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ABSTRACT  

This is the first of a set of three reports on the Frame Mode 

Interface to digital networks. The objectives and constraints of this 

somewhat controversial subject are summarised, as are a number of 

Practical considerations sometimes overlooked in proposals to standards 

bodies; some of the objectives are thereby shown to be incompatible. 

As an aid to discussion of the various Frame Mode DTE (FDTE) 

possibilities, the report presents a classification of such DTEs 

based on the location of the call control function with respect to 

the data link control (DLC) function. It is shown that X.21-like 

protocols present the greatest possibility for uniformity of access 

to circuit and packet networks, although X.25-like call control 

protocols provide the greatest flexibility for use over packet 

networks. 

Interworking of various DTEs on the same or different networks 

is considered and it is shown that interworking during the data 

transfer phase of a call presents few problems. Call control through 

existing standards, however, remains stubbornly nonuniform, particularly 

in the case of internetwork calls; a DTE must perform different start 

of call actions depending on the nature of the remote DTE. As a 

digression, it is shown that X.21 terminals on a circuit network can 

be augmented by a layer of end-to-end protocol to facilitate internet-

working with packet or other circuit networks. This observation is in 

preparation for a truly universal call control method presented in a 

companion report. 



Three representative proposals on the FDTE are summarised 

using the framework established by the report. None of them meets 

all the requirements of the desired Frame Mode Interface. 
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1.  INTRODUCTION  

1 

Three or four years ago the urgency of defining interfaces to 

public packet networks (PPNs) led to rapid acceptance of CCITT 

Recommendation X.25. This interface has been adopted and supported by 

most public and private carriers in North America and Europe. Now 

that the crisis has passed, and both the networks and the user community 

have gained experience in the implementation and use of X.25, it is 

possible to ask if there are improvements or alternatives which could 

make access to data networks easier. 

The single channel Data Terminal Equipment (DIE) is a case in 

point. For synchronous DTEs such as IBM's 2780 or 3270 which require 

only a single virtual channel, the full X.25 interface is an obvious 

overkill. Of the Level 3 functions, multiplexing of logical channels 

is unnecessary, flow control is redundant (since it is also present at 

Level 2), and only call control of some sort is required. During the 

data transfer phase, Level 2 alone (the frame level, HDLC) is adequate 

for providing sequencing, flow control and error control. This 

observation has motivated CCITT activity to define a simpler frame 

mode access method which would require less DTE memory space and CPU 

time than that of a full X.25 packet mode DIE(  POTE). This rather 

straightforward objective was generalized when it was realized that 

DTE/DTE communication through circuit switched facilities- analog 

(voice) or digital (X.21-like) - presented the same limitation to a 

single channel, and possibly a similar potential for simplification. 



Accordingly, access to digital circuit switched networks was included 

with simplified packet network access as a design goal for a new access 

method and a new type of terminal: the frame mode DIE  (FDTE). 

More specifically the objectives assumed implicitly or 

explicitly by most authors are: 

a) FDTE/FDTE communication through a leased line, or through 

a switched digital circuit service, or through a switched 

virtual circuit (packet switched) service; 

h) FDTE/PDTE communication through a switched virtual circuit 

service, where the PDTE accesses the network through full 

X25; 

c) FDTE/FDTE or PDTE communication through a tandem connection 

of real digital circuit and virtual circuit. The PDTE, if 

present, is connected to the packet network; 

d) multipoint access to the network for FDTEs, each FDTE on the 

access line having the ability to establish a call to a 

different destination. 

Thàt some of these objectives are mutually incompatible, or perhaps 

over-ambitious, will be discussed in the next chapter. 

The definition of a simple FDTE is complicated by a number of 

constraints: 

a) Existing standards should be observed to the greatest 

extent possible; in particular Recommendation X.21 for 

access to circuit switched networks and HDLC elements 

of procedure, at least, for access to virtual circuit 
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packet networks (existing HDLC classes of procedure are 

even more to be preferred). In addition, de facto  industry 

standards such as SDLC and even BSC should at least be 

considered. 

h) DTE memory requirements and CPU load should be kept small. 

c) Development time, which is related to complexity, should be 

must less than for full X.25 and not significantly greater 

than for HDLC alone, and modification to existing software 

should be minimal. It is true that software development 

can be amortized over the number of terminals sold, but if 

the development effort is prohibitive then only a few 

manufacturers will attempt it and competition will be reduced. 

This report examines some of the general considerations relating 

to the frame mode DTE with a view to reassessment of the commonly accepted 

objectives listed above. Chapter 4 presents a framework within which 

the various existing proposals can be placed. The three alternatives 

thereby defined are examined separately and then compared, and the most 

promising approach is identified. Several Appendices summarize position 

papers on the FDTE which have been submitted to CCITT. 
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2. GENERAL CONSIDERATIONS  

This chapter contains some obserations relating to communication 

protocols and services which the reader should bear in mind during 

the arguments of subsequent chapters. 

2.1 Complexity  

Data link control procedures such as HDLC, DDCMP or BSC are 

difficult and expensive to implement properly. HDLC in particular, 

because of its many encrustations and occasional ambiguities, has a 

reputation of requiring a big development effort. By contrast, the 

packet level (level 3 of X.25) is relatively simple because of its 

clean  structure -and the fact that the complexity of sequencing and 

error control is handled within HDLC (level 2). Informal reports 

from the Computer Communications Group at Bell Canada put the breakdown 

of effort as 80%-90% on HDLC and 20%-10% on the packet level. The 

experience of the author's group in the Computer Systems Development 

Laboratory at Carleton University was similar, though perhaps less 

extreme. Significant modifications to working HDLC software are not 

relished by communication software groups. 
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2.2 Memory Space  

Memory space required for the code alone of X.25 is typically 

about 12 K bytes on a microprocessor though the figure varies depending 

on implementation (processor type, peripheral hardware, software 

structure, features included, etc.). The split is approximately even 

between HDLC and the packet level. 

We turn now to the question of roughly how much reduction in 

memory space can be expected in the FDTE as compared with the PDTE. 

Recall that, of the main packet level functions of X.25, only flow control 

is redundant and can be relegated to the frame level. Since flow control 

typically accounts for less than half the code of the packet level, we 

see a maximum space reduction of only 3 K bytes. Perhaps X.25 is not so 

bad after all! 

As for the remaining function of call control, over 3 K bytes are 

required in a typical X.25 implementation. No matter what scheme is finally 

adopted for the FDTE, this function must be present somewhere, and there 

is no reason to expect drastic changes in its memory requirements. As 

a consequence, all FDTE proposals will take up approximately the same 

amount of space. Selection of one proposal over another will therefore 

be based on considerations of complexity and functional capabilities, 

not on memory space. 



2.3 Interworking During the Data Transfer Phase  

Interworking during the data transfer phase of a call becomes a 

matter of defining pairs of anchor points for the data link control 

procedures between which flow control, sequencing and error control 

are exerted. In the case of a leased line, voice circuit or digital 

circuit connection (Figure 2.1) the anchor points are the two FDTEs. 

For packet network connections (Figure 2.2) the anchor point pairs 

are: (FDTE, DCE), one access link; (DCE,DCE), the network; and 

(DCE,FDTE), the other access link. Finally for tandem connections 

between circuit and packet networks (Figure 2.3), the anchor point 

pairs are; (circuit FDTE, gateway DCE), the real circuit; (gateway DCE, 

DCE), through the packet network, with some variations possible here 

depending on the level of interconnection; and (DCE,FDTE or POTE),  

the access link. Note that there is no particular requirement for the 

DLCs to be the same for all anchor point pairs. Mixtures of HDLC, 

BSC and DDCMP are workable, although there is normally a strong incentive 

to keep the number of packages to be developed and maintained to a 

minimum. 
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2.4 Call Control on Circuit Switched Networks  

The present CCITT standard interface to circuit switched networks 

is X.21. In the context of the present discussion, the important 

feature of this interface is that the network is notified of changes in 

call status (e.g. call request, clear request) by simple voltage 

changes on specified pins of the interface plug. Address information 

and call progress and service signals are exchanged as special bit 

sequences, but once the call is established, the real circuit is completely 

transparent to the data exchanged between terminals. 

Consider now the use of special frames or bit sequences, rather 

than special pins, to alert the network to changes of call status. Several 

proposals before CCITT (e.g. Canadian, IBM Europe) have made this suggestion 

for FDTE call control. It is clear, however, that any such method violates 

the very essence of real circuits: complete bit transparency (or at least 

byte transparency). The user would have to be careful to avoid dangerous 

bit patterns during the.call. The ultimate result of this approach would 

be a circuit network which works only for, say, HDLC terminals! 

Another problem associated with use of special bit sequences to 

perform call control on a circuit network is that the network must provide 

each access line with a scanner which is dedicated to watching the 

bit stream for call control frames, and alerting the switch controller 

when one is received. (Note that a single processor would be insufficient 

for this task in the circuit switching context). Compare this requirement 

for extra equipment with the simplicity of X.21, in which the call control 



leads of many access lines can be polled at a relatively slow rate, 

and the more sophisticated bit sequence (address) interpretation 

firmware can be directed to the DTE presently requesting service. 

We close this list of the deficiencies of bit sequence-based 

call control with a minor complaint. Those frames emitted by one DTE 

to close a call will emerge at the other DTE before the call is cleared, 

since the node cannot buffer entire frames without violating another 

characteristic of circuit switching, the low constant delay. The closing 

protocol would have to be designed with this eavesdropping in mind. 
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2.5 Multipoint Access to Circuit and Packet Networks  

Multipoint access means that several DTEs share the same access 

line to the network. Such an arrangement would be convenient if, for 

example, there were several low data rate or low activity rate terminals 

at a customer's premises. It would not be necessary to install separate 

lines to each terminal. 

Multipoint access to a packet network presents few problems, since 

multipoint DLCs have been in existence for years. 	The basis of sharing 

the access line is frame interleaving; coordination among the DTEs is 

supplied by the rules of the DLC. The variable queueing delay on the 

access line appears as one component of the larger queueing delay through 

the network as a whole. 

Multipoint access to circuit network, on the other hand, is more 

difficult. The basis of sharing the access line could not be frame 

interleaving, since queueing delay would violate  one 'of the characteristics 

of real circuits: that of low, constant delay. Byte interleaving is the 

obvious approach (in fact, the present X.21 specifies one pin of the 

interface as supplying byte timing), but it would require multiplexing 

and synchronization hardware which is not commercially available. If 

it were available, it would be expensive, since the problem amounts to 

setting up a special sort of TDM line. 
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2.6 Internetwork Calls  

Consider an internetwork call placed by an X.25 PDTE on a packet 

network. The call request packet will be directed by the local network to 

the appropriate gateway machine, which can examine the address information 

in the packet and place a call to the destination DTE on behalf of the 

originating DTE. The originating DTE experiences only one stage of call 

control, in principle, no matter how many intermediate networks are 

placed between it and the destination DIE. The same service can be given to 

a FDTE accessing the packet network through an X.21-like interface. 

On the other hand, a gateway node connecting a circuit net to other 

circuit nets or packet nets might see an X.21 interface to its circuit 

nets and an X.25 (or X.75) interface to its packet nets. In this case, 

an X.21 FDTE on the circuit net, when placing an internetwork call, will 

have to go through two or more stages of call control, since no address 

information is given to the gateway by the circuit net. The X.21  FOIE  will 

experience different call control services over packet and circuit networks. 
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2.7 Signals Exempt from Flow Control  

A protocol normally contains some signals which are exempt from 

flow control; they are allowed to be transmitted to the node (or to 

the remote DTE) even if the destination has indicated unwillingness 

to accept more data packets. Examples are call clear requests, 

interrupt packets, and frame level set mode commands. 

The usual mechanism involves establishing some "out of bandn 

identification. In X.25, for example, the packet header establishes 

packet type, and only data packets are subjected to flow control (though 

restrictions may apply to other packet types, such as a limit of one 

outstanding interrupt request). In X.21, a special interface pin signals 

a clear request electrically. It is possible to extend X.21 with more 

pins for other out of band signals, but considering the fact that the 

number of such signals may grow, it seems wiser to have a single out of 

band pin with an associated bit sequence transfer to provide details. 

One problem we encounter when relying on frame level flow control, 

therefore, is that all packets transmitted through the DLC are subjected 

to the same flow control. This can cause delays in sending clear request 

or interrupt request packets. There are several approaches: 

- live with it; 

- embed the flow control exempt signals as special frames 

within the DLC [1]; 

- precede each transmission of such a packet by a resetting 

of the frame level, on the understanding that reset clears 

the transmit and receive queues. 



The second approach is cleanest, but involves the extension of 

existing standards with all its associated debate. The third 

approach is brutal, in that potential data loss is associated with 

each reset, but needs little, if any, adaptation of existing software. 

Further, the data loss may be tolerable at those points in the end-to-end 

dialogue where a flow control exempt signal must be sent, such as 

interrupt or call clear. 

1 
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Figure 2.2 DLC Anchor Points: Virtual Circuit  
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Figure 2.3 DLC Anchor Points: Tandem Connection  
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3. IS THE UNIVERSAL  DIE POSSIBLE? 

We have seen in Chapter 1 a list of objectives and constraints 

which apparently must be met by the FDTE. We have also seen in Chapter 

2 some of the considerations which must be taken into account in any 

realistic FDTE definition. This chapter is a reassessment of the stated 

objectives in the light of the considerations of Chapter 2; it will be 

seen that, while the objectives taken singly are reasonable, taken as 

a whole they contain mutual contradictions. 

Consider first the requirement for a uniform call control 

method on both packet and circuit networks. As discussed in Section 2.4, 

this leads to rejection of call control based on exchange of special frames 

or bit sequences. Notification of changes in call status must take place 

by voltage changes on specified interface pins, in a similar fashion to the 

present X.21. In fact, X.21 is a satisfactory solution for this requirement. 

Next consider the multipoint access requirement. Multipoint access 

can be achieved easily by bit sequence based call control (as, for example, 

by X.25-like call control above a multipoint DLC). Section 2.5, though, 

demonstrated that use of call control based on voltage changes on a multipoint 

line, while possible, is expensive. 

We seem to be faced with a choice: do we abandon the requirement 

for multipoint access or the requirements for identical call control 

procedures for access to circuit and to packet nets? Multipoint access is 

too attractive to dismiss, since a single access line to a group of customer 

terminals offers substantial economies in the case of packet net services. 



On the other hand, the concept of a single uniform call control method 

is intriguing, and its adoption may conceivably lead to some economies 

of scale in production. 

Figure 3.1 summarizes the situation: X.21 gives uniform call control 

but uneconomic multipoint access, while bit sequence based call control 

(e.g. by X.25 or in the DLC) provides multipoint access but no access to 

circuit nets. 

One other point deserves consideration. Section 2.6 showed that, 

if uniform call control on circuit and packet networks were required to 

extend to internetwork calls, then a new gateway interface to a circuit 

net would have to be defined. We find ourselves in the position of 

having to create, not one new standard, but bNO: the gateway interface 

and the FDTE interface. 

Why are we drifting farther from our objective of a universal FDTE, 

instead of closing in on it? It is the author's contention that there has 

been a confusion of goals in the objectives listed in Chapter 1. The 

similarity of operation in the data transfer phase of a call between the 

single-channel  DIE  operating on a packet network, on one hand, and the 

DTE operating over a circuit switched network, on the other hand, led to 

the conclusion that there should or could be a complete correspondence, a 

single uniform FDTE, even to the call control protocol. The conflicts and 

awkwardness turned up so far suggest strongly that this is not so. 

A reassessment of the objectives is the obvious means to resolve 

the dilemma. Listing them in what now appears to be order of decreasing 

priority we have: 
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- the ability of FDTEs and PDTEs to interwork during the data  

transfer phase; 

- a single, uniform call control method for both circuit & 

packet networks; 

- simplified access to packet networks for single channel DTEs; 

- multipoint access to packet networks. 

No one method achieves all these goals economically, as we have 

seen. So why should we not abandon the second goal and allow two 

or more methods? The arguments in favour are simplicity and the 

possibility of using existing standards. Chapter 5, in fact, 

demonstrates that a simple layer of end to end protocol to augment 

X.21 on circuit nets will facilitate internetworking and interworking 

with X.25 DTEs on packet networks. Countering these arguments is 

the fact that for the terminal manufacturer to support multiple 

options is an increased load on his distribution and field service 

organizations. 

It is possible, however, to supply two or more call control 

software modules in the same terminal, with a switch to select between 

them. The falling costs and rising densities of semiconductor 

components will make this even cheaper in future (certainly cheaper 

than the data sets forced on us if we try to combine the second and 

fourth objectives above). In any case, the bulk of the terminal 

software - the DLC, the keyboard and display support, and any 

peripheral handlers - would remain the same regardless of call control 

technique. The argument against such an approach is that the complexity 

of the resulting software would mean increased development time and 

software maintenance cost. 



As for the third objective, we note that implementation of X.25 

for a single channel DTE is not really very difficult, once a working 

frame level module is available (see companion report [3]). There is 

some irony in the fact that the third objective was the original 

motivation for FDTE investigations. 

The fourth objective, multipoint access to packet networkys 

still considered important because it reduces the number of ports at 

the node. Further, many locations in Canada are still served by 

expensive analog backhaul facilities which should be shared by a cluster 

of terminals. • 
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Figure 3.1 Comparison Between X.21 and Bit Sequence Based Call Control  
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4. A CLASSIFICATION OF FRAME MODE TERMINALS 

4.1 Location of Call Control  

We have seen that interworking of FDTEs and PDTEs on a packet 

network and, indeed, with FDTEs on a circuit network, can be achieved 

during the data transfer phase of a call by suitable definition of anchor 

points. Most proposals for the frame mode interface, in fact, specify some 

HDLC class of procedure in the expectation of standard interactions during 

this phase. The fundamental question, therefore, is that of call control 

and its location with respect to the data link control. There appear 

to be three distinct choices which will be discussed in detail in 

following sections. 

Call control above data link control (Method A, Figure 4.1) is the 

first choice. In this a simplified version of the X.25 level 3 would be 

used for preparation of call setup and cleardown packets which would be 

exchanged with the network through HDLC. Once a call is established, all 

exchange of data packets would be performed using HDLC alone. 

Call control within the data link control (Method B, Figure 4.2) 

is a second choice. In this configuration, all call control information 

is exchanged with the network by frames in HDLC format and within the 

HDLC elements of procedure. Data transfer would take place after exchange 

of call control and set mode commands. 

Finally, call control below the data link control (Method C, Figure 4.3) 

is typified by X.21, in which elements of call setup and cleardown are 

associated with voltage changes on specific leads of the interface. 



Addressing and call progress signals are not necessarily in the format 

of the data link control frames. Set mode commands and data transfer take 

place only after the call is established. 



4.2 Call Control Above Data Link Control (Method A)  

Call control above data link control (Figure 4.1) involves the 

exchange of special control packets with the DCE to set up and clear a 

call. These packets are carried through HDLC as normal I frames, as in 

X.25. During the call connected phase, data packets are also exchanged 

directly as I frames, without the multiplexing and flow control found at 

level 3 of X.25. The sequencing, flow control and error control functions 

of the data link control are adequate to regulate the data transfer. 

Such an arrangement has a number of compelling advantages for 

single-channel DTE access to packet networks. Perhaps the most important 

from the viewpoint of network support of existing intelligent terminals 

is its relative independence of specific data link control procedures. 

Point-to-point versions of HDLC, such as LAP A and LAP B, can be replaced 

with unbalanced, multipoint protocols. Industry standards such as BSC 

and SDLC are equally acceptable. Even proprietary data link controls such 

as DEC's DDCMP could serve if the networks wished to support them; this 

would be particularly attractive to users owning PDP-11's equipped with 

the DMC-11 link control peripheral. The actual DLC used would be transparent 

to the call control functions, and network would become accessible to a 

much wider class of terminals than at present. There would be nothing to 

prevent interworking of IBM 3270 FDTEs, PDP-11 FDTEs and full X.25 PDTEs. 

Figure 4.4 sketches the open nature of the connections that could be 

allowed. 

. 	Another considerable advantage of this organization is its simplicity. 

Because a DLC is used for transmission of call control packets, the 
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designer cari assume that all exchanges are error-free and in sequence. 

No retransmissions should be necessary. The implementer's job is made 

easier also by the fact that only a small amount of X.25 level 3 function 

need be developed; the fractional increase in required memory space above 

the basic HDLC module is minimal. In other words, placing call control 

over data link control leads to development of only a small amount of 

relatively simple code. 

A fascinating aspect of the simplicity issue is the fact that, for 

intelligent terminals with this call control arrangement, the call state 

diagram can be maintained in the operator's head, rather than in the FOIE  

software. Messages equivalent to X.25 call control packets, when displayed 

on the screen, would be sufficient to allow the operator to keep track of 

call progress. 

One minor disadvantage of call control over the DLC is the requirement 

for a dedicated octet in the I field of transmitted information frames to 

distinguish between call control and data packets - in other words, a way 

of achieving out-of-band signalling. This fact of life is characterised 

as a disadvantage here only insofar as it uses up a byte which could 

otherwise be used for data or not transmitted at all. Actually, more than 

one byte is involved; if this organization is adopted there will be 

overwhelming pressure for wholesale adoption of the X.25 packet structure, 

with the logical channel number, P(S), and P(R) fields ignored. This 

amounts to three wasted bytes in a data packet, or about a 1% overhead 

on full packets. 
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The major drawback to call control over DLC is that it cannot 

be used on circuit networks, for reasons discussed in Section 2.4. 

Nevertheless, this location for call control can be seen to provide great 

flexibility in accessing packet networks since it allows both point-to-

point or multipoint connections, and use of any DLC which is mutually 

agreeable to the customer and the network administration. We predict also 

that it will be an early and inevitable offering of the packet networks 

(and Datapac in particular)regardless of the outcome of CCITT deliberations. 



4.3 Call Control Within Data Link.Control (Method B)  

Call control within data link control means that call set up 

and cleardown requests are exchanged as distinct frame types within 

the DLC definition rather than, as in X.25, as special contents of 

ordinary data-carrying frames. In other words, the "out-of-band" 

indication needed for call control is supplied by the same method used 

to distinguish other DLC frame types: a special bit pattern in one of the 

frame header bytes. The call control frames are carried across the 

access link in the standard DLC envelope with its delimitation, 

transparency and error detection functions. This method has been proposed 

frequently in submissions to CCITT (See Appendices). The Canadian proposal 

falls into this category, as does any proposal which performs call control 

by frames which are required not to conflict with recognized frame types 

of the DLC. 

Perhaps the best that can be said of this organization is that it is 

equally ill-suited to circuit switching and to packet switching. It is not 

compatible with any existing or proposed circuit network. 	It is also 

more difficult and less general than call control above DLC for access 

to packet networks. 

To begin, it is usually difficult and expensive to modify a working 

DLC package. In the case at hand, we would have to add another level of 

retransmission error control for call information along with existing set 

mode, reset and information frame levels. There is no reason to suspect 

that the resulting software would consume less memory than that of call 

control above data link control - it may take up more space and it is 

certainly more difficult to write. 
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Another objection is that it locks all FDTEs into a specific 

DLC for network access (with some version of HDLC as the obvious choice). 

This inflexibility compares unfavourably with the independence from DLC 

found in call control above data link control for access to packet 

networks. 

Finally, we note that this method has the same major virtue and 

major drawback as Method A. It allows multipoint access to packet 

networks but precludes access to circuit networks (see Sections 2.4 and 

2.5 and Chapter 3). 
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4.4 Call Control Below Data Link Control (Method C)  

Call control below data link control implies that elements of 

call establishment and clearing involve very primitive actions, such as 

voltage changes on a lead, to obtain out-of-band signalling. Further, 

any bit sequences exchanged during call setup or cleardown need not be 

in the same format as the DLC frames (although it certainly helps). The 

principal (and only) example of this technique applied to switched data 

networks is X.21, unless one includes calls established over the 

voice network. The DLC is idle during call setup, and the exchange of link 

restart (set mode) commands occurs only during the data transfer phase. 

Perhaps the most attractive feature of this configuration is that 

both circuit and packet networks can comfortably offer this type of interface. 

CNCP, in fact, presently offers an X.21-like interface in which a single 

extra addressing digit.can select real circuit service (InfoExchange) or 

virtual circuit service (InfoCall), at call setup time. Although InfoCall 

is not an X.25-like packet interface, it can be considered as a "pure virtual 

circuit" without extraneous features of DTE/DCE data link control and flow 

control. These latter functions take place on an end-to-end basis in 

both services. Amore conventional packet network with an X.21 call 

control interface would give the DLC local significance only, that is, 

over the DTE/DCE access line. 
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Another feature of this placement of call control is its independence 

of data link control procedure. Any DLC is permissable during the data 

transfer phase, though of course the two anchor points (FDTE/FDTE for 

circuit switching, FDTE/DCE for packet switching) must use compatible 

protocols. 

A final point in favour of this configuration is that it is easy 

to implement - at least more so than Method B. 

There are two principal disadvantages. The first, and obvious one, 

is that multipoint access by this technique to packet or (especially) 

circuit networks is exceedingly difficult without the development of 

special, as yet non-standard, hardware. A less obvious problem of X.21, 

in particular l is its asymmetry. This feature precludes loopback testing of 

software, a technique which can be used with HDLC LAPA and with X.25. 

It also rules out interaction through a leased line unless a permanent call 

connected state is assumed. Finally, X.21 provides no address information 

to the recipient of incoming calls. There is therefore no basis on which 

to selectively refuse calls, and no way that a gateway for internetwork 

calls can be constructed without being buried in the software of the nodes 

themselves. 
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Figure 4.3 Method C. Call Control  
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5. INTERWORKING  

It could be argued that total uniformity of call control 

methods is of secondary importance provided that the various FDTEs 

can interwork with each other and with PDTEs during the data 

transfer phase. Interworking should not present a problem with 

suitable definition of anchor points (Chapter 2). This chapter 

examines some of the awkward areas in call control within such an 

inhomogeneous population of DTEs located in the same or different 

networks. In addition, it is shown that a useful FDTE for both 

circuit and "transparent packet networks" [1]  can be defined with 

no change to existing standards. 

Both Method A DTEs (call control above data link control) 

and Method C DTEs (call control below data link control) will be 

considered. They will be represented by X.25 and X.21, respectively. 

Method B DTEs (call control within data link control) will be 

assumed not to exist, for the reasons given in Chapter 4. 

We will consider two requirements in addition to the basic 

establishment of a call. First is that the called DTE be able to 

discover the identity of the calling DTE. This is automatic in 

X.25, since the "incoming call" packet contains this information. 

In X.21, of course, a sebond exchange is necessary following call 

establishment. The second requirement is that it be possible to 

place internetwork calls. We will assume that a global numbering 



scheme exists and that the network will automatically route an 

internetwork call to the appropriate gateway. 



5.1 Through a Packet Network  

Consider a packet network supporting both X.25 and X.21 

interfaces. We will examine the asymmetries in call control among 

the four pairwise permutations. 

First, when X.25 DTEs contact each other, identification of 

the calling DTE is included in the call setup mechanism. When 

the X.25 DTE calls an X.21 DTE, on the other hand, typically the 

first packet it transfers would contain its network address. Consider 

the reverse situation next, in which the X.21 DTE calls the X.25 DTE. 

The first packet transferred by the calling DTE would typically be 

an identification message (since this would be required when it calls 

another X.21 DTE). The called X.25 DTE, however, would not be 

prepared for such a first packet, having already obtained calling 

address during call setup. 

We have a strange collection of procedures already, without 

yet considering internetwork calls. 



5.2 Through a Circuit or Transparent Packet Network  

Only Method C techniques (exemplified by X.21) are appropriate 

in this situation. At least in intra network calls, therefore, 

we can expect uniformity of procedure. 

By convention the first bit sequence transferred from calling 

to called DTE after call setup will be caller identification. This 

information can be conveyed in a frame before the DLC is initialized 

or in a packet (an I frame) after DLC initialization. The former 

choice is somewhat more general in that it is not necessary for the 

terminals to communicate through a DLC at all. 



5.3 Through a Tandem Circuit/Packet Connection  

This is potentially the most troublesome configuration, since 

it involves questions of internetworking, mixed services and frame 

mode access. To simplify the discussion, the gateway will be 

assumed to have an X.21 interface to the circuit network and an 

X.25 or X.75 interface to the packet network, and the DTEs will 

be X.21 on the circuit net and X.25 on the packet net. 

If a circuit net X.21  DIE  calls the X.25 DTE on the packet 

network, two stages of addressing will be required: one to call 

the gateway through the circuit net and the other to specify the 

called  DIE  to the gateway. The addresses transferred in each 

stage will be identical. In addition the calling DTE identification 

must be supplied to the gateway. This complexity is in contrast 

to X.21 DTE actions when calling another  terminal on the same net-

work. 

The X.25  DIE  calling an X.21 DTE on the circuit net is more 

fortunate, however. The gateway will receive both calling and 

called addresses and can take appropriate actions on behalf of the 

calling DTE to supply the called  DIE  with identification information. 



5.4 Convenient Interworking With Existing Standards  

This section demonstrates a FDTE for circuit and transparent 

packet networks which has three significant features: first, it 

provides for exchange of identification among such FDTEs; second 

it facilitates "invisible" placement of internetwork calls to 

similar FDTEs on the other circuit networks and to X.25 DTEs on 

packet networks; and third, it is an end to end protocol, and 

therefore requires no new network interface to be supported by the 

carriers. In particular we will assume that packet networks 

support only X.25 access, and that circuit networks support only 

X.21 access. 

The mechanism is simple: FDTEs on the circuit network go 

through up to three stages of setup: 

- they estabilish the circuit by means of standard X.21 

- the calling terminal transmits an X.25 "call request" 

packet containing both network addresses to the called 

terminal. The frane format will be that used in the 

X.21 call setup. The called terminal replies with an 

X.25 "call accepted" packet in the same frame format, 

or clears the X.21 connection; 

- both terminals initialize the DLC. 

Call clearing is accomplished by X.21 only. Error protection of 

selection and progress signals is achieved by the usual mechanism 

of discarding received frames failing the CRC check. If either 

party times out waiting for a response, it simply clears the call. 



The virtues of this end to end convention for intra network 

calls are obvious. The called DTE has an early identification of 

calling DTE which, among other features, provides a basis for 

early termination of calls. It is independent of the DLC, so that 

any mutually agreeable flavour of HDLC or BSC, for example, could 

be employed. In fact, implicit in the calling terminal identification 

could be the data link protocol to be used, which may be of interest 

to hosts supporting multiple DLCs. 

Next consider internetwork calls. The gateway is assumed to 

have only X.21 access to the circuit networks and only X.75 access 

to the packet networks. Now if one of the FDTEs on the circuit 

network places a call to an address external to its network,by the 

global numbering assumption the node will set up a circuit to 

the appropriate gateway. The next act of the calling FDTE is to 

transfer a call request frame, as usual, to the called DTE, which 

in this case is the gateway. The gateway, having received the call 

request, attempts to place the call in the next network, and returns 

a call connected frame to the calling FDTE if it is successful. Finally, 

the DLC between the FDTE and the gateway is initialized. Note that 

this procedure works regardless of whether the called DTE is another 

FDTE on a circuit net or an X.25 DTE on a packet network. Further, 

a similar mechanism allows X.25 DTEs to call FDTEs on a circuit 

network. 

It has been shown that allowing limited inhomogeneity in the 



DTE population (X.25 on packet networks and X.21 on circuit network 

with the FDTE convention described above) conveys a number of advantages 

of which the most important are "invisible" internetwork calls, and a 

protocol by which terminals on an X.21 network can identify the 

calling party. 

A minor disadvantage in comparison with protocols like BASIC FDTE 

[2] is that the circuit net customer pays for connect time from the 

instant of establishment of his X.21 call to the gateway, even if the 

packet net destination terminal eventually refuses the call. 



6. Conclusions  

The following is a brief statement of the conclusions reached 

in this report. 

ONE 	The principal objectives to be achieved by a FDTE can be stated 

in order of decreasing economic priority as: 

- the ability of FDTEs and PDTEs to interwork in the  

data transfer phase of a call; 

- a single uniform call control technique for both circuit 

and packet networks; 

- simplified access to packet networks for single channel 

DTEs; 

- multipoint access to a packet network. 

The second and fourth objectives conflict. 

TWO 	The first objective above is realized fairly easily for both 

intra and internetwork calls, so the focus of any FDTE investigation 

should be call control. 

THREE  The second objective is based on the increased expense of 

distribution and field service when a terminal manufacturer maintains 

several options. The alternative of supporting several switch-selectable 

call control methods in a single terminal is feasible with respect to 

memory space, since call control is relatively small [3] and memory 

densities are increasing, but adds to the software complexity and hence 

development time and maintenance cost. 
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FOUR The various approaches to definition of an FDTE can be classified 

by the location of call control with respect to data link control: 

- Method A: above DLC; 

- Method B: within DLC; 

- Method C: below DLC. 

Table 6.1 summarizes the properties of the three general methods. It 

can be seen that Method C (X.21-like) interfaces come closest to 

realization of all but the fourth objective above. Method A (X.25-like) 

call control methods provide greatest flexibility for access to packet 

networks and satisfy all but the second objective; they are unsuitable 

for use on circuit networks. Method B techniques, which include the 

Canadian and most other proposals before CCITT, provide the fewest 

advantages and the greatest rigidity. 

FIVE  No existing proposal satisfies all four objectives above, and only 

the Nordic proposal satisfies the first three. Even it results in 

nonuniformities in start-of-call actions when calling DTE identification 

and internetworking are considered. A companion report [2] presents a 

proposed interface which satisfies the first three objectives and facilitates 

exchange of DTE identification and internetworking. 

SIX 	The experimental phase of the project will consist of implementations 

of Method A and Method C only. 
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APPENDIX A  

GLOSSARY OF ABBREVIATIONS  

ISO 	International Standards Organization 

CCITT 	Comité Consultatif International sur Telephones 
et Telecommunications 

PPN 	Public Packet Network 

11 	
DTE 	Data Terminal Equipment (i.e. the customer 

equipment) 

DCE 	Data Channel Equipment (i.e. the serving node) 

CPU 	Central Processing Unit (the part of a computer 
whidh executes intructions) 

PDTE 	Packet mode DTE equippped with full X.25 

FDTE 	Frame mode DTE (generic term for DTE which 
accesses a packet network without use of 
a full X.25 packet level; the focus of this 
study) 

DLC 	Data Link Control. The protocol which handles 
at least retransmission error control of blocks 
of data on a point to point or multipoint 

Ir 	 communication line. Usually also provides 
for sequencing and link initialization. 

HDLC 	High Level Data Link Control. A bit oriented 
DLC standardized by ISO; bears a close resemblance 
to IBM's SDLC and ANSI's ADCCP. 

SDLC 	Synchronous DLC. Supported by IBM. 

ANSI 	American National Standards Institute 

ADCCP 	Advanced Data Communication Control Procedure 
(another DLC) 

BSC 	Binary Synchronous Communication, IBM's old 
workhorse DLC. 

BiSync 	BSC 



DDCMP 	Digital Data Communication Message Protocol. DEC's DLC. 

DEC 	Digital Equipment Corp. 

ADTE 	FDTE employing Method A call control (over the DLC). 

BDTE 	FDTE employing Method B call control (within the DLC). 

CDTE 	FDTE employing Method C call control (below the DLC). 

TDM 	Time Division Multiplexing. 



APPENDIX B  

Summary of FDTE Proposal to ISO from Canada  

Intended Application  

- dedicated circuit, circuit-switched service, packet-switched 

service (virtual circuit and others); 

- multipoint access; 

- internetworked DTEs (including mixed circuit and packet); 

- applicable to most synchronous DTEs. 

Data Link Control  

HDLC; class of procedure left unspecified 

Call Control  

- Method B 

- exchange of HDLC UI frames in X.25 format and interpretation 

- call setup in DM followed by set mode exchange (link setup) 

- call clear also a UI frame in X.25 format (followed by DISC?) 

Comments  

- not suitable for access to circuit switched nets since call 

control based on bit sequences 

- locks customers and networks into HDLC, hence not applicable 

to most DTEs, (e.g. BSC and derivatives). 

- use of unnumbered frames (UI) for interrupts with retransmission 

on timeout can lead to reception of multiple interrupts when 

only one was intended. 



APPENDIX C  

Summary of FDTE proposal to CCITT from IBM Europe  

Intended Application  

- FDTE to FDTE through leased line, switched circuit or 

packet network; 

- FDTE to X.25 DTE through packet network; 

- multipoint access to packet net. 

Data Link Control  

- two way alternate channel operation 

- HDLC in NRM with DCE the primary 

Call Control  

- Method B 

- call establishment in up to four stages; 

- physical in the case of X.21 or switched analog 

link between DTEs 

- SNRM, VA 

- SIG, an HDLC command/response pair in X.25 

call control format 

- XID(exchange ID)if tandem call, circuit to packet 

- call clearing is in three stages 

- SIG 

- DISC, VA 

- physical clear 



Comments  

- will not work with leased lines or circuit switched connections, 

as claimed, since both DTEs are HDLC secondaries; 

- if X.21 or circuit switched, SIG is unnecessary; 

- locks network and customer into HDLC as the data link 

control; 

- hopelessly complex for so little return. 



APPENDIX D  

Summary of FDTE Proposal to CCITT from Nordic Countries  

Intended Application  

- FDTE to FDTE through leased lines,circuit switched services, 

packet switched service 

- FDTE to X.25 DTE through packet network with packet multiplex 

function 

Data Link Control  

- NDLC in Asynchronous Balanced Mode (LAPB), used only during 

data transfer phase. Originating DTE has address A, receiving 

has address B. 

Call Control  

- Method C 

- X.21 to establish and clear the call; 

- set mode exchange after call establishment (SABM) 

and before call clear (DISC); 

Comments  

- accomplishes goals within existing protocols; 

- no multipoint access; 

- modification to X.21 call control needed for leased lines; 

- X.21 does not facilitate internetwork calls. 
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ABSTRACT  

No existing or formally proposed standard for access to 

digital networks provides identical call control methods on circuit 

and packet networks, and facilitates internetworking and exchange of 

terminal identification. This report presents an interface which 

satisfies all these conditions. Its generality is achieved by restricting 

attention to call control functions only; data transfer functions are 

left for further agreement or standardisation. 
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1. INTRODUCTION 

A companion report [1] surveyed the major proposals for the Frame 

Mode interface to digital networks, both circuit switched and packet 

switched. Two significant conclusions were drawn in that study. First, 

the twin objectives of multipoint access and uniform call control on circuit 

and packet network, are incompatible. Second, the only hope for a call 

control method applicable to both circuit switched and packet switched 

networks lies in a class of procedures in which call control sits below 

data link control (termed Method C in that report). 

Here we present the required "universal interface". Termed BASIC 

FDTE, it is an X.21 derivative which provides a great deal of flexibility 

in a very simple protocol. The design approach was to devise the most 

primitive actions which would allow uniform call control techniques, both 

intra- and internetwork, for both circuit switched and packet switched 

networks. Specifically, 

BASIC FDTE does: 

- specify procedures for call control (setup and clearing); 

- give access to circuit and packet networks in an identical 

way; 

- facilitate internetwork calls. 

BASIC FDTE does not: 

- proscribe or prescribe any actions during the data 

transfer phase: frame formats, error control, flow control, 

etc. are left open; 

- provide for multichannel or multipoint access. 
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BASIC FDTE is a new access protocol which combines the important 

features of X.25 and X.21 call control. As such it is incompatible with 

any existing or planned network. The question, therefore, is: 

Why adopt BASIC FDTE? Because: 

- Use of the interface leads to  signal major changes in call 

status allows uniform call control techniques on circuit and 

packet networks. By contrast, methods based on special 

frames or bit sequences to clear a call cannot be used over 

real circuits because of the requirement on real circuits 

that they be transparent. 

- It does not constrain customer or network to use a particular 

DLC or higher level protocols. These are left for further 

standardization or for mutual agreement between customer and 

network administration in the case of virtual circuits, or 

customer and customer in the case of real circuits. BASIC 

FDTE therefore allows public switched networks to be incorporated 

into frameworks like IBM's SNA and DEC's DECNET. 

- The X.25-like format of addressing and call progress signals 

allows simple and uniform treatment of internetwork calls. 

- Although designed for synchronous terminals, it can be 

adapted easily to serve asynchronous terminals. 

- It is a symmetric protocol (unlike X.21) and can therefore 

be used over leased lines as easily as it can over either 

type of switched network. 

- It provides the customer with a means for selective refusal 

of incoming calls, a feature not provided by X.21. 



- It can be used by such diverse DTEs as fax reader/printers 

and vocoders, and is not restricted to use by a special 

class of synchronous terminal (e.g. HDLC in some class of 

procedure). 
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2. BASIC FDTE PROTOCOL 

2.1 Mechanical and Electrical  

The mechanical and electrical characteristics of the interface 

are as specified in X.21 or X.21 bis. In particular, four of the interchange 

circuits are: 

C control (to DCE) 

I indication (to DTE) 

T transmit (to DCE) 

R receive (to DIE) 
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2.2 Interface Procedures  

The state diagram of the interface is shown in Figure 2.1. 

Like X.21, it combines voltage changes on interface 	circuits and exchange 

of bit sequences. 

The ready state (0) is characterized by C=off, I=off, and T and R 

are in the "mark hold" condition of binary one. No call exists and the 

interface is ready to establish one. 

If the DIE  wishes to place a call, it asserts C=on, thus placing 

the interface in state 1 (call request). A response by the network of 

I=on places the interface in state 3 (ready for address). Similarly if 

the network wishes to indicate the presence of an incoming call, it sets 

I=on (state 2, incoming call), and a response from the DIE of C=on puts 

the interface in state 3. Note that the preliminary handshake on both 

outgoing and incoming calls results in state 3 (ready for address). Call 

collisions are resolved in the next stage of handshake. 

From state 3, the DIE  trying to place a call moves to state 4 

(DTE waiting) by transferring across circuit T selection signals in the 

format given in section 2.3. A "Call connected" progress signal returned 

by the network over circuit R completes the handshake with the interface 

in state 6 (data transfer). Any response other than "call connected" 

will cause the DTE to clear the call. Alternatively if the network wishes 

to continue setup of an incoming call from state 3, it transfers across 

circuit R an "incoming call" signal in the format of section 2.3, placing 

the interface in state 5 (DCE waiting). A "call accepted' response from 
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the DTE over circuit T completes the handshake and the interface is in 

state 6 (data transfer). Any other response from the DTE causes the DCE 

to clear the call. There is therefore no "call collision" state required 

since collisions automatically result in clearing of both incoming and 

outgoing calls. 

Call clearing is accomplished simply by setting C and I to "off". 

The DTE can initiate clearing from any state (except 0 or 2) by setting 

C=off thereby placing the interface in state 7 (DTE clear request). The 

network response I=off places the interface back in state 0 (ready). In 

a symmetric fashion, the DCE can clear the call by setting I=off (state 8, 

DCE Clear indication), and the DIE  response of C=off returns the interface 

to state 0 (ready). 

Limits on the duration of certain states may be prescribed by the 

network. For example, state 0 may have a minimum duration to ensure that 

both DTE and DCE are agreed on the state, and have not missed the ready 

state in the other party's eagerness to set up the next call. State 3 (ready 

for address) may have a maximum duration to account for selection signals 

being wiped out by transmission errors. 
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2.3 Signalling Formats  

Selection and call progress signals are exchanged across the 

interface. In defining these it is important to distinguish between 

the information content and its format, on one hand, and the envelope 

and its format, on the other. The latter siMply realizes the frame structure 

functions of 	character synchronization, frame delimitation, transparency 

(if-required) and error detection. In any case there is never any conflict 

between these signals and the frame types and formats used during the data 

transfer phase, since the interpretation is determined by the interface state. 

2.3.1 Information Format 	An important feature of the protocol is the use 

of an X.25-like structure for the 1_1 ca1l request" - and "incoming call" selection 

signals. Specifically, these contain the network addresses of both the 

calling and called DTEs, and the two selection signals have identical format. 

We shall see that this symmetry aids in the setup of internetworking calls. 

Having adopted the content of X.25 "call request" and "incoming call" 

packets we may as well adopt the format (Figure 2.2), and thereby avoid 

format conversions when crossing an X.25 network boundary. If simplicity were 

the only criterion, though, a preferable format would be the one described 

in a Pascal-like notation in Figure 2.3. Certainly less logic would be 

required at the interface if this format were used. 

Call progress signals are the next to consider. The simplest 

approach is to allow only one such signal: "call connected" and "call 

accepted". Again these two have identical formats (Figure 2.2) but are given 

different names depending on direction: to DTE and to DCE, respectively. 
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If the outgoing call is unsuccessful for any reason, or if the incoming 

call is to be refused, the appropriate side of the interface simply returns 

its lead (I or C) to off. 

Thus only two information formats are required: nincoming/call/request" 

and "call connected/accepted". If this method of indicating inability 

or unwillingness to complete call setup seems unnecessarily brutal, the 

reader should remember that this is a BASIC FDTE. Certain network 

administrations may wish to supply their customers with a richer set of call 

progress signals, but all networks and terminals must use BASIC FDTE as an 

operational subset. 

2.3.2 Envelope Formats 	The envelope provides a carrier for the information 

of section 2.3.1. Typical envelopes are the HDLC frame defined in ISO 

DIS 3309.2, BSC, transparent BSC, DDCMP, etc. It is important to note, 

though, that the envelope used during call setup can be different from 

that used by the DLC during data transfer, since the interface state 

(Figure 2.1) removes any ambiguity. 

In the interest of simplicity and greatest accessibility, we reject 

frame structures based on bit stuffing for transparency and delimitation 

(e.g. HDLC, SDLC, ADCCP etc.). These all require special hardware which is 

installed in only a few existing terminals. A character-oriented envelope 

format, like BSC, seems advisable. But what of the terminals using bit-

oriented protocols? Fortunately, of the few terminals which do so, most 

employ a communications controller chip to perform the envelope function. 



Almost without exception, these chips are programmable (i.e. 

software-settable) to either character-oriented or bit-oriented 

structures. 

Accordingly, the BSC frame (Figure 2.4) is proposed as the 

envelope format. 
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3. INTERNETWORK CALLS 

The companion report [1] examined the problem of interworking 

frame mode DTEs with packet mode DTEs, and the problem of internetwork calls 

between packet networks, between circuit networks and between circuit and 

packet networks. It was shown that there are no major problems during the 

data transfer phase of a call, providing DLC anchor points are suitably 

chosen. 

Call control procedures were not uniform, however. A DIE on an X.25 

network can contact a DIE on an X.21 circuit network with a single stage of 

call control, since the gateway can place the circuit call on behalf of the 

originating DTE. The originating  DIE  would have to identify itself to the 

destination DIE  after call setup, because X.21 does not provide the calling 

DTE address. Calls to other terminals in the X.25 net, on the other hand, 

require no such secondary identification. Further, a terminal on an X.21 

net contacting a terminal on an X.25 net must go through two stages of 

addressing: first to contact the gateway; and second, to tell the gateway 

which X.25 DTE is to be called. By contrast, calls to other terminals on 

the X21 net involve only one stage of addressing. 

This chapter demonstrates. that BASIC FDTE exchanges sufficient 

information for an absolutely uniform treatment of intra- and internetwork 

calls, through circuit or packet networks. 

Consider first a BASIC FDTE on a packet network. To contact another 

terminal (BASIC or X25) on his own network, he emits a selection signal 

(Chapter 2) containing his own address and that of the called DTE, and with 

luck his call will be connected. 	To contact a DTE on another network 

he again emits the selection signal. This time it may be necessary to 
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prefix the called DTE address with other information according to some 

global numbering scheme, eg.: 

network id. area code. address 

The network, recognizing this as an internetwork call, routes the "call 

request" to the appropriate gateway. The gateway receives the signal as 

an "incoming call° containing the called  DIE  address, and then places the 

call on the next network by passing on the signal virtually untouched, even 

if the next network is a circuit net with a BASIC FDTE interface to the 

gate. Evidently the actions are very similar to the X.75 internetwork 

protocol. It is clear that an arbitrary number of network can be traversed 

in this fashion, and that the "call accepted/connected" signals or call 

clears can ripple back in reverse order till they finally reach the calling 

DTE. 

A BASIC FDTE on a circuit network is next to be considered. Intra-

network calls are established in a fashion identical to that used for 

intranetwork calls in a packet net, with exactly the same information 

crossing the interface. When an internetwork call is to be seup, on the 

other hand,the circuit network will route the call to the appropriate gateway. 

The gateway, equipped with the BASIC FDTE interface, will receive an "incoming 

call" signal with both calling and called  DIE  addresses. As before it can 

then place the next network call on behalf of the originating DTE, as 

described above. 

Uniform call control procedures have been demonstrated. 
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4. SUMMARY 

BASIC FDTE is a simple protocol by which terminals can gain 

access to switched digital networks. It defines only call control 

functions, and is therefore applicable to a very wide range of terminals - 

fax reader/printers, vocoders, and interactive terminals are some examples - 

and is a suitable interface for both circuit and packet networks. Data 

transfer functions are left for a separate agreement between the 

entities involved in the call; in fact, if they were included in the FDTE 

interface the range of application would be restricted. 

BASIC FDTE is an improvement on X.25 in that it can be used as an 

interface to circuit, as well as packet networks. It is an improvement over 

X.21 in that internetwork calls are facilitated. 

BASIC FDTE can be considered a universal interface for point to 

point, single channel DTEs. 
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Figure 2.1 	BASIC FDTE STATE DIAGRAM 
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I "connected" 

type  signal = record  

kind: (selection, connected); 

case  kind of 

selection: (to length: byte; 	- 

to address: array  [1...length] of byte; 

from length: byte; 

from address: array [l...from length] of byte) 

end 

end; 

1  selection" #digits in to address 

to address ..., ..., 

#digits in from address 

e•••.,  

.1„ from address 

Call Request, Incoming Call 	 Call Accepted, Call Connected 

All numeric values coded in natural binary, one per byte. 

Figure 2.3 A Simplified Format for Call Control Signals  
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ABSTRACT  

Several prototype frame mode DTEs were constructed and compared 

on the basis of functionality, memory space and implementation 

difficulty. These FDTEs included a skinny X.25 and an X.25 variant 

without packet level flow control, as well as two based on X.21-like 

procedures. 	To demonstrate that dissimilar DTEs could interwork, an 

experimental internetwork connection was set up between the Infoswitch 

circuit switched service and a Datapac-equivalent X.25 network. 
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1. INTRODUCTION  

1.1 Review  

The frame mode interface to digital networks [1, 2, 3] has 

received recent attention, as various individual and corporate 

authors attempt to define what it is and how it should operate. 

There is general (though not universal) agreement on two objectives: 

that it provide a simpler access method to packet networks than 

X.25 for single channel DTEs; and that both circuit switched and 

packet switched networks be able this interface comfortably. 	A 

terminal which implements the DTE side of such an interface is termed 

a Frame mode DTE (FDTE). 

A detailed analysis of the FDTE is contained in a companion 

report [1], which classifies FDTEs by the location of the call control 

function with respect to the data link control (DLC) function: the 

terms Method A, B, and C refer to call control above, within and 

below data link control, respectively. Figure 1.1 summarizes the 

properties of the three general methods. One conclusion of that 

report was that only Methods A and C showed sufficient promise to 

warrant experimental investigation. 

1.2 The Project  

In broad outline, the project consisted of the implementation of 

a number of candidate FDTEs and the internetworking of DTEs on 



Infoswitch and a Datapac-equivalent network. The objectives were 

to assess memory requirements, implementation difficulty and 

functional capability of the FDTEs. 

In more detail, two of the DTEs were of the Method A type, 

with call control performed by special packets carried through 

the DLC in the same fashion as data packets. One was X.25 itself 

(which is not strictly a fraffe  mode DTE), implemented in a 

Datapac-compatible single channel version in order to ascertain 

its real implementation difficulty. The other Method A terminal 

was essentially X.25 with packet level  flow  control stripped out. 

Comparison of the two gave an estimate of the difficulty of implementing 

the redundant second level of flow control in single channel X.25. 

Two Method C DTEs, in which call control involves manipulation 

of specified interface pins, were also built. They were in fact 

implementations of the X.21-like procedures specified by Infoswitch 

for use on the InfoExchange and InfoCall services (circuit and packet 

mode respectively). One of these FDTEs simply initialized the DLC 

after X.21 call setup. The other went through a second stage of address 

exchange after X.21 call setup and before DLC initialization; this 

extra level facilitated identification of the calling DTE and a uniform 

treatment of intra- and internetwork calls. 

The same application was used in all DTEs for ease of comparison; 

truly "conversation" terminals in which messages were exchanged on a 

real tiffe basis between DTE operators. It functioned rather like an 



interactive high-speed Telex with local editing support. 

The internetworking experiment employed the Infoswitch circuit 

switched service IES and a Datapac - equivalent network to confirm 

that the FDTEs could interwork over a tandem circuit/packet switched 

link. 

1.3 Outline of Report  

Chapter 2 describes an existing X.25 interface and gives a 

memory space breakdown for purposes of comparison with later 

implementations. It can be considered to be a benchmark network 

access interface. 

Chapter 3 is concerned with Method A interfaces. Two are described, 

one a special single channel X.25, and the other a true FDTE, in which 

flow control is managed by the DLC. Again both the software architecture 

and memory space requirements are outlined. This chapter also introduces 

the application level which is common to all the FDTEs constructed. 

Chapter 4 deals with the two Method C interfaces, both of which were 

used to access Infoswitch. Architecture and memory space are given for 

bare X.21, and an X.21 augmented by a layer of end to end protocol. 

Chapter 5 describes the experimental facility for internetwork 

calls between an FDTE on Infoswitch and an X.25 on a Datapac-equivalent 

network. 

Finally the conclusions drawn from our experience in implementing 

several candidate FDTEs are presented in Chapter 6. 
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Figure 1.1 Comparison of FDTE Approaches  



2. WHO'S AFRAID OF X.25? 

X.25 has been cast as the villain in the FDTE controversy 

because it is unsuited for circuit switched networks and because its 

flow control is redundant in a single channel DTE, that service already 

being provided by the frame level. Although the first charge is certainly 

accurate, the second demands closer investigation. What fraction of 

channel capacity is wasted as a result of duplicate flow control? 

How much extra code is involved? Is it difficult to write? For that 

matter, how big is a typical X.25? 

It is to answer these questions that this chapter dissects an 

existing X.25 implementation. A breakdown of memory requirements by 

module is given for each of three separate versions with differing levels 

of generality. It will be seen that X.25 is not intolerable for single 

channel operation, after all. 

2.1 
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2.1 Reduction in Channel Capacity  

To calculate the reduction in channel capacity we will consider 

the worst case of full data packets being transmitted continuously in 

one direction  only; certainly it is in this case that throughput 

becomes important, and "piggybacking" of acknowledgements provides no 

help. 

Note first that HDLC frames have the following format: 

FIAICII(if present)I FCS1IFCS2IF 

1 	1 	1 	<259 	1 	1 	1 

where the numbers indicate the field length in octets; F is the flag used 

for frame delimitation; A and C are the address and control bytes 

respectively; I is present only if the frame is carrying a packet, and 

FCS is the checksum. The trailing flag is not required if frames are 

adjacent. 

The format of an X.25 packet (the contents of the I field above) 

is as follows: 

LCG I LCN I FLO I D 

1 	1 	1 	<265 

for data packets, and 

LCG I LCN I FLO 

1 	1 	1 

for flow control packets (RRs), where LCG and LCN are the logical channel 

group and logical channel number, and FLO is a byte containing flow control 

sequence numbers. 



HI 
We shall derive efficiencies by computing the number of forward 

channel bytes required to send each 256 byte data packet, ignoring bits 

stuffed for transparency and the possibility of transmission errors. 

Reverse channel traffic will not directly reduce throughput. 

Beginning with X.25, we note that each transmission of a packet 

will result in transmission of an RR flow control packet in the reverse 

direction. Depending on the HDLC implementation, this packet may require 

its own frame level acknowledgement (RR frame).  This results in an I 

frame of 264 bytes plus an RR frame of 5 bytes to carry the 256 bytes 

of data. This results in an efficiency 

256 effpl = 2—Fg— — .9517 

for packet level flow control. A smarter HDLC would have piggybacked 

the frame level ack on the next forward channel frame, for-- an efficiency 

of 

256 
effp2 2-64 — .9697 

Next we compute the efficiency of frame level flow control alone. 

The FLO byte is unnecessary and no frame level acks need be inserted in 

the forward channel bit stream. We therefore see the efficiency: 

256 efff = Mag — .9734 

Comparing the above figures, we see that packet level flow control 

reduces throughput by at most (efff-effpl )/efff  = 2.2%. More typically 

the reduction would be (efff-effp2 )/efff = 0 ' 3% The conclusion is that 

packet level flow control does not significantly reduce throughput. 



2.2 A Benchmark X.25 Package  

This section is a guided tour through an existing X.25 implementation. 

The package was built by the Microprocessor Systems Development 

Laboratory at Carleton University during the winter of 1977-78 for 

COSTPRO (Canadian Organization for the Simplification of Trade 

Procedures) for inclusion in their "Tradex terminal", also built by 

Carleton. This terminal is a trade forms preparation unit with local 

storage and electronic mail capability over Datapac; physically it 

consists of a multiprocessor with a mixed common and private memory 

architecture in which Intel 8080 CPUs provide the processing power. 

All code was written in a high level language, PL/M, which was modified 

by the Lab to allow concurrent programming. 

General Capabilities 	The X.25 package supports an arbitrary number 

of physical links, with an arbitrary number of logical channels on each, 

to the limit of the number of USARTs, the processor speed, and the memory 

space available. In the Tradex terminal it was used to run X.25 to 

Datapac, to the  disk,  and  to the printer with simultaneous full duplex 

communication on all links. 

In its most general form the package consumes almost 18 K bytes of 

code and about 150L 4. 160C K bytes of data where L is the number of links 

and C is the total number of logical channels on all links. Packet 

buffers are also required. A single link, single logical channel version, 

obtained by eliminating based structures, provides a significant reduction 

in space requirements to less than 12 K bytes of code and 650 bytes of 
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data. Further reductions can be obtained by recoding portions of the 

package in assembler, but the extent of such savings is unclear. 

As for processor load, it appears that a single CPU is adequate 

to handle all of X.25 for one link under conditions of continuous 

transmission at 9600 bps. It should similarly be able to cope with 

two lines at 4800 bps or other combinations totalling 9600 bps. 

Although HDLC procedures form the data link control (level 2), the 

associated bit-oriented frame structure has not been used. Instead, the 

character-oriented transparent BSC frame format, implemented in software, 

provides frame delimitation and transparency. 	Similarly a CRC-16, also 

performed in software, replaces the FCS of the bit-oriented frame. Since 

most of the processor load is associated with these per-character 

operations, use of an HDLC frame chip (when one is available on a MULTIBUS-

compatible board) will greatly increase the limiting data rate. 

One advantage of the present character-oriented frame, implemented 

in software, is that it works equally well for synchronous and for 

asynchronous (start-stop) transmission. The local links to the disk 

and to the printer can therefore employ cheap asynchronous data sets. 

The Communications Interface 	The X.25 package presents itself to higher 

levels of software as five primitive procedures of the packet monitor and 

two procedures of the buffer pool monitor (Figure 2.1). These procedures 

supply the user with a set of independently switchable, flow-controlled 

virtual circuits by means of which other network addresses can be 

contacted. 
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Three procedures are concerned with call control. To contact 

a remote station, the user process calls: PLACE$CALL(CCT$ID$AT, STATION$AT, 

TIME, STATUS$AT) in which there is first a potential wait for a free 

logical channel, followed by preparation and sending of a call request 

packet, and finally a timed wait for notification from the. node of the 

outcome of the call request: a "call connected" or a "clear indication" 

packet. Both the call status and the channel number (if successful) are 

returned. Reception of incoming calls would normally be performed by a 

logger process in the procedure: WAIT$FOR$CALL(CCT$ID$AT, STATION$AT, 

TIME, STATUS$AT) in which the calling process waits for an incoming call 

packet on any logical channel, prepares and sends a call accepted packet, 

and returns the calling station address and the channel number. Finally, 

the normal termination of any call by both parties is the procedure 

HANGUP(CCT$ID, TIME, STATUS$AT, VOLUME$AT) in which a "clear request" or 

"clear confirmation "  packet is prepared and sent, followed by a potential 

timed wait till the channel returns to the ready state, after which the 

availability of the channel is signalled to any processes waiting in the 

PLACE$CALL procedure. 

The remaining procedures are associated with data transfer once 

the call is established. To send a message a process will packetize it 

by copying it into one or more packet buffers from the buffer pool, 

sending each buffer as it is filled; typically: 

DO WHILE MESSAGE$NOT$FINISHED; 

PTR = GET$FREE; 
COPY INTO BUFFER INDICATED BY PTR; 

CALL SEND$PKT(CCT$ID, PTR, TIME, STATUS$AT); 

END; 

In SEND$PKT there is a timed wait if the flow control window is closed, 



until it is rotated by an incoming packet; the procedure then prepares 

the packet header and sends it. To receive a message, a process will 

receive one or more packet buffers and depacketize by copying them into 

the message area, returning each buffer to the buffer pool after copying; 

typically: 

DO WHILE MESSAGESNOTSFINISHED; 

PTR = RCVE$PKT(CCT$1D, TIME, STATUSSAT); 

COPY FROM BUFFER INDICATED BY PTR; 

CALL PUT$FREE (PTR); 

END; 

In procedure RCVE$PKT there is a timed wait until an incoming packet 

arrives. A window rotation is then transmitted to the node. 

The buffer pool procedures are trivial. GET$FREE causes the calling 

process to wait if the pool is empty, and PUT$FREE awakens any processes 

waiting for a buffer. 

Modules and Processes 	As shown in Figure 2.2 X.25 is constructed from 

five modules, including the buffer pool. The buffer pool (BP), the packet 

module (P), and the frame module (F) are monitors, while the interrupt 

service routine (ISR) module is protected by interrupt lockout but, used 

in conjunction with the associated semaphores, acts as a monitor. The 

CRC module needs no protection since its routines are each called by a 

single process. The P, F, and ISR modules each encapsulate the data 

structures and procedures of a different level of function. 

Although the packet level of X.25 is contained in a single monitor, 

the frame level has been split into two sets of logically independent 

functions, each of which is contained in a separate monitor. The interrupt 

service routine (ISR) monitor manages framing and transparency as bytes 
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are moved between a buffer area and the hardware port. CRC generation 

is performed while the frame is in transit between the ISR monitor 

and the frame monitor. The frame monitor handles the remaining functions 

of HDLC: sequence numbering and retransmission, etc. The separation 

was motivated by the fact that advances in LSI technology and variations 

among link access procedures of packet networks make the ISR level 

functions realizable with a number of physical techniques, even though 

the control structure in our frame monitor remains fixed. With this 

separation, only the ISR level need be changed to accommodate variations 

such as an HDLC chip which performs framing, bit stuffing and CRC accumulation 

itself, or a DMA interface which also handles the move of bytes into 

main memory, or even a hybrid protocol comttining, perhaps, a BSC or DDCMP 

frame structure with the HDLC control structure. 

Adjacent monitors are linked by a pair of transport processes, 

one for each direction of traffic: PF (packet to frame), FI (frame to 

ISR), IF (ISR to frame) and FP (frame to packet). The basic actions of the 

transport processes are simply the cycle of two procedure calls: get a 

buffer from one monitor, and deliver it to another. The intelligence - the 

manipulation of data structures and interaction with other processes - is 

embodied in the code of the monitor procedures. 	Also of importance are 

the timeout (T) process which periodically enters the F and P monitors to 

cause timer expiry actions and the garbage collector (G) process, which 

removes acknowledged packets from the F monitor send queue and returns 

them to the free pool. Finally, the control (C) process coordinates 

actions in the two monitors P and F, particularly at startup and on link 

failure and recovery. 
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Multiple Link X.25 	As discussed earlier, the X.25 software can handle 

several physical links. Each of these links has its own set of transport, 

timeout, garbage collector and control processes interacting in the 

single copies of the F and P monitors. In the interest of speed, however, 

the ISR module is not reentrant, but is instead replicated for each 

physical link. Further, because of the single USART on board the 

SBC 80/20, the ISR modules run on different processors. 

One consequence of distributing the ISR modules and the F modules 

over different private memories is that a transport process may be 

• required to "hopu onto one CPU to pick up a buffer, and onto another 

CPU to deliver it. 



2.3 Benchmark X.25 Memory Requirements  

As mentioned in section 2.2, the package is available in three 

levels of generality. 	First is the version which supports multiple 

physical links, each with multiple logical channels (MLMC). Next, 

with reduced capability and reduced memory requirements, is the version 

which supports a single link with multiple channels (SLMC). The principal 

saving here is in HDLC, which now manages only one link and in the ISRs 

of which only one need be supplied. Finally we have the single link, 

single channel version (SLSC) which is of principal interest to the FDTE 

discussion; simplified access to packet networks for single channel 

DTEs being a major goal of the study. 

In interpreting the figures to be given, the readers should bear 

in mind a few significant facts. First, all code, including interrupt 

service routines, was written in PL/M. Estimates of the ratio of size 

of PL/M-generated code to equivalent code written in assembler by a 

good programmer have ranged as high as 2:1. Second, the Intel 8080, like 

most other microprocessors and unlike such medium scale machines as the 

PDP-11, is clumsy at performing indexed or based adressing. Multiple 

instructions are often required. Since a multilink HDLC module would be 

prepared with identical data structures for each link packed into the 

equivalent of an array indexed by link, we will see a significant reduction 

in the amount of code space in going from a two link to the single link 

version. A similar phenomenon holds when the packet module is reduced 

to a single channel. 
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For comparison among the versions of X.25 (MLMC, SLMC and SLSC) 

we consider them each to be applied to the FDTE requirement of single 

channel operation. The resulting breakdown of memory requirements is 

shown in Figure 2.3. It can be seen that the version specially compiled 

for single channel operation (SLSC) weighs in at just over 12K bytes. 

Of this, about 5.5K bytes can be attributed to the packet module which 

contains the call control and flow control protocols. 
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Figure 2.1 The X.25 Interface  
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Figure 2.3 Memory Requirements of Three Versions of X.25 in Single 

Channel Operation  



3. METHOD A: CALL CONTROL OVER DATA LINK CONTROL 

3.1 Review  

As defined in the accompanying report, "A Critical Review of 

Proposals for the Frame Mode DTE" [1], Method A procedures are those in 

which call control is located above the DLC. All information regarding 

call status is exchanged between DTE and DCE in information-bearing frames 

like all others conveyed by the DLC; in particular, the DLC does not 

examine any header bytes used to distinguish call control from data or 

other packets. Clearly X.25 falls into this category, as do X.25-like 

procedures which rely on flow control at the DLC level (frame level) only. 

The principal advantages of Method A are two: first, it is easy to 

implement in conjunction with an existing DLC software or firmware 

package; and second, it is independent of the actual DLC used. Therefore 

point to point and multipoint access can be supported, and BSC, HDLC, SDLC, 

DDCMP etc. are all potential frame level procedures, subject to mutual 

agreement between customer and network administration. The principal 

disadvantage is that it will not work with circuit networks. A second, 

but minor, disadvantage is that if reliance is placed on frame level flow 

control, then call control packets are subject to the same flow control as 

data packets; however a solution is presented in section 3.5. 
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3.2 Outline of Experimental Work  

A principal objective of FDTE definition is to keep the procedures 

small and to keep them simple. Accordingly, the two designs to be described 

take ruthless advantage of all features of the environment: the single 

channel, the DCE (node) support, and the presence of a terminal operator 

with keyboard and screen. Many cosmetic features have been excluded in the 

interest of demonstrating only the essential aspects of Method A protocol. 

The first Method A protocol to be implemented was, of course, X.25, 

since it is of critical interest to determine just how simple a DTE can 

be and still remain compatible with existing X.25 networks, as exemplified 

by Datapac 3000. The surprising result is that such a device was very 

simple to build, given a working DLC, and that all call control and packet 

level flow control procedures account for less than 1 K byte of memory even 

when coded in PL/M, not assembler. 

The other Method A protocol implemented made use of X.25 call control 

procedures, but removed the redundant packet level flow control. All 

flow control was therefore based on the "stop-and-go" techniques of the 

frame level, which in this case was HDLC. The result is incompatible with 

any existing network, but can be operated back to back for demonstration 

purposes. Comparison with the skinny X.25 described above will show how 

much complexity is added by the duplicate flow control of single channel 

X.25. 
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3.3 The Application  Layer  

The application in question is that of conversational terminals. 

Two DTEs are connected through the network as shown in Figure 3.1, and 

the operators can prepare messages on their screens and then send them 

to the other operator's screen. The exchange of messages is not constrained 

to be half duplex - several messages can be sent in one direction before 

a reply is returned in the other direction - but use of each screen is 

regulated so that printing of an incoming message is deferred until the 

local operator is finished preparing his own message. No display capability 

7eater than "teletype level" is required, that is, no split screens, 

op independently positioned blocks of text, etc. 

Six function keys give the operator control over the • 

coniersation. PLACE CALL ald ACCEPT CALL have the obvious_interpretations; 

CLEi CALL must be pressed to terminate every call regardless of whether 

the clearing is initiated locally or remotely. PREPARE MESSAGE is a bid 

to esblish local screen ownership to inhibit printing of incoming 

messap while the operator prepares a message for the remote operator. 

SEND ME%SAGE releases screen ownership and causes the message to be 

transpori\ed to the remote  DIE.  Finally, KILL MESSAGE simply aborts the 

message in preparation and releases the screen. 

[4] 
Mes3\3ges are exchanged in "free running dialogue mode

H 	
i , n which 

local and tmote messages are printed on the local screen as units, in 

n 



II 
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FCFS order, rather than in "alternating dialogue mode". Central to this 

organization is the concept of screen ownership; at any time the right 

to print on the screen belongs to the incoming message, the local message 

in preparation, or is up for grabs (see Figure 3.2). The operator bids 

for the screen with the PREPARE MESSAGE function key, and releases it 

with the SEND MESSAGE or KILL MESSAGE keys. Similarly, the first packet 

of an incoming message causes a bid for screen ownership on its part; 

if the screen is in use by the operator, then further reception is simply 

inhibited by flow control. Once having obtained the screen, the remote 

message is printed and the screen is released. 

Note that the free running dialogue design does not preclude 

alternating dialogue. If the operator is exchanging messages with a 

computer program, the program itself would enforce strict alternation. 

Figures 3.3 and 3.4 show a transcript of both ends of a typical 

conversation. The reader can see for himself the "natural" quality of 

the dialogue. 



3.4 Skinny X.25  

Skinny X.25 is a SNAP (Datapac X.25) - compatible DTE in which 

all call control functions have been ruthlessly simplified. The normal 

packet flow control protocol, however, is observed. 

For simplicity, no aspect of call control is automatic; instead, 

the human operator communicates directly with the node. To send a 

particular call control packet the operator presses the appropriate function 

key. Call control packets received from the network are decoded and 

printed as messages on the screen. In this way, operator and node together 

keep track of call state, so there is no need to maintain the call state 

FSM (Figure 3.5) by software. In effect the maintenance of the FSM is 

performed in the node and in the operator's head. If the operator should 

loose track of the call state and key in something irregular, the node 

responds with a "clear indication" (See Datapac SNAP Manual Table 3.1) which 

will be displayed on the screen. 

Another aspect of the simplification is evident in Figure 3.6 

which shows the relation between function key, packet type and displayed 

message. Several aspects of the reset, call state and restart FSMs 

have been combined. The DTE never completes a RESET handshake; instead 

the operator clears the call. Call CLEAR handshakes are similarly 

ignored; instead the operator RESTARTs the interface. Finally, the 

restart FSM (Figure 3.7) allows the RESTART REQUEST packet to serve 

as a confirm. bbnce when the operator presses the function key CLEAR 

CALL, serves as RESET CONFIRM, CLEAR REQUEST, CLEAR CONFIRM, RESTART 

REQUEST and RESTART CONFIRM. The three function keys PLACE CALL, ACCEPT 

CALL and CLEAR CALL are therefore sufficient for all X.25 call control. 
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Figures 3.8-3.10 show the organization of the skinny X.25 software 

installed above HDLC. Three processes and one interrupt service routine 

(ISR) constitute the active entities. To dispose of the least 

interesting one first, the control (CNTL) process simply acts as link 

manager and watchdog by causing the link to be reinitialized after any 

failure. 

The keyboard ISR (KISR) picks up keyboard characters and places 

them in the ring buffer and signals the semaphore KEYB$CHAR$IN, thereby 

allowing "type ahead". The keyboard process KEYB$PROCESS picks them up 

and acts on them one at a time by making calls on the various modules. 

If the character is from a call control function key, the keyboard 

process obtains a corresponding message from CNTL$MSSGS and echoes it 

with a call to DISPLAY (bypassing screen ownership). The process then 

gets an empty buffer from the BUFFER$MANAGER, fills in the packet with a 

call on the PACKET$HEADERS module and sends it through HDLC to the node. 

Next consider the case of a keyboard character from one of the message 

exchange function keys PREPARE MSSG, KILL MSSG and SEND MSSG. The first 

of these results in a potential wait for screen ownership in SCREEN$ 

ACCESS, followed by the obtaining and printing of an echo message. The 

second of the keys causes a release of all buffers, an echo message and 

a release of ownership. The last one, SEND MSSG, results in an echoed 

MESSAGE SENT, a release of the screen, and sequence of transmissions of 

the packet buffers through HDLC. Permission to send is obtained before 

every packet transmission in the FLO$CNTL module which encapsulates the 

flow control rules. 
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Data characters picked up from the keyboard during local screen 

ownership by KEYB PROCESS are singly echoed on the screen through DISPLAY 

and stored in a buffer obtained from the pool in BUFFER MANAGER. If the 

screen does not belong to the operator the characters are lost. 

On the reception side, RX PROCESS picks up incoming packets from 

HDLC, and decodes them in PACKET HEADERS. If it is a control (not data 

or flow control) packet then an appropriate message is obtained and 

echoed (CNTL$MSSGS and DISPLAY) with no wait for ownership. Otherwise, 

if it is the first data packet of a message (as determined by M bit 

usage) RX PROCESS may have to wait for screen ownership in SCREEN ACCESS. 

When ownership is obtained, the heading RECEIVED MESSAGE is printed followed 

by the text in the packet. Subsequent data packets print directly on 

the screen and the last one of the message releases the screen. During 

reception the P(S) and P(R) sequence numbers of the packet header, which 

• govern flow control, are interpreted in FLO$CNTL and an explicit RR packet 

is transmitted if necessary. 

All modules except FLOSCNTL and HDLC are executed as critical 

sections, each protected by its own semaphore. The remaining two modules 

are arranged as monitors, a more complex organization in which internal 

process suspension may be involved. 

How big is skinny X.25? Figuna3.11 gives the size breakdown for 

the system. The question must be answered carefully, though, since the 

functions are distributed and because a number of modules are unrelated 

to X.25 in particular. Therefore we will not count the keyboard ring 
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buffer or the DISPLAY module, since they would be present in some form 

in any intelligent terminal. Nor will we count the BUFFER MANAGER or 

HDLC, since they or their equivalents would be present in any FDTE. 

Similarly CNTL and SCREEN ACCESS have no place in a fair comparison 

among FDTE structures. 

We are left with PACKET HEADER and FLO CNTL as the only two 

modules of the system containing uniquely X.25 code and data structures. 

Their combined size is 925 bytes or about 7% of the total memory 

requirements of the terminal, even when written in PL/M. 

It is also easily written code. From the point at which a working 

HDLC was available and the general architecture had been designed, the 

remaining design, coding and testing of all modules took under 2 man 

weeks. 
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3.5 Super Skinny Method A  

Super skinny Method A (SSA) is related to X.25 in that similar 

call control procedures are used. Flow control, however, is provided 

exclusively by the frame level, thereby eliminating the redundant 

packet level flow control. 

Since SSA is not compatible with any existing or planned network, 

it will be worth while to specify it in some detail. Packet types (e.g. 

call control, data etc.) are specified by a code in the packet header. 

Unlike X.25, data packets do not contain sequence numbers. All packets 

are exchanged with the network through the DLC, which neither examines 

nor modifies the packet header and packet body; error control and flow 

control are therefore exerted uniformly on all packets. 

As in X.25, flow control in SSA is a local affair between the 

DTE and the serving DCE. Therefore three "anchor point pairs" (see 

Critical Review, Chapter 2) are active during a typical virtual call: 

(DTE1, DCE1), (DCE1, DCE2), and (DCE2, DTE2). The network ensures that 

a reset on any one of these three links results in resets of all three, 

the same convention observed in X.25. 

The major objection to SSA is functional: if the call control 

packets are subject to the same flow control as data packets, then the 

operator may not be able to clear the call if the remote DTE is, for 

some reason, not receiving packets. The American FDTE submission to 

CCITT explicitly notes this drawback. Fortunately, there is a solution. 

The DLC modules can be arranged so that a link reset causes clearing of the 

send and receive queues. In order to clear a call, therefore, the operator 

3.9 



need only reset the link before sending the clear request packet. 

This rather brutal technique does not extend conveniently, however, to 

other packets which ought to be flow control exempt. Sending an 

interrupt packet this way, for example, may result in unnecessary data 

loss. 

SSA has the virtue that it is smaller than X.25. In order to 

determine how much smaller, the experimental version was a modification 

of skinny X.25. In particular, call control and data packets have the 

same formats as in X.25 with the exception that the P(R) and P(S) fields 

of data packets are ignored. Further, flow control (RR) packets are 

neighter generated nor expected. 

Figures 3.12 to 3.13 show the architecture of the experimental 

SSA FDTE. There is obviously a strong resemblance to skinny X.25. 

Differences are in fact confined to replacement of the FLO CNTRL module 

with the EXT QUEUE module, and insertion of another process, the TX PROCESS. 

In order to send packets the keyboard process now places them in the 

external queue module, from which they are transported to HDLC by the 

TX PROCESS. The objective is that the keyboard process not be delayed 

in a flow controlled HDLC, but remain responsive to keyboard input. 

How much smaller is SSA? Figure 3.11 gives the size breakdown 

for SSA against skinny X.25. Evidently, the reduction is 795 bytes, which 

is 86% of the X.25 packet level function, and 6% of total code in the 

system. 
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3.6 Interworking of SSA and X.25 Terminals  

The interworking of several FDTE types through different network 

arrangements was discussed in Chapter 5 of the "Critical Review" Report. 

Because of the local interpretation of sequence numbers for flow and 

error control, there are no major problems in normal call setup and 

exchange of data packets. In those cases when it is important to push 

a packet through a flow controlled link (e.g. clear request, interrupt) 

it is possible to reset the link, with the associated penalty of data 

loss. 

Because it was felt that this arrangement does not hold any 

lurking surprises, and that its successful implementation would not 

give much new information, it was not constructed. 
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SYSTEM READY 

PLACE CALL TO 20400014 

CALL CONNEC1ED 

CURRENT MESSAGE IS: 

IT'S RAINING IN VANCOUVER 

MESSAGE SENT 

RECEIVED MESSAGE: 

WEATHER IN OTTAWA IS SUNNY 

LOCAL CALL CLEAR 

REMOTE CALL CLEAR CONFIRMED 

SYSTEM READY 

CALL FROM 20400019 

CALL ACCEPTED 

CURRENT MESSAGE IS: 

WEATHER IN OTTAWA IS SUNNY 

MESSAGE SENT 

RECEIVED MESSAGE: 

IT'S RAINING IN VANCOUVER 

REMOTE CALL CLEAR REQUESTED 

LOCAL CALL CLEAR 

REMOTE CALL CLEAR CONFIRMED 

Figure 3.3 Raw Transcripts of a Conversation  
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CALLING DTE 	 CALLED DTE 	 COMMENTS 

SYSTEM READY 	 SYSTEM READY 	 ON SYSTEM INITIALIZATION 

*PLACE CALL TO 20400014 	CALL FROM 20400019 	 CALLING DTE PLACES CALL 

CALL CONNECTED 	 *CALL ACCEPTED 	 CALLED DTE ACCEPTS CALL 

*CURRENT MESSAGE IS: 	*CURRENT MESSAGE IS 	 CALLINi  

CALLED 	
DTE PRESSES "PREPARE MSSG" KEY 

*MESSAGE SENT 	 *MESSAGE SENT 	 CALLINI DTE SENDS MSSG 
RECEIVED MESSAGE 	 RECEIVED MESSAGE: 	 CALLED 

*LOCAL CALL CLEAR 	 REMOTE CALL CLEAR REQUESTED 1 	CALLING DIE PRESSES "CLEAR CALL" KEY 

REMOTE CALL CLEAR 	 RESPONSE FROM CALLING DCE 
CONFIRMED 

*LOCAL CALL CLEAR2 	 CALLED DTE RESPONDS TO NETWORK REQUEST 
BY PRESSING "CLEAR CALLS" KEY 

REMOTE CALL CLEAR CONFIRMED
3 	RESPONSE FROM CALLED DCE 

NOTES:  Any detected error will force a 1 2 3 type sequence to clear calls. 

- Asterisk * - Indicates use of a function key 

Figure 3.4 Annotated Transcript of a Conversation  
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From DTE  From DCE  Echo Message  Function Key  

RESTART REQUEST CLEAR CALL 

ACCEPT CALL 

PLACE CALL 

CALL ACCEPTED 

CALL REQUEST 
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INCOMING CALL 
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REMOTE CALL CLEAR REQUESTED 

LOCAL CALL CLEAR 

REMOTE CALL CLEAR CONFIRMED 

SYSTEM RESET, CLEAR CALL 

CALL FROM XXXXXXXX 

CALL ACCEPTED 

PLACE CALL TO XXXXXXXX 

CALL CONNECTED 

Figure 3.6a Call Control: Function Keys, Packet Types and Operator Messages  
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Figure 3.6b 	Data Transfer: Function Keys, Packet Types and Operator Messages.  
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in the network. 

Figure 3.7 X.25 Restart FSM  

(From Bell Canada, "Standard Nètwork Access Protocol") 
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ACCESS GRAPH CALLS: 

1) GET$PKT$BUFFER--PKT$PTR; 
2) PUT$FREE (PKT$PTR); 
3) GET$FREE-&--  PKT$PTR 
4) ASSEMBLE$PACKET (PKT$PTR,PKT$TYPE); 
5) IDENTIFY$PACKET (PKT$PTR)-e.-- PKT$TYPE; 
6) LOCATE$CNTL$MSSG (MSSG$ID,MSSG$AT$PTR,MSSG$LENGTH$PTR); 
7) REQUEST$SCREEN$ACCESS; 
8) RELEASE$SCREEN$ACCESS; 
9) DISPLAY (MSSG$AT,MSSG$LENGTH); 
10) SEND$DATA$PKT (PKT$PTR); 
11) REPORT$FLOW$CONTROL$RX (PKT$PTR,PR,PS); 
12) INIT$FLOW$CONTROL$VARIABLES; 
13) FP$GET (PKT$PTR,STATUS$AT)-e--- PKT$PTR; 
14) PF$PUT (PKT$PTR,STATUS$AT); 
15) STATUS$WA1T (STATUS$MATCH); 
16) RE$INIT (STATUS$AT); 
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Figure 3.8 b) Legend for Skinny X.25 Access Graph  
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1DENTIFY$PACKET (PKT$PTR) 	PKT$TYPE: 

A procedure of type byte called to identify the type of packet 
located in the buffer pointed to by PKT$PTR. On exit, PKT$TYPE is coded 
as shown below. No delays are possible. 

PKT$TYPE 	 PKT$TYPE  

0 	 incoming call 
1 	 call connected 
2 	 clear ind. 
3 	 clear conf. 
4 	 reset ind. 
5 	 restart ind. 
6 	 restart conf. 

SEND$DATA$PKT (PKT$PTR): 

An untyped procedure called to obtain transmission of a data 
packet pointed to by PKT$PTR. If the flow control window is open, the 
packet will immediately by forwarded to HDLC. Otherwise it will be 
queued in a buffer queue until the Tower window edge is rotated by the 
reception process. No delay is possible. 

REPORTSFLOWSCONTROLSRX (PTRSAT,PR,PS) 	STATUS: 

A procedure of type byte called by the reception process on 
reception of either an RR packet or a DATA packet. On input, PS or 
PR specify the send and receive sequence number as conveyed by the last 
received packet. If these numbers are unacceptable (i.e.: out of sequence 
or outside the window) then a byte type STATUS with a value of 1 is returned, 
and no RR packet is generated. It is up to the calling process to take 
appropriate action (such as  clearing the call). If the sequence numbers 
were within expected ranges then a status of zero is returned. PTR$AT points 
to an empty packet buffer. Should one be needed to generate an RR packet 
this buffer will be used and the value at PTR$AT will be reset to zero. 
Otherwise the value at PTR$AT will remain unchanged, and it is then the caller's 
responsibility to dispose of the empty buffer. No delay is possible. 

INIT$FLOW$CONTROL$VARIABLES:  

An untyped procedure called to reset all flow control variables 
to initial values. This procedure is called by the keyboard process each 
time it sends a call request or a call accept packet. 

Figure 3.9 Skinny X.25 Packet Level Procedures  



The display module is responsible for all activities associated 
with the display. In particular it will handle the protection of the 
screen as a shared resource, assemble all control messages before they 
are displayed and provide the necessary mechanisms for displaying a 
string of contiguous characters. The public procedures of the module 
are as described below. 

REQUEST$SCREEN$OWNERSHIP:  

An untyped procedure called by any process wishing exclusive 
access to the screen for the display of multiple sequential strings. 
(A multiple packet message, for example). The calling process is 
delayed until the screen is available for use. 

RELEASE$SCREEN$OWNERSHIP:  

An untyped procedure used to release access to the screen, 
thereby enabling its use by other processes. 

LOCATESCNTL$MSSG (MSSGSID,MSSGATSPTR,MSSGSLENGTHSPTR): 

An untyped procedure called to locate an ASCII string correspond-
ing to the control message specified by the byte type MSSG$1D parameter. 
On exit, MSSG$AT$PTR will point to an address variable containing the 
starting address of the string, while MSSG$LENGTH$PTR will point to an 
address variable containing the length (in bytes) of the string. No 
delay is possible. 

GETSPACKETSBUFFER 	BUFFERSPTR: 

A procedure of type address called to obtain a free packet 
buffer. On exit a non-zero BUFFER$PTR indicates that the buffer 
starting at that pointer was granted to the caller. A zero BUFFER$PTR 
indicates that no buffers were available at the tiffe of the call. No 
delay is possible when using this call. 

GET$FREE 	BUFFER$PTR: 

Same as above except that the caller is delayed should there 
be no buffers available at the time of the call. 

PUT$FREE (BUFFER$PTR): 

An untyped procedure called to release the packet buffer 
pointed to by BUFFER$PTR. No delay is possible. 
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ASSEMBLESPACKET (PKTSPTR, PKTSTYPE): 

An untyped procedure called to attach a header to the 
packet buffer pointed to by PKT$PTR. PKT$TYPE specifies which type 
of header should be attached, and is coded as shown below. No delay 
is possible. 

PKTSTYPE CODE 	 PKT$TYPE  

0 	 restart request 
1 	 call request 
2 	 call accepted 
3 	 data 
4 	 RR packet 

DISPLAY (MSSG$AT,MSSGSLENGTH): 

An untyped procedure called to get a string of length 
MSSGSLENGTH (of type address) located at MSSGSAT displayed. Each 
character in the string will be output to the video display driver 
in sequential fashion on a 'poll for device ready' basis. Hence the 
calling process will be tied down during the time it takes to display 
the string. No other delay is possible. 
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Code 	 Data Code 	Data 

1470 	63 	 1470 	 63 

760 	0 	 760 	 0 

100 	0 	 100 	 0 

900 	25 

	

370 	 20 

. . 

700 	15 	 435 	 21 

7335 	2257 	 7335 	 2257 

variable 	 variable 

KISR 
+ Keyboard 
Process 

SCREEN ACCESS 
+ DISPLAY 
+ CNTL MSSG 

BUFF MNGR 

PKT HDR 
+ FLO CNTL 

PKT HDR 
+ EXT QUEUE 

Processes 
CNTL, RX (and 
TX for SSA) 

All else 
(HDLC, startup, 
kernel, etc.) 

Buffers 

2361 11265 	2360 10470 

Skinny X.25 

3.25 

Super Skinny Method A 

Figure 3.11 -  Memory Requirements Protocols of the Two Method A Protocols  
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ACCESS GRAPH CALLS: 

1) GET$PKT$BUFFER — PKT$PTR; 
2) PUT$FREE (PKT$PTR); 
3) GET$FREE — PKT$PTR 
4) ASSEMBLE$PACKET (PKT$PTR,PKT$TYPE); 
5) IDENTIFY$PACKET (PKT$PTR) ------ PKT$TYPE; 
6) LOCATE$CNTL$MSSG (MSSG$ID,MSSG$AT$PTR,MSSG$LENGTH$PTR); 
7) REQUEST$SCREEN$ACCESS; 
8) RELEASE$SCREEN$ACCESS; 
9) DISPLAY (MSSG$AT,MSSG$LENGTH); 
10) SEND$DATA$PKT (PKT$PTR); 
11) GETSPKT----PKT$PTR; 
12) RE$INIT (STATUS$AT); 
13) FP$GET (PKT$PTR,STATUS$AT)--e--- PKT$PTR; 
14) PF$PUT (PKT$PTR,STATUS$AT) 
15) STATUS$WAIT (STATUS$MATCH); 

Figure 3.12 b) Legend for Super Skinny Method A 
Access Graph   	
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SEND$DATA$PKT (PKT$PTR): 

An untyped procedure called to obtain transmission of a data 

packet pointed to by PKT$PTR. The packet will temporarily be queued 

in EXT QUEUE until the TX process picks it up to forward it to the HDLC 

monitor. No delay is possible. 

GET$PKT —,---(PKT$PTR): 

An untyped procedure called by the TX process to obtain the 

next packet to be forwarded to HDLC for transmission. A potential 

delay exists until such a packet arrives from the Keyboard process. 

Figure 3.13 Procedures of Super Skinny Method A 
Which Differ from Skinny X.25  
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4. METHOD C: CALL CONTROL BELOW DATA LINK CONTROL 

4.1 Review  

As defined in the companion report [1], Method C procedures are 

those in which call control is located below the data link control. 

Notification of major changes in call status - desire to establish a 	' 

call and desire to clear a call - is achieved by voltage changes on specific 

pins of the interface. Selection and call progress signals are 

exchanged in their own format, and only after the call is established 

does the DLC attempt to initialize the link (to the node or to the DIE 

at the other end of the circuit). Clearly X.21 is an example of Method 

C, as is the BASIC FDTE described in another companion report [2]. 

Method C interfaces have two compelling advantages. First, they 

are suitable for both circuit and packet network interfaces, since they do 

not rely on special frames to clear a call. Second, they are independent 

of the particular DLC adopted.  The  customer is not locked into, for 

example, HDLC in a point-to-point and balanced version; existing BSC and 

SDLC terminals, as well as DEC computers speaking DDCMP, can access 

networks with Method C interfaces. Packet networks, of course, must have 

agreed to support the appropriate DLC. 
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4.2 

4.2 Infoswitch X.21  

Infoswitch is an integrated network which offers both circuit 

and packet mode services, termed InfoExchange Service (IES) and InfoCall 

Service (ICS), respectively. IES and ICS are both accessed through 

the same'X.21-like call control procedure. In fact, the customer can 

select the service, and hence the tariff structure, he wishes at call 

setup time, by the addition of a single dialing digit. 

In particular, the call control method provided by Infoswitch is 

based on X.21 bis, the adaptation of X.21 to V-series modems. The actual 

interface is RS 232 with the interpretation of some pins altered from X.21 

bis. Another difference is that Infoswitch provides more flexibility in 

the envelope format of selection and call progress signals, and provides 

a richer variety of call progress signals than X.21 bis. 

InfoExchange Service is relatively straight forward. After call 

setup, the calling and called DTEs are connected by a transparent TOM  

real circuit. Any data, bit or byte oriented, from synchronous terminal 

or fax reader, (as examples) are passed through the network untouched. 

Charges are proportional to call duration. 

InfoCall Service is a transparent packet switched service [3]. After call 

setup, data blocks entered in a previously agreed-upon format are carried 

individually through the network and delivered untouched to the destination 

DIE. Sequence is preserved although the interblock spacing may be 

changed. Interframe time fill is not transmitted. Data link control 

(sequence numbering, error detection and retransmission, etc.) is therefore 



conducted on an end to end basis, with the network taking no part. 

Charges are based strictly on volume, not on connect time, provided 

the volume is over a minimum level. The unusual feature of InfoCall 

is that the network cannot exert flow control on a DTE to limit the 

influx of packets to the network. 
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4.4 

4.3 An X.21 Interface Package  

This section describes the structure of a software package which 

provides processes ("tasks') access to the integrated services of 

Infoswitch. It incorporates: 

- call control for IES/ICS 

- framing and transparency in the transmission and reception 

interrupt service routines 

- CRC generation and validation 

- buffer transmission and reception primitives 

It does not include: 

- retransmission error control 

- flow control; there is a possibility of data loss if the reception 

procedure is not called often enough 

Although this interface does not provide flow control or retransmission 

error control, it is possible to incorporate these services in an HDLC 

module above the interface. The composite structure will be described 

in the next section. 

As shown in Figure 4.1, the interface is constructed as two modules 

and a set of semaphores. The call module is a set of procedures which 

provide higher levels of software with the standard five communication 

primitives: place call, wait for call, hangup, send pkt and rcve pkt. 

This module is not a monitor in the usual sense; it simply coordinates 

line module accesses and semaphore waits. The exclusion required is 

provided by the line module, which is a set of interrupt-protected data 

structures and procedures, forming a critical section. All state variables 

of the call and the transmission and reception ISRs are maintained in this 
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module. Because of its intimate association with the line termination 

devices, the line module can be executed only by processes running on the 

CPU owning the USART. 

The call module generally resembles the X.25 interface, especially 

in the three call control primitives (PLACE$CALL, WAIT$FOR$CALL, and 

HANGUP), but there are some unavoidable differences: 

- Only one virtual call can exit at a time. For this reason, procedures 

SEND$PKT, RCVE$PKT and HANGUP need not be reentrant. 

- Infocall does not supply the identity of the caller along with the 

indication of an incoming call, so WAIT$FOR$CALL does not return 

this information. If it is required, terminals can observe a 

convention that the first packet transmitted by the caller is 

identification and subconnection information. 

- Status messages are not the same as in X.25, since different 

information about call progress is returned from the network. 

- There can be missing packets in the stream obtained from RCVE$PKT, 

depending on the frequency of calls to this procedure and noise 

level on the local (node to DTE) lines. Resolution of these 

problems is for higher levels of software. 

The services provided by the InfoSwitch package to higher levels 

of software are defined by the five procedures described below: 

PLACE$CALL(STATION$AT, STATUS$AT) 

A reentrant procedure which causes a call to be placed to another 

DTE. STATION$AT is the address of a user-supplied block which 

specifies the called network address. STATUS$AT is the addre'ss 

of the user-supplied status block. Normally there is an indefinite 



delay until the line becomes available. Following availability, 

addressing actions take place to bring the virtual circuit to 

the data transfer state. These actions are monitored by internal 

timers, expiry of which causes the link to be declared unfit. 

If the link becomes unfit at any time, for any reason, there is 

an immediate exit. 

WAITSFORSCALL (STATUSSAT) 

A reentrant procedure which causes acceptance of the next incoming 

cal]. There is an indefinite delay until network notification of 

an incoming  cal]. The call is then accepted and the status is 

returned. If the link becomes unfit at any time there is an 

immediate exit. 

HANGUP (STATUSSAT) 

A procedure which is the normal termination to every successfully 

established call, regardless of which party initiated the call. 

There is no delay other than that in the return of unused buffers 

to the pool. 

SEND$PKT (PTR,STATUSSAT) 

A procedure which places the specified buffer pointer on the 

transmit queue and initiates transmission, if necessary. There 

is a delay if buffers are queued too far in advance of the one 

being transmitted. This is  nota form of flow control. If end 

to end error control is implemented, the CRC bytes must already 

have been appended to the buffer. -There is an immediate exit 

if the link becomes unfit at any time. 
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RCVE$PKT (TIME, STATUS$AT) 

A procedure of type ADDRESS used to obtain a filled buffer from 

the reception ISR; a pointer, to the buffer is returned as the 

value of the procedure. There is a delay if no filled buffer is 

available. The byte TIME specifies the number of clock ISR 

activations the process is willing to wait. There is an immediate 

exit if the link becomes unfit at any time. 

As might be expected, the software required for this simple call 

control is small. The line module takes up 2049 bytes. Of this figure 

1.2 K bytes are associated with framing and transparency functions. Since 

these would be largely eliminated (as would the 900 byte CRC module) 

by use of the current communication controller chips, only about 800 bytes 

of the line module can be associated with call control. The call module 

itself is only 635 bytes. Our conclusion, therefore, is that call control 

for X.21, even in a package designed for processes instead of human beings, 

costs less than 1.5 K bytes of PL/M code. This is significantly less than 

that required by the X.25 package described in Chapter 2, and could be 

reduced further by coding in assembler. 
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4.4 Software Organization of the -First Experimental Method C Terminal  

The application used as a test bed is the same as that used in 

the Method A terminals of Chapter 3: conversational DTEs operating in 

free-running dialogue mode. Many of the non-communications structures 

are therefore similar to those of the Method A terminals. The operator 

interface, for example, consists of keyboard with function keys (listed 

in Figure 4.2), and a screen running in teletype mode. The right to print 

a single message on the screen is obtained on a first come, first served 

basis by the local operator and the process receiving incoming messages. 

The major differences are that call setup, both incoming and outgoing, 

is completed before the HDLC module is turned on, and that call setup and 

clear down procedures are independent of and do not conflict with HDLC 

procedures. 

Figure 4.3 shows the organization of the software for use of Infocall 

and InfoExchange services. The undue complexity of the structure results 

from the late discovery of a duration constraint on one of the interface 

states associated with call clearing,one which was not recorded in CNCP 

interface specifications. Compensation for this constraint at the process 

level was felt to be a faster "fix" than modifying the line module, where 

changes really should be introduced. 

After system startup, transport processes IF (interrupt to frame) 

and FI (frame to interrupt) are asleep in the HDLC monitor, as is the CNTL 

process, who waits for HDLC to be turned on. The LOGGER waits for an 

incoming call and the KEYB process waits for user input. TX waits in 
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MAILBOX and RX waits on the HDLCSUP semaphore. 

If a call comes in, the LOGGER accepts it, turns on HDLC and 

notifies the operator by a message on the screen.  The  CNTL process 

emerges, wakes up RK, then returns to HDLC to wait for the link to be 

deadwaited. The call is now in progress, and actions are virtually 

identical to those of the Super Skinny Method A terminal (Chapter 3). 

If an outgoing call is to be placed in response to the operator 

pressing the appropriate function key, KEYB accesses the PLACESCALL 

in the CALL MODULE and notifies the operator of the result. 

If the network clears the call, IF or FI turn HDLC off, causing 

CNTL to emerge, call HANGUP and notify the operator. On the other hand, 

if the call is cleared in response to -a function key pressed by the 

operator, then KEYB turns HDLC off, causing CNTL to call HANGUP. 

This interface was used for both the circuit and transparent 

packet services of Infoswitch. The only detectable difference was a 

slightly increased delay in the case of packet mode transmission. If 

nothing else, it demonstrates that X.21 can be used as a packet net 

access method. 

4.9 



4.5 The Second Experimental Method C Terminal  

The previous section defined a software structure in which HDLC 

sat above a bare X.21 interface. Although these terminals ran 

satisfactorily in that they could call each other and exchange 

messages in free-running dialogue mode, they had inherent limitations. 

As explained in Chapter 5 of another report [1], bare X.21 does not 

allow the calling DTE to identify itself; it also leads to non-

uniformities in call control procedures when placing internetwork 

calls. One solution, also described in that report, is an end-to-end 

convention immediately following X.21 call setup whereby the calling 

DTE transmits the equivalent of an X.25 call request/incoming call 

packet, and the called DTE responds with a call accepted/connected 

packet (or clears the X.21 call). After this exchange the two DTEs 

initialize the end-to-end DLC by a set mode command. 

The second experimental Method C terminals differed from the 

first only in the inclusion of a mechanism for accomplishing the 

exchange described above. Figure 4.4 shows the transcript of a 

typical call, in which it can be seen that the operator is automatically 

provided with the identity of the calling terminal, a service not 

provided by bare X.21. Specifically the KEYB process, after successfully 

emerging from the PLACE$CALL procedure of the CALL module, prepares an 

X.25 call request packet containing both DTE addresses, transmits it 

over the X.21 connection in procedure SENDSPKT, and waits for a call 

connected reply in procedure RCVE$PKT. (Both these procedures are in 

the CALL module). Having completed the exchange, the KEYB process 

calls the HDLC module procedure TURN$ON. The CNTL process will notify 

4.10 



the operator once the DLC is set up that the call is ready for data 

transfer. 

As for reception of incoming calls, if the LOGGER process emerges 

from procedure WAITSFORSCALL of the CALL module, it then calls RCVE$PKT 

to obtain the incoming call packet transmitted by the calling DTE 

and displays the address of that DTE to the local operator. LOGGER then 

sends a call accepted packet by SEND$PKT and turns on HDLC. As before, 

the CNTL process notifies the operator when the DLC is set up. 

Evidently, the memory required to support this call control protocol 

is that of the X.21 interface described in the previous section, plus 

that required for preparation and interpretation of the call request 

and call connected packets, plus that required for the extra message 

to the operator. The increment is under 300 bytes, for a total of 

about 1.8 K bytes associated with call control. It should be noted 

that the inclusion of the exchange of X.25 frames after X.21 call 

setup is not difficult, once the machinery of section 4.4 is in place. 

Our experience was one man day. 
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PLACE$CALL 

WAIT$FOR$CALL 

HANGUP 

1 GET$CHANNEL 
2 GO$AHEAD 
3 CLEAR 
4 ACCEPT$CALL 
5 TXMT$PUT 
6 TXMT$GET 
7 RCVE$PUT 
8 RCVE$GET 
9 RCVE$ZAP 
10 PUT$FREE 
11 GET$FREE 

SEND$PKT 

RCVE$PKT 

BUFFER 
POOL 
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Figure 4.1 General Organization of Micro ICS Interface  



FUNCTION KEY  INTERFACE ACTION  OPERATOR MESSAGE  

PREPARE MSSG 

SEND MSSG 

CALL FROM XXXXXXXXXXX 

CURRENT MESSAGE IS: 

MESSAGE SENT 

MESSAGE RECEIVED: 

CALL CLEARED 
SYSTEM READY 

os 	mu as as or am ono or one as 	r onm cm us so se us 

PLACE CALL 

HDLC set up after outgoing 
or incoming X.21 call setup 

PLACE CALL TO: XXXXXXXXXXX 

CALL CONNECTED 

CLEAR CALL 

identification of calling DTE 
after incoming X.2I call setup 
(second Method C DTE only). 

first packet of incoming 
multipkt message (chained above 
HDLC) 

network clearing of X.21 call 
or system initialization 

Figure 4.2 Method C Function Keys, Interface Actions and Operator Messages  
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Figure 4.3 a) Access Diagram of Infoswitchleerface  



1 	 4.15 

1 	SEND$DATA$PKT (PKTPTR); 

2 	• 	GET$PKT 

3 	DISPLAY (STRINGAT, STRINGLENGTH); 

4 	LOCATE$CNTL$MSSG (MSSGSID, MSSGATPTR, MSSGLENGTHPTR); 

5 	REQUEST$SCREEN$ACCESS; 

6 	RELEASE$SCREENSACCESS; 

7 	GET$FREE 

8 	PUT$FREE (PKTPTR); 

9 	GET$PKT$BUFFER--- PKTPTR; 

10 	PF$PUT (PKT$PTR, STATUSSAT); 

11 	FP$GET (PKT$PTR, STATUSSAT)-*--- PKTPTR; 

12 	1F$PUT 	 PKTPTR; 

13 	 PKTPTR; 

14 	IFSGET(PKTPTR)---PKTPTR; 

15 	SEND$PKT (PTR, .STATUS); 

16 	TURNSON; 

17 	TURN$OFF; 

18 	• G1VE$EMPTY (PKTPTR); 

19 	STATUSSWAIT (STATUS$MATCH, STATUSSAT); 

20 	PLACESCALL (STATIONSAT, STATUSSAT); 

21 	HANGUP (STATUSAT); 

22 	WAIT$FORSCALL; 

23 	RCVE$PUT (PTR); 

24 	GET$RCVE$BUF 	PKT$PTR; 

Figure 4.3 b) Legend for Infoswitch Access Graph  
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CALLING DTE 	 CALLED  DIE 	 COMMENTS 

CALLS CLEARED 	 CALLS CLEARED 	 UPON SYSTEM INITIALIZATION 
SYSTEM READY 	 SYSTEM READY 

*PLACE CALL 10: 	 CALL FROM 5015012 	 CALLING DTE PLACES CALL 
5015011 CR 	 X.21 CALL IS CONNECTED (LINK 

NOT AVAILABLE UNTIL HDLC IS UP) 

CALL CONNECTED 	 CALL CONNECTED 	 HDLC IS UP BOTH DTE'S 
LINK IS AVAILABLE FOR USE THROUGH 
HDLC 

*CURRENT MESSAGE IS: 	 *CURRENT MESSAGE IS: 	 BOTH OPERATORS PRESS THE "PREPARE 
HELLO HUGH! 	 HELLO AGATHA! 	 MSSG" KEY AND BUILD A MESSAGE 

MESSAGE SENT 	 MESSAGE SENT 	 BOTH OPERATORS PRESS THE 
MESSAGE RECEIVED: 	 MESSAGE RECEIVED: 	 "SEND MSSG" KEY 
HELLO AGATHA! 	 HELLO HUGH! 

*CALLS CLEARED 	 *CALLS CLEARED 	
, 	

EITHER ONE, OR BOTH OPERATORS 
SYSTEM READY 	 SYSTEM READY 	 (SIMULTANEOUSLY) PRESS THE 

CLEAR CALL KEY 

OR, ERROR WAS DETECTED BY DTE 
SOFTWARE OR BY THE NETWORK 

* Asterisk denotes operator use of function keys. 

Figure 4.4 Conversation on Second Method C FDTE  



5. EXPERIMENTAL INTERNETWORKING OF CIRCUIT AND PACKET FDTES  

5.1 	Objectives  

We have defined and constructed both packet mode and circuit 

mode FDTEs. One of the major objectives of this study was to ensure 

that any such FDTEs be able to interwork with each other and with X.25 

DTEs, and that tandem circuit/packet connections be possible. It was 

felt that the best way to gain confidence in these designs was to actually 

construct an experimental internetwork switch which would allow calls 

between packet and circuit networks. 

Accordingly, an experimental gateway node was constructed 

(Figure 5.1) which connected the circuit mode service (IES) of Infoswitch 

wtih a Datapac-equivalent X.25 network. The local net interface was at 

the host level, in Sunshine's terminology [5]: Infoswitch presented the 

gateway with bare X.21; the Datapac-equivalent network presented itself 

as X.25. The job of the gateway, of course, was to bridge the interface 

with call control and data transfer processes. 

The objectives were relatively clear. We wished to demonstrate 

the feasibility of internetworking  the  circuit mode FDTE with a packet 

mode X.25 DTE. Internetworking was to mean both call control and data 

transfer functions. In doing so, we hoped to turn up incompatibilities 

or awkwardnesses not suggested by the earlier FDTE construction (Chapter 4) 

or analysis [1, Chapter 5]. Any changes to the FDTE resulting in increased 

complexity were to be determined. 
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5.2 

5.2 	Configuration and Assumptions  

The DTE on the packet network shown in Figure 5.1 was a Skinny 

X.25 terminal (Chapter 3); the reader will recall that it is Datapac-

compatible. The SuperSkinnyMethod A terminal (Chapter 3) was considered 

for the packet network DTE, but was rejected for two reasons: first, 

it would have made no difference technically, since the flow control 

window is interpreted locally; and second, it was felt that interworking 

with a true X.25 terminal would be more convincing. The circuit network 

DTE was an unmodified Method C DTE of the second type constructed (Chapter 

4), one which exchanges X.25-like call request and call connected packets 

with the remote DTE after X.21 call establishment and before DLC initiali-

zation. 

The gateway was a multiprocessor in which each network had its own 

CPU for servicing interrupts. Other processes associated with packet 

transport and call control ran on whichever CPU seemed appropriate for a 

given function. These processes viewed the circuit and packet networks 

through interfaces based on the second Method C and Skinny X.25 respectively. 

More details of the gateway will not be given, since it was entirely 

disposable, ad hoc software. 

A certain suspension of disbelief is required in viewing the 

configuration as a viable internetwork service. For one thing, it assumes 

that both networks are actively cooperating by employing a global (or 

at least mutual) numbering scheme, so that extra-network calls are detected 

and routed to the appropriate gateway. Another point of unreality is that 

the Datapac-equivalent network is accessed by the gateway through X.25. 

In fact, the X.75 internetwork protocol would 



be the appropriate interface if correct addresses are to be retained 

in the call request/incoming call packet. The present arrangement, for 

example, will cause the packet net DTE to be informed that an incoming 

call is from the gateway, rather than from the DTE on the X.21 network. 

5.3 



5.4 

5.3 	Results  

The experimental internetwork arrangement essentially confirmed 

the earlier analysis and design. No change was required to either the 

Skinny X.25 DTE or the X.21 FDTE. The gateway, however, was required 

to perform some tricks, as outlined below. 

During data transfer, flow control was exerted on what was, in 

effect, an end-to-end basis, though in fact there were four anchor point 

pairs: (X.25 DTE, DCE), (DCE, DCE), (DCE, gateway), (gateway FDTE). 

The gateway process carrying packets from the circuit interface to the 

packet interface would, if delayed due to X.25 flow control, cause a 

frame level RNR (receive not ready) to be sent over the circuit link 

simply because of buffer stâi^vation. Similarly, if the process carrying 

packets from the packet network to the circuit network were delayed 

because 	of K HDLC I frames outstanding, then the X.25 window 

would fill and no window rotation would be generated to be carried back 

to the sending DTE through the packet network. One effect, however, of 

our amateur gateway was that the flow control windows added over the 

two networks: if the Datapac window W=2 and the circuit net HDLC 

maximum frame advance K=3 then the total number of frames outstanding 

between source and destination would be 5. This is a minor problem and 

can be corrected by modifying the X.25 interface so that procedure RCVE$PKT 

does not automatically generate a window rotation, and instead making this 

action the result of a new procedure BUMP$CRED1T. In any case, design of 

a gateway was not the principal interest of the experiment, so the modif-

ication was not performed. 



As for call control, there were obvious problems attributable to 

the fact that the networks were unaware of, and hence not cooperating 

with the experiment. As a result anomalous addresses appeared in the 

incoming call packets. Specifically, consider a call originating at 

the packet DTE for the circuit DTE. The actual sequence was as follows: 

the packet  DIE  emits a call request packet with the called address as the 

gateway; the gateway receives it as an incoming call packet and assumes  

that it is intended for the specific circuit mode DTE used in the experiment; 

the gateway modifies the "called DTE address" field and places the X.21 call 

to the destination, and follows the call setup with the call request packet; 

the called DTE after X.21 setup receives the correct incoming call packet. 

The other direction of call placement was sielarli-awkward, with the 

following sequence: the calling (circuit net) DTE places an X.21 call to 

the gateway, then sends the call request packet with the packet DTE address 

in the 'called" field (note different "called" addresses in the two stages 

of call placement); the gateway does not have to assume a destination for 

calls in this direction, but must insert its own address in the "calling" 

field to conform with X.25 when placing the packet net call; the destination 

DTE therefore receives an incoming call packet indicating only the gateway 

as the source. 

Now for what we require of the networks in order to make the 

arrangement work properly. First, a mutual DTE numbering scheme is necessary 

as is the cooperation of the networks in routing a call to the proper 

gateway when a foreign called DTE address is recognized. The effects would 

be that a calling packet net DTE could specify the correct destination 

address in its call request packet, rather than the gateway address, and 

that the circuit mode DTE could use the same destination address in both 
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stages of call control. The second requirement is that the packet net 

present the gateway with an X.75, rather than X.25, interface. The 

effect would be that the call request/incoming call packets crossing 

this interface would not be required to have one of the addresses be that 

of the gateway; the called packet DTE would be given the correct identity 

of the calling DTE, on one hand, and the gateway would be given the 

correct address of the called DTE, on the other. With this level of 

network cooperation, there is no obstacle to convenient internetworking 

between dissimilar services. 

Finally, we should note again that, while most of the.  technical issues 

are easily resolved, there remains a minor problem with tariffs. When 

the circuit net DTE calls a packet DTE through the structure described 

above, charges on the circuit portion of the path begin to accumulate from 

the time of establishment of the call to the gateway. The time to set up 

the packet portion of the call is therefore chargeable, even in the case of 

a packet DTE with slow reaction time, or a refused call. This problem 

would be eliminated by adoption of the BASIC FDTE interface [2]. 
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Figure 5.1 Experimental Internetwork Configuration  



6. CONCLUSIONS  

Our conclusions must begin with a small disclaimer; although we 

can be precise about the function and size of the various FDTE interfaces, 

only informal estimates of the comparative implementation difficulty are 

available. This is a result of problems with Infoswitch. It was the 

first time they had offered this access method to a customer, and it did 

not work according to their specifications. Eventually they remedied the 

situation, after several reversals on sync and framing charaCters and 

CRC algorithm. In the interval, several man weeks were lost trying to track 

Infoswitch, and the estimates of difficulty became hopelessly confused. 

In proceeding to firmer conclusions, we consider the first objective 

of simplified access to packet networks. Earlier analysis [1] demonstrated 

that Method A protocols were most desirable in this context, and among 

Method A protocols X.25 itself deserves examination. A full multichannel 

version suitable for automatic operation on a multiprogrammed multiprocessor 

required almost 10 K bytes in addition to HDLC. This package was far too 

sophisticated for the application area of interest to the FDTE controversy: 

the single channel, synchronous interactive terminal. Accordingly a single 

channel X.25 which takes ruthless advantage of the environment was built. 

After the design the implementation proved to be exceedingly simple, 

taking less than 1 K byte of space in addition to HDLC, and the result was 

compatible with Datapac. 

Another Method A protocol, in which the redundant packet level flow 

control had been removed, was also built. It reduced the memory requirements 
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from those of the special X.25 above by almost 800 bytes but this figure 

represents only 6% of the total code in the system. However it was not 

Datapac compatible: every out of band (flow control exempt) packet, such 

as call control or interrupt, had to be preceded by a frame level reset, 

with associated data loss. Whether the loss is a problem depends on the 

application. Our first conclusion  therefore, is that if simple access 

to packet networks is the only criterion, there is little reason not to 

adopt X.25 itself. Stripped-down versions just do not save enough 

memory or simplify the implementation enough to justify the loss of function. 

As for the second objective of uniform procedures for access to 

circuit and packet networks, it has been shown already [1] that some Method 

C interface is required. We found that a bare X.21 interface capable of 

coordinating call control and the sending and receiving of frames took 

about 1.5 K bytes. This is larger than the Method A interfaces above, in 

part because the call state FSM was maintained in the interface. It was 

also found to be somewhat more difficult code to write because of its 

proximity to the hardware and interrupt service routines. Functionally, 

X.21 allowed uniform procedures on the Infoswitch circuit and transparent 

packet services, and there is no reason why more conventional packet 

networks could not also offer an X.21 interface. It was deficient in 

one respect; that it gave no indication of the identity of the calling 

DTE. As discussed elsewhere [1], this feature gives rise to various 

ideosyncrasies in placing intra and internetwork calls. We implemented 

one solution for circuit and transparent packet networks in the form of 

a layer of end-to-end identification exchange at a cost of 350 bytes of 

easy code. It is questionable whether this can be considered a candidate 



"universal interface", though; conventional packet networks supporting 

this exchange would have to shoulder much of the complexity themselves 

in taking very special actions at call setup time which depend on the 

nature of both the calling and the'called DTE. Node software would 

require significant modification and would no longer be "clean". The 

second conclusion,  theys that X.21 is barely acceptable with respect 

to our second objective. 

In this respect, BASIC FDTE [2] is superior, in that identification 

of the caller is automatic, as it is in X.25, without a second layer of 

identification exchange. The third conclusion  is that BASIC FDTE is a 

potential universal interface, though it is not at present supported by 

any network. 

Internetworking of a circuit mode FDTE and a packet mode X.25 DTE 

showed that the data transfer phase presented no technical difficulties. 

It also demonstrated clearly the fourth conclusion,  that mutual (or global) 

numbering and network cooperation are essential to the success of convenient 

internetworking, no matter how elegant the FDTE interface. 
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