
Study on Data Network Protocols: Phase I

Formalized Methods for Protocol and

Interface Descriptions

Final Report

DÉPARTEMENT D'INFORMATIQUE

Faculté des arts et des sciences

Université de Montréal

C.P. 6128 :Aontréal 101

91
C655
B635
1979

by

Cf
Boamann

—N M M U NIC ATIONa CMid-
,,

*,

JvN 26. 1904

i,i(RfART 	 Vgf

r, 	{

fo.

Stue on Data Network Protocols: Phase I

Formalized Methods for Protocol and

Interface Descriptions ,g

Final Report/

Industry Canada
Library Queen

VILE 1 7 1998

Industrie Canada
Bibliothèque Queen ri

G.V

Ddpartement d'informatique et de recherche Opérationnelle

Universitê de Montrdal.

February 1979

91
C655
B635
1979

This final report on data network protocols (phase 1)

is respectfully submitted to the Department of Communications as

requested and in accordance with contract 04SU.36100-8-9523 between

the Department of Communications and the University of Montreal.

The work was carried out by G.V. Bochmann under the scientific

supervision of Y.F. Lum. Appreciation is extended to many indivi-

duals whose comments provided valuable input to this work.

Opinions expressed in this report are those of the author ..

They do not imply any position of the Department ofiCommUnications.

Results of the.study 0 0 0'0000000e 0 ooge 0 ,00lk 00 ' 0 0'oo00000Omo 2

CONTENT

Page

Introduction 00000000000000000000000.100400000000000000 , 0_00 00 0000 0

Conclusions and future deyelopMentS 000 .000000000, •0 t 0 0 1200.1000,000

References 00 ecoo•clootto 0 ocee00004 00 to 00 'c 00 lsoè 0 ooeoeoo 00 .oacee 0 oo000-0

, APPENDIX 1 : Comments on state digram descrlptions

APPENDIX 2 : Some principles for the specification of

communication services and protocols

APPENDIX 3 : Methods for exact protocol specifications 	 21

APPENDIX 4 : Comments on formal description techniques 	 29

14

1. 	IntroduCtion

Computer communication protocols are used for data communi-

cations and distributed data processing. The widespread application

of such systems and the increasing need for interconnection and

interchangeability of system components makes compatibility an impel''-
,

tant issue. During the elaboration of protocol standards for data

communication, the CCITT and the subcommittees SC .6 and Sc 16 of

ISO/TC 97 have identified the need for more precise protocol descrip-

tion methods. A precise description of a protocol is needed, during

its design, as a reference document for the analysis of its correct-

ness and efficiency. The same reference document may serve later

as the basis for the implementation of the protocol in different

systems. The description of the protocol standard is used, in addition,

to judge whether a given protocol implementation meets the requirements

of the standard. Since a protocol description in plain language, as

used for most existing standards,is usually not very precise, often

incomplete, or contains ambiguities, it is not the best candidate for

the reference document mentioned. Formal protocol description methods

have been developed to overcome the difficulties of .natural language

descriptions [1] .

Already some kinds of state diagrams have been >used for

describing formally some aspects of certain protocol standards

[2, 3, 41, These approaches to more precise protocol descriptions

seem to go in the right direction, although in the case of the

packet level procedures of X.25 sortie difficulties have been pointed

out for the state diagram approach taken [6, 7] .

2

The objective of this study , is to advance the application of

formal description methods for obtaining precise specification of

protocol standards, and in particular, to determine a formal description

method based on state diagrams suitable for use in ISO and CCITT, taking

into account existing description methods.

2.. . RestritS Of*thellËL

The main result of the study are the contributions to ISO

and CCITT given in the Appendices and commented on below. They contain

the'following three points which go beyond previous work in the-area:

s ecification of communication services and

protocols: Within the context of a layered architecture of communica-

tion systems, as developed in the ISO Subcommittee on "Open Systems

Interworking" (TC 97/SC 16) and the CCITT Special Rapporteur's Group

on "Layered Models of Public Data Network Services Applictions" (Study

Group VII), the importance of service specifications and formal protocol

specifications, and their relationship within the architecture, have

been pointed out. (See Appendices 1 9 2 and 4).

(b) Towards a language for foralprotocol §..ngifications:

The contributions point out a general method, and an approach to

developing a language for describing protocols, based on the different

approaches to formal descriptions mentioned above. This method is

demonstrated by a formal description of the link set-up and clearing

procedures of the LAP B of X.25 (level 2). (See Appendices 1 9 3 and

4).

.(c) Communlcetion service:descriejair. A possible method for formally
specifying communication services is presented. It is demonstrated by

a description of the link layer service provided by an HOLC protocol

(see Appendices 1, 2 and 4). We note that the method has also been

used for describing the service of a transport protocol [8, 9 1 .

The paper of Appendix I was submitted to ISO/TC 97/SC 6

Working Group 1 meeting in February 1979, as a f011ow-up to previous

contributions from Canada [4] and Germany [5] on the state diagram

description of NDLC.'

The papers of the Appendices 2 and 3 were submitted to the

.CCITT/SGVII Speciel Ràpporteur's meeting on I'Layered Models..."'in

February 1979.

The paper of Appendix 4 is a Canadian contribution to ISO/TC 97/

SG 16. It is written in the form of a comment on the Reference Model

for Open Systems Architecture (SC 16 N 117, November 1978) and suggests

improvements to the text of its Anne X E on "Fromal Description Techniques".

3. 	Conclusions and future developments

As a general conclusion we note that the results of this

study represent some small and, hopefully, useful contribution on.a

long way to go. Although most individuals and groups involved in the

design of communication protocols and standards find the work on formal

description techniques important and useful, this work is usually

considered - an item of lower priority compared to the development 	-

of the communicatien procedures and protocols of the systems.

Therefore only few individuals and groups are actively involved in

this work. In order to follow up the contributions made by this study,

we foresee thé following points for further study:

(a) .1n collaboration with the interested partiés within Working

Group 1 of ISO/TC 97/SC 6 9 to elaborate a Complete, formal

specificatiom Of the HDLC link layer protocol (halancecrand

unbalanced case).

(h) To apply the principles and description methods proposed in

the Appendices 2 9 3 and 4 to other existing protocol standards,

and new systems under development. In particular:

(hi) Formal (and precise) description of the Virtual Circuit

"end-to-end" service.

(b2) Precise descriptions of the services provided by the

transport, session and presentation control layers of the

Open Systems Architecture (ISO) or Public Data Network

Service Applications (CCITT).

(b3) Application of formal protocol description techniques

during the design of new protocol standards.

(c) To develop verification tools for system designs -that use the

proposed formal description methods and language.

(d) To.develop methods for Verifying that a real system, which

implements a standard layered architecture, abides to the

rules of the given communication standards.

REFERENCES

[1] G.V. Bochmann, "Specification and verification of computer

communication protocols", submitted to Computer Networks.

[2] IEEE standard 488-1975; see also D.E. Knoblock et al.,

"Insight into interfacing", IEEE Spectrum (May 1975).

[3] CCITT, Recommendation X.25 (1976).

[4] ISO/TC 97/SC 6 N 1543 (Canada), "Formalized specification of

HDLC".

[5] ISO/TC 97/SC 6 N 1569 (Germany), "State diagrams -

definition of control modules (building blocks) of a data

station".

[6] G.V. Bochmann, - "Notes on the X.25 procedures for virtual

call establishment and clearing", ACM Comp. Comm. -. Review 7,

4 (Oct. 1977) 53-59.

[7] CCITT, SG VII, contributiOn 037 to April 1978 meeting (IFIF),'

"Technical improvements to CCITT Recommendation X.75". 	.

[8] G.V. Bochmahn, "On the definition of the service Interface of a

protocol", INWG (IFIP WG 6.1) 9 Note #170, 1978.

[9] G.V. Bochmann and F. Vogt, "Message Link Protàcol-functional

specifications", -ACM Computer Comm. -Review 9, 2 (APri .1 1979).

pp. 7-39.

APPENDIX 1

7

ISO/TC97/SC6 N î if0 -17

January 1979 	'

ISO
INTERNATIONAL ORGANIZATION FOR STANDARDIZATION
ORGANISATION INTERNATIONALE DE NORMALISATION

TC97/SC6

DATA COMMUNICATION: PROJECT 16

Source: Canada

Title: Comments on state diagram descriptions

1. Introduction and conclusions

Proposals for developing a 5tate diagram description of the HDLC elements
and classes of procedures were reported in documents N1569 and N1543. The
present paper develops further certain issues which were brought up in
the mentioned documents. The main conclusions are the following:

- For ease of understanding, the protocol description should-be
structiged into several modules.

- An exact definition of the communication service provided by the
protocol should be developed (possibly in collaboration with SC16).
The provision of the servie should be explicitly shown by the state

. diagram description.

- The mentioned documents agree in many points. There are differences
in the format (but not meaning) of the description language, in the
functional interfaces between the modules, and in the amount of

• detail to be included in the description.

- The state diagram description should have a one-to-one correspondence
with the HDLC standard.

ISO/TC97/SC6 N1764'

2. Modular structure

2.1 The state diagram description should be structured into a number of
modules, with the result that an HDLC station is built out of a certain
number of such modules, so nie of which are optional. The following modules
are identified:

1. Response mode control module (determines response mode and P/F bit
control). The following module types are distinguished:

(a) Primary

(al) two-way alternate mode

(a2) two-way simultaneous mode

(h) Secondary in NRM

(c) Secondary . in ARM

2. Link set-up and disconnection module. The following module types are
distinguished:

(a) Unbalanced primary

(b) Unbalanced secondary

(c) Balanced
• •

3. Information sending module. Depending on the complPxity of the check-
pointing operation, the following module types may be distinguished:

(a) General

(h) NO-REJ (only applicable with a No-REJ type of information
receiving module in the opposite station).

(c) Simple (only applicable with a response mode control module
• of type (al) or (b) in the same station).

'.4. Information receiving module. The following module types are
distinguished: 	 •

(a) No-REJ

• (h) With-REJ

etc.

5 . Optional modules, such as Identification, One-way-Reset, etc.

layer 3

layer

layer 1

rules for sending commands and response

cOding of commands and responses

transmission error detection

frame delimitation and transparency

ISO/TC97/SC6 N1764
- 9.-

.A typical HDLC station contains

a response mode control module,

-• a link set-up and disconnection module, and

- -an information sending or receiving module (or both) depending on the nêéci.-

For.example, an,HDLC station following the balanced class of procedures
(DP 6256) would contain modules of the types 1 (a2), 1 (c), 2 (c),
3 (a), and 4 (b).

3. LinkjAurservice definition

3.1 ISO/TC97/SC16 is developing a layered architecture for Open Systems
(see for example SC16 N117 or SC6 N1727) in which the HDLC classes of
procedures are typical protocols for the link layer (layer 2). The part
of the link protocol to be described by state diagrams (i.e. the rules
for sending commands and responses) represents only a sublayer within
the link layer, as shown in the figure below.

3.2 it is important to give an exact specification of the communication
• service provided by the link layer to the layer above. The service is
provided through the upper layer interface. Different forms of interfaces

.may be adopted in different systems. Therefore the definition of the ser-
vice should be, as much as possible, independent of the particular inter-
face.

3.3 As an example, Annex 1 gives a definition of the service provided
by an HDLC protocol. The definition uses a set of abstract "service
primitives". A service primitive is an element of the provided ser-
vice, making abstraction from the particular interface. A service
primitive may be invoked (i.e. its execution may be initiated) by either
side, the link layer or the layer above. It may provide for the
exchange of parameter values.

- • 0 -
ISO/TC97/5C6 N1764

3.4 The way how the service is provided by the protocol may be
defined by including, in the state diagram description of the protocol,
the execution of the service primitives. As an example, Annex 2
shows how the service primitives defined in Annex 1 could be included

in the description of the link set-up and disconnection module given
in N1543.

4. Module interfaces

The following module interfaces must be considered:

4.1 The layer interface through which the communication service is provided
to the next higher layer (see section 3).

4.2 The interface to the next lower sublayer of the link layer for sending
and receiving'commands and responses.

4.3 Inter-module 	functional interfaces must be defined in the state diagram
description.

4.4 The interface with the link manager is implementation dependent (not
specified by the HDLC standard).

5. Comparison of state diagram description languages

5.1 The description languages used in N1569 and N1543 are based on similar
concepts: The state of a module is defined by the place of a "token" in a
diagram and the values of certain variables. When certain conditions are
satisfied, transitions may be trigoered, Which involves the execution of an
action and changes the state of the module,

5.2 'In both cases, a rudimentary high-level programming language is used
to describe the conditions and actions that relate to the variables.

. 5.3 N1543 uses a simple state diagram plus a table containing the definition
of conditions and actions for describing the transitions, whereas N1569
uses annotated state diagrams, including the definition of conditions and
actions in the diagram. Both methods are equivalent.

5.4 The functional interfaces between the modules of a station (point 4.3
above) are described differently in the two documents.

6. Equivalence between the state diagram description and HDLC standard
specifications

6.1 It is proposed, that a state diagram protocol description should be
developed which corresponds to the HDLC standard specification. It
should also consider the operations at the layer interface through which
the communication service is provided to the "user".

6.2 In addition, a more detailed description could also be useful as an
implementation guide.

6.3 The protocol description of document NI569 contains many details which
may be part of an implementation guide, but which are not specified in the
standard.

-11 - ISO/TC97/SC6 N1764

:77
tins sm

•

DISC

Dis-
connected

SM
' - - _

uns.SM

Annex 1: ServicLprovided by an HDLC protocol

1. List of service primitives (at the layer interface of a given station)

4. SM : Set Mode primitive initiated by the entity using the service
Un layer above)

t SM : Set Mode primitive initiated by the HMG station

4. uns. SM : Unsuccessful Set Mode primitive

t DISC : disconnection initiated by ...

4. DISC : .disconnection initiated by ...

4. Send (data): primitive for sending a data block

t Receive (data): primitive for receiving a data block

Status functions

• circuit-ineperable 	true..false (beceMes true ifter "too many"
retransmissions) 	.

- outstanding : 0..7

- not-yet- sent : integer

Notes: (a) The arrows "t". and "0 indicate which layer initiates the
primitive. "". means "t" or "4".

(b) The status functions do not influence the operation.
(c) The " Send' and " Receive' primitives are provided by the

information sending and receiving modules, respectively.
The other primitives are provided by the link set-up and
disconnection module

2. Local rules for using the primitives

The possible orders of execution for these primitives at a given
station are defined by the transition diagram below. The data

•parameter of the Send or Receive primitives is arbitrary, provided
its length is not too iong 	ilax). The status functions may

• be called any time (between the execution of primitives).

t Receive (data

Note This diagram represents . an abstraction of the operation of
4.410 err nyotüml at the given station.

ISO/TC97/SC6 N1764

- 12 -

3. Global properties of the service primitives

(a) For each (successful) Set Mode primitive executed at the end of
the link where it is initiated, there is at least one execution
of such a primitive at the same time at the other end. (This
is not in general true for the DISC primitive; for example, in
the case of a circuit failure, a primary station may execute the
DISC primitive without the secondary noticing),

(b) The sequence of data parameters passed by the Receive primitives
between two consecutive Set Mode executions is identical to the
sequence of the first data parameters passed by the Send primitives
at the opposite side of the link between two corresponding
Set Mode executions.

(c) Refering to (b) above, if n, and n are the numbers of Receive
and Send executions, respectively, s then (n, 	n,) is >0, and
lies between not2y2t.-22,elt and (not-yet- sent + ettstandin).
(I 0e. (n 	n-rdata parametersTfila blocks) are lost .

s 	r

- 13 -
ISO/TC97/SC6 N1764

Annex 2: Service primitives in_Illejr■It■rol definition

The service primitives defined in Annex 1 may be included in the definition
of the link set-up and disconnection module, given in section 5 of the Annex
of N1543, 	by making the following changes to the protocol description:,

(a) For the primary station:

(al) Include "1SM-request" as additional condition (enabling predicate)
of the SXRM transition.

(a2) Include "'DISC-request" as additional condition of the DISC
transition.

(a3) Include uSM-confirm" as additional action of the UA transition
starting in the Wait-for-SXRM-ack state.

(a4) include "'DISC-confirm" as additional action of the UA transition
starting in the Wait-for-DISC-ack state.

(a5) Include an additional transition from the Wait-for-SXRM-ack state
to the Disconnected state, with the enabling predicate "circuit
inoperable" (which is implementation dependent) and the action
"SM-failed".

(b) For the secondary:

(b1) Include n'Sbi" as additional action of the SXRM transition.

(b2) Include "tDISC" as additional action of the DISC transition..

Notes:

(1) The 1q/SM" (or ''DISC") service primitive is realized by the succession
of the signals USM-request" and "%tSM-confirm" (or "glISC-request" and
"40'SC-confirm " , respectively). Similarly "..1,uns.SM" is realized by
0M-request" followed by USM-failed".

(2) The possibility that the secondary station requests a disconnection
• by sending a DM frame is not included in the description of N1543.
• Therefore, in this case, the "-I, DISC" primitive is only executed in

the primary station, and the "ii-DISC" primitive only in the secondary.

APPENDIX

- 15 -

Question: New/VII

LM79-2.2

Original:' English

Date: 	January 1979

SOURCE: 	Department of Communications: Canada

TITLE: 	Some principles for the specification of communication
services and protocols.

1. 	Introduction

1.1 	This paper was prepared by a Canadian expert at the request of the
Federal Department of Communications. The purpose of this paper is to
expose some principles which should be followed when writing specifications
for communication services and protocols. The paper shows a direction for
developing a general method of writing formal service and protocol
specifications, which should contribute to the improvement of the quality
of descriptions of standard specifications. This paper concentrates on
general principles and the specification of layer services. A companion
paper ("Methods for exact protocol specifications') considers methods for
formal protocol specifications.

1.2 	The paper relates to points 8 and 9 of Attachment I of Annex I of
COMVII No... (Report of the First Rapporteur Meeting on Layered Models...),
to point 2 of Annex II, and points 1 and 5 of Annex IX.

1.3 	As examples of formal specifications, the ApOendix contains a
specification of the service provided by the X.25 LAP B link.layer, and.a
specification of the LAP B link - set-up and disconneOtion procedure is
given in the companion paper..

- 16 - 	 LM79-2.2

2. Conclusions

2.1. The architectural model for PDN services should be developed to
include exact specifications of the services provided by each of the
identified layers.

2.2. The definition of a layer service includes three parts: (a) the
list of abstract "service primitives", (b) local rules for using the
service, and (c) global ("end-to-end") properties.

2.3. The definition of the service provided by a given layer is an
abstraction of the layer and the layers below. It is the logical
basis for the operation of the layers above, and serves as reference
for the validation of the protocol.

3. Specification of communication standards

3.1 What should the description of a communication system layer include?

The following elements should be defined for each standard communica-
tion system layer within the architectural model of PDN services and
applications:
(a) Relations between entities, connections, etc. which exist within
the layer and their relationship to such objects in the adjacent layers.
In particular, this part deals with multiplexing.

(h) The service provided by the layer.

(c) The service required from the layer, below.

(d) The protocol followed by the entities of the layer.
The protocol is usually defined by giving specifications for the
entities of the layer. This includes the specifications of
(i)

	

	the format of the data-units exchanged between the entities
through the layer below, and

(ii) rules determining the order in which these data units may be
exchanged in order to provide the service of the layer.

3.2. 'General principles

3.2.1. The remaining part of this paper concentrates on methods for
formal specifications. Formal specifications of layers and entities
seem to be necessary for obtaining workable, exact and non-ambiguous
communication standards. However, formal specifications should be
complemented with informal descriptions of why's and how's, written in
natural language with diagrams, examples, etc.

- 17 - 	 LM79-2.2

3.2.2. It is probably necessary to dispose of seyeral levels of
descriptions ranging from high level (probably incomplete and ambi-
guous) to detailed, complete and unambiguous levels (probably not
easily legible).

4. 	Exact service definitions

The following considerations relate to points (b) and (c) of section
3.1.

4.1. Abstract service primitives

4.1.1. The service of a layer is provided through the upper layer
interface. Different forms of interfaces (for the same service) may
be adopted in different parts of a distributed system. Therefore the
definition of the service should be, as much as possible, independent
of, the particular interface through which it is provided.

4.1.2. A possible method is to define a particular service by a
set of abstract "service primitives". A service primitive is an
element of the provided service, making abstraction from the parti-
cular interface. A service primitive may be invoked (i.e. its execu-
tion may be initiated) by either side, service providing and using
layers. It may provide for the exchange of parameter values.

4.1.3. As an example, the Appendix contains a list of service
primitives for the service provided by the X.25 LAP B layer to the
X.25 packet layer.

4.2. Order of execution

4.2.1. Usually, the service primitives that may be executed by a
given entity may not be executed in an arbitrary order and with arbi-
trary parameter values. The permissible execution orders and para-
meter values must be defined. This involves (a) local rules, and (h)
global "end-to-end" properties. The global properties are essential
for defining the communication service.

4.2.2. These considerations are illustrated by the service provided
by the X.25 LAP B layer (see Appendix). A local rule , for example,
states that the DCE must execute successfully the Set Mode primitive
before it may execute a Send primitive for sending a packet Over the
link. Global properties7—Y6r example, state that the successful execution of
a Set Mode primitive by the DCE is always accompained by a simultaneous
execution of such a primitive by the DTE, and that the next Receive
primitive at the DTE delivers the same packet to the packet 'layer
which was provided as parameter for the execution of the Send primitive
at the DCE.

- 18 - 	 LM79-2.2

5: 	Specification of protocol standards

The following considerations relate to point (d) of section 3.1.

5.1. A formal spécification should be a generative definition, i.e.
such that all possible interaction sequences may be generated from the
definitionT—ihis is in contrast to time-space sequence diagrams and
similar methods which are useful for showing certain features of a
protocol, but only define some possible interaction sequences.

5.2. Only those aspects of the operation of the entity should be
defined which are required for obtaining compatibility with the
peer entities. Clearly, additional aspects of the operation could be
described, but these aspects should rather be called "possible imple-
mentation choices" or "implementation guide" (and not be part of
the standard).

-5.3. A general approach to formal, generative protocol description is
explained in a companion paper ("Methods for exact protocol specifica-
tion").

5.4.1. We note that the specifications for a communicating entity, which
include specifications for the interaction with the entities in the
layer above, cOntain more details than the definitions of the service
primitives and their local rules of execution at the service interface.

5.4.2. For example, the local rules for using the service of the
X.25 LAP B layer, given in section 3 of the Appendix, do not contain
all the details of the LAP B protocol, as defined in X.25. They are
much simpler, and easily derived from the specifications of the LAP B
entity, given in the companion paper .

5.4.3. The protocol of a layer may be validated by showing that the
global properties of the service provided can be deduced from the
operation of communicating entities and the properties of the service
provided by the layer below.

5.4.4 . Therefore, the specification Of the Service of a given layer
is an abstraction of the protocols which-are executed in the given
layer and the layers below. 	 . 	•

t Receive (data)

SM

Dis-
connected el'uns.SM

DISC_

3 uns.SM

LI-tle)- 	•

- 19 -

APPENDIX

Service provided by the LAP B layer of X.25

1. List of service primitives (at a local service interface))

4 SM : Set Mode primitive initiated by the entity using the service

(in layer above) (only in DTE)
t SM : Set Mode primitive initiated by the entity of the layer in

question (only in DCE)
3 uns. SM : unsuccessful Set Mode primitive (only in DTE)

t DISC : disconnection initiated by ... (in DTE and DCE)
3 DISC : disconnection initiated by ... (only in DTE)
3 Send (data): primitive for sending a data block

t Receive (data): primitive for receiving a data block

Status functions:

- circuit-inoperable: true..false (becomes true after "too many"
retransmissions)

- outstanding : 0..7
- not-yet-sent: integer

Notes: (a) The arrows "V' and "3" indicate which layer initiates the
primitive. He means "t" or "3".

(b) The status functions do not influence the operation.
(c) The " Send" and " Receive" primitives are provided by the

information sending and receiving modules, respectively.
The other primitives are provided by the link set-up and
disconnection module

2. Local rules for using_tbe_nrimitives .

.The possible orders of execution for these primitives at a 'given'
station are defined by the transition•diagram below. The data
parameter of thé-Send or Receive primitives :15 arbitrary, provided
its length Is not too long (.Z max). The status functions may
be called any time (between the execution of primitives). 	•

- 20 -

3. 	Global properties of the service primitives

(a) For each (successful) Set Mode primitive executed at the end of
the link where it is initiated, there is at least one executicn
of such a primitive at the same time at the other end. (This
is not in general true for the DISC primitive; for example, in
the case of a circuit failure, a primary station may execute the
DISC primitive without the secondary noticing).

(b) The sequence of data parameters passed by the Receive primitives
between two consecutive Set Wide executions is identical to the
sequence of the first data parameters passed by the >Send primiti-
ves at the opposite side of the link between two corresponding
Set Mode executions.

(c) Refering to (b) above, if n, and n, are the numbers of Receive
and Send executions, respectively,'then (n s 	nr) is >0, and
lies between not-yet-sent and (not-yet-sent 4- outstanding).
(I.e. (n s 	n) data parameters are lost). r

APPENDIX 3

LM79-3,2

	

• 	 - 22 -

	

Question: New/VII 	• 	 Original: English

Date: 	January 1979

• SOURCE: 	Department Of Communications: tanada •

TITLE: 	Methods For Exact Protocol Specifications

1. Introduction

1.1 This paper was prepared by a Canadian expert at the request of the
Federal Department of Communications. In view of the large number of
different protocols which are and will be developed for PDN services,
methods for exactly specifying these protocols should be available.
Difficulties with using natural language protocol descriptions suggest
to complement plain language descriptions with exact forma i spe-
cifications.

1.2 A general approach to formal protocol descriptions is presented,
which is based on the concept of "states and transitions". The
purpose of this paper is to point out the need for a formal protocol
specification method, and to suggest a general direction for developing
such a method.

2. . Conclusions

2.1 Methods for formally specifying protocols exist. •They give
rise to concise and exact definitions which are relatively under-
standable. •

2.2 Formai specifications should be elaborated for the new protocols

LM79-3-.2
-23-

of the différent layers of the Layered Model, and should be considered
as complements to the prdtpcol descriptions in plain - language.

2.3. Formal specifications of existing protocol standards should be
elaborated and could be added to the recommendations in the form of
an annex. (The Appendix contains a partial specification of the
X.25 LAP B procedures).

2.4. Agreement on a method and language for formai protocol specifi-
cations is needed. For this purpose, the approach shown in the
Appendix is proposed.

3. 	Framework for formal specifications

This paper considers a layered system architecture, where the protocol
description is given in terms of a specification for the interacting
entities (see also the companion paper "Some principles for the
specification of communication services and protocols").

3.1 A formal specification should be a generative definition, i.e.
such that all possible interaction sequences may be generated from
the definffion. This is in contrast to time-space sequence diagrams
and similar methods which are useful for showing certain features of a
protocol, but only define some possible interaction sequences.

3.2 To make the specifications of a given entity more simple and
understandable, it is often advantageous to consider an entity to
be built out of several modules; controlling different "sublayers",
each performing separate "functions".

33 An entity (or one of its modules) is defined by its possible
states and transitions between these states. The possible states are
defined by
(a) a transition diagram (containing a finite number of "places"), or
(b) a set of variables (the "local variables" of the entity), each
of which may assume a certain set of values, or both, (a) and (b).

3.4. At each Instant in time, the entity either is in one of the
possible states (defined by the places containing a "token" and/or
the values of the local variables), or executes a transition, in which
case the state is undefined.

3.5. A transition 1É defined by (a) a conditiOn which must be:
satisfied before the transition emy be started,,and (b) an action

LM79-2.3

- 24 -

which is executed during the transition. The condition may depend on
(al) the placement of tokens in the transition diagram*,
(a2) the values of local variables, and
(a3) received "signals" through the interaction with other local

entities or modules.

The execution of an action may involve
(bi) a new distribution of tokens in the transition diagram*,
(b2) new values assigned to local variables, and
(b3) the sending of "signais" to other local entities or modulês..

3.6. An example', defining the LAP B link.set-up and disconnection
procedure of X.25, is .shown in the Appendix. .

4. 	Local interaction between entities or components

This section is concerned with the interaction between entities
of two adjacent layers through the layer interface, as well as
interaction between entities or modules within the same layer through
a functional interface.

4.1. The execution of a single "service primitive" (see definition in
the companion paper), which, •in an abstract form, describes the provi-
sion of an element of the service to an entity in the layer above, may
appear to the entities involved as several distinct "signals" .
For example, a Set Mode primitive, initiated by the layer above, is
realized by the succession of the SM mgmmt and SM indication signals
(see Appendix).

4.2. Several other schemes may be useful for defining formally the
local interaction of system modules, such as for instance
- direct coupling [see ref. 1, 2] 9

- hierarchical coupling [see ref. 2,3]
- reading or writing access to local variables of other entities or

modules,
- state linkage [see ref. 4] ,

S. 	Possible representations of'formal specificatiOns

5,1. .Specificatiôns such as decribed in section -3 may be represented

* We leave for further study whether only one token per'diagram is
allowed (transition> diagram of "finite state":type) or whether the. -
number of tokens •may'vary (as in the case of 'Petri nets).

LM79-2.3

-25-

In many different, but equivalent ways. To simplify the reading of
such specifications, it is important to adopt an appropriate repre-
sentation in which the specifications are written. An important objec-
tive is to obtain (as much as possible) concise and easily understandable
specifications.

5.2. The following are some examples of representations that have
been used for specifications tn a framework similar to the one of
section 3:

5.2.1. Use of a high-level programming language, for instance specifying
a transition by when <Condition> do <action>".

5.2.2. Naming transitions in a graphical diagram and defining the 	•
transitions in a table, using elements of a programming language for
specifying the conditions and actions [see for example Appendix, and
ref. 2] .

5.2.3. Defining, within the diagram, the conditions and actions of the
transitions. [See ref. 4, 5; in ref. 5 actions are written into a box
to distinguish them from conditions] .

5.2.4. Use of flow charts. This approach was adopted for the SOL
("Specification and Description Language" defined by CCITT, see ref. 6)
which may be adapted to the framework described in section 3.

REFERENCES

1. G.V. Bochmann, "Finite state description of* communication protocols",
to be published in Computer Networks. . 	•

2. Canadian contribution to ISO, TC97, SC6, ."Forinalized specification
of HDLC".

3. G.V. Bachmann and T. Joachim, "Development and structure of an
X.25 implementation", Publ. #292, Departement d'I.R.O.,
Université de Montréal, submitted to IEEE Trans. on SE.

• 4. C.A. Vissers, "Interface, a dispersed architecture", Proc.
3rd Arm. Symp. on Computer Architecture, .Jan. 1976, Florida,.
pp. 98-104.

5. ISO/TC07/SC6 N 1569 (Germany), "State diagrams - definition of
control modules (building blocks) of a data station".

6. CCITT, Rec. Z101-Z103, "Functional specification and description
language (SOL)".

When-polled

When-DISC

•Transition diagram:

When-polled

,--4

((;

F,RMR
condition

FRMR-
repeated

information
transfer

Receive 	Transmit
New-
Packet

disconnected;
request

,requested

DISC-request

LM79 - 2.3
- 26 -

• APPENDIX

'ForMal specifiCation of LAP . B . link•establishment'and
-•clearing . prOcedureedUted * bV thé'DCE 	•

Local variables:

• Count: 0..N2 .(retransmission count) 	.
V(S) : 0..7 	.(send state variable)
V(R) : 0..7 	(receive state variable)
V(B) : 0..7 	(buffer state variable) 	. 	•

• Unack:. 0..7 	(last unacknowledged sequence-number

Only needed
during the -
information :
transfer phase .

LM79-2.3

- 27 -

Definition of transitions

Notation : 	X stands for reception or transmission of an "X" frame
depending whafi-er " X " represents a condition or action, respectively.
(We note that the transmission error detection, frame format, frame
delimitation and bit stuffing are handled by sublayers of the
LAP B which are not described here). --X— stands for the execution
of the service primitive "X" (at the layer interface above). The
following service primitives are considered:

tSM : link set-up or reset

-fiDISC—: link disconnection

-iSEND(data): sending a packet (data)

--tRECEIVE(data): receiving a packet (data)

4ception of
new data from
the layer above

transmission of
an I frame

reception of
the next
expected I frame

—4, SEND(data)
and

V(B) 0 Unack

V(S) 	V(B)
- and
V(S) <Unack +
modulus -2 .

_I(M(S)N(R);infL
and

N(S) = V(R)

place data parameter into V(B) th

huffer7-7(B) = V(B)4. 1

= V(S); N(R)
information V(S)th bufferL;

V(S) 	V(S):+ 1

-1SECEIVE (data infn
V(R) 	V(R) + 1; Unack = N(R)

Some transitions during the • information phase

New packet

Transmit

Receive

LMUJ-É.J

Name

Set-up

Disconnect

When-DISC

When-polled

FRMR

When-DM

FRMR-
repeated

DISC-request

Time-out

Condition

SABM_ {received}

DISC._:{received}

	

DISC 	{received}

received poll bit -

...(see X.25,
section 2.4.10)

	

DM 	{received}

received command•
except DISC, or
SABM

..•(see X.25,
section 2.4.10.2)

Time-out and
count . 0 0.

- 28 -

Action

UA_:, {send OA}

' VS) 	0; V(R) = 0; 	'

V(B) — 0 (reset buffer pointer);

stop:timer

DISC ; UA; stop timer

DM_ {send DM}

FRMR {send FRMR } •

t DI SC
FRMR

DM; start timer;
count-- iT2

start timer;

count = count - 1

Reference to
pertinent section

of X.25

2.4.5.1

2.4.5.3

2.4.5.4.1

2.4.9.4

2.4.9.4

2.4.9.4

2.4.9.3

2.4.5.4.2

APPENDIX 4

-30-

ISO/TC97/SC16 N

March 1979

ISO
INTERNATIONAL ORGANIZATION FOR STANDARDIZATION
ORGANISATION INTERNATIONALE DE NORMALISATION

TC97/SC16

• Source: Canada

Title: Comments on formal description techniques •

• 	1 	Introduction and conclusions

This paper contains. comments on Annex E. of N• 117 on formal description
techniques for specifying the Open Systems Architecture.. The Sections,
2 through 4 of this paper apply to the sections E2 through E4 9
respectively, of the annex of N117. .Most of the paragraphs of these 	•
sections should be included in the text of the - AnneeE to the Reference
Model.

2. 	Need for service definitions

2.1 The definitions of the services provided .by the different layers
of an Open System are en essential part of the specification of the
Open Systems Architecture. The architectural Model remains vague as •
long as the logical characteristics of the layer services are not

. clearly specified.

2.2 Therefore, the precise definition of the Architecture should
include the parts listed below. This could be stated in a section
of'Annex E of the Referenee Model under the title "Elements constituting
a description of a computer communication architecture". (The topic of 	.
section E.2 of Annex E of N 117 deals essentially with the first part
below).

- 31 -

2.3 The following parts should be defined for each standard Open.
System layer

. (1) Relations between entities, connections, etc 0 which exist within 	.

the layer and their relationship to such objects In the adjacent layers.

'(2) The service provided by the layer.

(3) The service required from the layer below.

(4) The protocol followed by the entities of the layer. .
The protocol is usually defined by giving specifications for the
entities of the layer. This includes the spedifications of

(4a) the format of the'data-units exchanged between the entities
through the layer below, and

(4b) rules determining the order in Which these datanunits may be
exchanged in order to provide'the service of the layer. •

• Defining à layer service
•

3.1 The service of a layer is provided through .the upper layer inter-
face. Different forms of interfaces (for the same service) may be
adopted in different parts of a .distributed System. Therefore the •
definition of the service should be as much as possible,.independent •
of the particular interface through which it is provided.

3.2 A possible method for specifying a layer service is based on abstract
"service - primitives". A service primitive is an element of the provided
•service, making abstraction from the particular interface. A service
primitive may be invoked (i.e. its execution may be initiated) by
either side, service providing and using layers. It may provide for the
exchange of parameter values. For specifying a particular service, a
set of service primitives must be defined.

3.3 For certain censiderations, it is not necessary to distinguish' •
whether the service primitive is initiated by the entity using the
service Or the entity providing it. (For example, a "confirmed call' .
'request" and an "accepted incoming call", In X'.25, give ri2e to the
same connection). This should be supported by the notation for
service primitives (see for exaMple Annex 1)

3.4 Usually, the service primitives that may be executed by a given .
entity may not be executed in an arbitrary order and with arbitrary 	. o
parameter values. The permissible execution orders and parameter values.
must be defined. This involves (a) local rules, and (b) global "end-t(> .
end" properties. The global properties are an essential part of the

 communication service definition.

-32-

3.5 These consideratione are illustrated by the example of Annex 1

which gives a possible definition of the link layer service. The
definition is structured into three parts:
(a) list of service primitives Unieteize, Terminate, Send, ReceiveI j
(b) local rules,
(c) global properties.
A local rule, for example, states that an entity using the service
must execute successfully the initialize primitive before it may execute
a Send primitive for sending a data unit- over the link. Global
pr-6-piiies, for example, state that the successful execution of a
Initialize primitive by one entity Is always accompained by a simultaneous .
exeèreafi -of such a primitive by the peer entity, and that the next
.Receive primitive executed by the latter delivers the same data unit
whfëh was provided as parameter for the execution of the Send primitive
by the former.

4 0 	Specification of prptocol standards .

• 4l General

4.1.1 A formal specification of a protocol should be a generative defi-
nition, i.e. such that all possible interaction sequences may be
generated from the defliiition. This is in centrast to time-space 	.
sequence diagrams and similar methods which are useful for showing
certain features of :a protocol, but only define some possible interac-
tion sequences.

4.1.2 Only those aspects of the operation of the entity should be
defined which are required for obtaining compatibility with the • •

peer entities. Cleaely, additional.aspects of the operation eould
be described, but these aspects should rather:be called'"possible -
implementation choices" or "implementation guide" (and not be ,part
of the standard).

.4e1.3 To make the specifications of a given entity more simple and •
understandable, it is often advantageous to consider an .entity to be.
built out of several modules; controlling different °.'sublayers",
each performing sepaeate "functions".

of_UPPÇ9LVe2ifluqons

4.2.1 Mputoco3,verlficatlen during_IFIRLdnign: The correct
-operation of the pra6col of a. layer may be verified by showing that
the global properties of the service provided can be deduced from the
operation of communiCating entities in the layer and the properties of
the service provided:by the layer belew.

-33-

4.2.2 As a guide for design'no real imleventations: Of course, it is
nobriaden to 	eidspecification 61- a protocol standard and
additional aspects of operation (see point 4.1.2 above) as a
design example. In fact, If the architecture is properly done, 	,
achieving some "good" partitioning of function from the layered struc-
ture concept, one may recommend such a practice. Nevertheless, a
number of technical differences between a protocol description and an
actual product, such as stemming from requirements for, different levels
of parallelism, can be forseen. How close an actual implementation
will be to the corresponding protocol description remains an implemen-
tation choice.

4.2.3 For verifying that a real ameem abides ta a Standard architecture:
There seem to be tfiree approaches toT% verification, name y
(a) To verify that the system behaves in accordance with the

specifications of a proper set of protocols.

(b) To verify that the system functions correctly in a context where
it is connected with other systems that abide the Open Systems
Architecture and protocols.

(c) To record a log of the service primitives executed during the
operetion of the system, and to check that this log could have
been generated by a system abiding the Open Systems Architecture
and protocols. (Note: This approach seems to be easier to automate
than the other approaches. However, only the execution sequences
(a:cluing during some particular testing will be verified).

4.3 Metp9dsapar formal aprotocol

Agreement on a method to be used for the forffial specification of the .
protocols used in the Open System Architectureis deselrable The
following Paragraphs preSent . a possible approach to such a method.

4..3.1_132sql pt .ionaoLenti ti es

4.3.1.1 The protocol Of a layer le specified ‘by defining certain rules
-for the beheviour of the entities in the layer. The behaviour of
en entity maybe described by the following model of states and
transitions.

.4.3.1.2 An entityis defined by its possible etates, and - transitions
between these states. The possible states aresdefined by
(a) . a transition diagram (containing e 'finite number of. "places'), or

(b) a set of variables (the "local variables" of the entity),,each of
. 	which may assume a certain set of values, or both, (a)and (b). -

4.3.1.3 Al; each instant in time, thdentity either is in one of the
'possible states (defined by the places containing a "token" and/or
the values of the local variables), or exectites a transition e in which
case the state is undefined.

40301.4 A transition is defined by (a) a condition which must be
satisfied before the transition may'be started, and (nu action
which is executed during the transition. The. condit4on may depend on
(al) the placement of tokens in the transition'diagram*,
(a2) the values of local variables, and
(a3) received "signals" through the interaction with other local

entities or modules.

The execution of an action may involve
(al) a new distribution of tokens in the transition diagram*,

• (b2) new values assigned to local variables, and
• (b3) the sending of signals" to other local entities or modules.

4.3.1.5 An example, defining the .LAP 8 link'set-up and disconnection
procedure of X.25 9 is shown in the Annex 2 4

4.3.2 Local interaction betWeep'entities . - o

This Section is concerned with the interaction between entities of
two adjacent layers through the layer interface, as well as interaction

- between entities (or modules) within the same layer through a functional
interface.

4.3.2.1 The-execution of a single "service primitive" (see seCtion 3 -.2) 9
which, in an abstract form, described the Provision of an element of the
service to an entity in the layer above, mayappear to the entities
involved as several- distinct "signals". For example, a InitiOlze primi-
tive, initiated by the layer above", is realized by the successidn of the •
Init regestand Dili: Indication signals (see : Annex 2). -

4.3.2.2 Several other schemes may be useful for o defining formally the
local interaction of system modules, such as for instance
7 direct coupling [see ref. le 2 1 ,
- hierarchical coupling [see ref. 2,3] ,
—reading or writing-.access to local variables of other entities or

-modules,
- state linkage [see ref. 4] .

'effi-Wrfor further study whether only one token per diagraàls
allowed (transition diagram of "finite state" type) or whether the
number of tokens may vary (as in thé case of Petri nets).

- 35-

1,1_3_12.ssil_)1e ..mplej_enttions 9flp_rfnapec•I fi cations

4.3.3.1 Specifications such as described in section 4.3.1 may be-
represented in many different, !nit equivalent ways. To simplify the
reading of such specifications, it is important to adopt an appropriate
representation in which the specifications are written. An important
objective is to obtain (as much as possible) concise and easily under«is

•standable specifications.

• 4.3.3.2 The following are some examples of representations that have
been used for specifications in a framework similar to the one of
section 4.3.1:
(a) Use of a high-level programming language, for instance specifying

a transition by "when <conditioe. do <actioe".

(b) Naming transitions in a graphical diagram and defining the
transitions in a table, using elements of a programming language
for specifying the conditions and actions [see for example Annex 2,
and ref. 2 1 .

(c) Defining, within the diagram, the conditions and actions of the
transitions. [See ref. 4 0 5; in ref. 5 actions are written into
a box to distinguish them from conditions] .

(d) Use of flow charts. This approach was adopted for the SDL
("Specification and Description Language" defined by CCITT, see
ref; 6) which may be adapted to the framework described In
section 4.3.1.

REFERENCES 	 •

1. G.V. Bochmann, "Finite state description of communication protocols";
Computer Networks 2 (1978) 361-372. 	•

2. ISO/TC97/SC6N1543 (Canada), "Formalized specification of HDLC".

3. F.V. Bochmann and T. Joachim, "Development and structure of an
X.25 implementation°, Publ. e292 9 Departement d'I.R.O., Universitâ
de Montrëal, submitted to IEEE Trans. on SE.

C.A. Vissers„ "Iriterface, a 'dispersed architecture", Proc.'
3rd Arm. Symp. on .Computer Architecture, Jan. 1976, Florida,
pp.S8-104.

5. ISO/TC07/SC6 N 1569 (Germany), "State diagraffis - definition of
control modules (building blocks) of a,datastation". 	.

6. CCITT, Rec, Z101-Z103 0 "Functional specification and description
language (SDL)". 	•

Intt

° 	uns.Init

t

Terni 	‘-s" ni t

4. Send (data)

t Receive (data)

- 36 -

Service Drovided
r serviCe 	

pLanumn rol (example of a link
Ae

Annex

1. L -Initives (at the layer interface of a given station)

Onit: Initialize primitive initiated by the entity using the service
fFjFabove)

tInit: Initialize primitive initiated by the HDLC station (entity of the

4. 	

TTF-57e7)

uns. mit: Ulpuccessful Initialize primitive

t Term : Termination initiated by ...

4. Term : Termination initiated by ...

Send (data): primitive for sending a service data unit

t Receive (data): primitive for receiving a service data unit

Status functions

- circuit-inoperable : true..false (becomes true after "too many"
retransmissions)

- outstanding : 0..7

- not-yet-sent : integer

Notes: (a) The arrows "0 and "t" indicate which layer initiates the
• primitive, i.e. the entity below or above the service

interface, respectively. "0 means "t" or "0

• (b) The status functions do not influence the operation.

2. Local rules for using g/Lprimitives

The possible orders of execution for these primitives at a given
station are defined by the transition diagram below. The data
perameter of the Send or Receive primitives is arbitrary, provided
its length is not too long F—rillax). The status functions may be
called any time (between the execution of primitives).

Dis-
connected

Tir
4. uns. Init

Note: This diagram represents an abstraction of the operation of
the HDLC protocol at the given station (operation of the link
layer protocol), as described in Annex 2.

-37-

3. Global properties of the service rimitives

(a) For each (successful) Initialize primitive executed at the end of
the link where it is initiated, there is at least one execution
of such a primitive at the same time at the other end. (This
is not in general true for the Terminate primitive; for example, in
the case of a circuit failure, the entify using the service at
the primary station may execute the Terminate primitive without the
secondary noticing).

(h) The sequence of data parameters passed by the Receive primitives
between two consecutive Initialize executions is identical to the
sequence of the first data parameters passed by the Send primiti-
ves at the opposite erid757 the link between two corresponding
Initialize executions.

(c) Refering to (b) above, if n r and n s are the numbers of Receive
and Send executions, respectively, then (ns 	nr) is >0,and
lies between not-yet-sent and (not-yet-sent + outstanding).
(I.e. (n 	n) data units are lost). s 	r

When-
DISC

Set-up 	\Dis-
connect

When-polled

Time .-out

disconnected;
request

„requested/

When-

(

FRMR
. condition

When-
DISC

Set-up pet-up

Set-u
FRMR

FRMR-
repeated

DISC-request

- 38 -

Annex 2 	. 	. 	•

TOrMalSpecification of LAP Blink establishment and

cecearin'r ;:écuted*b . the . DCE 	.

Transition diagram: When-polled

AIII-When- DISC •

dis-
connected

• Recefve \-/ Transmit
New-
Packet

Local variables:

Count: 0..N2
V(S) . 0..7
V(R) : 0..7
V(B)
Unack: 0..7

(retransmission count)
(send state variable)
(receive state variable) - 	-
(bbffer state variable)
(last unacknowledged sequence number'

) Only needed
during the
information
'transfer phase

-39-

Definition of transitions

Notation : 	X stands for reception or transmission of an "X" frame
depending %/née-1-er " X " represents a condition or action, respectively.
(We note that the transmission error detection, frame format, frame
delimitation and bit stuffing are handled by sublayers of the
LAP B which are not described here). —X— stands for the execution
of the service primitive "X' (at the layer interface above). The
following service primitives are considered:,

Init : link set-up or reset

Term— : link disconnection

71, SEND(datan sending a packet (data)

--tRECEIVE(data) --: receiving a packet (data)

Condition Name

Set-up {senà

MI a; VCR) - 0;

V(B) 	0 (reset buffer pointer

stop timer

71-ferm--; Ui1; stop timer •

DM 	{send DM} •

Dit

FRMR_ - {send FRMR 1 	-

tTrm

FRMR

-1`Term-. ; start timer; .
count 	1\1'2

_lei start timer;

count -count - 1

2.4.5.1

2.4.5.3

2.4.5.4.1

2.4.9.4

2.4.9.4

2.4.9.4

2.4.9.3

2.4.5.4.2

Transmi t .

ReCeiVe • •

. reception of
new data from
the layer above ,

transmission of
an I frame

reception : of •
. the next
expected 1 frame

- 40 -

Action

Reference to
pertinent section

of X.25 •

SABM {recei ved}

• Disconnect 	DISC 	{received} 	.

When-DISC 	DISC 	{received}

When-polled received poll bit

• FRMR

When:-DM 	DM_ . {received}

FRMR- , 	• received command
repeated 	except DISC, .or

SABM

DISC --request ...(see X.25,
section 2.4.10.2)

Time-out 	Time-out and
count 0 0

...(see X.25,
section 2.4.10)

Some-transitions during the information phase

	

New.packet. -1, SEN0(datar 	• 	place data parampter'into V(B) th

. and 	 bufferrT(B) = V(B).+ 1
V(B) 	Unack

V(S) 	V(B)
. and
V(S) <Unack
modulus. -2

1(N(S);N(R);inf) .
and

N(S) 	V(R)

_1(N(S) 	V(S); N(R)
information - V(S)th.buffer) .2,

V(S) 	V(S)+
-'tRECEIVE (data ••=-' inf);
V(R) = V(R) 	1; Unack 	N(R)

ll

r

