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ABSTRACT

This report details a workable method to obtain carrier-to-interference
(c/i) statistical distributions for geostationary satellite networks. The
approach involves: (1) the convolution of the probability density functions
of the link variables in dB to determine the probability density for each
up-link and each down-link interferer; (2) transformation of the résulting
density to power (non-dB) format; (3) convolution of these interference power
densities for the different interfering links and; (4) transformation to dB
format to obtain the aggregate 1/c density and distribution function.

Small variations in link parameters are assumed to have a Gaussian
Probability density. Variation in off-boresight antenna gains and
unmitigated rain fades cause large interference variations. The antenna gain
variation density is obtained from an integral involving two probability
densities; one for the actual antenna patterns relative to a standard
reference pattern and another for the angular variations from nominal due to
antenna mispointing and satellite station-keeping errors. Rain fade
attenuation densities are also described and utilized in the analysis.

The method is used to obtain actual i/c distributions for various
satellite networks, using realistic tolerances and orbit spacings. These
distributions are then used to determine probabilities that i/c fails to
exceed any given value. The results are then compared with those obtained
using a conventional worst case analysis approach. A difference of several
dB in calculated i/c levels can result, based on the two different
approaches.

This work quantifies the penalty in using a worst case design approach
for different nominal satellite separations when up to four interfering

signals are‘present.
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I INTRODUCTION

An earlier report [1] developed a detailed model for small variatioms in
interference and wanted signal levels in satellite networks. Variations in
signal level at a particular earth or satellite location result from
variations in transmissibility on the up-link and down-link, from pointing
errors associated with transmit and receive earth station antennas and
satellite antennas, from satellite station-keeping errors, and from transmit
RF power level variations.

Up-1link interference results from side-lobe emissions of earth stations
transmitting to a satellite other than the one carrying the wanted signal.
The up-link interference is combined with the wanted up—link signal and
transmitted on the down-link path to the intended receiver. Also transmitted
to this intended receiving earth station is down-link interference from other
satellites intending to transmit to other earth stations.

Traditional approaches to analysis and design have involved worst-case
scenarios, when in fact the variations in signal and interference levels are
random. Our earlier report [1] compared the results of using a worst-case
and a statistical approach, based on the assumption of "small"” variatiomns in
signal and interference levels. Differences of several dB were seen to be
possible.

The purpose of this present report is to present an analytical approach
which will enable a statistical analysis, without assuming variations to be
small and to present results based on this analysis. We ghow how the various
probability demsity functions of the random variables causing signal and

interference‘fluctuations combine to produce distributions for

N




carrier-to-interference levels for representative satellite network
scenarios. Such distributions would enable link availability to be
detetminedvin terms of specified c/i confidence levels, and are used by us to
compare our c/i results with those based on a conventional worst case
analysis.

II CARRIER-TO-INTERFERENCE RATIO EQUATION

A. Basic Link Equation

Coﬁsider first the case where a wanted signal from a transmitting
earth station passes through a satellite transponder to a receiving
earth station. Using terms defined in Appendix I, the basic down-link
equation for the carrier power at the receiving earth station is:

C=P = - - -D+G °] (1)

- Lg- L, - L +6.(¢) o(0)

Similarly, the wanted carrier power at the receiving satellite antenna

is
- _ _ g+ (2)
Cg =P - L L, *+H (2) =T i (B)
Thege equations are in dB.

B. Interference

Added to the wanted up-link signal is up-link interference i from other
- earth stations. The dB power level of each up-link interference signal is
glven by an equation identical to (2).

The wanted signal plus up-link interference is transmitted on the
down-1ink and is received together with down-link interference 1 from other
satellites. Each down-link interfering signal from a satellite which does

not carry the wanted signal has a link equation identical to (L.



C. Carrier-to-Interference Ratio

To determine c/i in power (non-dB) at the receiving earth station, we
proceed as explained below.

For the kth up-link interfering signal in terms of power quantities

i Jc = ( Puk HekHskUw] (3)
uk P H H U.
uw ew Sw k

In (3) subscripts "k" and "w" denote the kth up-link interferer and wanted
signal, -respectively. Thus,

- 4
iu/c i iuk/c )

In writiﬁg (3), the terms involving small variations about nominal
values are enclosed by "( )", while those whose variations are potentially
large are indicated by "[ ]". We assume that L.a and L. are identical for

all up-link interferers and the wanted signal.

On the down-link, we cannot find id/c directly. Instead, we first find

. ()
j idj/(c+iu)
where 1dj denotes the jth down-link interfering signal. Assuming Lca’ Lf and
L, to be the same for all down-link signals gives
P
By=(p 4 )[GejGSij] ©
dwcewGsw Dj

In many cases all down-link fades Dj and Dw are equal. FPover sumning e
total down-link interference yields

B =) Bj @

k|

To obtain id/c, we proceed as follows:
B = lid/c]/(1 + [iu/c])

(g/e) =BQ + 1 /e])

~



i/c = (1u/c)(l +B) +B (8)

Note that when iu/c 1, B = id/c. If in addition %d/c << 1 then

i/e = (1u/c) + (1d/c) &)

III DETERMINATION OF C/I DISTRIBUTIONS

The approach for determining the distribution of i/c is as follows,
assuming for now that c is constant.

1. Determine the probability densities for i, /c in (3) and By in (6).

2. Determine the probability density of i /c in (4) and B in .

3. Determine the density and then the probability distribution for i/e

in (8).

Each of these steps requires operations involving probability density
functions of the link variables Pu’ Ge(e), U, etc. Below we discuss the

required operations in detail.

A Determination of Densities for 1 , /c and Bj

The quantities 1uk/c and B, each result from multiplication of several

h|
random variables. There are two ways to obtain probability density functions
for iuk/c and Bj' One approach is to use the result in Appendix II for the
Probability density of a product of random variables. This approach
~requires that the desities of all link terms be expressed in power (non—dB)
format.
An alternative approach is to write (3) and (6) in dB format. A sum of

terms then results, and the density of 1uk/c and Bj in dB is the convolution
of the respective dB densities of the link quantities, in accordance with

Appendix II. Which approach is more convenient will depend, in part, on

whether the link densities are based on dB or power levels. The density for

|
N



U or D, for example, is available with U and D expressed in either form [2].
The convolution operation on dB densities is probably eas%er to use
numerically than is the product-density integral for power products, since
the |B|~! factor in the latter integral may lead to numerical difficulties.
However if the dB 1link quantities are used, iu/c in dB will have to be
transformed in accordance with the method in Appendix II, to a power (non—~dB)
quantity in order to obtain I iuk/c and ZBj.

We note here that it is always possible to transform from dB density to
one for a power quantity as explained in Appendix II.

In determining the density for iuk/c and B, in (3) and (6), the terms in

]
"( )" would normally be small, and could reasonably be assumed to be
Gaussian, either in dB or power format. The fact that either format implies
Gaussian behaviour follows from the fact that for small variations,
10log) o (1 + x) = (10/2nl0)x. Here in the case of iuk/c and Bj’

respectively

= 10)
X (1’uk /Puwﬂewﬂsw) (

and
= (11)
x = (P4 j /P dwCeuCen)
The nominal (mean) value for x is x = 1 (x = O dB) and the variance of

% 18 the sum of the variances of the individual normalized link term

variances. This latter statement follows from the fact that for {a;} small
- - - 2
A+a)/Q+a)Q+a)A+a)=1+a -a,~a;~8 (2)
Here, {a } corresponds to the normalized link variables P Hg,» ete.
i
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The terms in "[ ]" in (3) and (6) are not necessarily small. In the
absence of a rain fade mitigation philisophy, for example, U and D can vary
up to 10 dB. Similarly, off-boresight values for He’ Hs’ ée and Gs vary
about their nominal values based on standard patterns, and the nominal angles
@, B, 6 and ¢ also vary due to antenna mispointing errors and satellite
station-keeping errors. Determination of these antenna gain densities and
rain fade densities is described in Sections IV and V.

B Determination of Densities for i /c and B

Having determined densities for iuk/c and Bj’ it is easy (in principle)
to obtain densities for iu/c and B by convolving the densities of iuk/c and

of Bj' In performing these comrvolutions we must use power (non-dB)

quantities.

C Determination of the Density and Distribution for i/c

One sees from (8) that the probability denmsity for i/c is the
convolution of the density for B with that of the density for (iu/C)(1 + B).
This latter density is obtained by either of the methods in Appendix I to
determine the density for the products. The density for (1 + B) is fy(a - 1)
where fB(a) is the density for B.

In those cases where iu/c << 1 and id/c << 1 the density for i/c is
obtained by convolving densities for iu/c and id/C-

Once the density for i/c is known, integration gives the distribution

Fi/c(a):

a
el = £y o o

|
|
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A transformation to dB format gives the dB density for i/c and (13) then
yields the distribution of i/c. From this distribution one obtains the
probability that i/c exceeds a given value, since

Prob[(i/e) < a] = F,, () - a8
and

Prob[(i/c) > a] =1 - Fy el (15)

The distribution function will depend on the relative up-link and
down—link power levels Pu and Pd and their variances, the antenna gain
functions and the statistics associated with these, and the link fades U and
D.

The above discussion assuﬁes that c is constant. This assumption is
reasonable if transmitted power level variations of the wanted signal are
negligible, and if rain fading of the wanted signal is perfectly mitigated or
if on the down-link the wanted and interfering signals all pass through the
same rain cell. If c is not constant, then the total interference is first
determined, transformed to dB format and convolved with -C (in dB) to yield
the probability density of i/c.

IV RAIN FADE PROBABILITY DENSITY FUNCTIONS

The proposed model for rain attenuation in dB is the log-normal

distribution [2-4]. Thus, the probability demsity f;(a) which gives the dB

reduction from the unfaded level is as follows:

10Po
fyla) =

(2n10)vYZw oa
+ (1'Po)6(a) (dB; a > 0) (16)

exp[-(10loga - m)2/20?]

where Po 1s the probability of rain. Note that m and ¢ represent the mean



and variance, respectively of 10logU, and that U itself is in dB. A similar
density function applies to the down-link fade D. The paﬁameters of the
distribution are m, ¢ and Po and are available from various sources [2-4].
In many cases we actually add -U (or -D) to the link variables, as in
(1) and (2). In this case the dB density which is convolved with the other
link variables is given by (17) below. The derivation of (17) follows in

accordance with the transformation y = -x (see Appendix II). Thus

: 10p N o2
f_ @) = ° exp[-(1010g§ a) - m)7]
(4n10)v2%0 (-a) °
+ (1 - P ))s(a) (dB; a < 0) 7

To express the attenuation U in terms of power, we use the

transformation y = 10%/10 to obtain the log-log—normal density:

10P -[1010g(101logB) - m]?
fy®) = | 2 ] exp(
(2n10) %/ Z7oBlogp 202
+ (1 -P))6(B-1) (power, B > 1) (18)

It is also convenient to obtain the density in power for V = u~l. The

transformation process described in Appendix II yields:

10P
£408) = [ ° ] exp [-(101og(-101ogﬁ) - m)2]
(4n10) %/ ZxoB (-1ogB) 252
+ (1 -P)8(E - 1) (power; 0 < g < 1) (19)

It is convenient to note, as a practical matter in comparing with

others' equations that [2,3]
Anl0 log y = fny @

Thus, an alternative way to write (16)-(19) follows with

Go = (R.nlO/],O)c (21a)
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CITI.

o, = (4nl0/10)m (21b)
= “Lagp(- 1 2
£;(a) Po (¢Znooa) exp( 2-[1n(a/a°)/0°])
+ (1 - P )s(a) (dB; o > 0) (22)
= — _1 - 1 - 2
£_y(a) Po(/Znoo[ a])" exp(- 5 [An( a/ao)/co)]
+ (1 - P )8(a) (dB; « < 0) (23)
= - 1
£y(B) = B (/ZTio_Banp) lexp(- 5 {xn((loglos)/ao)/co}zl
+ (1 - P )8(p - 1) (power; B > 1) (24)
£y@) = Po(/ZEboB[-RnB]) exp| - 2.{ln((-101og108)/a°)/60} 1
+ (1 - P )5(B-1) (power; 0 < g < 1) (25)
Typical values are a, = 0.253dB, o = 1.174 and P = 0.08 during the
worst month. These parameters correspond to 3.4 dB fading for 10-3 of the
time and 8.7 dB fading for 10™* of the time. These values have been used for
NATO phase III System studies [2,3,5] and are representative for Eastern US
Seaboard fading during the worst month of the year at X-band with a 17°
antenna elevation angle.
V  ANTENNA GAIN PROBABILITY DENSITIES
Actual antenna patterns vary from standard reference patterns used in
interference calculations. Typical reference patterns appear in Appendix
As well earth station mispointing, satellite mispointing and satellite
station.keeping errors cause the actual interference angles seen by an
antenna to vary from nominal values. These statements apply for both up-link
and down-link interference.
The distribution of actual antenna gains over a sample of similar

antennas and over the interference angles of interest are random. This
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distribution of side-lobe levels has been modelled as Rayleigh for existing
éarth station antennas [6]. For offset parabolic-fed or Gregorlan—type
asymmetric antennas the side-lobe peaks follow a log-normal distribution
[6,7].

Interference for earth statlon antennas would normally be received at an
angle beyond the first side lobe. The same comment would apply for
narrow-beam satellite antennas. However for antennas with moderate
beamwidtﬁs, interference could lie close to the main lobe. In this latter
case, reliable statistics for probabilistic variations from standard
templates do not appear to be available.

Typical mispointing tolerénces upon installation of earth stations are
0.1° or 1dB, whichever is less [8]. Stations with auto-track capability
could have tighter tolerances. For satellites, typical tolerances are 0.1°
translation and 1.0° rotation [8]. Station keeping tolerances are also 0.1°
from nominal. In the absence of details regarding the distribution of these
errors, it is reasonable to assume a Gaussian distribution with a gtandard
deviation equal to one-half or one~third the quoted tolerance.

A. Large Earth-Station Gain Probability Density

For earth station antennas, the reference pattern well beyond the

side-lobe interference region is [6]:
6, (0) = k[1 + ()" @0
r
Typically, n = 2.5 and
o, = 15.85(0/r) 08 @

where D/A is the antenna diameter to wavelength ratio. For D = 30m,
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Gr = 0.38° at 5 GHz.

The following is a good approximation for (26) for & > er:

G,(8) = k(6 _/0)" (28a)

1010g10Ge(6) = 10logk + 10nlog6r - 10nlogb (28b)

For large earth-station antennas, the choice n = 2.5 and K = 10logk +
10“1089r = 32 provides a curve which lies above 90% of the side-lobe peaks,
although for more recent antennas K = 29 dB may be more appropriate [6,9].
The medign level of the side-lobe amplitude appears to be 7 dB below that of
the 90% curve [6]. Thus, for large earth station antennas

m(6) = A - Blogh (29)
where A = B = 25, |

The probability density for the gain G can now be found by integrating

over the density for 6:

fG(Y) ’_i fG(Y/x)fe(x)dx (30)

With gy as the variance of the nominal interference angle due to mispointing,
station keeping and other small errors, our Gaussian assumption yields:

fa(x) = (/IEbe)‘lexp(-x2/2062) (31)

Data on which to base fG(y/x) are scarce; on the basis of [7] we use a
Gaussian probability density:

£(y/%) = (YZmo ) lexpl-(y - n(x))2/20%] (32)

In (32), UG is the standard deviation in dB of the antenna gain variation
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about the mean m(x). This variance appears to be relatively independent of
x[6]; however the mean depends on the angle off boresight in accordance with
(29), beyond the first side lobe.

B. Small Earth Station Antennas and Satellite Antennas

For smaller earth station antennas an equation similar to (29) provides
a2 nominal gain template m(8) beyond the first side-lobe region [6,10] for use
in (30). Values A and B vary with antenna type and often depend on D/A (see
Appendix III).

For narrow-beam satellite antennas [ll] suggests that the above results
for earth stations remain applicable. For wide-beam antennas, interference
lies closer to the main lobe. ' The reference pattern in Appenidx III for
satellite antennas covers all angles and m(®) is therefore available for use
in (30). However, as noted earlier a reliable probability demsity for the
distribution of gain levels near the main lobe seems unavailable.

Given the appropriate statistics and reference pattern, the method used
to determine the gain probability density for large earth station antennas
remains applicable in the cases considered here.

VI IMPLEMENTATION OF THE PROPOSED STATISTICAL ANALYSIS APPROACH

The approach presented here enables the aggregate c/i distribution to be
determined. The dB density for iu/c and id/c is obtained by convolution of
the 1link dB densities and then transformed to a power (non-dB) link density.
These link power densities are then convolved to obtain the density for i/c.
This density is then transformed to dB, and the aggregate i/c distribution is
fhen calculated. From this aggregate distribution one can obtain the

probability that 1/c exceeds (or fails to exceed) a given level a given

N
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percentage of the time, in accordance with the parameters specified and
constituitive probability densities employed.

The parameter values chosen for the link variables will affect the i/c
distribution. Important parameters include the number of interfering signals
N, their nominal off-boresight angles a, B, 6, and ¢, the variance of the
station-keeping, mispointing and other errors about these nominal values, the
mean interference levels m(9), m(¢), m(a) and m(p) in (29) as given by A and
B in (30), or by other constants in an alternative equation in Appendix i,
the relative RF power levels, and the rain fade parameters P, m and 0.
Finally, the satellite beamwidth is important in determining m(6) in (29), in
accordance with the standard reference pattern. The combined variance of the
small variation terms in (3) and (6) would probably have a relatively small
effect on the aggregate i/c density.

The large number of system variables requires that specific scenarios be
selected for detailed study. Some representative satellite networks and
network scenarios are examined in the following sections.

To compare statistical design results with worst case results, it is
necessary to relate worst case values to the parameters in the various link
density functions used. The difficulty is to define "worst case”. A
reasonable approach is to use as worst case those values which are exceeded
not more than a specified percentage of the time as calculated from a link
parameter probability demsity.

Much of the statistical analysis involves convolutions and transforma-=
tions which would be done numerically. Thus, the usual cautions are exer—

cised to control potential errors associated with numerical techniques [14].

'
N
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VII SATELLITE NETWORK CONFIGURATIONS

Figs. 1, 2 and 3 show three satellite network configUfations which form
the basis for subsequent analysis and results. Each case involves two
interfering signals separated from the wanted signal at a nominal angle B.
In each case, one of the antennas is a broad-beam antenna, and the other
antenna has a narrow beam. We later indicate how our results would be
modified for the case where both the transmitting and receiving antennas have
narrow beams. Our goal here is to use relatively simple but realistic
networks, to enable clear focus on comparisons between statistical and worst
case i/c calculations.

Fig. 1 shows two down-link interfering signals I, and I, together with
the wanted signal W. The satellite antennas all have wide beams and the
earth station antenna has a narrow beam. The actual positions of the
satellites are indicated by solid lines. The nominal satellite positions in
the absence of station-keeping errors are indicated by dotted lines. Angles
92’ e3 and 0,represent station-keeping anglular errors, and elrepresents the
pointing error of the earth station antenna. The actual separation angles

d I, are
eLand eR between the wanted and respective interfering signals I, and 1,

as follows:

(33)
0, =T~ [0, +0,] +0, .
9R=§+el+92+e4 -
Angles 8,5 0,, 0, and 0, are assumed to be statistically independent.

riables whose
Thus the angular errors eR -~ 9 and eL - 8 are each random va
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Fig. 1. Satellite network with down-link interference; wide—beam
satellite antennas
/
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Fig. 2. Satellite network with up-link interference; wide-beam
' satellite antennas

s
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Fig. 3.
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Satellite network with down-link interference;
beam satellite antennas

/

narrow-



18

Mmeans and variances equal the sum of the means and variances, respectively of

the corresponding error angles in (33) and (34).
If a single interfering signal is present, then the interference density

due to these angular variations is given by (30) and (31), with

+ 0

. If we further assume that any transmitter power level
Variations due to ageing, manufacturing tolerances and power level variations
due to boresight errors for the wanted signal are negligible, that all
down-11nk rain fades among the wanted and interfering signals are perfectly

Correlated and that all satellites transmit at equal power, then from (6) and

(9) (upper-case denotes dB quantities):
I C= = - : (35)
/¢ =1,/c=6_(8) -6, (0)
When two down-1link interferers are present, we must use illc and 12/° to
Obtain i/c. However, now i,/c and i,/c are dependent, through the angle

A= e1 +6 A positive A value reduces by A the angular separation between

9
I, and W bute increases by A the separation between I, and W. For small A
Values, under the same assumptions regarding power levels and rain fading as
above, these two effects tend to cancel, as we show below:

L/C ==, (0) +6, (&)

= =G, (0) + 25(1 - log &)

1,/e6, (0) = (10/6 )%

[10/(T + 64 + ISy e

(10/(@ + 8501771 = 2.58) (36)
37

R

R

1y/e6, (0) = [10/(F + 8,177 (L + 2.58)

s

|
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If 6, << 6 and 6, << © then adding (36) to (37) yields

3 4
/e G_ (0) = 2[10/(F + 94)]2'5 . (38)

Thus, it is as if 6, = 8, = 0, and the only variation in 6 arises from

1 2
S8tation-keeping errors of the satellites which generate the interference. It
is this kind of careful analysis that is ignored in worst case design
situations.

Fig. 2 shows a network where two narrow-beam earth station antennas

generate up-link interference. The separations in this case are
+ 0 (39)

3
40
+ 6, (40)

0. = -

L=9-8 +9,
6 =

R=TF+6 +o,

In the case of a single interfering signal (i.e. I, = 0) the i/c

distribution 1s identical to that for Fig. 1, assuming that any rain fading

s Perfectly mitigated, that transmitted power level variations are neglible,

and that all earth station antennas transmit at equal power levels.

When two interfering signals are present in Fig. 2, then variations in

61 effectively cancel, and it is as if two independent random variables, 11/c

and 12/c with random angular variations 92 + 63 and 94+ 95 were present.
Convolution of il/c and iz/c yields i/c.

Fig. 3 shows the case where all three satellites have narrow—bean

8Ntennas and the earth station antenna has a wide beam. In this case, the

4Ngular varjations of the interfering signals are due solely to the

station-keeping and pointing errors of the satellite antemnas. Under the

88sumptiong noted earlier i/c is obtained by convolving the densities of 11/c

and 12/c’ with
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6, = 0+ 91 + 92 (41)
6p =08+ 06, +0, ) (42)
In those cases where rain fading or transmitter power level variationms
are present, the densities of il and 12 must first be obtained by convolution
of dB quantities prior to convolution of i, and i, (power) densities,
followed by dB convolution of I and -C as explained earlier.
VIII NETWORK SCENARIO ONE: SINGLE INTERFERING SIGNAL

‘We begin with the simplest possible network configuration, depicted in

Fig. 1, which operates in accordance with the following assumptions:

la. All interference is from a single down-link interfering satellite
transmission.

l1b. Both the wanted (W) and interfering (I) signal are from wide—beam
satellites nominally separated by B°. Both satellites transmit at
equal power levels to a narrow-beam earth station antenna.

le.

Any rain fading experienced by W and I is perfectly correlated.

For this case i/c 1s obtained from (35). The sole cause of variations
in i/c is variation in 6. These variations result from satellite
station-keeping errors and earth station and satellite pointing errors. All
errors have a nominal 0.1° tolerance. We have translated this 0.1° tolerance
into a standard deviation of 0.1/Y%. The /8 factor is chosen because it is
the variance of a triangular probability density with a 0.1° peak deviation.

It follows that oy = 0.1¥3//8 in (31) since the three tolerance errors

are reasonably assumed to be independent.

The value for S in (32) is og = 3.91 dB, a value which is less than the
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5 or 6 dB reported in [7], but which is consistent with the 5 dB measured
spread between the median and 90% peak sidelobe levels reported in [6].
Figs. 4 and 5 show Fy/c distributions for = 2° and § = 4°,
respectively where § is the nominal satellite spacing. The nominal median
side-lobe attenuation by the earth station against the interfering down-1link
signal in m(¥) = 25(1-10 log ¥) from (29).
Using the printout corresponding to Figs. 4 ad 5 (see Appendix IV), one
easily obtains %5.9 such that FI/C(“0.9) = 0.90:
2.5 dB (B = 2°)
%y 9 + Ge (0) = (43)
15.0 dB (T = 4°)
We can compare these values with those based on a worst case design,
assuming that the interference 90% side-lobe levels lie 5 dB above the median

[6,7]:

0 - 25 log,,(1.7°) = 24.24dB (7 =2°)
%0.9] + G, (0) = v , (44)
We 30 ~ 25 log,,(3.7°) = 15.79dB (T =47)

The difference between a worst case and statistical design is:
1.7 dB (T =2°)

WC-STAT (43)
AT 0.79 dB  (§ = 4°)

A

We also show in Figs. 4 and 5 the effects of tolerance angles B > 0.1°.
One sees that the distributions are not strongly dependent on tolerances
below 0.5° for § = 2° and below 1.0° for ¥ = 4°. Again, all angular errors

are Gaussian with equal standard deviations of B//F.
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Figs. 4 and 5 also indicate the effects on the distributions of using a
triangular distribution rather than a Gaussian distribution for the
cumulative effects of angular pointing and station-keeping errors. One sees
that for a given overall standard deviation B, the variation in 1/C is
largest in the Gaussian case, although the difference is negligible for 0.1°
tolerances. The difference is small for tolerances below 0.5° for B = 2° and
below 1.0° for § = 4°,

From the above paragraphs, which in essence state that small changes in
B do not much affect the I/C distributions, it follows that the results in
Figs. 4 and 5 are applicable to the network configurations in Figs. 2 and 3,
as well as the one in Fig. 1. In particular, the results apply to the

following two additional cases, except that for the network in Fig. 3 the

worst case results would be based on an angular error of 0.2° rather than

0030-

2. All interference is from a single down-link interfering satellite

transmission. Both the wanted (W) and the interfering (I) signals are
from narrow-beam satellites nominally separated by § . Both satellites
transmit at equal power levels to a wide-beam earth station antenna.
Any rain fading experienced by W and I is perfectly correlated.

3. All interference is from a single up-link interfering signal. Both
the wanted (W) and interfering (I) signals are from narrow-beam

earth station antennas pointing at wide-beam satellites nominally
separated by §°. Both earth stations transmit at equal power levels.

Any rain fading experienced by W and I is perfectly mitigated.

The distributions in Figs. 4 and 5 closely approximate the normal curve
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for B < 0.5° and B < 1.0°, respectively. It follows that dB link variationms
of other variables which are Gaussian can be easily combined with I/c
;ariations depicted in Figs. 4 and 5, since the convolution of two Gaussian
densities is a Gaussian density [12].

Consider, for example, that the transmitted power levels of the wanted
and interfering satellite signals each vary by + 0.5 dB from noninal values-
Such variations occur as a result of ageing and maufacturing tolerances and
also account for mispointing of the main lobe. Each of these variations
might typically be Gaussian with standard deviations each of o, = 0.5 dB
about the nominal power level. Inclusion of these power level variations

would not much alter the curves in Figs. 4 and 5, since the variances would

increase from ce = 3,91 4B to

= 2 2
c /ce + 2 Oy

= 3.97 4B (46

However, a worst case design would assume that the wanted signal was

faded by 0.5 dB while the interfering signal was 0.5 dB above its nominal

level. The difference between the worst case design value and the

statistical value would increase by almost 1 dB from that in (45). Thus
2.7 4B (6 = 2°)

i} (47)
We-STAT | 179 a8 (= 1°)

A

The curves Figs. 4 and 5 can be used to determine the efects of rain
fading. Assume, for example that the wanted signal suffers a 5 dB fade while
the interfering signal does not fade at all. Such a case could easily occur

for up-link interference. The effect of fading is the same as if Ge(O) in
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Fig. 4 and 5 were reduced by 5 dB, which would move the curves 5 dB to the
right. For 0.1° tolerances, a 90% confidence level with no rain fading would
become a confidence level of 50% under a 5 dB wanted siénal fade for both § =
2 and 4 degrees. A 99% confidence level would reduce to 87% for both § = 2
and 4 degrees.

Similarly, a 5 dB fade on the interfering signal would move the curves 5
dB leftward. A 90% confidence level with no rain fading becomes a confidence
level in excess of 99% with a 5 dB rainfade on the interfering signal.

A similar analysis applies if known fades or enhancements occur because
of changes in other link variables.

IX NETWORK SCENARIO TWO: TWO INTERFERING SIGNALS

We consider now the effects of two interfering signals for the systems
depicted in Figs. 1-3, inclusive. The two interfering signals can both be on
the down-link, both on the up-link, or one on the down-link and one on the
up-link. We assume that both interfering signals are separated by the same
nominal angle § from the wanted signal, that both the wanted and any
interfering signals on the up-link are transmitted at equal power levels,
that the same statement applies to any interfering signals and the wanted
signal on the down-link. Rain fades on the wanted and interfering down-link
signals are assumed perfectly correlated and any up-link rain fading is

perfectly mitigated.

Figs. 6 and 7 show the distribution FI/C(a) for 2 interfering signals

for B < 0.5°. The horizontal axis is « + Ge(O) - N

he number
B where N B is t

d d
of interferers in dB; here Njg = 3 dB. The distribution was obtained by
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numerical self-convolution of the i/c density (power quantity) followed by
conversion to dB format. The program listing appears in Appendix IV. From
Figs. 6 and 7, the 90% points are easily obtained, as follows:

2.1 48 (B =2°) 48)

ot Ge(o) - Ngg = °

14.6 dB (B = 4°)

A worst case design would assume both interfering signal beams to be
separated from the wanted signal beam by the worst cast amount; namely A =
0.3° for the networks in Figs. 1 and 2 with B = 0.1° and A = 0.2° for the
Fig. 3 case. Using A = 0.3°, worst case analysis yields, in the absence of
power level variations:

I/c]WC +G_(0) - 3 =30 - 25 log (§-0.3)

4.2 dB (= 2°) (49)
- Bs.s dB  (F = 4°)

Variations of + 0.5 dB in all transmitted power levels would increase
the values in (49) by 1.0 dB, since the wanted signal would be assumed to be
reduced by 0.5 dB while all interfering signals would be increased by 0.5 dB
above nominal values.

The difference in dB between worst case and statistical analysis is,
with no power variation:

.1 dB (¥ =2°

A (50)

We-STAT | 1248 (7= 4°)

This difference increases by 1.0 dB with power level variation.
The effects of rain fading are again easily seen from Figs. 6 and 7.

For a 5 dB fade on the signal, the 90% confidence level is reduced to 33% for
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§=2° and to 36% for U = 4°. The reduction is larger than for N =1
1_nterfering signal, because the distribution is less flat for N = 2 than for
N =), '

A 5 dB fade on each interfering signal, with the wanted signal unfaded
Increases the confidence level above 98%.

The effect of a 5 dB fade from a 99% confidence level is to reduce the
confidence level to approximately 90% for B = 2° and for § = 4°. These
Values are approximate but conservative; the curves become very flat above
the 957 confidence level and this causes some difficulty in determining
Braphically the confidence level reduction from 99%.

X NETWORK SCENARIO THREE: FOUR INTERFERING SIGNALS

We now consider the effects of four interfering signals, all separated
by the game nominal value ® from the wanted signal beam centre. Normally,
two of the interfering signals would be up-link signals and two would be
down-11nk signals.

Figs. 6 and 7 show I/C distributions for this case for B < 0.5°. The

90% confidence points are as follows:

1.6 dB (T = 2°)
x g+ G_(0) - Ngp = (51)
€ 14.1 B (T = 4°)

Comparison with the worst case design results in (44) yields the

f°11°W1n8 differences between worst case and statistical analysis results for

0.1° tolerance angles:

.7 dB (§ = 2°)
Ave- = (52)
STAT | 1.8 a8 (T = 4°)
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These results assume no power level variations. If a + 0.5 dB variation
occurs in transmitted power levels, then 1.0 dB is added to the values in
(52). 1In the § = 2° case, the difference then becomes 3.7 dB.

A 5 dB rain fade of the wanted signal results in a reduction from a 90%
confidence level to 15% for both B = 2° and T = 4°. The same 5 dB fade from
a 99% confidence level reduces the confidence level to 92% for § = 2° and
4°. These and earlier results appear in Table 1.

A 5.dB fade on all four interfering signals results in an increase in
the 90% confidence level to a value above 97%.
X1 NARROW-BEAM SATELLITE NETWORKS

The networks in Figs. 1-3, inclusive, include one wide-beam and one
narrow-beam antenna on each up-link and down-1link path. We now consider
networks which consist solely of narrow-beam antennas. We assume that all.

side-lobe levels are as given in Appendix III for large diameter earth

station antennas. In this case, for a single interfering signal (denoted by

"3

: 6, (636, (4)D
@/e) = lp gyl =) o
w e 8

In the absence of power level variations and rain fading, the two random
‘quantities are ce(e) and Gs(¢). To determine the distribution FI/c(a) in
this case we convolve the dB distributions for Ge(e) and GS(¢). Since these
distributions are assumed identical and are essentially Gaussian for

B < 0.5°, the convolution yields another Gaussian density whose mean value is
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TABLE 1 COMPARISON OF WORST CASE AND STATISTICAL ANALYSIS OF I/C AT 90
PER CENT CONFIDENCE LEVELS

ggggﬁi OF INTERFERING CONFIDENCE LEVEL
S v Dye_ (dB) | FOR 5dB SIGNAL FADE
WC-STAT FROM 90% FROM 997

1 2° 1.7 50% 87%

1l 4° 0.8 50% 87%

2 2° 2.1 33% >90%

2 4° 1.2 36% >90%

4 2° 2.7 15% >92%

4 4° 1.8 16% >92%

Note: For * 0.5 dB variations in transmitted power levels, add 1.0 dB to
Byc-sTAT.

- TA
| TABLE 2 COMPARISON OF WORST CASE AND STATISTICAL ANALYSIS OF I/C AT 90 PER
CENT CONFIDENCE LEVELS, NARROW-BEAM NETWORKS

NUMBER OF INTERFERING CONFIDENCE LEVEL
SIGNALS ) Myc-gar(dB) | _FOR 5dB SIGNAL FADE
FROM 90% | FROM 997
1 2° 5.9 64% 94
1 4° 4.1 56% 93
2 2° 6.1 567 >95
2 4° 4.5 56% >95
4 2° 6.5 47% >96
4 4° 4.9 43% >96%

- Note: z:r t 0.5 dB variations in transmitted power levels, add 1.0 dB to
C-STAT.
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twice that of Ge(e) and GS(¢), i.e. =79

m(8) = 50(1 - log ) = m(9) | (54)
The density standard deviation g is v7 times that of each individual
density.

Figs. 8 and 9 show the distributions FI/C(a) for N =1, 2 and 4
interfering signals for narrow-beam networks with § = 2° and 4°. The N = 2
and 4 cases are obtained by convolving the (power) densities i/c as was done
for the curves in Figs. 6 and 7. From these distributions the 90% confidence
levels are obtained.

To compare with confidence levels using a worst case approach we assume
that the actual separation angle 6 is reduced from the nominal angle by
2(0.1) = 0.2° for a 0.1° tolerance on pointing and satellite station-keeping
errors. Thus, the interference level under worst-case coditions is

I/Clyc + 6,(0) + G_(0) = Nyp= 60 - 25[1og(T - 0.3) + log(¥ - 0.2)]

47.9 dB (® = 2°) (55)
“ 13134  (FT=4)

The differences AWC-STAT between a worst case and statistical design
approach are listed in Table 2 and are seen to be much larger than the
corresponding values in Table 1.

Also shown in Table 1 are the effects of a 5 dB rain fade on the wanted
signal, from 90% and 99% confidence levels. The degredations in confidence
level are less than the values in Table 1, because the curves are less steep

in Figs. 8 and 9 than in Figs. 6 and 7.
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The effects of a 5 dB fade simultaneously on all interfering signals
yields an improvement in confidence level to approximately 98% or more for N
= 1, 2 and 4 with § = 2° and § = 4°, |

To obtain results for other side-lobe level distributions, it is
necessary only to convolve the satellite and earth station dB probability
densities for these side~lobe level variations. As explained earlier
Probability density daéa is scarce, particularly for satellite antennas in
the intermediate beamwidth range.

XII RAIN FADING EFFECTS

To see the effects of rain fading we first determine the probability
distribution from the density in (22). The "wanted signal fade" curve in
Fig. 10 1s obtained by integration of (22) using (l4) with a, = 0.253 dB,

00 = 1,174 dB, and Po = 1. This curve shows the I/C distribution with one
1nterfering signal present and with fading of the wanted signal only assuming
that all other link parameters remain constant. This curve shows the signal
fade to be less than 1.06 dB with 90% probability during rainfall times.

Fig. 10 also shows the I/C distribution when the sole interfering signal
fades, with all other link variables held constant. Lying between this curve
ﬁnd the "wanted signal fade" curve is the I/C distribution which results when
the wanted signal and the sole interfering signal fade independently. This
latter curve is obtained by convolution of (22) and (23) followed by
1ntegration of the resulting probability density function. In this latter
Cage the 90% probability is reduced from 1.06 dB when the wanted signal only
fades, to 0.8 dB.

The curves in Fig. 10 were plotted assuming equal transmitted power
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levels for the wanted and interfering signal. If these levels are unequal,
then the abscissa should be relabelled: a + Ge(O) - Ge(E) + Pw - Pj. If
more than one interfering signal is present and if these and the wanted
signal are all transmitted at equal power levels and are all subjected to
rain fading then the resulting distribution lies between the curves labelled
"wanted signal fade" and "wanted and interfering signal fade". The curves in
Fig. 10 apply to satellite networks with one wide-beam and one narrow-beam
antenna on each link. By adding the terms GS(O) - Gs($) to the horizontal
axis, they also apply to narrow-beam networks. The curves apply to up-links
a8s well as down-links.

We next consider the effects of rain fading together with other random
variations of the link variables. Fig. 11 shows the I/C distribution with
and without rain fading of the wanted signal, assuming that the sole
Interfering signal is not subjected to rain fading. The horizontal distance
between the two curves is approximately 0.5 dB. If both the wanted and
interfering signal fade independently then the distribution lies very close
to the "no rain fade" éurve. From this last statement one concludes that
Vith the rain fade parameters used here, the I/C distribution is not changed
Very much from the unfaded cases considered earlier. This statement is much
8trengthened by the fact that the probability of rain is typically much less
than unity, which moves any rain fading curve much closer to the
Corresponding unfaded curve. These statements apply to narrow-beam networks

88 well as to those depicted in Figs. 1-3, for various § values.
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A worst case analysis of interference effects would assume "maximum”
fading of the wanted signal and no fading of the interfering signals.
Therefore, in calculating AWC—STAT’ rain fading adds apprbximately 1.0 dB to
the otherwise determined values in Tables 1 and 2.

XIII SUMMARY AND CONCLUDING REMARKS

A viable procedure has been developed and used to obtain probability
distributions for the interference-to-signal ratio for various representative
satellitg networks. Actual results are presented for nominal orbital
Separation angles of U = 2° and 4° for up to four interfering signals. All
interfering signals were assumed to be at the minimum orbital separation
angle § from the wanted signal since these interferers have the most effect
Oon the interference level.

The 1I/C probability distributions were determined on the basis of
Gaussian variations in the angular separations between the beams of the
interfering and wanted signals. For tolerances below 0.5° for satellite
8tation keeping and antenna mispointing, the probability distribution in dB
Of the antenna side-lobe levels remains essentially unchanged from its
8sgsumed Gaussian distribution. This same statement applies if the cumulative
Variations in 6 from nominal values follow a triangular probability density,
éxcept that in such case the tolerances can be even larger, up to 1.0°.
There is no firm data on the actual density for variations in 6; our choices
8eem reasonable.

The I/C distributions were used to compare I/C confidence levels with
those based on a conventional worst case analysis. The difference AWC-STAT

Can be substantial, up to 3.7 dB with * 0.5 dB variation in transmitted power

N
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levels for ¥ = 2°, with 4 interfering signals on networks where each link has
One wide-beam and one narrow-beam antenna. For networks where all antennas
have narrow beamwidths, the difference is much larger, up to 7.5 dB with 4
interfering signals at § = 2°.

The above results apply with rain fading perfectly mitigated on all
up-links and perfectly correlated among all down-link signals. If the wanted
signal is subject to a known dB rain fade, then the probability that I/C
exceeds a given level can again be determined from the distribution curves,
and the same comment applies if all interfering signals simultaneously
undergo the same rain fades. In the case of different rain fades among
different interfering signals, the result on I/C confidence levels could be
Congervatively estimated by assuming that all interfering signals undergo the
Wnimum rain fade.

An alternate way to account for rain fading effects is to convolve the
TYain fade probability density with the dB probability densities of the other
link variables, as explained in the previous section. For typical rain fade
distributions the dB variance of the rain fade probability density is
tYPicallyIO.S dB or less, while that of the probability distribution due to
Variations of antenna patterns is close to 4 dB. The variance of the sum
Probability density remains close to 4 dB and the distribution remains
Virtually unchanged from its value when rain fading effects are ignored.

The results presented here quantify what has been previously articulated
in 4 qualitative way; namely that a worst case design is overly conservative

in predicting actual I/C levels, averaged over space and time. The results
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in this report could be used, together with other data including antenna
8ains and transmitted power levels, to predict the probability that a
Satellite link would operate at a given performance levei. As stated earlier
[15] "Being able to state results in probabilistic terms, and being able to
State the cost of increasing those probabiities, is a new approach to orbit
BWanagement.” We would suggest that the probabilistic approach is more
Tealistic than the conventional worst case approach and is comparable to
heans used to quantify the reliability behaviour of other complex systems.

The probabilistic approach could also be used to determine satellite
network spectrum-orbit capacity. Use of a worst case analysis to determine
the minimum nominal satellite separation B required to provide a wanted I/C
ratio yields an unnecessarily large value for U. Use of I/C distribution
curves like those presented here would yield a lower value of § and a
Correspondingly larger capacity. The actual determination of spectrum orbit
Capacity is complex [16] but an approach based on link I/C probability
distributions is a reasonable one worthy of careful examination.

Estimates of the difference between orbit capacities based on worst-—case
and statistical evaluations are possible. For example on networks with four
interfering signals and a nominal 2° spacing, (51) indicates that with 90%
\Drobability I/C + Ge(O) = 27.6 dB. A worst case analysis shows

I/C + G_(0) = 6 + 30 - 25log(Fy. - 0.3) (56)

The value of Fbc needed for a 27.6 dB value for I/C + Ge(O) is easily

Obtained from (56):
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- (8.4/25)
Byc = 0-3 + 10

= 2.47° ' (537)
The spectrum-orbit capacity appears to have been reduced under worst

case analysis to approximtely 81% of what is obtainable with § = 2° under

probabilistic analysis. If we add the effects of power level variations of

0.5 dB and rain fading of 1.0 dB for the wanted signal then

- (10.4/25)
Ehg 0.3 + 10

= 2.91° (58)
In this case the orbit-capacity reduction is to 69% of the statistically
determined value at § = 2°.
For narrowbeam networks Qith T =79 = 2° and 4 interfering signals, Fig.
8 indicates that with 90% probability I1/C + G, (0) + G (0) - N,

41.8 dB. A worst case analysis which includes + 0.5 dB transmitter power

B is less than

level variations and 1.0 dB rain fading of the wanted signal yields the

following Uﬁc for 41.8 dB:

41.8 = 8 + 60 - 50 1og(ts'w,c - 0.25) (59)
- (26.2/50)

Eﬁc 0.25 + 10
= 3,59° (60)

The resulting reduction in orbit capacity is to 56% of the 9 = 2° value.

The above analysis of orbit-capacity reductions is somewhat
Oversimplified but does indicate the conservatism of a worst case analysis.
In practise, users would find at § = 3°, data rates or signal-to-interference
Yatios would be higher than what is expected from a worst case analysis based
on J = 2°, This is in fact what is happening, and is one of the factors

Which motivated this study.
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APPENDIX I: DEFINITION OF LINK PARAMETERS
Satellite link parameters are defined as follows:
Down-Link
Pd: RF output power from the satellite transponder.
GS(¢): satellite antenna gain in the direction of the receiving earth
statlion antenna at angle ¢.
Lm: multiplexing loss in the satellite after the power amplifier
(=1 or 2 dB)
Lft free space loss between satellite and earth station (including a 20
log(£f) component, = 205 dB at 12 GHz)
Lca: clear air loss (fraction of a dB at SHF)
D: rain-attenuation loss (highly variable, up to = 10 dB at 12 GHz)
Ge(e): earth station receiving gain in the direction of the satellite at
angle 0
pE:Link

Pu: RF output power of the wanted signal from the earth station transmitter

Hs(a): satellite receiving antenna gain in the direction of the transmitting
earth station at angle a

U rain attenuation loss on up link

He(B): earth station transmitter gain in the direction of the satellite
receiving antenna at angle B
When both the wanted signal and interference are under consideration,

the gubscript "w" is appended for the wanted signal, "u" for the up-link

interference and "d" for the down-link interference.
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APPENDIX II: SUMS, PRODUCTS AND TRANSFORMATIONS OF RANDOM VARIABLES

Important results involving sums, products and transformations of random
variables are summarized below for easy reference. Further details are
available elsewhere [12,13].

A. Sums of Random Variables

Let x and y be two random variables, and let z = x + y. Then the

density fz(a) in terms of the joint density fxy(B,y) is
£,(a) :{ £y (@7B:B)dB . (AII-1-a)

= | £,,(8,0-B)dp (AII-1-b)

If x and y are statisticélly independent then fz is the convolution of x

and y:
£ () =_i £ (a-B)E_(B)dB (AII-2-a)

= fx(B)fy(a-B)dB (AII-2-b)

B. Product of Random Variables

Let z = xy. Then

w _ a _

AORSRU R CDOLE (AI1-3-a)
= ” -1 a -F =

18l £y (Bsp)dB (ALI-3-D)

If x and y are statistically independent

£, = | l81=1e, (z)E, (BB (ALI-4-a)
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a

- [ lg]-1 e
S 1Bl @) (g)ap (ALI-4-b)

C. Transformation of Random Variables

Let x and y be single-valued random variables, with y = g(x). Then
[13]
£,(8) = [£,(a)/[g" (a)]] a = g71(p) (AII-5)

We have assumed a one-to-one relationship of x to y. If more than one x
value yields the same y value (AII-5) is readily extended [13].

As\an example, consider the case where x in dB is a Gaussian random
Variable; thus

£ (a) = (vZro) "lexp[-(a-m)2/202?] (AII-6)
The power level y is related to x:

g = 10x/10

(AII-7)
Thus, g(x) = 10(x/10)

- e(lnlO/lO)x

g'(x) = (2n10/10)10¢*/10)

(4nl0/10)y

(10/4n10) -(logloﬁ—m)z
exp| ] (AII-8)
YIx of 202

Thus, y is a log-normal random variable.

£,(B)

APPENDIX III - ANTENNA GAIN REFERENCE PATTERNS
We include on the following four pages the standard antenna reference
Pattern for earth station antennas [6] and for satellite antennas [l1], over
the entire angular region. Pages 47 and 48 apply to earth station antennas,
while pages 49 and 50 apply to satellite antennas. These standard patterns

are under continuing review by various organizations.

|
N
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ANNEX 1

REFERENCE PATTERN OF THE WARC-79

The reference pattern in Fig. 12, as agreed 10 by the WARC-79, is given by the following extract from
Appendices 28 and 29 of the Radio Regulations:

Determination of the gain

“The relationship ¢(a) may be used to derive a function for the horizon antenna gain, G(dB) as a function

of the azimuth a, by using the actual earth station antenna pattern, or a formula giving a2 good approximation. -

For example, in cases where the ratio between the antenna diameter and the wavelength is not less than 100, the
following equation should be used:

G@) = Gy ~2.5x IO"(gcp). for 0<@<o, (3%a)
G() = G, for ¢, <P <, (39b)
G(p)=32-25log for @, <@ <48° (39¢c)
G(p) = -0 for 48° < ¢ < 180° (39d)

where:
D: antenna diameter

A:  wavelength } expressed in the same unit

G,: gain of the first sidelobe = 2+ ns:o.%

P = 2—2,3#3‘...,. - G| (degrees|

D N XY
P, = 1585 (T) (degrees)

When it is not possible, for antennas with -g of less than 100, to use the above reference antenna pattern

and when neither measured data nor a relevant CCIR Recommendation accepted by the administrations
concerned can be used instead, administrations may use the reference diagram as described below:

G(@) = Gpnyr ~ 2.5 % l()"(%w)z for 0<9 <9, (40a)
G(9) = G, for @, <9< lOO—"D- (40b)
D A o
G(p) = 52—10I03T—25lo;¢ for lw3<¢<48 (40¢)
Gg) = |o-|o|o.% for 48° < @ < 180° (40d)
where:

D: antenna diameter

A wavelength } expressed in the same unit

G1 = gain ofthe st sidelobe = 2 + 15 log

201
O = T‘/G" - G (degrees)
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The above patterns may be modified as appropriate to achieve a better representation of the actual
snienna pattern.

In cases where g is not given, it may be estimated from the expression 20 log 3{—) ~ Gp,, — 1.7, where G,,,

is the main lobe antenna gain in dB.”

G
max
A
s
G,
8
3
© ¢
§
D
”® Y. ¥, “»° 180°

Off-axis angle, @ (degrees)

FIGURE 12 ~ Reference radiation patiern of en earth-station entenns
(afier the WARC-7%)

A: main lobe

B: firs! side lobe
C: other side Jobe
D: residual gain

The equations quoted above include the evaluation of antenna radiation pattern clbse to the axis of the
main beam, which is not a part of the radiation pattern currently quoted in the CCIR and recent experimental
data has indicated that it may be necessary 1o modify the equation quoted above for the gain of the first side lobe.

Measurements made on a number of symmetric Cassegrain antennas have shown that the refative first
side-lobe levels (generally € — 14 dB) do not exhibit a clear dependence on D/A. Figure 13 shows the data which
has been converted into absolute first side-lobe levels from the knowledge of the peak gain of each antenna. It can
be scen that the above formula for G, under predicts the first side-lobe gain particularly for larger anjennas. Based
on these considerations, the following equation is considered to be a more appropriate representation of the first
side-lobe gain:

G, = 20log (D/2) = 7 dBi

Whereas this equation represents an approximate mean of the measured data, it is evident that individual
design features of an antenna, e.g. aperture illumination efficiency, would produce variations in the first side-lobe
levels as is indicated by the spread of the data shown in Fig. 13.

For angles beyond 1° to 1.5°, however, the above equations simplify to those now used in the CCIR for
antenna of D/A > 100.

Furthermore, it is recommended that the compatibility of these formuias with the search for an efficient
utilization of the geostationary orbit should be studied.
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4. Satellite antenna reference radiation pattern

It appears desirable to postulate guidelines for a pattern as a basis for further consideration for satellite
antennas which have relatively simple pattern envelopes, such as those having simple circular main lobes. 1t is
also desirable to have an interim reference for these conditions for the co-ordination computations of
Appendix 29 of the Radio Regulations (Final Acts of the World Administrative Radio Conference), if actual
patterns are not available.

As noted previously, the radiation pattern of the satellite antenna is important in the region of the main
lobe as well as the farther side lobes. Thus, the following postulated pattern commences at the —3 dB contour of
the main lobe and is divided into four regions.

0 2
G(O):G,,,—l!(e—} dB for 8, <8< 266, m
0/
G® =G, —20 dB for 260,<0<638, @
G®) = G,—25log [| dB for 638, <0< 8, o)
0/
G(8) =-10 dB for 8, <@ 4)
where:
G(8) : gain at the angle (8) from the axis,
G, : maximum gain in the main lobe,
4,: one-half the 3 dB beamwidth in the plane of interest (3 dB below G,),
8,: value of (8) when G(8) in equation (3) is equal to — 30 dB.

These functions are shown in Fig. 13.

Equation (1) is one of a number of functions which may be utilized to approximate the main lobe patte-n
of a simple (un-shaped) beam. In the region from —3 dB to — 20 dB as postulated herein, this function provides
gain values which are generally higher than those encountered with actual simple beam antennas. Equation (2)
covers the region of the first, or the first few side lobes, and is based on typical values achieved when no attempt
is made to reduce the first side-lobe levels. Equation (3) covers the region of the farther side lobes. A slope of
—7.5 dB/octave is utilized as in the earth-station reference patterns. The fourth region, equation (4), is also
derived from the earth-station reference pattern.

Difficulties arise, however, in attempting to apply the postulated pattern to an elliptical beam, as shown in
[CCIR, 1974-78]. Administrations are therefore requested to submit measured radiation patterns for antennas with
other than simple circular beams, including elliptical beams.

s Conclusions

From the standpoint of satellite antenna design, it cannot be assumed that efficient orbit utilization will be
obtained unless it is specifically sought. In general, apertures which are larger than those required to achieve the
necessary e.i.r.p.. will enhance orbit utilization over a coverage area. Therefore, satellite antenna radiation pattern
objectives appear to be desirable. To enhance orbit utilization, the spacecraft antenna should have the following
general characteristics:

— the main lobe pstterns of the satellite antennas should conform to the coverage area as closely as possible
(beam shaping in the plane normal to the axis of propagation is desirable);

~ the side lobes shouid be controlied outside the coverage area. The utilization of techniques to reduce the first
side-lobe level and to increase the far side-lobe envelope slope are to be encouraged:

— the position of a geostationary satellite shouid not be unduly restricted by steerability limits of narrow beam
antennas.
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There are many parameters involved with complex satellite antenna patterns which affect orbit utilization,
and additional study is required before any general conclusions can be drawn.

It is not known at present whether a spacecraft antenna reference pattern can be developed which will be
applicable to the large variety of complex patterns which may be utilized.
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APPENDIX IV: COMPUTER PROGRAM DOCUMENTATION

The computer programs used to obtain the results presented are listed

below, together with some sample numerical output. Considerable care was

taken in developing these programs, to enable easy readability, modification

of key variables, and initial experimentation to obtain preliminary results.

In all programs, key variables are:

B:
THETA:

STHETA:

SDB:

F%:

ALPHAM:

SIGMA:

tolerances for mispointing and satellite station keeping
nominal satellite separation angle

standard deviation in degrees of the cumulative angular errors
from mispointing and satellite station keeping

standard deviation in dB of the interference side lobe level
number of panels used in the numerical Simpson's rule
integration of (30)

number of panels in the numerical trapezoidal rule integration
to perform numerical convolutions, and in the distribution
function calculations using (13)

a flag to control the number of convolutions, in accordance
with the number of interfering signals

median rain fade

raid fade standard deviation

All programs were written and executed in IBM advanced microcomputer

bagic. The language was fully adequate for our purposes and is easily

Converted into FORTRAN 77, if desired. Multiline statements proved very

useful in writing compact programs, and multicharacter variable names (up to

255 characters) facilitate program readability. The fact that subroutine

N
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variables are globally defined did not prove inconvenient for our
applications.
Program SCENARIC.BAS was used to obtain the I/C distributions for
Gaussian angular variations with a single interferer (Figs. 4-9, inclusive).
Program SCENARIT.BAS was a modification of 1C, and was used to obtain
the curves in Fig. 4 and 5 for a triangular probability density for the
cumulative angular variation due to mispointing and station keeping errors.
Program SCENAR2C.BAS was used to obtain the I/C distributions in Figs.
6-9, inclusive, for 2 and 4 interfering signals. The convolutions were
obtained by using a trapezoidal integration rather than the conventional
first-order hold approach, to increase the numerical accuracy [14].
Convolution involved interference power quantities with equal increments in
power, which implied highly unequal steps in dB. Many points (M = 1000) were
needed to obtain adequate numerical accuracy. It was found that for the
tases considered here, convolutions involving only the first M output values
Bave sufficient accuracy, since the output probability density values from M
+ 1 to 2M were very small, relative to values in the range from O to M.
Program SCENARIR.BAS was used to obtain the rain fading probability
distributions in Fig. 10 labelled "wanted signal fade" and "interfering
8ignal fade". Program SCENAR2R.BAS yielded the other Fig. 10 curve. Program

SCENAR3R.BAS was used to obtain the rain fade distribution in Fig. 1l.
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LPRINT "PROG NAME: SCENARIC. BAS"

LFRINT
9
B=.1: t THETA = 2: N = 200: M = 200: Pl = 3,141593
STHETA= (E*SQR(3) ) /SAR(6) : SDE=3. 91
L]
DEF FNA(X) = 25#(1-(LOG(X)/LOG(10)))
DEF FNBAUSS (X,S) = EXF (~((X/S)~2)/2)/ (SQR(Z#F ) #8)
Y
RANGETH=S*STHETA: DEL TATH= (£#RANGETH) /N
LLIMTH=THETA~RANGETH: UL IMTH=THETA+RANGE TH
RANGEDE=3#SDE : DELTADE = (Z#RANGEDE) /M
LLIMDE=FNA (THETA) ~-RANGEDE:: UL IMDE=FNA (THETA) +RANGEDE
L]
LPRINT “E=";E, "THETA="; THETA, "N=" 3N, "M=" M
LPRINT “FNA(THETA)="3FNA (THETA), "STHETA=" ; STHETA, "SDE="; SDE
LPRINT
LFRINT “RANGETH=";RANGETH, “DELTATH=";DELTATH
LPRINT “LLIMTH="3LLIMTH, *ULIMTH=" ;UL IMTH
LPRINT"CHECK: LLIMTH+N#DELTATH="; LLIMTH+DELTATH#*N
LPRINT
LPRINT “RANGEDE" ; RANGEDE, "DELTADE = *;DELTADE
LPRINT “LL IMDE="LL IMDE, "ULIMDB="UL IMDE
LPRINT “CHECK: LL IMDE+M#DELTADE=" 3l L IMDE+M*DELTADE
L
DIM X (201), DENSI (201), DISTI(201)
FOR J = O TO M: X = LLIMDE+J#DELTADE: X(J) =X
SUMOD = ©
FOR I = 1 TO N-1 STEF 2
Y = LLIMTH+I*DELTATH: ADE = FNA(Y)
SUMOD = SUMOD+FNGAUSS ( (X~ADE), SDE) #*FNGAUSS ( (Y-THETR) , STHETA)
NEXT I
SUMEV = O
FOR I = 2 TO N-2 STEP &
Y = LLIMTH+I#DELTATH: ADE = FNA(Y)
SUMEV = SUMEV+FNGAUSS ( (X-ADB) , SDE) #FNGAUSS ( (Y~THETA) , STHETA)
NEXT I
AL = FNA(LLIMTH) ¢ AU = FNA(ULIMTH)

SUML=FNGAUSS ( (X~AL ), SDE) #*FNGAUSS ( (LLIM-THETR) , STHETR)
SUMU=FNGAUSS ( (X—AU) , SDE) #*FNGAUSS ( (ULIM-THETR) , STHETR)
FSUM=SUML +SUMU+2#SUMEV+4#SUMOD

DENSI (J) = (DELTATH/3)#FSUM

IF J = 0 THEN DISTSUM = O ELSE DISTSUM = DISTSUM+DENSI (J-1)+DENSI (J)
DISTI(J)=(DISTSUM/2) #DELTARDE
NEXT J
L]

LPRINT

LPRINT"K" TAE(20) “"dE" TAE(40) "DENSI(K)" TAE(60) “DISTI(K)": LPRINT
FOR K = O TO N STEP 2
LPRINT K TRB(20) X(K) TAE(40) DENSI (K) TAE(60) DISTI(K)
NEXT K

END



PROG NAME: SCENARLC.BAS

B= .1 THETA= &
FNA(THETA)= 17.47425

RANGETH= . 3538535

RANGEDE 11.73
LLIMDE= 5. 744252

CHECK: LLIMDE+M*DELTADE= 29. 20426

K dE
o S. 744252
z 5.978853
4 €.213453
€ 6. 448053
8 6.682653
10 €.917253
18 7.151852
14 7. 386452
16 7.621053
18 7. 855653
20 8. 090a5e
2& 8. 324852
24 8.55945&
£6 8. 794052
ze 9.028652
30 9. 26325
3z 9. 497852
24 9. 73245z
36 . 9. 967052
3s 10. 20165
40 : 10. 43625
4 10. 67085
44 10, 90545
46 11. 14005
48 11. 37465
50 11. 60925
sz 11.84385
54 12. 07845
56 12. 31305
sa 12.54765
€0 12. 78225
e 13. 01685
64 13. 25145
66 13. 48605
€8 13. 72065
70 13, 95525
72 14, 18985
74 14, 42445
76 14.6590%
78 14, 89365
80 15. 12825
az 15. 36285
84 15. 59745
8s 15. 83205
as i 16.0666S
90 . ' 16. 30125

N=
STHETAR=

DELTATH=
LLIMTH= 1.646447 ULIMTH=
CHECK: LLIMTH+N#DELTARTH= &.353584

M= 200

7.071069E-02

3. 535535E-03

. 353554
.1173

29. 20426
DENSI (K)

1.171&285E-03
1. 29755E-03
1.661588E-03
1.968478E-03
2. 32374E6E-03
. 733368E-03
3. 203746E-03
3. 741704E-03
4. 354439E-03
S. 049471E-03
S.834597E-03
€. 717797E-03
7. 707154E-03
8. 81074E-03
1. 003649E-02
1. 139207E-02
1.288471E-02
1. 452104E-02
1. 630693E-02
1, 824726E-02
2. 034578E-02
2. 260489E-02
2.502543E-02
2. 760E54E-02
3. 03454EE-02
. 0332374

3. 627533E-02
3. 944999E-02
4.274977E-02
4.616064E-02
4. 966624E-02
S. 324788E-02
5. 688457E-02
6. 055333E-02
6. 422929E-02
6. 788584E-02
7. 149521E-02
7.502844E-02
7. 84560SE~-02
. 0817482
8.487531E-02
8. 780838E-02
9. 051949E-02
9. 298z15E-0
9.517186E-02
9. 706E642E-02

SDE= 3.91

DISTI(K)

(a]

3. 008057E-04
6.590528E-04
1.084192E-03
1.586918E-032
2. 179275E-03
&.874759E-03
3. 688418E-03
4.E636945E-03
S. 73876E-0Z2
7.014083E-03
8. 484981E-03
1. 017541E-0&
1.211123E-02
1.432016E-02
1. 683177E-02
1.967737E-0&
2. 288991E-02
. 0265038

3. 0S5471E-0&
3. 507933E-02
4. 011508E-02
4.S69976E-0&
S.187115E-0&
5. 86EE6E3E-OE
. 0661287
7.427446E-02
8. 315818E-0&
. 0927954

. 1032231

. 1144623

. 1265332

. 1394511

. 1532262

. 1678633

. 1833609

. 1997118
.2168998

. 2349053

. 2536994

. 2873247

. 2935059

e 3144272

. 3359558

« 3580304

- 3805845



140
142
144
146
148
150
152
154
156
158
160

164
166
1e8
170
172
174
176
178
180
18z
184
186
188
190
192
194
196
198
200

16.83585
16, 7704S
17.0050S
17.2396%5
17.47425
17.70885
17.94345
18. 17805
18. 41265
18. 64725
18.88185
19. 11645
19. 35105

19. 58565

19. 82025
20, 05485
20. 28945
20. 52405
20. 75865
20. 99325
21.22785
21. 46245
21. 69705
21.93165

22. 16625,

22. 40085
22. 63545
22. 87005
23. 10465
23. 33925
23.57385
23. 80845
24.04305
24.2776S
24.51225
24. 74685
24.9814%
25. 21605
25. 45065
25. 68525
25.91985
26. 15445
26. 38905
26. 623€E5
26. 85825
27.09285
27. 32745
27.56205
27.79665
28. 03126
28. 26586
28. 50046
28. 73506
28. 96966
29. 20426
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9. 864631E-02
9. 989509E-02
. 1007996

« 1013504

« 1015414

« 1013707

. 1008401

9. 995%23E-0z
9.872555€E-02
9. 716393E-02
9.528667E-02
9. 311306E-02
9. 066524E-02
8. 796756E-02
8. S04639E-02
8. 192959E~-02
7.864613E-02
7. 522S57E-0&
7.169771E-02
. 0680921

6. 443768E-0O2
6. 076236E~-0&
S. 70927SE-02
S. 345387E-02
4,986879E-02
. 0463586

4. 294212E-02
3. 96358EE-02
3. 645398E-02
3. 340822E~-02
3.050797E~-02
2. 776037e-02
2. 517033E-02
2. 274072E-02
2.047253E-02
1.836497E-02
1.641576E-02
1.462122E-02
1,297651E-02
1. 147583E-02
1. 011259E-02
8. 879575E-03
7. 769157E-03
6.773412E-03
5. 884277E-03
5. 093665E-03
4.393592E-03
3. 776251E-03
3. 234104E-03
2. 759936E-03
2.346907E-03
1.988588E-03
1. 678981E-03
1.412533E-03
1.184141E-03

« 4035463
. 4268401
. 4503867
« 4741041
. 4979086
« 5217156
« 5454402
. 568998¢
« 5923088
«6152915
. 6378704
. 6599739
. 6815348
. 702498

. 7227896
« 7423786
« 7612163
. 7792672
. 796502

. 8129008
. 8284471
. 8431331
. 8569573
. 8699238
. 8820425
. 8933289
« 9038023
. 9134869
. 9224104
« 9306031
. 9380983
« 944931

. 9511374
. 9567551
.9618z218
. 9663751
« 970452

« 9740911
. 9773261
. 980194
. 9827229
. 9849487
. 9868999
. 988604

« 9900871
« 9913736
. 992485
. 9934426
. 9942639
. 9949661
« 9955642
« 996072

« 9965014
. 9968636
. 9971676



310
320
330
340
350
360
370
410
420
430
440
450
460
470
480
490
500
510
520
530
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LPRINT "PROG NRME: SCENAR1T.BRS"

LPRINT

’
B=,1: s THETA = 2: N = 100: M= 100: PI = 3,141593
STHETR=(B#SQR(3))/SQR(E) : SDB=3. 91

’

DEF FNR(X) = 25+ (1-(LOG(X)/LOG(10)))
DEF FNGRUSS(X,S) = EXP(—((X/S)"2)/2)/(SQR(2#P1)*S)
DEF FNTRI(X,R)=(,5/R)* (1-(ABS(X) /A) ) *# (((X+R) /ABS (X+R) )~ ((X-R) /ABS (X~R)) )

RANGE TH=E: DELTATH= (2%#RANGETH) /N
LLIMTH=THETA-RANGETH: UL IMTH=THETR+RANGETH
RANGEDB=3#SDE : DELTADR =(2#RANGEDB) /M
LLIMDE=FNA(THETAR) —RANGEDE : UL IMDE=FNR(THETA) +RANGEDB
’
LPRINT "B="3B, “"THETA=" 3} THETR, "N=" 3N, "M="gM
LPRINT “FNR(THETAR)="3FNR(THETA), “STHETAR=" ; STHETAR, “SDE="3; SDE
LPRINT
LPRINT "RANGETH="§RANGETH, "DELTATH="yDELTARTH
LPRINT "“LLIMTH="3LLIMTH, "ULIMTH="jULIMTH
LPRINT*CHECK: LLIMTH+N#DELTATH="3 LLIMTH+DELTRTH#N
LPRINT ’
LPRINT "RANGEDR"; RANGEDE, “DELTADE = *“3DELTARDRE
LPRINT "LLIMDE="LLIMDE, "UL IMDE="UL IMDE
LPRINT "CHECK: LLIMDB+M*DELTADE=";LLIMDE+M*DELTADE
’
DIM X(201), DENSI (201), DISTI(201)
FOR J = O TO M: X = LLIMDB+J*DELTADE: X(J)=X
SUMOD = O
FOR I = § TO N-1 STEP 2
Y = LLIMTH+I*DELTATH: ADB = FNR(Y)
SUMOD = SUMOD+FNGAUSS ( (X-ADE), SDE) #FNTRI ( (Y-THETR), B)
NEXT I
SUMEV = O
FOR I = 2 TO N-2 STEP 2
Y = LLIMTH+I#DELTATH: ADE = FNA(Y)
SUMEV = SUMEV+FNGAUSS ( (X—ADE) , SDE) #FNTRI ((Y-THETAR) , E)
NEXT I
FSUM=2#SUMEV+4+SUMOD

DENSI (J) = (DELTATH/3) #FSUM

IF J = 0 THEN DISTSUM = O ELSE DISTSUM = DISTSUM+DENSI (J-1)+DENSI(J)
DISTI(J)=(DISTSUM/2) #DELTADE
NEXT J
’

LPRINT

LPRINT"K" TRE(20) “dB" TAB(40) *DENSI(K)" TAR(60) *DISTI(K)": LPRINT
FOR K = 0 TO N STEP 2
LPRINT K TAE(20) X(K) TAB(40) DENSI (K) TAB(60) DISTI(K)
NEXT K

END
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290
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310
320
330
340
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360
370
380
390
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410
420
430
440
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470
480
490
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510
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LPRINT "PRDG NAME: SCENAR2C.BARS"

LPRINT
,
B=.1: : THETA = 2: N =100: M =1000: Pl = 3.141593
STHETA= (B#SQR(2)) /SQR(6) 1 SDB=S. 531 C1=10/L0G(10): Fx=0
1]
DEF FNA(X) = S0# (1-(LOG(X)/LDG(10)))
DEF FNGRUSS(X,S) = EXP(~((X/S)~2)/2)/ (SGR(2#P1) #S)
]
RANGE TH=S#STHETA: DELTATH= (2#RANGETH) /N
LLIMTH=THE TA- RANGETH: UL IMTH=THE TA+RANGETH
RANGEDE=3#5DE: DELTADE= (2% RANGEDE) /M
LL IMDE=FNA ( THETR) ~RANGEDB : UL IMDB=FNA ( THETA) +RANGEDE
LLIMPWR=10~(LLIMDEB/10) ¢ ULIMPWR=10~ (ULIMDB/10)
DELTAPWR= (UL IMPWR-LL IMPWR) /M
"’
LPRINT “B=";R, "THETA="§ THETA, SN="yN, "M M
LPRINT *“FNA(THETR) =" jFNA(THETA) , "STHETA=" }STHETA, “SDB=" } SDK
LPRINT
LPRINT “RANGETH="3jRANBETH, “DELTATH=" ; DELTATH
LPRINT “LLIMTH="jLL IMTH, YUL IMTH=" §UL IMTH
LPRINT*CHECK: LLIMTH+N#DELTATH="; LLIMTH+DELTATH*N
LPRINT
LPRINT *RANGEDB" ; RANGEDB, “DELTADEK = *;DELTADK
LPRINT “LLIMDB="LLIMDB, “UL IMDB=" ;UL IMDR
LPRINT “CHECK: LLIMDR+M#DELTADB="yLL IMDR+M*DELTADE
LPRINT
LPRINT “LLIMPWR="jLL IMPWR, “UL IMPWR=" ;UL IMPWR, “DEL TARPWR=" ; DEL TAPWR
LPRINT
1]
DIM X(1001), DENST (1001) , DISTI(1001), DENSIC (1001)
FOR J = 0 TD M: XPWR = LLIMPWR+J#DELTAPWR
X = C1#L0G(XPWR) 1 X (J)=XPWR
, SuMDD = O
FOR I = 1 TO N-1 STEP 2
Y = LLIMTH+I#DELTATH: ADB = FNA(Y)
SUMDD = SUMDD+FNBAUSS ( (X~ADB) , SDR) #FNBAUSS ( (Y-THETA) , STHETA)
NEXT 1
SUMEV = O
FOR I = 2 TO N-2 STEP 2
Y = LLIMTH+I#DELTATH: ADB = FNA(Y)
SUMEV = SUMEV+FNGAUSS ( (X-ADB) , SDB) #FNBAUSS ( (Y=THETA) , STHETR)
NEXT 1
AL = FNA(LLIMTH): AU = FNA(ULIMTH)

SUML=FNBAUSS ( (X~-AL) , SDR) #FNGAUSS ( (LL IM-THETR) { STHETR)
SUMU=FNGAUSS ( (X-AU) , SDB) #FNBAUSS ( (UL IM-THETA) , STHETR)
FSUM=SUML +SUMU +2 #SUMEV +4 #SUMDD
DENSI(J) = (C1/XPWR)# (DELTATH/3)#FSUM
NEXT J
LPRINT "FINISHED CALCULATING DENSI(J)"
*

FOR J = 0 TOM
sumc = 0
FOR K= 0 TO J-1
SUMC = SUMC + DENSI (K)#DENSI (J-K) + DENSI (K+1)#DENSI (J-(K+1))

NEXT K
BGOSUB 790
NEXT J
*
LPRINT

LPRINT"K" TAB(20) “dB" TAR(40) *DENSIC(K)" TRB(E60) *DISTI(K)": LPRINT
FOR K= O TO M STEP 20
XDBOUT = C1#L0G (X (K)+LLIMPWR® (142#F%))-3# (1+F%)
LPRINT K TRB(20) XDBOUT TRB (40) DENSIC (K) TRB(60) DISTI (K)
NEXT K

LPRINT

LPRINT

IF FX=0 THEN FOR J=O TO M: DENSI (J)=DENSIC(J): NEXT J: Fx=1: 80OTO 520

END

*

*DISTRIBUTION CALC. SUBROUTINE
1

DENSIC(J)= (DELTRPWR/2) #SUMC

*
IF.J = 0 THEN DISTSUM = 0 ELSE DISTSUM = DISTSUM+DENSIC(J-1)+DENSIC(J)
DISTI(J)=(DISTSUM/2) #DELTAPWR

RETURN
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10 LPRINT "PROG NRME: SCENARIR.BAS"

20 LPRINT

30 ’ .

40 ALPHAM=, 235: SIGMA=1.174: M =1000: Pl = 3.141593
S0 LPRINT "ALPHAM="jALPHAM, "SIGMA="3;SIGMA, "M="sM

60 LPRINT

70 !

80 DEF FNRAIN(X) = EXP(-.5# (LOG (X/ALPHAM) /SIGMA) ~2) / (SQR(2#PI) #SIGMAxXX)
90 ’

100 DIM X(1001), DENSIR(1001), DISTI (1001)

110 DELTARAIN=(LOG (ALPHAM) +S*SIGMA) /M: X(0)=0: DENSIR(0) =0
120 DISTSUM=0

125 °

130 FOR J=1 TO M: X=J*DELTARAIN: X(J)=X

140 DENSIR(J) = FNRAIN(X)

150

160 DISTSUM = DISTSUM+DENSIR (J~1)+DENSIR(J)

170 - DISTI(J)=(DISTSUM/2) #DELTARAIN

180 NEXT J

190

200 LPRINT

210 LPRINT "K" TAB(20) "dBR" TRR(40) “DENSIR(K)" TRB(60) *“DISTI(K)" :LPRINT
220 FOR K = O TO M STEP 20

230 LPRINT K TAE(20) X(K) TAB(40) DENSIR(K) TABR(60) DISTI(K)

240 NEXT K

250 END

10 LPRINT "PROG NAME: SCENARZR.BRS"

20 LPRINT

30 ’

40 ALPHAM=, 235:; SIGMA=1. 174: M =1000; Pl = 3.141593
SO0 LPRINT "ALPHAM='jALPHAM, "SIGMA=";SIGMA, “M=t M

60 LPRINT

70 '

8o DEF FNRAIN(X) = EXP(-.5%(L0OG (X/ALPHAM) /SIBMA) ~2) / (SER(Z#PI) *SIGMA%X)
90 i

100 DIM X (1001), DENSIR(1001), DENSIC(1001), DIST1 (1001)
110 DELTARAIN= (LOG (ALPHAM) +S*SIGMA) /M2 X(0)=0: DENSIR(0) =0
120 DISTSUM=0

130

140 FOR J=1 TO Ms X=J#DELTARAIN: X(J)=X

150 DENSIR(J) = FNRAIN(X)

160 NEXT J

170

180 DISTI(M)=}

190 FOR J=0 TO M-1

200 SUMC=0

210 FOR K=J TO M-1

&e0 ‘SUMC = SUMC + DENSIR(K)#DENSIR(K-J) + DENSIR(K+1)#DENSIR(K+1-J)
&30 NEXT K

240 DENSIC (J) = (SUMC/2) #DELTARAIN

&50 °*

260 IF J=0 THEN DISTSUM=0 ELSE DISTSUM = DISTSUM+DENSIC(J-1)+DENSIC (J)
270 DISTI(J)=(DISTSUM/2) #DELTARAIN

280 NEXT J

290

300 LPRINT

310 LPRINT "K" TAR(20) "dB" TAB(40) "DENSIR(K)" TAB(60) "DISTI(K)" :LPRINT
320 FOR'K = O TO M STEP 20

330" LPRINT K TAB(20) X(K) TAB(40) DENSIR(K) TAB(E0) .5+DISTI(K)

340 NEXT K

350 END
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10 LPRINT "PROG NRME: SCENAR3R.BRS"

20 LPRINT

30

40 ALPHAM=, 253: SIGMA=1. 174 M =10003 PI = 3.141593

S50 THETR=2: SDE=3. 91

60 LPRINT "ALPHAM="gALPHAM, "S1GMA=";SIGMA, "EDE="; SDE,
"THETA="; THETR, “M="3M

70 LPRINT

8o

90 DEF FNRAIN(X) = EXP(-.S%(LOG(X/ALPHAM) /SIGMA)~2) / (SQR (2%F 1) *SIGMAX)

100  DEF FNBAUSS(X,S) = EXP(-((X/S)"~2)/2)/(SQR(2%PI)*S)

110 1

120 DIM X(2001),  DENSIR(2001), DENSIB(2001), DENSIC(2001),  DISTI(2001)

130 DELTADE=(6#SDB) /M: LL IMDE=-3#SDR

140 LPRINT “DELTADBE="{DELTADE, “LLIMDE=";LL IMDE

150 DISTSUM=0

160

170 FOR J=0 TO M: X=LL IMDE+J#DELTADE: X (J) =X

180 DENSIG(J) = FNBAUSS (X, SDR)

190 IF J(=(M/2) THEN. DENSIR(J)=0 ELSE DENSIR(J) = FNRAIN(X)

200 NEXT J

210 FOR J=M+1 TO 2#M: X (J) =LLIMDE+J#DELTADE

220 DENSIG(J) =03 DENSIR(J)=0

230 NEXT J

240

250 DENSIC(0)=0

260 FOR J=1 TO 2#M

270 IF J (= (M/2) THEN DENSIC(J) =0: GOTO 350

280 IF J )= ((3%M)/2)+1 THEN DENSIC(J)=0: BOTO 350

290 SUMC=0

300 FOR K=0 TO J-1

310 SUMC = SUMC + DENSIG (K)#*DENSIR(J-K) + DENSIG(K+1)#DENSIR(J-1-K)

320 NEXT K

330 DENSIC (J) = (SUMC/2) #DEL TADE

340 °

350 DISTSUM = DISTSUM+DENSIC (J-1)+DENSIC(J)

360 DISTI (J)=(DISTSUM/2) *DELTADE

370 NEXT J

380

385 STOP

390 LPRINT "K® TAB(20) "dE" TAB(40) “DENSIC(K)" TRB(60) *DISTI(K)" iLPRINT

400 FOR K = O TO 2#M STEP 20

410 Y=X (K) +LL IMDE+25# (1~ (LOG (THETA) /LOG(10)))

420 LPRINT K TAB(20) Y TAB(40) DENSIC(K) TRB(60) DISTI(K)

430 NEXT K

440 END
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