAP address mapping discussed
under naming and addressing. This is analogous to a
"white pages" directory. •

An exarriple of the name-to-list-of-names binding service
is a mailing list for an electronic mail application.

An example of the property-to-set-of-names binding
service is to find the names of all systems which
support a particular protocol. This is analogous to a
"yellow pages" directory.

As with other management services, the directory
service lies within the Application Layer.

5.5 07 	Registration

For two open systems to interwork, it is not sufficient
that they both implement the same set of protocols.
There are a number of other aspects of which the two
systems must be cognizant for successful distributed
processing to be possible.

•

OPEN

SYSTEM

SMAE I

LOCAL 	I

SYSTEMS

MANAGEMENT 	I

Lm I

Figure 5.10 Interactions Among System Management Entities

•

•
43

One obvious example is the title or address of the
destination application entity that an initiating
entity wishes to reach. While .the structure of such
names may be standardized, the actual names are,
allocated by a naming authority. This allocation is a
form of registration.

Registration is the act of allocating - an unambiguous
name for a structured amount of information. A
registration authority is typically assignee the
responsibility for ensuring this unambiguity and for
recording the registered information. It may also be
responsible for ensuring completeness and accuracy of
the information to be registered. When ISO acts as a
registration authority, it specifies the formal
procedures that an applicant must follow.

When information to be registered is not relevant to
all of OSI, for example when a set of names are
relevant only to the bafiking industry within a country,
then the registration authority may be assigned to a
different body.

Another type of information for which registration is
required is application context names. Knowledge of
application context is crucial to proper interworking
of two application entities, and it is therefore
important that application context names are known to
the interested parties and are unambiguous. This • is
achieved by registering such names with a registration
authority who is responsible for ensuring unambiguity
of context names and for making public the set of
registered contexts.

Registration authorities are also necessary 	for
registering abstract and transfer syntaxes as there may
be many more such syntaxes than are standardized by
ISO.

For a particular SASE, there may be other requirements
for a registration authority. 	For example, the Job
Transfer and Manipulation (JTM) service has a
requirement for the registration of document types that
can be interchanged using JTM.

5.5.8 	Security

The objective of OSI is to permit the interconnection
of heterogeneous computer systems so that useful
communication between application processes may be

44

•

achieved. At various times, security controls must be
established in order to protect the information
exchanged between the application processes. Such
controls should make the cost of illegally obtaining or
modifying data greater than the pot'ential value of
obtaining or modifying the data.

ISO has developed in 7498/2 an architectural framework
for the provision of security features within OSI. No
security functions have been incorporated yet into
standard protocols.

A number of security features can optionally be
provided within the framework of the OSI. Reference
Model:

1. peer entity authentication: this capability is
provided at the establishment of a connection in
order to provide a high degree of confidence that
the connection has been established with the
addresed peer entity (and not with an entity
attempting a masquerade or a replay of a previous
connection establishment).

2. access control: this capability provides
protection against unauthorized use of the
resources accessible via OSI. This protection
capability can be applied in common to a group of
entities (often referred to as a closed user
group) or on an individual entity basis.

3. data confidentiality: this papability provides for
the protection of data from unauthorized
disclosure. Confidentiality can have the
following features:

a) confidentiality of all user data on a
connection;

h) confidentiality of user data in a single
connectionless service-data-unit;

c) confidentiality of selected fields within the
user data of a service-data-unit; and

d) traffic flow security, i.e. protection of the
information which might be derived from
observation of traffic flowà.

	

4. 	data integrity: this capability detects active

	

. 	attacks and it may take one of the following
forms:

a) integrity of a single connbctionless service-
data-unit. This may take the - form of
determination of whether a received service-
data-unit has been modified;

h) integrity of selected fields within a single
connectionless service-data-unit. This takes
the form of determination of whether the
selected fields have been modified;

c) integrity of selected fields transferred over a
connection. This takes the form of
determination of whether the selected fields
have been modified, inserted, deleted or
replayed;

d) integrity of all user data on a connection.
This service detects any modification,
insertion, deletion or replay of any service-
data-unit of an entire service-data-unit
sequence (with no recovery attempted);

gl› 	e) as for (d) but with recovery.

5. 	data origin authentication: this capability
provides assurance that the data source is the one
claimed.

6. 	non-repudiation: this capability may take one one
or both of two forms:

a) the recipient of data is provided with proof of
the origin of data which will protect against
any attempt by the sender to falsely deny
sending the data or its contents; and/or

h) the sender is provided with proof of delivery
of data such that the recipient cannot later
deny receiving the data or its contents.

A variety of mechanisms have been identified to provide
some of the capabilities described above. These
include encipherment, digital signature mechanisms,
access control mechanisms (e.g. passwords), data
integrity mechanisms (e.g. use of redundancy checks),
traffic padding (i.e. sending spurious data to disguise
the length and number of transmitted service-data-

•

SERVICE
LAYER

1 2 3 4 5 6 7*

units), routing control (e.g. selecting only secure
communication paths), notarization (i.e. use of a
trusted third party as a relay), ensuring trusted
functionality of software and hardware, incorporation
of évent detection and handling procedures (e.g. local
and remote reporting, of unusual events) and provision
for audit trails'(e.g. logging all eVents).

The above security services may be provided by
different layers according to circumstance. The
following table from 7498/2 indicates the layers of the
Reference Model in which particular security services
can be provided.

Table 5.1 Matrix of Security Services and Layers

Peer Entity Authentication 	NNYYNYN
Access Control 	 •NNYYNYY
Sequence Confidentiality 	YYYYNYN
Connectionless Confidentiality 	NYYYNYN
Selective Field Confidentiality 	NNNNNYN
Traffic Flow Security 	YNYNNNY
Connection Integrity (no recovery) 	NNYYNYN
Connection Integrity (recovery) 	NNNYNNN
Selective Field Connection Integrity 	NNNNNYN
Connectionless Integrity 	NNYYNYN
Selective Field Connectionless IntegrityNNNNNYN
Data Origin Authentication 	NNYYNYN
Non-Repudiation (origin) 	NNNNNYN
Non-Repudiation (delivery) 	NNNNNYN

Legend: Y - Yes, service can be provided in this layer
N - No, service shall not be provided in this layer
* - While application entities are restricted in the

security services which they can provide, the
application-process, as a local matter, may itself
provide security services.

5.5.9 Quality of Service

In the OSI environment, it is possible for an end user
to specify its requirements in terms of the quality of
service (QOS) it needs for communication.

•

47

In 	a 	connection-oriented 	environment, . 	these
requirements are stated at the time of connection
establishment, and if accepted by the service provider,
then are expected to be maintained throughout the
lifetime of the connection; if a service provider knows
that it is unable to satisfy these requirements, then
it refuses the connection.

In a connectionless environmedE, quality éf service is
specified each time a data unit is to be transferred.

While it is the end user or application entity who
typically states QOS requirements, it is the Session
Layer which is responsible for satisfying them. This
it attempts to do with the support of the Transport and
Network Layers.

Quality of service is . typically stated in terms of a
set of parameters. Some of these parameters can be
classified as performance-related while others deal
with non-performance issues.

The performance-related Q0S parameters are further
divided into speed-related ones and
accuracy/reliability-related ones.

Speed-related QOS parameters are concerned with how
fast activity can take place and typically set limits
on the maximum acceptable values. For example, the
Session Connection Establishment Delay parameter states
the maximum acceptable value for the time taken for a
successful connection establishment to take place.

Accuracy/reliability-related 	QOS 	parameters 	are
concerned with the possibility of errors and generally
state the maximum acceptable probàbility of failure.
For example, the Residual Transfer Rate parameter
states the acceptable ratio of incorrect, lost and
duplicate units of user data to the total user data
traffic volume in a measurement period.

The non-performance-related QOS parameters deal with a
variety of issues:

1. 	the protection parameter states requirements for
protection measures such as those discussed under
Security previously;

48

• 2. the priority parameter specifies the relative
importance of a session connection in case Q0S
must be degraded or resources must be reclaimed;

3. the extended control parameter allows Session
Service users to make use of the resynchronize,
abort, activity interrupt and activity discard
services when normal data flow is congested. This
is useful if the expedited data'functional unit is
not available.

4. the optimized dialogue 	parameter 	permits
concatenated transfer of certain session service
requests to improve transmission efficiency.

Table 5.2 lists all the 	available 	Session 	QOS
parameters.

Table 5.2 Summary of Session Quality of Service Parameters

PERFORMANCE-RELATED

.Session Connection Establishment Delay
Session'Connection Release Delay
Throughput
Transit Delay

ACCURACY/RELIABILITY: 	Session Connection Establishment
Failure Probability

Session Connection Release
Failure Probability

Residual Error Rate
Session Connection Resilience
Transfer Failure Probability

OTHER

Extended Control
Session Connection Protection
Session Connection Priority
Optimized Dialogue Transfer

SPEED:

•

• 5.6 Relationship Among Layers

5.6.1 Session and Presentation Layers

The partitioning of functions into the Session and
Presentation Layers represents a separation of concerns
from the viewpoint of OSI protocol design; it does not
-reflect a hierarchical relationship between such
functions. Consequently both Session and Presentation
Layer services are visible to a user_ of the
presentation services.

The complementary nature of the functions provided in
these layers, coupled with the layered approach to
protocol design, requires that Presentation Layer
standards make Session Layer functions available to a
presentation service user in an essentially unmodified
form. It is this complementary nature of the layers
that gives rise to the concept of directly-mapped
services.

5.6.2 Presentation and Application Layers

The principal function of the Presentation Layer is to•
perform syntax transformation. For this to be
possible, the Presentation Layer must be awarê of and
must understand the abstract syntax(es) in use by the
Application Layer on a given connection. Thus, the
Application Layer is responsible for identifying the
abstract syntax(es)

The use • made by the Application Layer of the
Presentation Layer services (excluding directly-mapped
Session Layer services) is very much dependent on the
variety of syntaxes that the Application Layer may use
on a given Presentation connection.

In the simplest case, only one abstract syntax is used
by the Application Layer and the local representation
of that syntax corresponds to the transfer syntax. In
this case, no data transformation functionality is
required of the Presentation Layer; its role is reduced
to connection establishment and release, and acting as
a conduit for Session Layer services.

More typically, 'more than one abstract syntax is
required for an application. Normally, one syntax
would be used for CASE and another for each SASE that
is invoked by the application. Depending on the
selected abstract syntaxes, negotiation of transfer
syntax may or may not be needed.

When more • han one transfer syntax can be used with a
given abstract syntax, then the selection of- transfer
syntax by the Presentation Layer may be influenced by
local management considerations, e.g. a requirement for
lowest cost transfer would encourage the choice of a
transfer syntax which provided data compression.

Hence, the functionality of the Presèntation Layer for
any given connection is dépendent on the requirements
of the Application.

5.6.3 Application and Session Layers

The Session Layer provides a variety of functions that
typically are not in use together on a connection.
Related functions are grouped into functional units
which must be selected at time of Session connection
establishment. The choice of which functional units to
select depends on the requirements of the Application.

The Session Layer provides many services that are
useful for managing the dialogue between two
application entities. It is very important to realize
that these services are only tools; the Session Layer
itself does not make any decisions about what to do in
particular situations, e.g. whether a resynchronization
should be of type "restart" or type "set". It simply
executes the function requested by the Session user.

An important responsibility of the Application Protocol
designer is determining how best to make use of the
available Session services. This issue is discussed
further in Clause 7.

51

•

6. METHODOLOGY FOR THE DEVELOPMENT OF BASE STANDARDS

6.1 	Introduction

This clause describes the steps'in the development of
OSI-compatible standards for Specific Application
Service Elements. For each step, the nature of the
information to be supplied, the level of detail and the
presentation format is defined.

Also, a description is provided of the application of
each step of the methodology to the development of an
example SASE. The example is interactive authorization,
as described in ISO 8583.

This methodology is consistent with the ISO guidelines
as stated in TR 8509.

.**

NOTE: Material that is tutorialsin nature, e.g. related
to the example, is set between rows of asterisks.

**

6.2 Objective of Methodology

The objective of the methodology described here is to
develop service and protocol standards which are
compatible with the OSI Reference Model and which are
consistent in organization and preseentation style to
OSI standards developed by ISO TC97/SC21.

It is not an objective of this methodology to describe
how to design distributed applications. 	Such
applications include an information processing
component and a communications component. Only the
communications component is of interest here. It is
recognized that the Communications component cannot in
general be designed in isolation. An understanding of
the overall application is required. However, there
are many possible approaches to the design of an
overall application and no consensus exists on the
"best" one to use. The methodology described here
identifies only what information must be known a priori
before service and protocol standards development can
begin. How this information is obtained is outside the
scope of this document.

The methodology takes a top-down, data-driven approach
based on the popular edp concept of abstract data
types.

**

6.3 Overview of Interactive Authorization Example

Interactive authorization (IA) is 	an application
related to financial transactions involving bank
cards. It is One of the functions supported by ISO
8583. A high level model for bank card-related
processing recognizes that four application-processes
may be . involved: the Cardholder, Card Acceptor,
Acquirer and Card Issuer. These ,application-processes
and their interactions are illustrated in Figure 6.1.

The Cardholder 	is the initiator of a financial
transaction; it typically is a person. 	The Card
Acceptor may correspond to a clerk in a store, to a
Point-of-Sale (POS) machine or to an Automatic Teller
Machine' (ATM). 	The Acquirer 	is typically the
merchant's financial institution and may act in
certain cases as the agent of the Card Acceptor for
interactions involving a Card Issuer. The Card Issuer
is the financial institution who issued the bank card
to the Cardholder and has the authority to accept or
refuse transactions initiated by a Cardholder.

In this 	environment, the purpose of interactive
authorization is to obtain approval or guarantee for a
financial transaction to proceed. An authorization
request flows from the Card Acceptor to the Acquirer,
and then to the Card Issuer. The response flows in the
opposite direction along the same path as the request.

An authorization is not intended to convey sufficient
data to permit the application of a transaction to the
Cardholder's account for the purpose of issuing a.bill
or statement. An important aspect of thi rs application
is its real time nature, with a strict upper limit on
response time between issuance of a request for
authorization and receipt of a response. An example of
an authorization is a request for approval of 'a. credit
card purchase. 	 . -

*
**

53

•
CARD

ISSUER
ACQUIRER

CARD
ACCEPTOR CARDHOLDER

Figure 6.1 Processes Involved in Interactive
Authdrization Application

•
54

•

6.4 Starting Requirement

The essential information that must be available before
the methodology can •proceed is a knowledge of which
processes in the distributed application require
interaction, in the OSI sense, with other processes.

Where an application involves only two processes in
separate physical systems, then there is no problem.

Where an application involves more than two processes,
it may be necessary to analyze the possible physical
and organizational mappings to determine . :

1. which processes 	need 	to 	interact via a
communications service; if two processes are
always co-located in the same physical system,
then there is no requirement for a communications
protocol between them;

2. how many different protocols .are required; if the
nature of the interactions between subsets of
processes differ considerably, then more than one
protocol may be 	required to satisfy the
communication requirements of the application;

3. whether each identified protocol needs to be
standardized; if two processes which require a
protocol for communication are both located within
the same organization or the same management
domain, then a standardized protocol may not be
necessary.

**

One example of this form of analysis is provided
in the CCITT X.400 Recommendation on Message
Handling Systems.

This Recommendation defines a system model with
three types of processes: users, user agents and
message transfer agents. 	It 	recognizes 	the
possibility of different physical and
organizational mappings; an example of a physical
and an organizational mapping is provided in
Figure 6.2 (a) and (b), respectively. It
identifies four types of interactions: 1) among
user agents; 2) among message transfer agents; 3)
between a user agent and a message transfer agent;
and 4) between a user and a user agent.

CCEMIM3, 	 COMO. aMMIL3011. .91.11:=117 	 ea, 22.=. 0119

1

1 	 1
1

Intelligent
Terminal

Intelligent
Terminal

Figure 6.2 (a) Example . of Physical Mapping for Message
Handling Systems

•

Mio 	 ti• denotes =ganization boundaries

r2J10 Iwzo=f22,

I

1_

, '''..."«..n: • ' r''.1eleeerk.el

	

' '-... 	 I 17 «'.'" A • n ' . *CC. ' iii i ;.•; .. 	''"?;'; . '1.Z"17. n:'
**'. *MTA Y .4.: - '--- ..-:::\,,TA •:-_,A

Figure 6.2 (b) Example of Organizational Mapping for Message
Handling Systems

•

In recognition of the different possible physical
and organizational mappings, the first three of
these types of interactions are made candidates
for standardization. As a result, three different
protocols (P1, P2 and P3) , are developed in
companion recommendations.

**

**

6.4.1 Application to Interactive Authorization

In the case of the IA application, three processes and
three types of interactions are involved.

There are two significant physical configurations: one
where the Card Acceptor, Acquirer and Card Issuer
processes are located on different physical systems,
and one where the Acquirer and Card Issuer are co-
located. These are shown in Figure 6.3 (a) and (b),
respectively.

In the first case, there is a possible requirement for
two protocols. However, consideration of
organizational mappings reveals that the Card Acceptor
and Acquirer are part of the same organization, i.e.
they are in the same management domain and hence there
is no need for a standard protocol between these two
systems, i.e. they need not be open in the OSI sense.
There remains the interaction between the Acquirer and
the Card Issuer, which does qualify as an OSI protocol.

In the second case, 	there .is 	a 	communication
requirement only for the interaction between the Card
Acceptor and the Acquirer. Again these two systems form
part of the same organization and there is no
requirement for an OSI protocol.

**

6.5 Step 1: Develop OSI View of Application

The first step is to develop a conceptual view of the
application that is consistent with OSI architectural
principles.

57

I ACQUIRER I

I

I 	CARD I< 	 >I ACQUIRER I
ISSUER

I
.112••n MM.

I = system

12•11 	 %Me

I

I CARD
ACCEPTOR

= process

Figure 6.3 (a) Separate Systems for Acquirer, Card Issuer
and Card Acceptor

I CARD
ISSUER

I CARD
ACCEPTOR

I
n:01

Figure 6.3 (h) Co-location of Acquirer and Card Issuer

•

This consists of modelling the application in terms .of
a collection of service users - which communicate via a
service provider, defining the relationships among the
service users and identifying the _principal data
structures that are meaningful td the application.

A. characteristic of this model is that the application
entity which initiates.associations with one or more
other entities is always called the "initiator" while
all other application entities are called "responders".

6.5.1 Relationships Among Users
•

The relationships among the users may be defined in
terms of control of services and/or the nature of the
processing performed by a particular user.

The types of relationships based on control of services
include:

peer-to-peer: a peer-to-peer relationship between two
users is one where each user can autonomously
initiate associations with the other user.

master-slave: a master-slave relationship between two
users is one where one user can initiate a service
while the other user can only respond. Typically,
once an association has been established, only the
initiator can invoke services. In certain cases, a
responder may also be allowed to - invoke a
service, but such cases are restricted normally
to the reporting of exceptional conditions such as
a local system failure.

The types of relationship based on nature of processing
include:

client-server: a client-server relationship between two
users is one where one user manages a resource
which the other user wishes to have access to.
This type of relationship is typically also a
master-slave one. A shared file server is an
example of a provider which interacts with various
users who wish to retrieve (consume) files.

a source-sink relationship between two
users is one where there is movement of data from
the source user to the sink user. The distinction
between this relationship and the client-server

source-sink:

59

•

•

one is that the client-server relationship does
not necessarily imply movement of data. 	For
example, a request to delete a file is a
legitimate client-server _interaction but not a
legitimate source-sink one. À request to transfer
a file to the requestor qualifies as both.

initiation-executioni,. 	, an 	initiation7execution
relationship between two users is one where one
user is capable of executing some operation that
another user wishes to have performed. An example
of this type of relationship is a remote job entry
application.

These various types of relationship are not mutually
exclusive. Indeed, all of them may be possible within a
single application.

6.5.2 Identification 	of Principal Conceptual Data
Structures

In any distributed application, communication between
processes is for the purpose of exchanging meaningful
information. For the information to be Meaningful, the
processes must have a common understanding of the
application. This common understanding can be
described in terms of a conceptual data structure.

A conceptual data structure is an abstract definition
of a data item or of a set of related data items that
is meaningful to the communicating parties. It
provides a common model for describing the information
that is of mutual interest and hides the differences in
style and specification that individual systems may use
locally to represent such information.

There is no precise rule for determining the nature of
this data structure, but the type of relationship
between the service users may provide some guidance.
For example, if the relationship is a master-
slave/producer-consumer one, then the conceptual data
structure will typically relate to the nature of the
information managed by the producer. If the
relationship is an initiation-execution one, then the
data structure will likely be concerned with
representing the . flow of control between the users.
For other relationships such as peer-to-peer, then the
determination of an appropriate conceptual data
structure may not be so obvious and the characteristics
of the application itself will be the decisive factor.

Once the major data structures have been identified, it
is necessary to describe their internal structure. The
emphasis at this stage is on the functional nature of
the data structures and not on their precise
representation. This can be done in a process of
successive refinement. The first step is to identify
the type of information that must be present in the
conceptual ,- data structure;—the -next, step is to
explicitly identify the data elements that satisfy
these requirements and state thelr purpose.

There is no 	formal 	specification technique or
recommended format for the resulting description.

**

This can be illustrated by its application to.existing
ISO standards.

In the case of the ISO File Transfer, Access and
Management (FTAM) standards, the type of relationship
can be characterized as a master-slave/client-server
one. The principal conceptual data structure is the
virtual filestore. The virtual filestore is an
abstract representation of a file system. It provides
a common model for use in describing files and their
attributes and hides the. differences in the way real
(i.e. physical) systems actually store data and provide
access to it. Each system which implements these
standards is responsible for developing a mapping
between the abstract representation of a file system
used by the FTAM protocol and the actual
characteristics of the local system.

The principal components of the virtual filestore are
files. Files have attributes, some of which describe
general properties such as filename and some of which
describe the structure of the file, e.g. flat,
hierarchical, etc. The complete filestore definition
provided in ISO 8571/2 includes a definition of all
file attributes.

In the case of the ISO Job Transfer and Manipulation
(JTM) standards, the relationship between JTM users is
that of initiation-execution with elements of source-
sink. The principal conceptual data structure is the
work specification. This specification defines in a
defined way the work that is to be performed as part of
a job. It contains fields, which for example provide

61

• for the identification of the work to be performed, for
its authorization, for identifying who is to perform
the work, for identifying what reporting information is
to be supplied, and for specifying further work to be
performed when initial work is completed. A work
specificatiOn also may contain one or more documents
which convey the actual information that is to be
processed by a recipient JTM user. For example, the
actual Job Control Language.that is to be processed by
a particular computer system would be contained in a
document. Any document type can be transferred between
JTM users, as long as there exists an abstract syntax
for it.

**

6.5.3 	Sub-layering
-

In some cases, an application cannot be de .scribed
, adequately by a single conceptual data structure or

related set of data structures. Multiple levels of
data structure (i.e. of abstraction) may be more
appropriate.

• The concept of sub-layering may apply in such cases.
The service provider is decomposed into sub-layers
where the upper sub-layer, i.e. the one closer to the
end user, acts as a user of the next lower sub-layer.
Different conceptual data structures are associated

. with each sub-layer, but they are hierarchically
related in that the data structure at one level is
nested within the data structure associated with the
next lower sub-layer.

For sub-layering to apply, it is not sufficient that
there be a hierarchy of data structures. For example,
a JTM work specification is itself a complex data
structure containing many data elements, some of which
in turn may be complex data structures, e.g. 	a
document. 	It is necessary that the different data
structures be at different levels of abstraction in
terms of the communications aspects of the
application.

Sub-layering is approPriate when the following criteria
are satisfied:

• - there are - different conceptual data structures
which are hierarchically related;

- the data structures are operated upon at different
levels of abstraction;

- each sub-layer adds services to those provided by
the sub-layer below;

- each sub-layer requires one or more distinct peer
protocols.

**

An example of sub-layering is the CCITT Message
Handling Systems (MHS) set of recommendations. In this
case, there are two principal conceptual data
structures, each of which is meaningful to a different
sub-layer.

The User Agent sub-layer is concerned with an "Inter-
personal message" (IP-message) consisting of a heading
and a body. The body is the,actual information that is
to be conveyed to the recipient user while the heading
contains information relevant to the processing of the
body.

The Message Transfer sub-layer is concerned with a
"message" consisting of an envelope and a content. The
envelope carries information relevant to the transfer
of the message to its destination(s) while the content
is the information delivered to the recipient(s). The
IP-message and message are related in that the content
of the message is the IP-message.

**

**

6.5.4 Step 1 for Interactive Authorization Example

The OSI view of this application is shown in Figure 6.4
There are only two users, namely the Acquirer and Card
Issuer.

ACQUIRER

CARD
ISSUER

I

IA SERVICE PROVIDER

Figure 6.4 OSI View of IA Application

•

• 6.5.4.1 	Roles of the Users

The Acquirer can be only an initiator and the Card
Issuer can be only a responder. There is a master-
slave, initiation-execution relationship between these
two users in the sense that the Acquirer asks the Card
Issuer to perform an authorization function to which
request the Card Issuer is expected to respond.

6.5.4.2 Conceptual Data Structure

The principal conceptual data structure for .this
application is the card authorization record. This
data structure represents all the pertinent information
for the authorization of a bank-card-related financial
transaction. It is closer to a MHS message or JTM work
specification in that it is a data structure that is
exchanged between systems, unlike FTAM where the
virtual filestore remains local to èach system.

Note that from an implementation perspective, there is
another important data structure maintained by the Card
Issuer. 	This is the customer file, which contains the
information on which an ,authorization request 	is
accepted or rejected. However, this information is not
visible to the Acquirer and therefore does not play a
role in the definition of standards for this
application. How an authorization decision is taken is
of no concern to the Acquirer -- from its perspective, ,
the decision could be based on information maintained
by a human operator. The Acquirer is interested only
in getting a response to its request. On the other
hand, if the authorization decision was to be made by
the Acquirer based on information retrieved from the
customer file, then this file would become an important
conceptual data structure for this application.

The card authorization record is required to contain
the following information:

- identification of the transaction: this uniquely
identifies a transaction

- account information: 	identifies the 	customer
account

- identification of the transaction participants:
indicates who the Card Acceptor, Acquirer and Card
Issuer are

- currency information: identifies the currency of
the transaction

- transaction amount: the value of the transaction
being performed

From this set of requirements can be derived the data
elements identified_ in ISO 8583. Note that the data
elements identified in 8583 Which relate to —the'
transmission of a message, such as "transmission date
and time", are not present in this data structure.
Only those data elements which are pertinent to the
data processing aspects of the application are
included.

There is no requirement for sub-layering.

**

6.6 Step 2: Identify Service Elements

A conceptual data structure in itself does not provide
a complete understanding of an application. It is
necessary also to specify the operations that are
relevant to that conceptual data structure.

For example, in the case of a file transfer and
manipulation application, it is necessary to specify
the operations that are possible on the virtual
filestore.

The interaction between application entities regarding
these operations is modelled in terms of invocation of
services provided by application service elements.
Therefore this step of the methodology is concerned
with identification of the service elements relevant to
the application.

Temporary Note: Note the distinction in the above
paragraph between . service elements and
services. This is consistent with the
discussion in clause 5.4.2.1.

The emphasis at this step is on informal description.
A formal specification will follow in a subsequent
step.

•

• 6.6.1 Criteria for Selection of Service Elements

There is no precise rule for this. The definition of
the term "service element" is sufficiently broad that
any OSI capability of a service provider can be
labelled a service element.

The following selection process is recommended.

1. if there 	is more than one conceptual data
structure, and sub-layering applies, then a
separate set of service elements is identified for
each sub-layer. Separate service definitions and
protocol specifications must be produced for each
sub-layer.

2. allocate a service element for each operation that
directly involves a conceptual data structure.
This is the single most important 	selection
criterion; it requires a thorough understanding of
the application. For example, for a file transfer
application, a service element would be allocated
for selecting and deselecting a file, for opening
and closing a selected file, reading and writing,
etc. These service elements are specific to the
application and hence are categorized as SASE.

3. determine whether the application is connection-
oriented, connectionless or store-and-forward in
nature. This decision is related to the quality
of service requirements of the application.

Does the application require reliable transfer of
large amounts of data? - Does it require
negotiation of the characteristics of the
interaction between communicating partners? Or
does it require an ongoing dialogue between the
communicating partners? If so, then a connection-
oriented mode of communication is appropriate.

Does the application have a requirement for low
data transfer delay and for the transfer of small
amounts of data? Is reliability of data transfer
a secondary requirement? Is there a need to send
the same information to multiple destinations? Is
negotiation of communications characteristics
unnecessary? If so, then a connectionless mode of
communication may be appropriate.

67

• Does the application have a requirement 	for
reliable transfer of small to medium amounts of
data to one or more destinations which may or may
not be always available? Is transfer delay of
secondary importance? If so, then a store-and-
forward mode of communication may be appropriate.

If the mode of communication is to be connection-
' oriented; then service elemènts are required for
initializing and terminating the application
context. Three such service elements are usually
needed: one to initialize the application context, .
one to terminate it gracefully and one to abort it
unconditionally. These service elements may
provide for the exchange of information concerning
variable aspects of the application context, e.g.
selection of functional units or provision of
accounting information upon termination of the
context.

4. 	allocate a service element for provider functions
that are not directly related to manipulation of
the conceptual data structure(s) but do satisfy a
communication requirement of the application.
Such communication requirements are derived from
an analysis of the conceptual model of the
application developed in step 1 and an intuitive
appreciation of the underlying functionality
needed to support the service elements identified
in the first step of the selection process.

Included in this category are the mandatory 'CASE
service elements (e.g. A-ASSOCIATE, A-RELEASE,
etc.) and those optional CASE service elements
which are appropriate, e.g. Commitment Control and
Recovery service elements. Also included here are
other SASEs which are meaningful to the
application, e.g. a file transfer SASE to provide
reliable file transfer in support of a distributed
banking application. All supporting service
elements identified in this step belong to the
lowest sub-layer of the application entity. Clause
7 provides a more complete discussion of
supporting services.

4. 	exclude any functionality that is strictly local
to an end system.

The result of this process is a complete factorization
of the application entity functionality. The internal
structure of the application entity is now understood
and the number and nature of different sets of SASEs
and corresponding protocols is kndwn.

Each -identifiable SASE set corresponds to a different
application context. 	.

**

6.6.2 Step 2 for Interactive Authorization Example

6.6.2.1 	SASE

The conceptual data structure for this application is
the card authorization record. The following service
elements correspond to operations relevant to this data
structure:

Authorization: 	determines whether 	a 	financial
transaction is authorized to proceed.

Authorization 	Repeat: 	repeats 	an outstanding
authorization request for which a response has not
been received.

Authorization Completion: indicates that authorization
actions specified by Card Issuer have been
completed.

Authorization Com•letion Acknowled•ement: acknowledges
authorization completion.

Authorization 	Completion 	Repeat: 	repeats 	an
authorization 	completion 	for 	which 	an
acknowldegement has not been received.

Acquirer Reversal: reverses an earlier authorization.

Acquirer Reversal Repeat: repeats an Acquirer reversal
request for which a response has not been
received.

Issuer 	Reversal: 	reverses 	an 	earlier
authorization.

Card

Card Issuer Reversal Repeat: repeats a Card Issuer
reversal request for which a response has not been
received.

6.6.2.2 	Style of Communication

This application has a requirement for fast response
time: The number of interadtions between an Acquirer
and Card Issuer per financial transaction is typically
two. These characteristics suggest the use of either
connection-oriented 	or connectionless 	supporting
services.

A connectionless service has 	the advantage of
potentially smaller communications delay because of
less overhead. It has the disadvantages that its
reliability is totally dependent on low-level network
characteristics as presently there are no higher-level
error recovery capabilities specified in existing
connectionless protocols, and that there 	is 	no
opportunity for , negotation of association
characteristics as these are fixed by a priori
agreement.

A connection-oriented service may have increased
communications delay, but this is in large measure due
to error recovery capabilities which are important for
this application. It also provides the capability for
dynamic negotiation of association characteristics,
which is advantageous if requirements change over
time. Potentially, the most serious drawback is the
connection establishment delay which can be significant
if a Network connection must be .established for each
authorization request. Delay can be reduced somewhat by
maintaining a Network connection open indefinitely and
establishing separate application associations and
Presentation, Session and Transport connections for
each authorization transaction. A third alternative is
to_establish an association only once and keeping it
open indefinitely. This eliminates connection
establishment delay on a per-transaction basis at the
cost of permanently allocating cohmunications resources
such as buffers.

A connection-oriented approach 	is used in. this
example. Hence, three additional specific application
service elements are required:

..nnnn •

•
70

Initialization: initialize the interactive
authorization context.

Termination: release the context gracefully so that no
data is lost.

Abort: terminate the 'context abruptly, with possible
loss of data.

The CASE kernel set of service elements is also
required. This set of service elements provide for-
association establishment and release.

As only two parties are involved in this application
and only small quantities of data are being
transferred, no requirements exist for Commitment,
Concurrency and Recovery or reliable document transfer
service elements.

*
**

6.7 Step 3: Prepare Service Definition

The previous step defined the functionality of the
service provider in terms of service elements. The
next step is to specify in an abstract way how this
functionality is made available to service users.

6.7.1 Service Conventions

The method described here is based on the service
conventions contained in TR 8509. It applies to the
definition of a service involving one service provider
and two service users.

Conceptually, the functionality of the service provider
is accessed through the invocation of services. A
service is described in terms of a set of interactions
between service users and the service provider. Each
abstract, implementation-independent unit of
interaction between a single service user and the
service provider is called a service primitive.

There are four types of service primitive:

•

•

•

1. 	request: a service primitive issued by a service
user to invoke some procedure.

• 2. 	indication: a service primitive issued by a
service provider either:

a) to invoke some procedure; or

h) to indicate that a procedure has been invoked
by the peer service user.

	

3 : 	response: a service primitive issued by a service
user to complete some procedure previously invoked
by an indication to that same service user.

	

4. 	confirm: a service primitive issued by a service
provider to a service user to complete some
procedure previously inVoked by a request of the
service user.

The occurrence of -a service primitive is a logically
instantaneous and indivisible event. It cannot be
interrupted by another event.

One or more parameters may be associated with a service
primitive and each of these parameters has a defined
range of values. Parameter values associated with a
service primitive are passed in the direction of the
service primitive.

Services are described in terms of groups of service
primitives. The occurrence of a group of service
primitives is not a logically instantaneous event. The
intervals between the constituent service primitives
may be non-disruptively interspersed with other service
primitives, according to sequencing rules defined for
the service.

The principal types of service are:

1. unconfirmed service: a service in which a request
issued by one service user leads only to an
indication issued to the other service user.

2. confirmed service: a service in which a request
issued by one service user leads to an indication
to the other, which provokes the service user into
issuing a response, leading to a confirm being

	

* 	issued to the originating service user. An
alternative form of confirmed service is one where
there are no indication or response primitives,
just a request and a confirm.

• 3. 	provider-initiated service: a service which is
generated by the service provider. It consists of
indication service primitives issued to each
service user.

6.7.2 Elements of a Service Definition

The following information should be present in a
service definition standard:

- Service model 	and 	service 	elements: this
information should be present here if not
specified in a sèparate document

- Identification of services: this includes a list
of services, a brief description of their purpose,
their ffiapping onto service elements and their
classification according to service type.

- Groupings of services: this specifies
collections 	of Services in terms
subsets, service classes or functional

meaningful
of service
units.

includes 	a
and their

- Definition of primitives: this
definition 	of 	all ' parameters
characteristics.

- Sequences of primitives: this 	describes 	the
constraints 	on the 	sequencing 	of 	service
primitives.

Each of these elements is discussed further below.

6.7.2.1 	Service Model and Service Elements

See Clauses 6.5 and 6.6.

6.7.2.2 	Identification of Services

Three items of information are required: a list of
service names, their corresponding service type and
their corresponding mapping onto service elements.

A tabular format is appropriate for presenting this
information.

Service names 	should adhere to the following
convention:

- use capital letters;

- the first one or two letters should -\represent the
application,

- the application identifier should be separated
from the service identifier by a hyphen.

- a descriptive name should be given to the service,
e.g. "OPEN" to open a file. 	Thus the complete
name for a file transfer application file open
service would be "F-OPEN".

A service primitive is identified by appending the
primitive name to the service name, e.g. F-OPEN
request.

The classification into service type will indicate
whether the service is confirmed, -unconfirmed or
provider-initiated.

There are two ways in which a service element can be
mapped onto a service:

1. direct mapping to service: This corresponds to a
one-to-one mapping between a service element and a
service. This is the usual mapping. 	It 	is
appropriate when a service element represents a
distinct capability of the service provider that

 can be invoked separately from other service
elements.

2. mapping to primitive parameter: In this case, a
service element is mapped to a parameter of a
service primitive. 	It is appropriate when a
service ° element does not represent a separately-
invocable capability, but rather is one of a
related group of capabilities which can be
controlled by a single service invocation. 	An
example of this form of mapping is found in the
CCITT MHS specifications.

6.7.2.3 	Groupings of Services

There are three ways in which services can be grouped:
functional units, service classes and service subsets.

74

• Functional units represent small meaningful groupings '
of services. The criterion for such groupings is that
a particular member of a group would not be useful if
the other members were not also available.

*Service classes represent combinations of functional
units. There is no precise criterion for selecting a
class; it may be done on the basis of gradation of
functionality, as in JTM where' the basic class - is a
subset of the full class, or it may be done on the
basis of differentiation of functionality, as in FTAM
where three different classes are defined to address
different aspects of filestore manipulation. A class
may optionally include certain functional units and
require others. The use of optional functional units
must then be 	negotiated 	during 	association
establishment.

A subset is similar to a class, but subsets are not
standardized and therefore cannot be used during
association establishment for negotiating service
capabilities. They may be defined as •a "convenient
mnemonic for typical combinations of functional units.

6.7.2.4 Definition of Primitives

For each parameter of each service primitive of each
service, its definition, its usage and its range of
values must be provided. Also, for each service, the
service user which may issue the request primitive must
be identified.

The definition of each parameter states its meaning.
Only one definition need be provided for a parameter
which appears more than once in the specification.

The usage of each parameter states whether the
parameter is mandatory, optional or conditional. A
mandatory parameter must always be present when the
service primitive is invoked. An optional parameter may
be present if appropriate. The interpretation of the
absence of a parameter is parameter-dependent and must
be explained as part of the specification. A
conditional parameter is one whose usage is dependent
on the 'presence or value of other parameters. This
dependency must be explained as part of the
specification.

• 3. 	provider-initiated service: a service which is
generated by the service provider. It consists of
indication service primitives issued to each
service user.

6.7.2 Elements of a Service Definition

The following information - should be present in a
service definition standard:

- Service model 	and 	service 	elements: this
information should be present here if not
specified in a separate document

- Identification of services: this'includes a list
of services, a brief description of their purpose,
their mapping onto service elements and their
classification according to service type..

- Groupings of services: this specifies meaningful
collections 	of services in -terms of service
subsets, service classes or functional units.

- Definition 	of primitives: this 	includes 	a
definition 	of 	all parameters 	and their
characteristics.

- Sequences of primitives: this 	describes 	the
constraints 	on 	the 	sequencing 	of 	service
primitives.

Each of these elements is discussed further below.

6.7.2.1 Service Model and Service Elements

See Clauses 6.5 and 6.6.

6.7.2.2 	Identification of Services

Three items of information are required: a list of
service names, their corresponding service type and
their corresponding mapping onto service elements.

A tabular format is appropriate for presenting this
information.

•
73

Service names 	should adhere to the following
convention:

- use capital letters;

- the first one .or two letters should represent the
application,

- the application identifier should be separated
from the service identifier by a hyphen.

- a descriptive name should be given to the service,
e.g. "OPEN" to open a file. 	Thus the complete
name for a file transfer application file open
service would be "F-OPEN".

A service primitive is identified by appending the
primitive name to the service name, e.g. F-OPEN
request.

The classification into service type will indicate
whether the service is confirmed, unconfirmed or
provider-initiated.

There are two ways in which a service element can be
mapped onto a service:

1. direct mapping to service: This corresponds to a
one-to-one mapping between a service element and a
service. This is the usual mapping. 	It 	is
appropriate when a service element represents a
distinct.capability of the service provider that
can be invoked separately from other service
elements.

2. mapping to primitive parameter: In this case, a
service element is mapped to a paramèter of a
service primitive. 	It is appropriate when a
services element does not represent a separately-
invocable capability, but rather is one of a
related group of capabilities which can be
controlled by a single service invocation. 	An
example of this forrà of mapping is found in the
CCITT MHS specifications.

6.7.2.3 	Groupings of Services

There are three ways in which services can be grouped:
functional units, service classes and service subsets.

74

• Functional units represent small meaningful groupings
of services. The criterion for.such groupings is that
a particular member of a group would not be useful if
the other members were not also available.

Service classes represent combinations of functional
units. There is no precise criterion for selecting a
class; it may be done on the basis of gradation of
functionality, as in JTM Where the basic Class is a
subset of the full class, or it may be done on the
basis of differentiation of functionality, as in FTAM
where three different classes are defined to address
different aspects of filestore manipulation. A class
may optionally include certain functional units and
require others. The use of optional functional units
must then be 	negotiated 	during 	association
establishment..

A subset is similar to a class, but subsets are not
standardized and therefore cannot be used during
association establishment for negotiating service

• capabilities. They may be defined as a convenient
mnemonic for typicar combinations of functional units.

67.2.4 Definition of Primitives

For each parameter of each service primitive of each
service, its definition, its usage and its range of
values must be provided. Also, for each service, the
service user which may issue the request primitive must
be identified.

The definition of each parameter- states its meaning.
Only one definition need be provided for a parameter
which appears more than once in the specification.

The usage of each parameter states whether the
parameter is mandatory, optional or conditional. A
mandatory parameter must always be present when the
service primitive is invoked. An optional parameter may
be present if appropriate. The interpretation of the
absence of a parameter is parameter-dependent and must
be explained as part of the specification. A
conditional parameter is one whose usage is dependent
on the presence or value of other parameters. This
dependency must be explained as part of the
specification.

In certain cases, a parameter of a service primitive is
constrained to be' identical to that of•a previous
primitive of the same service. For example, .a filename
associated with a "file open" indication must be
identical to the filename provided'with the "file open"
request. Such constraints must be stated.

A tabular .format is helpful to illustrate usage. A
brief example is provided below. In this example, a
parameter of an indication or response primitive that
is constrained to take on the same value as its
predecessor primitive is indicated with an "(=)". A
blank space under a service primitive indicates that
the corresponding parameter is not applicable to that
primitive.

	

1 F-DELETE 	1 F-DELETE 1 F-DELETE 1 F-DELETE

	

Parameter 1 request 	1indication 1 response 1 confirm

Diagnostic

Delete
Password

Charging

Mandatory

Optional

Manda tory

Optional

Opticinal. Optional
(=)

The range of values for each parameter must be
specified, as well any default value if applicable. A
formal definition of parameter syntax in terms of
primitive types, such as integers, strings, boolean,
etc., is desirable. Use of the ASN.1 syntax notation
is recommended (see Clause 8).

Some services can be invoked by either service user,
others by only one. This information must be supplied.

6.7.2.5 	Sequences of Primitives

The interrelationships and valid sequences 	of
primitives must be specified. There are two aspects to
this information:

1. 	the "local rules" which determine the possible
sequences of primitives involving one service user
and the service provider. These local rules may be
different for the initiator and responder service

• users. 	These rules are often represented by a
state transition diagram which illustrates the
allowed order of service primitives. When the
service being specified is complex, it may be
appropriate to represent only normal interactions
via a state transition diagram, and to use a
tabular format to represent error conditions.

2. 	the "end-to-end" prOperti-es of the service which
relate the service primitives interactions of the
service provider with each of the service users.

Local rules and end-to-end properties, together, may be
specified by example, using the notation of time
sequence diagrams.

Each time sequence diagram is partitioned by two
vertical lines into three fields. The central field
represents the service provider and the two side fields
represent the two service users.

Sequences of events are positioned 	along 	lines
representing the passage of time, increasing downwards.

Arrows, placed in the areas representing the service
user, indicate the direction of propagation of
primitives, i.e. to or from the service provider.

Necessary sequence relations between peer service users
are emphasized by an arrow between the time lines. In
the absence of this arrow, or when there is a tilde
present instead, there is no specific sequence between
points in time on the two lines. An example of this is
a situation where the provider issues a confirm
primitive before the responding service user has issued
a response primitive.

The following diagram is a time sequence diagram for a
confirmed service.

Service User Service Provider Service User

X request

---> X indication

<--- X response

•

X confirm 	<---

**
. *

6.7.3 Application of Step 3 to Interactive Authorization

The service model and list of service elements have
already been provided in steps 1 and 2. This example
will focus on the identification of services', their
groupings, the definition of service primitives and
primitive sequences.

6.7.3.1 	List of Services

For this application, each service element corresponds
to a separate service, so the impping is one-to-one.
The following table lists the services and their
primitive group type. The initials "IA" are used to
represent the interactive authorization application.

Note that the terminology of ISO 8583 for message types
has been modified in this table to avoid conflict with
the accepted terminology for OSI service primitives.

•

78

Table 6.1 Services for Interactive Authorization

•

Service Name 	 Primitive Group Type

IA-INITIALIZE 	 CONFIRMED
IA-TERMINATE 	 CONFIRMED
IA-ABORT 	 ' 	UNCONFIRMED
IA-AUTHORIZE 	 CONFIRMED
IA-AUTHORIZE-REPEAT 	CONFIRMED
IA-COMPLETE 	 UNCONFIRMED
IA-COMPLETE-REPEAT 	. CONFIRMED
IA-COMPLETE-ACK 	UNCONFIRMED
IA-ACQUIRER-REVERSAL 	CONFIRMED
IA-ACQUIRER-REVERSAL-REPEAT 	CONFIRMED
IA-CARD-ISSUER-REVERSAL 	CONFIRMED
IA-CARD-ISSUER-REVERSAL-REPEAT 	CONFIRMED

Note that this choice of services places the
responsibility of initiating request repeats with the
service user. An alternative mapping could have been
selected where repeats were provider-initiated, perhaps
under the control of a parameter of an initial request.

6.8 Service Groupings

The following functional units may be defined:

kernel functional unit: consists of IA-INITIALIZE, IA-
- TERMINATE, IA-ABORT, IA-AUTHORIZE, IA-ACQUIRER-
REVERSAL, IA-CARD-ISSUER-REVERSAL;

completion functional unit: consists of IA-COMPLETE;

ack functional unit: consists of IA-COMPLETE-ACK;

repeat functional unit: consists of IA-AUTHORIZE-
REPEAT, IA-COMPLETE-REPEAT, IA-ACQUIRER-REVERSAL-
RE PEAT , IA-CARD-I S SUER- REVERSAL -REPEAT ;

The use of a particular functional unit is negotiated
at time of association establishment. Once a
functional unit has been selected, its use becomes
mandatory, i.e. if the IA-COMPLETE functional unit is
selected, then every an IA-COMPLETE request must be
issued whenever an IA-AUTHORIZE confirm is received.

•
79

• The only restrictions on functional unit combinations
are that the ack functional unit can be selected only
in conjunction with the completion functional unit and
that the kernel functional unit must always be
selected.

There is no requirement to identify service classes or
subsets.

6.8.0.1 Definition of Primitives

This section can include the definition of parameters
provided in ISO 8583 Section 4.3, as well as tables 1

and 2.

Section 4.3 of ISO 8583 would be modified to remove
data elements that are not appropriate to interactive
authorization and to remove references to bit map
position.

Table 1 of ISO 8583 would require modification to
replace message type identifiers with service
primitives and to delete the bit map data elements.
These data elements are inappropriate for a service
definition as they are concerned with encoding of
protocol data units.. Parameters that are not
appropriate to interactive authorization would also be
removed.

Table 2 of ISO 8583 would be modified to remove
conditions that do not apply to parameters remaining in
the modified table 1.

6.8.0.2 	Sequences of Primitives

The valid sequences of primitives are indicated by a
combination of state transition and time sequence
diagrams.

Figures 6.5 and 6.6 show the state transitions possible
for context management at each of the user-service-
provider interfaces.

Figures 6.7 and 6.8 show the state transitions possible
for authorizations at each of the user-service-provider
interfaces. Note that in these figures, there are four
possible states from which the interface can return to
idle. Three of these, namely AUTHORIZED, AUTHORIZE
COMPLETION and AUTHORIZE COMPLETION ACK, are states

•

1 RELEASE 	1
1 PENDING 	1
1

1 CONTEXT 	1
1 PENDING 	1
1 	1

L NO 	1
	1 CONTEXT 	I< 	

1 	 1 ,IA-TERMINATE conf
1IA-INITIALIZE request ^

IAABORT »req
IA-ABORT ind

•

IA-INITIALIZE confirm

1 	1 IA-TERMINATE req
>1 ACQUIRED I

1

Figure 6.5 Context Management State Transitions at the Interface
Between Acquirer and Service Provider

81

I CONTEXT 	I
I PENDING 	I

I RELEASE
1 PENDING 	I

NO
I CONTEXT 	l< 	

I IA-TERMINATE resp

IA-INITIALIZE ind

IA-ABORT req
IA-ABORT ind

IA-INITIALIZE resp

•

IIA-TERMINATE ind
>I ACQUIRED 1 	.

I 	.

Figure 6.6 Context Management State Transitions
at the Interface Between Card Issuer
and Service Provider

•
82

•

where no more authorization processing may be
performed, depending on the selection of functional
units. For example, the AUTHORIZED state represents
completion of processing when the completion and
completion ack functional units are absent. From each
of these states, a reversal service may be invoked.
Once authorization processing has completed for a
particular financial transaction, there is a finite
time in which a reverêal can be invoked. After this
interval, whidh is system dependent, no further
activity for a particular transaction can be initiated.

Figures 6.9 and 6.10 show the state 	transitions
possible for reversals at each-of the user-service-
provider interfaces. In these figures, note that a
reversal can be invoked while the interface is in any
of three states; if the reversal fails, then the
interface returns to the state before the a transaction
can be undertaken and the service provider enters an
idle state relative to that transaction.

Figures 6.5 and 6.6 apply . to d single association.
Figures 6.7 - 6.10 apply to a single transaction; these
transitions are possible only when the context state is
"ACQUIRED". Many transactions may occur during an
association and may overlap.

Missing from these diagrams are transitions associated
with a repeat service invoked after completion of the
service being repeated.

•

• I. 	I 	timeout
IDLE 	I .< 	

1 	I 	1
1 	1•

IA-AUTHORIZE req I

IA-AUTHORIZE-REPEAT +—I' 	I
request 	I 	1 AUTHORIZE 1

+-->I PENDING 	1
1 	1

IA-AUTHORIZE confirm (-ve) 1 	r-----
+ 	1IA-AUTHORIZE

'confirm (+ve)

NOT 	I 	I AUTHORIZED 	
I AUTHORIZED I

IA-AUTHORIZE-
COMPLETION
request 	

IA-AUTHORIZE- 	+---I
COMPLETION-REPEAT 	1 . 1 AUTHORIZE
request 	+-->1 COMPLETION

IA-AUTHORIZE- 	1
COMPLETION-ACK 1
indication 	

I AUTHORIZE 1
I COMPLETION 1----------->+
1 	ACK

Figure 6.7 Authorization State Transitions at the Interface
Between Acquirer and Service Provider

•
84

> +

•

I 	timeout
IDLE 	l< 	

	I 	s
IA-AUTHORIZE 	I
indication

IA-AUTHORIZE-REPEAT +- --I
request 	I 	I AUTHORIZE I .

+-->I PENDING 	I

IA-AUTHORIZE response (-ve)I 	I
	 + 	I IA-AUTHORIZE

I response (+ve)

NOT 	I 	I AUTHORIZED
I AUTHORIZED I
1 	1

IA-AUTHORIZE 	I
COMPLETION ind I

IA-AUTHORIZE- 	+---I
COMPLETION-REPEAT 	I 	I AUTHORIZE
indication 	+-->I COMPLETION I

IA-AUTHORIZE I
COMPLETION-ACKI
response

I AUTHORIZE I
I COMPLETION

	

1 	ACK

Figure 6.8 Authorization State Transitions at Interface
Between Card Issuer and Service Provider

	

+ 	 1 	1
I REVERSAL I

+ 	 >I STATES I
I 	' 	I 	 I
I . 	 I 	

).

IA-ISSUER 	IIA-ISSUER 	ACQUIRER I 	IIA-ACQUIRER
REVERSAL 	, 	'REVERSAL resp 	REVERSAL I 	'REVERSAL confirm

	

indication v 	I 	(-ve) 	request v 	I 	(-ve)
I --ISSUER 1---+ 	I ACQUIRER 1-4-
1 ReVERSAL I 	I 	I REVERSAL I 	I
I PENDING 1<--+ 	1 PENDING I<--+
I 	I IA-ISSUER 	1 	1 IA-ACQUIRER

	

I 	REVERSAL-REPEAT 	I 	REVERSAL-REPEAT
IA-ISSUER 	I 	indication IA-ACQUIRERI 	request
REVERSAL 	1 	REVERSAL 	I

	

response (+ve)I 	 confirm 	v 	

	

I 	(+ve) 	I 	I
+ 	 >I 	IDLE 	I

N.B. REVERSAL STATES is one of AUTHORIZED, AUTHORIZE COMPLETION
or AUTHORIZE COMPLETION ACK

Figure 6.9 Reversal State Transitions at Interface
Between Acquirer and Service Provider

86

	

+ 	 •1. 	I
I REVERSAL 1

+ 	 >I STATES I
1 	• 	I 	I

IA-ISSUER 	IIA-ISSUER 	ACQUIRER I 	IIA-ACQUIRER
REVERSAL 	'REVERSAL confirm REVERSAL 1 	'REVERSAL response
request 	v - 1 	(-ve) 	ind 	v 	1 	(-ve)

1 --ISSUER-- 1---+ 	1 ACQUIRER I ---+
1 REVERSAL 1 	1 	I REVERSAL 1 	1
1 PENDING 1<--+ 	1 PENDING 1<--+
1 	1 IA-ISSUER 	1 	1 IA-ACQUIRER

	

1 	REVERSAL-REPEAT 	1 	REVERSAL-REPEAT
IA-ISSUER 	I 	request 	IA-ACQUIRERI 	indication
REVERSAL 	I 	REVERSAL 	I

	

confirm (+ye)I 	response 	v 	

	

I 	 (+ve) 	1 	I
+ 	 >I 	IDLE 	I •

I 	I
I 	I •

N.B. REVERSAL STATES is one of AUTHORIZED, AUTHORIZE COMPLETION
•or AUTHORIZE COMPLETION ACK

Figure 6.10 Reversal State Transitions at Interface
Between Card Issuer and Service Provider

87

IA-AUTHORIZE-REPEAT
------> indication

IA-AUTHORIZE-
COMPLETION req ------>

IA-AUTHORIZE
COMPLETION-REPEAT----->
request

IA-AUTHORIZE
------> COMPLETION ind

IA-AUTHORIZE
------> COMPLETION-REPEAT

indication

IA-AUTHORIZE
COMPLETION conf <------

The following time sequence diagram shows the sequence
of events associated with , an authorization with
completion acknowledgement where the IA-AUTHORIZE
response primitive is issued after receipt of an IA-
AUTHORIZE-REPEAT primitive. Note that in this case the
IA-AUTHORIZE response and confirm primitive serve to
complete both the.IA-AUTHORIZE and IA-AUTHORIZE-REPEAT
services.

ACQUIRER

IA-AUTHORIZE req

IA SERVICE 	CARD ISSUER

IA-AUTHORIZE ind

IA-AUTHORIZE-REPEAT
request

IA-AUTHORIZE response

IA-AUTHORIZE conf

IA-AUTHORIZE
<------ COMPLETION resp

•
88

• The following time sequence diagram shows a sequence
with authorization and authorization completion without
acknowledgement, where a repeat request is issued after
an IA-AUTHORIZE response. In this case, no repeat
indication is issued to the Card Issuer and the IA-
AUTHORIZE confirm completes both'outstanding services.

ACQUIRER

IA-AUTHORIZE req

IA SERVICE 	CARD ISSUER

IA-AUTHORIZE ind

IA-AUTHORIZE response

IA-AUTHORIZE-REPEAT
request

IA-AUTHORIZE conf

IA-AUTHORIZE-
COMPLETION req 	

IA-AUTHORIZE
----> COMPLETION ind

89

IA-AUTHORIZE-REPEAT
confirm <-- •

The following time sequence diagram shows an
authorization where a repeat is requested after
reception of the authorization confirm. In this case,
the full repeat service primitive group is involved.

ACQUIRER 	IA SERVICE

IA-AUTHORIZE req

CARD ISSUER

IA-AUTHORIZE ind

IA-AUTHORIZE response

IA-AUTHORIZE conf

IA-AUTHORIZE-REPEAT
request ------>

IA-AUTHORIZE-REPEAT
------> indication

IA-AUTHORIZE-REPEAT
<------ response

•
90

ACQUIRER IA SERVICE CARD ISSUER

IA-ACQUIRER-REVERSAL
----> indication - •

IA-ACQUIRER-REVERSAL
----> REPEAT indication

IA-ACQUIRER-REVERSAL
confirm <----

ACQUIRER IA SERVICE CARD ISSUER

IA-CARD-ISSUER-REVERSAL
------> confirm

S 	
The following time sequence diagram shows
reversal with repeat.

Acquirer

IA-ACQUIRER-REVERSAL •
request 	

IA-ACQUIRER-REVERSAL
REPEAT request 	

'IA-ACQUIRER-REVERSAL
<------ response

The following time sequence diagram shows Card Issuer
reversal with repeat

IA-CARD-ISSUER-REVERSAL
	 request

IA-CARD-ISSUER-REVERSAL
indication <------

IA-CARD-ISSUER-REVERSAL
<------ REPEAT request

LA-CARD-ISSUER-REVERSAL
REPEAT ind

IA-CARD-ISSUER-REVERSAL
response 	. 	>

**

91

1
1 Protocol I
I Entity 1
1 	1

1
1

1 Protocol I
1 Entity 1
1 	 1

1
1

6.9 Step 4: Prepare Protocol Specification

This step specifies a protocol to support the service
defined in the previous step. An application protocol
is a set of rules and formats which determines the
communication behaviour of application entities in
support of application functions. The specification
method described here is based on a particular model
which is applicable to all OSI protocols.

6.9.1 	Protocol Model

The operation of the protocol is modelled by the
interaction of two (or more) protocol entities (PEs),
each of which forms part of a separate application
entity. Each PE implements a finite state machine. The
two PEs communicate by means of the services available
at their lower boundary, in such a way as to provide
the services required at their upper boundary. These
concepts are illustrated in Figure 6.11 ,

1 Upper 	I 	I Upper 	1
1 Service I 	1 Service 1
1 	User 	1 	I 	User 	1
1 	1 I 	I

	Upper
. Service'

Lower
Service

Lower Service Provider

Figure 6.11 Protocol Model

92

gl› 	
The behaviour of 'each protocol entity is defined in
terms of:

- the stimuli it receives:

1. 	receçpt 	of 	request 	or 	response 	service
primitives from the upper . service user;

2. receipt 'of indication 	or 	confirm - service
primitives from the lower service provider;

3. - local events such as error indications.

- the actions it takes:

1. issuance 	of 	indication or confirm service
primitives to the upper service user;

2. issuance of 	request 	or 	response 	service
primitives to the lower service provider.

-
- the information it retain's:

1. information 	associated 	with 	the 	lower
association endpoint; this information is lost
if the lower service association ceases to
exist;

2. information associated 	with 	the 	upper
association endpoint; this includes information
about the functionality requested by the upper
service user, e.g. ability to recover from
errors.

6.9.2 Elements of a Protocol Specification

The following information must be provided as part of a
protocol specification:

- services assumed from the lower service provider;

- identification of functions provided, including
any classifications thereof;

- handling of protocol data units

- description of state information

93

•

•

- description of protocol behaviour

- specification of abstract syntax

- specification of transfèr syntax(es)

- conformance statement

- protocol state tables

- identification of application context(s)

Optionally, a formal description using one of the
techniques described in Clause 8 may be provided.

6.9.2.l Services Assumed From Lower Service Provider

As a minimum, the lower service provider is capable of
providing the services defined by the CASE,
Presentation and Session kernel functional units.

Each functional unit of a protocol may have differing
requirements for additional services, either in terms
of other functional units of CASE and the Presentation
and Session layers or in terms of other SASE. These
requirements must be stated for each functional unit.

The relationship between a SASE and the CASE
association and context control services is less
precise than for other services. This is because the
environment in which a SASE is to be used cannot always
be foretold. A SASE designed originally to be a
controlling SASE within one distributed application may
eventually become a provider SASE in a different
application.

Thus it is not possible to assume that the SASE Will
actuâlly initiate an application association. It is
sufficient that the SASE be capable of acquiring the
proper context for its functioning when it is invoked.
Any CASE service that performs this function is
acceptable. The precise service that is to be invoked
in a particular instance cannot be determined by the
SASE; this is the responsibility of the application
entity as a whole, including the user element.
Similarly, when terminating a SASE, either gracefully
or abruptly, it is necessary to relinquish the
application context; the SASE assumes that such a
service is available from CASE. From the SASE
perspective, there exists a set of CASE 	context

acquiring services, a set of CASE context relinquishing
services and a set of CASE context aborting services.
This is all it assumes.

For other supporting services, a detailed explanation
of the use of these services must be provided.

Clause 7 provides a more detailed overview of the
services available from CASE and the lower layers, to
assist in the selection process.

6.9.2.2 Identification of Functions and Protocols

A protocol specification may actually specify more than
one protocol. For example, the Transport Layer
protocol specification identifies five different
classes of protocol. The FTAM protocol recognizes three
protocols: the basic file protocol, the bulk data
transfer protocol and the error recovery protocol.

Each'protocol or protocol class is distinguished by the
functions it performs. Many functions are unique to
the application, but the following are performed by all
protocols:

gl, 	- mapping of service and parameters into Protocol Data
Units (PDUs) (see below);

- ensuring the progress of the protocol, i.e. ensuring
that an action initiated by the protocol does- not
take forever to complete. This is typically dealt
with by the use of timers.

Among the possible additional functions that a protocol
entity might perform are concatenation of PDUs and
error recovery.

6.9.2.3 Handling of Protocol Data Units (PDUs)

PDUs are the units of information exchanged between
peer protocol entities. PDUs typically are complex
data types consisting of mandatory and optional data
elements. When a PDU is generated by a protocol
entity, the values of the data elements are set by the
sender to:

95

•

•

i) reflect the value of service parameters on the
primitive which caused the transmission of this
PDU;

ii) reflect the state of the.entity sending the PDU;

iii) correspond to literal items in the PDU definitions
provided in the abstract syntax specification (see
below).

PDUs 	are transmitted as user data of a service
primitive request issued to the lower service provider.

The receiver of a PDU recognizes it on the basis of its
data type definition. A sequence of data types
received is a PDU of the stated type if the data is in
the appropriate presentation context, if it contains
all the mandatory items in the order given, and if it
does not contain any items not present in the
definition. A PDU must be contained entirely within a
single primitive. Other constraints on the detection
of a valid PDU may exist-which are specific to the
application protocol. Any such constraints must be
specified.

An entity shall signal a protocol error if it receives
a sequence of data items which does not form a defined
PDU when a PDU is expected.

6.9.2.4 Description of State Information

Every protocol entity maintains a "major" state, which
reflects the state of the entity's protocol machine.
It is this state which governs the actions of the
protocol when events occur.

In addition, a protocol entity may maintain other state
information such as the association status of the lower
service provider, names of P-contexts, Checkpoint
numbers, etc., which affect the behaviour of the entity
in certain situations.

All state information maintained by the protocol entity
is to be defined in terms of its purpose and its
representation (e.g. an integer, a character string,
etc.).

•

•

6.9.2.5 Description of Protocol Behaviour

For each service, the actions associated with each
possible event are described. The actions are
described in terms of the service primitives that are
issued, protocol data units that are prepared and state
information that is modified.

This description is provided 'for each protocol entity
(initiating and responding entities) and for each
protocol or protocol class.

6.9.2.6 Specification of Abstract Syntax

This is a specification of the composition of the PDUs
in terms of an abstract syntax notation. The ISO ASN.1
syntax defined in ISO 8824 is preferred. This syntax
defines complex data types in terms of a small
collection of basic data types which are application
independent. This syntax is described further in
Clause 8.

It is necessary as part of the syntax specification to
indicate which basic data types and which structured
types are used.

The abstract syntax may also be the transfer syntax, in
which case, it becomes impossible to negotiate
alternate transfer syntaxes to suit different transfer
requirements.

6.9.2.7 	Specification of Transfer Syntax(es)

If the abstract syntax is specified using ASN.1, then a
transfer syntax is implicitly defined by the ASN.1
encoding rules.

If the abstract syntax is not specified using: ASN.1 and
the abstract syntax is not also a transfer syntax, then
it is necessary to define a transfer syntax. Such a
transfer syntax defines the encoding of the abstract
syntax into a bit stream.

More than one transfer syntax may be defined for an
application protocol to suit different requirements,
such as encryption or data compression.

•

O 6.9.2.8 Conformance Clause

This is a critical part of the 'specification as it
determines the degree to which variability Of protocol
implementation is permitted.

This clause defines the conditions under which an
implementor can claim that its implementation conforms
to the standard. There are three pOints of view for
conformance requirements:

1. 	the conformance requirements in a standard can be:

(a) mandatory requirements: 	these must be
observed in all cases;

(h) conditional requirements: these must be
observed only when the condition set out in
the standard apply;

(c) options: these can be selected to suit the
• implementation, so long as any reqUirements
on which the option depends ow, which depend
on the option are observed.

2. the statements of conformance requirements in a

11, 	standard can be:

(a) positive: they state what must be done;

(h) negative (prohibitions): they state what must
not be done.

3. the requirements fall into two groups:

(a) static conformance requirements;

(h) dynamic conformance requirements.

Static conformance requirements specify what
capabilities the implementation must include.
These requirements may be at a broad level, such
as the grouping of functional units and options
into protocol classes, or at a detailed level,
such as range of values that must be supported for
specific parameters or timers.

Static cànformance requirements and options can be
of two varieties:

(a) those which concern the capabilities to be
included in the implementation of the
particular protocol;

(h) those which concern multi-layer dependencies
- placing constraints on the capabilities of
the lower layers of the system in which the
protocol implementation resides.

The following list of static requirements is
common to many applications:

The system shall:

- support at least the kernel functional unit;

- act in the role of initiator or responder or
both;

- support the encoding which results from applying
the basic ASN.1 encoding rules to the abstract
syntax 	specification, 	for . the purpose of
exchanging protocol control information.

Other requirements that are application-specific
'would typically be included.

Dynamic conformance 	requirements 	are those
requirements and options which determine how a
protocol implementation may behave in instances of
communication.'

The following list of requirements is common to
many applications:

The system shall:

- follow all the procedures relevant to each
functional unit that the system claims to
implement;

• - support the mapping onto the lower service
provider as defined in the specification.

For conformance testing, a statement of the
capabilities and options which have been
implemented, and any features which have been
omitted, is needed so that the implementation can
be tested for conformance against relevant

•
99

•

requirements, and against 	those 	requirements
only. 	This statement is called the Protocol
Implementation Conformance Statement (PICS).

The PICS 	is not part of the protocol
specification; it is a document prepared by an
implementor which ,acts 	as 	the basis 	for
conformance testing. 	The. conformance clause of
the protocol specification' 'states 	only what
information is to be provided in the PICS.

In summary, the conformance clause of the protocol
specification defines static conformance
requirements, dynamic conformance requirements and
the requirements for the PICS.

6.9.2.9 	Protocol State Tables

A comprehensive set of state tables must be constructed
to describe the behaviour of the protocol machine of
each protocol entity as completely as possible.

The tables describe the» protocol machine operation in
terms of incoming events (e.g. receipt of a service
primitive or a PDU) and actions. An action may consist
of one or more of outgoing events (e.g. issuance of a
service primitive •or the sending of a PDU) and local
actions (e.g. update a checkpoint counter).

Actions may be conditional on specified predicates,
i.e. the action will take place only if the predicate
is true. An example of a predicate is the result
parameter of a confirm primitive indicating success.
Otherwise, actions are unconditional, in which case
they will always take place when the trigger event
occurs.

A typical state table entry will specify the current
state, an incoming event, a predicate, an action and a
resulting state.

It may not be possible to expliCitly specify all entity
actions using state tables. In this case, all actions
which are not explicitly specified must be described.
An example of such an action is behaviour on detection
of an invalid incoming event. As such a condition is
possible for each state, it would be very cumbersome to
include this in the tables. It is easier in this case
to simply state what action is taken generally when
this condition is detected.

•

6.9.2.10 Naming of Application Context(s) and Syntaxes

A typical application will require a single application
context which satisfies all the requirements of the
application. In other cases, 'the application is
sufficiently complex that more than one application
context is appropriate. An example of the latter case
is the JTM application, where a different,context is
identified for each of the basic and full classes of
protocol.

An application context is specified in terms of the
service elements of the SASE which are applicable and
also all CASE service elements which are required. For
example, the JTM application requires the CASE CCR
service elements; this requirement is implied by the
JTM application context. The service elements
identified in Step 2 are used for identifying the
application context(s).

Each application context is assigned a unique name
which is registered with the ISO registration authority
for application context names. An example of such a
name is IS08832-JTM- BASIC. A more complete description
of the concept of Registration Authority is provided in
Clause 8.

The abstract syntax defined as part of this step must
also be assigned a name so that it can be used for the
identification of a presentation contexte Note that
presentation context names are temporary, having
meaning only for the duration of a presentation
connection, but abstract syntaxes have permanent names
which are registered with an ISO registration
authority.

Any transfer syntaxes defined for the abstract syntax
must also be allocated unambiguous names.

•

• **

6.9.3 . Step 4 for Interactive Authorization .

The protocol entity mOdel desctibed previously is
applicable • to this application. Each of the elements
that the protocol specification should contain is
addressed below., ,

6.9.3.1 Services Assumed from Lower Service Provider

As 	discussed 	in Step 2, this application uses
connection-oriented supporting services. There is no
requirement for any supporting Application Layer
services other than CASE context acquiring,
relinquishing and aborting services.

As there is no requirement in this application for
interchange of substantial amounts of data, the Session
services related to synchronization and activities are
not needed.

In order to minimize the delay associated with
authorizations, the minimum number of protocol
exchanges is desirable. Thus, a full duplex form of
dialogue is preferred. This form of dialogue has the
additional advantage that it readily permits multiple
authorizations to be in process concurrently -- 'there
is no need to explicitly manage the turn.

In summary, the following table lists the supporting
services required by this application by functional
unit.

Table 6.2 Supporting Services Required by IA Application

Kernel Functional Unit: set of CASE context acquiring services
set of CASE context relinquishing services
set of CASE context aborting services
P-DATA
P-DEFINE-CONTEXT
P-DELETE-CONTEXT

Repeat Functional Unit: P-DATA

•
102

•

Completion Functional Unit: P-DATA

Completion Ack Functional Unit: P-DATA

6.9.3.2 Functions and Protocols

No additional functions are provided beyond the
mandatorSr ones of performing PDU mapping and ensuring
progress of the protocol.

There are two separate but related protocols. One is
the context management protocol which is responsible
for acquiring and relinquishing the authorization
application context. It is needed in a connection-
oriented environment. The other is the authorization
management protocol which in a connection-oriented
environment can be invoked only once the application
context has been acquired. This protocol could also be
used by itself in a connectionless or store-and-forward
environment.

6.9.3.3 	Protocol Data Units

The following protocol data units are associated with
the context management protocol. Note that PDUs are
defined only for context acquisition. No exchange of
information is needed for relinquishing or aborting a
context. The CASE services are used directly.

- IA-INITIALIZE request
- IA-INITIALIZE response

The following protocol data units are associated with
the 	authorization 	management 	protocol; 	the
corresponding ISO 8583 messages are 	included 	in
parentheses. Note that the names of protocol data
units correspond to the service primitive which caused
that PDU to be sent.

- IA-AUTHORIZE request (Authorization Request)
- LA-AUTHORIZE response (Authorization Request Response)
- IA-AUTHORIZE-REPEAT request (Authorization Request Repeat)
- IA-AUTHORIZE-COMPLETION request

(Authorization Completion Confirmation)
- IA-AUTHORIZE-COMPLETION-ACK request

(Authorization Completion Response)
- IA-AUTHORIZE-COMPLETION-REPEAT request

(Authorization Completion Confirmation Repeat)
- IA-ACQUIRER-REVERSAL request (Acquirer Reversal Request)

103

•

- IA-ACQUIRER-REVERSAL response (Acquirer Reversal Request Respon,
- IA-ACQUIRER-REVERSAL-REPEAT request

(Acquirer Reversal Request Repeat)
- IA-CARD-ISSUER-REVERSAL request-ICard Issiler Reversal Request) *
- IA-CARD-ISSUER-REVERSAL response

(Card Issuer Reversal Request Response)_
IA-CARD-.ISSUER-REVERSALREPEAT request ,

(Card Issuer Reversal Request Repeat)

There 	are 	no additional 	constraints 	on the
interpretation of a valid IA PDU.

6.9.3.4 	State Information

Conceptually, 'a different authorization management
protocol machine 	is 	invoked for each financial
transaction for which authorization is desired.
Therefore, state information must be maintained for
each such protocol machine plus the single context
management protocol machine. Each machine is
distinguished using the "system audit trail number".

The following states are defined for the IA context
management protocol machine:

CLOSED: Application context has not been acquired.

OPEN: Application context has been acquired.

I-CTX-ACQUIRE-PD: Context acquiring pending, initiator;
waiting for IA-INITIALIZE response PDU.

R-CTX-ACQUIRE-PD: Context acquiring pending, responder;
waiting for IA-INITIALIZE response
service primitive.

I-CTX-RELINQUISH-PD: Context relinquishing pending,
initiator; waiting for CASE context
relinquish notification.

R-CTX-RELINQUISH-PD: Context relinquishing pending,
responder; waiting for IA-TERMINATE
response service primitive.

The following states 	are associated with the
authorization management protocol:

104

R-AUTH-PD:

IDLE: No authorizatiOn is in progress.

I-AUTH-PD: Authorization pending, initiator; waiting
for IA-AUTHORIZE response PDU.

Authorization pending, responder; waiting
for 	IA-AUTHORIZE 	response -.service
primitive. 	.

AUTHORIZED: Authorization approved.

AUTH-COMI5L: Authorization completion.

AUTH-COMPL-ACK: Authorization completion acknowledged.

I-ACQ-REV-PD: Acquirer reversal pending, initiator;
waiting for IA-ACQUIRER-REVERSAL
response PDU.

R-ACQ-REV-PD: Acquirer reversal pending, responder;
waiting for IA-ACQUIRER-REVERSAL
response service primitive.

I-ISSUER-REV-PD: 	Card Issuer reversal 	pending,
initiator; waiting for IA-CARD-ISSUER-
REVERSAL response service primitive.

R-ISSUER-REV-PD: 	Card 	Issuer reversal 	pending,
responder; 	waiting for IA-ACQUIRER-

. REVERSAL response PDU.

No additional state information has been identified.

6.9.3.5 Protocol Behaviour

The behaviour of the context management protocol would
be described separately from the authorization
management. The principal purpose of this protocol is
to establish the appropriate application context for
the authorization management protocol and to select the
functional units that are to be used.

The authorization management protocol would be
described in terms of the input events and the actions
that would be taken according to the current state of
the protocol machine. The protocol machine behaviour
is different for the initiator and responder, so each
must be described separately.

105

6.9.3.6 Specification of Abstract and Transfer Syntaxes

ISO 8583 specifies a structure and an encoding for bank
card messages. This encoding could be considered as a
transfer syntax for this protocol. If no other
transfer syntaxes were contemplated, then this could
also be considered as the abstract syntax. Otherwise,
it would be desirable to specify an abstract syntax
that could be mapped into the transfer syntax of ISO
8583 and into other transfer syntaxes as well. The
ASN.1 abstract syntax notation could be used for this
purpose.

6.9.3.7 Conformance

The conformance requirements specified in Clause
6.9.2.8 are applicable to this protocol.

6.9.3.8 	State Tables

Four sets of state tables would be constructed: 	one
for the context management protocol - initiator; one
for the context management protocol - responder; one
for the authorization management protocol - initiator;
and one for the authorization management protocol -
responder.

6.9.3.9 Names of Application Context and Syntaxes

A name must be specified for the Interactive
Authorization application context and registered with
the ISO Registration Authority.

Similarly, names must be defined and registered for
each abstract and transfer syntax defined for this

• protocol.
-

**

6.10 Validation

106

6.10 Validation

6.10.1 Validate the Protocol Design

A validation of the protocol specification should be
made during the design phase of the protocol. The risk
of design errors may be minimized by using a protocol
design — methodology as described in the preceding
sections.

The validation of a protocol should address the
following three criteria:

1. 	Verifying, general properties that .each protocol
should satisfy, such as progress (no actions will
take forever to complete), correctness (actions
performed will be in accordance with the service
definition), absence of deadlocks, and
completeness (provision for the reception of all
possible interactions);

. 	Verifying - that the -local rules of the service
definition are satisfied at each service boundary
by the protocol entities defined;

3. 	Verifying that the end-to-end properties defined
in the service definition are satisfied by the
protocol entities interacting through the
underlying communication service.

The following checklist identfies criteria for judging
service and protocol specifications:

1. General Criteria

a) 	Has implementation-dependent detail been omitted?
h) 	Has sufficient 	implementatiom freedom been

allowed?
c) Have meaningful identifiers been used?
d) Is the terminology consistent throughout the

document and consistent with other OSI documents?
e) Have the real-time constraints been adequately

specified?
f) Is the description well-structured?
g) Could the description be used as the basis of

testing an implementation for conformance?
h) Have mandatory features, optional features, and

additional options been clearly identified?

2. Service Description Criteria

107

	

a) 	Have only the abstract service primitive and their
parameters been described?

	

h) 	Have classes of service and 'service options been
clearly identified?

	

c) 	Has 	the 	relationship between service-access-
points, connection-end-points, and connections
been covered as required?

'd) 'Does , the description avoid unnecessary mechanisms
to explain its externally visible behaviour?

	

e) 	Have flow control and unusual sequences of
primitives been adequately described?

3. Protocol Specification Criteria

	

a) 	Have all protocol data units and their parameters
been described?

	

h) 	Is the style of description compatible with that
of the supported service? That is, would it be
practicable to verify the protocol specification
against the requirements expressed in the service
descriptions? ,

	

c) 	Have flow control, invalid PDUs, inopportilne PDUs
and error handling been properly described?

	

• d) 	Have legitimate errors in the underlying service
been provided for?

6.10.2 Validate Protocol Implementations

It is not sufficient that a standard protocol be
developed in order that successful interworking between
systems be possible. It is necessary also that each
system implement the protocol in,a correct manner.

The term "protocol conformance assessment" is •used
for all activities that can be used for
verifying whether a particular protocol implementaion
adheres to the corresponding protocol
specifications. 	These activities usually involve
testing. 	(The possibility of using program proving
methods is not considered further, although it could
be relevant 	for validating security aspects of a
system). If such checking is performed by an
official organization against a standard reference
specification, then the activity may be called
"certification". The assessment activity consists of
applying tests to the implementation, which is called
"implementation under test", or simply , IUT. The
tests are qualitative or quantitative depending on
their objective, that is, either checking the
logical conformity to the protocol specification, or

108

• measuring certain performance parameters such as
throughput, delay, reliability, etc.

As the conformance requirements 	in a protocol
specification may include conditional and optional
requirements, it is necessary for a protocol
implementation to state precisely in what sense it
conforms to the specifiàation, so that the

• implementation can be tested for conformance acjainst
relevant requirements, and against those requirements
only. 	This 	statement 	is 	called 	the Protocol
Implementation Conformance Statement (PICS).

The PICS should distinguish between the following
categories of information which it may contain:

(a) information related to the optional and conditional
static conformance requirements of the protocol .
itself (i.e. the capabilities of the protocol
impleMentation both at the broad level of grouping
functional units and options into protocol classes-, -
etc., and at the detailed level of ranges of
parameter and timer values supported);

• (h) information related to the optional and conditional
static conformance requirements for multi-layer
dependencies; for example, the File Transfer
protocol is permitted to use .the Presentation
Service directly for association establishment, or
it may use 	CASE 	services. 	A particular
implementation may support 	one 	or 	both
alternatives. 	This must be stated as part of the
PICS;

(c) other information which has to be specified (e.g.
to assist testing) but which is not related to
conformance requirements as such.

There are at least the following contexts in which
protocol assessment may be applied:

(a) For product development: An organization implementing a
protocol may apply an assessment procedure for debugging
purposes, or for the final'testing of the software product.

(h) For acceptance testing: When purchasing an implementation
of a protocol, the purchasing organization may want to apply
an assessment test to verify that the purchased product
conforms to the specifications.

109

(c) For certification: An independent organization may provide
the service of making impartial assessment tests on protocol
implementations which are submitted by interested parties.

7. CATALOG OF SERVICES

7.1 	Introduction

It is important that the application protocol designer
be aware of capabilities provided by existing
protocolsi both at the lower layers and within the
Application Layer, so that maximum advantage can be
taken of these capabilities and duplication minimized.

For each layer, the applicable 	capabilities 	are
described, their usage explained and any restrictions
identified.

Only a brief overview is provided in this clause. 	The
reader is referred to the appropriate ISO documents for
further details.

7.2 Session Layer

7.2.1 Capabilities of the Session Layer -

The connection-oriented session service provides the
means for organized and synchronized exchange of data
between cooperating session-service users. It provides
its users with means to:

-a) 	establish a connection with another user, exchange
data with that user in a synchronized manner, and
release the connection in an orderly manner;

b) negotiate for the use of tokens to exchange data,
synchronize and release the connection, and to
arrange for data exchange to be half-duplex or
duplex;

c) establish synchronization points within the
dialogue and, in the event of errors, resume the

. dialogue from an agreed synchronization point;

d) interrupt a dialogue and resume it later at a
prearranged point.

7.2.1.1 	Use of Tokens

The concept of tokens is used to control thé right of
users to invoke certain services. Services under token
control can be invoked only when the associated.token.

111

is in the possession of the user wishing to invoke the
service. Tokens can be exchanged between users to pass
control as needed. Four tokens are defined:

a) the data token;

h) the release token;

c) the synchrohize-minor token;

d) the major/activity token.

An example of the use of the data token is control of
dialogue in a virtual terminal environment.

7.2.1.2 	Functional Units

The capabilities of the Session Layer are organized
into functional units. The application designer must
be aware of these functional units as they form the
basis for selection , of Session services during
connection establishment.

Table 7.1 lists the functional units and the services
associated with each. It also indicates which services
are directly mapped through the Presentation Layer and
therefore are available to the Application Layer.

Note that in most cases, services are associated with
only one functional unit. The principal exceptions are
the token management services •which are associated with
many functional units; this is a consequence of the
multiplicity of tokens that are managed by the same set
of services.

A description of each functional unit follows.

112

•

•

Table 7.1 Services associated with each session functional unit

+ +,
1 	 1 	 'Directly I

1 Functional unit 	I Service(s) 	' 	'Mapped 	I

+ +
I Kernel 	I Session connection 	I no 	I
I (non-negotiable) I Normal Data Transfer 	I yes 	1 	'
1 I Orderly ReleaSe 	1 yes 	1
I 	 1 U-Abort 	 I no 	1
I 	 I P-Abort 	 I no 	1
+ i- 	 + 	+
I Negotiated Release 	I Orderly Release 	I yes 	I

1 	 I Give Tokens 	I yes 	I

I 	 I Please Tokens 	1 yes 	1
+ + 	 + 	+

I Half-duplex 	I Give Tokens 	I yes 	I

1 	 1 Please Tokens 	I yes 	1
+ + 	 + 	+
I Duplex 	I no additional service 	1 	1
+ + 	 + 	A-

I Expedited Data 	' 	I Expedited Data Transfer 	1 yes 	- 1
+ . 	 + 	+
1 Typed Data 	I Typed Data Transfer 	I yes 	1
+ + 	+
1 Capability Data 	I Capability Data Exchange 	' I yes 	1
1 	Exchange 	I 	 I 	1
4' 	+ 	 + 	+
I Minor Synchronize 	1 Minor Synchronization Point 1 yes 	I

I 	 I Give Tokens 	1 yes 	1
1 	 1 Please Tokens 	I yes 	1
+ 	' 	+ 	 . + 	+
1 Major Synchronize 	I Major Synchronization Point I yes 	I
1 	 I Give Tokens 	I yes 	I
1 	 I Please Tokens 	I yes 	I
+- 	+ 	+
1 Resynchronize 	I Resynchronize 	I no 	1
+- 	+ 	 +- 	+
1 Exceptions 	1 Provider Exception Reporting I yes 	I
I 	 I User Exception Reporting 	I yes 	1
+- 	+ 	 + 	+
Activity Management 	Activity Start 	yes

Activity Resume 	yes 	.
Activity Interrupt 	yes
Activity Discard 	yes
Activity End 	yes
Give Tokens 	 yes
Please Tokens 	yes
Give Control 	yes

+ + 	 + 	+

10

113

Kernel functional unit: supports the basic session
services required to establish a session
connection, transfer normal data and release the
session connection. This functional'unit is
mandatory.

Negotiated release functional unit: supports the
negotiàted orderly release service, which permits
the pàrty not initiating the release to accept or
reject the release attempt. Without this
functional unit, release cannot be rejected. This
functional unit may be useful for applications
where both parties to a connection may wish to
send data; should one party attempt to release a
connection once it has completed sending all its
data, this functional unit allows the other party
to refuse the release and proceed with its data
transfer. The use of negotiated release is
controlled by the release token.

2_i_tac:_a.onalunit:Half-dule 	supports the normal
transfer of data under ... the control of the data
token. Only the owner of the data token is

•allowed to send normal data. As the data token
can be owned by only one party at a time, this
functional unit constrains the flow of normal data
traffic to be one-way. This functional unit
cannot be used in conjunction with the duplex
functional unit.

Duplex functional unit: Supports full-duplex transfer
of normal data without token control. Therefore,
transfer of normal data is possible in both
directions simultaneously. .This functional unit
and the half-duplex functional units are mutually
exclusive.

Expedited data functional unit: supports the transfer
• of small quantities (1 to 14 octets) of high

priority data free from the token and flow control
constraints of the other data transfer services.

Tedda- afunc -t_i.___onalunit: supports the transfer of
data regardless of the availability and assignment
of the data token. This form of data transfer is
still subject to normal flow control; it is
particularly useful when the half-duplex
functional unit is selected for the transfer of
protocol data units associated with presentation
and application protocols.

114

Capability data functional unit: supports the transfer
of a limited amount of user data (1 to 512 octets)
while not within an activity. This functional
unit can be selected only in conjunction with the
activity management functional unit. Its
functionality is very similar -to the typed data
-functional unit; its exists for historical
reasons.

Minor synchronize functional unit: supports the minor
synchronization point service, which allows the
session service user to separate the flow of
normal and typed data transmitted before a minor
synchronization point from subsequent normal and
typed data. Its use is controlled by the
synchronize-minor token.

Majorsynchronize functional unit: supports the major
synchronization point service, which allows the
session service user to confine the flow of
sequentially transmitted normal, typed and
expedited data in each direction within a dialogue
unit. A dialogue unit is demarcated by major
synchronization points and has the property that
all communication within it is completely
separated from all communication before and after
it. The use of major synchronization is controlled
by the major/activity token.

Minor synchronization points can be used within
dialogue units to provide a finer degree of
structuring. Figure 7.1 illustrates how a
dialogue unit is structured through the use of
minor and major synchornization points. Each
minor synchronization point may or may not be
confirmed explicitly.

	Dialogue unit 	
1
	 1

I 	I 	1 	, 	1 	- I
MAJOR 	MINOR . 	MINOR ;. 	MINOR 	MAJOR
SYNC 	SYNC 	SYNC 	' SYNC , 	SYNC
POINT 	POINT • 	POINT 	POINT- 	POINT

Figure 7.1 Example of a structured dialogue unit

Resuichronize functional unit: supports the
resynchronize service; this service sets the
session connection to a defined state, and
therefore includes reassignment of tokens and
purges all undelivered data. The principal uses
of this functional unit are to recover from
detected errors or to terminate abruptly à data
transfer activity without terminating the
connection.

functional unit: supports the - reporting of
error conditions or unanticipated situations
detected by either the session service user or
session service provider.

This functional unit can only be selected in
conjunction with the half-duplex functional unit;
the user-initiated exception reporting service can
be used only when the data token is not available
to the party wishing to report an error.

Activity management functional unit: supports the
services associated with activities. An activity
is a logical piece of work which consists of one
or more dialogue units, as shown in Figure 7.2

<----Dialogue unit 	> < 	Dialogue unit 	

I . 	

I 	I 	I'. 	1 	I
ACTIVITY 	MIN0à 	MAJOR MINOR 	ACTIVITY ,
START 	SYNC 	SYNC 	SYNC 	END

POINT 	POINT 	POINT 	(MAJOR
• 	 SYNC ,

POINT

Figure 7.2 Example of a structured activity

Only one activity is allowed on a session
connéction at a time,. but there may be several
consecutive activites during a session
connection. An activity may also span more than.
one session connection. An activity can be
interrupted and then resumed on the same or on a
subsequent session connection.

There are five services associated with -
activities:

a) the Activity Start service is used to
indicate that a new activity is entered.

h) the Activity Resume service is used to
indicate that a previously interrupted actity
is re-entered.

c) the Activity Interrupt service allows an
activity to be abnormally terminated with the
implication thdt the work so far achieved is
not to be discarded and may be resumed later.

d) the Activity Discard service allows an
activity to be abnormally terminated with the
implication that the work so far achieved is to
be discarded, and not resumed.

e) the Activity End service is used to end an
activity land set a major synchronization
point).

The use of each of the above services is
controlled by the major/activity token.

•

7.2.2 Usage of the Session Layer

The usage of each functional unit has been outlined
above in the description of each functional unit. The
discussion in this .section. focuses on the general
philosophy of usage of session services,gparticularly
as it applies to synchronization, and on the
restrictions which apply to the usage of session
services.

7.2.2.1 	Session Philosophy

A very important characteristic of the session service
is that it deliberately does not handle
resynchronization automatically. Resynchronization is
.initiated only by session service users and not by the
session service provider. The point to which
resynchronization is being done is controlled by the
user.

•The implication of this is that the semantics of
synchronization points are determined solely by the
application. The application developer must decide
what the effects of major and minor synchronization
points are on the application and must relate them to
the service elements of the application. As an example,
the file transfer protocol associates a major
synchronization point with the completion of a file
transfer; minor synchronization points correspond to
checkpoints inserted in the transferred file.

The session service provides only the mechanisms for
setting the state of a data stream to à previous state
associated with a specified synchronization mark or to
a completely new state.

This approach permits considerable flexibility in the
use of the session services, but it places the onus on
the higher layers to manage error recovery. This means
that the Application Layer is responsible for
determining what and when resynchronization action is
to be taken and for resetting the application context
(semantics) to the state associated with the specified
synchronization mark.

The management of resynchronization can become more
complex for the application if application associations
.are built containing more than one set of application
semantics, e.g. JTM, CCR and FTAM. It is not always
possible to know the various combinations of

application protocols that will be used, so it becomes
impossible to document the relationship one standard
may have with all other standards for the purposes of
resynchronization.

The application designer must be aware of this problem
and must apply the following rule to ensure consistency
in the handling of resynchronization: If a process is
within an atomic action defined by one standard, then
resynchronization cannot be used to move out of that
atomic action into another atomic action defined in
another standard.

For example, assùme an atomic action in JTM requires
the moving of three files from one ssystem to another.
The JTM SASE may cause the generation of marks to
control the state of the job movement. The FTAM SASE

may also generate marks in each instance of the three
file movements. If a problem occurred in the third
file transfer (after two successful ones), then it
would not be permitted to resynchronize out of the FTAM

context to the JTM context. Instead, ,resynchroniza.tion
would be constrained to the current FTAM context,
permitting a clean end to the atomic action as defined .
by the FTAM standard. Then, having moved to the JTM
context, resynchronization could be used to close the
JTM atomic action, e.g. discard the successfully
transferred files.

7.2.2.2 	Restrictions

7.2.2.2.1 	Choice of functional units

Only two restrictions apply to the session service
user's choice of session functional units:

1. Either the duplex or half-duplex style of dialogue
must be selected.

2. If the capability data 	functional 	unit 	is
selected, then the activity management functional
unit must be selected as well.

119

7.2.2.2.2 	Restart type of resynchronization

When major marks are used with resynchronization, the
restart type of resynchrohization cannot be requested
to any mark that preceded the Last confirmed major
mark.

7.2.2.2.3 	Activities

Nested session activities are not permitted. Only one
activity cari be in progress at any one time.

Use of synchronization service s (e.g. major and minor
sync) are not permitted outside of activities.

Together, these restrictions mean that.any application
protocol which uses the activity management functional
unit cannot be nested with any other application
protocol requiring synchronization services. This is
a significant limitation.

The semantics of activity identifiers are determined
solely by the application and so the session service
does 	not police their usage. 	This can lead to .
confusion if more than one outstanding activity is
assigned the 	same 	identifier during a session
connection. Therefore, session activity identifiers
should be unique within a session connection.

7.2.2.2.4 	Use of expedited data

Excessive use of this service can cause a subsequent
resynchronization to be blocked. Therefore, this
service should be used only very sparingly or not at
all.

7.3 Presentation Layer

7.3.1 Capabilities of the Presentation Layer

The Presentation Layer provides a service that allows
systems to communicate about the syntax of Application
Layer information exchanges. The services allow
discussion of the syntax of the exchanged information
but not of the syntax within the systems. Where

120

differences exist between a local system syntax and the •
transfer syntax, mapping must occur. 	This mapping
occurs within the Presentation Layer.

The Presentation Layer also permits access to Session
Layer services. Some of these services are utilized by
the Presentation Service Provider, e.g. typed data, and
some are not, e.g. token management.

7.3.1.1 	Functional Units

The capabilities of the Presentation Layer are
organized into functional units. The application
designer must be aware .of these functional units as
they form the basis for selection of presentation
services during connection establishment.

Table 7.2 lists the functional units and the services
associated with each. Only functional units not
derived from session functional units are listed.

A description of each functional unit follows.

•

O

Table 7.2 Services associated with each presentation functional unit

+ +
I 	 I 	

1

I Functional unit 	I Service(s) 	I
+ +
I Kernel 	I P-CONNECT 	I
I (non-negotiable) 	1 P-U-ABORT 	I
I 	 I P-P=ABORT 	I
+ + 	 +
I Context Management 	I P-DEFINE-CONTEXT 	I
I 	 I P-DELETE-CONTEXT 	I
+ + 	 +

Kernel functional unit: supports data transfer on
whatever session Éunctional unit data services are
selected. This functional unit is always
available.

Context Management functional unit: supports the
definition and deletion of presentation contexts
by agreement among the two service ùsers and the
service provider. A name is associated with each
defined presentation context, but this name has no
significance beyond the current presentation
connection. This functional unit is optional and
its use must be negotiated during connection
establishment.

7.3.2 Usage of the Presentation Layer

7.3.2.1 	Defined Context Set

All data interchanged over a presentation connection
must have a presentation context associated with it.
For simple applications, there might be only one such
context required; such a context could be a default
context known to the communicating parties by prior
agreement or negotiated as part of presentation
connection establishment.

When more than one context is required to be available
simultaneously, then a defined context set (DCS) must
be agreed to by all three parties to a communication,
i.e. the presentation service provider and the two
service users.

122

Most applications 	involve the transfer of both
protocol-control-information (PCI) and user data. 	A
different abstract syntax would normally required for
each type of information. Hence there is a need for a
defined context set when the two' types of information
are intermingled.

When CASE is used, then there will always be a defined
context set as CASE uses its own presentation.context
for CASE protocol data units.

The definition of presentation contexts is normally
performed 'during connection establishment. The
addition and deletion of contexts in the course of a
connection need be performed only if a particular
presentation context is not required for the entire
duration of the connection. An example of such a
situation is a file transfer protocol which might
require a different presentation context for the
contents of each file being transferred. In this case,
the appropriate context would be .defined and deleted
before and after each file transfer. The application
protocol becomes responsible for these actions.

7.3.2.2 Resynchronization

When an application instigates resynchronization, the
Presentation Layer is responsible for resetting the
presentation context (appropriate transfer syntax). •
Unlike the Session Layer, the Presentation Layer tries
to remember state information (the Designated Context

. Set) so that it can be restored if possible when
resynchronization occurs.

When a resynchronization with restart is invoked, then
the defined context set is restored to that in force at
the specified synchronization point if the
synchronization point occurred within the current
connection; otherwise, then the context set is set to
that that determined by the P-CONNECT service. An
exception to this is when resynchronization occurs
after a P-ACTIVITY-RESUME service, in which case the
scope of synchronization points which may be specified
is set to the beginning of the Activity, which may not
have occurred within the current presentation-
connection.

When a resynchronization with set, an activity discard
or an activity interrupt occurs, the defined context
set is restored to that determined at time of
connection establishment.

123

•

When a resynchronization with abandon occurs, the user
may choose to restore the defined context set
associated with a previous a synchronization point.
Otherwise, the defined context set becomes that
determed during connection establishment.

If the application does hot wish to maintain the
defined context set selected by the Presentation Layer,
then it must explicitly' delete and add presentation
contexts using the available services.

7.4 Common Application Service Elements (CASE)

7.4.1 Capabilities of CASE

Common application service elements are service
elements within an application entity that are of
common use_in the Application Layer.

There are two sets of common application service
elements:

1. 	one set deals with the establishment of
connection-oriented 	application 	associations
between pairs of application entities. 	These

• service elements also deal with the management of
application contexts between a pair of associated
application entities. These service elements are
designated as CASE Part 2.

2. 	a second 	set deals with the commitment,
concurrency and recovery (CCR) aspects of defined
groups of application entities that are
cooperating in a distributed enterprise. These
service elements are designated as CASE Part 3.

7.4.2 Functional Units

The CASE capabilities are organized into functional
units. The application designer must be aware of these
functional units because the definition of an
application context includes the identification of CASE
service elements that are applicable.

•

Kernel

Context Management

Commitment, Control
and Recovery

Table 7.3 lists the functional units and the services
associated with each. Only CASE-specific services are
identified.

Temporary Note: Table 7.3 includes 	the 	services
identified in the-proposed addendum to CASE
Part 2. Thus, the kernel functional unit
includes A-TRANSFER, which is not present in
the cu .ri4ent Kernel subset defined in ISO
8649/2. Further, the CCR services are
considered as a separate functional unit,
although the term functional unit is not used
in ISO 8649/3.

A description of each functional unit follows.

Table 7.3 Services associated with each CASE functional unit

I Functional unit 	Service(s)

A-ASSOCIATE
A-RELEASE
A-U-ABORT
A-P-ABORT •
A-TRANSFER

A-CONTEXT-DEFINE
A-CONTEXT-SWITCH
A-CONTEXT-DELETE

C-BEGIN
C-PREPARE
C-READY
C-REFUSE
C-COMMIT
C-ROLLBACK
C-RESTART

Kernel Functional Unit: supports the est-ablishment and
release of application associations, the
identification of the application context(s) which
are applicable to the association, the selection
of an initial application context and the transfer
of user information between peer application-
entities. It also provides the means for
identifying the Presentation and Session

125

requirements for supporting the application
association.

Context Management Functional Unit: supports the
definition of additional application contexts, the
deletion of existing defined contexts and the
selection of a current application context from
the set of defined contexts.

Commitment, Concurrency and Recovery Functional Unit:
supports a distributed application where more than
two application-entities participate and where
more than one open system interconnection is
involved. This functional unit provides a means
for coordinating the activities on the separate
interconnections; it provides services for
commencing and concluding protocol exchanges and
related activity on each interconnection so that
the entire sequence appears to other applications
as atomic (i.e. indivisible), even in the face of
failures of individual applications.

This functional unit uses a two-phase commitment
protocol involving a master and a number of
subordinates which perform activities which are to
be considered as part of an atomic action. In
phase 1, the master determines whether the
subordinates are prepared to carry out, i.e. to
commit to, the action. It is only following
offers of commitment or refusal from all
subordinates that the master decides whether to
proceed or not. In phase 2, ail subordinates are
ordered to commit or to rollback. Commitment
implies completion of the individual activites
while rollback implies cancellation.

An atomic action may involve a tree of activities,
such that the initiation of one activity as part
of the atomic action spawns another activity which
in turn becomes a part of the atomic action.

Thus, a CCR user either

a) 	acts as a superior in relation to one or more
subordinates; or

h) 	acts as a subordinate in relation to a single
superior; or

126

c) acts simultaneously as a subordinate to one
superior and as a superior to one or more
subordinates.

The master of an atomic action is the initiator of
the action and acts only in the role of superior.

The following are the main features of an atomic
action:

a) 	commitment implies that the results produced
by the atomic action have become permanent;
no recovery capability exists at this level
of operation for undoing the results produced
once commitment has occurred;

h) 	a superior may order rollback to the initial
state at any time prior to ordering
commitment;

a superior may not order a subordinate to
commit.unless it has received an offer of
commitment from it;

d) if a subordinate has offered commitment, it
may not refuse an order to commit;

e) a subordinate may refuse commitment at any
time up to making an offer to commit;

f) the superior orders rollback for any
subordinate which has refused commitment.

7 . 4 . 3 	Usage

7.4.3.1 Application Context Management
-

An application association has the notion of the
defined application context list and the current
application context.

Each 	application association has one defined
application context list. It contains the names of all
application contexts that have been agreed upon by both
communicating application-entities. 	CASE 	specifies

_three services to manage the defined application
context list: A-ASSOCIATE, A-CONTEXT-DEFINE and A-
CONTEXT-DELETE.

127

Each direction of protocol data unit flow of an
application association has 	exactly one current
application context. 	The current application context
must be a member of the defined application context
list. The A-CONTEXT-SELECT servibe is used to specify
the current application context for the direction of
flow from the initiator of the service to its recipient
peer application-entity.

In an application environment where a single
application context is used, then the context
management functional unit is not required. Note that
CASE service elements are considered to be part of the

. application context Of the user application and do not
form a separate application context. Context
acquisition is achieved via the A-ASSOCIATE service,
context relinquishing is achieved via the A-RELEASE
service and context aborting is achieved via either the
A-U-ABORT or A-P-ABORT services.

In an application environment where more than one SASE
is present then context management is needed. In thià
case, context acquisition, relinquishing and aborting
may be achieved by different service elements,
depending on circumstances. The set of context
acquiring services includes A-ASSOCIATE, A-CONTEXT-
DEFINE and A-CONTEXT-SWITCH. The set of context
relinquishing services includes A-RELEASE, A-CONTEXT-
DELETE and A-CONTEXT-SWITCH. The set of context
aborting services includes A-U-ABORT and A-P-ABORT.

7.4.3.2 Commitment, Concurrency and Recovery

7.4.3.2.1 	An example

An example of the use of this functional unit is a job
transfer which requires the transfer of three files to
different participants. All of the transfers must be
successful if the job is to proceed. The job transfer
application in this instance is the master and each
invocation of the file transfer application is a
subordinate.

Before each file transfer is initiated, the CCR C-BEGIN
service is used to indicate to each file transfer
subordinate that each transfer is part of a single
atomic action. The file transfer subordinates then
take responsibility for ensuring that the information

128

relating to each particular transfer is kept secure,
i.e. safe from communication and application failures.
They are also responsible for ensuring that resources
that are affected by the atomic action (e.g. the
contents of a file to be updated) 'are protected from
concurrent access for the duration of the atomic
action.

As each file is›transferred, the recipient d.oes not
actually update the target file; it saves the received
information in such a manner that it can survive an
application failure. When the transfer is complete, the
master indicatês via the C-PREPARE service that it
wants an indication from each subordinate of the
success of the transfer. Each subordinate responds
with either a C-READY if the answer is affirmative or a
C-REFUSE otherwise. Depending on the answers received
from all the subordinates, the master can choose to
commit or rollback the transfer. If the master chooses
to commit, each subordinate must then complete the
writing of the transferred information to the target
file. If the master chooses to rollback, the
transferred information is discarded.

It is also possible for either the master or one of the
subordinates to request a restart of an activity if
something wrong is detected before commitment
proceedings are initiated.

7.4.3.2.2 	Restrictions

CCR is only meaningful within the context of a single
distributed application involving coordination of
multiple activities.

CCR cannot be used by an application which uses
synchronization marks and resynchronization in a random
manner unrelated to restart semantics.

CCR cannot be used outside of a session activity when
use of the session activity functional unit has been
negotiated.

Where a restart capability is visible in the service
primitives of an application which uses CCR, the
following restrictions apply to the combined sequence
of service primitives:

gl, 	
a) 	application service primitives cannot be used

within an atomic action to restart to a point in
time earlier than the start of the atomic action;
and

• h) 	application service primitives cannot be used
following commitment or rollback to return to a
point in time earlier than the point of commitment
or rollback.

Where an application service request primitive
initiates an action whose completion (or failure) is
signalled by an application service confirm or

. indication primitive, a C-BEGIN cannot be issued
between the two primitives. This restriction prevents
ambiguity over the precise point at which the atomic
action starts.

7 0 5 Specific Application Service Elements

As part of the process- of developing an application
service and protocol, it is necessary to evaluate the
suitability of existing services and protocols.

The following discussion describes 	the general
characteristics of existing and proposed application
standards.

7.5.1 File Transfer, Access and Management (FTAM)

The aim in the standardization of a file service is to
allow the open interconnection-of file users who wish
to transfer, access, or manage files with elements
which behave as if they store files. Anything which
appears as a system for interconnection purposes, and
conforms to the specified file protocols in the role of
filestore provider, is considered to provide a
filestore.

7 0 5.1 0 1 Functional Units and Service Classes

The FTAM standard has many capabilities organized into
functional units, as shown in Table 7.4

Table 7.4 Services associated with each FTAM functional unit

Functional unit 	1 Service(s)

Kernel 	Association establishment
Association termination

(orderly)
Association termination

(abrupt) 	,
.File selection
File deselection
File open
File Close

+ + 	 + ,
I Read 	1 Read bulk data 	I
1 	 I Data Unit transfer 	I
1 	 1 End of Data transfer 	1
1 	. 	1 End of transfer 	I
I 	 I Cancel data transfer 	I
+ + 	 +
1 Write 	I Write bulk data-- 	I
I 	 1 Data Unit transfer 	I
I 	 1 End of Data.transfer 	I
I 	 I End of transfer 	I
I 	 1 Cancel data transfer 	I
+ + 	 +
1 File Access 	I L6cate file access data unit I
I 	 1 Erase file access data unit 1
+ + 	 +

1 Limited File 	I File creation 	I
I Management ' 	1 File deletion 	I
I 	 1 Read attributes 	I
+ + 	 +
I Enhanced File 	1 Change attributes 	I
I Management 	I 	 I
+ + 	 +
I Grouping 	1 Beginning of . grouping 	I
I 	 1 End of grouping 	I
+ . 	+ 	 +
I Recovery 	1 Regime recovery 	1
I 	 I Checkpointing 	1
I 	 1 Cancel data transfer 	I
+ +
1 Restart data transfer 1 Restarting data transfer 	I
I 	 I •Checkpointing- 	1
I 	 1 Cancel data transfer 	I
+ + 	 +

131

Three 	service classes are identified which group
functional units according to the type of •file
processing associated with each class:

File transfer class is intended for the transfer of
entire files

File access class ià intended for the manipulation of
parts of files. 	'individual records.:

File management class is intended for operations of
files as a whole.

7.5.1.2 	Usage

The FTAM protocol can be used as a vehicle for reliable
transfer of large amounts of information between
systems. It .is useable for smaller amounts as well,
but the considerable amount of dialogue involved in
,preparing for a transfer (connection establishment,
file selec -Eion, file open, read or write request) makes .
FTAM less attractive in this case.

For- applications which do not require all the dialogue
associated with^ the file semantics of FTAM, it may be
worthwhile considering adapting the bulk transfer
protocol aspects of FTAM which are specified as a
separable protocol.

The virtual filestore model used by FTAM provides for
the representation of complex file structures. Thus
the FTAM concepts and protocOl are applicable to many
applications requiring database access.

7.5.2 Job Transfer and Manipulation (JTM)

The purpose of the job transfer and manipulation
standard is to provide a set of communication-related
services which can be used to perform work in a network
of interconnected open systems. This work can include
the running of traditional jobs.

The JTM protocol covers not only the movement of job-
related data (input and output) between open systems,
but also provides for the movement of data concerned
with monitoring job-related activity, and for
controlling and manipulating the progress of this
activity.

132

1 Service Class

Basic Class

Full Class

,1

The JTM standard uses the concept of a work statement
as the data structure describing a distributed job.

Two classes of service are identified: basic and full.

Table 7.5 lists the services available in each class.
The full class supports all services.

Table 7.5 Services associated with each JTM service class

1 Service(s)

J-INITIATE-WORK
J-INITIATE-WORK-MAN
J-DISPOSE
J-G IVE
J-END-SIGNAL
J-STATUS
J-KILL
J-STOP
J-MESSAGE':

J-INITIATE-TCR-MAN
J-iNITIATE-REPORT-MAN
J-ENQUIRE
J-HOLD
J-RELEASE
J-SPAWN

7.5.2.1 	Usage

The JTM standard supports a set of related interactions
between a controlling entity (called the initiation
agency) and many other entities (variously called
source, sink and execution agencies). To do this, it
needs to coordinate multiple associations. Hence this
application is more complex than the FTAM one.

As a consequence of the distributed nature of this
application, JTM can and does make use of the CCR
capabilities described earlier.

Thus JTM provides the framework for a wide range of
applications requiring centralized control of many
activities.

133

7.5.3 Virtual Terminal Protocol (VT)

The virtual terminal basic class standard supports the
interactive transfer and manipulation of graphic data
by virtual terminal users. This graphic data is
structured in a manner which models the class of
character-box oriented terminals. The structuring of
graphic elements is limited to images consisting of
character-box graphic elements arranged in a one, two
or three dimensional array.

The transfer and manipulation of graphic data takes
place within a virtual terminal environment defined by
a set of parameters. Profiles are used to represent
sets of predefined parameters as an aid in negotiating
the characteristics of a virtual terminal environment.
They can be used to represent the characteristics of
commonly encountered virtual terminals.

The VT service permits the transfer and manipulation of
data in a way that is independent of the internal
representation of information used by each virtual
terminal user; provision is made to control the
integrity of the communication between users through
the assignment of access rights to different sets of
objects (e.g. a virtual screen and a virtual keyboard).

Both synchronous and asynchronous modes of operation
are supported.

7.5.3.1 	Service Subsets

Three subsets are identified. They differ only in the
level of negotiation available in each subset. Each
subset is a superset of the next lower subset.

Table 7.6 lists the service subsets and the service
facilities available for each.

134

I Profile switch
I negotiation

Table 7.6 Facilities associated with each VT service subset

I Service subset

Kernel

Facilities

Association establishment
Association termination
Data transfer
Delivery control 	1
Token management

Switch profile negotiation

I Multiple interaction 1 Multiple interaction
I negotiation 	I 	negotiation

7.5.3.2 	Usage

This application is essentially a stand-alone one which
is not amenable to incorporation within other
applications.

The VT negotiation mechanism is sufficiently powerful
that the standard is not restricted to the
virtualization of commonly encountered terminal
characteristics. If an application required
specialized characteristics , . yèt remained faithful to
the architectural framework of this standard (i.e.
character box graphic information in one, two or three
dimensional arrays), then it could be accommodated by
this standard.

7.5.4 Message Transfer (MT)

The Message Transfer service supports reliable store-
and-forward transfer of messages. It delivers messages
to one or more recipients within a defined time period
and, where required, performs syntax transformation on
the contents of messages.

This service was designed for use as part of the ISO
Message Oriented Text Interchange System (MOTIS) which
is an extension of the CCITT MUS. MOTIS identifies two
sublayers, the interpersonal messaging sublayer and the
message transfer sublayer. The former is specific to
the interchange of electronic mail messages between

135

users while the latter is a general purpose sublayer.
It is the service and protocol associated with the
message transfer sublayer that is of potential interest
to application developers.

7.5.4.1. 	Capabilities of the MT Service

The MT service provides the following capabilities:

1. the submission of a message for transfer to one or
more recipients. The originator of the message
can control various aspects of message processing
such as message priority, 	the need 	for
notification of non-delivery, deferred delivery,
etc.

2. the determination of whether or not a message
could be delivered to one or more recipients if it
were submitted (probe).

a specified
of message

.- the delivery of 	a message to
recipient, along with indications
characteristics.

• 4. 	non-delivery notification to the originator in the
event that a message is not delivered • to an
intended recipient.

5 , 	delivery notification in the event that 	the
originator requested explicit confirmation of
delivery.

6. 	the ability to request cancellation of a message
previously submitted for deferred delivery.

Table 7.7 lists the services that are available.

136

Table 7.7 Services associated with Message Transfer

+ +
I 	 I . 1 Service 	I
+ +

1 Submit 	I
I Probe 	I
I Deliver 	I
1 Notify 	I
I 	 I
+ +

7 . 5 . 4. 2 	Usage

The Message Transfer protocol uses the session activity
services to achieve reliable transfer of messages.
Hence, any user of this service must be aware that
additional synchronization services such as CCR cannot
be_used_in conjunction with this protocol.

7.6 Other OSI Aspects

In addition to existing services and protocols, there
are a number of areas where ongoing - 081 work is
relevant to the application protocol developer.

7.6.1 Connectionless Data Transfer

Connectionless data transfer is the transmission of a
single unit of data from a 'source to one or more
destinations without establishing a connection.

7.6.1.1 	Service Characteristics

In contrast to connection-oriented transfer, 	an
instance of the use of connectionless service does not
have a clearly distinguishable lifetime. In addition
it has the following fundamental characteristics:

a) 	it requires 	only a pre-arranged association
between the peer-entities involved which
determines the characteristics of the data to be
transmitted, and no dynamic agreement is involved
in an instance of the use of the service;

137

all the information required to deliver a unit of
data - destination address, quality of service,
options, etc. - is presented to the layer
providing the connectionless service together with
the data, in a single service access which is
unrelated to any other access.

,Each layer supports a single service, namely UNIT-DATA,
which permits the transfer àf a unit of data between
peer-entities.

In general, a connedtionless service does not guarantee
that units of data will not be lost, corrupted or
delivered out. of sequence. 	However, it is possible
architecturally 	to 	incorporate 	segmentation,
sequencing, acknowledgement and error handling
functions within layers to lessen the probability that
undesirable events will occur.

7.6.1.2 	Usage

At present, services and protocols for connectionless
data transfer exist only for the Transport layers and
below. Further, existing protocols do not include any
error handling functions. The consequence of this is
that it is not possible to develop connectionless
application layer protocols at this time in the absence
of adequate supporting services.

Were adequate supporting services available, then the
connectionless form of data transfer would be
appropriate for applications which transferred small
amounts of isolated data. A transaction-oriented
request-response application would be one candidate.

7.6.2 	OSI Security

Clause 5.5.8 of this document has identified the
principal features of the OSI Security Architecture.
Table 5.1 has listed the possible layers where various
security services could be provided.

7.6.2.1 Application Layer Security Services

The only security services that are permitted in the
Application Layer are access control and limited -

traffic flow security.

138

Limited traffic flow security is provided by use of
traffic padding, which must be used in conjunction with
a confidentiality service at a lower layer.

The access control service is prwiided by appropriate
specific access control mechanisms.

Two other services invoive the Application Layer. One
is a non-repudiation service based on a notarization
mechanism, whereby a trusted relay at Layer 7 acts as a
third-party notary which resolves disputes between
communication partners. This service operates in
conjunction with the Presentation Layer which handles
syntactic representation aspects of the service.

The other service which involves the Application Layer
is an application-to-application acceptance of data
service, where the Application Layer provides a
mechanism to indicate proper receipt of data, e.g.
after safe storage of the received data, which is used
in conjunction with a Presentation Layer_ signature
service.

7.6.2.2 	Usage

The developer of an application which has security
requirements must take the OSI security architecture
into account so that the appropriate security functions
are properly situated.

The developer must also be aware that no existing OSI
protocols have incorporated security features yet.
This implies that any near-term development of secure
applications may require extensions to lower layer
protocols which will likely render them non-standard.

7.6.3 Multi-peor Data Transmission (MPDT)

Multi-peer transmission can be described as any member
of a group of entities being able to communicate with
one or more members of the group.

Applications which require this capability include
electronic mail, distributed database processing, key
management, etc.

139

• The aim of multi-peer services and protocols is to
enable savings to be achieved in bandwith and/or
elapsed time by permitting the data to be transmitted
only once from a source.

7.6.3.1 	Types of MPDT Services

Two types of multi-peer data transmission services have
been identified:

Type 1: The MPDT is an application service which
provides the distribution of data on demand of an
application entity, based on existing connection-
oriented or enhanced connectionless services. In this
type, the multi-peer capability is introduced only in
the Application Layer or in connectionless services.
An example of this type of multi-peer capability is the
Message Handling Systems application where a multi-peer
capability, i.e the ability to send a message to many
recipients, is handled via Application Layer mechanisms
which use existing point-to-point lower layer services.

Type 2: The MPDT is a multi-peer application service
based on multi-peer or point-to-point, connection-
oriented or connectionless services. In this type, the
multi-peer capability is introduced in any layer if
useful. If the lower layers provide a MPDT service,
the role of the layers above the Transport Layer is to
initiate and control the multi-peer data transmission
service, while the role of Transport and lower layers
is to provide the service efficiently.

The 	mechanisms 	required for multi-peer data
transmission in the upper layers are different in
nature from those required in and below the Transport
Layer. In the lower layers, they may depend on the
characteristics of the technologies being used.

In the upper layers, the requirement is defined in
detail by the application but in general the need is to
permit the transmission of protocol data units carrying
identical data to several destinations. This may be
achieved most efficiently if identical protocol control
information is used for each destination, and in
particular if it is possible to establish identical
transfer syntaxes to each destination and to ensure
that protocol data units at every layer are made
.identical.

7.6.3.2 	Implications for Protocol Design

When an application . incorporates MPDT, a number of
issues must be addressed:

Naming and Addressing: The invocation of an MPDT
service requires the use of one of the following:

- a group name

- a group address

- a list of -Presentation service-access-point
addresses

If group names or addresses are used then
mechanisms are required for managing them. This
could be a directory management function..

Connection Establishment: In current point-to-point
protocols, the result of negotiation during

' 'connection establishmént is essentially chosen by
the responder. For MPDT, it may be necessary for
the originator to choose the result of the
'negotiation. This implies a three-way handshake.

Connection Release: The issue here is how to release
the multi-endpoint connection. The connection may
need to be released as soon as one end-system
choses to break it or it may be permissible to
continue the connection between the end-systems
after one or more choose to disconnect.

Transfer of Data: Flow control becomes an issue when
one or more end-systems cannot receive data at the
same rate as the others. Two possible approaches
are:

a) drop the slow end-system from the multi-
endpoint connection, temporarily or permanently;

b) adjust the transmission rate so that it is
not too fast for the slowest end-system.

Case a) corresponds to a type of application where
end-to-end delays are most important, e.g.

distribution of an important message.

141

Case h) corresponds to a type of application where
bandwidth saving or synchronization of end-systems
is most important, e.g. disribution of database
updates.

Error Handling: The issue here is how to deal with the
Situation where one or more end-systems does not
correctly receive a protocol data unit.

Again there is a choice of actions:

a) 	ignore the error and continue transmissions;

h) 	retransmit the incorrectly received protocol
data unit, either to all connection end-points or
just to those which did not correctly receive the
protocol data unit.

c) 	if the protocol data unit is to be
retransmitted, then the end-systems requiring
retransmission are effectively slowing their
reception rate, leading to the flow control
problem discussed above.

Quality of Service: The maintenance of quality of
service in a MPDT environment becomes a more
complex issue. Among the considerations that must
be taken into account are active group integrity,
delivery reliability, sequence preservation, and
the handling of confirmed services.

Management: One of the additional management functions
is to provide procedures for joining, leaving and
managing the membership of a group involved in
MPDT communication.

7.6.4 Management Information Services (MIS)

Management Information Services are conceived of as a
set of application services and associated System
Management Application Processes (SMAPs) used to
exchange management information and management control
sequences.

The following functional areas are supported by MIS:

1. Directory Management

142

2. Fault Management

3. Accounting Management

4. Security Management

5. Configuration Management

-- -
6. Performance Management

7.6.4.1 Directory Management

Directory management is concerned with the provision
and maintenance of directory.information.

The following functions are available:

- Create-Object Name
- Delete Object Name
- Add Alias
- Delete Alias
- List Aliases of
- List Property Names
- List Property Values
- Add Property
- Delete Property
- Change Property Value
- List Group Members
- Add Group Member
- Delete Group Member
- Is Member
- Find Name

7.6.4.1.1 	Implications for SASE Development

The directory service is not generally accessed
directly by SASEs. In the normal course of events, a
SASE entity is provided with an application entity
title of a peer SASE entity; this information is passed
on to CASE which initiates the directory lOokup
function.

7.6.4.2 Fault Management

Fault management is the management of the abnormal
operation of the system.

143

Faults manifest themselves as errors'in the operaion of
the system, that is, errors are the detection mechanism
for faults.

The three principal aspects of fault management are
fault detection, fatilt diagnôsis and fault'correction:

Fault detection may be achieved by reporting error
conditions, • by performing cônfidence tests or by
checking for exceeded threshold values.

Fault diagnosis can be done by analyzing symptoms (i.e.
past events) or executing diagnostic tests.

Fault correction may'involve the interchange of repair
action commands and reports.

7.6.4.2.1 	Implications for SASE Development

There is no need for a designer of a SASE protocol to
incorporate explicit fault management functions within
the SASE unless the requirements of the SASE go beyond
those iprovided by the standardized fault management
services.

There will be in general a requirement for a SASE
implementation to incorporate some fault detection
capabilities for use in conjunction with the fault
management - facilities. In particular, trace
facilities, consistency checks and threshold counters
should be included.

7.6.4.3 Accounting Management

Accounting 	management 	provides mechanisms for
communicating information between open systems relating
to the monitoring and control of charges for use of
communications resources and to the provision of tariff
information.

Accounting management recognizes two levels at which
accounting information is made available:

a) 	at the Network Layer which accounts for the use of
the communications mediume

144

h) 	at the Application Layer which accounts for the
above charges together with those incurred in the
use of the end-system resources in effecting the
communication.

The monitoring of charges incurred includes the
capabilities for billing at the end of an accounting
period, for providing advice upon termination of a
specific instance of communication and for seeking or
providing advice about a previous instance of
communication.

The controlling of charges incurred includes 	the
capabilities for a user to identify a payment limit,
for a service provider to signal an event when the
limit is about to be exceeded and to signal termination
of a communication when the limit is exceeded.

The provision of tariff information includes a
capability for a user to enquire about costs before
initiating a communication.

7.6.4.3.1 	Implication for SASE Development

A SASE should not include any accounting information
within its protocol exchanges unless the standardized
capabilities are inadequate.

A SASE implementation will require the capability to
collect accounting information and to make it available
to the local accounting subsystem.

7.6.4.4 Security Management

Security management is concerned with the management
aspects of the provision of security services.

Requirements 	exist for authentication management,
access control management, key management, handling of
security audit trails and events, and access control to
the Management Information Base (the repository of all
management-related information).

Authentication management involves the distribution of
passwords to entities involved in authentication
control.

Access control management involves the distribution of
passwords, access control lists and capability lists
and their updating.

Key management involves the distribution of encryption
keys.

The handling of security audit trails and events
includes remote collection of audit records and
enabling and disabling audit trail logging.

MIB access control is .a special instance of access
control that is specific to management.

7.6.4.4.1 	Implications for SASE Development

.Security management has no direct implications for SASE
. development.

7.6.4.5 Configuration Management

Configuration management is concerned with the
determination and control of the logical and physical
configuration of a system.

The following functions are included as part of
configuration management:

a) automated collection and reporting of information
about the system state, e.g. what functionality is
available and whether it is - active or inactive;

b) control of the physical 	configuration; 	this
includes activation and deactivation of physical
devices;

c) control of the 	logical 	configuration; 	this
includes ' principally 	the 	activation 	and
deactivation of software resources;

d) software distribution control, to ensure that all
users are using consistent versions of software.

146

7.6.4.5.1 	Implications for SASE Development

There are no direct implications for SASE development.

7.6.4.6 Performance Management

Performance management is the control and evaluation of
statistical information derived from within an oPen «
system.

The aspects of this function are:

a) 	collect the system statistics;

h) 	control the collection of system statistics;

c) 	store the system statistics and their histories;

(1) 	analyse the system statistics;

present the system statistics.

7.6.4.6.1 	Implications for SASE Development

This function has no direct implications for protocol
development.

As in the case of fault management, there is a need for
an implementation to incorporate counters, etc , to
provide the statistics needed by this function.

147

8 PROTOCOL DEVELOPMENT TOOLS

This clause describes various tools and mechanisms that
the application protocol developer shbuld be aware of.

8.1 	Registration Procedures .

The successful application and use of OSI standards
requires that certain objects and/or that unique names
be registered with some authority.

An example of this requirement is the registration of
abstract and transfer syntaxes. OSI Application and
Presentation Layer entities rely on a protocol-based
negotiation mechanism to reach agreement with their
peer entities on the subject of their communication and
its representation during their dialogue. This
negotiation is based on the ability to unambiguously
identify a syntax known to both peer entities, and is
achieved through reference to a reserved or registered
name for that syntax.

To achieve successful communication between open
systems, standards are required to specify: the form
or structure of these names; the extent of domains in
which they are unique; the authority or procedures
required to register the names of newly defined
syntaxes.

This requirement applies to the following types of
names:

- transfer syntaxes

- abstract syntaxes

- application titles

- service-access-point addresses

- application contexts

- document types

Specific Registration authorities 	responsible 	for
individual naming domains will be registered with and
coordinated by the general OSI Registration Authority.

148

•

Thus the process of registering a name for an object
requires first that a specific Registration Authority
be established, then that a proposal be submitted to
that Registration Authority to register the proposed
name.

In the case of abstract and transfer syntaxes, a single
Registration Authority could be established to handle
both.

As an illustration of the type of information that is
associated with a register entry, a register 	of
abstract syntaxes would contain the 	following
information for each registered syntax:

a) 	an unambiguous name for the abstract 	syntax
(assigned by the Registration Authority) and a
list of any registered aliases;

a reference to the definition of the abstract
syntax;

c) references to those registered transfer syntaxes
that are capable of supporting the information
representation requirements of the abstract
syntax;

d) 	the identity of the organization that requested
the registration of the object;

the date of registration;

f) status information (e.g. version and obsolescence
data);

g) variable features of the registered object (i.e.
options of one or more forms).

A register entry for transfer syntaxes would
contain similar information, with the references
to transfer syntaxes in c) above replaced with
references to registered abstract syntaxes that
the transfer syntax supports.

8.2 Formal Description Techniques (FDTs)

Different methods may be used for writing service and
protocol specifications; they range from the use of
natural language to rather formal mechanisms. The use
of natural language has the drawback that it gives the •

illusion of being easily understood, but leads to
lengthy and informal specifications which often contain
ambiguities and are difficult to check for completeness
and correctness.

A formal protocol specification, on - the other hand, is
less ‘prone to the difficulties of a natural language
specification.

A formal description technique (FDT) is the vehicle for
such formal specifications.

The main objectives to be satisfied by an an FDT are
that it should be:

a) 	expressive: an FDT should be able to define both
the protocol specifications and 	the 	service
definitions of the seven layers of OSI;

b) 	well-defined: an FDT 	should have a formal
mathematical model that is -suitable for 	the
verification of theàe specifications and
definitions. The same model should support the
conformance testing of implementations.

well-structured: an FDT should offer means for
structuring the description of a specification or
definition in a manner that is meaningful and
intuitively pleasing. A good structure increases
the readibiity, understandability, flexibility,
analysability and maintainability of system
descriptions.

d) 	abstract: there are two aspects of abstraction
that an FDT should offer:

1. an FDT should be completely independent of
methods 	of implementation, 	so that the
technique itself does not provide any undue
constraints on implementors.

2. an FDT should offer the means of abstraction
from irrelevant details with respect to the
context at any point in a description.

Abstraction can reduce the local complexity of
system descriptions considerably. In the presence
of a good structure, abstraction can help even
further to reduce the complexity of descriptions.

c)

150

ISO is currently developing two such FDTs, ESTELLE and
LOTOS.

8.2.1 	ESTELLE

Estelle is a formal description technique based on an
extended state transition model. Estelle may be viewed
as a set of extensions to ISO Pascal level 0 wiiich
allows the components of a data communications protocol
to be modelled as one or more modules each of which is
specified as an extended finite state machine.

A system described by an Estelle specification consists
of a set of cooperating modules. The purpose of each
module specification is to define the behaviour of the
module as observable at its interaction points, i.e.
the points where the module interacts with other
modules and its environment.

The behaviour of each module cari be defined by a state
transition model,: consisting of input and output
interactions, states and transitions.

Since finite state diagrams or equivalent methods often
lead to very complex representations for
specifications, the finite-state model is extended with
the addition of variables to the states, parameters to
the interactions, and priorities to the transitions.
This includes the introduction of types which are used
for variables and parameters as well as for modules.
This approach combines the simple concept of states and
transitions with the power of a programming language.

Estelle permits refinement of module structure into a
set of nested modules. Thus a specification consists
of a tree of modules organized into a hierarchy.

Estelle is to some extent an implementation-oriented
description technique in that it does describe the
internal behaviour of an idealized implementation of
the protocol. While an implementation which claims to
conform to an Estelle specification is required only to
have externally observable behaviour consistent with
the specification, in practice it may be difficult to
verify such behaviour if an implementation is radically
different internally from the idealized structure of
the specification.

151

8.2.2 	LOTOS

LOTOS (Language of Temporal Ordering Specification) is
based on the concept that protocol systems can be
described by defining the relation'between events in
the externally observable behaviour of a system.

The formal mathematical model, of LOTOS is based on a
modification of the Calculus of Communicating Systems
(CCS), which was developed at the University of
Edinburgh. CCS provides a powerful analytical
technique for concurrent systems.

In LOTOS, distributed systems are modelled as a set of
communicating processes. , A system as a whole is a
single process that may consist of many interacting
subprocesses. These subprocesses may in turn be
refined into subprocesses, etc., so that a
specification of a system in LOTOS is essentially a
hierarchy of process definitions.

The static picture of a process can be imagined as that
of a black box that is capable of communication with
its environment. The mechanisms inside this box are not
observable, therefore in principle not part of the
model. The way in which a process may be described is
by specificatin of its ability to communicate with its
environment. A process communicates with its
environment by means of interactions. The atomic form
of interaction is an event. An event is a unit of
synchronized comwunication that may exist between two
processes that can both perform that event.

The behaviour of a process may be thought of as having
a tree-like structure. The root of the tree represents
the initial state of the process. The edges in the
tree are labelled by the names of events. In this way,
the labels on the outgoing edges of each node represent
possible next steps of the process. The tree structure
thus represents process behaviour as a sequence of
possible choices ordered in time according to the depth
of the nodes in the tree.

The approach taken in LOTOS, viz , the description of
behaviour in terms of composition principles that
reflect intuitive notions about the way in which
systems are structured (sequence, choice, parallellism,
disruption) enables meaningful modularity in the
definition of very complex systems.

152

The CCS model on which LOTOS is based focuses on the
dynamic aspects of process 'behaviour and does not
define the mechanism to use for the representation of
data. LOTOS uses ACT ONE as the mechanism for defining
data types and values; ACT ONE is basèd on the theory
of abstract data types. It provides capabilities
similar to the type definition capabilities of Estelle

(i.e. Pascal). -

8.2.3 Checklist for an FDT-based Specification

Clause 6 included a checklist for ensuring the quality
of a protocol specification. When a formal description
technique is used, the following questions must be
answered as well:

1. Does the formal description form an essential part
of the standard or is it provided only for
guidance?

It is very important to have', a clear understanding
of the status of the formal description. Ideally
there should be no discrepancies between the text
and the formal description, but because this is
very hard to achieve in practice it is important
that the reader knows which takes precedence. If
the formal description is provided only for
guidance, it cannot define conformance
requirements.

2. Is the FDT well-defined, stable and properly
referenced?

3. If the formal description defines requirements,
does it include all the requirements of the
standard?

If not, it must be clearly stated that the text
includes requirements which are not covered by the
formal description and these additional
requirements should be clearly identified.

4. If the formal description defines requirements,
does it also define an allowed way of implementing
some aspects of the protocol?

If so, but there is intended to be freedom for the
implementor to implement those aspects in some
other way, then this constitues overdefinition.
This is all too common in formal descriptions and

153

creates difficulties in relation to conformance.
If the formal description is an essential part of
the standard, then text must be provided to
qualify it, indicating where such over-definition
exists and what the real requireMents are.

The problem usually arises because the formal
description describes teh internal behaviour of an
idealised implementation, rather than just the
observable external behaviour that is required.
It is only the observable external behaviour which
can be tested, and therefore it is only this which
should constitute requirements for conformance
purposes. It may well be that a different FDT
should be used for defining the requirements from
that used to provide guidance to implementors.

8.3 Abstract Syntax Notation One (ASN.1)

In .the lower_layers of the. OSI _Reference Model, each
User data parameter of a Service primitive is specified
as the binary value of a sequence of octets.

In the Presentation Layer, the nature of user data
parameters changes. Application Layer standards
require the presentation service user data to carry the
value of quite complex types, possibly including
strings of characters from a variety of character
sets. In order to specify the value which is carried,
they require a notation which does not determine the
representation of the value. This is supplemented by
the specification of one or more encoding rules which
determine the value of the Session Layer octets
carrying such Application Layer values (this is the
transfer syntax). The Presentation Layer negotiates
which transfer syntaxes are to be used.

ASN.1 defines a number of built-in types and associated
values, and provides type constructors which allow the
construction of complex data structure types (called
structured types) and corresponding complex data values
from these basic built-in types. Common built-in types
include boolean, integer, bit string and octet string.
The common constructors are sequence, set and choice.
Various types of character string are supported,
including ISO 646 strings, numeric character strings,
printable character strings (a basic 74-character set),
teletex character strings, videotex character strings
and graphic character strings. The latter permits the
use of any character set in the ISO Register of
Character Sets, as established by ISO 2375.

154

An important objective of ASN.1 is to support the
representation of Application and Presentation Layer
pràtocol data units and to facilitate encoding. For
this reason, it provides a means for associating
identification tags with data types. This is in
contrast to the data structure definition facilities of
Estelle and LOTOS, which Were not intended expressly
for PDU representation.

8.4 Conformance Testing Methodology

The objective of OSI will not be completely achieved
until systems can be tested in order to determine
whether they conform to the relevant protocol
standards.

Standard test suites should be developed for each
protocol standard for use by a supplier or implementor
in self-testing, by the user, or by the carrier or

__other third-party tester. This should lead to
comparability and wide acceptance of test results
produced by different testers, and thereby minimise
repeated conformance testing of the same system.

The 	standardization of test 	suites 	requires
international definition and acceptance of a common
testing methodology and appropriate testing methods.
Such a common framework and methodology is being
developed by ISO.

8.4.1 Objectives of Conformance Testing

In principle, the objective of conformance testing is
to establish whether an implementation being tested
conforms to the 	specification 	in the 	relevant
standard. Practical limitations make it impossible to
be exhaustive, and economic considerations may restrict
testing still further.

Three types of testing are identified, acording to the
extent to which they provide an indication of
conformance:

- basic interconnection tests which provide prima
facie evidence that an implementation under test
(IUT) conforms;

155

- conformance tests which endeavour to provide as
comprehensive testing as possible over the full
range of requirements specified by the standard;

- conformance resolution tests whin provide a
definite yes/no answer in the context of specific
conformance issues. Such tests serve a diagnostic
function, and are typically used when the
conformance tests indicate suspicious behaviour of
the 'system, but are not capable of determining
precisely whether a problem exists.

8.4.2 Abstract Testing Methodology

The essential characteristic of the test methodology is
that it examines the externally observable behaviour of
a protocol entity. The OSI protocol standards define
allowed behaviour of a protocol entity in terms of the
protocol data units (PDUs) and both the abstract
_service primitives (ASPs)_above and below that entity.

Figure 	8.1 	illustrates 	the 	conceptual 	testing
architecture.

•

PCO

1 (N)-ASPs

Tester
1

N-entity 	1
under test 	1

(IUT) 	1
	1

I(N-1)-ASPs

PCO

Legend: PCO : point of control and observation
ASPs: abstract service primitives
IUT : implementation under test

Figure 8.1 Conceptual Testing Architecture

Three test methods are identified. They differ in the
type of mechanism required for control and observation
of the upper and lower interfaces of the IUT.

1. 	Local test methods which use control 	and
observation
the IUT;

of the ASPs directly above and below

2. Distributed test methods which use control and
observation of ASPs directly above the IUT and
control and observation of the (N-1) -ASPs as seen
by a remote tester acting over the (N-1) service
provider. 	Thus the 	tester 	intelligence 	is
disributed over the system under test and a remote
system.

3. Remote test methods which use control and
observation of the (N-1)-ASPs as seen by a remote
tester acting oVer the (N-1) service provider. The
ASP activity above the IUT is unspecified.

157

8.4.3 Implications for Application Protocol Testing

With the Application Layer, thereis no layer service
above it which can be controlled or observed via
(N)-ASPs at a service-access-point (SAP). However, for
application protocols specified according to the
methodology specified in this document, there is a
defined service with service primitives, some or all of
which .may be controllable or observable. If they are,
then the test methods can be applied by using these
primitives rather than (N)-ASPs, but if they are not
then only the remote test methods can be used.

The extent to which control and observation of
application service primitives will be possible will
vary from one application to another and may be
different at the two sides because of inherent
asymmetry in the application. For example, what can be
controlled and observed for an FTAM initiator will be
rather different from what can be controlled and
observed for an FTAM responder (i.e. the filestore
end).

Some application protocol 	standards might state
conformance requirements which go beyond pure protocol
behaviour. To test such requirements, special
application protocol dependent test methods may be
required to complement the test methods described in
the ISO test methodology. For example, it may be
necessary to inspect the contents of a filestore by
local means'before and after certain file transfer
tests.

Static conformance requirements for syntax support
should be included in application protocol standards.
However, the syntax support can be considered to be
implemented by the presentation entity. Thus, in order
to test all the conformance requirements in the
application protocol standard it would be necessary to
test the application entity in combination with the
presentation entity. Similarly, it would be necessary
to test the presentation entity in combination with the
application entity in order to test the presentation
entity in the context of its use with that application.

8.5 Analysis Tools

Many methods and tools have been developed for similar
fields of application and may be useful for protocol
development.

158

The 	following tools may be helpful during the
specification design stage, during the specification
validation stage and finally during protocol
implementation testing.

- simulators for existing specification languages
- simulation languages
- tools for logic reasoning (program'providng and Abstract Data

Types)
- tools using Artificial Intelligence (e.g. terminology,

association formal-informal)
- tools exploiting Data Base Management Systems

(cross-referencing, etc.)
- tools for finite state machine and Petri Nets analysis
- tools for syntax and static semantic consistency checking
- tools for checking observed interaction sequences
- tools for data flow analysis
- tools for determining the coverage of tests

•

159

•

ANNEX A - LIST OF REFERENCES BY TOPIC

NOTE 1 - References preceded with an asterisk (*) are
presently at the stage of draft; publication expected in due
course.

Upper Layer Architecture

ISO TC 97/SC 21 N 876 Architectural Detail of the Upper
Three Layers of OSI

ISO TC 97/SC 21 N 539 Proposed Application Layer Structure

ISO TC 97/SC 21/WG 1 N 79 A more precise definition of
basic OSI concepts

OSI Reference Model

ISO 7498/1 Information processing systems - Open Systems
. Interconnection - Basic Reference Model.

*ISO 7498/2 Information processing systems - Open Systems
Interconnection - Security Architecture.

*ISO 7498/3 Information processing systems - Open Systems
Interconnection - Naming and Addressing.

*ISO 7498/4 Information processing systems - Open Systems
Interconnection - OSI Management Framework.

*ISO 7498 DAD1 Information processing systems - Open Systems
Interconnection - Addendum to Reference Model
for Connectionless Operation.

*ISO 7498 DAD2 Information processing systems - Open Systems
Interconnection - Addendum to Reference Model
on Multi-peer Data Transmission.

Service Conventions

*ISO TR 8509 Information Processing Systems - Open Systems
Interconnection - Service Conventions.

160

Amlication Layer Standards

*ISO DIS 8571 Information Processing Systems - Open Systems
Interconnection - File transfer, access and
management. Parts 1 to 4,

*ISO DIS 8831 Information Processing Systems - Open Systems
Interconnection - Job Transfer and
Manipulation concepts and services.

*ISO DIS 8832 Information Processing Systems - Op-en Systems
Interconnection - Specification of the Basic
Class Protocol for Job Transfer and
Manipulation.

*ISO DIS 9040/1 Information Processing Systems - Open
Systems Interconnection - Virtual Terminal
Service - Basic Class - Part 1: Initial
Facility Set

*ISO DIS 9041/1 Information Processing Systems - Open
Systems Interconnection - Virtual Terminal
Protocol - Basic Class - Part 1: Initial
.Facility Set

*ISO DIS 8649/2 Information ProceSsing Systems - Open
Systems Interconnection - Definition of
Common Application Service Elements - Part 2:
Association Control.

*ISO DIS 8649/3 Information Processing Systems - Open
Systems Interconnection - Definition of
Common Application Service Elements - Part 3:
Commitment Concurrency and Recovery

Presentation Layer Standards

*ISO DIS 8822 Information Processing Systems --Open Systems
Interconnection - Connection Oriented
Presentation Service Definition

*ISO DIS 8823 Information Processing Systems - Open Systems
Interconnection - Connection Oriented
Presentation Protocol Specification

*ISO DIS 8824 Information Processing Systems - Open Systems
Interconnection - Abstract.Syntax Notation 1.

161

*ISO DIS 8825 Information Processing Systems - Open Systems
Interconnection - Basic encoding rules for
Abstract Syntax Notation 1 (ASN.1)

Session Layer Standards

ISO 8326 Information Processing Systems - Open Systems
Interconnection - The Basic Connection
Oriented Session Service Definition.

Registration Authorities

ISO TC 97/SC 21 N 436 Procedures for OSI Registration
Authority

ISO TC 97/SC 21 N 511 Registration of Upper Layer Syntaxes

ISO TC 97/SC 21 N 969 Procedures for Registration Authority
for Document Types

Formal Description Techniques

*ISO DP 9074 Information Processing Systems - Open Systems
Interconnection - ESTELLE - A Formal
Description Technique Based on an Extended
State Transition Model

*ISO DP 8807 Information Processing Systems - Open Systems
Interconnection - LOTOS - A Formal
Description Technique Based on the Temporal
Ordering of Observational Behaviour

ISO TC 97/SC 21 N 933 Guidelines for the application of
formal description techniques to OSI

ISO TC 97/SC 21 N 937 -Provisional Estelle tutorial

ISO TC 97/SC 21 N 937 Provisional LOTOS tutorial

Conformance Testing

ISO TC 97/SC 21 N 410R Revised draft for OSI Conformance
testing methodology and framework

162

ISO TC 97/SC 21 N 935 Development and acceptance procedures
for formally described OSI protocols and
services

Banking Standards

ISO DIS 8583 Bank Card Originated Messages - Interchange
• Message Specifications - Content for -
• Financial Transactions

•

163

