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INTRODUCTION 

The Averch - Johnson (A-J) model of regulatory constraint has 

provided many theoretical insights into - the behavior of regulated 

firms. Bailey (19 .73), in extanding the A - J results, has pointed 

out a number of empirically verifiable implications of rate of 

return regulation. Spann (1974), Courville (1974), Petersen (1974) 

and Cowing (1978) have subsequently tested these implications of 

the A - J model. Although the specified models differ, the con-

clusions drawn for a cross-section of electric utilities generally 

support the existence of a binding regulatory constraint. 

The model presented by Cowing represents a significant 

I 
	increase in. generalityover previous studies.Cowing hYpothesized 

1 
» -profit maximizing behavior subject to rate of return.constraint - 

II : 	and used an etended version  of  Sheppard's LeMma to derive addi- 

tional behavioral restrictions. For estimation the regulated _ 

profit,fundtion was approximàted by a (quadratic) flexible: , func-

tional form. As such Cowing's model;. ,(a),did,not require that 	. 

the regulatory multiplier be Constant acroes firms  (as in tle, 

Spann model), (b) allowed all imputs to be simultaneously deter-

mined ( in a fashionsuperior to the Courville model) and final1v 

(c) did not introduce  restrictive variable definitions nor- Ignore 

cross-equation'parametpr constraints  as in the  Petersen moder.-- 

1 Many public,utilitiee are regulated : byoutput priCe as  well as 
rate of return. It isnot impossible and', in fact, extrèffiely 
likely that the demand for the aggregaté, -of  service outputs  - 
is inelastic. If this is the case then' profit7maximingis.not 
in general an appropriate behavioral hypothesis. .,ForeXample, 
the elasticity of.demand for an aggregate of service outputs. 
of Bell Canada, is only -,38., 
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Not withstanding Cowing's results, it is the purpose:of this 

paper,to demonstrate that additional restrictions are implied by 

rate of return regulation and when these conditions are considered 

it becomes evident that the A - J model cannot be properly tested 

using flexible functional forms of degree two in price. 

In the first section, the A - J model is outlined and the ad-

ditional conditions are derived. In the second section, the argu-

ment presented above is illustrated for a regulated firm for which 

the cost function is app-roximated alternatively by a translog 

quadratic, Diewert and generalized Cobb-Douglas function. Finally 

a third order approximation of the cost function is considered. 2 

2 The restrictiveness problems demonstrated in this paper hold 
in addition to those demonstrated by Blackorby, Primont and 
Russel (1977) for flexible approximations tc unregulated models. 
of cost and production. 
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SECTION I  

An A-J, Model with Cost Minimization  

Consider a firm that is simultaneously regulated with respect 

to •price (and hence output from satisfaction of demand) and rate 

of return on . economic capital. •The firm behaves so as to minimize 

cost, 3 

C= wL + rK + vM (1) 	- , 

subject to the production function 4 

F(Q,K,L,M) =0 	 (2) 

and a regulatory rate of,return constraint 

p.Q 	wL 	vM - sK =0 	 (4) 

Q= output with price p; 

K= capital with rental rate r 

labour  with waae .rate w 

M=  materials withprice rate v 

s= permitted rate of return On eConomid capital 

The Lagrangian corresponding to tha çost minimization problem is: 

cg - = - wL+rK+vM+X F(Q,L,K,M)+X (p.Q -wL-17K-sK) 	' 	(5) 2 
where X is the Lagrange multiplier for the production function 

and X 2  is the Lagrange multiplier for the regulatory constraint. 

The first 'order (interior) conditions are: 

UT-‘ 	w(1-X) 2 	1 âL = 

2 âF = r.- X -s'+>X•= 0 â.K 	 iâK 2 

Treating just the three input case leads to no loss in generality. 
4 The production is assumed positive monotonistic •in (K,L,M) and quasi 

concave.  

where 

0 (6) 

(7) 



miri mnm cost c'an  he writtgm_e 

= C(w,r,v, ,PrQ) (11) 

0 (12) 

DF = v(1-X ) 	X 	= 0 
2 	 DM 

= F(Q,L,K,m) 	o 

TX-2. 	P.Q 	wL• 	- sK = 0 

* 	* 
In principle, the optimal level of each input - L , M and K , 

* 	* 
as well as the Lagrange multipliers (XI, X2) can be solved in terms 

(8) 

(9) 

(10) 

of (1d,r,v,s,p 1 0). Thu tly% 

C = wL + vM + rK 

However, several restrictions are implied by optimization. 

1 	The cost function must be homogeneous of degree-one in 

(w,r,v,s,p) instead of the'Standard -base of homogeneous of degree 

one in (w,r,v). This restriction should normally be tested in 

• empirical work. 

2 ' The first order conditions.imply restrictions on optimally 

chosen factors. In particular, 

	

* 	* 	* 

	

DL 	DK 	DM _...... = _...» = — = 

	

Dr 	Dr 	Dr 

(6) - This follows 

(10). 	Define: 

immediately from the system of equations 

(13) 
- 6 = X 1 /(1 - X 2 ) 

Equations (6), (8), (9) and (10) can then be used to solve for 

* 	* 	* 	* (6 , L., M , K ) in terms of (s,w) v,p,Q). Hence, at the optimum, 
* * * 	* 

6 ,L ,K and M are independent of r. From equations  (7) and (13), 

it follows that X and 
1 	2  

can be  solvsc9 diTectly A: 

X = (s - r) A(s,w,v,p,Q) 
1 

(14) 



X = 1-(s-r) B(s,w,v,p,Q) 	 (15)* 	- 
• 2 

Bailey (1973) has shown that restriction (12) must-hold 

for profit maximization. It is important to recognize that these 

conditions hold also in the less restrictive case of cost mini-

mization. In fact'it is these restrictions which ultimately 

undermine the usefulness of employing price functions to model 

regulated firms. This argument is demonstrated in the section 

• whi_Ch follows. 



SECTION 2 

Restrictiveness of Flexible Functional Forms 

In line with the recent econometric analysis of regulated 

firms, the cost function 5 described by (11) can be approximated 

to second order by a number of flexible functional forms in 

(s,w,r,v,Q,p). As well, additional information can be intro- 

duced into the estimated model by considering the optimization 

process which defined the regulated cost function. An extended 

version of Sheppard's Lemma can be used to show that: 

• Dd = (1-X )L Dw 	2 

K 

a d 
Ds = -X 2 K  
DC = (1-À )M* 
Dv 	2 

DC Q 
dp 	2. 

In principle, equations (17) and (18) can be used to eliminate the 

unobserveable variable X from equations (16), (18), (19) and (20) 

and -Éhese new equations can be used along with the cost function 

to estimate characteristics of the regulated production technology 

as well as the effectiveness of rate of return regulation. 

From a statistical point of view, the model can be estimated 

is a straightforward fashion. As well, the independence restric-

tions given in (12) can be used to constrain the cost model of 

• 5 
The reader may wish to verif7 that even when technology is of 
the Cobb-Douglas variety, closed form solutions for L, K and M 
and consequently C do not exist. Thus, under regulatory cons-
traint even Cobb-Douglas cost and production functions are not 
self-dual. 

t) 

(16) 

(17) 

(18) 

(19) 

(20) 



(21) 

(22) 

Dc 

	

• 

 Ds = -X K
* • 	2 C 

- 2 	••  
DSDr' 

-DX2 K âr (23) 

2 
Ç 

C 
Dr 	rr 

2 	 2 
"D .  C 

777F = Cwr 	DvDr 

2 
C C D sr 	rs C vr 

(27) 

(28) 

(29) 

the regulated firm. However, condition (1/3) implies restrictions 

which, dependent on the functional form of the cost function, 

will, in general, not be met by the data. 

In the general case; using conditions (12) and (16)-(19) 

2 	, 
( 	) 	 L DC - 1-X 14 :* -D-7U7 - Dr 7W - 	2 

*
2 C 

Dr = - 	--7 u 
Dr 

/ • / 

DC  
Dv = (1- X 2 ) M * 
	2 C 	-n2 

var  = UI- 

It follows from (14) and (15) that if the production constraint 

(24) 

is binding, DX2/Dr o6. 

2 
L D C/DWDr —T - 2  
K C/Dsr 

2 

	

M
* 	

D C/D  vD r 

	

* 	2 
K 

 
D C/sDr 

Hence: 

(25) 

(26) 

1. 	Quadratic Cost Function 7  

+  E C.X. + 1 E 	C. .x.  X. 0 	. 	 i 3 1] 1 ] 2  

X.EX : X=(w,v,r,s,p,Q) 

C=  

* * 
From (25) L /K = Cwr/Crs 

* * 
From (26) M /K = C /Ç 

Vr rS 

or constant factor ratios must hold for each data point. 

6 	 DX2 
Suppose to the contrary that u--7.=  O. Then, from (15) 

= 0 => X2=1. HoeVer, this implies either 
X1=0 or  O=c. The former negates the production constaint 
being binding. The latter violates the monotonocity and 
quasi-concavity àssuMptions. Hence 'PX2 O. 

77-  
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(32) 

(33) 

(34) 

(35) 

(36) 

(37) 

(38) 

M
*  
_ C 
	 *,- 	C. vr 	M v v 	vr ,  

K* C Arre C rs 	 K vs 	rs 

From (26) (39) 

/8 

2. 	Translog Cost Function  

Log (C)= Co+ECi  Log (Xi ) +1EzC.. Log (X,) Log (X.) 	(30) i 3. 	 3 

D 2 C = r2K *2  - C r K *  +. C 2  C 	=0 	 (31) rr 

* * 
D 2 C  = 1 (1-X2) LK +C  C=-DX2 L 
DwDr C 	 wr wr 	Dr 

D 2 C  .= 1 (1-X2)  M* K* + C C 	=-DÀ 2   M*  
DvDr C 	 vr vr 

Thus from (31) 
* 	. 	 .5 

	

K r = 	El± (1-4C ) rr 

and from (32) and -(33) :  

* 	c W = L 	wr 
C --  M' v 	Vr 

Thus, the cost share of each factor is constant, for each data 

point. 

3. 	Diewert Cost Function 

1 

	

2 	2 

	

C = E E C 	X. 	X 

	

ij 1 	j i j 

2 	 * 
BC 	-1 EK  -C  ] rr 
8r 

2 	 .2 	 C: 	 2 
er C 	' 1 vr 	- â C .1 Crs -' D C 	1 cwr 	 _ - 	- 
DvDr - 7 T-Vf ' 	DsDr 	2 V-fr DwDr 	2 ,r-Wr .  

From (22) , K
* 
 = C rr , 	 . 

From (25) 	* 	C An'e. 	 C L 	wr 	L *V-7 	wr _ . 	- 
-7* 	C N1----à- 	*.r- - C 	' 

	

K vs 	rs 

TNeither the . sèluadratid cost function nor the Diewert cost fuction 
can exhibit homogeneity of degree one in all prices, since terms 
in Q enter additively. The exercise is valid however for profit 
functions which are not subject to homodeneity constraints. , 



le. capital is constant over all data points, and the rela-

tionship shown in Equations (38) and (39) also holds across all 

data points. 

4. 	Generalized Cobb-Douglas Cost Function  

C C = un (Xi+l ij 	 (40) 

	

i i 	21  
-C c 	

* * 	 * 9 2 c  = 	wr -I- (17..X2)L K  = - ». 2  L 	 (41) 
âxar 	(w+r)' 	C 

	

-CC  . 	 * * 	 * 

	

2 C  = 	vr  + (1-À2)M K  = DÀ2  M 	 (42) 

	

.‘nr . (v+r) T 	C 

Hence L 	(w+r) 2  = Cwr' • 	 ,(43) 
M*  (v+r) 2 	Cvr  

Thus, is this case, the relationship shown in Equation (43) 

Must hold across all data points. 

3rd Order Cost Functions  

The restrictions implied by the four fùnctional forms discussed 

above are Sufficient to invalidatc the Use, of standard second degree , 

 functional approximations of the cost function for a regulated firm. 

As seen above, the second order approximation is not sufficiently 

general. 

A third order transIog approximation of the cost function is:' 

Log (C)=  C+ C. Log (X i)  + 1 EE C.. Log (Xi ) 	L og (x.) o 	I 	 13 	 3 

1 EEE  + 	Cijk 	1 Log (X.) Log (X.) Log  (X K ) 	 (44) 
ijk  	, 



Thus solving (45) 

K r= 47 1- 1 - 4 [c rr c 	 . I. +E  Crrt- Log (Xj ) 5] 
(47) .  

C + C Lw_   wr k wrk 
*C + E Cvrk M 	vr 

Iog (Xk ) 
Log -(Xk ) 

(48) 

710.- 

from which: 

	

. 	 . 

	

. 	 . 

	

,, 	

. 

C _ + E C 	Log (X ) =0 	
. 

a L. _ 	2 	. 	 (45) 
--T 	r K

* 
 ' - CrK

* 
 + C 4 	 rrk 	- 	k 

3r 	 rr 

X = Ewvrsp 0] k 	 I . 1,1 • 

D 2 C 	(1-A 2 ) L K
* 
	C rw r 	1 E Cwr 	Log :(Xk 	AX2 L *  (46) 

Dwâr 	 wr wr k 	k 	 = u7- 

and. a similar term for D C 
var 

and 

8 

There is no theoretical reason why the syStem of equations'. 

(11), (16), (17), (19), .(20) 8 , (47) and (48) should not be used 

to estimate the parameters of the cost function. However, in the 

case of .0 = C(w,v,r,s,p,Q) there will'be 84-parameters; asSuming 

symmetry. Imposing homogeneity of degree one in prices imposes 

11 restrictions. Hence with 7 equations and (say) a sample period 

of 40 data point years, •  there Will be 73 parameters to.be'estimated 

and 207 degrees of freedom. Although econometrically this is not 

tinireasonable, computationally the. system will be too large. 

Using (18) to eliminate A2 
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CONCLUSIONS  

In this paper it has been shown that the first order  conditions 

for cost minimization of a firm subject to rate of return regula-

tion imply'a set of restrictions on the secOnd derivatives of the 

cost function. Further, a second order' approximization'of a cost 

function has.been shown to be, in general, too restrictive to 

satisfy most data when these conditions are imposed. If the cost 

function is made more general (for example, a third order approxi-

mation) the function is shown to be sufficiently general to satisfy 

the second derivative  conditions, but  the estimation problems arising 

from a model of this size may well be insurmountable, given present ' 

computational technolàgy. 

Thus, it would appear that the-production function approach 	• 

provides the most promising direction of future empirical, research 

into regulation. The problem . that arises using this Methodology 

is that, unlike the cost function approach, there is no way of 

eliminating X from the estimation process. 9  However, since X 
2 	 2 

will in general take a different value each period, the nuMber of X 
2 

parameters equals the number of data points. The authors have 

designed a tentative approach to solve this problem (Breslaw et al, 

1979); unfortunately it also promises to be computationally expensive. 

9 If Equation (7) is excluded from the model, the X problem is 
solved, but it is the experience of the authors tfi.at  in this 
case many of the parameters of the model cannot be estimated 
with precision. 
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