
•
University of
Waterloo Research Institute

THE ESTABLISHMENT OF A TELIDON

TECHNICAL CENTRE

FINAL REPORT

APRIL, 1982

91

C655

E872

1982

WATERLOO RESEARCH INSTITUTE
OFFICE OF RESEARCH ADMINISTRATION

UNIVERSITY OF WATERLOO

PROJECT NO. 908-01

THE ESTABLISHMENT OF A TELIDON
/ 	TECHNICAL CENTRE t

FINAL REPORT

by

Eric Manning
F.W. Tompa

G.H. Gonnet
R.R. Williams
V.F. DiCiccio

Industr ada

Library Queen

Ztil 0 2 1998

Industrie Canada
Bibliothèque

Queen

Sponsored by

Department of Communications
Canada

under

Contract with

Department of Supply and Services
No. OER80-00099

Mr. R. Baser
Scientific Authority

April, 1982 COMMUNICATIONS CANADA

1385

LIBRARY - BIWOTHCOE

EXECUTIVE SUMMARY

OVERVIEW

This 	is the final report for DSS contract no.

OER80-00099 performed by the Computer Communications

Networks Group at the University of Waterloo. The study ac-

tivity and this report can be partitioned into three main

areas: general familiarization, videotex network architec-

tures and database architectures.

The familiarization activities have included contact

with other researchers, experience with database management

software and the creation and display of Telidon pages. An

important result of this direct experimentation has been the

insight gained into the communication, storage and retrieval

of Telidon information.

The study of Telidon network architectures has dealt

primarily with the distribution network between the database

and the user terminals. Initially, the various designs for

videotex and teletext networks were enumerated and compared.

In particular, the Omnitel.integrated services data network

has been modelled in considerable detail and its performance

has been determined using both analytic and simulation tech-

niques. The results indicate that Omnitel performs well for

videotex traffic when mixed with traffic from low data rate

digital services. However, there may be significant conges-

tion if high levels of nOn-videotex traffic from sources

such as digital telephony are introduced.

Also, a technique called "encryption-switching" has

been devised for the delivery of Telidon and Telidon-related

services over a CATV network. Local Area Network tech-

niques are used to transmit the data in broadcast mode, but

encryption methods prevent subscribers from intercepting

data which they are not entitled to receive. 	Preliminary

performance calculations 	suggest that an encryption-

switching network based on state-of-the-art hardware may be

capable of handling significant numbers of subscribers (a

large fraction.of the CATV subscribers) and is incrementally

expandable.

The database architecture study has been divided into

two main topic areas: the database structure and retrieval

facilities as seen by the user and the database architecture

used at the system level. Page labels have been introduced

as a means for users to access pages, and implemented in the

Waterloo Telidon software package; several problems relating

to the use of labels and menus have been identified and

solutions have been devised.

A generic model at the system level for the maintenance

of a Telidon database has been proposed. This model in-

cludes a cache memory; secondary storage (disk) and an index

to translate an absolute page identifier into a disk address

for each page. Simulations of the system based on this

model were used to investigate the effects of page cache

strategies, cache size and index strategies on the system

performance. 	It was found that the use of a cache and an

appropriate indexing strategy can reduce the number of disk

accesses to less than one per page displayed. This result

' has major economic significance because the number of disk

accesses required per page usually determines the number of

simultaneous users a system can support with a given hard-

ware cost. Furthermore, the performance of current Telidon

systesm, such as Waterloo Telidon, can be significantly im-

proved through the use of an appropriate cache.

The following sections summarize the important ac-

tivities and results of each aspect of this study in more

detail.

FAMILIARIZATION

Throughout this study we have had a great deal of con-

tact with other researchers and field trial administrators

in Canada, the United States, England, France and Germany,

through field trips and conferences. Initially, our sole

purpose was to gather information about current and future

thinking; however, the emphasis began to shift towards the

coordination of research activities and the sharing of

ideas.

At the University of Waterloo there now exists a com-

plete Telidon system as required to offer 'Telidon services

campus-wide. Approximately thirty user terminals and a Nor-

pak IPS-2 have been obtained (which means that UW's field

trial is one of Canada's largest at this time). This has

iii

permitted various faculties, departments and groups to

create pages for installation on our two databases, both of

which use locally written database software. The Waterloo

Telidon database software has adopted the features of the

DOC user interface plus some enhancements such as page

labels of various kinds. The software has been running

reliably for some time on a PDP-11/45 in CCNG, a VAX-11/750

(at Loyalist College in Belleville) and a VAX-11/780 in the

UW Faculty of Mathematics. The availability of database

software which is thoroughly understood and can be easily

modified by local researchers has been a great help in ex-

perimenting with new database access techniques for this

contract, as well as in providing an advanced Telidon ser-

vice to UW users. Finally, we hope to have remote 'users

from High Schools, the Ontario Government field trial, and

the UW Correspondence Program.

NETWORK ARCHITECTURES

A general reference model for videotex network ar-

chitectures was developed. It contains several data

networks including the distribution or delivery network

which connects the users' terminals to the point of access

for the database. Our attention has focussed primarily on

architectures for the delivery network.

The strategies which have been proposed or implemented

for delivery networks can be divided into two groups: one-

way distribution (i.e. teletext) networks and two-way

iv

distribution (i.e. interactive Videotex) networks. Ceefax,

Antiope and the CBS St. Louis field trial are examples of

one-way networks which were examined in detail.

Two-way network schemes make use of a variety of com-

munications 'media and signalling techniques. Prestel,

Vista, Bildschirmtext and Captain all use two-way telephone

delivery networks. QUBE and the London (Ontario) Cable TV

system both use two-way cable TV data transmission as does

the encryption-switching system proposed in this report.

Hybrid systems such as data broadcast in the vertical

blanking interval of the TV signal for downstream data, and

telephone for upstream data, have been proposed. Such a

scheme was considered for field trials of Antiope and for a

system at KSL-TV. A more ambitious alternative is the In-

tegrated Services Network typified by Omnitel, which was

chosen as the distribution network for Project Ida; Omnitel

is based on cable with intelligent switching nodes

distributed throughout the network.

In general, two-way cable networks offer the advantage

of potentially higher data rates, as compared to two-way

telephone data transmission using the ubiquitous 1200 bps

modem. Integrated Service Networks allow both data and

video transmission, unlike the telephone. However, the ex-

amples . of two-way data transmission on existing CATV

networks have used low data rates and have had difficulties

with the ingress of RF noise into the Cable TV' plant.

Ingress of RF noise is likely to be expensive to correct; it

should not be overlooked when videotex policy is formulated.

OMNITEL PERFORMANCE

The performance of the Omnitel network for the delivery

of videotex service has been investigated in detail. A

model of the delay of messages in the upstream and down-

stream directions was constructed using servers and queues.

Servers were used to represent the processing and switching

of messages and queues were used to model messages waiting

for processing at switching nodes.

A queueing-theoretic analysis of the model was was used

to generate the majority of the performance results, such as

response time, waiting time and location of system bot-

tlenecks. However, since certain assumptions are required

to make the analysis tractable, a simulation program was

developed based on the model, and the simulation results

were used to verify the assumptions made in the analytic

solutions. An exact match between simulation and analysis

was obtained at low traffic levels, however, divergence oc-

curred at higher traffic levels near the saturation point

for any of the network components. This was due to the

breakdown of the analytic assumptions about the traffic

distribution and the more accurate nature of the simulation.

However, both solutions exhibit saturation at similar input

loads or traffic levels. Therefore, the analytic results

were judged reliable.

vi

1
1

1

vii

The analytic results indicate that Omnitel performs

well for videotex traffic mixed with other fairly low data

rate digital services such as remote alarm detection and

meter reading. However, congestion will occur if high

levels of non-videotex traffic, such as digital telephony

without data compression, are introduced. As a general

rule, the first multiserver switching unit encountered in

the direction of data flow under consideration (i.e. up-

stream or downstream) will act as the system bottleneck.

(These components are the DCT in the downstream direction

and the IDT line for upstream traffic.) Under some traffic

conditions, the RVDM unit may also act as a system bot-

tleneck.

ENCRYPTION-SWITCHING

CATV networks provide an attractive alternative to the

telephone network or public packet-switched networks for the

delivery of Telidon traffic. Local area network techniques,

especially those developed for broadband bus networks, can

be adopted for the provision of data services on CATV. This

strategy differs significantly from more conventional ap-

proaches such as Omnitel, where a hierarchy of switching

nodes is distributed throughout the network to switch cir-

cuits, data streams or data packets in order to conserve

bandwidth on the network trunks. In a bus type local area

• network, such as we can build on the CATV plant, all

downstream data packets are broadcast to all subscribers.

1

Each subscriber has a microprocessor-controlled interface

box to examine all the downstream packets, and accept only

those addressed to or of interest to the subscriber.

However, since all downstream data packets are available at

all subscriber interface boxes, the data should be encrypted

to provide security and protect the service providers'

revenues. The encryption and decryption can be provided at

the interface box using the Data Encryption Standard (DES)

algorithm which is available as a single chip. A 56 bit key

is required for this algorithm; the same key is used for

both encryption and decryption.

Four classes of traffic have been identified and tech-

niques for controlling access to these services through the

use of keys have been devised:

a) "bubble-pack" information - 	This is the news,
weather and sports type of information, of interest
to all subscribers and typically chosen for trans-
mission on teletext systems. A single key can be
used system-wide to protect this service. The key
is issued to every subscriber at subscription time.

h) interactive videotex and transaction services -
This information should be encrypted, using in-
dividual keys for each subscriber which are issued
at subscription time. If transaction services such
as EFTS warrant additional security, a session key
can be negotiated under the protection of the per
subscriber key.

c) closed user groups 	or 	secondary 	interactive
videotex services - This information can be en-
crypted with a group key or a per subscriber key.
In either case the key is issued at subscription
time.

d) point-to-point subscriber service - 	This service
allow subscribers to communicate directly. A ses-
sion key is required for security. The session key
may be negotiated between the subscribers using

v ii i

Merkle's method or it can be requested from a cen-
tral key server.

A principle, which we have termed the Accountability

Requirement, states that each subsCriber must take a

deliberate, verifiable action to request a class of informa-

tion, so that he can be billed for such accesses and so that

it can be proved that he requested such access. This

accountability requirement is satisfied for the first three

classes of traffic using the key distribution techniques

described above. If Merkle's method is used for determining

the session key for subscriber-to-subscriber servine, the

accountability requirement is not satisfied; however, the

central key server provides the mechanism for accoun-

tability.

Calculations of, the 	number 	of 	subscribers 	an

encryption-switching CATV network can supnort were done

using realistic traffic estimates and the capacity of the

Sytek LocalNet 20 broadband local area network. This is a

commercial product, in service at'Ulq, which. provides broad-

band data service on a Cable TV plant. The Sytek network

has 120 channels, each using 310 Khz of bandwidth. 	In an

encryption-switching system each channel may support one of

the following three activitiesi

a) approximately 700'pages of "bubble-pack" information
accessible to all subscribers, or

b.) approximately 300 active subscribers 	performing
videotex information retrieval or transaction ser-
vices; or

c) approximately 100 subscriber-to-subscriber "calls".

ix

DATABASE ARCHITECTURE

One of the main requirements of a database architecture

is convenience for the user. This study has determined that

the tree structure of Telidon pages should be eliminated

since its usefulness is outweighed by its apparent restric-

tions and the resulting confusion to users. 	Furthermore,

the use of absolute, numeric page identifiers has at least

two drawbacks: users tend to make mistakes, and the use of

page identifiers tied directly to page addresses makes re-

organization of the database awkward. ("Where did my pages

go?")

The solution is to adopt a menu-based interface using

labels such that the users are not aware of either the

numeric page identifiers or the underlying tree structure of

pages. However, the direct substitution of alphanumeric

labels for numeric page identifiers does not solve the

problem; the function of labels and the ways that they are

used must be examined.

A taxonomy was developed for the characteristics of

menus. Menus do not have to be explicitly displayed on the

screen. 	A "page-specific" menu is only usable at a par-

ticular page (e.g. the DOC single digit menus). 	A "page-

independent" menu is usable from everywhere in the database

(e.g. Waterloo Telidon page labels).

Based on a study of the use of labels, the following

types of menus are necessary:

a) a universal or page-independent menu of alphanumeric

labels, although not every page needs its own label;

h) page-specific menus of arbitrary size (i.e. more
than 10 labels); and

c) private page-independent menus created by each sub-
scriber to provide convenient direct access to his
favourite pages.

When multiple menus can exist simultaneously, if two or

more menus contain identical labels attached to different

pages, a method must be adopted for resolving ambiguity.

There are at least three possible solutions. The DOC

Telidon software uses •a syntactical distinction in the

labels of page-specific and page-independent menus so that

the ambiguity does not arise. Waterloo Telidon has rela-

tively few syntactical restrictions for labels but enforces

a fixed order for searching menus, so that the page is

displayed which is attached to the ambiguous label, in the

first menu in which the label is encountered. As a third

possibility, the system could request and act on further

discriminating input from the user. The last alternative is

potentially the most satisfactory solution, and requires

further study.

The combination of labels in a single request is a

natural extension to the use of labels for page access.

This may take the form of a Boolean expression of labels,

or, the user may fill in a form electronically to specify

the information that he wishes to receive. The study of

form creation, ffiaintenance and use may be crucial for

providing an acceptable user interface for advanced videotex

applications.

xi

A set of commands has been devised to permit the infor-

mation provider to attach a new page to the database and

link it both to and from existing pages. The concept of a

page frame, which is the part of a page which holds the

interpage linking information, was introduced. Commands for

- removing pages and deleting labels have also been created.

Some issues relating to page creation and access -have

been identified and potential solutions have been suggested

as guidelines for future work. These include:

a) dynamic menu maintenance and concurrency control
(What if two inputters attach the same label in a
page-independent menu to two different pages simul-
taneously?);

h) true keyword processing including a means 	for
handling multiple page retrieval (Keyword access al-
lows the user to retrieve all pages which contain
certain words or strings of words smecified by the
user.);

c) the management of sets of related pages as a unit,
perhaps in structures other than the tree; and

, d) various • techniques to expand the range of informa-
tion or services for distributed videotex databases.

FILE STRUCTURES FOR DATABASE STORAGE

Alternative 	techniques 	for 	maintaining 	Telidon

databases at the system level have been studied. This was

done by developing a generic model for videotex file struc-

tures. The model included alternative search strategies to

translate from numeric page identifiers to disk addresses

and alternative page cache strategies. The model Was

simulated to determine the effects of these alternatives on

xii

performance. 	Here is some more detail about these ac-

tivities.

The generic model for videotex file structures included

a page cache memory (in fast primary storage), and secondary

storage (disk). It was assumed that a disk address is

necessary to retrieve a page from the disk and that each

page contained the disk addresses of the page-specific menu

choices and nearest neighbours in the tree which were ac-

cessible from that page. Therefore, the disk address of a

requested page could frequently be obtained from a page in

the cache. If not, then a large, dictionary-like table

which translates numeric page identifiers into disk ad-

dresses was consulted. Because of its size, this index

table must be stored in the disk, although frequently used

portions of the table can be stored in the cache.

Three alternative indexing techniques were proposed for

this translation table: B-trees, digital trees and hashing

schemes using buckets. The first and last of these schemes

were incorporated in the model.

The model was simulated to determine the sensitivity of

system performance to cache size and indexing strategy. It

was found that the use of a cache is valuable and can reduce

the number of disk accesses to an average of less than one

• per page request. Also, if a cache is used, both B*-trees

and hashing tables when used as indexing strategies yield

equivalent performance. However, the model used for the

xiii

simulations contains some approximations, and should be

validated in particular cases by the comparison of predicted

and actual behaviour before the results are used for the

design of a production system.

xi v

TABLE OF CONTENTS

EXECUTIVE SUMMARY

Familiarization 	 iii

Network Architectures 	 iv

Omnitel Performance 	 vi a

Encryption-Switching 	 vii

Database Architecture

File Structures for Database Storage 	xii

I. Introduction 	 1

II. Familiarization and Telidon Promotion 	2

III. Network Architectures 	 7

111.1 	Introduction 	 7

111.2 	Some Current Distribution Schemes 	11

111.2.1 	One-way Distribution Networks 	12

111.2.1.1 	Ceefax 12 •

111.2.1.2 	Antiope

111.2.2 	Two-way Distribution Networks 	20

111.2.2.1 	Telephone Network 	20

111.2.2.1.1 	Prestel 	 21

111.2.2.1.2 	Vista 	 25

, 111.2.2.1.3 	Captain 	 30

111.2.2.1.4 	Bildschirmtext 	32

111.2.2.2 	Broadcast Out/Telephone In 	35

111.2.2.2.1 	KSL Field Test 	35

111.2.2.2.2 	Antiope Design 	36

111.2.2.3 	Cable Out/Telephone In 	37

XV

102

106

110

111.2.2.3.1 	Cable Transmission
Characteristics 	37

111.2.2.3.2 	Telephone Transmission
Characteristics 	38

111.2.2.3.3 	Conclusions 	39

111.2.2.4 	Two-way Cable 	 39

111.2.2.4.1 	QUBE 40 •

111.2.3 	Integrated Services Networks 	41

111.2.3.1 	Omnitel 	 43

111.2.3.1.2 	Hardware 	 47

111.3 Performance Study of Omnitel 	47

111.3.1 	The Queueing Model of Omnitel 	48

111.3.2 	Analytical Solution 	56

111.3.2.1 	Delay Analysis 	 57

111.3.2.2 	Bottleneck Analysis 	63

111.3.3 	The Simulation of Omnitel 	66

111.3.4 	Presentation of Results 	69

111.3.4.1 	Model Parameters 	70

111.3.4.2 	Description of the Experiments 	73

111.3.4.3 	Presentation and Discussion
of Results 	 75

111.3.4.3.1 	Delay Analysis 	75

111.3.4.3.2 	Bottleneck Analysis 	97

111.3.4.4 	Comparison of Simulation
and Analytic Results

111.3.5 	Conclusions

111.4 Encryption-Switching for Delivery of
Telidon on the CATV Network

. 	111.4.1 	Classes of Traffic 	113

xvi

	

111.4.2 	Delivery Schemes 	 115

	

111.4.3 	Data Encryption 	 118

	

111.4.4 	The Data Encryption Standard 	120

	

111.4.5 	Public Key Cryptography 	123

	

111.4.6 	An Explanation of Merkle's Method 	125

	

111.4.7 	A Numerical Example of Merkle's
Method 	 126

111.4.8

111.4.9

Merkle's Method for the Encryption-
Switching Net 	 128

A Central Key Server for DES 	130

	

111.4.10 	Comparison of Merkle's Method and
the Central Key Server , 	131

	

111.4.11 	Network Capacity Considerations 	132

111.4.12 	Summary 	 136

IV. Database Architectures 	 137

IV.1 	Design of a Menu-Based Interface to
a Telidon Database 	 140

IV.1.1 	Introduction 	 140

IV.1.2 	Options for Menu Design 	143

IV.1.3 	Data Access Without Numeric
Page Identifiers 	 146

IV.1.4 	Page Frame Maintenance Without
Numeric Identifiers 	153

IV.1.5 	Further Related Work 	158

IV.2 	File Structure Alternatives 	165

IV.2.1 	A Videotex File Structure Model 	165

IV.2.2 	Alternative Search Strategies 	169

IV.2.3 	Cache Strategies 	 170

IV.2.4 	Simulation of a Telidon Server
with Cache Memory 	 172

IV.2.5 	Further Aspects for Investigation 	185

xvii

BIBLIOGRAPHY

APPENDIX A: SOFTWARE FOR THE SIMULATION OF A MODEL
OF THE OMNITEL NETWORK

APPENDIX B: A BRIEF DESCRIPTION OF THE WESTERN
DIGITAL WD2001/WD2002 DATA ENCRYPTION
DEVICES

APPENDIX C: DATA STRUCTURING FACILITIES FOR
INTERACTIVE VIDEOTEX SYSTEMS

APPENDIX D: SOFTWARE FOR THE SIMULATION OF PAGE
CACHE STRATEGIES AND VIDEOTEX FILE

. 	STRUCTURES

„ 0 	1

A-1 	I

B-1 	I

C-1

D-1

xviii

LIST OF FIGURES

Figure 3.1 	Videotex Network Ardhitecture 	8

Figure 3.2 	Ceefax Hardware 	 16

Figure 3.3 	Antiope Data Packet 	18

Figure 3.4 	Current Prestel Network 	22

Figure 3.5a 	Current VISTA Field Trial 	27

Figure 3.5b 	VISTA Stage Two 	 27

Figure 3.5c 	Long Range VISTA Plan 	28

Figure 3.5d 	The Bildschirmtext Network 	33

Figure 3.6 	Omnitel Hardware 	 45

Figure 3.7 	Omnitel Queuing Model 	49, 50

Figure 3.8a 	Experiment 1, Simulation Results 	76

Figure 3.8b 	Experiment 1, Analytical Results 	76

Figure 3.9a 	Experiment 2, Simulation Results 	79

Figure 3.9b 	Experiment 2, Analytical Results 	79

Figure 3.10a 	Experiment 3, RVDM Results 	82

Figure 3.10b 	RVDM, Default Parameters 	82

Figure 3.10c 	RVDM Results 	 83

Figure 3.10d 	RVDM Results 	 83

Figure 3.11 	Simulation Results, Default
Parameters 	 85

Figure 3.12a 	DCT Results 	 86

Figure 3.12b 	DCT Results 	 86

Figure 3.12c 	DCT Results 	 87

Figure 3.12d 	DCT Results 	 87

Figure 3.13a 	STU Results 	 89

Figure 3.13b 	STU Results 	 89

ixx

Figure 3.13c

Figure 3.14a

Figure 3.14b

Figure 3.14c

Figure 3.15a

Figure 3.15b

Figure 3.15c

Figure 3.15d

Figure 3.16a

Figure 3.16b

Figure 3.16c

Figure 3.16d

Figure 3.17

Figure 4.1

Figure 4.2

STU Results 	 90

Communications Channels 	92

RVDM, Default Parameters 	92

Communications Channels 	93

Experiment 4 	 95

Experiment 4 	 95

Experiment 4 	 96

Experiment 4 	 96

Bottleneck Analysis 	 98

Bottleneck Analysis 	 98

Bottleneck Analysis 	 99

Bottleneck Transition 	99

A Block Diagram of Basic Encryption 	119

Label Manipulation Commands 	157

Videotex File Access Model 	167

XX

I. Introduction

This is the final report for DSS 	contract no.

°ER80-00099. It describes the progress we have made and the

activities we have undertaken at the University of Waterloo

to estalish a centre for Telidon technology.

This report is organized along the lines of the ac-

tivities described in the Statement of Work, as revised in

March 1981. Section II describes the contact we have had

with other researchers, the Telidon equipment we have ac-

quired and the status of Telidon activities at the Univer-

sity of Waterloo which are not specifically a part of this

contract.

Section 	III, 	entitled 	"Network Architectures",

describes various teletext and videotex networks which we

examined as an information-gathering excercise early in this

study. It also presents the results of a detailed study of

the performance of Omnitel and describes a technique we have

developed called "encryption-switching" for the delivery of

Telidon service on CATV systems.

Section IV contains the results of our study of

database architectures for Telidon. Issues pertaining to a

menu-based interface based on labels to a Telidon database

are discussed and alternatives and recommendations are

presented. Details of a model for the file structure and

retrieval of Telidon pages are given and recommendations are

made based on the results of a simulation study.

-1-

2

Familiarization and Telidon Promotion

In the contract work statement, "familiarization" was

broken down into four areas: a literature search; contact

with other researchers; the procurement of two Telidon ter-

minais; and the installation of Telidon server software in

our laboratory. All four areas have been successfully com-

pleted, with accomplishments in some areas which far ex-

ceeded our original goals.

The literature search was the first activity under this

contract, but it has continued up to the present time. An

initial list of documents was listed in the first interim

report (March 31, 1980), and this has been the basis of the

literature collection. Since then, literature has been col-

lected from various conferences and workshops that we have

attended, and we have maintained awareness of current

videotex publications and events.

Contact with other researchers has also been an ongoing

effort. Initially, Dr. David Morgan visited many

researchers in Canada, the United States, and in Europe. (A

list of researchers contacted by Dr. Morgan was included in

the first interim report.) Dr. Morgan also attended Viewdata

'80 in London, England, in March 1980, and contacted

researchers there. Since then, Dr. Frank Tompa has

travelled to a number of conferences and workshops, making

valuable contacts. He has attended "Inside Videotex" in

March 1980, the "First Montreal Workshop on Videotex Tech-

nology" in June 1980, and "Videotex '81" in May, 1981. As

well, we hosted the "Second International Videotex Workshop"

at the University of Waterloo, which brought researchers

together from Canada, Britain, Germany, and Japan. Most re-

cently, Dr. Tampa travelled to Germany and Rennes, France in

early December, partly funded by this contract. While in

Rennes, Dr. Tompa talked to D. Le Moign and Y. Yclon of

CCETT to discuss the current status of Teletel and the

"electronic directory". In addition several researchers

have visited CCNG to talk to us. These have included Keith

Clarke of the British Post Office, Roger Woolfe of Butler

Cox and Partners, Ltd., and John Wicklein. We also met with

Jan Gecsei and Gregor Bochmann from the University of Mon-

treal in late 1980, with whom we discussed Telidon research,

and attempted to coordinate our work.

The last two sections of the familiarization process in-

volved obtaining two Telidon terminals, and installing the

DOC Telidon host software in our lab. The procurement of

terminals has been quite successful. Initially, we borrowed

a Telidon decoder, monitor, and keypad from OECA as part of

their trial. We used this terminal to explore the DOC

Telidon system in Ottawa, and to get a "feel" for the

capabilities and functions of the equipment. After some

time, a second (integrated) terminal, equipped with a simple

keypad/keyboard, was borrowed from Electrohome Ltd.

Finally, in mid 1981, the University of Waterloo made an

-3--

agreement with Electrohome whereby we would acquire thirty

terminals in exchange for computing services. These ter-

minals have already been delivered, and many have been put

for use in various sites at the University.

We unfortunately were unable'to install the Telidon host

software written at DOd. Our problems basically stemmed

from a lack of a proper hardware and software environment,

and our lack of RSX-11 experience. We did not have the cor-

rect version of RSX-11M or of the various pieces of software

needed to support the Telidon system. After many delays, we

eventually got the necessary permission from the Digital

Equipment Corporation to run the software, and we received

the complete software from DOC. At this point, our problems

seem to have been caused by our hardware envik'onment, which

includes some non-DEC equipment not anticipated in the

operating system.

After much frustration, we decided to write our own ver-

sion of Telidon, (called Waterloo Telidon), independent of

this contract. 	This software was written using the Unix

operating system, where most of our opera -Eing system exper-

tise lies. We endeavoured to make this version of a Telidon

host compatible with the original DOC version (there are

some minor differences), and as well, we have enhanced it to

include some of the ideas presented in section IV of this

report. In particular, instead of restricting index (or

menu) choices to the digits 1 through 9, we also allow ar-

bitrary alphanumeric labels. 	In addition, we have three

levels of labels for pages: local labels (which are like

index choices); user labels, that allow each user to iden-

tify a set of chosen pages; and global labels, set by the

system operator to identify a set of pages for the entire

user community. Waterloo Telidon has been running reliably

for some time in our lab on a PDP-11/45, and has been in-

stalled successfully on the Math faculty's VAX-11/780, and

at Loyalist College in Belleville on a V7.X-11/750. Documen-

tation for Waterloo Telidon is available on request.

In addition to acquiring Telidon terminals and

developing the CCNG Telidon software, we acquired a Norpak

IPS-2 Information Provider System as part of the modified

work statement. This machine has been in steady use since

it was acquired and is presently in use twelve hours per

day. Various groups on campus, including the Faculty of

Mathematics, the Faculty of Human Kinetics and Leisure

Studies (HKLS) and the University of Waterloo Correspondence

Program have provided funds for the development of pages for

our database. Since the summer of 1981, we have had between

one and three co-op students (from UW's Department of

English) producing pages on the IPS and on Unix using

locally written versions of Textcon and Pdicon (these

programs translate PDIs to and from an english-like equiva-

lent). The pages produced will be used during the Univer-

sity's twenty-fifth anniversary celebrations, in an Ontario

-5-

Government field trial, and hopefully for remote access by

high schools and Correspondence students.

With the addition of an IPS, we now have a complete on-

campus Telidon network. Having all three major parts (ter-

minals, a host database, and an IPS) has helped immeasurably

in our understanding of Telidon systems. The process of

writing the database software contributed significantly to

our knowledge, and has enabled us to try out some of the

ideas on information retrieval discussed in section IV. The

IPS helped inCrease our technical knowledge in this area, as

well as letting us gain expertise in designing pages and

using PDIs to their fullest extent. The acquisition of the

terminals has made everything discussed so far possible, and

by testing Electrohome terminals thoroughly, we have been

able to make constructive criticisms on their design to

Electrohome. Finally, our activity constitutes one of the

larger Telidon field trials in existence at this time.

- 6-

Network Architectures

111.1 Introduction

This section describes three different activities in our

study of network architectures. Section 111.2 presents a

survey of existing subscriber distribution schemes, and it

represents our initial efforts to familiarize ourselves with

the videotex world. The second section describes a detailed

study of the performance of an existing distribution scheme,

Omnitel, an integrated services network designed by John

Coyne for Project Ida. A queueing model for this network

was developed, and analytical and simulation techniques were

used to obtain performance results. Section 111.4 proposes

a new method for delivering Telidon on CATV systems, which

we call "encryption-switching." This method uses a combina-

tion of digital network broadcast techniques (commonly used

in local area networks), and encryption.

Throughout section III, we have attempted to use a

uniform terminology, which is summarized in the Videotex

Network Architecture Reference Model in figure 3.1. In this

model, the network is broken up into four separate compo-

nents: the server network, the information provider

network, the "third-party" network, and the distribution

network.

With potentially thousands of subscribers wishing simul-

taneous access to the database, a large videotex network

-7-

Information
Provider
Terminals

Third
Party
F10 st Concentrator

Central
Server Net-
Work Control

Videotex
Server

Server
Communications
Subnetwork

Subscriber
Communications
Subnetwork

DISTRIBUTION NETWORK

Concentrator/
Exchange

Subscriber
Distribution
Subnetwork

Videotex
Terminal

Provider
Distribution
Subnetwork

\ THIRD PARTY
\ NETWORK

INFORMATION /
PROVIDER 	SERVER NETWORK
NETWORK

\

Third Party
Communications
Subnetwork

Figure 3.1 Videotex Network Architecture

8

will of necessity require several networked computers. The

server network will provide access to the complete database

for all subscribers. This may involve sharing the database

or replicating it at each videotex server, and it may re-

quire sharing the load of the customers. Regardless of its

implementation, though, the server network must provide a

reliable, fast service.

Videotex pages can be created either on a server com-

puter, or at an external computer designed for this func-

tion, commonly called an Information Provider computer. 	In

either case, there is a need to connect remote terminals or

computers to the server for the purpose of updating the

videotex database. There may also be a need to interconnect

IP computers. 	These functions are provided by the

information provider network. 	Eventually, it may be

desirable to allow every subscriber to also be an IP -- that

is, everyone will be able to create information for the

database. In this case, the information provider network

will be merged with the distribution network.

The third party network exists to provide access to

external computers (so-called "third parties"), which house

non-Telidon databases or provide interactive services such

as computer-aided instruction, airline reservations, or

banking. In these cases, the videotex server does not

retrieve information, but will reformat the data for sub-

scriber terminals, correlate the data with the contents of

-9-

its own database, and so on.

In some circles, the term service provider network is

now being used to refer to a network of machines that

provide services of some sort to the customers. These ser-

vices include the creation and updating of information, and

the provision of electronic services. The term "service

provider network" therefore, will be used to include both

the information provider network, and the third party

network.

Finally, the distribution network provides the important

job of connecting the subscriber terminals (of which there

may be thousands) to the individual servers in the server

network. 	The characteristics of this network most closely

affect the nature of the videotex system. 	Fôr example,

broadcast distribution schemes do not allow customer in-

teraction with the server computer; this fact in turn

drastically alters the kind of service provided.

The various different kinds of distribution schemes will

be described in the next section. Section 111.3 will

discuss the performance of a specific distribution network

(Omnitel), and section 111.4 will propose a new distribution

method based on CATV and encryption.

111.2 Some Current Distribution Schemes

In this section, some of the various distribution

schemes currently being used or contemplated will be

described. As well, a general description of integrated

service networks will be given, as videotex systems will

likely be incorporated into these networks.

Videotex systems have been divided into two main

categories: one-way networks, which use television broadcast

technology to distribute the information; and two-way

networks, which require a subscriber-to-host connection as

well as a host-to-subscriber connection to enable interac-

tive communications. The one-way networks described here

are Ceefax and Antiope, both developed in Europe. The two-

way networks are further divided into different classes:

telephone-based systems, namely Prestel from Britain, Vista

from Canada, Captain from Japan, and Bildschirmtext from

Germany; Broadcast-Out/Telephone-In networks, being con-

sidered in some field trials; Cable-Out/Telephone-In

networks; two-way cable systems, namely QUBE; and Integrated

Services Networks (ISNs), with the Omnitel network as an ex-

ample.

111.2.1. One-way Distribution Networks

One-way videotex systems (or "teletext" systems) use

television broadcast signals to distribute videotex informa-

tion to subscriber terminals. A small set of videotex pages

are broadcast cyclically over the air, embedded in a TV sig-

nal. Thé videotex terminals wait for .a particular page, or

set of pages to be broadcast, and then capture them for

display to the user. Since these systems are not interac-

tive, they are used only to distribute information to sub-

scribers, and interactive services (like teleshopping or

electronic mail) cannot be made available.

This section will describe two major one-way services

currently in existence; Ceefax, the commerically operating

system developed by the British Broadcasting Corporation,

and Antiope, the system developed in France.

111.2.1.1 Ceefax

The British Broadcasting Corporation introduced Ceefax

in 1972 to provide a method to caption television programs

for the deaf [MORG80], but rt has since been expanded to in-

clude videotex data. An experimental system began operating

in 1973-74, and the commercial system began operating in

November, 1976. There were a total of 150,000 Ceefax sets

as of March 1981, with 10,000 new sets added every month.

1
The Ceefax Delivery System

Currently, the data is sent during the vertical retrace

interval (the time it takes to reset the electron guns from

the lower right corner to the upper left corner of the

I.

1

I .

I.

I .

a
screen) in order to display both the television signal and

the accompanying (digital) text. Later, the delivery system

may be expanded to use one or more complete video channels,

however, all of the systems and field trials described below

send data only during the retrace interval.

The protocol used to transmit the data uses only five

percent of the total transmission time r.TANT79 1 . Digital

data is encoded and sent on a television "data" line (a

horizontal line of a TV picture), one Ceefax display row per

› line. There is a fixed correspondence between a bYte posi-

tion on the data line and a, character position on the

display. This means that a transmission error affects only

the character in error and not the rest of the line or page.

A Page header is sent immediately in front of the first

row of each page, containing the page number, eleven bits of

control codes, and a "time code" (explained later) rTANTIni.

Each subseqent row of the page has a row header which holrls

the "magazine" number of which is a member (see the section

on Database characteristics), and the number of the row in-

side the page. As a consequence of having every row of the

page labelled, only those rows containing information need

to be sent, and pages from different magazines may be inter-

- 13 -

mixed in any convenient order. All headers are Hamming-

encoded. •

In Britain,. Ceefax data is sent during the vertical

retrace at a signalling rate of 6.q375 Mbps. However, only

81% of each scan line can be used for data. Furthermore,

only two lines during the vertical retrace interval contain

data; if more lines are used the data may appear visible on

the screen. Therefore, approximately 100 lines carrying

data are transmitted per second. Since each Ceefax page

contains •enough data to fill 24 scan lines, only four Ceefax

pages may be transmitted per second in the vertical retrace

- interval.

In the CBS field trial in St. Louis FOCON7q1, various

transmission rates for Ceefax (and Antiope) were tested, the

first reported test rate being 5.5 Mbps. For the trial, the

• Ceefax page was reduced to 21 rows with 32 characters per

row. CBS was authorized to use four lines in the vertical

blanking interval, but they used only two lines due to tech-,

nical problems. With sixty fields broadcast per second and

two lines per field, this will give slightly more capacity

than in - Europe as long as the same quantity of information

is provided per line.

Full Channel Ceefax Delivery

It is possible to use an entire video channel solely for

the transmission of Ceefax pages. Recall that each scan

line carries data signalled at 6.9375 Mbps. However, since

- 14 -

only 81% of the scan line can be used for data, the effec-

tive data rate is reduced to 5.62 Mbps. Although there are

625 scan lines in the video frame, only 575 of these are

used for data. Thus, the effective data rate is further

reduced to 5.2 Mbps. This allows the transmission of

approximately 600 Ceefax pages per second on the video chan-,

nel. Of course, the channel is incapable of transmitting

video when it is used to transmit Ceefax pages in this

fashion.

Ceefax Hardware Configuration,

• The hardware chosen. for Ceefax 17MORG811 consists of

three PDP 11/34 machines (see figure 3.2). System A stores

two replications of the database (for reliability) and

handles input from up to fourteen information providers.

Systems B and C are parallel systems Which transmit data to

the video channels, again for reliability.

Ceefax Database Characteristics

The data is organized into magazines of up to 100 pages.

each, with up to eight independent magazines per television

channel. The number of pages per magazine has been extended

by the use of minute-by-minute time slots and time-oriented

pages Which are automatically changed (hence the "time code"

in the page header). Each page of the magazine can have up

to 3200 sub-pages in this manner. There are currently about

10,000 pages of information stored in the database.

- 15 -

clock 8 Iclock

BBC1

BBC2

CVI
BBC1

BBC2

VDU's (14)

RK 06

0 0
PDP 11/34 multiplexer

unibus

buffer o\ buffer

unibus

PDP 11/34 PDP 11/34

CVI

CVI= computer - video
interface

Figure 3.2: Ceefax Hardware

MI MI OM 111111111 	MI MI IMIll OM OM Mil MI • 	 MI ill M1111

CVI 	 CVI

The current Ceefax system is being broadcast on BBC1 and

BBC2 with approximately 250 pages being broadcast on each

channel. The average response time to retrieve a page is 12

seconds.

111.2.1.2 Antiope

Antiope, the French Teletext system, was develoPed

shortly after Prestel was introduced, and was first demon-

strated in 1976 [MART80].

The system is logically divided into two parts. 	The

videotex services provided are called Antiope (Acquisition

Numerique et Televisualisation d'Images Organizées en Pages

d i Ecriture), while the data broadcast network is called

Didon (Diffusion de Donnees).

Antiope Network Structure

Antiope Delivery System

The Didon system consists mainly of a packet switching

protocol. Each packet consists of a header block plus a

data block, and is sent along one line of the television

signal (see figure 3.3 and rMART791). The header consists

of 8 bytes, and identifies the "channel" being used, the

size of the data block, and a sequence number, all hamming-

encoded. The channel identification defines what appears to

be a virtual channel with a maximum of three channels. The

size of the data block depends on the "bit signalling

- 17 -

Header (8 bytes) Data (max. 32 bytes)

CO
bit 	byte channel 	index
sync. 	sync. identification

Figure 3.3: Antiope Data Packet

size

111111 	111111 Mil MI MS MI URI OM MI MIIII 	1111111 	 MI

- 19 -

frequency" which is being used: in France, 32 bytes per

packet; in Switzerland, 24 bytes per packet; and in North

America, 20 bytes per packet.

The useful capacity of the delivery system can easily be

calculated, by multiplying the number of data lines per

second, by the number of bits per line. In Europe, the use-

ful bit transmission rate is 4Mbps; in North America, the

rate is 2.52 Mbps. When two lines of the vertical blanking

interval are being used, the capacity of Didon is: 12,800

bps in Europe; and 9,600 bps in North America.

Experiments are now being carried out on "full-field"

transmission EBERG81]. Currently, a rate of 60 lines per

field is being used in a test to broadcast a cycle of

approximately 600 pages.

Antiope Hardware Configuration

None given.

Antiope Database Considerations

The Antiope display has 25 rows by 40 characters. A

total of 120 characters are needed to accommodate accents in

French, and the ISO 2022 standard extension technique is

used (character backspace overstrike).

Similar to Ceefax, the data is organized into magazines

of between 50 and 300 pages apiece. At 4 Mbps, about 600

pages can be broadcast per second, or 9000 pages with a max-

imum delay of 15 seconds.

111.2.2 Two-way Distribution Networks
-

Five different schemes to implement two-way communica-

tions have been identified and four are described in this

section. .Section 111.2.2.1 describes four systems designed

for the telephone. network: Prestel in Britain, Vista in

Canada, Bildschirmtext in Germany, and Captain in Japan;

section 111.2.2.2 describes the Broadcast Out/Telephone In

systems considered by the Antiope designers and TV station

KSL in Salt Lake City; section 111.2.2.3 describes charac-

teristics of the Cable Out/Telephone In design; section

111.2.2.4 describes the two-way cable system - called QUM in

Columbus, Ohio. The fifth class of distribution networks,

Integrated Services Networks (ISNs) will be describe

separately in Section 111.2.3.

111.2.2.1 Telephone Network

The use of the telephone network for videotex came about

largely due to the British Post Office, which wanted to in-

crease telephone traffic during off-peak hours. To this

end, they developed Prestel, and since then, most maior

videotex systems in the world have also used the telephone

network.

The telephone system has inherent problems when it comes

to carrying digital data. First, modems must be used at

each end of the telephone system, which increases the cost.

Second, telephone channels have been band-limited, limiting

- 20 -

- 21 -

digital data rates (1200 bps is the highest rate commonly

found on switched lines today). Finally, telephone lines

tend to be noisy, causing errors in the data.

The major advantage of the telephone system is that the

network structure is already in place, with telephones in

almost every home. It provides instant universal public ac-

cess to the system, which is of great importance if the

system is to be commercially viable.

111.2.2.1.1 Prestel

Prestel became the first commercially available videotex

system in March, 1979. Since then, the Prestel technology

has been sold to various countries, such as Germany, the

Netherlands, Finland and Switzerland.

Prestel Network Structure

The network is composed of one or more "Update Centers"

(UDCs) which serve information providing terminals (IPs),

and many Information Retrieval Computers (IRCs) which house

the database and communicate with the customers (rTROU911

and figure 3.4). All of the hardware is made up of machines

from the GEC4092 line, a 16-bit minicomputer with moderate

main memory capabilities (up to one megabyte).

The Update Centers provide facilities to edit videotex

pages or to receive bulk data from intelligent terminals or

remote computers. Communication with the IP terminals is

mainly through 1200/75 bits per second telephone lines, with

customers

IPs

customers customers

Figure 3.4: Current Prestel Network

some 300/300 or 1200/1200 bits per second lines. New or up-

dated pages are sent to all IRCs attached to the UDC, and to

all other UDCs (which update their IRCs). Communication

with each IRC is via dual 4800 bits per second dedicated

lines. When available, these lines will be replaced with a

2400 bits per second packet-switched communications service.

Reliability in the Update Centers is achieved by

duplicating the CPU, memory, and disk drives. Recovery from

madhine. failure is not automatic, however, since manual

intervention is required to switch to the backup unit.

Each Information Retrieval Computer stores the complete

database on disk. The IRC uses 1201/75 bits per second

lines to communicate with user terminals, and each IRC can

currently support up to 211 simultaneous users (and "several

hundred" more if front-end processors are used rTRoUR01).

Reliability for IRCs is achieved by routing the user to

a secondary IRC if the first one it attempts to use (its

primary IRC) is not operational. Also, the load from a

single breakdown may be evenly distributed over a number of

other IRCs, which avoids overloading any one computer.

As of February 1981, there was one UDC (in London), and

a total of 18 IRCs, enabling 61 percent of the telephones in

Britain to have local dial access rHOOP81]. In March 1991,

there were 10,000 Prestel sets in operation, with 501 to 600

new subscribers being added per month (a subscriber may have

more than one set).

- 23 -

The Prestel network will evolve in the future to a new

network called PANDA (the Prestel Advanced Network and

Database Architecture) [CLAR81]. This network will contain

one or more Prestel Administrative Centers (PACs), which

perform billing and other administrative functions; one or

more Prestel Information Centers (PICs), which store a

master copy of the database; and a number of Prestel User

Centers (PUCs), which interface with customers and Informa-

tion Providers. The PUCs request pages from the PIC in

response to customer requests, and then store the page in a

cache for some period of time. Updates are also sent from a

PUC (initiated by an Information Provider) to the PIC, and

only notification of the change is sent to all other PUCs.

This new network structure was designed with a number of ob-

jectives, including a reduction in transmission costs, cen-

tralized billing and administration, and modularity for fu-

ture expansion.

Prestel Database Characteristics

The Prestel display consists of 24 rows of 40 characters

each, giving a maximum of 950 characters per page of infor-

mation. The database itself currently consists of 180,010

pages of information, and it has been slowly shrinking re-

cently, rather than expanding. The average size of a page

has been found to be between 5/1 and 501 bytes, giving a

total size of about 99 million bytes of information in the

current database.

- 24 -

Prestel Simulation.Study

When the British Post Office selected a computer for the

IRCs, they performed simulation studies to determine poten-

tial bottlenecks [FEDI78b]. They wanted a maximum response

time of two seconds, given twelve seconds of customer think

time, 1K byte memory per user, and one millisecond

processing time per request. The study found that the cru-

cial features of the machine were disk access time and main

memory size. They thought that disk speed and the disk ac-

cess algorithm were significant factors.

111.2.2.1.2 Vista

Vista is a videotex system which is being developed by

Bell Canada. The pilot trial started in February, 1979 and

involved 25 Prestel and Telidon terminals accessing about

2000 pages of information. The current Vista field trial

started in May, 1981 with nearly 500 Telidon terminals

located in Toronto and Cap Rouge (near Quebec City)

CTELI81].

Network Structure

The Vista designers [CO3T79] envision three maior stages

in the system's evolution:

1. A centralized system based on existing facilities.

2. A system with a distributed database, and "intel-

ligent terminal interfaces" (see later).

3. An extension to the previous stage. Various "in-

- 25 -

tegrated services" such as digital telephony, mes-

saging, and a packet-switching service will be

added.

The field trial is a first stage, centralized design.

It is based around a "Vista Exchange" (see figure 3.5a), a

PDP 11/70, responsible for storing the database, providing

terminal support, and performing various administrative ser-

vices. The user terminals communicate with the computer via

1200/150 bits per second lines.

The next trial will be the second stage design (figure

3.5b). This design, called "iNET," for "intelligent

network" allows a customer to connect with any of a number

of third-party databases. The exchange presents a directory

of databases to the user, and then routes the requests to

the appropriate external machine. From the user's view-

point, iNET disappears, and the external database performs

the user interface. The iNET exchange also performs ad-

ministrative functions, like billing.

In the long range plan (figure 3.5c), the Vista Exchange

is logically broken down into a "node" and one or more

"logical modules". The node provides a videotex meta-

service: terminal support, the intelligent interface (in-

dexing and routing), and administrative services (statistics

collecting, billing, etc). The logical modules provide such

services as switching, storage (of messages), and a small

database. The bus structure at the bottom of the diagram

- 26 -

Ottawi

Service
Provider

Vista Exchange

Figure 3.5a: Current VISTA Fiéld Trial

Vista Exchange

MOntreal

o

Service
Provider

///////' TOronto

Figure 3.5b: VISTA Stage Two

Video tex
 Exchange

customers

node

customers

node
Videotex
Exchange

OD

logical
modules Service

Provider

logical
modules

information retrieval

messaging

interest matching

Figure 3.5c: Long Range VISTA Plan

MI MI MI Mill OM anII MI 111111 1111 	MI 	IMIll NMI 1•111 MI UM MI II•11

connects similar logical modules in each exchange. This

would allow network-wide services such as electronic mail,

and possibly a distributed database.

Vista Database Characteristics

Telidon (or alpha-geometric) terminals use a fundamen-

tally different method to display graphics than the Prestel

or Antiope (alpha-mosaic) systems. The graphics are

produced by a series of Picture Description Instructions

(PDIs), such as "line x y" or "arc x y". A microprocessor

in the terminal translates these commands and draws the ap-

propriate object on the screen. The resulting graphics are

high quality, limited only by the resolution of the TV

monitor, and the amount of memory •in the terminal. Please

see CRC79 for a complete description of the PDI encoding

scheme.

The cost of the high quality graphics is that more

information may be needed for a page than in an alpha-mosaic

system. Pages for Telidon displays range from 10m to 5011

(or more) bytes per page, but the average size of a page in

the CCNG/Telidon demonstration database at the University of

• Waterloo is 716 bytes.

When the • Vista trial opened, there were 15,00m pages in

the database, with an intention of increasing that number to

75,000 by the end of the trial.

1

111.2.2.1.3 Captain

The Japanese videotex system, called Captain (Character

And Pattern Telephone Access Information Network), was re-

quired to use over 3,000 complex Kanji characters, as well

as Katakana, Hiragana and western characters, which

presented some different constraints on the system rKUMA9M,

HARA81]. The solution to this problem was the "alpha-

photographic" transmission scheme, where the picture is

described pixel-by-pixel. This allows very precise

graphics, at the expense of transmission speed.

Captain has already been through its first major field

trial, which was held in Tokyo from December 1979 through to

March 1981. A total of 1000 terminals were distributed, and

close to 87,000 pages of information were created by the end

of the trial. As a result of the data recovered from the

trial, modifications are being made to the equipment and

information retrieval methods (with the addition of keyword

access), and a new trial was scheduled to start in August,

1981.

Network Structure

The Videotex Server for Captain stores and retrieves the

information, and also generates the characters for the ter-

minal. This method has the disadvantage of sending large

volumes of data over the telephone lines, which results in a

long delay in constructing the data on the customer's ter-

- 31 -

minai. As well, it tends to increase the probability of er-

rors in the page as it is being sent. However, the method

has the advantage of drawing a very precise image on the

customer's terminal, which is required for Kanji, Katakana

and Hiragana characters, and it allows a simpler and cheaper

terminal design. (This of course is exactly the wrong

tradeoff to make in an age when hardware costs are falling

much faster than communications costs.)

Pages are transmitted from the central server to the

customer's terminal in the form of packets at a speed of

3200 bits per second, and from the customer's terminal back

to the server at 75 bits per second. To reduce the amount

of transmitted data, the page is run-length encoded, and

another compression technique is used called "redundancy

compression". 	In this method, pixels for empty lines, or

for the space between lines are not sent. 	As well, other

minor techniques are used to save certain packets (see

KUMA80). The end result of the compression techniques is

that an average page on the system takes about 10 seconds to

be displayed [KUMA80].

Database Characteristics

The Captain page consists of background graphics, and a

set of characters, which can be Kanji, Kana, or al-

phanumeric. The screen can hold a total of 120 Kanii

characters (15 characters per line, and S lines to a

screen), or a total of 480 Kana or alphanumeric characters.

- 31 -

Typical pages hold around 180 characters, a mixture of Kanji

and smaller characters.

The pages are stored essentially pixel-by-pixel, with

the exception of the various kinds of characters, which are

generated as ;.he picture is being displayed. The pages are

therefore very large, when compared with Telidon, Prestel,

or Antiope pages. The exact storage format and average size

of the pages have not been given in the literature.

111.2.2.1.4 Bildschirmtext

The German videOtex system, called Bildschirmtext, is

based on Prestel terminal . technology, but has a completely

different network structure.

Bildschirmtext Network Structure

In Germany, the videotex network is viewed not only as

an information retrieval system, but also as a general data

communications network EZIMM801. This has resulted in a

network of videotex servers (called Btx Centers), intercon-

nected with third-party computers (these are called "exter-

nal" computers (or ECs) in Bildschirmtext) rMANT81, OTT0q1 1 .

See figure 3.5d for a network diagram. Also, since they

view the data collection function of such a system to be

very important, they have developed a protocol specifically

for it.

customers

customers

(External
Computer

s•<„

External
Computer

Figure 3.5d: the Bildschirmtext network

1
Videotex terminals connect with the Btx centers using

the telephone network, or a circuit switched data system,

and use either 1200/75 or 2400/2400 bits per second lines.

Both full and half duplex lines are supported.

The Btx centers are interconnected with an X.25 packet 	. II

switched network. 	These centers are specially designed

microprocessor-based machines, which are responsible for

terminal support and information retrieval. External com-

puters are connected with the Btx centers via the packet

switched network as well. These machines provide special

functions such as reservations, order entry, computer aided

instruction, and so on. The interface with the external

computers has been standardized by using a form-filling

protocol.

Bildschirmtext Database Considerations

The current field trial in Berlin and Dusseldorf sup-

ports between 4,000 and 5,100 customers, and a database of

75,000 pages. (See the Prestel section for more information

on the page characteristics). There are two Btx centers

holding the database, and about 10 external computer Df-

fering service COTT081].

- 34 -

111.2.2.2 Broadcast Out/Telephone In

This architecture is an extension of the teletext design

presented earlier. In teletext systems, a set of pages is

broadcast over the air cyclically (see section 111.2.1),

giving an average response time of one-half the time to

broadcast the entire cycle. a result, the number of

pages in a cycle is kept low, typically a few hundred pages.

The system's visible database can be expanded with a direct

link from the customer to the videotex server, which allows

an interactive videotex service to be offered. This design

has been considered by the designers of Antiope rGUILR01,

and field tested by TV station KSL in Salt Lake City

[ROBI79].

111.2.2.2.1 KSL Field Test

The field test in Salt Lake City by TV station KSL was

implemented by reserving a small set of pages in the normal

cycle for interactive use via the telephone. The customer

will request one of these pages, and - that page will instruct

him to dial a particular telephone number, whiech will link

him with the KSL computer and enable him to request any page

in the database. Once the requested page is retreived, it

is broadcast in the normal cycle in place of the special

page which originally carried the telephone number. Thus,

anybody who displays the special interactive broadcast page

may view the information displayed there, but only one per-

- 35 -

son may interact with the system through that page. In this

field trial, the customer is limited to a short period of

connect time before being automatically cut off.

111.2.2.2.2 Antiope Design

The Antiope designers have also considered this method.

Their system is called DIODE (Diffusion d'Informations Ob-

tenues par Demande), and is based on the Didon technology

discussed in section 111.2.1.2 1BERG811. This system will

broadcast pages from the videotex server to the subscriber,

and will utilize a request channel (either through the

telephone network, or cable TV) to field requests from sub-

scribers. There will be three modes of operation of this

service. First, there will be a normal teletext service.

Next, there will be a "request broadcast" mode, where the

terminal requests a batch of pages, and just waits for the

request to be acknowledged before releasing the request

channel. Finally, there will be a "controlled broadcast"

mode, which is the same as the "request broadcast" mode, ex-

cept that the request channel is kept until the information

has been received. This design will utilize a full TV chan-

nel to broadcast the information 1BERG811, and will use a

terminal capable of storing a large number of pages

EGUIL80].

111.2.2.3. Cable Out/Telephone In

This hybrid system has been considered mainly because

videotex systems currently need high data rates from the

database to the consumer (cable) and very low data rates

from the consumer back to the database (telephone). This

configuration has been considered by Antiope but we know of

no field trials which have been implemented.

111.2.2.3.1 Cable Transmission Characteristics

Current computer communications systems on cable use

either baseband transmission or some sort of frequency

modulation and multiplexing, such as video signals to send

their information. Currently, baseband transmission. seems

to be limited to around 10 Mbps, depending on the quality of

the cable. This figure will probably climb as the state of

technology advances. The capacity of cable transmission is

considerably higher when frequency modulation (so called

broadband transmission) is used. For example, the Sytek

broadband local area network offers 120 channels, each of

which uses a data signalling rate of 128 kbps. Thus, a

total data rate of approximately 15 Mbps is achieved.

The numbers given above represent raw data rates. The

effective data rate depends on the transmission protocol

being used and in all cases it is smaller than the raw rate.

For cable transmission, several transmission techniques have

been suggested, for example: 	Tl streams 	(like 	the

- 3 7 -

telephone system), the Didon system, the Ceefax system, and

the Mitrenet local area network system.

The Ti stream has 24 slots, each,with a 64 Kbps data

, rate, which are time division multiplexed. This gives

1.544 Mbps per Ti stream and allows up to 4 Ti streams (a T2

stream) to be transmitted on one video channel.

The Didon system has been described in detail earlier.

Its raw data rate is 5.0 Mbps in Europe and 3.528 Mbps in

North America. Discounting header information and inactive

broadcast lines, the effective data rate is 3.68 Mtn:Ds in -

Europe, and 2.33 Mbps in North America. The Ceefax system

claims a raw data rate of 6.9375 Mbps and an effective

of 5.2 Mbps (in Europe).

The Mitrenet local area network r:WILL 741 was designed

for use on common CATV cable. The first version used a time

division multiple access protocol with a raw data rate of

819.2 Kbps per channel. Packets are 756 bits long with 192

data bits, representing an effective rate of 614.4 Kbps.

111.2.2.3.2 Telephone Transmission Characteristics

The current telephone system can support a maximum of

about 9610 bits per second for digital transmission on a

switched connection, although a speed of 1111 bits ner

second is the highest speed modem which is reasonably af-

fordable. Most current telephone-based videotex systems use

1200/75 or 1200/151 bits per second lines. Messages from

rate

- 38 -

the terminal to the database are typically only a few bytes

long (hence the very low speed) with one byte identifying

the start of the message, one byte for the end of the mes-

sage and the data between them. In the Telidon demonstra-

tion system, there are also two bytes for terminal iden-

tification.

111.2.2.3.3 Conclusions

Since no system has yet been designed specifically for a

cable-out/telephone-in system, it is rather difficult to

determine its attributes. The information in this section

is an attempt to characterize the current transmission media

and available protocols.

111.2.2.4 Two-way Cable

Two-way cable systems present perhaps the greatest

potential for videotex systems, providing high data rates,

potentially low noise, and good flexibility for the trans-

mission method (ie., video, digital). There are currently

three different kinds of systems proposed for two-way cable

- an integrated services approaoh tyloified by Omnitel in

Manitoba; a more limited television-oriented approach as in

the QUBE system in Columbus, Ohio, and the "encryption-

switching" approach which we have devised. The integrated

services approach will be described in section 111./.3,

encryption-switching is described section 111.4 and the OUBE

system will be described in the following section.

- 39 -

111.2.2.4.1 QUBE

The QUBE system was developed and introduced by Warner

Cable Corporation in Columbus, Ohio. The services that they

offer are a combination of normal cable TV an advanced form

of Pay-TV; interactive TV, where the customer can "talk

back" to the television and various polled services, such as

a burglar alarm, smoke detector, medical emergency button,

and a distress button. QUBE is not a videotex system , but

it is included here because of its interactive nature based

on the cable system. A similar system with the same range

of services (except for Pay TV) has been introduced on a

trial basis by London Cable-TV, the cable television

operating company in London, Ontario.

Qube Delivery System

The system is based on a central computer at the cable

head, which polis each customer every six seconds to detect

any change in status. The customer owns a keyparl with five

response buttons, attached to a microprocessor, which is in

turn attached to the television. The other services (bur-

glar alarm, smoke detector, etc.) are also attached to the

microprocessor. When this box is polled by the central com-

puter, it is able to detect the status of each device at-

tached - for example, whether the television is on, what

channel is it is set to, the last response button pushed,

and the statua of the other services (usually an on/off

setting). The central computer can identify the source of

- 491 -

the information (the name and address of the customer) which

may be used for billing, usage statistics, and for more ad-

vanced features such as teleshopping, and electronic funds

transfer. The keypad is also used for channel selection,

and enables a more sophisticated form of Pay-TV. The cen-

tral computer can detect when a customer tunes a Pay-TV

channel, and it bills him accordingly. (Normally, Pay-TV

systems charge a monthly rate).

This polling procedure essentially limits the kind of

services which can be provided. Currently, the interaction

is limited to multiple-choice type queries. The information

retrieval service usually provided by videotex systems is

not provided in QUBE, and because of the polling method

used, it might be difficult to implement.

111.2.3 Integrated Services Networks.

One of the likely distribution networks that may be used

for videotex systems in the future is the "Integrated Ser-

vices Network", or ISN. This class of network is being

designed to carry a wide range of services over a single

transmission medium rDORRql, TSUK791. The services that

will be carried generally fall into one of the following

classifications: voice, data, facsimile, video, and residen-

tial services (such as alarm services, and meter reading)

[McDON81]. These services vary widely in their charac-

teristics and the requirements placed on the transmission

- 41 -

medium. 	In addition, ISNs must also be designed to handle

as yet undefined services, whose characteristics are not yet

known.

The most prominant service on such systems now, and for

some time in the future, is voice [DORR81, SKRZqll. Voice

is still being carried by analog signals in the present

telephone system, although digital transmission is becoming

more common. Digitally, one telephone call requires 64K

bits per second, for an average duration of three minutes.

Residential services generally require a much lower data

rate, on the order of tens or hundreds of bits per second

CSKRZ81]. Call durations may also be short, but the calls

may be more frequent than telephone calls (see section

III.2.2.4.1 on QUBE).

"Data" services are varied in nature, but may include

interactive terminal sessions, as well as 	bulk 	file

transfer. 	This implies a range of data rates, call dura-

tions and frequencies. This kind of service, as well as

residential service, is efficiently handled by packet

switching networks, as opposed to the circuit switching

network currently being used for the telephone system.

Facsimile and video require the highest data rates, with

full-motion video requiring 6Mbps (or lower if compression

techniques are being used) r.SKRZ811. As well, these ser-

vices will require long call durations.

1
1
1

1

1

1

1
1

1
1

1

1

Thus, 1SNs must support widely different service re-

quirements, as well as different switching.requirements (at

least until packetized voice is universally adopted). Many

people and organizations view the 1SN as an evolving

network, 	starting with the current (analog) telephone

network EDORRA1, McDON81, SKRZ311. This evolution is en-

visioned because voice needs are dominant at the present

time, and because the telephone network has been evolving

towards a digital network for some time. The network will

evolve to become and end-to-end digital network, with an in-

tegrated 	circuit and Packet switching system rDORRql,

TSUK79]. 	This evolution is currently being planned by TCTS

and ATT for the telephone systems in North •merica.

As , an alternative, some ISNs are being developed for

different transmission media. The Omnitel network rCOYNES11

is an ISN being developed using coaxial cable; it will be

fully described in the following section.

111.2.3.1 Omnitel

Omnitel is 	an 	integrated multiservice broadband

distribution system being implemented by Coyne Associates

and Interdiscom for Proiect Ida in Manitoba rCOYNEqgl. As

an ISN, it is designed to support the wide range of digital

services described earlier, as well as a variety of video

services. The system was also designed to support twisted

wire pairs, coaxial cable, or fibre, however the system

- 43 -

being implemented currently uses only cable. The current

field trial will provide service to 100 homes in a suburb of

Winnipeg.

Delivery System

The delivery system is an hierarchical structure in

which the data is multiplexed (or demultiplexed) at each

level from the subscriber to the switching hardware. The

individual signals are then routed to the service providers.

The data are carried as a video signal along a cable,

similar to a normal cable TV network. See figure 3.6 for a

schematic diagram of the system.

The network is controlled by a Central Computer Complex

(CCC). This maçhine does not provide services (other than

alarm reporting, administration and maintenance reporting),

but rather performs switching and channel assignment for the

various services. The video channels are shared between

subscribers on a demand basis similar to inter-office

telephony with some fixed assignment for certain services

(for example, 24 channels for CATV, and 5 channels for Pay

TV). The CCC communicates with various Distribution Control

Terminals (DCTs) using a 9600 bits per second link. Hard-

ware maintenance polling is distributed through the network,

with the CCC receiving only reports of malfunctions.

The Distribution Control Terminal converts digital sig-

nals from the telephone switch or X.25 port to DS-1 streams

(similar to T-1 streams, rDAVIES731), and vice versa. One

- 44 -

IDT

11

V
D

subscriber's home)

Ui

subscriber's home)

STU

STU

MIMI UZI all 	UM MI 1111111 NM MI MIMI Mil MI 	 OM MI IIIIII

sp. IDT

Video
Services

Telephone
X.25

(2XDS-l) Feeder Cable
h

IPT
DCT

• 	•

Central
Computer
Complex

Figure 3.6: Omnitel Hardware

DCT serves 256 homes on two DS-1 streams with a capacity of

1.544 Mbps each (i.e., there are 2 X 24 time slots shared

between 256 homes). Since a feeder line serves 2049 homes,

then 8 DCTs are required per feeder line.

The 	DCT 	sends 	its 	signal 	to the VHF Mux, a

multiplexor/demultiplexor for video signals. The input is

taken from the DCTs, cable TV and Pay TV signals, other

video services, and an information switch (for circuit

switched data). The output is a set of video channels, with

four DS-1 streams per video channel assigned to digital data

(6 Mbps per video channel). At present there are four video

channels in each direction for digital data or 16 OS-1

 streams for the 2048 subscribers on the feeder line. The

rest •of the channels are reserved for video signals

travelling downstream (from DCT to subscribers); there is no

provision for upstream video.

The Intermediate Distribution Terminal (IDT) separates

two OS-1 streams (1.544 Mbps each) from the feeder cable,

passes them along with all video signals to the subscriber,

and sends two DS-1 streams back to the DCT. The IDT also

serves as a noise filter and signal regenerator. There can

be up to eight IDTs per feeder cable, serving about 256 sub-

scribers apiece.

The Remote Video and Digital Multiplexer (RVDM) performs

most of the low level services for the subscriber. It con-

trols cable and Pay TV for all its subscribers (i.e., it

- 46 -

does the tuning for the subscriber's TV), it does security

checking, and administration functions. The RVDM also con-

tains a mini-exchange for telephones. Communications to and

from each subscriber are with 1.544 Mbps channels, one in

each direction. There can be up to 32 RVDMs attached to

each IDT, and each RVDM can serve up to 21 subscribers.

The Subscriber Terminal Unit (STU) is a microprocessor

located in the subscriber's home. It controls cable for the

TV, the phone jack system for up to four different telephone

numbers per home, a videotex keypad or keyboard, and it

polls alarm detectors, keypads, and meters.

111.2.3.1.2 Hardware

Currently, the CCC is an IBM Series/1 with 255K bytes

main memory, a floppy disk drive of 512K bytes, and a 64M

byte disk drive. This will be replaced in the future with a

multiprocessor system design. The other units will probably

be made up of one or more microprocessors each, depending on

the complexity of their job.

111.3 Performance Study of Omnitel

This section describes a detailed study of the perfor-

mance of Omnitel, described in the previous section. The

term "performance" in this context, refers mainly to the

end-to-end response time experienced by a customer. In ad-

dition to simple response time, however, other aspects of

- 47 -

Omnitel will be discussed, for example, the hardware units

which act as bottlenecks will be identified.

The first step in the analysis is a general queueing

model for the network, and this model is described in the

first section. Both queueing theory and simulation tech-

niques were used to determine the performance of the

network, and these methods and equations are described in

the next two sections. The fourth section describes the

complete results from various experiments that have been

performed, and the conclusions that can be drawn are

discussed in the final section.

11.3.l. The Queueing Model of Omnitel
 — —

In the previous section, the hardware components which

contribute to a a message's delay were described. This sec-

tion will analyze the delay experienced by a digital mes-

saged using a model consisting of a series of servers (where

the message is being processed), and queues (where the mes-

sage waits for processing). In later sections, this model

will be "solved" using analytic and simulation techniques in

order to characterize the network's behaviour. Figure 3. 7

contains a diagram of the model which has been constructed.

The various parameters required for the model will be

discussed in the results section (section 111.1.4), where

- 43 -

Devices STUs RVDM

RVDMs IDT -line IDT

Figure 3.7: Omnitel Queuing Model

- 49 -

IDT Feeder OCT

DCT CCC Back-end
Network

Figure 3.7: Omnitel Queuing Model

-50-

approximate values for them will be given.

To understand the performance of the network, we have

separated the downstream operation (from the center to the

subscriber) from the upstream operation (from the subscriber

to the center). In most cases, this separation is a

physical separation in the hardware (for example, Separate

frequency slots in the coaxial cable are used for upstream

and downstream digital data). Video signals also travel

through the network, but they use a dedicated, fixed portion

of the bandwidth bompletely separated from that used by the

digital messages, and so they will not interfere with

digital traffic.

As discussed in the hardware section, the Subscriber

Terminal Unit (STU) controls the various devices in the sub-

scriber's home. For the purposes of modelling, we will as-

sume that the STU receives messages from any one of its

devices in a block, rather than byte-by-byte. The STU can

be represented as a single server with an input queue coming

from the device, and output going to the RVOM assigned to

this particular STU (see figure 3.7). The input queue is

not strictly first in-first out (FIFO) due to the polling

regimen, but in order to simplify the implementation of the

model, a FIFO queue can be assumed. This assumption is

reasonably safe, especially since traffic levels for in-

dividual homes will probably be small. (Traffic from

videotex terminals in a commercial , environment is still

- 51 -

largely unknown, but most estimates are around one request

every 10 seconds EFEDI78b, POWE801; meter reading and other

remote alarm services will require lower bandwidth than for

videotex CSAKA80].) If only one device is active in an

interval of time, then the input will be FIFO for that

interval, and the exact queueing discipline is unimportant.

Once the STU has the message, there will.be a short delay

for the message to be processed and put on the output line.

For downstream digital messages, the action of the STU

is similar, although the assumption of its handling blocks

or complete messages is more important because the videotex

messages will be larger. This server has been modelled as a

separate single server with a FIFO input queue and output

lines to each device. The service time will be similar to

that of the upstream STU, although a little larger if it is

dealing with larger messages.

To model the upstream RVDM, a simple FIFO queue feeding

a single server should be sufficient. The input will be

taken from the various STUs that the RVDM controls, and the

output will go to the communications line connecting the

RVDM to the IDT. As with the STU, the RVDM polis the units

(STUs) that are attached to it; this has been abstracted in

the model to a FIFO input queue. This was done to simplify

the analysis of the network later on. The delay introduced

by the RVDM results from parsing the message type and refor-

matting the contents of the message into packets for trans-

- 52 -

mission.

For downstream messages, the'RVDM must reassemble the

message from packets in addition to parsing the message

type, translating the command or message into a form

readable by the display device, and sending the output to

the proper output line. Again, this can be modelled as a

single server with a FIFO input queue coming from the com-

munications lire, and a number of outputs to each STU that

the RVDM serves. The service time will be similar to the

upstream RVDM, with an additional delay caused by reassembly

of the packets. Therefore, the message cannot be fully

processed until all of the packets comprising it have been

received. The RVDM must wait until the entire message has

been'received before passing it on to the STU.

The next source of delay is the communications line, in

the form of a Ti Carrier (or DS-1 stream) connecting the

RVDM with the IDT (the IDT-line). From the modelling view-

point, the important characteristics of the Ti Carrier are

that the system multiplexes 24 separate channels, and that

each channel has a capacity of 64010 bits per second. The

communications line can thus be modelled as a set of 4 ,3

parallel servers (since two DS-1 streams or Ti Carriers are

used) with a single queue taking input from the RVDM's, and

a single output to the IDT. The service time of each server

can be calculated using the following equation:

service time = length of message (bits) / 64110 bits per second

- 53 -

This is the length of time that the server is occupied, but

the delay that the message experiences in the communications

line is only equal to the transmission time for one time

slot (8 bits), or 0.000125 seconds. After the first time-

slot has been transmitted, the next unit in the hierarchy,

the IDT, can begin processing. This queueing structure and

service discipline are exactly duplicated for information

flowing in the downstream direction.

Both upstream and downstream IDT units can be modelled

as 48 parallel servers with one FIFO input queue. This is

similar to the IDT-cable, since the IDT must handle two OS -1

streams (a total of 48 time-slots) simultaneously in each

direction. The unit will have to operate at the same speed

as the input and output lines, so the service time calcula-

tion is the same as for the IDT-line. However, the delay

given to the message is equal to the processing delay as-

sociated with transferring one time-slot of data from the

input line to the output line, which would be about one mil-

lisecond.

The main feeder cable connecting the IDT's with the

DCT's behaves very similarly to the IDT-line. Each Ire ap-

pears to have bandwidth allocated specifically for the

customers under its control (except for very light traffic

conditions; see COYNE80), so that the feeder cable will

simply act as several independent sets of parallel servers,

one set per IDT (see figure 3.7). Each set of servers is

- 54 -

independent of the others and so can be considered

separately. These servers will have exactly the same set of

characteristics as the RVDM line discussed earlier.

The Distribution Control Terminal (DCT) also must con-

trol two DS-1 streams, and as such, will look very similar

to the IDT. The DCT is therefore modelled as 49 parallel

servers with one FIFO input queue, and an output line to the

CCC (this will be explained later). The service time is

computed as with the IDT-line, and the delay time given to

the message will be typically the same as for the IDT. The

downstream DCT performs exactly the same function in the op-

posite direction, and so it is modelled in the same way as

the upstream DCT.

The Central Control Computer (CCC) acts as the destina-

tion for some of the messages which are passed through the

system, namely those messages for the functions that -Cie CCC

controls, and various control and maintenance messages. It

is therefore inserted into the queueing model after the DCT,

and it is represented as a single server, with a FIFO queue.

The messages which do not use the CCC (like videotex mes-

sages) will experience no delay here but are passed directly

to the next stage. Other messages, such as those for meter

reading, stop at the CCC, which performs some sort of func-

tion related to the type of message it received.

Once the message has been passed through the upstream

network, it enters a "back-end" network which is dependent

- 55 -

on the type of message (and type of service required).

Telephone messages will be routed to a telephone switch,

which will send the message downstream through Omnitel to a

new destination, or possibly outside this network to some

other network. Meter reading and alarm messages will be ab-

sorbed by the CCC, with no further action (at least, from

the model's viewpoint). Videotex messages, which are the

main item of interest here, will be sent through the rest of

the Distribution Network, and through the Server Network to

the appropriate Videotex Server. That server retrieves the

requested page and sends it back through the Server Network

and the Distribution Network, to Omnitel. This procedure

has been grossly modelled as an infinite set of servers with

no input queue, with output being sent to the downstream DCT

queue. The service time is uncertain at present, but may be

on the order of one-half second if this "back-end" network

consists simply of a host videotex server, like most

videotex networks in existence today. For vidéotex, the

destination unit is the same STU which originated the re-

quest, and the length of the returned message will be

changed to reflect the length of the videotex information

page.

111:3.2 	Analytical Solution .

The Omnitel queueing model can be analyzed using stan-

dard queueing theory, providing that some simplifying as-

- 56 -

sumptions are made. This section will describe an analytic

solution to the network in terms of end-to-end response

time, mean waiting time per server, mean number of messages

in each server (includin4 those in the queue) ana mean

utilization of each server. As well, the servers will be

analyzed to determine which servers are bottlenecks, and

under what conditions the bottleneck changes from one server

to another.

111.3.2.1 Delay Analysis

The first goal in the analysis will be to determine the

end-to-end response time under a variety of parameter values

for mean service times and input rates. In this context,

"end-to-end response time" refers to the time it takes for a

message to travel from the STU to the DCT (upstream), spend

time in a back-end network, and travel back from the DCT to

the STU (downstream). As well, other calculations will be

made to help describe the network's behaviour (such as mean

utilization and mean delay at each server).

The analytic solution is based on two simplifying as-

sumptions concerning the arriva], of messages at each server,

, and the amount of service required by the message at each

server. First, we will assume that messages arrive at each

server in a "Poisson process" ie. 	that arrivals are

governed by the Poisson distribution function (see KLEIN75a,

page 60 for a description of this function). 	Second, we

will assume that a Poisson process governs when messages

- 57 -

leave a server. 	These assumptions mean that the time

between the arrival of messages at a server will be taken

from the exponential distribution, as will the service times

of these messages (KLEIN75a, page 65 has the mathematical

derivation of this property).

The Poisson process assumption has been made for two

major:reasons. First, the Poisson process has been shown to

be a useful model of many natural processes. The classical

example of a Poisson process originated in 1q29, when it was

shown to properly model the'number of army soldiers killed

by being kicked in the head by horses. As well, it has been

shown to model such processes as the sequence of gamma rays

emitted by a radioactive particle, and the sequence of

telephone calls in a network. As well, the Poisson process

often'correctly models the sum of a:large number of indepen-

dent processes, each with a different, arbitrary statistical

distribution. This property.explains why this distribution

models a large 'number of processes (eg. people making

telephone calis) acting together. For these reasons, the

Poisson processes. will be a suitable model for messages

passing through the Omnitel network. In this network, there

will be a large number of subscribers attached to a single

feeder cable (up to 204q), making independent decisions on

when to make „a request to the network. This is the situa-

tion described above, with a. large number of independent

processes, acting in aggregate.

- 5q -

The second major reason for using a Poisson process is

that the mathematics involved simplifies tremendously

without losing much accuracy. The exponential distribution

has a number of good mathematical properties, which makes

mathematics easier i7KLEIN75a, page 651. One of these

properties (Burke's theorm), is used later in this section,

to subdivide the network, and solve each section indepen-

dently.

The model of the network described in the previous sec-

tion is made up of a series of servers with queues attached

acting one after another in tandem. With the assumptions

described above, the queues and servers can be characterized

as M/M/1 and M/M/m queues* (where "M" means "Markovian", or

the exponential distribution). 	The STU and RVDM may be

represented as M/M/1 servers (with different mean service

times) and the IDT line, IDT, feeder cable and OCT may be

represented as M/M/M servers, where "m" refers to the max-

imum number of messages that the communications lines can

transmit at one time (this will be 49 under the configura-

tion being studied; see section 111.3.4.1). The CCC will be

left out of this analysis because it has no service time in

the model, and the 'back-end network delay will be approx-

imated by a realistic constant.

The problem of solving a network of these queues is

normally quite complex, but the assumption made earlier of

exponential (or Markovian) service and interarrival times

makes this problem considerably easier. As discussed in

KLEIN75a (page 149), Burke's theorem allows the analysis of

each node in this network independently of the other nodes,

providing that we have Markovian input and service time

processes, and that the system is stable. Thus, each M/M/1

or M/M/m node in the network may be solved individual1yan ,1

the results accumulated.

The solution to an M/M/1 queue is quite well known, and

may be found in KLEIN75a. The results of interest are as

follows:

*This notation for queues is: A/B/m where "A" refers to the
interarrival time distribution, "B" refers to the service
,time distribution, and "m" refers to the number of parallel
servers being served by one queue.

— e5 m

utilization: 	 g = X/IL 	 [1]

man nurrizer in systexn: 	= p/(1-p) 	 [2]

ne.an waiting tine: 	w = (PAI)/(1-p) 	 [3]

nean. x-e.sponse tire: 	T = (1/u)/(1-p) 	 [4]

where lambda represents the arrivai rate (in messages per

second) and mu represents mean service rate (also in mes-

sages per second). These equations will apply to the STU and

RVDM, although the values for lambda and mu will differ. In

particular, since the RVDM services a number of STU's (say n

STU's per RVDM), then the RVDM's input rate will be n times

STU's input rate.

The equations for the solution to an M/M/m queue are

less well known than the M/M/1 queue, but the equations may

be derived from the equilibrium set of probabilities (the

equilibrium probability for a server is the probability that

the server has a given number of messages in it when it is

in an equilibrium state).

[5]

[6]

[7]

T = w+ d [8]

These probabilities are as follows (see KLEIN75a):

"L 0 .. (11143) k Pk = 	P 	 if k 4. ni
k!

, ,k m 	.
Po tP) m 	k > m

m!

Pa =
k
 î 	(rnp) k + ((mP) m) 	1

nml

k4 --k-r 	ral 	

—1

From these equations, the following results may be derived.:

X/(Pm)
— m

(m +*1) . pm+1 + 	p = Pomm 	 + 	k (po î 	mp
m! 	[1—p

r 	 [_
k0 1

_20.(i_np)k

=k! 	
if k ni

0 = 0 	 if k < m

where d is the delay that the message experiences at the

server. The response time equation is slightly different

than usual because the delay that a message experiences for

the M/M/m servers in this network is not equal to the ser-

vice time at the server (the length of time the server is

- 62 -

occupied), as discussed in the previous section (the model

description). These equations will apply to the IDT-line,

IDT, feeder cable, and DCT.

The values for utilization, mean number in the queue,

mean waiting time, and response time give a good indication

of the behaviour of individual servers in the network, and

they should indicate whether or not any server is causing

problems under a given set of parameter values. By virtue

of Burke's Theorem, these values are also applicable to the

network as a whole. Thus, to get the value for end-to-end

response time, the following equation may be used:

T = E T. + back-end ne-bmrk delay
i

where "i" ranges over each 'server type, for both upstream

and downstream servers.

111.3.2.2 	Bottleneck Analysis

The delay analysis will show whether and where bot-

tlenecks will occur under a given set of parameters; the

network can also be analyzed to determine the parameter

values required to produce bottlenecks in each server. This

analysis will more graphically indicate the most vulnerable

servers, and at which parameter levels they become critical.

This analysis involves the equations for mean utiliza-

tion in the M/M/1 and M/M/m queues- (equations 1 and 5

respectively). If a set of parameter values (service times

for the various servers) results in the mean utilization of

C9 1

- 63 -

[10]

[11]

[12]

[13]

[14]

[15]

some server in the system being 1.0 or over, then that

server is working at capacity and will act as the system's

bottleneck. We must determine then, which server or servers

reach capacity "first."

For a given set of parameter values, with the system

configured as described earlier, the utilization equations

for each server are as follows:

STU: 	p = X leStu

RVUM: 	p = 8X xrvdm

IDT line: p = 256X (rm1/64000)/48

IDT: 	p = 256X (m1/64000 + Sidt)/48

Feeder: 	p = 256X (m1/64000)/48

DCT: 	p = 256? (m1/64000 + S)/48

where lambda represents average input rate to each STU in

messages per second; x represents the average service time

for the STU or RVDM; ml represents the mean message length

(in bits)'; and S(xyz) represents the extra amount. of delay

that the hardware in unit xyz causes. This S-value is due

to the nature of the IDT and DCT. The servers in these

units are occupied by a message for a time equal to the

delay it takes to process one time slot (in the Tl carrier),

plus the time it takes for the complete message to pass

- 64 -

through, at 64,000 bits per second. The first delay is

represented by "S(xyz)", and the second time is computed as

"M1/54000".

These equations will be plotted (Where utilization
a

equals one) for a small set of different parameter values,

and the results discussed, in section 111.3.4.

Another useful analysis is to determine the set of

parameters for which each server acts as the bottleneck.

The above analysis tells us, for a given set of parameter

values, what the safe levels for input rate (lambda') and

'message length (ml) will be. Since exact levels for the

parameters are not known, it will be useful to know the

range of parameters for which one server or another will be

dominant. This is equivalent to plotting the cross-over

point from one line to another in the graphs produced by the

first analysis.

It can be seen from equations 10 through 15 that the

utilization for the IDT and DCT will always be greater than

the IDT-line and feeder cable. As well, the utilization for

the RVDM will always be greater than the STU (as long as

x(rvdm) > x(stu)). Thus if we compare the utilization of

the RVDM to the IDT or DCT, we may determine the parameter

values which cause one or the other to be dominant. By com-

paring equations 11 and 15, the RVDM will be dominant when

the following equation is valid:

8 1111_÷ 64000 S xrvem
det

12000

- 65 -

Plotting S(dct) (or S(idt)) versus x(rvdm) for various

values of mean message rate, will indicate the sets of

parameters which cause one of these units to dominate.- This

is done in section 111.3.4, and the results are discussed

there.

111.3.3 The Simulation of Omnitel

The analytic solution to the model provides an approx,

imate solution, but one which is very easy and flexible to

use. To get a more exact solution to the problem, a simula-

tion program must be written. The simulation still relies

on some assumptions, but the action of the servers can be

more accurately modelled, and so the results should be more

reliable. Simulation results, however, are very expensive

(in terms of machine time) to produce, and thus,. only a

limited number of results have been generated. Conse-

quently, the analytical solution will be used to explore the

behaviour of the network, and the simulation results will be

used to verify the analytical results. The simulation

program is listed •in Appendix A at the end of this report.

It is written in the programming language C with the aid of

the Unix operating system.

There are two kinds of messages available: videotex

messages, and "external" Messages. Videotex messages

originate at an STU, and are very small to reflect the small

keypad or keyboard requests (ranging from 2 to 16 bytes).

- 66 -

At the back-end network, these messages become very large,

to represent the size of the returned page, and are returned

to the STU which generated them. (The actual size of the

returned message is a parameter in the simulation which can

be varied. For the values chosen for the experiments, see

section 111.3.4.2.) External messages simply travel one waV

through the network, either from DCT to STU, or from STU to

DCT. They were . originally meant to simulate background

traffic in the system, but by varying the size of these mes-

sages as a parameter, they can also be used to investigate

the network's behaviour under a number of different circum-

stances.

The assumptions made in the simulation program deal

mainly with the statistical distributions chosen for the

various uses. These distributions are used to generate a

sequence of "random" values used for service times, message

interarrival times, and message lengths. These "assump-

tions" are really parameters chosen for a hopefully

realistic pattern of messages and service times. The impor-

tant distributions involved in the simulation are as fol-

lows:

Videotex Message Size: 	Uniform distribution (downstream)
E±lang distribution (upstream)

Videotex Interarrival
Time: 	Exponential distribution

"External" Message Size: Erlang distribution

"External" Message
Interarrival Time: 	Exponential distribution

- 67 -

1

Service Times: generally Uniform distribution,
unless the value can be exactly
calculated

Back-End Network Delay: Normal distribution.

These distributions were chosen for a number.of reasons.

The Uniform distribution was used for the downstreaM

videotex message size,.and for the service times that could

not be calculated otherwise. This distribution gives each

.value in a given range the exact same probability . •of being

chosen. In both cases where it was used, the range of

possible values was quite. small, and it was felt that this

distribution provided a good enough estimate, without

costing too- much machine time. (The uniform distribution is

the easiest to calculate.) The Erlang distribution . was used

to generate values for videotex page sizes (upstream • mes-

sages) and "external" messages. This distribution rises to

a peak (near the mean value), and then decends slowly to

give a long tail. This is very similar to the distribution

of videotex pages. • It has been observed that the majority

of Telidon pas are between 100 and 1000 bytes long, with a

small number of larger pages, and a few very large pages.

Finally, the Exponential distribution was used for

generating the arrival of messages to the network. This was

chosen for essentially the same reason as for the analytical

solution -- Poisson processes model these situations quite

well. 	All of these distributions, however, are parameters

that can ,be changed if more realistic estimates 	are

- 59 -

available. For this evaluation, though, these distributions

were not changed.

Both the analytical and simulation assumptions have been

summarized in Table 3.6 at the end of section 111.3.5. The

major reason why the simulation model can be considered to

be more accurate is that each individual server in the

network is operated as closely as possible to the way it

operates in the real network. Even though the exponential

distribution is used to generate messages to the network,

the message is processed through the network according to

the exact queuing discipline of the various servers. The

analytical model considerà the average behaviour of ail mes-

sages which pass through the network and it must make as-

sumptions about how messages pass from server tà server (ex-

ponential interarrival times). Since the simulation does

not make this assumption, its results should be more

realistic.

The exact details and results of the simulation runs

will be discussed in the following section.

111.3.4 Presentation of Results

This section will describe the analytical calculations

and simulation experiments which have been performed.

First, the default parameters to both the analytic calcula-

tions and the simulation program are given. These represent

approximate values for the various service times in the

- 69 -

network, and are used as a base for all of the calculations

presented later. The second section will describe the ex-

periments which have been done, and the third section will

present the results. Finally, the results from the simula-

tion program and the analytic calculations will be discussed

and compared.

111.3.4.1 Model Parameters.

In order to perform the experiments, numeric values must

be given for service times in the various queues, and the

configuration of the system should be described. In Table

3.1, estimates of "service time" and "delay time" for each

type of queue is detailed. The "service time" is the lengtb
-

of time that the server is occupied by a message, and the

"delay time" is the amount of delay that the message is

given. These values have not been detailed in the litera-

ture FCOYNE90], so the values given in Table 3.1 are hest

realistic estimates of the parameters, except for the delay

time and service time for the communications channels (the

IDT-line and Feeder), which can be exactly calculated.

For the single server queues (the STU and 	VDM),

service time and delay time are the same because in the

model, the whole message is received and processed before

being passed on. For the multiple server queues (the -CDT

line, IDT, feeder, and DCT), the service and delay times are

different due to a different queueing discipline. For these

the

- 70 -

queues, the progress of the message is delayed only by the

transmission or processing delay of the first portion of the

message (je. the first time-sIot in the time division mul-

tiplexing scheme). As soon as that time slot is processed,

the next server in the network has access to the start of

the message, and begins processing. The original server

however, is still processing (or transmitting) the message,

and it will continue to do so for the duration of the ser-

vice time.

The configuration used for most of the experiments con-

sists of a single DCT, servicing two DS-1 streams on the

main cable , (two DS-1 streams represent 48 time-slots, or 48

parallel servers in the model). These streams connect to

one IDT which is loaded with 32 RVDM's, each supporting q.

STU's. 	On each STU (ie. in each subscriber's home), there

is one videotex terminal, and possibly other devices. 	This

configuration represents a heavily loaded system according

to COYNE80, but does not load the system as fully as the

addressability of the network allows.

Queue Type Service Time 	Delay Time

- 72 -

Table 3.1: Mean Service and Delay Times (default)

STU (upstream) 	1.0 milliseconds 	1.0 milliseconds

STU (downstream) 	10.0 milliseconds 	11.0 milliseconds 	II

RVDM (upstream) 	10.0 milliseconds 	10.1 milliseconds
II

RVDM (downstream) 10.0 milliseconds 	10.0 milliseconds

IDT line 	msg length (bits)M4001 bps 	0.125 milliseconds
II

IDT 	msg length (bits)/64100 bps 	1.0 milliseconds

Feeder 	msg length (bits)/64001 bps 	0.125 milliseconds 	I
DCT 	msg length (bits)/64000 bps 	1.0 milliseconds

I CCC 	 zero 	zero

Back end network 	0.5 seconds
(videotex)

111.3.4.2 Description of the Experiments

Most of the analysis of the network has been done using

the analytical approach, due to the length of time that it

takes to run the simulation program. The analytical equa-

tions are a much more flexible tool to use in exploring the

behaviour of the network. The simulation however, is more

accurate, and so it must be run to ensure the validity of

the conclusions. The bulk of the experiments then, are done

only with the analytic equations and the simulation program

is used to duplicate a selected number

results.

The experiments are conducted by varying one

of the analytical

or more

parameters in the model, and calculating the end-to-end

delay of a message travelling through the network. These

parameters consist of those described in the previous sec-

tion (service and delay times, and the configuration of the

network), as well as the mean message length in the network,

and the traffic rate (measured as the number of messages

generated every second by each STU).

In the first experiment, the delay times for all servers

in the model (except the communications channels) were set

to the same value, and their values simultaneously in-

creased. The communications channels are not included here

because their service and delay times are exactly known, and

so they are not parameters which can be changed (unless the

- 73 -

configuration of the network is changed). This experiment

was designed to quickly find out the server most likely to

present congestion problems, and it uses only videotex mes-

sages. The mean size of videotex messages upstream from the

STU to the back-end network was 90 bits, and the returned

size of the videotex messages was 13000 bits. Both values

represent high estimates of the actual values, so that if

any congestion is likely to happen under normal videotex

operation, it should show up here. The upstream videotex

messages are generated at a rate of one message every ten

seconds from each videotex terminal. Both simulation and

analytical results were calculated, and the results can be

found in figures 3.8a and 3.Rb in the following section.

The next experiment shows the effect of running a con-

stant flow of videotex messages (at a rate of one request

every ten seconds per videotex terminal), and an increasing

flow of "external" messages. The mean length of "external"

messages here is 5000 bits, and the rate of messages varies

from zero to as high as necessary to reach congestion in the

network. This experiment was run both analytically and by

simulation, and the results may be found in figures 1.9a and

3.9b (also in the next section).

The third experiment was designed to investigate the

performance characteristics of each server in the network.

For each unit in turn (except for the communications chan-

nels), the delay time was varied, keeping all other service

- 74 -

times at their default values. The length of the end-to-end

delay was plotted for a series of curves, each with a dif-

ferent mean message length. For the communications chan-

nelS, the number of parallel servers in the network was

varied from 24 to 48 to 96, in order to investigate the ef-

fect of the channel capacity on end-to-end delay. The end-

to-end delay values for these parameters were also plotted

for a series of mean message lengths.

Finally, the fourth experiment alters the configuration

of the network to see how the RVDM behaves when it is loaded

with a different number of STUs. The total number of STUs

on the network is kept roughly constant, and the

RVDMs and STUs connected to each RVDM is changed . .

ditional experiment, the total number of STUs is

to test the network at a heavier load.

number of

In an ad-

increased

111.3.4.3 Presentation and Discussion of Results

111.3.4.3.1 Delay Analysis

The first experiment effectively increased the delay

times for all servers (except the communications channels)

to the point where one (or more) of them became congested,

and thus limited the throughput of the network. Figures

3.8a and 3.8b are the simulation and analytic results from

this experiment, respectively. From these figures, it can

be seen that the network does not become congested (under a

- 75 -

M
E
A

N
 V

ID
E

O
T

E
X
T

 R
E

S
P

O
N
S

E
 T

IM
E

 (s
e

c
)

100.0

10.0

0.1

1.0

M
E
A

N
 V

ID
E

O
T

E
X
T

 R
E

S
P

O
N

S
E

 T
I M

E
 (s

e c
)

100.0

10.0

1.0

1.0 0.001 	 0.01 	 0.1

SERVICE. TIME PER SERVER (sec)

Figure 3.8a: Experiment 1, Simulation results

0.001 	 0.01 	 0. 1

SERVICE TIME PER SERVER (sec))

Figure 3.8b: Experiment 1, Analytical results

1.0

normal videotex load) until the delay time for each server

has reached an unreasonably high value (1.25 seconds). This

fact alone indicates that for reasonable service and delay

times (like the default values in Table 3.1) the network

will not be congested under normal videotex load conditions

(one message every ten seconds per videotex terminal).

To see which server or servers actually caused the bot-

tleneck, a table of utilization values for each server at

the saturation point (1.25 seconds delay time) has been com-

piled for the analytical results:

Table 3.2: Utilization at the Saturation Point in Experiment 1

Server 	Utilization

a) Upstream 	DCT 	0.6674

Feeder 	0.0008

IDT 	0.6674

IDT-line 	1.0008

RVDM 	1.0100

STU 	0.1251

b) Downstream 	DCT 	0.7751

Feeder 	0.1083

IDT 	0.7751

IDT-line 	0.1083

RVDM 	1.0010

STU 	0.1251

This table shows that, at the saturation point, it is

the RVDM, both upstream and downstream which is fully

utilized, and thus is causing the congestion of the network.

Thus, the first indication is that the RVDM is the most

critical piece of shardware on the system.

The second experiment runs a constant flow of videotex

requests, and increases the flow of background or "external"

messages to simulate an increasing traffic level; the

analytic and simulation results may be found in figures 3.9a

and 3.9b respectively. Both graphs show a decrease in the

end-to-end response time between a mean input rate of 1.1

and about 1.0 messages per second per STU. This is due to

the fact that small messages are transmitted in less time

thap large messages, and that the mean message size

decreases when external messages are added. At 1.1 messages

per second per STU, there are only videotex messages in the

network, with a mean size of 13100 bits. As external mes-

sages are introduced with a mean size of 5011 bits, the mean

size of messages in the network drops, as does the mean eni-

to-end delay. After a period of time, the traffic in the

network causes queuing delays, and the mean delay starts to

increase again.

In this experiment, .the end-to-end response time of

videotex messages can been seen from the first plotted point

on figures 3.9a and 3.9b, when there are no external mes-

sages in the network. The actual value for the delay is

- 78 -

Figure 3.9a: Experiment 2, Simulation results

I .
1.0

't; 0.8

I I-
0.6

o 0.4
a.
tll
Ui

0.2

0.0 	
0 0 	05 	1.0 	• 1.5 	2.0 • 25

INPUT RATE '(msgs/sec/STU)

1.2

1 .0

1;

UJ

P:
0.6 •

UJ
01

2e" C) 2k C) 	•

02.

0. 10
0.0 	0.5 	1.0 	1.5. 	2.0 	2.0

mpur FgrE (mIstlesec/.STU)
Figure 3.9b: Experiment 2, Analytical results

3.0

ul

ul

E
S

3.0

- 79 -

0.7398 seconds in the simulation experiment and 0.731 7

seconds in the analytic calculations. These figures consist

of 0.5 seconds delay in the back-end network, about 0.015

seconds upstream delay, and about 0.220 seconds downstream

delay. The difference between upstream and downstream delay

is again due to the difference in mean message sizes

travelling in the two directions.

This experiment also shows different behaviour at the

saturation point (about 2.21 messages per second per STU)

than in the first experiment, as Table 3.3 illustrates:

Table 3.3: Utilization at the Saturation Point in Experiment ?

Server 	Utilization

a) Upstream 	DCT 	, 0.8915

Feeder 	0.87 9 7

IDT 	0.8915

IDT-line 	0.8797

RVDM 	0.1769

STU 	0.0022

h) Downstream 	DCT 	0.9990

Feeder 	0.9q73

IDT 	0.9910

IDT-line 	0.9973

RVDM 	0.1768

STU 	0.002?

- 130 -

In this case, the DCT and IDT are causing the bot-

tleneck, rather than the RVDM as in the first experiment.

The bottleneck analysis discussed later will indicate the

conditions under which the bottleneck changes.

The results from the main series of experiments, where

the service times of the various hardware units was in-

creased, and the capacity of the communications channels was

altered, may be found in figures 3.10 through 3.14. The

analytical results from the RVDM experiment are shown in

figure 3.10. A series of simulation runs has been performed

with the same parameters as shown in figure 3.10b (the

default parameters as shown in Table 3.1), and results from

these experiments may be found in figure 3.11. Figure 3.12

contains plots from the IDT and DCT experiment, figure 3.13

shows the STU results, and figure 3.14 plots the results

from the communications channels experiment.

In figure 3.10, the effect of increasing the RVDM ser-

vice time can be readily seen. Figure 3.10a shows the RVDM

with a service time of 0.005. At this level, the RVDM

serves as a bottleneck only when the mean message length in

the network is very small (less than 40 bits per message);

at larger message sizes, the DCT or IDT becomes the bot-

tleneck. As the RVDM service time increases (in figures

3.10b, c, and d), the RVDM increasing becomes a more

prominant bottleneck, and the maximum message rate that the

network can handle (measured in messages per second per STU)

- Si -

0.2H

8 4
0.0

0 12 16 20

7 RVDM e

QD 7000 bits/msg.

C) 5000 bitsimeg

C) 2000 bits/msg

(5) 1500 bits/meg

0 1000 bltemsg

CD 500 bits/msg

4 	6 	8 	10
INPUT RATE (msgs/sec/STU)

1.2

1.0

0.8
,

 0.6

0.4

0.2

0.0
0

0 KD

12

fig. 3.10b RVDM, DEFAULT PARAMETERS

© I ®

R
E

S
P

O
N

S
E

0
1.0

7; (1" 0 8

2
P 0.6 .-

0.4 dm
=. 0. 005

rv

A 2000 bits/msg
B 1000 bits/msg
C 500 bits/msg
D 	100 bits/msg

I I 	I

24

INPUT RATE (msgs/sec /STU)

Figure 3.10a: Experiment 3, RVDM results

742VDIA m°°5

0 10000 bits/ msg

0 7500 bits/ msg

@ 4800 bits/msg

@ 1000 bits/msg

e 500 bits/ msg

0 	100 bits/msg

3.5

0 	I® 	C)! K)
c)
c)

X 	0.1 RVDM-

0 20000 bite/msg.

O 15000 blts/msg

0 10000 bits/msg.

@ 3000 blts/msg

0 I 000 bitslmsg'

O 100 bits/msg.

0.0
0.0 	0.2 	0.4 	0.6 	0.8 	1.0

INPUT RATE (msgs/ sec /STU)
1.2

3.0

-"c; 2.5
t»

2 2.0

z 1.5 o

ce 1.0

0.5

0.0
0.0 0.4 	0.8 	1.2 	1.6 	2.0 	2.4

INPUT RATE (msgs/sec/STU)

fig. 3.10c RVDM RESULTS

fig. 3.10d RVDM RESULTS

drops in proportion to the increase in service time. In

fact, if the RVDM service time is as high as 1.1 seconds per

message (figure 3.10d), then the network can only accept a

maximum of 1.25 messages per, second from each STU, which may

constrain the system if high bandwidth digital services are

offered.

Figure 3.11 shows results from the computer simulation,

run for the same parameters as for figure 3.10b (the default

parameters as in Table 3.1). This figure shows essentially

the same behaviour of the network as shown in figure 3.1Ib,

the analytical results. The values given at low traffic

levels in both figures are nearly identical, and both

figures show the network becoming saturated at the same

levels. There is a difference in how the response time

behaves when traffic levels approach the saturation point,

however. These differences are discussed more'fully in sec-

tion 111.3.4.4.

The results from the IDT and DCT experiments are shown

in figure 3.12. These two hardware units have identical

forms in the network model (see section 111.3.2.1), and so

they have been analyzed in the same experiment. The four

sections of the figure (3.12a to 3.12d) show the IDT/DCT

unit with a delay time (the processing time for one time-

slot of data) of 0.0005 seconds, 0.005 seconds, 1.11

seconds, and 0.1 seconds respectively. Figure 3.11b shows

results with the default parameters, where the IDT/DCT delay

- 84 -

1.0L .4

0.8 	
I
'

OS VD
I 	I

•1

À©

ul 0.6

o
a.

Lià u.4

,AMnIP•

0.21—

leifflo

g 7000 bitsimsg

0 5000 bits/ msg

0 2000 bits/msg

0 1000 bits /msg

0 500 bits/msg

i 	111 	i1111111i
0.0

0' 	2 	4 	6 	8 	10 	12

INPUT RATE (msgs /sec/STU)

fig. 3.11 SIMULATION RESULTS, DEFAULT PARAMETERS

1.; 1.0
cu

2 0.8

Lii

2 0.6 	

1.2

o
ci
cn

0.4

0.2

0
)1 0

R
E

S
P

O
N

S
E

 T
IM

E
 (s

e
c

)

DCT
0.0005

O 5000 bits/msg

O 2000 bits /msg

O 1000 .blts /mg

O 500 bits/ msg

0 100 bits/msg

1 	1 	I 	I 	I 	I

fig. 3.12 a OCT RESULTS

4 	6 	8 	10 	12
INPUT RATE (msgs/sec/STU)

-*. DCT e> 0 .005

0 5000 bits /msg

® 2000 bits/msg

© 1000 bits/ Msg

• 500 bits/ msg

0 50 bits/ msg

0.0
0 	2 	4 	6 	8 	10 	12

INPUT RATE (msgs/sec/STU)

f ig. 3.12 b DCT RESULTS

® 10 10

5-(Dc.i.t... 0.1

0 1000 bits /msg

0 500 bits/ msg

(,) 100 bits/msg

1.0

I . cri 0.6

0

1 	
C.

w 0.4

I

12

1.0
a)

0.8 2

e'z 0.6
o
0.
U)
1= 0.4

0.2

R

iDc.r = 0.01

0 5000 bits/msg

0 2000 bits/msg,

 0 1000 bits/msg

(D 500 bits/msg

0 50 bits/msg

1.8 	2.0

0.0 	I 	I 	I 	I 	i 	I 	i 	I
0 	2 	4 	6 	8 	10

INPUT RATE (msgs/sec/STU)

fig. 3.12 c DCT RESULTS

0.0
0.0 0.2 0.4 0.6 0.8 	1.0 	12 	1.4 	1.6

INPUT RATE (msgs /sec /STU)

•

fig.3.12 - d DCT RESULTS

- 87 -

time is 0.001 seconds. In all graphs, the overall response

time at low input traffic rates is roughly the same. Unless

the IDT/DCT delay time is very large, its value does not add

a significant amount to the response time. Near the satura-

tion point, queueing delays are much more important. As the

IDT/DCT delay time increases, the saturation point for most

of the plotted curves moves to the left (ie. the saturation

point occurs at a lower rate of traffic). This indicates

that the IDT and/or the DCT unit is acting as the network's

bottleneck for these parameter values. This does not take

place when the average size of messages in the system is

very small -- around 50 to 1000 bits per message (depending

on the other parameter values). 	For these curves, the

limiting factor is the RVDM, as in figure 3.10. 	When the

delay time of the IDT/DCT is very large (figure 3.12d), the

IDT or DCT unit becomes a very serious bottleneck, limiting

throughput to less than 2 messages per second per STU.

The STU experimental results are shown in figure 1.13.

Figures 3.13a through 3.13c show the results when the STU

has a service time of 0.01 seconds, 0.18 seconds, and 1 .1

seconds respectively. Again, figure 3.10b shows the default

parameter results, where the STU service time is 0. 101

seconds (upstream) and 0.01 seconds (downstream) .. Since the

volume of traffic being transmitted through the STU is eight

times less than through the RVDM (in this configuration),

the STU must have a very large service time before it

- 89 -

II

- 89 -

7.;

tà.1
2 0

1.0

.8

I.2[

zel (16
 0

ir

 (1,

0.4

0.2

0.0
0

1.0

2 0.8

(A)

a.

re 0.4

0.21—

4 0

3is-ru =0•01

C) 5000 bits /msg

0 2000 bits/ msg

0 1000 bits/ msg

0 500 b its/ msg

	

0 	50 bits/msg

• 1 	I 	1 	I 	1 	I 	1 	I 	1 	I 	I
4 	6 	8 	. 	10 	12

INPUT RATE (msgs /sec /STU)

fig. 3.13a STU RESULTS

78Tu = 0.08

0 5000 bit s / msg

(D 2000 bits /msg

0 1000 bits/msg

500 bits /msg

0 	50 bit s/msg

2 	4 	6 	8 	10 	12

INPUT RATE (msgs/sec/ STU)

fig. 3.13b STU RESULTS

2.5

7°..1
CD
Cif

w 2.0

1.5

o
Q- .

cn
1.0 îsTu =0.01

5000 bits/msg

0 2000 bits/msg

0 1000 bits/msg

0 50bits/msg

I 	III 	!It 	I 	Ili

2 	4 	6 	8 	10 	12

INPUT RATE (msgs/sec/STU)

fig. 3.13c STU RESULT'S

I .

1

1

becomes a more serious problem than the RVDM. When the STU

service time is the same as the RVDM (figure 3.13a), there

is no significant effect of response time or saturation

point. However, when the STU service time is eight or more

times the RVDM, the STU replaces the RVDM as a bottleneck in

the curves with small mean message sizes (50 and 1001 bits

per message). 	As in figure 3.10, the IDT or DCT units are

still bottlenecks for large mean message sizes. 	With very

large service times, the curves also change shape, starting

at higher initial values, and increasing more quickly due to

a more serious queueing problem at the STU.

Figure 3.14 contains experimental results from varying

the capacity of the communications channels. The canacity

is measured by the number of 64K bit channels which are

available for 'both upstream and downstream transmission.

Figure 3.14a shows 24 channels (one ZO-1 stream), figure

• 3.14b shows the default parameters, 49 channels (two DS-1

streams), and figure 3.14c bas 96 channels (four D9-1.

streams). When the capacity of the communications channel

is altered, the capacity of the IDT and DCT must also be al-

tered in the model, since these units process each channel

in parallel. This means that altering the channel capacity

has a dramatic effect on the system performance. In figure

3.14a, with 24 channels, the network is severly limited, ex-

cept for very small messages. If the mean message size is

under 500 bits per message, then the network can hanrile

- 91 -

J''
4 	6 	8 	10 	12

INPUT RATE (msgs /sec/ STU)

0.°
0

1_ 	1

1.2

1 .0

O. 8

ir-

w 0 ' 6

(5

u) 0.4

0.2

24 CHANNELS

0 1500 bits / msg

0 1000 bits /msg

0 500 bits /msg

100 bits/ msg

fig. 3.14a COMMUNICATIONS CHANNELS

1.2

 1.0

0.8

0.6

0.4

0.2

0.0
0

-4VDIA 0.0

QD 7000 bits/msg

c) 5000 bits/msg.

qD 2000 bits/mmg

(b) 1500 bits/msg c) 1 000 bits/msg

aD 500 blts/msg.

4 	6 	a 	10
INPUT RATE (msgs /sec/STU)

fig. 3.I4b RVDM, DEFAULT PARAMETERS

12

e io

e -

®

12

10

• w 0.8

w 0.6
cr) 	 • 1 M I • • •ow • 	• • 	• • w • 	• 	7...

" 	" 	
•

a.
01 0.4r

96. CHANNELS
0 10000 bits / msg

0 5000 bits /msg

0 2000 bits/ msg

0 1500 bits/ msg

0.2 — ® 1000 bits/msg

	

1° 	

500 bits/ms

— 	 . 	 0 	100 bite/ ms:

0 .0 	i 	I 	1 	1 	i 	1 	i 	1 	1 	1 	1 	1 	i

0 	2 	4 	6 	8 	10 	12

INPUT RATE (msgs/sec/STU)

fig. 3.14c COMMUNICATIONS CHANNELS

about the same amount as for 48 channels. For these mes-

sages, the RVDM acts as the bottleneck. For larger mean

message sizes, though, the network can:handle about one-half

the traffic rate as for 48 dhannels. This means that for

videotex messages (7000 bits per downstream message), the

network can handle just less than one message per second per

STU. In figure 3.14c, the network has 96 channels, and can

handle approximately twice the traffic level for larger mes-

sages. For messages of less than 2000 bits per message, the

RVDM is still the bottleneck, and limits the traffic rate to

12.5 messages per second per STU.

The final experiment alters the configuration of the

network, to test the RVDM when it has to handle more STUs.

In figures 3.15a to 3.15c, the number of STUs on the network

is kept roughly constant to minimize the effect of the rest

of the network on the results. In these figures, the number

of RVDMs is decreased from 21 (with 12 STUs mer RVDM) in

3.15a, to 16 (with 16 STUs per RVDM) in 3.15b, to 53 (with 3 2

 STUs per RVDM) in 3.15c. The default configuration, with 12

RVDMs and 9 STUs per RVDM may be found in figure 1.1911. In

these figures, the RVDM becomes a more serious bottleneck,

allowing a maximum of 8.3 messages per second per STU in

figure 3.15a; 6.3 messages in figure 3.15b; and only 3. 7

messages in figure 3.15c. The IDT/DCT units still act as

the bottleneck for large messages, but when the RVDM is

loaded as in figure 3.15c, the mean message size must be

- 94 -

r 11®

er.)

w

o)
co

1.0E

08 	

)

2
17-

w 0.6
cn
z.
o
U.) 0.4

1.0

w
2

w 0 6

o
a_
(.1) 0 4
LU

0.2

1.2

0
0

21 rvdms/idt

12 stus/rvdm

0 7000 bits/msg

0 5000 bits/msg

0 2000 bits/msg

C) 1000 bits/rnsg

® 100 bits/msg

1 	 1 	1 	I 	1
2 	4 	6 	8 	10 	12

INPUT RATE (msgs/sec/STU)

fig. 3.I5a EXPERIMENT 4

0.2

O.
00

1 1.
2

16 rvdms /idt

16 stus/rvdm

0 7000 blts/msg

0 5000 bits/msg

(D 2000 bits/msg

0 1000 bits/msg

0 100 blts/msg

11 	Ili
4 	6 	8 	10

INPUT RATE (msgs/sec/STU)

1 	I 	I
12

fig. 3.I5b EXPERIMENT 4

1.2

1.0

73

0.8
2
iz-
w 0.6

u)

0.4
w

0.2

0 .00
1

0.2

(DI

8 rvdms/ id t

32 stus /rvdm

07000 bits /msg

0 5000 bits/ msg

0 2000 bits/msg

0 1000 bits/msg

e 100 bits imsg

1 	1 	I 	1 	1 	I 	I 	I

4 	6 	8 	10 	12

INPUT RATE (msgs/sec/STU)

fig. 3.I5c EXPERIMENT 4

32 rvdms/ idt

, 12 stus / rvdm

0 7000 bits/msg

C) 5000 bits/ msg

O 2000 bits/msg

O 1000 bits /msg

® 100 bits/msg

2 	4 	6 	8 	10 	12

INPUT RATE (msgs/sec/STU)

fig. 3.I5d EXPERIMENT 4

around five thousand bits per message or more for this to

happen.

In figure 3.15d, the total number of STUs on the network

was increased from 256 to 384, with each of the 32 RVDMs now

handling 12 STUs. Here, the values for response time are

slightly higer than in the default case, due to the higher

rate of messages and increased amount of queueing which

arises from having more STUs. As well, each RVDM is

handling more messages, and so the RVDM now restricts the

traffic rate from each STU to 8.3 messages per second.

Again, the IDT/DCT units restrict the flow of large messages

in the network (mean message sizes of greater than 11010 bits

per message). For videotex messages, this configuration . al-

lows only one message per second from each STU.

111.3.4.3.2 Bottleneck Analysis

The results from the bottleneck analysis are presented

in figure 3.16. The first two graphs in this figure (3.16a

and 3.16b) use the first set of equations as presented in

section 111.3.2.2. They show the maximum rate of messages

that each server can tolerate, plotted against a range of

mean message rates in the network. In the model, the RVDM

has a constant service time, independent of the size of mes-

sage, and as such, the RVDM line appears as a horizontal

line. The other servers shown in these graphs have a ser-

vice time dependent on the length of message, so that the

- 97 -

35

30

I— 25

0
co s
— „ u, 20

Et co

Li_ al 15

Lu

ar 	10

z
a_

CABLE, IDT LINE

2000 	4000 	6000 	8000

MEAN MESSAGE LENGTH (bits)

1 fig. 3.16 a BOTTLENECK ANALYSIS

1

1

1

1

1

1
rvdm

CABE, IDT LINE

IDT, DCT

7 MN, 0 . 05

r v dm

2000 	4000 	6000 	8000
MEAN MESSAGE LENGTH (bits)

fig. 3.16 b BOTTLENECK ANALYSIS

1

1

1

1

1

1

1
— 98 —

35

1— 30

•

..en 25
teb

20

° 15 La.

LL1

Lt 10

a.
Z 5

2.5

0

16 stus

n) rvdm 	8 rvdms
stus

w 30

CABLES

35

IDT/
DCT

0 I5

a) rvdm 32 rvdms
8 stus

b) rvdm 21 rvdms
12 stus

c) rvdm I 6 rvdms

10

a.

U., 25
C7b

(é)

—20
II

Q.

DCT/IDT BOTTLENECK rvdm BOTTLENECK

X = DEFAULT PARAMETERS

2000

100/ 	500110001 	150001 17000

IL 	I 	11 I I I IL 	I 	I I IL 	I
0.1

• XRVDM (sec)

1.0

(log-log scale)

0.001 0.01

2000 	4000 	6000

MEAN MESSAGE LENGTH (bits)

8000

fig. 3.I6c BOTTLENECK ANALYSIS

0.1

1.3

2. 0.01

7.)

cn

0.001

f ig. 3.16 d BOTTLENECK TRANSITION

maximum rate of messages which they can tolerate drops as

the network's mean message size increases.

• Figure 	3.16a 	shows 	the results for the default

parameters (see Table 31), and it can be seen that the RVDM

limits throughput while the network contains messages whose

mean size is less than 896 bits. As the mean size grows,

the DCT and IDT units limit the throughput. The shaded area

in the graph shows combinations of message rates and sizes

which the network will handle without being congested. This

graph shows that for videotex messages (which are actually

about 7000 bits long in the current demonstration database

at the University of Waterloo), the network can handle

slightly over 1.5 messges per second per STU. It can handle

then, the normal videotex load of 0.1 messages per second

per STU. -

Figure 3.16b shows a similar graph, but with the RVDM

service time increased to 0.05 seconds (from 0.01 seconds in

figure 3.16a). In this situation, the RVDM is the limiting

factor for mean message lengths of less than 4 7 36 bits, and

the input rate is limited to 2.5 messages per second per

STU. The network can still handle normal videotex loads

under these conditions, however.

Figure 3.16c .represents the same kind of bottleneck

analysis, but it shows results from a set of different

network configurations. 	These configurations change the
9 '

number of RVDMs and STUs serviced by each IDT, as discussed

- 100 -

from rate

for figure 3.15 in the previous section. In figure 3.16c,

there are four RVDM lines, each representing the RVDM

saturation point for a different configuration. The line

labelled "a" is the default configuration, which is

discussed earlier. The "b", "c", and "d" lines represent

the following configurations: "b", 21 RVDMs and 12 STUs per

RVDM; "c", 16 RVDMs and 16 STUs; and "d", 8 RVDMs and 32

STUs. Each successive line represents an increased traffic

load on the RVDM (which has more STUs to service), and thus

each configuration can support a lower traffic

each STU.

These graphs also illustrate how the bottleneck changes

from the RVDM to the IDT/DCT, and how the point of this

change shifts from one configuration to the next. As the

RVDMs become more busy, the point of intersection of the

RVDM saturation line and the IDT/DCT line moves to the

right. For the "a" line, this point is at about 900 bits

per message, while for the "d" line, the point has shifted

to about 3800 bits per message. The capacity to handle

videotex messages (7000 bits on average), is not altered in

any of these configurations, however. Each configuration

can handle about 1.5 videotex messages per second from each

STU.

The fourth graph (figure 3.16d) represents the results

from the last equation in the bottleneck analysis. It in-

dicates which server will act as a bottleneck (given an ap-

- 101 -

propriately large input rate) for all values of delay time

for the DCT and RVDM. For any particular value for mean

message length in the network, the parameter values which

lie on the as a bottleneck, and the parameter values on the

right of the line will cause the RVDM to act as a bot-

tleneck. The default parameters (marked by an "x" on figure

3.16d) lie on the right of the 100 and 501 bits per message

lines, and so the RVDM is the limiting server for these

small message sizes. For larger messages, such as 1001 bits

per message and higher (for example, videotex messages), the

DCT and IDT units will limit the network.

111.3.4.4 Comparison of Simulation and Analytic Results

For the first three eXperiments discussed in the

previous section, both analytical results and simulation

results were presented (see figures 3.8, 3.9, 3.10b, and

3.11). If all of the assumptions are valid, these two

methods should give very similar results, although some

variation can be expected due to the random factors in the

simulation. Each plotted point in the simulation graphs is

the mean value taken from five repetitions of the run, so

that this random variation will be very small.

Figure 3.8a and 3.8b are the analytical and simulation

results (respectively) for the first experiment. These two

graphs are almost exactly identical, except for values near

the saturation point (1.25 seconds service time). Figures

- 102 -

3.9a and 3.9b are from the second experiment, and they are

also very similar except near the saturation point. The

divergence starts at about 75% utilization of the DCT and

IDT, and it seems more drastic than in the first experiment.

As well, there is a small divergence in the low-input rate

•section of the graph (less than 0.5, Messages per second per

STU). This second divergence does not seem too important

because it is quite small.

Figures 3.10b and 3.11 show the analytic and simulation

results respectively for the default set of parameters

(described in table 3.1). These two graphs show virtually

identical values for low traffic levels, and they also show

the same saturation points. As with figures 3.9a and 3. 0b,

the analytic solution (3.10b) diverges from the simulation

results, starting at about 70-75% utilization of the bot-

tleneck server. The response time in the analytic solution

increases fairly quickly as the traffic level approaches the

saturation point. The response time in the simulation,

however, remains at virtually the same level, until about

90% utilization of the bottleneck server, and then increases

quickly to infinity.

The reason for the divergence at high traffic levels is

most likely a failure in one or more of the assumptions

discussed earlier. More information about the behaviour of

individual queues and servers can be obtained from values

for the mean number of messages in each queue (see section

- 103 -

111.3.2 for the analytic equations). Table 3.4 shows the

mean queue lengths at the 90% utilization traffic level for

the 5000 bits per message graph found in table 3.11 (the

simulation run of the default parameters):

Table, 3.4 Mean Queue Lengths

Upstream 	Downstream

OCT 	44.2658 	46.8459

Feeder 	43.6542 	43.537 7

IDT 	44.8195 	44.1390

IDT-line 	46.1064 	43.5339

RVDM 	0.1990 	1.1990

STU 	0.0022 	1.0194

These numbers show that for the simulation, the DCT queue is

longer than the rest for downstream messages. In the up-

stream direction, the IDT-line queue is longer than the

rest. This phenomenon is shown more clearly in the table of

mean waiting times for the same graph (values are shown in

1/10100ths of a second):

Table 3.5 Mean Waiting Time

Upstream 	Downstream

DCT 	1.1980 	49.4920

Feeder 	0.0000 	0.0000

IDT 	' 	11.8940 	1.7876

IDT-line 	43.0371 	0.0000

RVDM 	12.6727 	12.1014

STU 	0.0024 	0.8222

The bulk of the waiting time is spend at the DCT downstream,

and at the IDT-line upstream. In other words, the traffic

seems to build up at the first multiple server queue that it

reaches, whichever direction the message is flowing. The

analytic solution does not show this behaviour.

Despite this divergence, it is important to note that

not only are the two results similar for light traffic

loads, but that they both reach saturation at approximately

the same point. This is illustrated best with figures 3.9a

and 3.9b. In the simulation experiment, the DCT and IDT

downstream servers reached a 99% utilization level at 2.709

messages per second per STU (saturation is when one or more

servers reach 100% utilization). The analytic solution

reached saturation at 2.21 messages per second per STU. A

simulation run, in practice, cannot reach the 10m% utiliza-

tion level, because at this level, queues may grow ar-

bitrarily long and thus require more than all available

- 105 -

memory on the machine.

With these examples then, the analytic solution predicts

the simulation resultb well, when the traffic load is light.

At high. traffic levels, near the saturation point for a par-

ticular set of parameters, the two results diverge (the

analytic result giving higher values), but reach the satura-

tion point at approximately the sanie traffic level.

111.3.5 Conclusions

A summary of the analytical and simulation experiments

may be found in Table 3.6 at the end of this section.

From the results discussed in the previous section, it

seems clear that the Omnitel network configuration studied

here performs very well under videotex load . conditions.

Videotex presents a light load (about 0.1 Messages per

second per terminal) in comparison to the capacity of coax-

ial cable, and the network hardware does not seem to present

any major problems. Since the exact values for service

times of the hardware are not known, the system has been

studied under a wide range of values. Even with "un-

reasonable" service time values (as in figure 3.1((1), the

network can handle over an average of one videotex message

per second per STU, and so the network will not be congested

with videotex traffic. These figures are averages per ter-

minal connected to the network. This means that even if all

of the videotex terminals are signed on at once, the network

- 106 -

can handle one message per second from each terminal, which

is about ten times the estimated frequency.

However, Omnitel is an Integrated Services Network (ISN)

and as such will carry a range of digital services in addi-

tion to videotex. For services like meter reading and alarm

services, the load will be much less than videotex, as low

as 2.6 bits per second per monitored item rWONGFY-4 1 . The

network can easily handle this load. For high bandwidth

.services like digital telephony, however, the situation is

not as clear. Digital telephony puts a high load on the

system, although research i being done to decrease the . load

(see ULUG77). It is possible that this.kind of service may

run into congestion problems under peak load conditions.

When bottlenecks occur due to very : high traffic -, they

occur- at either the RVDM or the DCT downstream and IDT-line

upstream- The RVDM acts as a bottleneck in systems with

small messages on average. With large messages, the bot-

tleneck shifts to ,the DCT downstream, and IDT-line upstream

-- the first multi-server unit in the direction of flow.

Table 1.6: Summary of Analytic and Simulation Experiments

a) Analytic Model Assumptions:

1. Exponential interarrival times at each server

2. Exponential service times for each server

3. One class of messages

h) Simulation Model Assumptions:

1. The Exponential distribution was used for the

interarrival time of messages to the network

as a whole

2. The Uniform distribution was used for service

times, except for the communications channels,

where service times are calculated exactly

3. The 	Erlang 	distribution was 	used 	for

generating message lengths

4. Arbitrary classes of messages are allowed.

c) The Series of Experiments:

1. The amount of delay that a message receives at

each server is increased until the system is

overloaded. 	The 	network 	contains 	only

videotex messages.

2. A constant flow of videotex messages, with an

increasing flow of "external" messages are ex-

amined.

3. A series of experiments was conducted to ex-

amine the behaviour of each server in the

- 108 -

network. 	The mean size of messages in the

system was varied in each experiment to deter-

mine the network's behaviour under a number of

different conditions.

4. The configuration of RVDMs and STUs was

changed to investigate the level of load that

the RVDM could handle.

d) A Summary of Results:

1. In the configuration studied, Omnitel perfàrms

well under videotex load conditions

2. The RVDM, and DCT (downstream) and IDT (up-

stream) units are th ê Most critical hardware

units. The RVDM acts as .a bottleneck when the .

network has small messages, and the IDT and

DCT are the bottleneck when the network has

large messages. 	(For more precise results,

see, section 111.1.5).

3. It is uncertain whether or not Omnitel can

handle very large load services such 	as

digital 	telephony at their peak traffic

levels.

111.4 Encryption-Switching for Delivery of Telidon on the

CATV Network

As a network for the distribution of Telidon service to

subscribers, the CATV network is an attractive alternative

to the telephone network or even to public packet-switched

networks. The cable network, like communication satellites,

has the broadcast property which is essential in supporting

teletext and distributed databases. The cable network can

be used easily for the delivery of broadcast Telidon

(teletext) since all subscribers receive the same cycle of

broadcast pages and the page selection function is performed

at the receiver. However, for interactive Telidon, the

selection of pages and subscriber addressing are performed

at the data base host. The conventional approach to the

provision of this service (or other data services) on the

CATV network requires the use of switching nodes throughout

the network to switch circuits or route packets at each

branch in the network's topology r_COYNERM, WONG311. In the

Omnitel system, for example, the IDTs, RVDMs and STUs are

basically switching nodes located at various levels in the

hierarchy of the network. (Please see section 111.2.3.1 for

a review of the Omnitel system components). This tyne of

network architecture arises from a need to conserve and

share the available bandwidth on the lines between nodes.

However, on current CATV systems, network bandwidth is

not a system bottleneck and will be even less so as optical

- 110 -

fibres become commonplace. Therefore, packets transmitted

by the Telidon service host in response to user inquiries

could be simply broadcast to all subscribers, with a great

saving in equipment complexity. Each subscriber would at-

tach to the network using an intelligent interface "box"

which would check the address field of each packet and cap-

ture those packets which are destined for that particular

interface and subscriber. (This is similar to broadcast

videotex systems, but operating on the level of PDI-encoded

pages rather than video frames.) In this approach, the por-

tion of the CATV network used for the delivery of Telidon

data behaves very much like a local area computer network.

Local area network transmission protocols (e.g. CSMA-CD or

IEEE 802 token passing) could be optimized* for the length

of the cable system and implemented in the subscriber inter-

face boxes, particularly so if we want to allow more than

one subscriber to transmit pages.

Although they were originally designed to be used on

bus - type local area computer networks consisting of a

*Since most CATV networks are somewhat longer than a typical
local area network, the propagation delay time between the
two most distant subscibers, which is sometimes called the
network diameter, is longer for the CATV network. This
delay time is significant in most local area network trans-
mission protocols because it represents the time required to
determine whether data collision bas occurred. The typical
length for a local area network is 1 km and 10 km is typical
for a CATV net. Therefore, the transmission protocol used
on the CATV net must be adjusted to accommodate collision
detection times which are ten times greater than those for
which the protocol was initially designed. This can be
done, for example by using longer packets and lower speed
channels than is usual.

- 111 -

single length of coaxial cable with no branches, local area

net transmission protocols, such as CSMA-CD, can be used on

a tree structured CATV system. Of course, the data cannot

be transmitted at baseband. Two frequencies are required:

one for "upstream" data and the other for "downstream" data.

The subscriber interface boxes use the upstream channel to

transmit data. This data is retransmitted, by a repeater at

the cable head, on the downstream channel. Data from a cen-

tral server, such as a Telidon database host, may either be

injected on the upstream channel, and then repeated, or may

be introduced on the downstream channel at the head end.

In summary, the cost and complexity of introducing

switching nodes throughout a CATV system, in order to sup-

port data services for Telidon using circuit switching or

packet switching, may be avoided if local area network tech-

niques are employed on the cable. This requires the adop-

tion of a transmission protocol and the use of

microprocessor-based intelligent interfaces at the sub-

scribers' premises.

However, this local area net system may not be suf-

ficiently secure for some sensitive potential Telidon ap-

plications such as EFTS, teleshopping and electronic mail.

For example, a subscriber could gain access to all the data

or pages being sent to every other subscriber on the system

just by altering his address or by changing address recogni-

tion logic in his subscriber interface box. Furthermore,

- 112 -

the subscriber must take deliberate, verifiable action to

request some classes of information, so that he can be

billed for such accesses and so it can be proved that he re-

quested such access (the Accountability Requirement). In

order to satisfy reasonable security requirements for ap-

plications such as EFTS and teleshopping and still be con-

sistent with the local area computer networking approach, an

encryption system based on classes of traffic may be used.

(Also, we will see below that such schemes satisfy the

Accountability Requirement.) We have coined the name

encryption-switching for this approach; it will be discussed

in detail in the following subsections.

111.4.1 	Classes of Traffic

There are four types of traffic which will be used on a

Telidon "information utility" service. These are:

1. Frequently-Used Pages

These most frequently used pages form the basic

information nucleus around which Telidon service for

home use is built. Topics such as news, weather,

sports, local events and pbrhaps business applica-

tions such as money market information would be in-

cluded. Gordon Thompson refers to this class of

pages as bubble-pack information in analogy to the

common, self-service, high volume and non-specialty

items packaged in bubble packs in, for example,

hardware stores. We assume that such items of

- 113 -

information will not be charged for individually;

rather, a flat monthly subscription fee will be used

so that the Accountability Requirement does not

apply.

2. Less Frequently Used Information

This includes the 	specialized information pages

which are not included in the first category, as

well as services which require interaction such as

teleshopping, EFTS and electronic mail. Such infor-

mation is charged for on an item-by-item basis, so

the Accountability Requirement applies.

3. Closed User Group Information

This 	class may contain secondary information

retrieval services which are publicly available for

an additional (flat-rate) subscription cost. (ome

pay television systems incorporate secondary chan-

nels for an additional fee which offer program

material of a specialized type such as sports or

violence). Another use for this traffic class would

be as a delivery vehicle for private (e.g , cor-

porate) information on the public system to an ap-

propriate subset of subscribers. If such informa-

tion is charged for on an item by item basis, then

the Accountability Requirement applies. However,

the system operator may wish to make this type of

secondary service available for an additional,

- 114 -

fixed, monthly fee.

4. Subscriber-to-Subscriber Information

This is the class of traffic which is carried by a

point-to-point network service among subscribers.

Accountability is important since the network ad-

ministration will require that the technical means

is available for the introduction of usage sensitive

tarrifs for this service. Security is also very

important.

111.4.2 	Delivery Schemes

The following encryption, transmission and decoding

schemes describe the manner in which we envisage the

delivery of each of the traffic classes described above.

These techniques, again, are based on an underlying local

area computer network implemented on CATV plant.

1. High Use Information

The "bubble-pack information" represents the basic

information 	service 	available 	to subscribers.

Therefore, this data is broadcast in a cycle to all

subscribers. 	The desired pages are selected at the

subscribers' decoders. 	In order to protect the

revenue of the service provider, it may be desirable

to encrypt this information at the lowest security

level to ensure that people cannot easily receive

the information without subscribing. However, it is

- 115 -

not worth protecting the service from sophisticated

attempts at reception since the subscription fee for

this service is relatively small. That is, it would

be less expensive to riày the subscription fee than

to cheat. A flat subscription fee entitles the sub-

scriber to all of the bubble-pack information he can

consume.

2. Less Frequently Used Information

This class of traffic carries Telidon pages which

are selected interactively (videotex) as well as ad-

vanced services. These pages are charged for on a

per use basis; therefore, encryption should be used

between the host computer and each individual sub-

scriber. (The process of encryption is described in

section 111.4.3.) Encryption provides improved

protection against theft, and the act of requesting

a decryption key is the deliberate action needed to

satisfy the Accountability Requirement. The sensi-

tive nature of electronic mail, EFTS and

teleshopping suggests that the encryption technique

must be secure from both passive and active attacks.

Also, these same services will require secure and

convenient identification and authorization methods.

3. Closed User Groups

This traffic is transmitted between the host corn-

- 116 -

puter and the subset of subscribers who are members

of a group. This traffic should be encrypted to the

level of security which is appropriate for the par-

ticular value of the information. For example, a

public secondary retrieval system specializing in

sports pages may only warrant a relatively low

security level compared to an in-house corporate

data base carried on the public system. The system

operator may choose to charge for this information

on a per-item basis or a flat rate basis. For the

former case, the Accountability Requirement is

satisfied as in (2). In the latter case, the sub-

scriber would be issued a long term key at subscrip-

tion time which provides the deliberate action re-

quired to satisfy the Accountability Requirement.

4. Subscriber-to-Subscriber Information

This traffic class requires encryption for reasons

of privacy. Although many users, particulary home

subscribers, may be willing to waive this require-

ment, no point-to-point data services should be in-

stalled without the capability for encryption to

provide privacy. The need for encryption is in-

creased by the use of local area network techniques

on the CATV system since all subscriber interfaces

have access to all the data packets transmitted on

- 117 -

the cable. The Accountability Requirement for this

class of traffic will be discussed in section

111.4.10.

111.4.3 	Data Encryption

Data encryption involves the transformation of plain-

text to ciphertext (see figure 3.17). This transformation

is performed at the data source and the ciphertext is trans-

mitted over the network (or other communications service) to

the destination, where the transformation from ciphertext to

plaintext is performed. A good encryption technique should

be immune to both passive (listening or tapping) and active

(introduction on illicit data onto the network) attacks by

intruders. Also, it must be assumed that a passive intruder

can compare recorded ciphertext to strings of plaintext

which he assumes are being transmitted. For example, each

user session for a given service may begin with a "login"

message or a standard set of codes. The intruder can com-

pare this plaintext to the recorded ciphertext in an attempt

to deduce the encryption technique. This is a type of pas-

sive attack and is referred to as a plaintext attack.

Encryption techniques are based on combinations of

transpositions and substitutions of characters. The com-

binations are described by an algorithm and a key. The en-

cryption algorithm specifies, in general, the types of sub-

stitutions and transpositions to be applied to the plain-

text. The key is a word or sequence of digits which is

- 118 -

	Plaintext P 	 Plaintext

Encryption 	Ciphertext C C=E(P)

Method E(P)

Decryption

Method D
1
 (P)

passive & active
intruders

Encryption 	 Decryption

Key k 	 Key 1

Figure 3.17: A Block Diagram of Basic Encryption

interpreted by the algorithm and specifies the precise sub-

stitutions and transpostions to be used. In the days of

manual encryption, simple algorithms were used (to reduce

computations) in conjunction with long keys which were

changed frequently. Typically, the new keys were carrid to

both ends of a communication channel by a courier. Both the

algorithm and the key were secret.

Current computerized encryption techniques use rela-

tively complex algorithms (since the computation is

automatic) in conjunction with a fairly short key. The al-

gorithms are published and available but the key is kent

secret.

111.4.4 	The Data Encryption Standard

The Data Encryption Standard (DES) is a relatively

popular encryption algorithm which was developed by IBM and

adopted by the U.S. National Bureau of Standards in 1977

ETANE81]. It uses a 19 stage algorithm, which is available

as a chip implementation, for both encryption and decryp-

tion. A 56 bit key is used - the same value of key is used

for both encryption and decryption. These chips can encrypt

blocks of 64 bits at a time, or they can perform stream en-

coding which is even more secure. Details on the Western

Digital DES chip are included in Appendix B.

The DES technique is secure against plaintext attacks

which can be mounted using computers, unless years of com-

puter time are devoted to the attack or unless the intruder

- 121 -

knows some information about the key. It is also relatively

secure against active intruder attack.

In order to use DES between a data source and a data

sink it is necessary to transmit an identical key to both of

these users in a secure fashion, by a central key server

over individually encrypted channels or by use of Merkle's

method [MERK78]. (An intruder who manages to learn the key

has of course broken the security of the system.) Merkle's

method requires the data source to send a number of puzzles

to the data sink who, in solving a puzzle, recovers a DES

encryption key which can be used . for the duration of the

connection. More detail on this technique is given in sec-

tion 111.4.6. Since Merkle's method involves significant

computation by the data source and , data sink to determine

the key when the connection is established, we stated in

the last progress report that this method is probably

impractical for use with the subscriber interface boxes

described above. The Project Officer asked us to examine

this topic more thoroughly and, happily, we are able to

report that a fairly simple form of Merkle's method which

does not present a large drain on the subscriber box's CPU

is feasible. The details are presented in section

DES is not an actual public key encryption system (see

below for a description of public key cryptography) because

of the key distribution difficulties. (True public key en-

‘ cryption systems allow secure point-to-point communications

- 121 -

be established immediately between pairs of subscribers

who have not previously communicated). However, DES is

clearly useful for the first three classes of traffic since

they are based on a central host computer (some pos-

sibilities are discussed below). DES can be used for

privacy in a point-to-point system if either a central key

server is implemented or Merkle's method is used. The cen-

tral key server is discussed in more detail in section

111.4.9.

Several alternatives exist for the use of DES to

provide security and accountability for the transmission of

the first three types of traffic. For example, one fixed

key may be used by ail subscribers to receive bubble pack

information; this key would be provided at subscription

time. The second class of information, interactive pages

and advanced services (e.g. Teleshopping, EFTS) would use

individual keys for each subscriber, set at subscription

time. The computer which provides the service would retain

each of these keys. If plaintext attacks are a danger, then

the subscriber key could be used just long enough for the

central server to send a session key to the subscriber

interface box. This drastically reduces the amount of

ciphertext which has been encrypted using the subscriber key

and which is available to the intruder attempting the plain-

text attack.

The third type of traffic, closed user groups and

secondary services, could be encrypted using one fixed key

on a system-wide basis for each instance of this type of

service, or individual subscriber keys could be used. It

may also be possible to combine these two approaches in a

two step procedure.

111.4.5 Public Key Cryptography

In a true public key cryptography system, the encryp-

tion algorithm and encryption key to be used for each sub-

scriber and/or service are made public. The security of the

ciphertext arises from the choice of pairs of encryption and

decryption keys so that the decryption key cannot easily be

deduced from a complete knowledge of the encryption key.

Therefore, anyone can obtain the means to send ciphertext to

a particular subscriber but no one except the intended

recipient can transform the ciphertext back to plaintext.

There are serious difficulties concerning the immunity of

this technique to active intruder attack .

Only two pairs of algorithms which satisfy the above

requirements have been developed. Both of these rely on

computational complexity for security. The MIT algorithm,

devised by Rivest [RIVE78], is based on pairs of large prime

numbers. The Knapsack algorithm, discovered by Merkle, in-

volves 'multiplication of the plaintext by a weight vector

[TAND31]. There is reason to believe that a third pair of

algorithms may have been recently developed by researchers

at MIT.

- 123 -

Since the area of public key cryptography is in its

infancy, no hardware implementations of these algorithms are

currently available. This limits their usefulness for

Telidon delivery since it would probably be prohibitively

expensive to dedicate CPU cycles in the subscriber interface

box to the encryption and decryption of data. Furthermore,

the subscriber interface box would either have to contain

all the encryption keys for all the subscribers on the

network, which is problematic in a dynamic situation or in a

very large network, or, when the box needs a particular sub-

scriber's encryption key it must obtain it from a centrai

server (and there is no advantage over the use of DES with a

central key server). Therefore, we are motivated to examine

the use of Merkle's method or a central key server to

provide public key cryptography using the DES chip for

point-to-point data services. We also recall that DES is

entirely sufficient for the first three classes of traffic.

It has been suggested rBLAKB2] that an encrypted point-

to-point data service could be based on a combination of

public key cryptography algorithms and DES in the following

way. When subscriber A wishes to send to subscriber 8, he

encrypts a DES session key using B's public key and the

public key encryption algorithm. B then decrypts the ses-

sion key, and both A and B switch to DES for the session.

However, this method is not viable because of the same

problems of storing or decrypting with public keys cited

- 124 -

above.

111.4.6 	An Explanation of Merkle's Method

If the subscriber interface boxes incorporate DES chips

for encryption, then in order to provide point-to-point

data service, as is required for the class of subscriber-to-

subscriber information described in section 111.4.2, it is

necessary for each pair of subscribers who wish to com-

municate to agree on a DES encryption key at the beginning

of each session or connection. 	In section 111.4.4, • two

techniques 	for establishing the key were introduced:

Merkle's method and the central key server. Merkle's method

is described in detail in this section; the central key

server is discussed in section 111.4.9.

Merkle's method involves sending a large number of

puzzles, each of which is encrypted using an individual sim-

plified key, from the data source to the data sink with wilom

it wishes to communicate. Each puzzle contains a large

number of zero bits followed by a unique number and a 5e, bit

DES encryption key. The "simplified keys" used to encrypt

the puzzles are DES encryotion keys of a previously agreed

format, for example, 34 random bits followed by 22 zeros.

The data sink selects one of the large number of

puzzles at random and solves it by decrypting it with all

possible keys consisting of 34 random bits followed by 22

zeros (234 = 1.7 x 1010 possible keys). He knows he has

decrypted the puzzle correctly when it yields plaintext

.- 125 -

beginning with the large number of zero bits. The data sink

then sends to the source the unique number from the puzzle

which it solved in unencrypted form, followed by data which

has been encrypted using the key obtained from the puzzle.

When the data source receives the number of the puzzle it

can look up the corresponding encryption key which the

source then uses to decrypt the data from the data sink.

This key is used to encrypt the data in both directions for

the remainder of the session.

The security of this method of key distribution derives

from the large number of puzzles which are sent by the data

source. If an intruder hears all the transmissions, in-

cluding the puzzles, he cannot know which puzzle the data

sink will decide to solve to obtain the key. To find the

key, the intruder must solve, on average, half the puzzles

and compare the unique number from each puzzle to the number

sent from the sink to the source. When the numbers match,

the intruder has found the session key. The puzzles may be

made sufficiently numerous to set the difficulty for the in-

truder at any desired level.

111.4.7 	A Numerical Example of Merkle's Method

It is instructive to examine a typical application of

Merkle i s method to a hypothetical pair of communicating com-

puters to investigate the timing and complexity involved for

both the computers and an intruder.

- 126 -

Assume that the data source sends 10,000 puzzles to the

data sink, each of which is encrypted with a key containing

28 random bits foollowed by 28 zeros.

After the data sink has chosen a puzzle at random, he

must solve it by exhaustively trying each possible key of 29

bits followed by 28 zeros.

In total this is 228 or 2.69 x 108 •keys. If the

Western Digital DES chip described in Appendix A is used,

then approximately 60 microseconds are required to load the

key and first 64 bits of puzzle ciphertext and to retrieve

the first 64 bits of plaintext. Although this does not

yield the plaintext for the entire puzzle, if the first 64

bits are not all zeros then the puzzle has not been solved

and another key should be generated and tried. Thus, the

decryption of one
eliminate most keys.

In the worst case, the data sink must try all of the

2.69 x 108 keys. If we assume no delay for the program to

evaluate the results of a decryption and generate the next

key then we may use the decryption time (60 microseconds) as

the time required to test each key.* The data sink will

quire a maximum of 4.5 hours and an average of 2.3 hours to

solve the puzzle.

* The decryption time can be reduced by approximately 20% if
the DES chip could be configured so that the cipbertext does
not have to be reloaded each time a new key is loaded and
tried.

- 127

64 bit block will be sufficient to

re-

An intruder who has copied all the puzzles can also

solve a puzzle in 2.3 hours on average. However, the in-

truder must solve each puzzle until he finds the one chosen

by the data sink. On the average, the intruder must solve

5,000 puzzles which will require about 1.3 years; the worst

case is about 5 years.

Obviously a session establishment time of two to four

hours is unacceptable for point-to-point data services on

the encryption-switching Telidon delivery net. Probably the

only users who could tolerate this establishment time are

those who will use the same key over a long period or those

with a very high security requirement.

111.4.8 	Merkle's Method for the Encryption-Switching Net

The number and difficulty of the puzzles can be ad-

justed to provide a version of Merkle's method which is more

suitable for use on the encryption-switching network. Con-

sider the following scenario.

The data source sends 2000 puzzles •to the data sink,

each of which is encrypted by an individual key consisting

of 17 random bits and 39 zeros. The data sink can solve a

puzzle in approximately 4 seconds on average or q seconds

for the worst case.

To break the code, the intruder must on average solve

1000 puzzles requiring 4 seconds each which yields approx-

imately 1.1 hours. The worst case time is 4.5 hours.

- 129 -

Since each puzzle is about 195 bits in length, 1.3

minutes are required for the data source to send all the

puzzles to the data sink if we assume the effective data

rate between them is 4800 bps. (4800 bps is typical of the

speed at which microprocessors can accept data while per-

forming moderate amounts of processing on that data as it

arrives. Also, 4800 bps is probably a good target for the

network throughput as seen by each subscriber. If the sub-

scriber interface box and the network can both perform at a

higher speed, the session establishment time can be

reduced.)

If this version of Merkle's method requires further ad-

justment for use on the encryption-switching net then the

following observations will be useful:

1) The length of time required for the data- sink to

solve the puzzle is controlled by the number of ran-

dom bits in the keys used to encrypt the puzzles.

2) The length of time for the intruder to .break the

code depends on both the number of puzzles and the

number of random bits in the puzzle keys.

3) As the puzzles are made simpler to reduce the ses-

sion establishment time their number must be in-

creased to maintain the same level of security.

This acts to increase the session establishment time

since the data sink must receive all the puzzles

- 129 -

before choosing one for solution. Therefore, the

complexity and number of the puzzles must be traded-

off.

111.4.9 	A Central Key Server for DES

To provide point-to-point services on the Telidon

delivery net using DES encryption, a central key server may

be used ins;tead of the Merkle's method approach discussed

above. The server will hold individual encryption keys for

each individual subscriber; these are set at subscription

time. (This is not unduly onerous, since the Telidon host

system requires individual encryption keys for each sub-

scriber for the interactive Telidon services anyway.) Of

course, each subscriber interface box will be able to

decrypt any information sent to it by the central server,

since it knows its own key.

If subscriber A wishes to communicate with subscriber

B, the following steps must be undertaken:

1. A requests a session encryption key from the central

key server for an A-to-B connection.

2.- The central key server sends two things to A: the

session key encrypted by A's "own" (used for server-

to-A communication) key; and the session key en-

crypted by B's "own" key.

3. A can decode the former to get the session key.

4. A sends the latter to B without further encryption

as part of the session establishment procedure.

• - 131 -

1

(Alternatively, the central key server could have

sent the session key directly to B if B knew that A

was *establishing a connection with him and,

therefore, was anticipating a key.)

5. A and B can now communicate using the session key.

111.4.10 	Comparison of Merkle's Method and the Central Key

Server

Both Merkle's method and the central key server method

are feasible for the establishment of session keys for

subscriber-to-subscriber data services on the encryption-

switching network. However, they do have advantages and

disadvantages relative to one•another when compared.

The most significant issue concerns the Accountability

Requirement in connection with the use of Merkle's methOd:

since Merkle's method allows the key to be determined by the

subscribers without involving a central server, there is no

mechanism inherent in the encryption-switching technique .to

inform the network operator that network resources are being

used. Therefore, the use.of Merkle's method for subscriber-

to-subscriber traffic does not satisfy the Accountability

Requirement.

The central key server technique does satisfy the

Accountability Requirement on two levels. Initially, each

subscriber must register for subscriber-to-subscriber ser-

vice to receive an encryption key for the central kev

server. Also, each time a subscriber-to-subscriber session

- 131 -

is initiated the subscribers must obtain a session key from

the central key server.

Merkle's method requires more software in the sub-

scriber interface box for the generation and solution of

puzzles than the central key server. Unless the central key

server has an unusually long response time, it will provide

session establishment more quickly than will Merkle's

method.

111.4.11 	Network Capacity Considerations

The traffic classes discussed in section 111.4.1 can be

classified in terms of their communication paths as follows:

type 1 - broadcast traffic (cycles of pages)

type 2 - subscriber to central host

type 3 - subscriber to subscriber

Network capacity considerations for these types are

discussed below.

a) Broadcast Traffic

This traffic may be transmitted as teletext in the ver-

tical blanking interval (VB1) of a television signal or it

may occupy the entire bandwidth of a television channel.

Because there are limits to the delay or response time which

the user will tolerate, the number of pages included in the

broadcast cycle must be controlled. Typically, no more than

300 pages in he VBI and 5,000 pages in an entire television

channel are considered practical.

- 132 -

A third alternative is to use one or more channels of a

broadband local area computer network (LACN) to carry broad-

cast data. (A broadband LACN typically has a number of data

channels; the data for each channel - modulates an RF carrier

so that the data channels can be transmitted on the same

network in different frequency ranges. Broadband LACNs are

quite compatible with CATV plant; however, A baseband LNCN

like Ethernet cannot be used on the CATV network because of

the CATV amplifiers, cut-off below 5 MHz.)

Most local area networks support a broadcast mode all

subscribers receive the data being broadcast. This could be

exploited for the "bubble-pack" information. Since a broad-

band LACN on the CATV network will be required to support

both the traffic between subscribers and the central host

and subscriber-to-subscribér traffic, then if the same LACN

subscriber box is also used for broadcast bubble-pack infor-

mation it will save the subscriber the cost of an additional

teletext decoder. Of course, this savings is only realized

if the subscriber wants more than just the bubble-pack ser-

vice.

The Sytek broadband LACN provides 121 channels of

approximately 300 KHz bandwidth each with a data transmis-

sion rate of 128 kbps per channel rSYTE5311. If we assume

the average length of a Telidon page is 1110 bytes* and that

a user can wait no longer than a maximum of 45 seconds for a

*This is approximately correct for the UW Telidon. database.

- 133 -

page to appear, then 720 pages may be transmitted in a cycle

on a single Sytek LACN channel. 	This figure should be

reduced somewhat (approximately 1.1%) to allow for the

protocol overhead on the network.

h) Subscriber to Central Host Traffic

Several channels of a broadband LACN can be use.I to

carry this traffic on the CATV network. Of course, the sub-

scriber boxes would include the encryption switching tech-

niques described earlier in this section. Undoubtedly, the

traffic downstream from the server to the subscribers will

be much greater than the upstream traffic (e.g. a user need

only send a few characters to trigger the reception of an

entire Telidon page). Therefore, to approximately gauge the

nuffiber of subscribers each channel can support, we may as-

sume the upstream traffic is negligible and consider only

the downstream traffic. Furthermore,. let's examine only in-

teractive videotex applications, since transaction-oriented

services probably involve less traffic. Assume the fol-

lowing:

1. 1000 bytes/page

2. 1 page request every 20 sec from each active sub-

scriber

3. 10% of the subscribers are active at any time

4. an effective transmission rate/channel of 11 kbps,

to account for the protocol overhead.

- 134 -

The delivery network can support:

116 (Kbits/sec)

1 (Kbyte/page) x 8(bits/byte) x .05(pages/subscriber second)

which is 290 active simultaneous subscribers per channel of

the broadcast LACN described above. Since only 10 of the

subscribers are active at any time, a total of 2111 sub-

scribers can be supported on each channel.

If the system has 120 channels, as the Sytek does, then

a total of 348,000 subscribers can be supported.

c) Subscriber-to-Subscriber Traffic

The traffic in this category may involve terminais com-

municating with other terminals or with computers. Computer

to computer traffic between microComputers is probably the

most demanding application in terms of data rate which is

likely to occur. Since these applications may not involve

Telidon it is difficult to evaluate this traffic in terms of

a number of Teldion pages. However, it is well known that

most conventional microcomputers and many minicomputers can-

not accept data faster than 4810 to 1610 bps for more than a

short burst if they'perform a moderate amount of processing

on the data as it arrives. Therefore, approximately 12 to

24 sessions between subscribers may be simultaneously ac-

tively transmitting data on each Sytek broadband LACN chan-

nel. 	If we assume a 10% utilization of the communications

services for each session then approximately 120 to 241 ses-

135 -

sions may be accommodated on each channel.

d) DES chip Throughput

The DES chip which is described in Appendix B of this

report can support a data transfer rate of approximately 1.3

Mbps when used in block encryption mode using 64 bit blocks.

This is sufficiently fast to permit this chip to be used in

the encryption switching delivery network.

111.4.12 	Summary

It appears that "encryption-switching" in coniunction

with local area network techniques may provide a very prac-

. tical alternative to conventional circuit- or packet-

, switching for the delivery of Telidon service on CATV

networks. It minimizes the impact on existing CATV equip-

ment while providing excellent incremental expansion

capabilities.

We feel the error rate on the CATV network (mostly due

to RF ingress noise) may be a very significant problem in

using local area network techniques. This opinion is based

largely on the work of Cableshare Engineering in

establishing their two way cable system in London, Ontario

[ALL079]. This problem requires experimental investigation.

Finally, we wish to thank Gordon R. Thompson for a com-

ment which led us to the idea of encryption-switching.

Database Architectures

Before we begin to design a database architecture, it is

important to identify the criteria by which it will be

judged. Only with those criteria in mind, will it be

possible to determine the relative merits of alternative

designs and to choose one which will be suitable for infor-

mation retrieval from a Telidon-based information provider.

The system must be designed for user .convenience;

especially, naive users must find it easy to locate informa-

tion. 	Whether for the home or for a business, a computer-

supplied information system will only be acceptable if it is

at least as convenient as conventional systems. Users will

be reluctant to learn machine-imposed data organizations and

will be resentful of machine-imposed restrictions on access.

It is important to realize that many of the users will ac-

cess the database(s) in a casual manner and only oc-

casionally; for these users, in particular, the system must

be natural, in order that access strategies are not quickly

forgotten. At the same time, the access commands required

of users must be concise so that relatively soriklisticated

users are not hampered by unnecessary verbosity.

Response time is a second characteristic which is ob-

servable by Telidon subscribers. Interactive users find

delays of longer than five seconds very frustrating, and

even shorter delays seem intolerable if responses are

Iv.

- 137 -

sometimes much quicker. Thus subscribers will expect im-

mediate responses to requests which they perceive to be

simple, but, above all, they will demand consistently-timed

responses to all requests. Service providers may be more

tolerant of system delays, because they perceive their

system resource demands to be larger. As well, they expect

eventual financial (or other) gain, so they may accept some

hardships in preparing their material. However, their

tolerance of delays will certainly not be unlimited, and,

once again, the Consistency of the response time will be

crucial.

Flexibility is certainly very important for the Telidon

system, since this is the period of its infancy. The user

community is likely to change quite dramatically over the

next .decade, and, as a. result, the system services must

evolve to provide more diverse information and facilities in

more sophisticated environments. The diversity, together

with an unpredictable future, requires a very flexible and

adjustable database architecture..

Another . concern, especially in a business environment,

is reliability. If office automation is to be widely ac-

cepted, computerized record-keeping must be as safe as

paper-based books. This means that the database must be

reliable in spite of hardware, software, and user failures.

Furthermore the data and the data manipulation routines must

be perceived to be secure against unauthorized access and

- 13S -

currently used page access techniques. In particular, we

improper modification. 	Without such integrity, users will

not be prepared to trust the database system.

Finally, financial cost is another important criterion.

The cost to the subscriber is directly related to the costs

incurred by the service providers and the system operators.

As well as the costs involved in providing a flexible,

reliable, and fast database system, several other aspects

are involved. Thus the costing of a database architecture

must include consideration of storage costs (both primary

and secondary memory requirements), processor and other

hardware costs, software development and maintenance costs,

and database provider costs F.TO4PA81b].

In Section IV.1, we will examine alternatives to the

will extend the notion of menu and demonstrate how a menu-

based interface can be designed so that the users need not

be aware either of numeric page identifiers or of the under-

lying tree structure of pages.

In Section IV.2, we will examine various representations

for maintaining Telidon databases. A general model for a

Telidon file structure is presented and this is followed by

the results of some preliminary investigation into storage

space and response time requirements of alternative file

structures.

IV.1 Design of a Menu-Based Interface to a Tel idon Database

IV.1.1 Introduction

Fox has claimed that information consists of unrelated

units that must be structured to yïeld knowledge 7FOX781.

Such structuring is apparent to users in the form of direc-

tories through which the information can be retrieved.

The current Telidon data structuring (as well as that of

all other current videotex systems) takes the form of a

hierarchical directory which corresponds very closely to a

book's table of contents. Such hierarchies' are common in

classification systems, for . example those found in the

biological sciences, as well as in course catalogs, depart-

ment store directories, and newspapers' classified sections.

The Propaedia of Encyclopaedia Brittanica 3 and the body of

a thesaurus are also each organized by "fields of knowledge"

which may be viewed hierarchically. Unfortunately most

bodies of information can be structured into several incom-

patible hierarchies, and it is often difficult for a user to

locate information in another individual's classification

scheme. Thus, even if the system response time is suitably

quick for each probe into the hierarchy, the location of a

particular piece of information may require many probes (in-

cluding searches along false paths) and therefore have an

intolerably long effective response time 7PHILB11.

By examining the index structures that are now utilized

in manual directories, some ideas for database directories

may emerge. For example, most manual retrieval systems are

alphabetically ordered or rely on an alphabetically ordered

index: 	telephone directories, dictionaries, and ency-

clopaedias are alphabetically ordered, whereas 	library

catalogs, road maps, and thesauri have alphabetical indices.

Such indices have been incorporated into both Germany's and

Austria's Bildschirmtext systems, with minor variations.

News items, on the other hand, are perhaps best organized

chronologically. As indicated by Parkhill, it is desirable

that a videotex directory be, in fact, composed of many sub-

directories FPARK79], but, in addition, each sub-directory

may be organized as best fits the subject.

A major problem to overcome is the restricted amount of

text that can appear simultaneously on a Telidon screen.

Most manual classification schemes, and certainly most se-

quentially ordered lists, rely on a great number of choices

at each level of a directory. For example, a list of spe-

cial consultants for The American College Dictionary

[RANDG4] consists of 38 topics (such as anthropology,

astronomy, chemistry, heraldry, law, and wines, spirits, and

beers) arranged in alphabetical order, with each topic

having between 1 and 34 entries, again arranged 	al-

phabetically. 	The videotex text restrictions of 9g lines

with 40 characters per line does not lend itself to provide

- 141 -

this same structure. As a result, further levels of direc-

tory are introduced, and thus the user is required to search

a deeper hierarchy than would be needed in a manual system.

Appendix C contains a copy of a paper written under the

support of this contract FTOMPA81al. In that paper, there

are two main claims regarding the structuring of Telidon

pages: the underlying tree should be eliminated, as its

usefulness is outweighed by its apparent restrictions and

resulting confusion to users; and page identifiers should be

eliminated from all users' commands. The first of these

points needs no further elaboration here. However, the

second has been greatly refined since the writing of that

paper.

In this section of the report, we first summarize the

options available in providing menu-like indexes. Subse-

quently we demonstrate how a suitably rich menu structure

can be used in lieu of numeric page identifiers, and we

therefore argue that such identifiers should be made

unavailable to all Telidon users (subscribers and service

providers). Finally we summarize further work that should

be undertaken to improve user access to Telidon's data.

IV.1.2 Options for menu design

The Telidon database, like those for all of today's

videotex systems, is based on an underlying tree structure

of pages navigated by means of menus that provide access

paths [TOMPA81a]. In this section, we highlight some of the

ideas presented in a recent report 17BALL811 and augment them

to yield a convenient framework for classifying generalized

menus. In particular, a menu can be categorized by five

aspects: breadth, labeling, scope, community, range, and

mutability.

The breadth of a menu is the number of choices

available. For some applications, the breadth can be as few

as one or two ("press > to continue" or "enter yes or no").

At the other extreme the breadth may be arbitrarily large;

for example, the set of all Telidon page identifiers con-

stitutes an extremely broad menu. Most of today's videotex

systems are limited to providing single digit menus (excep-

tions being Teletel/Star and Waterloo Tendon), thus

restricting the breadth for most pages to ten. Whereas the

Prestel and derivative systems also seem to be able to

provide broader menus, they do so by interrupting the

display of intermediate menus as soon as another digit is

entered (typically before the display bas even started). It

is important for menu designers to note that the broader the

menus, the less page accesses will be required to reach a

particular page; but the display of valid menu selections

(if required) will restrict the breadth in practice.

- 143 -

The labeling for a menu is the vocabulary of valid

selections. Today's systems typically restrict all labels

to be numeric. With the provision of more sophisticated in-

put devices, this can be replaced by increasingly more ex-

pensive options, from alphanumeric labels, to pointing

(e.g., by using a "mouse"), to perhaps •voice. The role of

alphanumeric labels will be elaborated in the next section.

The scope of a menu is the set of pages (and related

videotex services) from which the menu selections are valid,

i.e., from which a user directive could be interpreted as a

selection for this menu (cf. "scope of names" in computer

programming languages). For example, the scope of one of

Telidon's single digit menus is exactly that one page with

which that menu is associated, whereas the scope of the menu

of all page identifiers is the set of all Telidon pages

(since a page identifier can be entered meaningfully every-

where in the database). Because these two extremes are com-

mon in videotex they will be called "page-specific" and

"page-independent" menus throughout the rest of this report;

other scopes within the spectrum will be described as

needed.

The community for a menu is the set of subscribers who

may use the menu to retrieve pages. The menus in most

videotex systems are required to have user-iniependent

(i.e., universal) community; the role of private menus will

be discussed in the next section.

- 144 -

• 1

- 145 -

1
The range for a menu is the set of potential target

pages. In the first release of the Telidon database system,

cross-links were not constructable, thus restricting the

range of each page-specific menu to the immediate descen-

dants in the tree. Although the Telidon system now includes

all pages in almost every menu's range, today's Telidon does

still contain a form of limited-range menu: the set of

labels starting with a period (e.g., ".12") constitute a

menu whose scope and range consist of the pages within one

document only. 	As security and integrity become more

relevant to Telidon systems, as they certainly will, the

ability to restrict the ranges of menus -judiciously will

become increasingly important.

Finally, a menu's mutability is its mode of creation,

alteration, and termination. Of concern here is who (system

operator, service provider, or subscriber) is empowered to

create or modify a menu, as well as when (e.g., at database

creation time, at page update time, or at query time) the

menu is created or updated. In the next section, we will

show the value of having highly dynamic menus that are under

the complete control of subscribers, in addition to menus

under the control of the system operators and service

providers.

ry.1.3 Data access without numeric page identifiers _ _

There are several objections to the widespread use of

numeric page identifiers to designate pages. Perhaps the

most important one is that their non-mnemonic nature makes

them highly error-prone. It is difficult for users to

remember random sequences of digits accurately, especially

in light of people's present burdens of telephone numbers,

personal identification numbers, house numbers, etc. In ad-

dition, the accurate entry of such sequences is also a

problem. As a result, unless some redundancy is built into

the numbering scheme, thus lengthening the sequences, there

will be a likelihood of input errors resulting from mistaken

page identifiers.

A closely related problem is that of providing direc-

tories of page identifiers. In the same way that telephone

numbers are recorded in printed directories as well as in

private personal listings, page identifiers will have to be

made available to users in some form. It is easily forseen

that a user would rely on a published catalog to find a page

number for a specific service provider or refer to a hani-

written list to find the number for a personal favourite

(e.g., games) page; such trends are already evident in

Canadian field trials as well as in other nations. The cost

of maintaining such directories and their rapid obsolence

are certainly significant. Furthermore, the inconvenience

(and absurdity) of requiring access to a printed medium

- 146 -

•

1

before being able to access an electronic one is certain to

be detrimental to videotex.

A third problem arises if the numeric identifiers are

in fact page addresses, as they are in Telidon's database

(the identifier designates the location of the page with

respect to the underlying tree). For example, a copy of the

Department of Communication's demonstration database has

been incorporated in a subtree rooted at page of Water-

loo's Telidon database; as a result the page numbers

displayed on pages (for identification or cross-linking) are

all invalid. Experience in other areas of computer science

has shown that exposing internal addresses to users has a

disastrous effect on system maintenance and improvement.

Consider, for example, the use of absolute addresses in

programming languages, for example: their use for control

flow has been replaced by the provision of symbolic state-

ment labels, and their use for data linkage has been

replaced by references via variables. Similarly database

researchers have long advocated the separation of internal

from external "views" of the data, this being evidenced re-

cently by the removal of numeric record "keys" from end-user

languages. Finally, instances of a Telidon user's pages

"disappearing" just before an important demo, because the

database was reorganized, are all too well-known.

In light of these problems, there is little reason to

restrict subscribers to numeric labels in the form of page

- 147 -

numbers. 	It has been claimed that many users would be in-

timidated by larger keyboards, but the widespread use of

hand-held calculators with many buttons and of television

channel convertors with many switches may indicate that sub-

scribers prefer functionality and flexibility to over-

simplicity.

If numeric page identifiers are to be removed from

videotex systems, one must first identify the roles which

they play in current systems. The principal use is for

advertising: service providers want their root pages to be

readily accessible by subscribers, and they also want to

provide special pages (e.g., a game or a contest) which will

attract new users to their services. A second role is for

users, to recall a page containing potentially updated

information on a topic of particular interest (e.g., gold

prices), the page number being noted in some previous

videotex session or earlier in the current session.

Finally, identifiers are used by service providers to place

pages within the underlying tree structure and to create the

cross-link maps which provide alternative access paths.

This third point will be addressed in the next section.

A naive solution to the problems of numerical iden-

tifiers is merely to replace them throughout the database by

alphanumeric ones. Several shortcomings quickly become ap-

parent. A principal concern is that the extra length needed

to make identifiers mnemonic makes them more cumbersome and

- l4g -

error-prone, particularly if they were to be used in place

of single digit menu identifiers. Furthermore, the require-

ment of uniqueness in page identifiers together with the

vast number of identifiers required, would encourage iden-

tifiers that were not necessarily indicative of page con-

tents; labels such as "gldprcs2" are barely better than

"3056112". Finally the particular choices, of identifiers

would not necessarily be easier for subscribers to

thus necessitating large directories.

The first step to solving these problems

recall,

results from

the realization that most pages are not designed to be ac-

cessed directly when first used by a subscriber. In fact,

each service provider has relatively few "entry" pages

suitable for first-time users, and only these pages:need to

have labels in a universal , page-independent menu. A sub-

scriber would therefore typically encounter a set of pages

from one of several designated roots and then proceed to ac-

cess other pages by more localized menu selection. The

- resulting reduction in size for the page-independent - menu

greatly relieves the problems caused by over-labeling, par-

ticularly non-mnemonic labels, unnecessarily long labels,

and conflicting requirements for the use of identical

labels.

As mentioned in the previous section, mnemonic labels

are most suitable when a menu is large. Whereas the set of

all entry pages constitutes such a large menu and therefore

- 149 -

benefits from alphanumeric labels, most page-specific menus

are relatively short. It is absurd to disallow alphanumeric

page-specific menus if subscribers have full keyboards; but

it is equally absurd to insist that all menus have mnemonic

labels. In most cases, the advantages of short labels will

dictate single digit or character labels for page-specific

menus. Occasionally page-specific menus may be large enough

to warrant the use of longer mnemonic labels, especially if

the choices need not be displayed (e.g., "type another coun-

try's name for related information"). •

The menu structures as described so far satisfy the

needs of service providers to advertise certain pages so as

to attract new subscribers. However, a menu structure that

aids users in subsequently recallirg pages of interest is
still required. 	If many pages do not have entries in a

page-independent menu, most subscribers will become

frustrated at repeatedly traversing certain access paths to

retrieve favoured pages. For example, a subscriber's tastes

may dictate daily access to a sports summary, a particular

team's personnel summary, the grain futures, the 'joke of the

day and the list of flights from Halifax to Quebec; many of

these pages may not be popular enough to be included in a

universal page-independent menu. Thus, the Telidon database

system should provide a mechanism for each subscriber to

maintain a private page-independent menu (cf. "labels" in

the Hypertext Editing System [VAND711). The subscriber must

- 1.50 -

have complete control over the entries in the menu and must

be able to enter and delete labels online. In the Waterloo

Telidon, for example, the command "+flights" would enter the

label "flights" in the subscriber's personal menu, desig-

nating the currently viewed page as the target.* Thereafter,

the menu selection "flights" from any page, when issued by

that user only, would recall that target. Finally, the com-

mand "-flights" deletes the entry corresponding to that

label from the subscriber's menu. At no time does the sub-

scriber need to know the numeric page identifier.

Such private menus have many advantages. First, the

universal menu can be kept small, since each subscriber can

essentially augment the page-independent menu to customize

it without affecting other menus. Of equal importance is

the fact that each subscriber canuse labels that are per-

sonally meaningful and therefore much easier to remember.

(Of course, a subscriber could also choose short, cryptic

labels if that were personally preferable.) Finally, the

system could provide a mechanism to traverse the pages

labelled in the private menu, thus further simplifying

retrieval for repeatedly posed patterns. (The Waterloo

Telidon system, for example, uses ">>" and "<<" to traverse

the private menu linearly.)

As a slight extension to this idea, it may also be use-

ful to provide a private menu of more transient labels.

* Actually a question mark is used rather than a plus, to
accommodate Electrohome's primitive keyboard.

- 151 -

Every videotex system includes the capability to retreat

along an access path (by using the "oops" key), but this is

inadequate for recalling a page noted much earlier in the .

session. Pages that are deemed temporarily notable could be

entered into the subscriber's private menu, but they would

have to be culled periodically by the user. A simpler

mechanism would be to allow a subscriber to enter a label

that will be deleted automatically when the session ter-

minates; for example, the command ' 1 i-flights temp" could be

used. This has an advantage over a simple stacking

mechanism, in that a "retreat" is not required to access

every noted page in reverse linear order.

When multiple menus exist simultaneously, a policy must

be adopted to resolve ambiguity when the menus' scopes

intersect. In the DOC Telidon database system, this is

accomplished by syntactically distinguishing labels in each

of the three menus accessible from a page: single digits

and special codes (e.g., '>') refer to the page-specific

menu, a period followed by a digit sequence is a label in

the document menu, and all other labels refer to the page-
.

independent menu. Alternatively, in Waterloo Telidon, where

there are very few syntactic restrictions to labels, the am-

biguity is resolved by resorting to a fixed strategy For

searching menus: the page-specific menu is searched first,

then the subscriber's private menu, then a subtree's menu

(if such exists), and finally the page-independent menu. A

- 152 -

third alternative would be to search all menus having the

current page within their scope, resolving an ambiguity by

requesting further discriminating input from the user.

These three approaches are increasingly liberal in

interpreting a user's command, and the third may therefàre

seem to be the most forgiving method. On the other hand, a

misspelled label in either of the last two options may acci-

dently match an entry in an unexpectedly applicable menu,

thus confusing naive users. In spite of this, however, we

currently prefer a method that avoids ,giving userS error

messages; we look forward to the results of the necessary

behavioural experiments.

Finally, for more rapid page traversal by sophisticated

users, a concatenated sequence - of menu selections should be

interpreted as if -they. were entered one at a time (as in

Prestel and Bildschirmtext). Thus, for - example,

"AC.schedule.Montreal" identifies the same page as would be

retrieved by entering.the three individual labels consecu-'

tively.

IV.1.4 Page frame maintenance without numeric identifiers - -

In the previous section we described a menu structure

which provides all the necessary facilities for page access

without the explicit use of numeric page identifiers. Ser-

vice providers can also benefit from alphanumeric page

labelling when updating the database.

- 153 -

In this section we concentrate on the aspect of main-

tenance that updates the linkage between pages rather than

the (PDI) display codes that constitute a page's contents.

We therefore refer to a page frame as that part of a page

which does not deal with display codes, but rather includes

all the relevant interpage linking.

The .first observation is that a primitive menu main-

tenance tool has already been described for manipulating a

subscriber's private menu. Those facilities need to be ex-

tended to include the extra capabilities required by infor-

mation providers, such as creating new pages and specifying

which of the accessible menus is to be updated. Throughout

this section we will adopt standard list-processing concepts

and facilities, as they would appear in a high-level

programming language.

When creating a new page, page frame manipulation

should be separated from page contents manipulation. Tn

particular, a "blank" page frame can be allocated from a

pool of available pages and linked into the service

provider's access paths dependently of filling it with

display codes. We therefore assume a facility for copying

prepared display codes into a "current" page frame and omit

the detailed specification of such a command.

In all programming languages, when a new piece of

storage is allocated, its address must be noted by the

system and saved in a variable accessible by the user.

- 154 -

Similarly the identifier for a newly-allocated page frame

must be stored in a menu, for example the service provider's

private or temporary menu, some page's page-specific menu,

or the universal page-independent menu. For consistency

with the commands adopted by Waterloo Telidon, we suggest as

an example the syntax summarized in the following table (in

all cases the phrase "clean-page" is used to indicate that

the label "flight" should subsequently refer to a newly al-

located page):

Command 	 Menu Affected

"+flight clean-page" 	private

"+flight private clean-page" 	private (alternative syntax)

"+flight temp clean-page" 	private, temporary

"+flight public clean-page" 	page-independent

"+flight to clean-page" 	page-specific (current page)

Naturally pages will need to be accessible via multiple

access paths. Therefore a facility is also needed to enter

labels having existing pages as targets (in all cases, the

label "flight" will subsequently retrieve the page desig-

nated by the label "schedule" in the current page's con-

text):

Command 	 Menu Affected

"+flights private schedule" 	private

"+flights temp schedule" 	temporary

"+flights public schedule" 	page-independent

"+flights to schedule" 	page-specific for current

page

For symmetry with the last option, the command "+fliqhts

from schedule" should denote a change to the page-specific

menu for the page labelled "schedule" such that the label

"flight" therein refers to the current page; that is, a back

link is to be created.

Finally two commands are required to tear down struc-

tures. The command "-flights" has already been introduced

to delete the label "flight" from a private menu; this is

merely extended to delete the label from that menu in which

it is found (such that the menu's scope includes the current

page, of course). In addition, page frames should be

returnable to free storage for subsequent re-allocation; to

this end, the command "destroy page" can be included to

remove the current page.

The complete label manipulation language is summarized

in Figure 4.1, using an extended form of 131\17 rGRT7q 7 1 1 .

Because the facilities have been commonly used in

programming languages and they are relatively simple, they

are likely to be successful in videotex as well.

- 156 -

1 1 + 1

1 1 	1

I .

Hi

I .

command 	:= retrieval

1 update

retrieval 	:= path-descriptor
8

path-descriptor := name f'.' namel*

name 	:= (letter 1 digitl+

update 	:= '+' name rfaffected-menu] target -I

name 'from' path-descriptor

name

1 	'destroy page'

affected-menu 	:= 'private' 1 'temp' 1 'public' 1 'to'

target 	:= path-descriptor

1 	'clean-page'

Figure 4.1 - Label manipulation commands .

- 157 -

111 .1.5 Further related work

As is true for all such studies, there are as many in-

teresting new prospects raised as there are problems

resolved. In this section, we briefly outline some in-

vestigative work that should be carried out as extensions to

the research described here.

Dynamic menu maintenance and concurrency control

The menus described in this section may all be en-

visaged as being created and maintained as the update com-

mands are given. However a menu's mutability, as described

earlier, may involve alternative times. These alternatives

should be investigated to determine their applicability to

each form oevideotex menu.

Most Telidon pages are currently edited off-line, and

the database is updated in a subsequent batched run. This

mode of operation lends itself to a batched update for menus

as follows. The update commands are encoded and embedded in

(or attached to) the pages to which they apply (typically

the current page at the time the update command is entered).

When the batch update is run, these commands are extracted,

and the menus are altered as indicated. This mode of opera-

tion has the advantage that the menus are always syn-

chronized with the pages they reference r.GREIF1117 therefore

users are not presented with "dangling references" and their

associated error messages.

- 15q -

A second alternative is to create a displayable menu

only when it is requested, as is now done for the "list"

command in Waterloo Telidon. In this mode of operation, a

menu is stored in a compact, internal form during most of

the time; a display page of (PDI) codes is created at the

time that it must be presented to a user. For example, a

menu can be dynamically created whenever an ambiguous label

is entered so that the user can choose which alternative is

desired. The advantage of this mode of operation is to save

space for menu storage, at the expense of occasional menu

creation time to respond to users' queries. Also, this

technique saves time for input people during the updating of

menus, since they only update the compact, internal form of

the menu from which the system generates the menu page.

A problem that arises when updating is permitted online

is the synchronization of concurrent updates. For example,

if two service providers request that the universal, page-

independent menu use the label "flights" for two distinct

pages simultaneously, the system must ensure that at most

one of them is granted. One alternative is to restrict ser-

vice providers to choose labels from distinct vocabularies

(e.g., Air Canada must prefix all labels with "AC"), but

this solution is impractical and still does not solve the

problem of synchronization among employees of a single ser-

vice provider. A better solution is to employ a standard

concurrency control technique (see, for example, rHABE761).

- 159 -

In particular, the synchronization monitor deserves further

investigation for videotex.

Keyword processing and forms utilization

The research reported here has concentrated on

providing user facilities for retrieving pages 	in 	a

i.e., navigational manner, one page requested at a time.

Other videotex work has concentrated on so-called "keyword"

access to pages, where a user request is satisfied by a set

of pages to be displayed in some manner rBALL91]. The work

described here should be extended to be consiered in the

light of multiple-page retrieval.

In fact, the marriage of menus and more traditional

keyword systems is perhaps not very difficult to achieve.

When describing ambiguous labels, it was proposed that a

menu be created dynamically to allow a user to choose which
•
alternative is desired; this facility can be extended to

encompass situations where many Pages are potential

responses to a request. Some research must be pursued to

determine how best to display a very large number of choices

conveniently.

An aspect that has not been pursued at all here is that

of combinations of labels in a single request. Such a user

language is typified by Boolean expressions of keywords, but

this i s . not the only mode of multi-label request. For ex-

ample, a "form" may be used as an inquiry tool in which a

user may specify several constraints on the information or

- 160 -

service desired; the system response to such a form may be

one page of videotex data or a set of pages containing

related information rTOMPA91a1. Research into form crea-

tion, maintenance, and use may be vital to videotex's accep-

tance for non-trivial applications.

Facilities for maintaining clusters of pages

As a further extension for data organization and

querying, research should be conducted to determine whether

sets of pages containing related information can be managed

as a unit. The concept of "abstract data type" rLISK721,

for example, lends itself to defining a set of pages and the

valid operations that can be applied to that set. Adapting

such an approach to videotex would allow structures such as

rectangular grids, wheels of wheels, and arbitrarily many

others to be incorporated into Telidon as conveniently as

the tree structure is now an integral part. Such structures

can then be used to store sets of pages in the database or

to present sets of pages to users as they are dynamically

collected in response to (purposefully) ambiguous requests.

Interfaces to externally controlled databases and services

There is much work to be done to integrate a videotex

database with other databases in order to expand the range

of information and services. Modes of distributed videotex

can be classified as follows:

o compatible videotex systems with a shared name space

- 161 -

(A shared name space means that if multiple systems

each contain an identical page, it will have the

identical name on all systems.): Each physically

realized database contains a subset of a conceptual

universal database of videotex pages. Thus a re-

quest for a page can easily be satisfied by

searching for that page in every database, although

a more disciplined search strategy is certain to be

cost-effective.

o compatible videotex systems with distinct name

spaces (Distinct name spaces means that if multiple

systems each contain an identical page, it can have

a different name on each system.): Each physically

realized database contains a subset of the pages

from a conceptual universal database of videotex

pages. A request for a page may be satisfiable at a

remote site, but that request may need to be trans-

literated to use names particular to each database

accessed.

o videotex systems with incompatible naming (Incom-

patible naming means that each system uses not lust

a distinct name but also a different naming tech-

nique. For example, one system may use labels wbich

uniquely identify pages while another system may al-

low the user to retrieve multiple pages using key-

- 162 -

- 163 -

words for selection.): 	Each physically realized

database contains a subset of the contents of a

conceptual universal database of videotex pages.

Unlike the previous category, however, a request for

a page at one site may need to be completely

reworked into a set of requests at a remote site;

thus requests must be processed by an arbitrarily

sophisticated translation mechanism to convert names

from one site to be meaningful at another.

o heterogeneous database systems and services: The

contents of each physically realized database are

not necessarily drawn from a conceptual universal

database. This is the most general form of

distributed database, in which videotex may be com-

bined with record-oriented, bibliographic,

statistical, and other database facilities as well

as other data processing services (such as conven-

tional programming languages). Sophisticated

protocols and interfaces need to be developed to

present a homogeneous query and manipulation

language to users FBOCH811.

Behavioural studies

The techniques presented here have all been shown to be

useful in various contexts, but they are novel for videotex.

Before incorporating them into production videotex systems,

it is important that they be evaluated with respect to user

convenience.

For example, the language described for manipulating

labels in menus is a fairly conventional control language

for computer systems. It would be surprising if it were the

ideal syntax to be adopted for users who have had no ex-

perience with such systems. Only.by careful experimentation

can it be determined whether the concepts are reasonable for

naive users and what sort of language would be most ap-

propriate.

IV.2 File structure alternatives

The representation of pages and their retrieval access

strategies are critical to the performance of videotex. In

this section, we discuss our research into alternatives to

the current Telidon database system implementation. This

section is organized as follows: a description of a generic

model for videotex file structures and its application to

the current DOC implementation; an overview of appropriate

search strategies to find the page associated with a given

numeric identifier; an overview of page cache strategies; a

description of benchmark studies and results; and conclu-

sions and recommendations for videotex file 	structure

design. 	Appendix D contains a copy of the Pascal code used

to implement the simulation program whose results are ex-

plained in Section IV.2.4.

IV.2.1 A videotex file structure model

For the purpose of this study, we consider the use of

videotex for information retrieval only (as distinct from

transaction invocation, for example). Furthermore, we

restrict ourselves to the user interface provided by the

current DOC implementation; pages can be requested by

numeric page identifier, by a numeric menu selection having

up to ten choices, or by a tree-oriented directive (e.g.,

parent of page, next sibling, child, etc.). The incorpora-

- 165 -

tion of labels, as they are included in the Waterloo Tendon

server, for example, is not included in this study.

Consider the model diagrammed in Figure 4.2. A user can

enter a page identifier, menu choice, or tree-oriented

directive. Thereafter a page retrieval strategy must be in-

voked in order to make the appropriate page available to the

user. Associated request handlers scan for the requested

page in the cache (via the cache manager), and if it is not

there, they invoke a page retrieval from secondary store

(assumed to be disks) by passing the page's (disk) address

to the secondary store manager. In case of a page request

by numeric identifier, a search strategy typically needs to

be invoked first to find the disk address of a page.

The overall page retrieval strategy is as follows. In

case of a menu-based or tree-oriented selection, the disk

address is assumed to be stored with the page previously

retrieved. Because each user can have at most one active

page, this involves the retention of ten to twenty or so ad-

dresses per user (one for each menu choice and one for each

neighbour of the active page in the tree), a storage over-

head well worthwhile in view of the processing saved when

subsequently retrieving those pages without invoking the

search strategy. Thus first the cache can be searched for

the desired page, and, in case it is not found there, the

disk address can be passed to the secondary store manager

for retrieval. If instead a numeric page identifier is used

- 166 -

Cache

Request

Handlers Page

Identi fiers

Menu

based

Tree-

Oriented

W V

Memory

Managers

Search

Strategy

111.01•10n11mel.11.11nnnnn•••ji•

Secondary

Store

Cache

Manager

Secondary
Store
Manager

Figure 4.2: Videotex File Access Mbdel

- 167 -

• to select a page, the cache can again be searched first for

. the page. Subsequently the cache can be searched for a

neighbour of the page (the disk address of the requested

page would then be available as one of the retained links in

that page). Failing that, the search strategy would be in-

voked to find the disk address for the requested page in a

large dictionary-like table. Because of the size of this

identifier-to-address. dictionary, the search strategy itself

may involve the retrieval of "meta-pages" from the cache and

from secondary store.

This model can be applied to the current DOC implementa-

tion. Because there is no cache, the system behaves as if

the cache manager always reports that the page is not in the

cache. Thus, for example, menu-based and ttee-oriented re-

quests always pass the disk addresses of required pages to

the secondary store manager. Similarly, page requests using

numeric page identifiers are not passed to the cache manager

first, but instead the search strategy is immediately in-

voked. The DOC search strategy uses four B-trees (one for

low-numbered pages, two for news-of-the-day pages, and one

for all other pages) implemented as four indexed files uneler

Digital Equipment's RMS. In general, the search strategy

retrieves several meta-pages corresponding to nodes in the

B-tree, and finally it retrieves the requested videotex

page, always from secondary store.

- 168 -

IV.2.2 Alternative search strategies

There has been a lot of activity in the design of al-

gorithm and data structures for searching rKNUT73,GONW111.

In our context, we will limit ourselves to study search al-

gorithms with the following properties:

(a) the dictionary (albeit for pages stored in the

cache) resides on secondary store, and hence retrieving its

pages is the most important cost of the search;

(h) searches will be much more frequent than update

operations (additions, deletions, changes);

(c) search operations are restricted to be equality-

searches (as opposed to range-searches, etc.);

(d) most of the searches are expected to be successful.

With these constraints, we rapidly reduce the set of in-

teresting search strategies to three families:

o B-tree type indices,

o digital trees

o hashing schemes using buckets.

The best candidate to succeed in the first group is the

most general form of the B-trees FCOME791. The search time

is short and uniform for all elements, and the node size can

be easily adjusted to conform to convenient I/O blocks.

In the second group the TRIE rFRED6M,KNUT 7 31 is a prime

candidate. Since the key on which we will search is most

likely a Telidon page number, we have a natural "alphabet"

to consider for branching at each level.

- 169 -

Hashing into buckets generally shows better performance

than trees. There are some drawbacks in hashing (bad worst-

cases, difficulty in expanding the table, etc.) which have

been overcome in some recent new algorithms rLARS78,FAGI791.

IV.2.3 Cache strategies

The primary goal of the cache is to reduce the number of

accesses to the secondary store. N cache mechanism is ef-

fective when the requests follow some routine or bias, and

it is of little use for a sequence of random requests. Re-

quests for pages in videotex are far from random (root and

search pages will be requested repeatedly, some sequences of

pages will typically be scanned sequentially, etc.).

However the exact distribution of the requests for pages is

not known, and it may change with time. The best approach

for this study is therefore to simulate the cache strategies

with recorded sequences of requests and according to this,

select the best parameters.

Some possible variations in the cache strategies are to

alter

o the replacement algorithm

o the size of the cache

o the locality of transfers (as described below)

When a page is requested by a user and it is not in the

cache, it is typically necessary to dispose of some other

pages in the cache. The method of selecting the pages to be

- 1_71 -

replaced is called the "replacement algorithm". Such al-

gorithms have been studied extensively in operating systems

[SHAW74,COFF73], for which the strongest candidate is the

"least recently used" algorithm. Some other candidates in-

clude "first in first out" and weighted algorithms (in

which, for example, pages are replaced according to their

number of accesses and length of time in the system).

We know that the larger the cache, the fewer accesses to

secondary store will be required. In this case we are in-

terested in estimating the best trade-off between the cost

of the memory used by the cache and the speed-up obtained as

a result.

The third strategy is related to the organization of the

pages as well as the operation of the cache. The motivation

comes from the fact that an input operation may rea,1 more

information (a physical block) than was requesteri by a user.

If related pages (e.g. next, descendants) are stored con-

tiguously in the file, we may decide to keep all the infor-

mation read in the cache, so that the user's next request

may find its information without requiring an access to the

secondary store.

These options should be studied together rather than in-

dependently, since it is very likely that the trade-offs are

interrelated.

rv.2.4 Simulation of a Telidon server with cache memory

The most important measure of complexity in a Tendon

server is the input from external devices, in this case the

number of data-pages, the number of index-pages and the

total number of characters read. The choices for the inter-

nal data structures of the server are selected in the

simulation by setting the following parameters:

o the size of the cache, or internai memory, used to

store frequently used pages

o the algorithm for replacing pages in the cache

o the index method used to retrieve pages given solely

by their number (absolute requests)

o the characteristics of the index records (most

notably size and load factor)

o the size of the Telidon database (number of data-

pages)

o the distribution of the page sizes

o the statistical distribution of types of requests

o the correlation between types of requests

The first group of parameters are choices that the implemen-

tor of a Telidon server has available to tune the system to

best performance. The second set of parameters describes

potential environments and provides tools for judging the

stability of the system under different conditions. Values

for this second set of parameters may be obtained from a

trace of experimental or real data.

- 172 -

HI

1

1

- 173 -

1
The interesting combinations of parameters are endless.

We selected a few combinations, differing from each other in

one parameter at a time. This allows us to assess the ef-

fect of each choice.

Runs were made against the trace data provided by DOC

and against a random trace of 1000 requests.

The "benchmark" server is as follows:

o The Telidon database consists of 50,100 pages.

o The pages have size normally distributed with mean

800 	characters 	and 	standard 	deviation 	950

characters.

o The index is a Ble-tree, each node with maximum size

• 50 entries, 400 characters. It is assumed that the

B*-tree has been optimized so as to guarantee that
it has BO% occupation of its nodes. This gives an

average branch factor of 40 and a 13*-tree of 3

levels.

o The internal cache is 20,100 characters in size.

The cache will store either data-pages or index-

pages.

o The replacement is done on the page for which the

rate of utilization per character is lowest.

The output of each simulation is grouped into three

sections: (a) the model description which summarizes the

characteristics of the database and the implementation deci-

sions, (h) the input statistics that describe the charac-

teristics of the user population, and finally (c) the

performance statistics which give the simulation result of

the given input on the given model. The following comments

apply to all simulation results:

The 	"Disk 	requests per page requested" value

probably is the most interesting measure of ail. It

will certainly regulate execution time for I/0 bound

systems.

o The "Percentage of requests satisfied within the

cache" measures the cache effectiveness, in-

dividually for data-pages and index-pages.

o The "total data-characters read from disk" gives

another important measure of the time required for

I/O.

o The "average number of entries in cache at replace-

ment", "number of replacements in the cache", and

the total of pages (index or date) requested to the

cache measure the heaviest of the central processor

activities which depend on the parameters.

The results of the simulation on the benchmark server

are shown in Table 4.1. The results for the random data are

accurate within 1%.

The random sample, in some sense, is the worst data to

test the cache, almost certainly giving lower bounds on

cache effectiveness. This is due to two facts: (a) the

pages requested will not be random: there will be some pages

- 174 -

outl.nob

Model Description 	
Total size of data-pages in database 50000
Size of internal cache memory (chars) 20000
Size of index-page (chars) is 400
The index occupation factor is 0.80
Average number of entries per index-page is 40
The index is organized as a B*-tree
Height of B*-tree is 3

Input Statistics 	
Total number of different users 12
Total number of page requests received 1119
Percentage of ancestors requested 	2.50
Percentage of "next page" requested 57.73
Percentage of "previous page" requested 	0.98
Percentage of direct page requests 27.08
Percentage of menu-type requests by menu-option
(descending tree) 	2.77 2.14 1.61 0.80 0.54 0.36 1.16 0.00 2.32 0.0C
(arbitrary link) 	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Total time elapsed 	4.0200

Performance Statistics 	
Average number of requests per unit time 278.3582
Number of pages requested to the cache 	1119
Number of index-pages requested to cache 	795
Number of pages requested to disk 	874
Number of index-pages requested to disk 	188
Disk requests per page requested 0.9491
Percentage of requests satisfied within the cache

pages= 21.89 	index-pages= 76.35
Number of data-characters read from disk 	704846
Average number of entries in cache at replacement 32.67
Number of replacements in the cache 	1031

Table 4.1 part (a)

1

Model Description 	
Total size of data-pages in database 50000
Size of internal cache memory (chars) 20000
Size of index-page (chars) is 400
The index occupation factor is 0.80
Average number of entries per index-page is 40
The index is organized as a B*-tree
Height of B*-tree is 3

Input Statistics 	
Total number of different users 10
Total number of page requests received 10000
Percentage of ancestors requested 20.06
Percentage of "next page" requested 19.28
Percentage of "previous page" requested 	5.19
Percentage of direct page requests 	9.93
Percentage of menu-type requests by menu-option
(descending tree) 	9.51 4.05 3.17 2.42 2.39 1.92 1.84 1.72 1.55 1.50
(arbitrary link) 	1.87 1.23 1.67 1.47 1.70 1.47 1.57 1.33 	1.52 1.6i,
Total time elapsed 9908.0319

Performance Statistics 	
Average number of requests per unit time 	1.0093
Number of pages requested to the cache 10000
Number of index-pages requested to cache 	2775
Number of pages requested to disk 	8946
Number of index-pages requested to disk 	808
Disk requests per page requested 0.9754
Percentage of requests satisfied within the cache
pages= 10.54 	index-pages= 70.88

Number of data-characters read from disk 	7279253
Average number of entries in cache at replacement 30.86
Number of replacements in the cache 	9722

Table 4.1 part (b)

- 176 -

I.

I.

1.

I

PI

that will be universal favourites, thus increasing the

chances of finding them in the cache; and (b) the distribu-

tion is even more skewed if time is also considered (e.g.

everybody might access news pages at 6:00 p.m.). These con-

siderations improve the chances of finding pages in the

cache.

From the "normal" case against the DOC data or the ran-

dom data, we extract the following conclusions:

o The performance is better for the DOC trace data,

as expected. It is quite significant, however,

that the effectiveness of the cache for data-pages

doubled!

o The effectiveness of the cache for index-pages is

surprisingly high (3 out of 4 pages of . the index

are found in the cache) and not very àifferent

between sets of data. This points to one of the

most significant aspects of the cache. Once the

system is in steady state, the root" and the next

. level of the B*-tree stay in the cache. They are

frequently requested, small records; consequently

they will tend to stay longer than larger data-

pages.

o In both cases a request is satisfied with slightly

less than one disk access on average.

Table 4.2 summarizes the simulations using a hashing

table instead of a B*-tree. The hashing table for 51, 0(MM

- 177 -

• 1

1

1
I i

1

1
I

pages is quite large (1,250 buckets).. Consequently the use

of the cache for index-pages will be almost useless, because

of the random nature of hashing. When hashing is used then,

the cache will not be used for index-pages; it will seldom

pay. In this case we note:

o The cache is slightly more effective . for data-pages

(since index-pages are not in the cache, it is ef-

fectively larger).

o Fewer index-pages are required, roughly 1/3 of the -

requests as compared to the B*-tree, although now

each index-page request requires one disk access.

o The performance is slightly worse than 	for

B*-trees, although it is still less than one access

to disk per request.

Next we will analyze the effect of the size of the

cache. The general tendency is that the larger the cache

the better performance. What we want to evaluate is for bow

long this increase in size is cost effective. In Table 4.1

note that

o The effectiveness of the cache for index pages

remains almost invariant. 	This results from the

fact that even in the small cache there is room for

the root and mOst of the first level. However, if

the size were to be decreased further, the effec-

tiveness would drop sharply.

o The 	effectiveness 	for 	data-pages 	changes

- 178 -

outl.nohx

Model Description 	
Total size of data-pages in database 50000
Size of internal cache memory (chars) 20000
Size of index-page (chars) is 400
The index occupation factor is 0.80
Average number of entries per index-page is 40
The index is organized as a hashing table
Number of buckets of hashing table is 1250

Input Statistics 	
Total number of different users 12
Total number of page requests received 1119
Percentage of ancestors requested 	2.50
Percentage of "next page" requested 57.73
Percentage of "previous page" requested 	0.98
Percentage of direct page requests 27.08
Percentage of menu-type requests by menu-option
(descending tree) 	2.77 2.14 	1.61 0.80 0.54 0.36 1.16 0.00 2.32 0.0(
(arbitrary link) 	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Total time elapsed 	4.0200

Performance Statistics 	
Average number of requests per unit time 278.3582
Number of pages requested to the cache 	1119
Number of index-pages requested to cache 	0
Number of pages requested to disk 	840
Number of index-pages requested to disk 	263
Disk requests per page requested 0.9857
Percentage of requests satisfied within the cache
Number of data-characters read from disk 	677589
Average number of entries in cache at replacement 27.97
Number of replacements in the cache 	813

Table 4.2 part (a)

Model Description 	
Total size of data-pages in database 50000
Size of internal cache memory (chars) 20000
Size of index-page (chars) is 400
The index occupation factor , is 0.80
Average number of entries per index-page is 40
The index is organized as a hashing table
Number of buckets of hashing table is 1250

Input Statistics 	
Total number of different users 10
Total number of page requests received 10000
Percentage of ancestors requested 20.06
Percentage of "next page" requested 19.28
Percentage of "previous page" requested 	5.19
Percentage of direct page requests 	9.93
Percentage of menu-type requests by menu-option
(descending tree) 	9.51 4.05 3.17 2.42 2.39 1.92 1.84 1.72 1.55 1. C
(arbitrary link) 	1.87 1.23 1.67 1.47 1.70 1.47 1.57 1.33 	1.52 1.6
Total time elapsed 9908.0319

Performance Statistics 	
Average number of requests per unit time 	1.0093
Number of pages requested to the cache 10000
Number of index-pages requested to cache 	0
Number of pages requested to disk 	8827
Number of index-pages requested to disk 	962
Disk requests per page requested 0.9789
Percentage of requests satisfied within the cache
Number of data-characters read from disk 	7187908
Average number of entries in cache at replacement 28.08
Number of replacements in the cache 	8800

Table 4. 2 part (b)

- 180 -

outl.sm

Model Description 	
Total size of data-pages in database 50000
Size of internal cache memory (chars) 10000
Size of index-page (chars) is 400
The index occupation factor is 0.80
Average number of entries per index-page is 40
The index is organized as a B*-tree
Height of B*-tree is 3

Input Statistics 	
Total number of different users 12
Total number of page requests received 1119
Percentage of ancestors requested 	2.50
Percentage of "next page" requested 57.73
Percentage of "previous page" requested 	0.98
Percentage of direct page requests 27.08
Percentage of menu-type requests by menu-option
(descending tree) 	2.77 2.14 1.61 0.80 0.54 0.36 1.16 0.00 2.32 0.0C
(arbitrary link) 	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Total time elapsed 	4.0200

Performance Statistics 	
Average number of requests per unit time 278.3582
Number of pages requested to the cache 	1119
Number of index-pages requested to cache 	843
Number of pages requested to disk 	945
Number of index-pages requested to disk 	235
Disk requests per page requested 1.0545
Percentage of requests satisfied within the cache

pages= 15.55 	index-pages= 72.12
Number of data-characters read from disk 	751629
Average number of entries in cache at replacement 16.70
Number of replacements in the cache 	1164

Table 4.3 part (a)

- 182 -

Model Description 	
Total size of data-pages in database 50000
Size of internal cache memory (chars) 10000
Size of index-page (chars) is 400
The index occupation factor is 0.80
Average number of entries per index-page is 40
The index is organized as a B*-tree
Height of B*-tree is 3

Input Statistics 	
Total number of different users 10
Total number of page requests received 10000
Percentage of ancestors requested 20.06
Percentage of "next page" requested 19.28
Percentage of "previous page" requested 	5.19
Percentage of direct page requests 	9.93
Percentage of menu-type requests by menu-option
(descending tree) 	9.51 4.05 3.17 2.42 2.39 1.92 1.84 	1.72 1.55 1.50
(arbitrary link) 	1.87 1.23 1.67 1.47 1.70 1.47 1.57 1.33 1.52 1.611
Total time elapsed 9908.0319

Performance Statistics 	
Average number of requests per unit time 	1.0093
Number of pages requested to the cache 10000
Number of index-pages requested to cache 	2868
Number of pages requested to disk 	9478
Number of index-pages requested to disk 	1137
Disk requests per page requested 1.0615
Percentage of requests satisfied within the cache

pages= 5.22 	index-pages= 60.36
Number of data-characters read from disk 	7682968
Average number of entries in cache at replacement 15.43
Number of replacements in the cache 10597

Table 4.3 part. (b)

out1.1g

Model Description 	
Total size of data-pages in database 50000
Size of internal cache memory (chars) 30000
Size of index-page (chars) is 400
The index occupation factor is 0.80
Average number of entries per index-page is 40
The index is organized as a B*-tree
Height of 8*-tree is 3

Input Statistics 	
Total number of different users 12
Total number of page requests received 1119
Percentage of ancestors requested 	2.50
Percentage of "next page" requested 57.73
Percentage of "previous page" requested 	0.98
Percentage of direct page requests 27.08
Percentage of menu-type requests by menu-option
(descending tree) 	2.77 2.14 1.61 0.80 0.54 0.36 	1.16 0.00 2.32 0.01
(arbitrary link) 	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Total time elapsed 	4.0200

Performance Statistics 	
Average number of requests per unit time 278.3582
Number of pages requested to the cache 	1119
Number of index-pages requested to cache 	750
Number of pages requested to disk 	787
Number of index-pages requested to disk 	172
Disk requests per page requested 0.8570
Percentage of requests satisfied within the cache

pages= 29.67 	index-pages= 77.07
Number of data-characters read from disk 	633775
Average number of entries in cache at replacement 48.82
Number of replacements in the cache 	913

Table 4.3 part (c)

cat out2.1g

Model Description r 	
Total size of data-pages in database 50000
Size of internal cache memory (chars) 30000
Size of index-page (chars) is 400
The index occupation factor is 0.80
Average number of entries per index-page is 40
The index is organized as a B*-tree
Height of B*-tree is 3

Input Statistics 	
Total number of different users 10
Total number of page requests received 10000
Percentage of ancestors requested 20.06
Percentage of "next page" requested 19.28
Percentage of "previous page" requested 	5.19
Percentage of direct page requests 	9.93
Percentage of menu-type requests by menu-option
(descending tree) 	9.51 4.05 3.17 2.42 2.39 1.92 1.84 1.72 1.55 1. '
(arbitrary link) 	1.87 1.23 1.67 1.47 1.70 1.47 1.57 1.33 1.52 1.6
Total time elapsed 9908.0319

Performance Statistics 	
Average number of requests per unit time 	1.0093
Number of pages requested to the cache 10000
Number of index-pages requested to cache 	2703
Number of pages requested to disk 	8559
Number of index-pages requested to disk 	752
Disk requests per page requested 0.9311
Percentage of requests satisfied within the cache

pages= 14.41 	index-pages= 72.18
Number of data-characters read from disk 	6976480
Average number of entries in cache at replacement 46.03
Number of replacements in the cache 	9267

Table 4.3 part (d)

- 184 -

drastically. 	For the DOC trace, the large cache

has a very high efficiency (30%) even in absolute

terms.

Finally, the variance of the data-pages is drastically

reduced, from 250 Characters to 100, representing a much

more regular file (Table 4.4). In this case there is no

noticeable effect. We may safely conclude that within some

reasonable range of variability, it is the average size of

the page that matters and not its distribution.

In summary, the main conclusions of this simulation

are:

o The "cache" concept is very appropriate to reduce

the I/O traffic and even a small cache proves to be

effective.

o With a cache, B* --trees and_ hashing tables are

equivalent. Without the cache the hashing scheme

will be superior to B*-trees-

LV.2.5 Further aspects for investigation

Additional simulations

The simulation studies presented here constitute the

beginning of an investigation into alternative file or-

ganizations. The model on which the simulation program is

based is very general, and therefore it is appropriate for

testing many hypotheses.

- 15 -

outl.dv

Model Description 	
Total size of data-pages in database 50000
Size of internal cache memory (chars) 20000
Size of index-page (chars) is 400

The index occupation factor is 0.80
Average number of entries per index-page is 40
The index is organized as a B*-tree
Height of B*-tree is 3

Input Statistics 	
Total number of different users 12
Total number of page requests received 1119
Percentage of ancestors requested 	2.50
Percentage of "next page" requested 57.73
Percentage of "previous page" requested 	0.98
Percentage of direct page requests 27.08
Percentage of menu-type requests by menu-option
(descending tree) 	2.77 2.14 1.61 0.80 0.54 0.36 1.16 0.00 2.32 0.11
(arbitrary link) 	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0
Total time elapsed 	4.0200

Performance Statistics 	-
Average number of requests per unit time 278.3582
Number of pages requested to the cache 	1119
Number of index-pages requested to cache 	807
Number of pages requested to disk 	897
Number of index-pages requested to disk 	192
Disk requests per page requested 0.9732
Percentage of requests satisfied within the cache
pages= 19.84 	index-pages= 76.21

Number of data-characters read from disk 	715958
Average number of entries in cache at replacement 30.38
Number of replacements in the cache 	1060

Table 4.4 part (a)

- 186 -

1

out2.dv

Model Description 	
Total size of data-pages in database 50000
Size of internal cache memory (chars) 20000
Size of index-page (chars) is 400
The index occupation factor is 0.80
Average number of entries per index-page is 40
The index is organized as a B*-tree
Height of B*-tree is 3

Input Statistics 	
Total number of different users 10
Total number of page requests received 10000
Percentage of ancestors requested 20.06
Percentage of "next page" requested 19.28
Percentage of "previous page" requested 	5.19
Percentage of direct page requests 	9.93
Percentage of menu-type requests by menu-option
(descending tree) 	9.51 4.05 3.17 2.42 2.39 1.92 1.84 1.72 1.55 1.5C
(arbitrary link) 	1.87 1.23 	1467 1.47 1.70 1.47 1.57 1.33 	1.52 1.4
Total time elapsed 9908.0319

Performance Statistics 	
Average number of requests per unit time 	1.0093
Number of pages requested to the cache 10000
Number of index-pages requested to cache 	2808
Number of pages requested to disk 	9010
Number of index-pages requested to disk 	803
Disk requests per page requested 0.9813
Percentage of requests satisfied within the cache

pages= 9.90 	index-pages= 71.40
Number of data-characters read from disk 	7228360
Average number of entries in cache at replacement 28.11
Number of replacements in the cache 	9783

Table 4.4 part (b)

- 187 -

Analysis for critical points

It is likely that different alternatives are ap-

propriate under various conditions. It is therefore impor-

tant to continue the investigations of these alternatives by

analyzing them in more detail at critical parametric points.

For example, having determined that a cache is appropriate

for fast retrieval as long as it is "large enough", it must

be determined how large it should be in practice (perhans in

terms of multiples of average page size). This further work

is likely not possible through simulation, but rather it

must be carried out by a careful mathematical modelling and

analysis.

Validation of results

Regardless of the method of determining the effect of

the parameters on file performance, it must be remembered

that the results are based on a model of a videotex system,

which by definition is an approximation. Therefore before

incorporating the results into real production systems, the

model and the relults should be validated by comparing

predicted performance to actual behaviour.

Extensions to other query languages

The user interface assumed for this study is the stan-

dard Telidon language originally included in the 	DOC

database server. 	In Section IV.1, however, alternative

language constructs were proposed, and elsewhere other

- 199 -

researchers are also suggesting alternative interfaces.

Several of the additional language constructs could be in-

cluded in an extension of the model used for this simulation

study, and the performance impact of these constructs on

various database architectures could be examined.

Extensions to distributed videotex systems

Similarly, the model represents a single, centralized

database system only. The model should be restructured to

analyze the effect of data distribution on each videotex

file component. 	Furthermore, simulation studies may be

needed to determine how a conceptual universal database of

pages should be distributed among several sites in order to

reduce costs.

Bibliography

ALL079 	"Transmission System Evaluation for Two-Way Cable,"
by G. Allora-Abbondi, IEEE Transactions on CATV,
Volume CATV-4, NO. 3, pp 111-118,-1979..

BALL80 	"Videotex Networks," by A. J. S. Bail, G. B. Boch-
mann, and J. Gecsei, Computer, December, 1980; pp
8-14.

BALL81 "User Interfaces for Future Videotex Systems," by A.
J. S. Ball and J. Gecsei, report to the Dept. of Com-
munications, #20SU.36100-0-9506, June 1981.

BERG81 "DIODE: A New Tool for Data Retreival," by M. Berger
and Y. Noirel; Videotex '81 Proceedings, pp 51-56;
May, 1981.

BLAK82 	Personal communication with Professor I. F. Blake,
Chairman of Electrical Engineering, University of
Waterloo, January 1982.

BOCH81 	"Overview of ProtOcols in Distributed Videotex
Systems," by G. V. Bochmann, report to the Department
of Communications, #20SU.36101-0-9506, June, 1981.

BOWE80 	"Telidon • and Education in Canada," by P. G. Bowers
and M. Cioni, OECA; Viewdata '80 Proceedings, pp.
7-17, March 1980. •

BRIG80 	"The Telematique Program in France," by R. D.
Bright, Sopritel; Viewdata '80 Proceedings, 	pp.
19-24.

CIC179 	"An Introduction to Teletext and Viewdata with Com-
ments on Compatibility," by W. Ciciora, G. Sgrignoli,
and W. Thomas, IEEE Transactions on Consumer Elec-
tronics; Volume CE-25, no. 3, July 1179.

CLAR81 "The UK Prestel Service -- Technical Developments
Between March 1980 and March 1881," by K. E. Clarke
and B. Fenn; Videotex '81 Proceedings, pp 147-169;
May, 1981.

COFF73 Operating Systems Theory, by E. G. Coffman and P. J.
Denning, Prentice-Hall, Englewood Cliffs, 1973.

COME79 "The Ubiquitous B-tree," by D. Corner, ACM Computing
Surveys, Volume 11, No. 2, June 1879. ---

COST79 "Videotex System Planning," by Jose M. Costa and An-
thony H. Marsh, BNR, NEC '79, Chicago, 1979.

COYNE80 "Omnitel (TM) - An Integrated Broadband Distribu-
tion System for the Eighties,", by J. J. Coyne, First
Montreal Workshop on Videotex Technology, Working
Document #112, Departement d'Inf-6Flii -lique et de
Recherche Operationnelle, Universite de Montreal,
June 9-18, 1980.

CRC79 	"Picture Description Instructions PDI for the
Telidon Videotex System,", by H. G. Bown, C. D.
O'Brien, W. Sawchuck, and J. R. Storey, CRC Tech-
nical Note No. 699-E, Communications Research Center,
epartment of Communications, Ottawa, 1971.

DAVI79 	"Computer Networks and Their Protocols," by D. W.
Davies, D. L. A. Barber, W. L. Price, and C. M.
Solomonides; John Wiley and Sons, New York. 1979.

DORR081 	"The ISDN -- A Challenge and Opportunity for the
'80s," by I. Dorros, ICC 1, June, 1911.

FAGI79 "Extendible Hashing -- A Fast Access Method for
Dynamic Files," by R. Fagin, J. Nievergelt, N. Pip-
penger, and H. R. Strong, ACM Transactions on
Database Systems, Volume 4, No. 3, September 1979. --

FEDI77 "Viewdata," by S. Fedida, Wireless World, Volume 93,

no. 1494-1497, February-May, 1 9 77.

FEDI78a 	"The Viewdata Computer," by S. Fedida, Wireless
World, Volume 84, No. 1519-1519, April-May, 19 79.

FEDI78b "Viewdata Optimization," by S. Fedida, Wireless
World, Volume 94, No. 1511, June 19 7 9.

FRED60 	"Trie Memory," by E. Fredkin, Communications of the
ACM, Volume 3, No. 9, September 1951.

F0X78 	"Knowledge stucturing: an overview," by M. Fox,
Proc. of the Second Conference of the Canadian
Society for Computational Studies of Intelligence, pp
146-155; 1978.

GONN81 A Handbook of Algorithms and Data Structures, by G.
H. Gonnet, Compul:er Science -Té-search Report CS-91-21,
University of Waterloo; May, 1981.

GREI81 	"Alphabetisches 	Suchen 	in 	Oesterreichischen
Bildschirmtext," by G. 	Greiner, 	Institut 	fuer
Informationsverarbeitung, Tech. Univ. Graz, Austria.

- 191-

GRIES71 Compiler Construction for Digital Computers, by D.
Gries, John Wiley and Sons, Inc., Toronto, 1971, 493

PP.

GUIL80 "Development and Applications of the Antiope-Didon
Technology," 	by 	J. 	Guillermin, 	Viewdata 	'91
Proceedings, pp. 29-38, March 1981.

HABE76 	Introduction to Operating Systems Design, by N.
Habermann, SRA, Inc., Toronto, 1976; 372 PP.

HARA81 "Current Status of the CAPTAIN System," by S.
Harashima and T. Kitamura, Videotex '91 Proceedings,
pp. 113-121; May, 199 I.'

HOOP81 "The UK Scene -- Teletext and Videotex," by R.
Hooper, Videotex '81 Proceedings, pp 131-115; May,
1981.

KLEIN75a Queueing Systems, Volume 1, by L. Kleinrock; John
Wiley and Sons, New York, 1975.

KLEIN75b 	Queueing Systems; -Volume 2, by L... Kleinrock; John
Wiley and Sons, New York', 1975.

KNUT73 The Art of Computer - Programming: Sorting and
Searching, Volume 2 - , by D. E. Knuth", Addison Wesley,
Don Mills, 1973.

LARS78 "Dynamic Hashing," by P. A. Larson, BIT, Volume 19,
No. 2, 1978.

LISK72 "Specification techniques for data abstractions," by
B. H. Liskov and S. N. Zilles, IEEE Trans. on
Software Eng. SE-1, 1 (1975) pp.7-19. — _

KUMA80 "CAPTAIN System Features -- Capa'bility and Transmis-
sion Method," by T. Kumamoto and S. Ohkoshi, Viewdata
'80 Proceedings, pp. 93-106; March, 1991.

MANT81 "The Seltext Center for the Bildschirmtext Network,"
by H. Mantel, Proceedings of Videotex '91, pp
179-187; May, 1911.

MART79 "The Antiope Videotex • ystem," by B. Marti, A. Poig-
net, C. Schwartz, and V. Michon, IEEE Transactions on
Consumer Electronics, Volume CE-25, no. 3, July 1 979 .

MART80 "Broadcast Text Information in France," by B. Marti,
Viewdate 'BO Proceedings, pp. 359-370.

McDON81 "ISDN-81: Views by Manufacturers," by John
McDonald, ICC '81, June, 1991.

C .

- 192 -

1

•1

1

1

1

1

1

1

1
MERK78 	"Secure Communications Over Insecure Channels," by

R. C. Merkle, Communications of the ACM, Vol. 21, No.
4, April 1978.

MORG80 	"Britain's Teletext Services Are A Commercial Suc-
cess," by G. Morten, BBC, Viewdata '80 Proceedings,
pp. 341-357, March 1980.

000N79 	"Teletext Field Tests," by R. A. O'Connor, IEEE
Transactions on Consumer Electronics, Volume CE-25,
No. 3, July, 1979.

OTT081 Presentation at The Second Canadian Workshop on
Videotex Technology, by H. Otto; May, 1981.

PARK79 "The necessary structure," Gutenburq 2, by Godfrey
and Parkhill (eds.), Press Procepic, Toronto, 1979.

PHIL81 	"The design of videotex tree indexes," by D. A-.
Phillips (ed.), Tendon • Behavioural Research IT,
Department of Communications, Ottawa; May 11814

RAND64 	"Special Consultant," . The- American • College Dic-
tionary,'Random House, New York; 1964.

RIVE78 "A Method. for .Obtaining Digital Signatures. and
Public Key -Cryptosystems," by R. L. Rivest et al.,
Communications of the ACM, Vol. 21, No. 2, February
-1978. -

ROBI79 "TouchTonel Teletext: A Combined Teletext-Viewdata
System," by G. Robinson and W. Làveless, IEEE Tran-
sactions On Consumer Electronics, Volume CE-25, No.
•, July 1979.

it
SAKA80 "An ISDN'System.Architecture," by I. Sakekibara and . 	Il

H. Yumiba, NTC 1981.

SIGE80 Videotex - The Coming Revolution in Home/Office
Information Retival, by E. Sigel (e7-1-17t-87-)T Know-
ledge Industry Publications, Inc., White Plains, U.
Y., 1981.

SHAW74 The Logical Design of Operating Systems, by A. C.
Shaw, Prentice-Hall, Englewood Cliffs, 1974.

SKRZ81 "Bell System Planning of ISDN," by C. S. Skrzypczak,
J. H. Weber, and W. E. Falconer, ICC '81, June, 1 981.

SYTE81 LocalNet System 20 Model 201 - Packet Communications
Unit Reference. Manual, by SYTEK Incorporated, August
1981.

- 193 -

1

TANE81 Computer Networks, by A. S. Tanebaum; Prentice-Hall,
Inc. Englewood Cliffs, N.J.; 1981.

TANT79 "UK Teletext - Evolution and Potential," by N. E.
Tanton, IEEE Transactions on Consumer Electronics,
Volume CE-25, no. 3, July 1979.

TELE79 "Vista gives television a new face," Telesis, Volume
6, No. 1, pp. 29-31, February, 1979.

TELI81 Telidon Reports, No. 7, August 1901.

TOMPA81a 	"Data 	Structuring Facilities in Interactive
Videotex Systems," by F. W. Tompa, J. Gecsei, and G.
V. Bochmann, Computer, 14, R (August 1901), PP 72-531 .

TOMPA81b "The Application of Current Database Technology to
Videotex," by F. W. Tompa, J. Gecsei, and G. •V. Boch-
mann, report to the Department of Communications,
#20SU.360100-0-9506, June 1991.

TROU80 "Prestel Operational Strategy," by Dr. P. Troughton,
British Post Office Communications, Viewdata '00
Proceedings, pp. 51-57, March 1901.

TSUK79 "Integrated Services Data Switching N'etwork," by K.
Tsukada, Y. Yoshida, K. Yukimatsu, and H. Ohnishi,
Sixth Data Communications Symposium, November, 1 9,7 9.

ULUG77 "Statistical Multiplexing of Data and Encoded Voice
in a Transparent Intelligent Network," by Ulug and
Gruber, Proceedings of the 5th Data Communications
Symposium, September 1977.

WICK79 	"Wired City U.S.A., The Charms and Dangers of Two-
Way TV," by John Wicklein, The Atlantic, 197 9.

WILL74 "A Time Division Multiple Access System for Digital
Communication," by D. G. Willard, Computer Design,
July, 1974.

WILS80 	"Bell Canada's VISTA Project," by L. 	Wilson,
Proceedings of Inside Videotex, Infomart, March,
1980.

WONG80 "Switched Data Communications Services on the Cable
Television lant, Phase I - Problem Definition," by J.
W. Wong, J. W. Mark, J. A. Field, Eric Manning, and
V. F. DiCiccio; A report by CCNG for the Cable
Telecommunications Research Institute, October 1901.

ZIMM80 	"Future Utilization of Interactive and Broadcast
Videotex in Germany and its Effects on Standardiza-
tion," by R. Zimmermann, Proceedings of Viewdata 1 S0,
pp 263-269; March 1980i.

APPENDIX A: SOFTWARE FOR THE SIMULATION OF A MODEL
OF THE OMNITEL NETWORK

111111 MIS 111011 NMI IBM 	MI1 	111111 	111111 Inn 1111111 	11•111 111111 MOM

Jul 17 08:47 1981 externl.h Page 1

#define BITS
elefine DS1 CAPACITY
#define RVDT4 1DT
#define CABLE SPEED

• #define D MEAD"
#define UlèlEAN

10 	/* bits per byte: . 7 plus parity +. start + stop */
24 	/* number of tdm streams per DS1 */
64000L 	/* speed of idt line, one channel */
64000L 	/* speed of feeder cable, one channel. */
750 	/* mean of downstream videotex msg length (in bytes) */
9 	/* mean of upstream videotex msg length (in bytes) */

Jul 17 09:11 1981 struct.h Page 1

#define DEVICE 	0 	/* names for various servers */
#define STU 	1
#define RVDM 	2
#define 10V LIME 	3 .
edefine IDT 	4
#define FEEDER 	5
#define DCT 	6
#define CCC 	7
edefine BE NET 	8
edefine D ETU 	9
elefine D:RVDM 	10 	.
#def4le D IDT LINE 	11
#define D IDT 	12
#define D—FEEDER 	13
#define D—DCT 	14
#define D:CCC 	15

#define VIDEOTEX 	1 /* for device sub_type */
#define TELEPHONE 	2
#define OTHER 	3

#define UPSTREAM 	. 0
#define DOWNSTREAM 	1

#define DEV GEN 	1 /* for event_type */
de fine SNAFSHOT 	2
#define BE NET PROC 	3
*define DEU COàP 	4
#define END SIN 5
#define RESET STATS 	6
#define STATIUTICS 	7
#define START SERVICE 8
idefine DEPARiURE 	9
#define STU SERVER 	10
#define RVDà SERVER 	11
#define IDTLINE SERVER 12
#define IDT SERVER 	13
#define FEEDER SERVER 14
#define DCT SEUVER 	15
#define D Sill SERVER 	16
#define D—RVDà SERVER 17
#define D-1DTLINE SERVER 	18
#define D—IDT SERVER 	19
#define D—CABLE SERVER 20
#define D—DCT SERVER 	21
#define MESSAGE 	22
#define EXTERNAL 	23
#define DEBUG 	24
#define CCC SERVER 	25
#define D Ci5C SERVER 	26
#define TELE INIT 	27
#define TELE—TALK 	28
#define TELE:PAUSE 	29

#define IPME 1
#dcfine.FALSE. 0

lall 	11111 	IIIIIII 	• BIM MI IIIIII1 MIR MI MI MO MI • 11111111 	MMIII

Ball URI • IMO MIMI SIM IBM
1111111 11111111 	 MI 	 MIMI MIMI

Jul 17 09:11 1981 struct.h Page 2

#define MAX...FEEDER 	2
#define MAX IDT 	8
#define MAX-RVDM 	32
#define MAX-STU 	21
#define MAX:SERVERS 	8

/* maximum number of feeders */
• ./* maximum number of idt's per feeder */

/* maximum number of rvdm's per idt */
/* maximum number of stu's per rvdm */
/* maximum number of server types in the network */

struct unit spec(/* structure to specify orig/dest device */
int-unit type; 	/* device, STU, RVDM, etc. _
int feeder line; 	/* number of feeder that unit is on */
int idt; - 	/* number of idt */
int rvdm; 	/* number of rvdm */ 	.
int stu; 	/* number of stu */
int dev type; 	/* type of device */
int device; 	y/* number of device */

);

• struct message(
struct unit_spec orig_unit;
struct unit_spec dest unit;
int msg_type; 	/* for possible future use */
int direction; /* UPSTREAM or DOWNSTREAM */
int Msg_len;
long orig_time;
long req_start; /* start time of videotex request */

struct event list(
long-liaraml;
long param2;
int event_type;
long start time;
struct message *msg;
struct event_list *fwd, *bac

);

struct queue_entry (
long time;
int next_event;
struct message *q_msg;
struct queue_entry *forward;

/* some integer parameter to be passed to the event routine */
/* a second int parameter to be passed to the event routine */

/* time that event is to take place */
/* a pointer to the message that is to be passed */

k; /* forward and backward pointers */

/* time that message was put in queue */
/* the manifest for the next server's event routine */
/* pointer to message in queue */
/* forward pointer for linked list */

);

1* GLOBAL VARIABLES

struct event
struct queue
strucE queue
int *Idle;
int N_queues

int N_stat_q

list *P ev, *Last ev;
_entry *7(..)_ptr; 	/* pointer to current (first) entry in queue */
entry **Last ptr; /* pointer to last entry in queue */

/* TRUE ilf indicated server is idle */
; 	/* the total number of queues needed by servers */

/* STU, RVDM, 1DT LINE, IDT, and DCT */
; 	/* the number of ueues for which we will keep statistics */

long.Sim:time; /* the simulator clock */
char *Filename; /* filename read in for checkpoint file */
int Input; 	/* boolean: true iff normal terminal input will be taken from a file */

Num_dct;
Num feeder;
Num'idt[MAX FEEDER+1];
Num_rvdm[MA7 FEEDER-H.1[MAX IDT+1];
Num_stu[MAX 	 MAXI IDT+11CMAX RVDM+1];
Num télephorie[MAX FEEDER+THMAX IDT+7.1[MAX RVDM+1
Num videotex[MAX fEEDER+1][MAX IDT+11[MAXUVDM+1]
Idt-dsl_q[MAX FEEDER+1]EM]X IDY+1][21; 	

_

Dsl-capacity[FIAX_FEEDER+1][gAX_IDT+11;
*S_Uapacity;

int Num dsl_q[MAX FEEDER+11[2]:
lut DetlidtLMAX_FEEDER+11[MAX_IDT+11;

int Nrvdm[MAX FEEDER+1];
lot il_stu[MAX FEEDER+1];

int
int
lut
mt
int
int
int
in t.
int
int

Jul 17 09:11 1981 struct.h Page 3

char *lnputfile; 	/* the filename for input if not taken from the terminal */
int Restart; 	/* logical vbl - true iff -R option On command line */ 	•
char *Configfile;. 	/* filename for configuration file */ 	-
int. Debug; 	/* logical vbl: true iff -d option on command line */ 	 .
int Periodic; 	/* logical vbl: true iff -p option on command line */ -
long P_int; 	/* for Periodic option: schedule SNAPSHOT every p int time units */
long P_start; 	/* for Periodic option: start at P_start time units */
int Reset; 	/* logical vbl: true iff -r option set on command line */

/* reset stats at specified time */ 	.
long Resettime; . 	/* time at which to reset stats */
int Message; 	/* logical ybl: true iff status messages are to be sent to user */ 	.
int Msg freq; 	/* number (or frequency) of messages to be sent */
int. See-d; 	/* random number seed */
int Service; 	/* logical vbl: true iff user is inputting - service time for all servers (except channels) */
fLoat Service_time; 	/* the service time for all serVers except channels */
struct message Null msg; 	/* null message for use with schedule proc */ 	.

long End_time; /* 7,/hen 	to stop simulation */
long Max_msgs; /* maximum number of messages for sin */ 	• 	.
int Cale stets; /* whether Or not (T/F) we are to collect stets for individual queues */ _
int Fraction[MAk_GERVERS+11; 	/* inverse of fraction of queues we are to individual/y sample */ '
int Exact_stats; 	/* if we want exact statistics */
long Stats_mean; 	/* mean interval between stats collection events */
lot Total videotex; 	/* total number of videotex devices in configuration */ 	.
lut Total-telephone; 	/* total number of telephone devices in configuration */
int TotallbSl_q; 	/* total number of dsl queues for all feeders in each direction */
lot Dilation; 	/* the time dilation - normally 1000 */
float V freq; 	/* videotex terminal message generation frequency (seconds per message) */
float Elfreq; 	/* external traffié message generation frequency (messages per second) */
int External; 	/* logical vbl: true iff external messages are to be present */
int Telephone; 	/* logicel vb1:-true iff telephone messages are to be present */
lut Conv_mean; 	/* mean conversation length in seconds */
int Tele util; 	/* mean number of active telephones ..*/
long Ev length; 	/* length of event list */
long Nimi_msgs; 	/* total number of messages in the system */
long Num_in_q; 	/* total number of queue entry items */
int Emean; 	/* mean length of external messages */

./* 	CONFIGURATION TABLE 	*/ 	 .

/* number of DCT's */
/* number - of feeders */
/* number of IDT's per feeder */

• /* number of rvdm's */
/* number of stu's */

1; 7* number of telephones */
; /* number of videotex displays */

/* ds-1 queue (group) number for each idt (upstream and downstream) */
/* number of aVailable time slots per dsl group in feeder */
/* stores the currentcapacity for each server */

/* number of dsl stream groupings (queues) in feeder(s) */
/* stores the dét number assigned to handle each idt */

/* number of rvdms on each feeder */
/* number of stus on each feeder .*/-

1111•1 UM MI MI MI WM 111111 BIM 	 IIIIIII 	111•11 MIMI MI

IBM MIMI MIN MI MI MI 	 Mil NMI 1111111 	MI Ian MI 	1•• 	MI

Jul 17 09:11 1991 struct.h Page 4

/* 	STATISTICS

int Msgs_received; 	/*
float Total_delay; 	/*
double Delay_sq: 	/*
long Total len; 	/*
long Be service; 	/*
int Be_msgs; 	/*

number of messages sent and received by device */
sum of end.to - end delays for all messages received _ _
sum of squared delays */
surs of all received message lengths */
sum of backend network service times */
number of messages reçeived at back-end network */

*

int *N_system; 	/* number of messages in various server queues */
long *N wait; 	/* the number of waiting times collected */
iong.*S wait; 	/* sum of waiting times */ 	.

, float **q_wait; 	/* sum of squared waiting times */
long *S delay; 	/* sum of server delays (wait time 4- service time) */
long *Bi-isy; ' - 	/* sum of busy times for each queue */
long *S_nsys; 	/* sum for mean number in system for each queue */
long N_sample; 	/* number of samples for statistics collection */ 	.
int *Stats_num; 	/,* vector of size N queues: indicates if stats are being kept for that queue,

/* and stores the ïffdex for it in the above stat vectors
long Num_up; 	/* the number Of upstream messages received */ 	.
long Num down; 	/* the number of downstream messages received */ 	.
float Se7v_up; 	/* the delay time of all upstream messages */

' float Serv_down; 	/* the delay time of all downstream messages */ 	.
•

*/

Jul 17 08:46 1981 be_net.c Page 1

#include <stdio.h>
#include "struct.h"
#include "externl.h"

edefine V_BE_NET_MEAN 0.5 	/* the mean service time for the videotex back end network */
jdefine .SD 	(V BE NET MEAN/12.0) 	/* standard deviation for the mean */ _ _ _
#define R 	4 	/* the number of stages in the erlang distn for message length */

/* the peak of the erlang distn is at D_MEAN * (R-1)/R */

be_net(next_server)
. int next_server; 	/* manifest for the next event after the back_end net */

/*
* this procedure simulates the videotex back_end network.

long new_time;
struct unit spec temp_unit;
float normar();

if(Debug)
printf("Sim_time %Id: Back end network.\n", Sim_time);

++Num_up;
Serv_up += Sim_time - P_ev->msg->orig_time .;

if(P_ev->msg->msg_type == OTHER) [
free(P ev->msg); .
--Num_dggs;
return;

/* change the size of the message: 100 - 3000 long */

P_ev->msg->msg_len = . erlang(R, DMEAN);

/* switch orig and dest units */

copy_unit(&P_ev->msg->orig_unit, &temp_unit);
copy_unit(&P_ev->msg->dest unit, &ID ev->msg->orig_unit);
copy_unit(&temp_unit, &P .,...e7->ffisg->dt_unit);

/* send it back thru the network */

Pev->msg->direction = DOWNSTREAM; 	 •
new_time = ((float) V_BE_NET_MEAN + (nOrmal()*SD)) * (float) Dilation + 0.5;
Be service += new_time;
++Be_msgs;
new time += Sim_time;
P ei7->msg->orig_time = new_time;
if(Debug)

printf(" 	schedule DOWNSTREAM message, at %1d;\n", new time);
schedule(nextserver, P_ev->msg, new_time, 0, 0);

copyjnit(unitl, unit2)
strùct unit_spcc *unitl, *unit2;

*

URI BM MIII MN MI MI MI 	
MI PM MI Inn MI OM MI MI

àu1 17 08:46 1981 be_nét.c Page 2

/* this routine copies unitl into unit2 */

unit2->unit type = uniti->unit type;
unit2->feeda._line = unitl- >feeder_line;
unit2->idt = unitl->idt;
unit2->rvdm = unitl->rvdm;
unit2->stu = unitl->stu;
unit2->dev_type = unitl->dev_type;
unit2->device = unitl->device;

Jul 17 00:46 1931 clean_up.c Page 1

#include <stdio.h>
#include "struct.h"

cleanup()
/* finish off the simulation

printf("\nEND OF SIMULATION at time $1d.\n",Sim_time);
print stats();
if(Cîlc_stats)

print individual();
printf("EOS\de);
if(Message)

message();

type of server
is in */
be passed to */
routine to handle it)

/* decrement number in system */
/* increment capacity of the system

III•11 MR NMI Mill 	MIII MI 	1111111 	IMIM 	OM MI

Jul 17 08:47 1981 depart_unit.c Page 1

#include <stdio.h> -
 #include "struct.h"

depart_unit(unit, next_server)
/* this routine processes the departure event for the designated
int unit; 	/* the number of the queue which message
int nextserver; 	/* the next server that the message will _

/* (actually, the manifest for the event

if(Debug)
printf("Sim_time %ld: Departure event.\n", Sim_time);

if(N system[unit] == 0)
Idle[unit] = TRUE;

--N system[unit];
++S-capacity[unit];
if(-bebug)

printf("Sim time %ld:
if(Q ptr[unit] != NULL) [

--S capacity[unit];
staa_service(unit);

else

/* keep server busy if non-zero queue */

/* Nobody is in queue */
/* and nobody is in the system */
/* therefore, server is idle */

capacity of queue %d = %d\n", Sim_time, unit, S_capacity[unit]);

Jul 17 08:47 1981 dev_comp.c Page 1

#include <stdio.h>
#include "struct.h"

dev_comp()
/* received message from network for device */

float temp;

• if(Debug)
printf("Sim_time %id: Message received at device.\n",Sim_time);

++Num down;
Serv_UOwn += Sim_time - P_ev->msg->orig_time;

if(P_ev->msg-'>msg_type == OTHER) [
free(p_ev->msg).;
--Num_msgs;
return;

Msgs received++;
Total len += P_ev->msg->msg_len;
Total_delay += temp = Sim_time - P_ev->msg->reg_start;
if(Debug)

	

printf(" 	Orig_time = U.d.\n",P_ev->msg->orig_time);
Delay_sq += temp * temp;

	

free(P_ev->msg); 	/* de-allocate the message which was passed thru the net */
--Num_msgs;

IIIIIIII MI MI UM OM NMI MI OM MI1 	Mal MI NM II•111 MI MI 	 IIIIIII

MI Mil 1MM 	
MI MI MI MI Mal MU 	IIIIM

Jul 17 09:17 1981 dev_msg_gen.c Page 1

#include <math.h>
#include <stdio.h>
#include "struct.h"

device_msg_gen0
/* this procedure generates messages from the devices */

double log();
double temp;
struct message *msg, *alloc_msg();
long new time;
int feeder, idt, rvdm, stu, dey;
float time;
float frand();

if(Debug) 	 •
printf("Sim_time %Id: Device_msg_gen procedure.\n",Sim_time);

/* allocate space for the message to be sent thru the network */ •

msg = alloc msg();
++Num_msgs;
if(msg == NULL)

printf("\n** ERROR ** device_msg_gen procedure: ran out of memory at time nd.\n",
Sin time);

else [

/* fill message */

get_rand_video(&feeder, &idt, &rvdm, &stu, &dev);

msg->orig_unit.unit type = DEVICE;
msg->orig_unit.feed-èr line = feeder;
msg->orig_unit.idt = idt;
msg->orig_unit.rvdm = rvdm;
msg->orig_unit.stu = stu;
msg->orig_unit.dev_type = VIDEOTEX;
msg->orig_unit.device = dey;

msg->dest_unit.unit_type = BE NET;
msg->dest_unit.feeder line = FULL;
msg->dest_unit.idt = FULL;
msg->dest_unit.rvdm = NULL;
msg->dest_unit.stu = NULL;
msg->dest unit.dev type = NULL;
msg->dest_unit.device = NULL;

msg->direction = UPSTREAM;
msg->msg_type = MILL;
msg->msg_len = fiand()*14.0 + 2.0;
msg->orig_time = Sim time;
msg->req_start = Simltime;

/* send msg to next unit, the STU */

schedule(STU_SERVER, msg, Sim_time, 0, 0);

/* mean is 9: to change, must also change "externl.h" */

Jul 17 09:17 1931 dev_msg_gen.c Page 2

/* schedule next message generation event */

temp = 1.0 - frand();
time = -(V_freq 	Totàl_videotex) * log(temp). * Dilation + 0.5;
if(time < 1)

time = 1;
new time = Sim_time + time;
schUdule(DEV_GEN, &Null_msg, new_timc, 0, 0);

) 	•

struct message *alloc_msg()
/* allocate space for a message */

char *malloc();

return((struct message *) malloc(sizeof(struct message)));

get_rand_video(feeder, idt, rvdm, stu, dev)
int *feeder, *idt, *rvdm, *stu, *dev;
/* this procedure generates a random videotex device number.*/

int i , j, k, 1;
int device num, number;
float frana();

device num = frand() * (float) Total videotex + 1.0;
• number = 0;

for(i=1; i<=Num_feeder; i++)
for(j=1; j<=Num idt[i]; j++)

for(k=17 k<=Num_rvdm[i][j]; k++)
for(1=1; l<=Num stu[i][j]lk]; 1++) [

number -7= Num_videotex[i][j][k];
• if(number >= device_num) [

*feeder = 1;
*idt = j;
*rvdm = k;
*stu = 1;
*dev = number - device_num + 1;
if(Debug) •

printf("device_num %d; feeder %d; idt %d; rvdm %d; stu %d; dey %d\n",
device_num, *feeder, *idt, *rvdm, *stu, *dell);

return;

printf("\n** FATAL ** get_rand_video: couldn'd identify device number %d\n",
device_num);

11•111111M1n 11MMIIIIIIIIMI

MI 	 MIR 111111 NM Ili 11111111 MN 	 •

Jul 17 08:47 1931 enter_q.c Page 1

((include <stdio.h>
#include "struct.h"

enter_q(type, next_server)
int type; 	/* type of unit that message is queueing for */
int nextserver; 	/* the next server that the message will -queue for */ _

/* (actually, the name of the event to process it) */
/* this routine processes the queue entry event for a variety of units */

int queue; 	/* number of queue in which to store message */
int feeder, idt, direction; 	/* if queue is a feeder, these are the feeder, idt and direction numbers */
int index;

if(Debug)
printf("Sim_time %ld: Enter_q routine for server type %d.\n". Sim_time, type);

if(Pev->msg->direction == UPSTREAM)
queue = get_q_num(&P_ev->msg->orig_unit, UPSTREAM, type);

else
queue = get_q_num(&P_ev-)msg->dest_unit, DOWNSTREAM, type);

++N_system[queue];
insert_q(queue, next server);
•if(S_capacity[queueU > 0) (

--Scapacity[queue];
if(Debug)

printf("Sim time %Id: capacity of queue %d = %d\n", Sim_time, queue, S_capacity[queue]);
start_service(queue);

1 •

insert_q(unit, next server)
int unit; 	/* - he number of the queue to put message into */
Int next_server; 	/* manifest for the next server's event routine */
/* this routine inserts the current message (Pev->msg) into a queue

associated with the indicated unit */ 	
_

struct queue_entry *new_entry, *alloc_q(), *ptr;

if(Debug)
printf("Sim_time %Id: Insert _q routine. Queue number %d\n". Sim_time, unit);

new_entry = alloc_q.();
++Num_in_q;
if(new_entry == NULL) (• 	-

printf("\n** ERROR ** enter_q procedure: ran out of memory at time %ld.\n",
Sim_time);

return;

new_entry->time = Sim_time;
new_entry->next_event = next_server;
new_entry->q_msg = P ev->msg;
new_entry->forward =-NULL;

Jul 17 08:47 1981 enter_q.c Page 2

if(Q_ptr[unit] == NULL) (
Q_ptr[unit] = new entry;
LastLptr[unit] = iiew_entry;

else (
Last ptr[unit]->forward = new entry;
LastIPtrCunit] = new_entry;

if(Debug) (
ptr = Q_ptr[unit];
while(ptr 1= NULL) 1

pr , entry(ptr, Unit);
pt7 = ptr->forward;

struct queue_entry *alloc_q()
/* allocates space for one entry in the queue
(

char *malice

return((struct queue_entry *) malloc(sizeof(struct queue_entry))):

pr_entry(ptr, unit)
struct queue_entry *ptr;
int unit;

printf("Queue entry for unit %d: Origination time %1d;\n", unit, ptr->time);
printf("Next server: %d\n", ptr->next_event):
print_message(ptr->q_msg);

MI 	IIIIM 111•11 MI MU MR MI MN MI IIIIIII Mal 	Iall MI OM

1•1111 UM MI MI Ma IMO 111111 	 1011111 MI UM MI UM IIIIII 	111•1

Jul 18 22:54 1981 erlang.c Page 1

#include .<stdio.h>
#include <math.h>
#include "struct.h"

mean) 	•
/* number of stages in the erlang distribution
/* the mean value of the distribution

int i, rv;
int j;

• double m rand;
double 10g _val;
float franci();
float frand_val;

m_rand = 1.0;
j = 0;
for(i=0; i<stages; i++) (

frand val = frand();
m_ranel *= frand_val;

log_val = log(m_rand):
rv = -1.0 * (float) mean / (float) stages * log val;

if(Debug)
printf("Sim_time %id: Erlang function returning %d\n", Sim_time, rv);

return(rv);

erlang(stages,
int stages;

int mean;

* this function returns an erlang random variable

[•

*
*

)

)

Jul 17 09:18 1981 external.c Page 1

einclude <stdio.h>
einclude <math.h>
einclude "struct.h"
einclude "externl.n."

edefine R 	10 	/* number of stages for erlang distn */

external msg()
1*
* this procedure generates an external message (size is erlang, mean value is
* E mean), and then bootstraps itself .
.*/ 	 •
I 	•

int feeder, idt, rvdm, stu;
float temp;
float frand();
long time, new time;
struct message *msg, *alloc_msg();

if(Debug)
printf("Sim_time %Id: External_msg procedure,\n", Sim_time);

msg = alloc_msg();
1-1-Num_msgs;
if(msg == NULL) i

printf("\n** ERROR ** external msg generation: ran out of memory at time %ld.\n", Sim_time);

. elSe
get_stu_rand(&feeder, &idt, &rvdm, &stu);
msg->msg_type = OTHER; '
msg->msg_len = erlang(R, E_mean);
msg->orig time = Sin time;
if(frand(J > 0.5) (-

msg->direction = UPSTREhM;
msg->orig_unit.unit type = DEVICE;
msg->orig_unit.feedr line = . feeder;
msg->orig_unit.idt = rdt;
msg->orig_unit.rvdm = rvdm;
msg->orig_unit.stu = stu;
msg->orig_unit.dev_type = OTHER;
msg->orig_unit.device = NULL;
msg->dest_unit.unit type = BE NET;
msg->dest_unit.feed -e-r line = 54E4; -
msg->dest_unit.idt =
msg->dest_unit.rvdm = NULL;
msg->dest_unit.stu = NULL;
msg->dest_unit.dev type = NULL;
msg->dest_unit.device = NULL;

schedule(STU_SERVER, msg, Sim_time, 0, 0) . ;

else
msg,>direction= DOWNSTREAM;
msg->orig_unit.unit type = 13E _NET;

 msg->orig_unit.feed 	line = aüLL;
msg->orig_unit.idt = UULL;

schedule(D DCT SERVER, msg, Sim_time, 0, 0);

SIM 	 UN MS MIR 	UM Mali 111111 MI 	 111111 Mil OM Mt OM MI

Jul 17 09:18 1981 external.c Page 2

msg->orig unit
msg->origlunit
msg->orig unit
msg->orig-unit
msg->dest-unit
msg->dest-unit
msg->dest-unit
msg->dest-unit
msg->dest-unit
msg->dest-unit
msg->destlunit

.rvdm = NULL;

.stu = NULL;

.dev type = NULL;

.deVice = NULL;

.unit type = DEVICE;

.feeder line = feeder;

.idt = 1dt;

.rvdm = rvdm;

.stu = stu;

.dev type = OTHER;

.device = NULL;

temp = 1.0 - fraud();
time = -(1.0/E_freg) * log(temp) * Dilation + 0.5;
if(time < 1)

time = 1;
new time = time + Sin time;
schdule(EXTERNAL, &NUll msg new_time, 0, 0);
if(Debug)

print_message(msg);

)

get_stu_rand(feeder, idt, rvdm, stu)
int *feeder, *idt, *rvdm, *stu;

/*
* this procedure generates a random unit number, based on the total number
* of stu's on the system.
*/

int i, j, k;
int device num, number, total_stu;
float frana"();

total stu = 0;
for(r=1; i<=Num feeder; i++)

total stu += N_stu[i];

device num = frand() * (float) total_stu + 1.0;

• number = 0;
for(i=1; i<=Num feeder; i++)

for(j=17 j<=Num idt[i]; j++)
for(k=17 k<=Num rvdm[i][j]; k++)

number 7= Num_stp[i][j][k]; 	.
if(number >= device_num) (

*feeder = i;
**idt = j;
*rvdm =
*stu = number - device_num + 1;
return;

Jul 17 09:18 1981 external.c Page 3

printf(nnef* FATAL ** get_stu_rand: couldn't identify unit number %d\n", device_bum);
exit(1);

MIR OM 	 MI URI MI MN 11•11 	 MU 	 MI MI

MI MI OM BM OM 11•11 MI UM Mt 111311 	 MI UM UM 	 • OM

Jul 21 19:43 1981 frand.c Page 1

#include "struct.h"
float
frand()
/*
* This procedure returns a floating-point, uniformly distributed pseudo-
* random number on the range [0,1).
*

float number;
long random();
int rand val;

/*
number = (float) (random()>>16) / 32768.0;

rand val = rand();
numb-é-r = (float) rand() / 2147483649.0;
return(number);

Jul 17 14:03 1981 get_parms.c Page 1

#include <stdio.h>
#include <ctype.h>
#include "struct.h"
#include "externl.h"

int error;

get_parms()

/* 	This routine reads in the configuration file and prompts the user for parameters */

. 	 (

FILE *fopen(), *stream, *istream;
char *type = "r"; 	/* file will be read only */
char word[80]:
int i, j, k, temp, temp2, temp3;
int ni, n2, il, i2, dl, d2;
int dsl_g_num;
int dct num;
long 1, —atol();
float f, atof();

End_time = 0; 	/* default end of simulation */
Max_msgs = 0; 	/* default no max on number of messages */

printf("Configuration file: %s\n", Configfile);
error = FALSE;
stream = fopen(Configfile, type); 	/* open config file */
if(stream == NULL) i

printf("Error - cannot open %s\n", Configfile);
return(FALSE):

/* prompt user for max time, max messages etc. in this sim */

Cale stats = FALSE;
for(I=1; i<=MAX SERVERS; i++)

Fractioii[i] = 1:
Exact stets = FALSE;
Stets —mean = 10000:
if(dinput) (

printf("\nMaximum time on simulation?:.");

while(1 < 0) (
scanf("%s", word);
if((1=atol(word)) >= 0) End_time = 1;
else printf("Must be a non-negative integer: ");

1:
printf("Maximum number of messages?: ");

while(1 < 0) t
scanf("%s", word)1

• if((1=atcil(word)) >= 0) Max_msgs = 1;
else printf("Must be a non-negative integer: ");

' if(End_time == 0 && Max_mSgs == 0) [
printf("Error: at least one of the above two parameters must be a non-");

111011 MI WM 	OMII 	 • Ili MI MI MI UM MI 	
MI Ilia

URI MI MI MI MI 	 WM NMI • BM MI -.11111118 UM UM 11•11

Jul 17 14:03 1981 get_parms.c Page 2

printf("zero number to end the simulation.\n");
return(FALSE);

1;
printf("Collect indivIdual queue Statistics? ");
word[0] =
while(word[0] 1= 'y' && word[0] 1= 'n') 	•

printf("yes/no: ");
scanf("%s", word);

if(word[0] 	'y') (
- Calc stats = TRUE;

printf(Fraction of DCT queues to sample?: 1/");
Fraction[DCT] = get int();
printf("Fraction of-DS-1 queues to sample?: 1/");
Fraction[FEEDER] = get int();
printf("Fraction of IDY queues to sample?: 1/");
Fraction[IDT] = get int():
Fraction[IDT LINE] 7=- Fraction[IDT];
printf("Fraction of RVDM queues to sample?: 1/"); 	•
Fraction[RVDMf= get_int();
printf("Fraction of STU queues to sample?: 1/");
Fraction[STU] = get_int():
printf("Collect exact statistics? ");
word[0] = 'z';
while(word[0] 1= 'y && word[0] 1= 'n') [

printf("yes/no: ");
scanf("%s", word);

1
if(word[0] == 'y')

Exact_stats = TRUE;
else f

Exact stats = FALSE;
printl("Mean time between collection events?: ");
1 = -1;
while(1 <= 0) (

scanf("%s", word);
if((1=atol(word)) > 0)

• Stats_mean = 1;
else

printf("Must be a positive integer: "):

else
Cale stats = FALSE;

printf("Vide3tex message generation frequency (secs per message)?: ");
f
while(f < 0) (

scanf("%s", word);
if((f=atof(word)) > -0.001)

V_freq = f; -
else

printf("Must be a positive value: ");

printf("Do you want external traffic? ");

Jul 17 14:03 1981 get_parms.c Page 3

word[0] = 'z';
while(word[0] 1= 'y' && word[0] 1= 'n') [

printf("yes/no: "); 	
.

scanf("%s", word);

if(word[03 == 'y') (
External = TRUE; 	•
printf("External message frequency (messages per second)?: "):
f = -1;
while(f < 0) f -

scanf("%s", word);
if((f=atof(word)) > 0) 	•

E_freq = f;

printf("Must be a positive value: ");-

printf("Mean length of external messages (in bytes)?: ");
I = -1;
while(i < 0) [

scanf("%s", word); 	 •
if((i=atoi(word)) > 0)

Emean = i;
else

Iprintf("Must be a positive value: ");
3

else
External = FALSE;

printf("Do you want telephone traffic? ");
word[0] = 'z';
while(word[0] (= 'y' && word[0] 1= '11') (

printf("yes/no: ");
scanf("%s", word);

1
if(word[0] == 'n') {

Telephone = FALSE;

else

else
Telephone = TRUE;
printf("Mean length of telephone calls (in seconds)? ");
i = -1;
while(i <= 0) [

scanf("%s", word);
if((i=atoi(word)) > 0)

Conv_mean =
else

printf("Must be a positive integer:

printf("Mean percentage of active telephones?: ");
i = -1;
while(i <= 0) [

scanf("%s", word);
if((i=atoi(word)) > g)

Tele util = i;
else

" ;

• MO ill MI II 	MI Mil UM MI 11111111 OM MI 1111111 Mill IBM UM 	MI MI MO

1
1

ill MN IIIIIII MI UM OM MI 	11111 	BM IBM 	 Ili 1111111111 MI BM MI

Jul 17 14:03 1931 get_parms.c Page 4

printf("Must be a positive integer: ");

1
else (

/*
* must read the input from a file and report the values on std output
*/

istream = fopen(Inputfile, type);
if(istream==NULL)

• 	printf("Error: cannot open %s\n", Inputfile);
return(FALSE);

1
fscanf(istream, "%ld", &End_time); 	-
fscanf(istream, "%id", &Max_msgs);
fscanf(istream, "%s", word);
if(word[0]=='n')

Calc stats = FALSE;
else if(worei[0] 1= 'y°) [

printf("Error in %s: illegal value for Calc_stats, %s\n", lnputfile, word);
return(FALSE); .

else (
Cale stats = TRUE;
fscariflistream, "%d", &Fraction[DCT]);
fscanfCistream, "%d", &Fraction[FEEDER]);
fscanf(istream, "%d", &Fraction[IDT]);
Fraction[IDT LINE] = Fraction[1DT];
fscanf(istreUM, "%d", &Fraction[RVDM1);-
fscanf(istream, "%d", &Fraction[STU]);
fscanf(istream, "%s", word);
if(word[0]== . y .)

EXact_stats = TRUE;
else (

Exact stats = FALSE; -
fscanT(istream, "%ld", &Stats mean);

1
fscanf(istream, "%f", &V freg);
fscanf(istream, "%s", wo7d);
if(word[0]

External = TRUE;
fscanf(istream, "%f", &E_freg);
fscanf(istream, "%d", &Emean);

el se
External = FALSE;

fscanf(istream, "%s", word);
ifiword[0] == 'y') (

Telephone = TRUE; 	•
fscanf(istream, "%d", &Conv_mean);
fscanf(istream, "%d", &Tele util);

else
Telephone = FALSE;

Jul 17 14:03 1981 get_parms.c Page 5

printf("Maximum time on simulation = %ld\n", End_time);
printf("Maximum number of messages = %ld\n", Max_msgs);
printf("Collect individual queue statistics =
if(Calc_stats == FALS)

printf("FALSE\n");
else [

printf("TRUE\n");
printf("Fraction of DCT queues to sample = %d\n", Fraction[DCT]);
printf("Fraction of ps-i queues to sample = %d\n", Fraction[FEEDER]);
printf("Fraction of IDT queues to sample = %d\n", Fraction[IDT));
printf("Fraction of RVDM queues to sample = %d\n", Fraction[RVDM]);
printf("Fraction of STU queues to sample = %d\n", FractionESTUM
printf("Collect exact statistics =
if(Exact_stats == TRUE)

printf("TRUE\n");
else (

printf("FALSE\n");
printf("Mean time between collection events = %Id\n", Stats_mean);

)
else

printf("No External messages\n");
if(Teiephone == TRUE)

printf("Mean length of te/ephone calls = %d\n", Conv mean);
printf("Mean percentage of active telephones = %d\%\ii", Tele_uti/);

else
printf("No Telephone messages.\n");

• if(Debug)
printf("End_time = %ld, Max_msgs = %ld\n", End_time, Max_msgs);

/* NOW READ THE CONFIGURATION FILE */

getword(word, stream); •
if(strcmp(word, "dct") 1= 0)

configl_error(word, "dct");
else (

getword(word, stream);
if((Num_dct=atoi(word)) a= 0) config2_error(Num_dct,"dct");

/* read number of feeders */
if(error)

return(FALSE); '
getword(word, stream);
if(strcmp(word, "feeder") 1= 0)

configl_error(word, "feeder");
else [

getword(word, stream);

)
)
printf("Videotex message generation frequency = %f seconds per message\n", V,freq);
if(External == TRUE) (

printf("External message frequency = .%f messages per second\n". E_freq);
printf("Mean external message length = %d bytes\n", Emean);

UM NMI IBM 	1111111 UM MS 	MI MI MI MI 	 IIIIIII MI MI

MI 	 MIMI WIZ III Ma 	MIMI MI • 	 IIIIIII 	111111

Jul 17 14:03 1981 get_parms.c Page 6

if((Num feeder=atoi(word)) <= 0 II Num feeder > MAX_FEEDER 1
Fonfig2_error(Num_feeder,"feedei=");

/* read in info for each feeder */

dsl_g_num = -1;

if(error)
return(FALSE);

for(i=1; i <= Num feeder; i++) {
getword(wo7d, stream); /* get number of idt's */
if(strcmp(word, "idt") != 0) (

configl error(word, "idt").;
return(-FALSE);

getword(word, stream);
if((Num_idt[i]=atoi(word)) <= 0 II Num idt[i] > MAXIDT)

config2_error(Num idt[i],"idt")7 	
_ 	

•

/* read in dct-idt assignments */

getword(word, stream); /* should be "dot" */
while(strcmp(word, "dct") == 0 && !error). (

getword(word, stream);
dct num = atoi(word); 	 •
ift-dct_num <=0 11 dct . num > Nuth dct) (

printf("\nError in configuration file: illegal dct number: %d\n", dct_num);
return(FALSE):

getword(word, stream); /* should be "idt" */
if(stromp(word, "idt") != 0) f

configl error(word, "idt"); 	•
return(-FALSE):

getword(word, stream);
parse range(word, &il, &1 2); 	 •
if(il. <= 0 II 12 > Num_idt[i]) (

printf("\nError in configuration file: illégal range for idt: %d, %d\n", il, i2);
return(FALSE);

for(j=i1; j<=i2; j++)
Dct idt[i][j] = dct_num;

getword(worii, stream);

for(j=1; j<=Num idt[i]; j++) (
if(Delmig)

printf("idt %d assigned to dot %d\n", j, Dct_idt[i][j]);
if(Dct_idt[i][j] == 0) (

printf("Error in configuration file: not all idt assignments given in feeder %d\n", i);
return(FASE);

/* read in idt to dsl stream ..i;signments */

Jul 17 14:03 198 1 get_parms.c Page 7

while(strcmp(word, "idt") == 0 && !error) (
• getword(word,.stream);

parse range(word,'&il, &i2); 	/* get idt range */
if(i7>Num idtEll 11 i 1 <=0) (

printf("\nError in configuration file: illegal idt range: $(1, %d.\n",11,i2);
return(FALSE);

if(error)
return(FALSE) ;

getword(word, stream); /* should be "dsl" */
if(strcmp(wordi'ds1") 1= 0)

configl_error(word, "ds1");
else (

getword(word, stream);
parse_range(word, &dl, &d2); 	/* get dsl range */
if(lerror) (

dsl g_num += 2; .
fortj=i1; j<=i2; j+F) (

Idt 	g[i][j][UPSTREAM] = dsl_q_num;
Idt-dslIg[i][j7CDOWNSTREAM] = dsl g num + 1;
Dsl-capacity[i][j] = (d2 - dl, + 1T*5S1 CAPACITY;

++Num dsl_g[i][UPSTREAM];
++Num-dsl_g[i][DOWNSTREAM];
getwo7d(word, stream); /* get next idt info, if there */

Total_DSl_g = (++dsl_g num)/2;
if(dsl_g num == 0 && Terror) (/* no idt-dsl assignments read in */

pantf("\nError in configuration file: no idt-dsl assignmentse\n");
error = TRUE;

if(error)
return(FALSE);

rend in.number of rvdm's per idt */
note: the word with number of rvdm's has already been read in

if(strcmp(word, "rvdm") 1= 0)
configl_error(word, "rvdm");

else for()=1; j <= Num_idt[i]; j++) [
getword(word, stream);
if((Num rvdm[i][j]=atoi(word)) <= 0 II

-Num rvdm[i][j] > MAX RVDM)
conlig2_error(Num_rvam[i][j],"rvdm"

I;

/* read in info on sties .attached to rvdm's

for(j=1; j<=Num_idt[i] && !error; j++) f
n2 = 0; 	- 	-
while(n2 < Num_rvdm[i][j] 1 [

1*

1*

111111 NM JIM MI UM MR 	 IMIll 	 MI MN UM MI NIB IMO MI

our um our roe olui aria mi run lull taw um ton sus lust gm soul Imo aimi mom

Jul 17 14:03 1981 get_parms.c Page 8

• getword(word, stream);
parse_range(word, &nl, &n2);
if(error)

return(FALSE);
getword(word, stream); /* get "stu" from file
if(stromp(word, "stu") 1= 0)

configlerror(word, "stu");
return(FALSE);

•
• getword(word, stream);

if((temp = atoi(word)) <='0 U temp > MAX_STU)
config2 error(temP,"stu");

getword(word, stream); 	/* get number of telephones */
if (stromp(word, "telephone") 1= 0) (

configl_error(word, "telephone");
return(FALSE);

getword(word, stream);
if((temp2=atoi(word)) < 0) config2 error(temp2,"telephone");
getword(word, stream); /* get numiier of videotex units */
if (stromp(word, "videotex") 1= 0) (

configl error(word, "videotex");
return(—FALSE);

getword(word, stream);
if((temp3=atoi(word)) < 0) config2 error(temp3,"videotex");
for(k=n1; k<=n2; k++) (

Num_stu[i][j][k] = temP;
Num telephone[i][j][k] = temp2;
Num=videotex[i][j][k] = temp3;

)

);
fclose(stream);
if(Input)

fclose(istream
return(!error);

get int()
/* 'ills 	procedure will read a positive integer from the terminal

int i;
char word[90];

while(i <= 0) 1
scanf("%s", word);
if((i=atoi(word)) <= 0)

printf("Must be a positive integer: ");

return(i);

getword(w, stroram)

*

*

Jul 17 14:03 1981 get_parms.c Page 9

FILE *stream;
Char *w;

char c;
int i;

i = 0;
while(isspace(c = getc(stream)) && c 1= EOF);
if(c == EOF) I

printf("Unexpected EOF on configuration file.\n");
error = TRUE;
return(NULL);

1
else (

*w++ = c;
while(lisspace(c = *w++ = getc(stream)) && c 1= EOF) i++;
--w = '\0'; / replace space at end with EOS */
return(i);

configl_error(sl, 5 2)
char *sl, *s2;

printf("\nError in configuration file: '%s'; expecting '%s'\n",s1,s2);
error = TRUE;

config2_error(n,$)
int n;
char *s;

printf("\nError in configuration file: illegal value °%d near '75s . .\n", n,$);
error = TRUE;

parse range(w, nl, n2)
char 7w; 	/* word (string) to parse */
int *nl. *n2; 	/* start and end of range */

char s[10], *ps;

*nl = *n2 = 0;
ps = s;

while(isspace(*w)) w++; /* get rid of leading spaces */
if(*w == '\0')

printf("\nError in configuration file: no range given.\n");
error = TRUE;
return(NULL);

1;
while(lispunct(*w) && lisspace(*w) && *w != '\0') *ps++ =

*nl = atoi(s);

ps = s;

MI VIII Ulf 	 MI 	 11•111 111111111 111111 	III•1 111111 MI MI MI Mall

):
return(NULL);

printf("\nError in configuration file: illegal range %d,%d\n",*nl,*n2);
error = TRUE;

1

IBM NM MI MI IIIIIII 111•11 MIR 1•11 	MaII ION NM UM

Jul 17 14:03 1981 get_parms.c Page 10

if(*w == '\0) *n2 = *nl;
else (/*read second half of range */

while(ispunct(*w) II isspace(*w)) w++;
while((*ps++ = *w++) i= '\0' I;
*n2 = atoi(s);

1:
if(*nl > *n2 II n2 <= 0) (

Jul 17 O8 :49 1931 get_q_nuM.c Page 1

#include kstdio.h>
iinclude "struct.11"

get_q_num(unit, direction, type)
struct unit spec *unit;
int direction;
int type;
/*
* This procedure returns a queue number for the server specified by 'unit'
* 'direction and 'type'. The queues are kept in an array as follows:

feeder 1 	'I

C 1 all 1 DS-1 1 	idt 1 idt- 1' 	rvdm 	1 	stu 	1
C t DCT 1 stream 1 queues' line I. 	queues 	1 	queues 	1 . . . other
C 1 queues1 queues 1 	1 queues 1 	1 	1 	feeders

* -

* A-server's UPSTREAM- queue is followed immediately by its DOWNSTREAM queue. */

int base, number;
int i, j;

if(Debug)
printf("Sim_time %Id: get_q_num procedure; ", Sim_time);

base = 2 + Num_dct*2: 	/* constant two for the CCC */
for(i=1; i<Num_feeder; i++)

base += Num_ds1 q[i][UPSTREAM] + Num dsl_q[i][DOWNSTREAM] +
Num_idtri]*2*2 + N_rvdm[i]*2-+ N_stu[i] * 2;

switch(type) I
case CCC:
case D_CCC:

number = 2;
break;

case DCT:
case D_DCT:

number = 2 + Dct idt[unit->feeder_iine][unit,>idt]*2;
break;

case FEEDER:
case D_FEEDER:

number = base + Idt dsl q[unit->feeder_line][unit->idt][DMNSTREAM]; _
break;

case IDT:
case D_IDT:

number = base + Num dsl_eunit->feeder_line][UPSTREAM]*2 +
unit->idt*27

break;
case IDT LINE: 	, 	•
case D_IUT LINE: •

nuiliber = base + Num dsl_q[unit->feeder line][UPSTREAM1*2 + •
• Num'idt[unn-->feeder line]*2 +-unit->i]t*2;

break;
case RVDM:

1< * _
* 1
* 1
* 1
* _

am um mu Nu um um 	 ma ma um Wu am am um am

Jul 17 08:49 1981 get_q_num.c Page 2

case D_RVDM:
number = base + Num dsl_q[unit->feeder 1ine][UPSTREAM]*2 + -

Num idt[unir- >feeder_line]*4 +-unit,>rvdm*2;
for(i=1; i<Unit->idt; i++)

number += Num rvdm[unit->feeder line][i3 * 2;
break;

case STU:
case D_STU:

number = base + Num dsl_q[unit->feedei line][UPSTREAM]*2 + '
Num idt[unit->feeder line]*4 +-N rvdm[unit->feeder line]*2;

for(i=1; i(unit->idt; i++)
for(j=1; j<=Num rvdm[unit->feeder line][i]; j++)

number T= Num_stu[unit->f-Jeder_line][i][j]*2;
for(j=1; j<unit->rvdm; j++)

• number += Num stu[unit->feeder line][unit->idt][j]*2;
number += unit->stu*27
break;

default:
printf("*** FATAL *** get_q_num: unidentified unit_type = %d\n", type);
exit(1);
break;

if(direction == UPSTREAM)
, number -= 1; 	•

if(Debug)
priptf(" queue number = %d.\n", number);

return(number); 	•

get_unit_type(queue, number)
int queue; 	/* global number of the queue */
int *number; 	/* number of queue within its queue type (returned) */
/*
* this procedure•returns the type of queue, given its global queue number.
* It also returns the number of the queue within the queue type.
*1

. int i;

if(Debug)
printf("Sim_time %ld: get_unit_type procedure, queue num %d\n", Sim_time, queue);

*nuMber = queue;
queue -= 2;
if(queue <= 0) {

• if(*number%2 == 0)
return(D CCC);

else
• return(CCC);

• *number = queue;
queue -= Num_dct*2;

Jul 17 0849 1981 get_q_num.c Page 3

if(queue <= 0) (
if(*number%2 == 0)

return(D_DCT);

return(DCT);
1
for(i=1; i<=Num_feeder; i++) (

*number = queue;
queue -= Num dsl_q[i][UPSTREAM]*2;
if(queue <=-0) (

if(*number%2 == 0)
return(D_FEEDER);

return(FEEDER);

*number = queue;
queue -= Num_idt[i]*2;
if(queue <= 0) (

if(*number%2 == 0)
return(D_IDT);

else

)
*number = queue;
queue -= Num idtEil*2;
if(queue <=-0) (

if(*number%2 == 0)
return(D_IDT LINE);

return(IDT_LINE);

else
return(RVDM);

*number = gileue;
queue -= N stuti] *2;
if(queue 7= 0) t

if(*number%2 == 0)
return(.D_STU);

else
return(STU);

printi("*** FATAL *** get_unit_type: unidentified queue number.\n");
exit(1);

else

else

return(IDT);

else else

1
*number = queue;
queue -= N rvdm[i]*2;
if(queue Z= 0) (

if(*number%2 == 0)
return(D_RVDM);

UM MI • SIMI Mil MI MI OM MN • 	111111 	 MI MIR BM Mill

1111111111111111MIMMI11111111111111111111111111111111•1111 . •111111111111111111 1111111 M 1• 3111111M 11•11

Jul 17 08:49 1981 init_sim.c Page 1

#include <stdio.h>

#include "struct.h"
#include "externl.h"

int index; 	/* for use in set num procedure: index into Stets num */

int num; 	/* for use in set num procedure: counter for stats queue number */

init sim()

(
int i, j, k, number;

• int Ind;
int capacity;

if(Debug)
Printf("Sim_time %Id: Init_sim procedure.\n", Sim_time):

Msgs received = 0; 	/* initialize statistics */
Total-. delay = 0;
Delay_sq = 0;

/* calculate the number of server queues, and allocate storage for them */

Total videotex = 0;
Totalltelephone = 0;

N_queues = 1; 	/* for the CCC */

N_queues += Num dct + Total DS1_5;
for(i=1; i<=MAX-FEEDER;

N_queue-à- += 2*Num idt[i]; /* one set of idt's, one set of lines to idt's */
N_rvdm[i] = N sturi] = 0;

for(j=1; j<=M -A-X_IDT; j++) (
N_queues += Num rvdm[i][j];
N_rvdm[i] += Nun rvdm[i][j];
for(k=1; k<=MAX -FiVDM; k++) (

N_queuei += Num_stu[i][j][k];

N stu[i] += Num Stu[i]Ej3[k];
Total videotex T= Num videotex[i][j][k] * Num stu[i][j][k];
Total:telephone += Muiit_telephone[i][j][k] * NUm_stu[i][j][k];

N_queues *= 2; /* account for both upstream and downstream queues */

N stet q = 1; 	/* Number of queues to calc stats for */
if(Carc stets) (

+= (Num dct-1)/Fraction[DCT] + 1
+ (Tot-à-1 DS1_1 - 1)/Fraction[FEEDER] + 1;

for(i=1; i<=Nqm fe7der; i++) 	' •

• N stàt 	+= (Num idt[i] - 1)/Fraction[IDT] + 1 _ 	_
+ (Num idtLil - 1)/Fraction[IDT LINE] + 1
+ (N rvdm[i] - 1)/Fraction[RVDMT + 1

+ (N-stu[i] - 1)/Fraction[STU] + 1;
N_stat_q *= 2; /* aCcant for both upstream and downstream queues */

. 	1
'if(Debug)

printf("N_stat_q = %d\n", N_stat_q);

Jul 17 08:49 1981 init_sim.c Page 2

if(Debug) , 	 .
printf("Total videotex = %d; Total telephone = %d\n",Total videotex, Total_telephone); _

++N queues; 	/* thIs is just to let me access arrays from 1 to ii_queues */ 	.
Q_Ptr = (struct queue_entry **.) calloc(N_queues, .sizeof(struct queue_entry *)); 	.
Last_ptr = (struct qmeue_entry **) calloc(N queues, sizeof(struct queue_entry *));
Idle = (int *) calloc(N_queùes, sizeof(int)T; 	 .
N_system = (int *) calloc(N_queues, sizeof(int));
Stats_num = (int *) calloc(N queues, sizeof(int)): 	.
S capacity = (int *) callocaf queues, sizeof(int)); 	•
il-(N_system==NULL II Idle==NUEL II Last ptr==NULL II (2_ptr==NULL II Stats_num==NULL II S_capacity==N0LL) f

printf("\n** FATAL ** not enouîh memory available for this configuration. N=queues =
• N_queues); 	 .

return(TRUE);

if(Cale stets)
iiumber = N stat_q + 1; '
N wait = (Tong *) calloc(number, sizeof(long)):
S=Wait = (long *) calloc(number, sizeof(long));
Sq_wait = (float *) calloc(number, sizeof(float));
S delay = (long *) calioc(number, sizeof(long));
Biisy = (long *) calloc(number, sizeof(long));
S nsys = (long *) calloc(number, sizeof(long));
11(N_wait==NULL II S wait==NULL II 8g_weit==NULL II s delay==NULL II Dusy==NULL II S_nsys==NULL)

printf("\n** -FATAL ** not enough memory availible for this configuration. N_queues = %d\n", N_queues);
return(TRUE);

1
--N queues; 	/* to undo what I did above */
forti=1; i<=N queues; i++) (

Idle[I] = TRUE;
• Last_ptr[i] = NULL;

Q_ptr[i] = NULL;

/*
* the following section of code depends on the queue numbering
* system, documented in get_q_num.c
*/

index = 0;
num = 0;
ind = 0;
set_num(1, CCC);
Scapacity[++ind] = 1;
Scapacity[++ind] = 1;
for(i=1; i<=Uum dct; i++) f

set numri, DCT):
capcity = 0;
for(j=1; j(=Num feeder; j++)

fo(k=17 k<=Num idt[j]: k++1
if(Dctidt[j][k] == i)

capacity += Dsl_capacity[j][k];
Sçapacity[++ind] = capacity;
S capacity[++ind] = capacity;

111.1111M1n111111111111M1111111111111111•11111111111111111M111111111•1111111111111•111111111111111111111111111•11

Jul 17 08:49 1981 init_sim.c Page 3 .

for(i=1; i(=Num:feeder; i++)
for(j=1; j<=Num dsl_q[i][UPSTREAM]; j++)

- set num-rj, FEEDER);
S_cîpacity[+4ind] = Dsl_capacity[ij[j];
Scapacity[++ind] = Dsl_capacity[i][j];

for(j=1; j<=Num idt[i]; j++)
set_pumTj, IDT);
S capacity[++ind] = Dsl_capacity[i][j];
SIcapacity[++ind] = Dsl_capacity[i][j];

for(j=1; j<=Num idt[i].; j++) (
set numrj, IDT LINE); ,
S cîpacity[++irid] = Dsl capacity[i][j];
SIcapacity[++ind] = Dsl:capacity[i][j];

for(j=1; j<=N_stu[i]; j++) [
set num(j, STU);
S c-a-pacity[++ind] = 1;
S:capacity[++ind] = 1;

if(Debug)
printf("Sim time %Id: N_queues = %d; \n", Sim_time, N_queues);
for(i=1; i<7=-Num feeder; i++) 	 •

printf(feeder %d: N rvdm = %d, U_stu = %d\n", i N_rvdm[i],
Nstu[i]);

printf("Stats num: "); 	• 	,
for(i=1; i<=N—queues; i++)

print-f-("%d ", Stats_num[i]);
printf("\n");
printf("S capacity: ");
for(i=1; i<=N_queues; i++)

printf("%d ", S_capàcity[i]);
printf("\n");

return(FALSE);

set_num(number, type)
int number; 	/* number of queue within its queue type */
int type; 	/* the type of the queue
/*
* this procedure stuffs the Stats_num vector with the index of the
* queue in the stats collection vectors.

++index;
if((number%Fraction[type]) == 1 II Fraction[type] == 1) f

Stats_num[index] = ++num;

1
for(j=1; j<=N rvdm[i]; j++)

set nUm(j, RVDM);
S cîpacity[++ind] = 1;
S:capacity[++ind] = 1;

1
else

Jul 17 08:49 19 81 init_sim.c Page 4

Stats_num[++index] = 4-1-num;

Stats num[index] = 0;
StatslnumE++index] = 0;

NM MI • MI UM • UM - .
 MIR

Jul 17 09:25 1981 kill.c Page 1

#include <stdio.h>
#include <signal.h>

kill()

/*
* this procedure causes the program to die gracefully after a break.

clean up();
fflusii(stdout);
exit(1);

flush()
1*
* this procedure flushes the output buffer after a kill -16.
*/

f
signal(16, flush);
fflush(stdout);
message();

fpe(signal)
int signal;
/*
* this procedure catches all sorts of bad (software) errors.
1,1

printf("\n*** Software bugil Value of signal is %(1 ***\n\n", signal).;
clean up();
fflusU(stdout);
exit(1);

Jul 17 09:29 1981 main.c Page 1

/*
* (e) Robert R. Williams, 1981.

-*

* This program simulates a network similar in form to Omnitel II (TM),
* a heirarchical delivery network designed for an integrated services
* network, implemented using coaxial cable. The network is described
* in "Omnitel (TM) - An Integrated Broadband Distribution System for the

'* Eighties" by J. J. Coyne published in the proceedings of the First
* Montreal Workshop on Videotex TechnologY, working document #112,
* University of Montreal, June, 1980..

* [*: Omnitel II is a trademark of Interdiscom Systems Ltd.]

*/

#include <stdio.h>
#include <signal,h>
finclude "struct.h"

main(argc, argv)
int argc; 	/* number of command line args */
char *argv[]; /* array of pointers to command line args */

struct event_list *old_p_ev;
int error, i, dont_stop, temp;
long msg ind;
int kill(), flush(), fpe();
long init_time, j;

printf("Coyne'Bim 5.3a\n");

if(signal(SIGTERM, SIG IGN) 1= SIG_IGN)
signal.(SIGTERM, -kill);

if(signal(SIGINT, SIG IGN) 1= SIG_IGN)
signal(SIGINT, -kill);

signal(16, flush); 	/* catch kill -16, and flush the buffer */
signal(SIGBUS, fPe);
signal(SIGILL, fpe);
signal(SIGTRAP, fpe);
signal(SIGIOT, fpe);
signal(SIGEMT, fpe);
signal(SIGFPE, fpe);*/
signal(SIGSEGV, fpe);
signal(SIGSYS, fpe);

error = FALSE;
mit time = 1;
stati_seed(244); /* random number seed for the statistics routine */

/* set up the null message */

Null_msg.orig_unit.unit_type = NULL;
Null msg.orig_unit.feeder line = NULL;
NullImsg.orig_unit.idt = 1-JULL;
Null_msg.orig_unit.rvdm = NULL;

MI MI MI URI 	OM MI MIR MI MI MI NM 11111111 MI OM MI 	111111 Mill

MI URI OM fall IN MN 	
MS UM MI NM MI UM BIM MI MI

Jul 17 09:29 1981 main.c Page 2

Null_msg.orig_unit.stu = NULL;
Null_msg.orig_unit.dev type = NULL;
Null_msg.orig_unit.devIce = NULL;
Null_msg.dest_unit.unit_type = NULL;
Null_msg.dest_unit.feeder_line = NULL; 	.
Null msg.dest_unit.idt = NULL;
Null_msgedest unit.rVdm = NULL;
Null_msg.desCunit.stu = NULL;
Null_msg.dest_unit.dev type = NULL;
Null_msg.dest_unit.device = NULL;
Null_msg.direction = NULL;

- Null_msg.msg_type = NULL; 	•
Null_msg.msg_len = NULL;
Null_msg.orig_time = NULL;

/* . Set up all -perameters for the simulation */

if((i=parse_command(argc, argv)) == -1) error = TRUE; /* parse cmd line t/
else

if (Restart) restart chkpt();
else (

Set seed(Seed); 	/t set random number seed */ '
priiitf("Random Seed = 	Seeg);
if(get_parms()) (/* read in parameters */

if(Message)
if(End time > 0)

-msg_ind = End_tiMe/Msg_freq;
else

msg_ind = Max_msgs/Msg_freq;
if(Debug)

print_config();
error = mit sim(); 	 /* initialize global vbls */
if(Periodic-).

schedule(SNAPSgOT, &Null_msg, P_start, 0, 0);
if(Calc_stats && kExact_stats)

schedulp(STATISTICS, &Null msg, Stats_mean, 0, 0);
if(Reset)

schedule(RESET_STATS, &Null_msg, Reset_time, 0, 0);
if(External)

schedule(EXTERNAL, &Null_msg, init_time, 0, 0);
if(Telephone) (

temp = (float) Total telephone * (float) Tele_util / 100.0;
for(i=0; i<temp;

' telephone(1L);

if(V_freq > 0)
schedule(DEV GEN, &Null_msg, mit time, 0, 0); /* start simulation */

if(End time > . 0)
-schedule(END_SIM, &Null_msg, End_time, 0, 0); 	/* schedule end of the simulation */

else error = TRUE;

/* main loop: Get current (next) event from the event list, and call
the proper procedure. On an empty event list, stop the

Jul 17 C9:9 1981 main.c Page 3

simulation. P_ev points to the current event.

dont stop = TRUE;
if(iieset) 	,

printf("Statistics reset at time %Id.\n\n", Reset_time);
while (Ierror && P_ev 1= NULL && dont stop) (

Sim time = P ev->start time; 	/* advance simulation clock */
if(-Calc stets && Exact stets) /* collect stats immediately before change in state*/

itatistics();.

switch(P ev->event_type)[•
case SNAP-§UOT:

snapshot();
break;

case RESET_STATS:
reset_stats();
break;

case STATISTICS:
statistics(); 	 •
break;

- case DEBUG:
Debug = TRUE;
break;

case DEV GEN:
irevice_msg_gen();
break;

case EXTERNAL:
external_msg();
break;

case TELE INIT:
t.-&lephone(P_ev-,>paraml);
break;

case TELE_TALK:
tele talk(P_ev->paraml, P_ev->param2):
break;

case TELE PAUSE:
tele_pause(Pev->paraml);
break;

case DEPARTURE:
depart unit((int) Pev->paraml, (int) P_ev->param2);
break; - •

case STU_SERVER:
enter q(STU, RVDM SERVER);
break;

case RVDM_SERVER:
enter q(RVDM, IDTLINE SERVER);
break;

case IDTLINE SERVER:
enter_q(IDT_LINE, IDT_SERVER);
break;

case IDT_SERVER:
enter q(IDT, FEEDER SERVER);
break;

case FEEDER_SERVER:

111111 	 OM MI MI UM MIR Ilia 	MI MI MN MI MI MI MI

111111 111111 IMI1 	BM 1111111 	 MIIII NMI MI MI NM MI MN MI

Jul 17 09:29 1931 main.c Page 4

enter_q(FEEDER, DCT_SERVER);
break;

case DCT_SERVER:
enter_q(DCT, CCC_SERVER);
break;

case CCC_SERVER:
enter_q(CCC, BENET_PROC);
break;

case DE_NET_PROC:
be_net(D_CCC_SERVER):
break;

case p_pcc SERVER: •
enter_q(D_CCC, D_DCT_SÉRVER);
break;

case D_DCT SERVER:
edEer_q(D_DCT, D_CABLE_SERVER);
break;

case DÇABLE SERVER:
entei. q(D_FEEDER, D_IDT_SERVER);
break;

case D_IDT SERVER: '
enter_q(D_IDT, D_IDTLINE_SERVER);
break;

case DIDTLINE_SERVER:
enter_q(D_IDT_LIUE, D_RVDM_SERVER);
break;

case D_RVDM SERVER:
enter q(D RVDM, D S .TU SERVER): _
break;

case D_STU SERVER:
enter_q(D_STU, DEV_COMP);
break;

case DEV COUP:
Ciev_comp();
break;

case END SIN:
clean up();
exit(U);
break;

default: printf("\n** FATAL ** .Bad event type: %d\n", Pev->event_type);
error = TRUE;
clean_up():
break;

)

old_p_ev = P ev;
P ev = P ev-7fwd; 	/* get next event list item */
fiee(oldlp_ev); 	/* return item to system 	*/
--Ev_length;

/* check to See if sim should be stopped on max # of messages */

if(Max_msgs > 0 && Msgs_received >= Max_msgs) (
clean up();
dont_Utop = FALSE; ,

Jul 17 09:29 1981 main.c Page 5

/* check for status reporting Lime */

if(Message && dont stop)
if(End_tim-e: > 0) (

if(Sim time . >= msg_ind) f
—Message();
msg_ind += End_time/Msg_freg;

1
else

if(Msgsreceived >= msg_ind) (
message();
msg_ind += Max_msgs/Msg_freg;

/* end_while */

if (lerror && dont_stop) (
if (P ev == NULL) (
printli("AAAARGI Empty event list at simulation time %ld.\n",.

Sim_time);
cleanup();

I;

• restart chkpt()

printf("Restart with checkpoint file: %s\n", Filename);

111M1111111111111111111111•1111111MIIIIIIII•11

NM OM MI MIMI IMO 	 UM MI MI 	11111111 MI OM MI 	111111

Jul 21 11:27 1931 message.c Page 1

#include <stdio.h>
#include "struct.h"

message()

* This procedure sends a MSG to user rrwilliams, giving a short status report.
*/

FILE *send;

if((send = popen("/usr/bin/msg rrwilliams", "w")) == NULL)
return;

fprintf(send, "CoyneSim is at time %f, with %d messages received.\n"i
((float) Sim time / (float) Dilation), Msgs_received);

pclose(send);

Jul 17 08:58 1981 normal.c Page 1

#include <stdie,h>
#include "struct.h"

float
normal()
/*
* this procedure returns a pseudo-normal pseudo-random variable on the range
* [-6.0, 6.0], mean O. Reference "Statistical Distributions" by Hastings and
* Peacock, page 100.
*/

float sum;
float fraud();
int i;

• sum = 0;
for(i=0; i<12; i++)

sum -1-= fraud();
• sum = sum - 6.0;

if(Debug)
printf("Sim time %id: Normal procedure returns %f.0\n", Sim time, sum);

return(sum);

UM MI 	 MI MI MI MI 	 MI MI WM MI NM MO MI

MI NMI MI • URI 	UN NMI •1011111 MIN IIIIII 11111111 OM MIMI MI 	MI Ili 	IMMI

Jul 17 13:25 1981 parse_comm.c Page 1

#include <stdio.h>
#includc <ctype.h>
#include "struct.h"

parse_command(argc, argv)
• int argc;

char *argv[];

/* this function parses the command line, and fills any pertinent
global variables. It then returns a code as follows:

code = 0: no command line args were found.
code = 1: one or more valid ergs were found, and no other errors.
code = -1: an error was found in the command line.

*

int i, code;
char *s;
long atol();
long debug time;
float atofT);

Configfile = "/u/rrwilliams/siM/config";
Message = FALSE;
Msg freq = 4;
Debiig = FALSE;
Periodic = FALSE;
P int = 100;
Plstart = 1;
Reset = FALSE;
Reset time = 0;
Restaît = FALSE; 	•
Seed = 1;
Dilation = 10000;
code = 0;

while(--argc > 0) (
if((*++argv)[0] 1= 	(

printf("Error: illegal item on command, line: %s. Expecting '-'.\n",
argv[0]);

code = -1;

else (
for(s=argv[0]+1; *s 1= '\0'; s++)
switch(*s) (
case 'R':

if(--argc > 0 && (*++argv)[0] 1= 	I
Restart = TRUE;
Filename = argv[0];
if(code == 0) code = 1;

else (
printE("Erpor: no filename for -R option.\n");
code = -1;
++argc;
--argv;

Jul 17 13:25 1981 parse_comm.c Page 2

break;
case 'c':

if(--argc > 0 && (*++argv)[0] 1= '-') {

Configfile = argv[0];
if(code == 0) code = 1;

else I
printf("Error: no filename ,for -c option.\n");
code = -1;
++argc;
--argv;

I;
break;

case 'd':
if(code == 0) code = 1;
if(--argc > 0 && (*++argv)[0] 1= '\0 && isdigit(*argv[0])) (

debug time = atol(argv[0]);
schedUle(DEBUG, &Null_msg, debug_time, O. 0);

Debug = TRUE;
++argc;
--argv;

1
break;

case
if(--argc > 0 && (*++argv)[0] 1= '-') (

Inputfile = argv[0];
if(code == 0) code = 1;
Input = TRUE;

1
else (

printf("Error: no filename for -i option.\b")1
code = -1; ,
++argc;

• --argv;
1
break;

• case 'm':
Message = TRUE; 	•
if(code == 0) code = 1;
if(--argc > 0 && (*++argv)[0] 1= '\0' && isdigit(*argv[0]))

Msg_freg = atoi(argv[0]);
else

++argc;
--argv;

break;
case 'p':

Periodic = TRUE;
Meade == 0) code = 1;
if(--argc > 0 && (*++argv)[0] 1= '\0'&& isdigit(*argv[0])) (

P start = (float) Dilation * atof(argv[0]);
i7(--argc > 0 && (*++argv)[0] != '\0' .&& isdigit(*argv[0]))

P_int = (float) Dilation * atof(argv[01);
else (

MI Ian MI MR Inn Mil MI 	 II•11 	• —
.

 BIN NMI 	MR MI MI

MM MI Mi 1111111 	111111 MM 	IMMII -. MI 	11111 	MI MI • 11111

Jul 17 13:25 1981 parse_comm.c Page 3

++argc;
--argv;

);

else (
++argc;
--argv;

if(P_int <= 0 II P start < 0) (
printf("Errcir: illegal values for -p option: %id, $1d.\n",

P start , P int);
code 7 -17

-)
break;

case
Reset = TRUE;
if(code == 0) code = 1;
if(--argc > 0 && (*++argv)[0] 1= '\0 && isdigit(*argv[0])) f

Reset_time = (float) Dilation * atof(argv[0]);
if(Reset_time < 0) (

printf("Error: illegal time for -r option: %ld\n", Reset_time);
code = -1;

1
break;

case !s':
if(code == 0) code = 1;
if(--argc > 0 && (*++argv)[0] 1= '\0' && isdigit(*argv[0])) (

Seed = atoi(argv[0]);
if(Seed <= 0) (

printf("Error: illegal value for -s option: %d\n", Seed);
code = -1;

else (
++argc;
--argv;
printf("Error: no value given for -s option\n");
code = -1;

break;
case

if(code == 0) code =1;
if(--argc > 0 && (*++argv)[0] 1 = . \0')

Service = TRUE;
Service_time = atof(argv[0]);
if(Service_time < 0) (

printf("Error: illegal value for -S option: U\n", Service time);
code = -1;

• else (
++argc;
--argv;
printf("Error: no value given for -S option\n");
code = -1;

.Jul 17 13:25 1981 parse_comm.c Page 4

) 	•
break;

case 't':
if(code == 0) code = 1;
if(--argc>0 &e (*+-Fargv)[0]1='\0 &&'isdigit(*argv[01)) (

Dilation = atoi(argv[0]);
if(Dilation <= 0) (

printE("Error: illegal value for -t option: %d\n", Dilation);
code = -1;

else [
• -1-Fargc;

--argv;
printf("Error: no value given for -t option.
code .= -I;

break;
default:

printf("Error: illegal option on command line: -%c\n",
*s);
code = -1;
break;

); /* end of switch */ •
/* end of else clause */

/* end of while */
Debug)

printf("Periodic = %d; P start = %Id; P int = %Id.\n", Periodic, P_start, Pint);
printf("Reset = %d; Reset time = %ld.\n"e , Reset,- Reset_time);
printf("Restart = %d;", Ii&start);
if(Restart)

printf(" Filename = %s\n", Filename);
else

.printf("\n");
printf("Time Dilation = %d.\n", Dilation);
printf("Random Number Seed = %d.\n", Seed);

return(code);

);
1;
if(

MI MI MI MN MI 11•111 MI 11111 	 II•1 	 MI OM MI

Jul 17 09:02 1931 print_ev_liec Page 1

#include <stdio.h>

#include "struct.h"
•

print ev list()

/* this procedure dumps the event liât onto the printer */

int n;
struct event_list *ptr;

n = 0;
ptr = P ev;
if (ptr-== NULL) printf("Empty event list\n");

while(ptr 1= NULL) (
n++;
printf("\nItem %d; Event type %d; Start time %Id\n",n,

ptr->event type, ptr->start_time);
print_message(ptr-7Msg);
ptr = ptr->fwd;

print message(p msg)

struct message 7p_msg;

printf("Message:\n");
printf("Originating unit: feeder %d; Destination unit: feeder %d\n",

p_msg->orig_unit.feeder line, p msg->dest_unit.feeder_line); _ 	_
printf(" 	 type %d; 	 type %d\n",

p_msg->orig_unit.unit type, p_msg->dest_unit.unit type);
printf(" 	 lat. %d; 	 idt %d\n",

p_msg->orig_unit.idt, p_msg->dest_unit.idt);
printf(" 	rvdm %d; 	 rvdm %d\n",

p_msg->orig_unit.rvdm, p msg->dest_unit.rvdm);
printf(" 	 stu id; 	 stu %d\n",

p_msg->orig_unit.stu, p_msg->dest_unit.stu); 	 .
printf(" 	dey type %d; 	dev type %d\n", _ 	 _

pmsg->origunit.dev type, p_msg->dest_unit.dev type); _ 	_
printf(" 	deviUe %d; . 	de-17i.ce %d\n",

p msg->orig unit.device, p_msg->dest_unit.device);
printf("DiTection = -e);
if(p_msg->direction == UPSTREAM) 	.

printf("upstream; ");
else

printf("downstream; ");
printf("Message length: %d; Origination time: %ld\n; Request start time = %Id", p_msg->msg_len,

p msg->orig_time, p_msg->req_start);

Jul 17 09:03 1981 print_indiv.c Page 1

#include <stdio.h>
*include "struct.h"

print_individual()
/* this routine prints the statistics gathered for individual queues *1
(

int i, k, queue;
int index;

printf("Storage statistics: Number of messages in system = %ld\n", Num_msgs);
printf(" 	NUmber of entries in queues = %ld\n", Num in q);
printf(" 	Length of event list = %ld\n\n", Ev_lengtT1);
for(index -+-0; index <= 1; • index++) (.

queue = index - 1;
printf("\nIndividual queue statistics ");

• if(index == 0)
printf("UPSTREAM: \n"); 	• •

• e/se
• Printf("DOWNSTREAM:\n");

printf(" 	number of 	mean 	• mean 	 • mean number\n");
printf(" 	Queue 	messages 	delay 	wait variance 	util 	in system\n\n");
queue += 2;
print_q_stats("CCC", 1, queue);

• for(i=1; i<=Num dcti i+=Fraction[DCT]) (
queue 	2; 	 •
print_q_stats("Dct", i, queue);

for(i=1; i<=Num feeder; i++) (
printf('\nFeeder %d:\n",i);
for(k=1; k<=Num dsl_q[i][UPSTREAM]; k+=Fraction[FEEDERD (

queue +7- 2;
• print_q_stats("DS-1", k, queue);

for(k=1: k<=Num_idt[i]; k+=Fraction[IDT]) (
queue 4= 2;
print_q_stats("Idt", k, queue);

for(k=1; k<=Num_idt[i]; k+=Fraction[IDT_LINED (
queue += 2;
print_q_stats("Idt_line", k, queue);

1
for(k=1; k<=N rvdm[i]; k+=Fraction[RVDM]) (

queue += 2;
print_q_stats("Rvdm", k, 'queue);

1
for(k=1; k<=N stu[i]; k+=Fraction[STU]) (

queue += 2;
print_q_stats("Stu", k, queue);

- float variance(n, sum, sum_sq)
long n; /* the number of items */
long sum; 	/* the sum of n items */

um 	mi 	am mu mar •tim um am ma mu am am um

Jul 17 09:03 1981 print_indiv.c Page 2

float sum_sq; 	/* the suai of squared items */

float var;

if(n > 1)
var = sum sq - (float) sum * (float) sum/ (float) n;
var = var -/ ((float) n - 1.0):

1
else var = 99999;
return(var);

print_q_stats(name, number, queue)
char *name; 	/* the name of the type of queue */
int number; 	/* the number of the queue within queue type */
int queue; 	/* the actual number of the queue */

float denom, var, variance();
long temp;

printf("%8s %-4d: name, number);

var = variance(N_wait[queue], S_wait[queue], Sq_wait[queue]);
if(N_wait[queue] <= 1)

temp = 1;
else

temp = N_wait[queue];

printf("%51d", N wait[queue]);
printf(" %9.4f"7 (float) SLdelay[queue]/(float) temp);
printf(" %9.4f", (float) S_wait[queue]/(float) temp);
if(var l= 99999.0)

printf(" %9.4f", var);
else 	 •

printf(" undefined"); 	-
if(Reset time >= Sim time)

cre-nom = Sim_time;

denom = Sim time - Reset time- _
if(Sim_time > O) T

printf(" $9.4f, (float) Busy[queue] / danois);
 printf(" %9.4f\n", (float) S_nsys[queue]/denom);

else

else

1
else

printf(" 0.0000 	0.0000\n");

Jul 17 09:03 1931 print_stats.c Page 1

#include <stdio.h>
einclude "struct.h"

print_stats()
/* prints out current statistics */

float var;
int temp;

if(Msgs_received > 1) (
var = Delay_sq - Total_delay*Total delay/Msgs_received;
var = var / ((float) Msgs_received - 1.0);

else var = 99999.0;

printf("\nTime Dilation = %d\n", Dilation);
printf("\nTotal number of messages received = %d\n", Msgs_received);
temp = Msgs_received;
if(Msgs_received <= 1) temp = 1;
printf("Total delay = %f; Total squared delay = %f\n",Total delay, Delay_sq);
printf("Average delay per videotex message = %f\n", Total_dUlay/temp).;
printf("Variance of delay = %f\n", var);
printf("Mean (downstream) videotex message length = %f\n", (float) Total_len/(float) temp);
printf("Mean back-end network delay =
if(Be_msgs > 0)

printf("%f\n", (float) Be service / (float) Be_msgs);
else

printf("0.0\n");
printf("\nNumber of upstream messages received = %ld\n", Num_up);
printf("Mean delay of upstream messages =
if(Num_up > 0)

printf("%f\n", (float) Serv_up / (float) Num_up);
else

printf("0.0\n");
printf("Number of downstream messages received = %ld\n", Num_down);
printf("Mean delay of downàtream messages =
if(Num_down > 0)

printf("%f\n", (float) Serv down / (float) Num down);
else

printf("0:0\n");

Jul 17 15;30 1981 random.c Page 1

#define SCRAMBLE 861328125L 	/* 9 * 49 * 5**9, for what that's worth */
#define BlTS_LONG 	(sizeof(long)*(3)

long Seed;

/*
* random-- generates a 31-bit pseudo-random integer based on the previous
* value of Seed. It uses a linear congruential random number generation
* method as specified by Knuth in Seminumerical Algorithms. The high bit
* in the long random value is always zero.
1,1

long
random()

Seed *= SCRAMBLE;
Seed &= - (1L << (BITS LONG-1)); /* i.e. mod 2**31 */
return(Seed);

/*
* Set seed - sets Seed to the given long value

* this value should be odd to ensure a maximum period for the generator
*/

Set_seed(i)
long i;

int j;

Seed =
j =
srand(j);

II

Jul 17 09:03 1981 reset_stats.c Page 1

#include <stdio.h>
#include "struct.h"

reset_stats()
/* reset all statistics to initial values */

int i;

if(Debug)
printf("Sim_time %id: Reset stats procedure.\n", Sim_time);

Msgs_received = 0;
Total_delay = 0:
Delay_sq = 0;
N_sample = 0;
Be Service = 0;
Belinsgs = 0;
Total_len = 0;
Num_up = 0;
Num_down = 0;
Serv_up = 0;
Serv_down = 0;
for(i=1; i<=N stat_q; i++)

Nwaitti) = 0;
Swait[i] = 0;
Sq wait[i] = 0;
S CielayEi] = 0;
Busy[i] = 0;
S_nsys[i] = 0;
N_sample = 0;

MIIIIIIMIIIINIM111111111•111111111MIIMIIIIIINIIIIIMIIMMIll

111111111111111111111111110•111•111111111111111111111111 11 1•11111111111MIIIIIIMIIIIIIIIIMIIIIIIIIIIIII

Jul 17 09:03 1981 schedule.c Page 1

#include <stdio.h>

#include "struct.h"

schedule(event_kind, msg_p, time, paam_one, param_two)

long param_one, param_two; 	/* parameters to be passed to some event routines */

int event kind; 	/* type of event */ 	 ,
struct message *msg_p; /* message to be passed (if any) */ 	, ,
long Lime; 	/* simulation time of event */ 	 '

(

++Ev_length;
if(Debug)

printf("Sim_time %ld: Schedule procedure, event type %d, for time %ld.\n",
Sim_time, event_kind, time);

ptr = P_ev;

while(ptr I= NULL && ptr->start_time <= time)
ptr = ptr->fwd;

new ev = alloc event();
if(r-iew_ev == NULL)

printf("\n** ERROR ** schedule procedure: ran out of memory at time %ld.\n",
Sim_time);

return;

new_ev->paraml = param_one;
new ev->param2 = param two;
newlev- >event_type = e7.7ent_kind;
new_ev->start_time = time;
new_ev->msg = msg_p;

if(P ev == NULL) (
P_ev = new_ev;
P_ev->fwd = NULL;
P ev->back = NULL;
Là-st_ev = P_ev;

else if (ptr == NULL) (/* insert new item at end of list */
Last_ev->fwd = new ev; 	 •

new_ev->fwd = NULL7
new_ev->back = Last_ev;
Last_ev new_ev;

else if(ptr == p ev) (/* insert at beginning of . list */
new_ev->Twd = ptr;
new_ev->back = NULL;

P_ev->back = new_ev; 	-
P ev = new ev;
if(Debug T

printf("Sim_time %id: Adding to front of event list.\n", Sim_time);

else (/* insert in the middle of the list */
new_ev->fwd = ptr;

struct event list *alloc event(), *ptr, *new ev;
/* search evat list for—spot to put this evUnt */

I; '

Jul 17 09:03 1981 schedule.c Page 2

new ev->back = ptr->back;
ptrZ>back->fwd = new ev;
ptr->back = new_ev;

struct event_list *alloc_event()

/* allocate an element in the event list

char *malloc();

return((struct event_list *) malloc(sizeof(struct event_list)));

long delay_time(unit_type, msg_len, msg_type)
/* this procedure gives a random delay time for a server of type unit_type, based on

message length */
int unit_type; /* the type of server */
int msg_len; 	/* the length of the message */
int msg_type; 	/* the type of the message */
(

long new_time;
float temp;
float frand(); 	-
long u_size, d_size;

if((Service) (
if(msg_type == OTHER) (

u_size = d_size = E_MEAN_MSG;

else (
u size = U MEAN MSG;
dlsize = DIMEANIMSG;

temp = (frand() 4- 0.5) * (float) msg_len * BITS;
switch(unit_type) f .
case STU: 	/* service time o(millisecs) */

temp = (temp / 1000.0) / u size.;
break;

case D STU:
— temp = (temp / 1000.0) / d_size;

break;
case RVDM: 	/* service time o(10 millisecs) */

temp = (temp / 100.0) / u_size;
break;

case D RVDM:
temp = (temp / 100.0) / d size; .
break;

case IDT LINE: 	/* service time depends on msg len */
case D_IUT_LINE:

tep = TS_DELAY(RVDM_IDT): 	•
break;

case IDT: 	/* service time ~1 millisec */
temp = (temp / 1000.0) / u_size;
break;

case D_IDT:
temp = (temp / 1000.0) / d_size;
break;

case FEEDER: 	/* service time depends on msg len */

11111111111111111111111111111.11111111 n111111111111111111 111111111111111111111. 111M

Jul 17 09:04 1981 service_time.c Page 1

#include <stdio.h>
#include "struct.h"
#include "externl.h"

#define E_MEAN_MSG
edefine U MEAN MSG
#define D—MEAN—MSG
#define TU_DELKY(S)

#define MIN(A,B)

(E_mean*BITS)
(U MEAN*BITS)
(D7MEAN*BITS)
(870/(float)(S))

(((A) < (B)) 7 (A) : (B))

/* mean message length of external msgs, in bits */
/* mean message length upstream, in bits */
/* mean message length downstream, in bits */
/* delay for one time_slot; S = line speed */

/* minimum function */

Jul 17 09:04 1981 service_time.c Page 2

case DFEEDER: _
temp = TS_DELAY(CABLE_SPEED);
break;

case DCT: 	/* service time . o(millisecs) */
temp = (temp / 1000.0) / u_size;
break;

case D_DCT: 	 •
temp = (temp / 1000.0) / d_size; '
break; 	 •

case CCC:
case D_CCC:

• temp = 0;
break;

default:
printf("\n" FATAL ** service_time: illegal unit type; value %(-.1.\n", unit type);
break;

•
new_time = (float) temp * (float) Dilation + 0.5;

else (
/*
* service time has been input on command line - same speed
* will be used for all servers except channels.
*/

switch(unit_type) (
case IDT_LINE:
case D IDT LINE:

new time = TS DELAY(RVDM IDT) * (float) Dilation + 0.5;
break;

case FEEDER:
case D_FEEDER:

new time = TS_DELAY(CABLE_SPEED) * (float) Dilation + 0.5;
break;

case CCC:
case D_CCC:

new_time = 0;
break;

default:
new time = Service_time * (float) Dilation + 0.5;
break;

)
if(Debug) I

printf("Random_time: msg len = %d; new_time = %ld\n", msg_len, new_time);
printf("Unit_type = %d, temp = %f\n", unit type, temp); 	1

return(new_time);

long
service_time(unit_type, msg_len)
/*
* this procedure returns actual service time for the unit, as an increment
* to the delay time given above. This will determine the Lime increment to
* the departure event.
*/

MIH MI MI UM MIS MI 	 MI MI MI

Jul 17 09:04 1981 service_time.c Page 3

int unit type;
 int msg_len;

/* the type of the unit */
/* the length of the message t/

float temp;
long new_time;

switch(unit type) (
case IDT
case D_IUT_LINE:

temp = ((float)
break;

case IDT:
case D_IDT:

temp = ((float)
break;

case FEEDER:
case D_FEEDER:

temP = ((float) msg_len * BITS - 8.0) / CABLE_SPEED;
' 	break;

case DCT:
case D_DCT:

temp = ((float) msg len * BITS - 8.0) / CABLE SPEED;
break;

default:
temp = 0;
break;

new_time = temp * (float) Dilation + 0.5;
if(Debug)

printf(» Sim time nd: service time returned = %ld\n u , Sim time, new time); _ 	 _ 	._
return(new_timc.):

msg_len * BITS - 8.0) / RVDM_IDT;

msg_len * BITS - 8.0) / MIN(RVDM_IDT, CABLE_SPEED);

3

Jul 17 09:04 1981 snapshot.c Page 1

einclude <stdio.h>
einclude "struct.h"

snapshot()
/* prints out the current status of the program. */

É
long new_time;

printf("\nSnapshot at simulation time %ld.\n",Sim_time);
if(Debug) I

print config();
printl("\nEvent list:"); 	•
print_ev_list();

print stets();
if(Cilc_stats)

print individual();
new time = Sin time + P int;
sch7du/e(SNAPSUbT, &Null msg, new_time, 0, 0);

pfint_config()
/* prints out the configuration table */

int i, j, k, index;

printf("Configuration file: %s\n", Configfile);
printf("Number of dct's = %d; Number of feeders =

Num_dct, Num_feeder);
printf("Total number of ds-1 queues = %d\n", Total_DSl_q):
index = 0;
for(i=1; i<=Num feeder; i++)

printf("nFeeder %d:\n", i);
printf("Number of idt's = %d\n", Num idt[i]);
printf("Number of DS-1 queues = %d\de, Num_dsl_q[i][UPSTREAM]);
printf("Idt - DS-1 assignments:\n");
for(j=1; j<=Num idt[i]; j++)

++index7
printf("Idt %d, DS-1 queue %d\n", j, Idt_dsl_q[i][j][UPSTREAM]):

printf("Number of rvdm's:");
for(j=1; j<=Num idt[i]; j++)

printf("-%d", Num rvdm[i][j]);
for(j=1; j<=Num idt[i]; -J++) É

printf("n%d. Stu's:", j);
for(k=1; k<=Num_rvdm[i][j]; k++) printf(" %d",Num_stu[i][j][k]);
printf("\n 	Phones:");
for(k=1; k<=Num_rvdm[i][j]: k++) printf(" %d",Num_telephone[i][j][k]);
printf("\n 	Videotex:");
for(k=1; k<=Num_rydm[i][j]; k++) printf(" %d",Num_yideotex[i][j][k]);

printf("\n").;

• BIM UM MI MI OM •
MI 	 IIIIIIII MI MI MI 1111M 	MI MI

111•1 MI Mil OM 	11•11 	MI 11•11 	MI MI IBM 	ill MI MI MI•

Jul 17 09:04 1931 start_serv.c Page 1

#include <stdio.h>
*include "struct.h"

start_service(unit)
/* this routine processes the start service event for a variety of servers */
int unit; 	/* the number of the queue to retreive message from */

long new_time, orig_time, 	delay_time();
long serv_time;
struct message *msg;
int next server: 	/* manifest for the next server's event routine */
int sample;
int unit type; /* the type of unit we are dealing with , returned from proc. */
int numbé-r; 	/* returned from get_unit_type: not used here. */
long temp;

if(Debug)
printf("Sim_time %id: Start service procedure.\n",Sim_time);

Idle[unit] = FALSE; 	/* mark server busy */
remove_q(unit, &orig_time, &msg, &next_server);

if(Debug)
print_message(msg);

unit type = get unit type(unit, &number):
serv_time = delà-y_tinié(unit_type, msg->msg_len, msg->msg_type):
new_time = Sim time + serv time;
if(unit_type T= D IDT_LINi && unit type 1= DCT)

schedule(n-e-xt.server, msg, iiew_time, 0, (7):
new_time += service_tIme(unit_type, msg->msg_len);
schedule(DEPARTURE, msg, new time, (long) unit, (long) next_server);
if(unit_type == D_IDT_LINE TI unit_type == DCT)

schedule(next_server, msg, new_time, 0, 0):

/* accumulate waiting time for this queue */

if(Calc_stats && Stats_num[unit] 1= 0)
sample = Stats num[unit];
++N wait[sample];
S wait[sample] += temp = Sim time - orig time;
Si wait[sample] f= (float) t'mp * (float) temp;
S_delay[sample] += temp + serv_time;

remove_q(unit, time, msg_p, next_server)
/* this routine extracts one element from unit's queue, and returns

the time and message (msg_p) stored there */
int unit; 	I /* the number of the queue */
long *time; 	/* time at which message was stored */
struct message **msg_p; /* pointer to the message stored in the queue */
int *next server; 	/* manifest for the next server's event routine */
I 	-

struct queue_entry *temp;

if(Q_ptr[unit] != (lULL) [

Jul 17 09:04 1981 start_serv.c Page 2

]
else f /* error - empty gueUe */

printf("\n** FATAL ** start_serv: empty quaue for server %d. Time %ld.\n\n",
unit, Sim_time);

*time = 0;
*msg p = 0;
*next_server = END_SIM;

temp = Q_ptr[unit];
Q_ptr[unit] = Q_ptr[unit]->forward;
free(temp);

*time = Q ptrEunit]->time;
*next ser;;er = Q ptr[unit]->next_event;
*msg_TI = Qptr[uiiit]->q_msg;

MI 	 URI UM MI MI IIIIIII NM 	 MI

Jul 17 09:05 1981 statistics.c Page 1

#include <stdio.h>
#include "struct.h"

statistics()
/* this routine collects mean number in system and utilization for some */

/* Fraction of the queues */
(

static long last_clock;
int i, queue, max, mit;
int type, num;
long new_time;

• if(Debug)
printf("Sim_time $1.d: Statistics collection routine.\n", Sim_time);

++N_sample;

for(i=1; i<=N_queues; i++)
if(Stats num[ii 1= 0) (

type = get unit type(i, &num);
if(type==RUDM IT type==STU II type==CCC II

type==D RVDM II type==D STU il type==D_CCC)
ifT lIdle[i])

Busy[Stats_num[i]] += Sim_time - last_clock;

else (

S_nsysEStats_num[i]] += N_systemEi] * (Sim_time - last_clock);

last clock = Sim time;
if(TExact stats—)

ne7 time = Stets mean + ((float) stats rand()/32767.0 - 0.5)*Stats mean + Sim time;
sch;dule(STATISTICS, &Null_msg, new_tilie, 0, (3):

Jul 17 09:05 1981 stats_rand.c Page 1

#define C 1
#define A
#define M

/* increment */
32767 	/* multiplier = 2**15 + 1 */
65537L /* modulus = 2**16 + 1 */

static long Last_x;

stets rand()

long x;
int i;

x = (A*Last x + C)%M;
i = x*(32767.0/(f1oat) M);
Last x = x;
retu7n{ i);

stets seed(seed)
int seed; 	/* therandom number seed */

Last_x = seed;

1 *

Jul 17 09:22 1981 tele_pause.c Page 1

#include <stdio.h>
#include <math.h>
#include "struct.h"

#define MAX 2.3026 	/* in(10) */

tele pause(end conversation)
lon4-end_conve7sation; 	/* interval of time until the end of the conversation */

this routine simulates pauses in a telephone conversation 	*/

The pauses are distributed as log(uniform), max 10.0, min 0.1 	*/

long new time;
double tUmp;

if(Debug)
printf("Sim_time %id: telephone pause routine; end conversation = %ld.\n", 	end_conversation);

temp .= MAX * (2.0*frand() - 10);
new time = exp(temp) * (float) Dilation 	0.5; 	-
end

_
conversation -= new time;

new time += sim time;
if(nd_conversation >= 0)

schedule(TELE TALK, P_ev->msg, new_time, end conversation, 0);

Jul 17 09:12 1931 tele_talk.c Page 1

#include <stdio.h>
#include <math.h>
#include "struct.h"
#include "externl.h"

#define MEAN 	-0.1176 /* log 1.311 (base 0.1); 1.311 = mean of talkspurt */
eafine SD 	0.20 	/* standard deviation of distn */
#define LEN 	100 	/* length of digital telephone pacKets, in bytes */
#define BASE 	0.1 	/* base for logarithms used for distribution */

tele_talk(end_conversation, pause_time)
long end_conversation; /* interval of time until the end of the Conversation */
long pause_time; 	/* interval of time untirtalkspurt ends and pause begins */

1*

This routine simulates talkspurts in.a conversation. The length
of the talkspurt will be log(Normal).

struct message *msg, *alloc_msg();
long time, new_time;
double temp;
float normal();

if(Debug)
printf("Sim_time ?ild: telephone talkspurt routine; end conversation = %Id.\n", Sim_time, end_conversation);

/* first, generate a pause time if necessary */

if(pause time <= 0) (
temp = normal()*SD + MEAN;
pause time = pow((double) BASE, temp) * (float) Dilation + 0.5;
new_time = Sim time + pause_time; 	 -
schedule(TELE Î7AUSE, P_ev->msg, new_time, end_conversation, 0);

msg = alloc_msg();
++Num msgs;
if(msg == NULL) (

printf("\n** ERROR ** telephone talkspurt: ran out of memory at time %ld.\n", Sim_time);

• else (
copy_unit(&P_ev->msg->orig_unit, &msg->orig_unit);
copy unit(E.P_ev->msg->dest unit, &msg->orig_unit);
msg->direction = P ev->Msg=>direction;
msg->msg_type = TEEEPUONE;
msg->orig_time = Sim_time;
msg->msg len = LEN;
if(msg- >direction == UPSTREAM) (

'tchedule(STU_SERVER, msg, Sim_time, 0, 0);
1
else

schedule(D_DCT_SEàVER, msg, Sim_time, 0, 0);

time = (float) LE N * (float) BITS / (float) CABLE SPEED * (float) Dilation + 0.5;
new_time = Sim_time + time;

1•111•1111MIIMIIIIIIIIMIIIIIIII11111•111111MUM

Jul 17 09:12 1981 tele_talk.c Page 2

endçonversation -= time;
• pause time -= time;

if(erui_conversation > 0 && pause_time > 1)
schedule(TELE_TALK, P_ev->msg, new_time, end conversation, pause_time);

#include "struct.h"
#include <stdio.h>
#include <math.h)

'#define NORMAL 	DL. 	 .
#define APPROX_MAX 	300 	 • 	:

telephone(mode) 	 .
long mode; 	/* 0 = NORMAL: exponential distn for conversation length */

/* 1 = mit: 	uniform conversation length (max 300 secs) */

/*
This routine initializes a telephone conversation and bootstraps itself
to keep a set proportion of the te/ephones busy.

*1

struct message *msg, *mse, *alloc_msg();
int feeder, idt, rvdm, stu, number;
long end conversation; /* increment of time until end of conversation */
long new_time:
float mean;
float frand();

if(Debug)
v$ pr telephone.c

111111111111111111111111111•11111111111111M111

111111111111111MIIMM11111111111111111111111111•1111111111111111111111111111111•1111MIIIIIIIIIMIIIIII

Jul 17 09:23 1981 telephone.c Page 1

#include "struct.h"

#include <stdio.h>
#include <math.h>

#define NORMAL 	OL
#define APPROX_MAX 	300

telephone(mode)
long mode; 	/* 0 = NORMAL: exponential distn for conversation length */ '

/* 1 = mit: 	uniform conversation length (max 300 secs) */

/*
This routine initializes a telephone conversation and bootstraps itself
to keep a set proportion of the telephones busy.

*/

struct message *msg, *msg2, *alloc_msg();
int feeder, idt, rvdm, stu, number;
long end conversation; /* increment of time until end of conversation */
long new_time;
float mean;
float frand();

if(Debug)
printf("Sim_time %id: telephone conversation initialization.\n", Sim_time);

msg = alloc_msg();
++Num msgs;
if(mbî == NULL) (

printf("\n" ERROR ** telephone conversation initialization: ran out of memory at time %ld.\n", Sim_time);

else [
random_tele(&feeder, &idt, &rvdm, &stu, &number);

/* generate random conversation length */

if(mode == NORMAL)
end conversation = - (float) Conv mean * log(frand()) * (float) Dilation + 0.5;

else
end conversation = frand() * (float) APPROX_MAX * (float) Dilation + 0.5;

/* stuff message for both ends of the conversation

msg->direction
msg->'orig unit
msg->orig—unit
msg->orig—unit
msg->origunit
msg->orig_unit
msg->orig_unit
msg->orig unit
msg->dest—unit
msg->destlunit
msg->dest unit
msg->destlunit

= UPSTREAM;
.unit type = DEVICE;
.feeder line = feeder;
.idt = idt;
.rvdm = rvdm;

.stu = stu;

.dev type = TELEPHONE;
-device = number;
.unit type = 13E _NET;
.feed-êr line = iiULL;

.idt = ffiiLL;

.rvdm = NULL;

Jul 17 09:23 1981 telephone.c Page 2

msg->dest_unit.dev_type = NULL;
msg->dest_unit.device = NULL;

schedule(TELE_TALK, asg, Sim_timè, end conversation, ØL);

msg2 = alloc_msg();
++Num_msgs;
if(msg == NULL)

printf("\n** ERROR ** telephone conversation initialization: ran out of memeory at time %ld.\n", Sim time);
else (

msg2->directiOn = DOWNSTREAM;
msg2->orig_unit.unit type = BE NET; 	. ,
msg2->orig_unit.feedUr_line = ffULL; 	:
msg2->orig_unit.idt = NULL; 	. 	•
msg2->orig_unit.rvdm = NULL;
msg2->orig_unit.stu = NULL; 	 .
msg2->orig_unit.dev_type = NULL; 	.
msg2->orig_unit.device = NULL; 	 .
msg2->dest_unit.unit type = DEVICE;
msg2->dest_unit.feed -èr line = feeder; 	.
msg2->dest_unit.idt = idt; 	 .
msg2->dest_unit.rvdm = rvdm;
msg2->dest unit.stu = stu;
msg2->dest-unit.dev type .= TELEPHONE;
msg2->destlunit.device = number; 	.

schedule(TELE_PAUSE, msg, Sim_time, end conversation, 0);

mean = (float) Conv_mean / ((float) Total telephone * (float) Tele_util / 100.0);
new time = Sim time - mean * log(frand()) 7 Dilation + 0.5;
schdule(TELEJNIT, &Null_msg, new_time, NORMAL, 0);

J.
-

random_tele(feeder, idt, rvdm, stu, dey)
int *feeder, *idt, *rvdm, *stu, *dev;
/* this procedure generates a random telephone device number */
('

device_num = frand() * (float) Total_telephone + 1.0;
number = 0;

1
for(i=1; i<=Num_feeder; i++)

for(j=1; j<=Num_idt[i]; j++)
for(k=1; k<=Num_rvdm[i][j]; k++)

for(1=1; l<=Num stu[i][j]Ekl; I++) (
number T= Num_telephone[i][j][k];
if(number >= device_num) (

*feeder = i;
*idt =
*rvdm = k;
*stu ='1;
*d ,yv = number - device num 	1;

int i, j, k, 1;
int device num, number; .
float fradf();

1111111111111111111111111111111.1111111111111111111M11111111111M1111111111111•111M11111111111M1

Jui 17 09:23 1981 te1ephone.c Page 3

if(Debug)
printf("device_num %d; feeder %d; idt %d; rvdm %d; stu %d; dey %d\n",

device_num, *feeder, *idt, *rvdm, *stu, *dev):
return;

1
1

printf("\n" FATAL ** random_tele: couldn'd identify device number %d\n",
device_num);

11

Nov 28 13:15 1881 gentrace.p Page 1

program GenerateSimulationTrace(input,output);

const
maxusers = 10; (
IntArrTime = 1.0;
Prancest = 0.2; (
Prnext = 0.2; 	(
Prprev = 0.05;
Prabsol = 0.1; (
Prdesc = 0.3; 	(

total number of users]
(Mean interarrival time]

Probability of selecting ancestor]
Probability of selecting next page 1
Probability of selecting previous page 1
Probability of selecting absolute page]

" menu (1-13))
Prjump = 0.15; 1 	0 	" other menu (11-20)
(The above probabilities better add up to 1)

var
command, size : integer;
CurrTime, r : real;
samplesize, seed : integer;

(FUNCTI 0NS1
(

function random (var seed : integer) : real;
(Uniform Randon number generator 	U(0,1).
This version should update the seed.
begin
seed := seed*65539+1;
if seed<0 then seed := -seed;
random := seed/2147483648.0;
end;

begin
readln(samplesize,seed);
for size:=1 to samplesize do begin

write(trunc(random(seed)*maxusers+1):4);
r := random(seed);
if r<Prancest then command := -1
else begin

r := r-Prancest;
if r<Prnext then command := -2

else begin
r := r-Prnext;
if r<Prprev then command := -3

else begin
r.:= r-Prprev;
if r<Prabsol then command := 0

e/se begin
r := r-Prabsol;
if r<Prdesc then command := trunc(sgr(random(seed))*10+1)

else 	command := . trunc(random(peed)*10+11)
end end end end;

write(command:3,0:2,0:2);
CurrTime := CurrTime - In(random(seed))*IntArrTime;
writeln(CurrTime:8:4)
end

end.

APPENDIX B: A BRIEF DESCRIPTION OF THE
WESTERN DIGITAL WD2001/WD2002
DATA ENCRYPTION DEVICES

GENERAL DESCRIPTION

The Western Digital WD2001/2 are N-channel MOS TTL com-

patible devices which use the Federal Information Processing

Data Encryption Standard algorithm to encrypt a 64 bit

plaintext word using a 56 bit user specified key to produce

a 64 bit ciphertext word. They also decrypt using the same

user-specified key.

The WD2001/2 may be operated in block mode, or the

WD2001 can be used to encrypt synchronous data in a stream

using the "N"-bit cipher feedback technique.

In block encryption mode, the DES chip is programmed

for encryption by loading the key into the key register. It

is loaded in as eight successive n-bit bytes (one bit of

each byte is reserved for parity). The data register is

then loaded with eight successive 13-bit bytes of plaintext

data. Typically, 12 microseconds is required to load the

key and 12 microseconds is required to load the plaintext

data. The encryption time is 25 microseconds and an ad-

ditional 12 microseconds are required to unload the en-

crypted ciphertext data in eight successive bytes. The

resulting throughput is.about 1.05 Mbps to 1.3 Mbps.

In cipher feedback cryptography a pseudorandom bit

stream is produced as a function of the previous cipbertext.

This bit stream is added modulo ? to the plaintext to

produce the next ciphertext. This is accomplished by adding

a shift register and exclusive-OR logic to the DES chip.

This technique may be used for any feedback size from 1 to

64 bits. 	If N bits are used, the resulting throughput is

(1/64)* 1.05 Mbps typically, or (N/64)* 1.4 Mbps in the

best case.

APPENDIX C: DATA STRUCTURING FACILITIES FOR
INTERACTIVE VIDEOTEX SYSTEMS

Data Structuring Facilities
for

Interactive Video tex Systems

Frank Wm. Tompa

Jan Gecsei

Gregor V. Bochmann

CS-80-.50

November, 1980

Data Structuring Facilities for Interactive Videotex Systems

Frank Wm. Tompa t
Jan Gecsei

Gregor V. Bochmann

A BSTRACT

Interactive videotex systems will soon emerge as a principal
information, entertainment, and communications medium. Until
now there has been much written about the image presentation and
data transfer facilities of the several current systems, but little atten-
tion has been devoted to the provisions for accessing pages of
videotex data.

In this paper, existing data structuring facilities for inter-
relating videotex pages are described, and alternative structures are
proposed. Throughout, emphasis is placed on the aspects of data
organization that are visible from the perspective of videotex users as
well as on those that affect the ability of information providers to
present their data.

Key phrases: 	videotex, database, data structure, page organiza-
tion, viewdata, Captain, Preste!, Teletel, Telidon.

CR categories: 	4.33, 3.72, 4.32, 8.2.

November 13, 1980

f Department of Computer Science, University of Waterloo, Waterloo, Ontario N21- 3G1, Canada.
t Département d'informatique et de recherche opérationnelle, Université de Montréal, Montréal, P.Q.
H3C 3J7, Canada,

Data Structuring Facilities for Interactive Videotex Systems

Frank Wm. Tompa

Jan Gecsei
Gregor V. Bochmann

I. INTRODUCTION

The ability to access large data banks of information through the use of a
television set in the home or office has long been proposed as a capability of the
future. In fact, it has become a reality of the present, at least in a limited way.
Around 1970 the British Broadcasting Corporation developed Ceefax, originally to
provide captioning for the deaf, and by 1974 the British Post Office developed
Prestel, originally called Viewdata and resulting from research towards a picture-
phone. ii Since that time, much research throughout the world has been devoted to
the development of competitive and complementary systems (e.g., Captain, I6

 Telete1,3 and Telidon 12).

Two modes of operation have developed to date: strictly broadcast, or one-
way, teletext systems and interactive, or two-way, videotex systems (Figure 1).
The first of these follows the pattern established by Ceefax, that is, transmitting
pages of information in a cyclic pattern and using a local adaptor on each telev-
ision receiver to capture the page selected by a user when it next appears in the
cycle. As an immediate consequence of this mode of operation, there is a trade-
off between the number of pages of information available on one channel (and
therefore the length of the cycle) and the delay in servicing one user's request to
see a page (which is proportional to the number of unrequested pages that occur in
the cycle between the time a user posts a request and the appropriate page is next
transmittedt). Teletext service is commonly, although not exclusively, provided by
over-the-air broadcasting of the signals. •

Interactive videotex systems, on the other hand, disseminate pages of infor-
mation solely in response to user demand. A user's request for a page is transmit-
ted from a videotex terminal to a host processor, which in response sends the
appropriate information back to the originating user. Unlike teletext, there is
(virtually) no trade-off between the number of pages available and the response
time; however there is a dependence of the response time on the number of users
requesting service simultaneously. Videotex systems typically connect users to the
central system via telephone lines, packet subnetworks, or cable television.

t In tact, whole pages need not be transmitted contiguously, but instead subpages may be interleaved;
the trade-off still applies.

))

modem
1n••• modem

2 	 F.W.Tompa, J.Gecsei, and G.V.Bochmann

a) Teletext using unidirectional broadcast over the air

page

tpository
processor

keypad

b) Videotex using bidirectional point-to-point (e.g., telephone) connections

Figure 1: Schematics for teletext and interactive videotex reception

The provisions of two-way communication in videotex systems and the
independence of response time on database size has encouraged the development
of further interactive services, including teleshopping, telebanking, telemonitoring,
and interactive access to other centralized facilities from the home or office. In
fact, the integrated access to multiple interactive services has been promoted as the
greatest potential for videdtéx systems andl is now beginning to be realized by
Omnite1 1 . 5 and Mitrenet. 8

Overviews and further information about teletext and videotex systems can
be found in several books6 . 14 as well as in articles about individual systems.

Data organization facilities are a major part of videotex system design. In
this paper, we first summarize the facilities for inter-relating pages of information
within the major current videotex systems, i.e., Captain, Prestel (and its direct
derivatives including Germany's Bildschirmtext), Teletel, and Telidon. t We then
describe the data structure requirements imposed by additional videotex facilities,
including response pages, gateway pages to other databases, and accounting. In
Section 3 we describe the experimental Teletel/Star system developed by the
French Centre Commun d'Etudes de Télévision et Télécommunications (CCETT).

t Henceforth the use of the term "Captain" will refer to the system operated by the Japanese Captain
System Research and Development Cénter, "Prestel" will refer to the system operated by the British
Post Office, "Telidon" to the system operated by the Canadian Department of Communications, and
"Teletel" to the system operated by the French Direction Générale des Télécommunications.

Data Structuring Facilities for Interactive Videotex Systems 	3

Finally we propose some alternatives to existing structures and evaluate their
implications on the providers and consumers of videotex-based information.

Before discussing videotex systems further, we introduce here s . o. me
vocabulary that will enable us to describe the systems using a uniform
terminology. Data is primarily divided into discrete pages identifiable as logical
units. In some cases, for example if the contents of a page is more than can be
displayed at one time on a videotex screen, the page may be sub-divided into
frames each of which forms one display image. There need not be any relation
between videotex pages or frames and the units of storage ("sectors", "pages" or
"blocks") used to maintain the data. The computer system on which the videotex
pages are stored is managed by a videotex system operator (for example, a post
office, telephone company, or television cable company). The pages themselves
are supplied and editorially controlled by an information provider (commonly
referred to as an IP). In fact, an information provider may also serve as the
videotex system operator, and in that role is often referred to as a "value-added
system operator." The consumer of the information, that is, the individual
accessing the videotex system for the purpose of information retrieval or to invoke
a transaction, will simply be termed a user.

Because the research and development of videotex systems are progressing at
a very fast rate on a worldwide scale, often in a proprietary manner, we have been
forced to limit our discussion of existing facilities to publicized systems only. As a
result, the details included in this paper are accurate as of mid-1980, and they
occasionally ignore developments contained solely within research laboratories.

2. EXISTING DATA STRUCTURING FACILITIES

2.1. The basic tree structure

The underlying data structure for all dirrent interactive videotex systems is a
(positional, labelled, rooted) tree of page nodes (Figure 2), each node serving as
the root for a number of subtrees, depending on the particular system. The
content of any page can include text and/or graphics and can be used to convey
application information and/or index or routing prompts. Pages are numerically
identified by their position in the tree; for example the root is page 0, its
descendents have identifiers from 1 to 9, the descendents of page 1 have identifiers
11, 12,..., 19, the descendents of page 12 have identifiers 121, 122,...,129, etc. A
user can request a page directly at any time by entering its numeric identifier via a
keypad or keyboard attached to the videotex terminal.

The provision of several frames of information for one page has taken two
distinct forms. In Prestel, any node (page) in the tree is a sequence of one to
twenty-six frames, distinguished by appending an appropriate letter of the alphabet
to the page identifier. Direct access to a page results in the display of the primary
frame (labelled a), the secondary frames being reachable by subsequent sequential
access only. Similarly, in Captain each page has one to ten frames (distinguished
by an appended digit). Alternatively, Telidon allows multiple frames at the leaves
of the tree only, thus distinguishing in the system implementation between so-
called index and document pages (the content of either is still under complete
control of the information provider). A document page can consist of up to 1000

•

1

1

1

1

I

4 	 F.W.Tompa, J.Gecsei, and G.V.Bochmann

Figure 2: A tree of page nodes, using Telidon identifiers

frames identified by one, two, or three digits following the decimal point in the
page identifier (e.g., 122.0, 122.1,..., 122.999), and, unlike Captain, Preste!, and
Teletel, any frame can be directly accessed by entering its numeric identifier. (For
consistency, a Telidon index page has a decimal point followed by the digit 0 at
the end of its identifier, e.g., 12.0.)

The tree structure serves as a framework for allocating pages to information
providers. For example, in Preste! and Captain- -each information provider is
assigned a page number identifying the root of the subtree in which pages, frames,
and their contents may be constructed under that information provider's editorial
control. Both systems also reserve subtrees to contain general-purpose and index
information controlled by the videotex system operator. Such localization of the
information providers' pages simplifies the system operator's tasks of preventing
interference among information providers and providing accounting (statistical and
financial) to each information provider (see Section 2.3.3). The visibility of the
tree structure through page identifiers also reinforces an information provider's
identity to the user by explicitly containing the corresponding root page's
identifier.

The tree structure may also serve as the framework in which data is
presented to the user in cases where a logical hierarchy is inherent in the
information. Telidon alone provides facilities for traversing the tree structure
under direct user control (without any provisions by the information provider).
From any index page, a user can request its immediate ancestor, an immediate
descendent, or any sibling pages (i.e., those sharing the same parent), without
using the target page's numeric identifier (Figure 3). Unlike the use of numeric
identifiers as absolute page labels,t the interpretation of a user's directive is
dependent on the page currently being accessed; this is therefore a form of relative
page addressing, henceforth called access by relative page label. Such an ability to
traverse the tree is extremely useful for browsing through hierarchically structured
data.

t Throughout this paper, the term "identifier" will be used to refer to a unique page designator, whereas
"label" will be used to refer to a name available to users for accessing a page.

Data Structuring Facilities for Interactive Videotex Systems 	5

From the circled node, relative access is provided to the immediate ancestor 	immediate
descendants (au*, and sibling pages (•••••b) without reference to page identifiers.

Figure 3: Tree traversals in Telidon

2.2. User-oriented access paths

Information rarely fits comfortably in a unique hierarchy. For example, it
seems unreasonable to require information about Swedish restaurants to be listed
exclusively under the Swedish subheading in the restaurant subtree or under the
restaurant subheading in the Swedish subtree, thus forcing all users to adopt the
same hierarchical ordering for retrieving the information. Furthermore, if users
are given only one tree structure through which to access data, they will often be
unable to locate reqpired information without first traversing many irrelevant
sections of the tree. 9 As a result, the effective response time of the system and the
effective financial cost to the user (resulting from charges for connect time, page
accesses, and possibly communications) will be large despite individual page
retrievals being relatively efficient. Secondly, information providers will have only
limited opportunity to entice users to request related information elsewhere in the

• tree.

It is extremely wasteful to allow multiple listings solely by physically
duplicating the data. Captain, Preste!, Teletel, and Telidon therefore have
facilities for allowing information providers to superimpose arbitrary directed
graph structures on the underlying tree. Rather than interpreting relative page
labels in the context of the underlying tree structure, an information provider can
build an arbitrary access structure by establishing a transparent cross-link map to
selected pages. In building the cross-link map for a page, the information
provider associates with a (typically one-digit) numeric label the absolute page
identifier of the page to be retrieved when a user enters that label. The page itself
will usually contain a multiple-choice display that indicates the valid numeric
labels together with content descriptors for the corresponding pages (Figure 4).

Although the access structures can be arbitrarily constructed (as long as the
number of edges leaving a node does not exceed some bound), it has been found
useful to exercise some control over the access paths so that users maintain a sense
of consistency. Thus, as part of their editorial policy, information providers
typically select one or several presentation styles for relating their pages of data.
(Some commonly used structures have been identified and defended elsewhere. I5)
In addition, certain digits may be reserved for common functions such as "return
to table of contents" or "proceed to next".

31 39

311

3111 	3112

31311

	

6 3 132 	3133 	391

	

31311 	39111

392r 3922

39112

3923

39221

Page 313 Great Lakes

The Great Lakes are located
between the United States and Canada,

covering an area of approximately
94,690 square miles.

Key 1-6 for more information:

1 	Overview
2 	Lake Superior (31,810 sq. mi.)
3 • Lake Huron (23,000 sq.mi.)
4 	Lake Michigan (22,400 sq. mi.)
5 	Lake Erie (9,940 sq. mi.)
6 	Lake Ontario (7,540 sq. mi.)

6 	 F.W.Tompa, J.Gecsei, and G.V.Bochmann

transparent
cross-link map
for page 313:

I 39
2 3111
3 31
4 3923
5 3132
6 31311

display for page 313:

Figure 4: Cross-link map for user-oriented access structures

In addition to allowing a user to enter a relative numeric directive to
traverse access paths, Teletel also has a primitive keyword facility. The Teletel
architecture is such that there are two levels of access: the first to select a service

(possibly corresponding to all the pages of one information provider) and the
second to•traverse the pages within a service. The keyword structure matches this
architecture exactly: one set of keywords is used to give mnemonic names as
absolute labels to individual services and each service may use keywords to give
mnemonic names as absolute. labels to individual pages. For example, "travel"
may be used to select a particular service within which "Toronto", "hotels", or
"parliament" can be used at any time to access the corresponding page as
determined by the information provider.

In summary users may select pages at random (using absolute page
identifiers), may traverse the directed graphs designed by the information providers

1

1

1
1

1
1

1
1
1
1
1
1

Data Structuring Facilities for Interactive Videotex Systems 	7

(using relative page labels), or may traverse the underlying tree structure supplied
by the system operator (again using relative page labels): Finally all major
systems give the user the opportunity to backtrack through retrieved pages in the
reverse order of access (up to at most three pages in Prestel and ten pages in
Telidon), and Telidon provides a simple command to allow a user to retrace the
path in the forward direction again.

2.3. Support for other videotex facilities

To be useful, videotex systems must provide services other than mere page
retrieval. Because it is important that such services are not overlooked in system
designs and evaluations, some are briefly described here.

2.3.1. User response pages

Although at first videotex systems seem to be primarily information retrieval
facilities, their functionality should not be limited to retrieval. The purpose of
many retrievals is to obtain information in order to begin a transaction. For
example a request for Swedish restaurants is not likely to be for mere academic
interest, but rather so that a reservation can be made (and the food eventually
consumed). Similarly, a look at stock market quotations is to determine whether
to buy, to sell, or to stay pat.

Business practice dictates that a customer is more likely to respond to
information if such a response can be made immediately. Thus, to be practical,
videotex systems must be truly interactive and therefore distinguishable from
teletext services, by (at the least) providing facilities for users to respond to pages
produced by information providers.

In Prestel, an information provider can create a so-called response page, as
distinguished from an information page. Such a page contains a form to be filled
in by the user. The form's layout and its blend of prompting information, system
generated response data (such as automatic fill-in of user's name and address), and
user-generated response data is under the control of the information providers.
When completed, the form is appended to a queue of users' responses, which can
subsequently be examined by the appropriate information provider only.

For example, if a restaurant manger is an information provider (or uses the
services of a videotex-based booking agency), he or she will likely create a
videotex information page on which conventional data may be displayed (e.g. logo,
name, address, telephone number, and menu extracts). As well as giving routing
information for related information pages, the manager can give a prompt such as
"key 9 to make a reservation." The page's cross-link map will have been set to
designate a suitable response page. also created by the manager, as the
corresponding target. That page will be formatted to ask the user to key in the
date, time, and number in the party (all of which can be entered numerically) and
to fill in the user's name and address automatically. When completed, the
reservation form will be forwarded to the information provider, who can then
process the information as if it were relayed by telephone. Similar transactions
can be invoked for other applications.

The service provided by a response page facility is comparable to a limited
electronic mail service. In fact, because response pages can be created to allow

8 	 F.W.Tompa, J.Gecsei, and G.V.Bochmann

free-form input, arbitrary messages can be sent if full character set keyboards are
used. However, since only recognized information providers are eligible recipients,
only a limited number of "mailboxes" are provided, and mail traffic is not as

-heavy as in a more general mail system.

2.3.2. Gateway pages

Even as a pure information retrieval facility, videotex systems will not realize
their potential if they can only be used in isolation. There are many databases
that have been built up independently of videotex — for business, libraries, and
entertainment. Many of these databases will continue to be maintained
independently, and therefore access must be provided to such external, or third-

party, databases from within videotex systems.

The data in some third-party databases may already be in a format that is
compatible with the videotex 40-character line standard. For other databases, the
data can be reformatted into videotex pages, either when requested or en masse in
anticipation of request (possibly by splitting 80-character lines in half, but more
typically through the use of specialized reformatting routines). Finally, for some
third-party databases, the videotex terminal could be made to function as a
conventional alphanumeric terminal having 80-character lines.f In any of these
situations, a natural mechanism for a user to request access to a third-party
database is to request the appropriate gateway page which will have been created
by an information provider.

The role of a gateway page is to integrate access to non-videotex services•
with videotex's page-oriented system. When a user requests a gateway page for a
third-party database, the log-in protscol for that database system is initiated on
the user's behalf, possibly requiring additional input from the user. Thereafter,
the videotex system becomes transparent to the user, merely . serving as an
intermediary node in the access network by relaying the interactions between the
user and the database. When the user disconnects from the third-party database
system, control returns to the videotex system, and the preceding user context is
re-established in preparation for further videotex commands. Such a facility is
incorporated into Germany's Bildschirmtext system.

The data structures required to support the simplest form of gateway are not
complex: linking information, including the (network) address of the gateway's
target and interface protocols, must be stored with the page. If the contents of the
third-party database are to be converted to a page-oriented format, however, the
interface protocols may require extremely sophisticated techniques to control the
reshaping of tables, text, and graphics.

A closely-related facility is represented by Telidon's action pages, which
allow access to executable programs. When the program is loaded into and
executed in the user's terminal (instead of being executed by the remote
processor), such a facility is known as telesoftware. Once again integrated access

t This last alternative currently requires that the terminal be provided with suitable hardware to provide
adequate resolution for the small characters that result from double-length lines. Such an option is

available, for example, with the new Telidon Integrated Videotex Terminal manufactured by Elec-
trohome in Kitchener, Ontario. Canada.

Data Structuring Facilities for Interactive Videotex Systems 	9

can be achieved through the use of a gateway page. When an action page is
requested, videotex's page orientation can become transparent in order that the
user may interact directly with the running program. Again, upon termination,
the control and context can be returned to the gateway for further page-oriented
activity.

2.3.3. Accounting provisions

Accounting is a vital function in any system. In videotex systems, where
services are provided from many independent sources (including the system
operator, the communications providers, and the information providers),
accounting is extremely critical. The information required for accounting will be
briefly considered here from only two viewpoints: the data collected per
information provider and the data collected per user. In neither case is the data
page-oriented, but rather it may be handled in a conventional record-oriented
manner (and, in fact, maintained in a separate database from that containing
videotex pages).

There should be an accounti ng entry for each information provider. Such an
entry must contain the information provider's name and address (for billing) as
well as a description of the set of page identifiers that are under the information
provider's control (this may be simply the page identifier of the root of the
appropriate subtree). In addition there should be fields for the amount of storage
consumed by the information provider's pages, the resources used for page
updating (e.g., for creating pages, altering the contents, altering the routing), and
the total of the page charges resulting from users' accesses (for crediting the
information provider). in addition, more detailed accounting information (such as
the number of accesses to each page, the number of traversals of each cross-link,
and a collection of statistics on complete access paths to pages), would provide
useful feedback on the effectiveness of page layouts and organization.

Similarly, a user's accounting information must be maintained. Again the
user's name and address must be included, as well as accumulated charges for
system usage (processor service, input/output operations, etc.), page access charges
levied on behalf of information providers, and communications charges. If
gateways to independent services are available through the videotex system, then
the third-party charges should also be accumulated in the user's accounting entry
in order that the user is billed from only one source.

3. TELETEL/STAR

The French Centre Commun d'Etudes de Télévision et Télécommunications
(CCETT) has developed a videotex system which is expected to be publicly
available (at least on a trial basis) in late 1981. The Star experimental system
(Source Teletel Accès Réseau) is operational in a prototype form in Rennes, based
on a multiprocessor-multiminicomputer host architecture and.the French Transpac
public communication network. 10 It is the Star system that forms the base of the
"electronic telephone directory" trials taking place in Saint-Malo since 1980.
Throughout this section, the term "Teletel/Star" will refer to the videotex system
based on the Star system.

10 	 F.W.Tompa, J.Gecsei, and G.V.Bochmann

Similarly to the systems described in Section 2, Teletel/Star is based on
pages consisting of a (non-empty) sequence of frames and organized into a tree
upon which an information provider superimposes access paths. As in the
conventional Teletel system, there are two distinct levels of access, the first to
choose a service and the second to traverse a structure within one service. Unlike
the other systems, there is no limit to the number of frames per page nor to the
.number of subtrees per node (the information provider can specify the number of
digits that are necessary to identify a descendent; for example, the immediate
descendents of page 25 may be labelled 250, 251,..., 259; or 2500, 2501,..., 2599; or
25000, 25001,..., 25999; etc.). The most striking aspects of the Teletel/Star
design, however, lie in the sensitivity of the system to a user's access path when
interpreting user directives and in the innovative provisions for numeric and
keyword directives.

3.1. The basic node , control programming language

Associated with each page in a service's tree is a program that is written by
the information provider at the time of page creation and executed whenever a
user accesses the page.7 The function of the program is to control the display of
information on the videotex terminal and to interpret the commands input by the
user. To govern program execution, there is associated with each user a state
vector that includes the page identifier of the current page whose program is being
executed, the identifier of some other "base" page, a condition code array
consisting of sixteen flags, and two stacks containing identifiers of (other) pages.

Flow of control within a page's program is governed in a manner similar to
a decision table. The information provider specifies a sequence of conditional
expressions involving the sixteen flags. The expressions are sequentially tested,
and as soon as one is found to be true, a corresponding sequence of instructions is
executed (either once only or until the expression becomes false).

In all instructions having a page label as an operand (e.g., for branching or
calling other pages' programs), a label expression can be used in place of a
numeric page identifier. To implement a standard tree structure, the page
retrieved when a user enters an integer is the one having a label equal to the
current page's label concatenated with the numeric input. In the language for
Teletel/Star, this would be indicated as "$,CCT,@" where $ is a numeric register
containing the current page label, CCT indicates concatenation, and @ is a
register containing the user's input; for example, on page 25 when the user inputs
a 3, "$,CCT,@" assumes the value 253. To produce non-tree structures, operators
for addition and subtraction are also provided; on page 25 when the user inputs a
3, "$,ADD,@" assumes the value 28 and "$,SUBe3" assumes the value 22. By
using (absolute) numeric page identifiers as well as register names in combination
with these three operators, arbitrary user-oriented access paths can be constructed
by the information provider.

32. Servicing keyword directives

In keeping with the Teletel keyword facility as described in Section 2.2,
Teletel/Star allows users to traverse the pages within a service by using keywords
as well as numeric directives. Unlike the conventional Teletel facility, however,

Data Structuring Facilitie§ for Interactive Videotex Systems 	11

the keyword is interpreted as a relative page label, i.e., the designated page
depends on the page being accessed by the user at the time the directive is entered.
Thus, in addition to user-oriented access structures based on directed graphs with
numeric labels on the edges (as in Figure 4), an information provider can define a
directed graph with keyword labels on the edges.

As an example, consider a hypothetical metals service provided via such a
system (Figure 5). If a user accesses a page containing information about steel
production in Canada, the keyword "copper" may lead to a page on Canadian
copper production, "consumption" may lead to a page on Canadian steel
consumption, and "France" may lead to a page on French steel production. If
"iron" is entered after having entered "France", the user would be lead to French

iron production. 'Thus the system is cognizant of the user's context within the
database, and it interprets keyword directives accordingly.

consumption

production

copper

o

steel

..

,

France

Figure 5: Grid structure using keywords

iron
Canada Britain

Rather than storing largely overlapping keyword directories at each node,
the keyword facility is based on a service-wide set of indices defined by the
information provider (Figure 6). As part of a page's program, the information
provider can designate arbitrarily many keyword/index pairs, each of which causes
that keyword within that index to refer to that page, henceforth known as the
target page. Thus any page can have several keyword entries in arbitrarily many
indices for which it is the target. In Figure 6, page 34 is the target page for
"Britain" and "UK" in index IRON-PROD and for "iron" in index BRITISH-
P ROD.

Associated with each page is a sequence of up to three index names that
together designate the dictionary to be used to interpret keyword directives issued
when the user is accessing the page. These dictionaries can be configured to
provide arbitrary user-oriented access structures. When a user enters a keyword,
the first designated index is searched; if there is no match, the second and third
indices are searched successively, stopping when/if a match is found. If a
matching keyword is contained in one of the indices, the corresponding target page

12 	 F.W.Tompa, J.Gecsei, and G.V.Bochmann

IRON-PROD 	 STEEL-PROD

Canada 	 31 	 Canada 	 51
Britain 	 34 	 Britain 	 54
UK 	 34 	 UK 	 54
France 	 38 	 France 	 58

... 	 ...

CANADA-PROD 	 BRITISH-PROD

iron 	 31 	, 	 iron 	 34
steel 	 51 	 steel 	 54
copper 	 81 	 copper 	 84

... 	 ...

contents of sample indices

page # 	 dictionary indices

31 	IRON-PROD, CANADA-PROD, CANADA-IRON
34 	IRON-PROD, BRITISH-PROD. BRITISH-IRON
51 	STEEL-PROD. CANADA-PROD, CANADA-STEEL
81 	COPPER-PROD, CANADA-PROD; CANADA-COPPER

Figure 6: Index structure for keyword processing

is accessed (i.e., its display is generated and its program executed); thdt is, the user
proceeds àlong a directed labelled edge. Again referring to Figure 6, if a user
enters the keyword "copper" while on page 31, the indices searched would be
IRON-PROD, CANADA-PROD, and CANADA-IRON; because "copper" is
not in index IRON-PROD, it would match the entry in CANADA-PROD, and ;

 thus page 81 would be the target page selected. If the keyword does not appear in
any of the indices constituting the dictionary for the current page, an error flag is
set and the current page's program may take corrective action if so-designed by
the information provider.

33. Access path sensitivity

As described so far, the directed graph of pages is defined by the information
provider and remains static until the information provider explicitly amends it.
The Teletel/Star system, however, also provides facilities for causing the active set
of labelled edges to be dependent not only on the current page, but also on the
user's access path that was traced to reach that page.f For example, if a tour
organizer wishes to include the same information about Toronto in the
descriptions of several packaged tours, a videotex page for Toronto data can be
constructed so that the keywords "schedule", "cost", and "hotel" are interpreted
within the context of the tour being examined by the user. As a result, pages need

t It should be noted that the directed graphs in Teletel/Star are still static, predesigned access
structures: they merely give the illusion of adapting to the user's access activity.

1
1
1
1

1
1
1
1
1
1

Data Structuring Facilities for Interactive Videotex Systems 	13

not be duplicated merely to provide different page-exit linkages.

The simplest form of access path dependent addressing is the ability to
backtrack as provided by all videotex systems (see Section 2.2). As an extension
of this idea, Teletel/Star provides an explicit stack of pages (controlled by push
and pop) and a subroutine-like capability (controlled by call and return), both of
which allow an information provider to cause the user's state to be saved and
subsequently restored.

A third form of access path sensitivity results from the notion of a base
page. As part of any page's program, the information provider can cause a
register in the user's state vector (the base, denoted by #) to be assigned the
identifier of an arbitrary page (e.g., selected by the label 25, $, or "$,CCT,@").
This base register may be used subsequently in any label expression (e.g.,
"#,ADD,©"), thus allowing the information provider to interpret a user's input
with respect to some base that depends on the pages previously accessed.

To extend this capability to the processing of keyword as well as numeric
directives, a label expression may involve the use of a dictionary. Normally a
keyword is searched in the context of the current page's dictionary, but the use of
the operator IDX in a label expression indicates that the dictionary of some
(other) specified page is to be consulted. Thus, whereas normal keyword
processing is defined by the program statement "$,IDX,@" (search for the input
keyword in the current page's dictionary), the information provider can instead
specify "#,IDX,@" (search in the dictionary associated with the base page) or use
any other label expression involving IDX. For example, the tour organizer
mentioned above could cause the base to be set at each tour's entry page and
certain keywords to be interpreted with respect to that base.

4. ALTERNATIVE DATA STRUCTURING FACILITIES

The data structuring facilities of today's videotex systems are very similar.
Only Teletel/Star has deviated from the others by introducing a sophisticated
keyword facility and the concept of an executable program related to each page.

We will now re-examine some of the basic notions common to all systems
and propose some alternatives. In Section 4.1 we discuss the role of the
underlying tree structure, in Section 4.2 we propose the expunction of visible page
identifiers, and in Section 4.3 we examine the applicability of conventional
database system technology to videotex systems.

4.1. Eliminating the underlying tree structure

The basic tree structure was described in Section 2.1. As discussed
subsequently, it is rare that the tree forms a suitable structure for presenting
information (i.e., a suitable external schema); rather other structures are
superimposed on the tree to provide better user-oriented access paths. In addition,
the tree is not a convenient structure for data representation on the physical
storage media (internal schema); rather the page identifiers are used independently
of the tree structure for retrieval by a storage-oriented access method based on
hashing, indexed sequential store, or some other keyed retrieval method. As a
result, the primary use of the tree structure is as a storage management device for
the convenience of the videotex system operator.

1

14 	 F.W.Tompa, J.Gecsei, and G.V.Bochmann

Instead of depending on the tree structure, which has on occasion been
confusing to computer-naive users, 13 the underlying structure of the database may
be better suited when viewed as a one-dimensional array of pages. The logical
structure is then merely an arbitrarily large set of numbered pages having
identifiers 1, 2 9, 10, 11,..., 99, 100, 101,.... Such a structure is, in fact, the one
most commonly used for other address spaces, such as for labelling the cells of a
primary memory. In this section we will show that the facilities now provided by
a tree would not be lost nor significantly impaired.

The tree structure provides a framework for storage management in terms of
subtrees. Similarly the array structure can be managed in terms of logically
contiguous blocks. Using an array, pages could be allocated to information
providers in blocks of a suitable size, for example 100 or 1000 pages per block.
Cross-links can still be established independently of the underlying structure (since
there is no requirement that cross-links be contained within a subtree„ there need
not be a restriction that they remain within one block allocation), and thus there is
no problem with the page identifier spaces for several information providers being
interleaved, as long as the information providers are restricted to editing in their
own subspaces. Such a structure is commonly used by operating systems:
programs are allocated one or more regions in memory in which they can store
arbitrary data, often including references to data within the system's and other
users' regions. The extensive operating systems experience of managing primary
memory and the allocation of blocks of tracks on secondary storage devices can be
fruitfully applied to videotex page management. In fact, in keeping with this
experience, it may be better if each information provider has a separate "virtual
array of pages," some of which are designated to be "entry pages" to which
cross-links may be made; this would likely simplify the task « 6f maintaining
consistency among the pages supplied by different information providers.

With the absence of the tree structure, the inclination to distinguish
secondary frames from primary page frames also disappears. In fact, the
distinction need not be made until an information provider constructs access paths.
Whenever a new page/frame is needed, an unused slot is suballocated from one of
the information provider's blocks and linked to the existing pages by cross-links or
by insertion into a frame sequence. Thus, unlike in Prestel, Captain, and Telidon,
frame sequences can be made arbitrarily long and the difference between primary
and secondary frames is merely in their placement as designed by the information
provider and in their access paths as interpreted by the users.

The remaining use of the tree structure is to serve as a focal point for an
information provider; that is, the root of a subtree is identified as being an entry
point and the set of page identifiers in the subtree is recoznizable as belonging to
the information provider. Designating an arbitrary page as the information
provider's entry point causes no real problems, since it has already been found that
commercial videotex systems require printed directories to catalog the information
providers' entry labels. In Prestel, the information provider's name is placed next
to the page identifier at the top of each frame; thus using the page identifier itself
to indicate the information provider is unnecessary.

It may be argued that it is desirable for a user to return to the appropriate
information provider's entry page by merely entering the first few digits of any

Data Structuring Facilities for Interactive Videotex Systems 	15

current page's identifier, as is the case for Captain and Prestel. Because there is
no obvious root for an array of pages, the alternative is to provide an implicit
"link to information provider" from each page; for example, the entry "#0" or
"t" may be reserved to designate a user's request to access the appropriate
information provider's entry page. (The videotex system can retrieve the
appropriate page identifier from the information provider's accounting entry as
described in Section 2.3.3.)

4.2. Eliminating users' awareness of page identifiers

Having found that the tree structure is of little value, it may be quickly
realized that the page identifiers themselves are virtually meaningless. It is ironic
that the, videotex information medium requires the extensive use of printed
material to inform users of page identifiers (see, for example, the Prestel Business

Guide published periodically by The Financial Times Ltd.).

It has long been realized by programming language, operating system, and
data base system designers that users' exposure to absolute memory addresses or
address-dependent data base keys is highly undesirable. Such exposure inhibits the
system's flexibility to reorganize the data (for example, to increase efficiency)
because at any time any user may request a piece of data by an address that may
no longer be valid. Similar criticisms can be levelled at page identifiers: they are
non-mnemonic labels that inhibit the reassignment of pages to information
providers or their re-use by an information provider , within a service. t Again it
needs to be shown that the useful roles of page identifiers as page labels can be
better served by alternative means. (Naturally some form of page identifier must
still be used by the system itself; the criticism here is directed at their visibility to
users.)

Page identifiers serve as a means to traverse the set of pages in a videotex
system. One role of the information provider is to develop access paths that
anticipate users' needs; these are incorporated by means of multiple-choice
displays and cross-links, for which absolute page identifiers are not required by
users. This is, of course, enhanced when keywords are permitted, since the cross-
linking becomes mnemonic.

Often users do not wish to traverse long access paths to retrieve often-
requested pages, and absolute page identifiers allow direct access. The problem is
easily circumvented by the information provider constructing an arbitrarily large
set of quick-access absolute page labels (unrelated to the system's page identifiers)
that are stored in an information provider's label map, similar to a page's cross-
link map, and are usable from any page. For example, whereas entering "3" usés
the current page's cross-link map to determine the target page, entering "#3"
would use the information provider's map. The system could reserve "#0" to
access the entry page (as mentioned in the previous section) or to serve as a
complete system reset in order to insure that a user is not unwillingly trapped
within an information provider's access structure. (In fact, a user cou/d always

t The British Post Office is contemplating increasing the number of recognized information providers by
using four-digit instead of three-digit identi fiers for their roots; this may well cause problems for current
information providers and users.

16 	 F.W.Tompa, J.Gecsei, and G.V.Bochmann

disconnect from the system by unplugging the receiver or hanging up the
telephone, but this is inelegant.)

It is impossible for information providers to supply absolute labels for all
their users' needs, and there is therefore still some demand for each user to access
other arbitrary pages conveniently. With the use of numeric page identifiers, each
user can keep a private, written list of commonly used identifiers for reference
when using the system. A more satisfactory method, and a necessity if there is no
direct access to page identifiers, is to have the system maintain for each user a
private, relatively small absolute label maii similar to that of the information
provider. For example, the command "*3" could access the user's label map to
determine the target page to be retrieved, and "**3" could be used to indicate that
the current page (typically retrieved by following some access path) should be
entered opposite label 3 in the user's label map.

Although absolute labels have been described in terms of numeric directives,
their use is even more appealing with keyword labels. The availability of
keywords would, of course, allow the absolute page labels to be mnemonic and,
thus, easier to recall. Furthermore, the information providers' maps could contain
arbitrarily many entries and each user's map may contain up to some fixed
number of entries. t When a user issues a keyword directive, either the desired
map could be indicated explicitly (e.g., "INDEX" vs. "#INDEX" vs. "*INDEX")
or, similarly to Teletel/Star's indices, the maps could be searched in some
prespecified order (e.g., .first the current page then the user's map then the
information provider's map). Such a system may eventually reduce the need for
printed catalogs of information providers' pages.

Having removed page identifiers from the users' realm, it remains to remove
them from the information providers' as well. In fact, information providers
access pages in a manner similar to their users; thus the absolute labels together
with relative cross-links 'should suffice. The only remaining use for page identifiers
is to build the maps in the first place. Again the experience from programming
language design could be applied: for example, simirarly to conventional linked list
manipulation, when a page is created, it becomes the current page and it must be
linked into some access structure before proceeding to another page. Using the
proposed facilities, it must either be entered into a label map as explained for
users above, or it must be entered into some other page's cross-link map by the
use of a suitable notational convention, e.g., "5@#3" could mean to assign it as
the fifth cross-link on the page denoted by absolute label 3 and "7@2@INDEX"
could indicate that the new page is to be linked as the seventh cross-link on the
page accessed from the second cross-link on the page labelled INDEX.

t Depending on the system's cost to maintain label maps. the information providers and users could be

charged for their maps according to the number of entries, as they are now charged for page storage

and page accesses. respectively.

Data Structuring Facilities for Interactive Videotex Systems 	17

4.3. Providing conventional record-oriented facilities

It seems strange that although data base technology has advanced
significantly over the years, yideotex systems are still based on facilities that
closely resemble early file systems. Surely the research and development devoted
to conventional record-oriented structures can be applied to videotex facilities.

Consider, for example, a real estate application for which pages have been
constructed to contain photographs, floor plan diagrams, and textual descriptions
of houses available from some agent acting as an information provider. Current
systems are not designed to service typical user requests from such a service. All
the current videotex systems provide page access through unique identifiers only;
that is, each user directive identifies at most one target page. However, the typical
search for houses is specified by a boolean expression over a set of secondary keys
that are not unique identifiers, e.g., "three bedrooms and a formal dining room
and priced between $50000 and $70000." In fact, this is exactly the sort of request
best handled by conventional data base systems.

The application of conventional data base technology to videotex systems
can be recognized as soon as it is realized that "videotex page" may be made to
be a valid domain in a record-oriented system. In particular, using the relational
model4 as an example videotex pages could be used for one or more attributes in a
relation. For the real estate example, a relation could be defined in which the
attributes are number of bedrooms , price, dining room type, address,..., layout,

picture, description where the first two attributes' domains are integers, the next
two are character strings, and the last three are videotex pages (which would not
normally be part of a query expression). Thus ponventional relational processing
could retrieve the set of addresses, layouts, and pictures for, which number of

bedrooms = 3. dining room type = "formal" and 50000 < price 70000.

Rather than completely rewriting the videotex page management systems
and the conventional record processing systems in order to merge the two, à
distributed architecture similar to that depicted in Figure 7 may be beneficial. In
the real estate example, a user would request a house inquiry page from the
videotex system, such a page having been constructed as a response page by the
information provider. This page would then be filled in by the user in some
convenient notation and format (the use of Query-by-Example 17 or some other
forms-oriented language may well lend itself to such specification), after which it is
passed to the conventional data base system for processing. The response is then
passed back to the videotex access machine, which either requests the target pages
from the videotex page depository, requests more information from the user, or
displays a dynamically constructed index page for further selection by the user.
Further discussion of this architecture can be found elsewhere. 2

t This sort of capability already exists in many bibliographic retrieval systems as well as in
Teletel/Star's electronic directory , for which the responses are displayed directly if they are few enough
in number or else further information is requested from the user.

videotex

access

machine

18 	 F.W.Tompa, J.Gecsei, and G.V.Bochmann

record-

oriented

database

convert-.
tional

database
manager

videotex

database

manager

videotex

page

depository

communications 	network

central

control

directories

and
local

storage

Figure 7: Schematic for an architecture combinine videotex page management

and conventional record processing

5. CONCLUSIONS

In this paper we have shown that the data structuring facilities available in
current videotex systems are still relatively primitive and need more attention.
The Teletel/S tar experimental system has shown that simple concepts, the use of
keywords and the association of an executable program with each page, can lead
to far more sophisticated and user-oriented facilities. Whereas the provision of
keywords does not expand the functionality of videotex systems, the program
facility provides an opportunity for user interaction that goes beyond the simple
selection of pages. Much more research and development is still warranted.

We feel that the experience gained by those who have dealt with
conventional programming languages, graphics, operating systems, and data base
systems should be applied to the future design of videotex systems. For example,
we have proposed replacing the underlying tree structure by an array of pages and
removing the visibility of page identifiers. In addition the marriage of page-
oriented videotex technology with conventional record-oriented retrieval systems
seems very promising.

Data Structuring Facilities for Interactive Videotex Systems 	19

Acknowledgments

Most of the material in this paper was collected or developed during the
First Montréal Workshop on Videotex Technology sponsored by the Université de
Montréal and the Canadian Natural Sciences and Engineering Research Council
under grant 00363. We wish to acknowledge the contributions of the other
attendees, especially A. Ball, B. Botten, D. Leahy, D. Le Moign, and A. Turpin,
as well as the contributions of our colleagues who could not attend. We are
particularly indepted to Daniel Le Moign for his careful explanation of
Teletel/Star. The financial support of the Canadian Natural Sciences and
Engineering Research Council under grants A9292 and G0363 and the Canadian
Department of Communications under project 908-01 are appreciatively
acknowledged.

References

1. M. Aysan, "Project IDA: home of the future," Inside Videotex, Infomart,
Toronto, Canada, 1980, pp. 60-75.

2. A. S. Ball, G. V. Bochmann, and J. Gecsei, "Videotex networks," IEEE

Computer, Vol. 13, No. 12, December 1980.

3. R. D. Bright, "The télématique program in France," Viewdata 80, Online
Conf. Ltd., London, UK, 1980, pp. 19-24.

4. D. D. Chamberlin, "Relational data-base management systems," ACM

Computer Surveys, Vol. 8, No. 1, March 1976, pp. 43-66.

5. J. J. Coyne, "OMNITELTm — an integrated broadband distribution system
for the eighties," Coyne Associates Systems Consultants, Ltd., Winnepeg,
Canada, 1980, 15 pp.

6. D. Godfrey and D. F. Parkhill (eds.), Gutenberg 2, Press Porcepic, Toronto,
Canada, 1979, 231 pp.

7. A. Henriot and J. Yclon, "Langage de programmation des bases de données
Star," CCETT Note Technique RSI/41/443/79, Rennes, France, December
1979, 39 pp.

8. G. T. Hopkins, "Mnitinode communications on the Mitrenet," Proc. of the
Local Area Comm. Networks Symp., Mitre Corp. and NBS, May 1979, pp.
169-177.

9. E. Lee and S. Latrémouille, "Evaluation of tree-structured organization of
information on Telidon," Telidon Behavioural Research I, Dept. of
Communications, Ottawa, February 1980.

10. D. Le Moign, "Presentation de Star," CCETT Note Technique
RSI/NT/23/17/80, Rennes, France, March 1980, 13 pp.

11. P. McFarland, "Videotex 1980: state of the art in Britain," Inside Videotex,
Infomart, Toronto, Canada, 1980, pp. 20-24.

12. D. F. Parkhill, "Videotex 1980: state of the art in Canada," Inside Videotex,
Infomart, Toronto, Canada, 1980, pp. 12-18.

20 	 F.W.Tompa, J.Gecsei, and G.V.Bochmann

13. D. A. Phillips, "Telidon and the human factors of videotex data bases,"
Proc. of the Sixth Inter. Conf on Very Large Data Bases, IEEE, ACM, and
CIPS, October 1980, pp. 330-331.

14. E. Sigel (ed.), Videotex: The Coming Revolution in Flamel Office
Information Retrieval, Knowledge Industries Pub!., White Plains, N.Y.,
1980, 154 pp.

15. K. H. Taylor, "On-line business databases and viewdata," Proc. Online 79,
Online Conf. Ltd., London, UK, 1979, pp. 273-282.

16. K. Yasuda, "Conception of Captain system — background, experiment, and
future plans," Viewdata 80, Online Conf. Ltd., London, UK, 1980, pp. 107-
111.

17. M. M. Zloof, "Query-by-Example: a data base language," IBM Systems J.,
Vol. 16, No. 4, 1977, pp. 324-341

APPENDIX D: SOFTWARE FOR THE SIMULATION OF
PAGE CACHE STRATEGIES AND VIDEOTEX
FILE STRUCTURES

type

var

111111111111111111111•11111111 n 111111 1111111111111111111 • 11M•111

Dec 3 20:42 1931 sim.p Page 1

program TelidonCacheSimulation(input,output);

const
scache = 20000; f capacity of the cache in characters j
ecache = 100; 	f maximum number of entries in cache
maxusers = 100; f maximum number of users)
NoPages = 50000; 	f Total number of Pages of the Data Base 1
IndexSize = 400; 	f Size of an index page (chars)»)

IndOccup = 0.80; 	f Occupation factor of the index pages 1
MaxTreeLevel = 6; 	f Maximum level of Telidon Tree 1
IntArrTime = 1.0; 	(Mean interarrival time (when not supplied
Pmean = 800.0; 	f mean data-page size (when not supplied) 1 .
Pstddev = 250.0; 	f Standard deviation of data-page size 1

link = record
pageid, absaddr 	integer;
end;

links = record
parent, next, previous : link; f tree links 1
menu : array [1..20] of link; 	(menu selection links 1
end;

page = record
Plinks : links; 	-
pdi : array[1..10] of char
end;

mapping = record
f Here we will assume it is a B-tree or Hash table 1
(The B-tree/Hashing page contents are omitted 1
end;

Rtype = (Tpage, Tmapping);

(Cache variables
icache : 0..ecache; 	»f number of entries in cache
storused : integer; 	f total storage in use j
cache : array [1..ecache] of record

pageid : integer; f page or mapping number 1
size : integer;
TimesUsed : integer;
TimeInCore : real;
LastTimeUsed : real;
case CacheType : Rtype of
Tpage : (Ppage : - page);
Tmapping : (Pmapping : 	mapping)
end;

(contents of a telidon page 1

• ec 3 20:42 1981 sim.p Page 2

[User variables j
iuser : 0..maxusers; 	number of users)
user : array [1..maxusers] of record

Unumber : integer; 	t user number j
Upageid : integer; 	t current page)
Ulinks : links; t User relative location)
end;

(MAIN PROGRAM VARIABLES)
genseed : integer;

CurrUser, CurrComm, CurrPageid, CurrSize : integer;
lu : integer;
Time, CurrTime : real;
SearchMethod 	(Hashing, BTree):
(These should be constants, but in Pascal we have to compute them
EntrInd, BtreeHeight, HashNoBuckets, MaxBtree : integer;
Prob2Acc : real;

E STATISTIC GATHERING VARIABLES I 	 .
, Srequests : integer; 	[total number of requests)

SreqType : array [-3..20] of integer; (total requests per type)
Stime : real; 	(total time elapsed j
SindDisk : integer; 	1 number of index requests to disk J
SdatDisk : integer; 	[number of data-page requests to disk 1
SdiskChar : integer; 	[number of chars (data-page) read from disk)
SdatCache : integer; 	(number of data-pages requests to cache)
SindCache : integer; 	{ total index requests to cache)
SsizeRep/ : integer; 	t total entries in cache at replacement time 1
SreplCache : integer; 	[total number of pages deleted from cache 1

(FUNCTIONS)

function random (var seed : integer) : real;
(Uniform Random number generator 	U(0,1).
This version should update the seed.
begin
seed := seed*65539+1;
if seed<0 then begin seed:=seed+2147483647; seed:=seed+1 end;
random := seed/2147483648..0
end;

function normal (seed : integer) : real;
(Generate a normal random number with mean 0 and variance 1
N(0,1). j 	•
var 	tot : real;

: integer;
begin
(small seeds are very bad behaved, so we arbitrarily increase it 1
seed := abs(22222*seed+1);
tot := -6.0;
for i := 1 to.12 do tot := tot+random(seed);
normal := tot

• end;

111•11111111111111111M•11.1111111111111131111111111111111•11111111111MMIIIIIIIIIIM

11•11111111111111111111111•1111IIIMM11111•1 1111 11111111111

Dec 3 20:42 1981 sim.p Page 3

function InCache (id : integer) : boolean;
f Search in cache for page id, either data page or index page

and perform corresponding updates J
var 	i : integer;

- begin
if id<0 then Sinddache := SindCache+1 else SdatCache := SdatCache+1; • (Stet)

while (i<icache) and (cache[i].pageid<>id) do i := 1+1;
if cache[i].pageid = id then begin

writeln('-->in InCache, id=',id:6, found'); 	(debug line) '
cache[1].TimesUsed := cache[i].TimesUsed+1;
cache[i].LastTimeUsed := CurrTime;
InCache := true
end

• else InCache := false;
end;

function replacement : integer;
(Find one entry to be deleted from the caché)
var

i : 1..ecache;
index, ind : real;

begin 	'
index := 1.0e20; 	(very large value)
SsizeRepl := SsizeRepl+icache; (Stat)
SreplCache := SreplCache+1; (stat)
i := 1;
while i<=icache do begin

ind := cache[i].TimesUsed/
(cache[i].size * (CurrTime-cache[i].TimeInCore+0.0001));

if index>ind then begin
index := ind;
writeln('-->in replacement, ind=',ind,' id=',cache[i].pageid:6);
replacement := i 	-
end;

i := 1+1
end

end;

(debug line)

procedure ReadPage (id, s : integer);
(This procedure simulates reading in a new page.

It .follows these steps:
Release pages as necessary to make space
Update information of new page.

if id>0 this is a data page, if id<0 it is an index page.
var 	i : integer;
begin
writeln('-->in ReadPage, will read id=',id:6,' of size',s:5);
while (storused>0) and (storused+S 	scache) do begin •

i := replacement; 	"
storused := storused - cache[i].size;
cache[i] := cache[icache];
icache := icache-1
end;

if storused+s > scache then writeln('ERROR - cache too small');
icache := icachel-1;

(debug line)

Dec 3 20:42 1931 sim.p Page 4

with cache[icache] do begin
size := s;
TiMesUsed := 1:
TimeInCore := CurrTime;
LastTimeUsed := CurrTime:
pageid := id;
if id < 0 then begin 	'

CacheType := Tmapping;
SindDisk := SindDisk+1 end 	(Stat)

else begin
CacheType := Tpage;
SdatDisk := SdatDisk+1; (Stat)
SdiskChar := SdiskChar+s 	end

end;
storused := storused+s
end;

procedure Searchpage (id : integer);
[This procedure simulates the search strategy, .searching an

• index, to find the disk address of a page.
Two strategies are implemented now: B-trees and flashing)
var 	I, ip, base : integer;

rel : real;
begin
writeln('-->in SearchPage, id=',id:6); (debug line)
case SearchMethod of
Hashing : begin

A small seed makes is bad, so enlarge it
id := abs(2222*id+1);
(Decide probe position I
ip := trunc(random(id)*HashNoBuckets+1);
(if not InCache(-ip) then ReadPage(-ip,IndexSize);)
SindDisk:=SindDisk+1;
(Decide if extra probe is needed
if random(id)<Prob2Acc then

[if not InCache(-ip-1) then ReadPage(-ip-1,IndexSize);)
SindDisk:=SindDisk+1;

end;
- BTree % begin

(Find relative location in Btree
rel := id/1000000*NoPages/MaxBtree;
base := 1;
for i := 1 to BtreeHeight do begin

ip := -trunc(rel)-base;
if not InCache(ip) then ReadPage(ip,IndexSize);
rel := rel*EntrInd;
base := base*(EntrInd+1)
end

end
end
end;

function gensize (pageid : integer) : integer;
' • (Generate (or find) size for a page identified by pageid.

It would be very nice if the same paricid always
•

1.111 	UM 11111 111111 - 1111111 111.1 	MI MI MI .1111. MI

11•111 	 MI MI MI MIMI MI MI MI MI MR 111111 	 • NM

Dec 3 20:42 1981 sim.p Page 5

(Currently is generated as a normal variable with
parametric Mean and standard deviation J

var I : integer;
begin
i := 1;
while (i<icache) and (cache[i].pageid<>pageie do j := i+1;
writeln('-->in gensize, id=',pageid:6, i=',i:3,' icache=',icache:2);, 	(debug line)
if cache[i].pageid = pageid then gensize := cache[i].size 	•

else gensize := trunc(normal(pageid)*Pstddév+Pmean)
end;

function genpageid : integer;
f Generate a random number that can be used as page id

1,2,3.., or 6 digit number
var 	t : real;
begin
t := random(genseed)*9+1;
for i:=1 to trunc(random(genseed)*6) do t := t*10;
genpageid := trunc(t)
end; 	 •

procedure ZeroLinks (var x : links);
[Clear a "links" record.)
var i : integer;
begin.
x.parent.pageid := 0; 	x.parent.absaddr := 0;
x.next.pageid := 0; 	x.next.absaddr := 0;
x.previous.pageid := 0; x.previous.absaddr := 0;
for 1:=1 to 20 do begin

x.menu[i].pageid := 0; x.menu[i].absaddr := 0 end
end;

begin
[Initialize variables
icache := 0;
storused := 0;
iuser := 0;
genseed := 7777777;
Time := -1;
SearchMethod := BTree;
Average number of entries per index-page, assume 8 chars per entry)

EntrInd := trunc(IndexSize*lndOccup/8);
[Height of B-tree I
BtreeUeight := trunc(ln(NoPages)/1n(EntrInd) + 0.999);
HashNoBuckets := trunc(NoPages/EntrInd + 0.999);
MaxBtree := EntrInd;
for i:=2 to Btreelleight do MaxBtree := MaxBtree*Entrind;
(Probability of two accesses for Hashing table)
Prob2Acc := IndOccup/(1-IndOccup)/2/(IndexSize/8);
Srequests := 0; Stime := 0;
for i:=-3 to 20 do SreqType[i] := 0;
SindDisk := 0; SdatDisk := 0; SdiskChar := 0; SdatCache := 0; SindCache := 0;
SsiZeRepl := 0; SreplCache := 0;

Dec 3 20:42 1981 sim.p Page 6

(The input to this simulation program is in the standard input file;
it contains one record per request with the following information:
(a) User identification (integer)
(b) Type of request

1..20 is menu selection,
-1 is ancestor,
-2 is next,
-3 is previous
0 is absolute request by page id.

(c) Requested page id number (0 if it is not known)
(d) Size of page requested (0 if not known)
(e) Time (decimal) of request.

• (MAIN 	LOOP)

while not eof(input) do begin
readln(CurrUser,CurrComm,CurrPageid,CurrSize,CurrTime);
Srequests := Srequests+1; 	(Stet)
(Adjust time)
if Time=-1 then Time := CurrTime;
if (CurrTime=0) or (CurrTime<Time) then

Time := CurrTime + IntArrTime*ln(random(genseed));
Stime := Stime + CurrTime-Time; (Stet)
Time := CurrTime;
if (CurrComm<-3) or (CurrComm>20) then writeln('error in input file');

Locate user in User table 	1
iu := 1;
while (iu<iuser) and (user[iu].Unumber<>CurrUser) do iu := iu+1;
if user[iu].Unumber <> CurrUser then begin

New user entry]
iuser := iuser+1; 	iu := iuser;
user[iu].Unumber := CurrUser;
user[iu].Upageid := 0;
ZeroLinks(user[iu].Ulinks);
(For new user, force request of absolute page 1)
CurrComm := 0; CurrPageid := 1;
end;

SreqType[CurrComm] := SreqType[CurrComm]+1; 	(Stat)
(if page id is not specified, generate according to command

and previous data)
if CurrPageid = 0 then

if CurrComm = -1 then
CurrPageid := trunc(usér[iu].Upageid/10)

else if CurrComm = -2 then CurrPageid := user[iu].Upageid+1 	•
else if CurrComm = -3 -Mien CurrPageid := uscr[iu].Upageid-71
else if (CurrComm<=10) and (CurrComm>0) then

CurrPageid := user[iu].Upageid,10+CurrComm-1
else CurrPageid := genpageid;

• (If out of bounds, make it random)
if (CurrPageid<l) or (CurrPageid>999999) th2n CurrPag.3id := genpageid; 	 •
userriul.Unaq ,>id : = (irrPn -ti 1.

Mil MI MI MI
1111111 	 UM MI 	 MIBIt MI MI MI NM MI

MI URI UM NM MINI 	• Mil MI MI MI MI 111111 	MN BIM•

Dec 3 20:42 1981 sim.p Page 7

if CurrSize = 0 then CurrSize := gensize(CurrPageid);

(Get requested page into the cache
if not InCache(CurrPageid) then begin

if CurrComm = 0 then SearchPage(CurrPageid);
ReadPage(CurrPageid,CurrSize)
end;

write read and generated information)
writeln('User=',CurrUser:2,' 	Command=',CurrComm:3, 	(debug line)

1 	Page Req=',CurrPageid:6, ' 	Page Size=', (debug lin)
CurrSize:6, • 	Time=', CurrTime:7:4); (debug line)

end;

f STATISTIC PRINTING)
writeln; 	writeln;
writeln('Model Description 	');
writeln('Total size of data-pages in database',NoPages:7);
writeln('Size of internal cache memory (chars)',scache:6);
writeln('Size of index-page (chars) is',IndexSize:5):
writeln('The index occupation factor is',indOccup:5:2);
writeln('Average number of entries per index-page is',EntrInd:3):
write('The index is organized as a
case SearchMethod of

Hashing : begin writeln('hashing table');
writeln('Number of buckets oÈ hashing table is',HashNoBuckets:5) end; -
BTree: begin writeln('B*-tree .):

writeln('Height of B*-tree is',BtreeHeight:2) 	end;
end:'

writeln; 	writeln;
writeln('Input Statistics 	
writeln('Total number of different users',iuser:3);
writeln('Total number of page requests received',Srequests:6);
writeln('Percentage of ancestors requested',SreqType[-1]/Srequests*100:7:2);
writeln('Percentage of "next page" requested', SreqType[-2]/Srequests*100:7:2);
writeln('Percentage of "previous page" requested', SreqType[-3]/Srequests*100:7:2):
writeln('Percentage of direct page requests', SreqType[0]/Srequests*100:7:2);
writeln('Percentage of menu-type requests by menu-option');
write('(descending tree) ');
for i:=1 to 10 do write(SreqType[i]/Srequests*100:6:2);
writeln; 	 •
write('(arbitrary link) ');
for i:=11 to 20 do write(SreqTypern/Srequests*100:6:2);
writeln;
writeln('Total time elapsed ',Stime:8:4);

• writeln; 	writelh;
writeln('Performance Statistics 	'):
if Stime>0 then
writeln('Average number of requests per unit time ', Srequests/Stime:8:4):

• writeln('Number of pages requested to the cache ',SdatCache:6);.
writeln('Number of index-pages requested to cache ',SindCache:6);
writelnUtiumber of pages requested to disk ',SdatDisk:6);
writeln('Number of index-pages requested to disk ',SindDiski6);
if Srequests>0 then
writeln('Disk requests per page requested',(Sindpisk-K3datDiskI/F,renuest-.4:7:41:

writeln('Percen
if (SindCache>0

writeln

writeln('Number
if SreplCache>0

writeln

writein('Number
end.

Dec 3 20:42 1981 sim.p Page 8

tage of requests satisfied Within the cache');
) and (SdatCache>0) then
(° pages=',100*(SdatCache-SdatDisk)/SdatCache:5:2,

index-pages=',100*(SindCache-SindUisk)/SindCache:5:2):
of data-characters read from diSk ',Sdiskehar:9); -
then
('Average number of entries in cache . at replacement
SsizeRepl/SreplCache:5:2): 	•
of replacements in the cache °, SreplCache:6);

11•111 11MI MIMI MIMI MI —
.

M Mil Inn 	MOM ION WM 	MR MI MIR IMO 11•111 MIS

ie-
fr

;141

Z91.. n
k.

r
0.4

'

s n gi
c-
,

i

