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ABSTRACT 

A study of piecewise coherent, frequency-hopped, spread 

spectrum signals and their reception is carried out. The modu-

lation is assumed to be coherent in the interval between frequency 

hops. A number of modulation schemes in which the signal between 

hops is a bandwidth efficient, partial response encoded, digital 

FM modulation, are considered, as the data modulation band oc-

cupancy must be compact in order for systems with a slow-to-medium 

hopping rate to have reasonable processing gain. Power spectra 

are determined for hopping rates that are less than or equal to 

the symbol rate. A number of examples of spectra are plotted for 

hopped MSK, duobinary and tamed FM signals. Then the maximum 

likelihood sequence estimating receiver for reception over a 

single hop interval is presented, and it is shown how the receiver 

can be implemented by a practical recursive algorithm based on 

dynamic programming ideas. The example of MSK is considered in 

detail. Finally, the case of reception spanning frequency hops is 

considered. 
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I. INTRODUCTION 

Under the Space Sector military program, the Communications 

Research Centre has from the Department of National Defence the 

task of the development of spread spectrum modulation. The goal 

is to provide an electronic counter-countermeasures capability to 

military satellite communications. Recently, the trend in MIL-

SATCOM has been to communications at EliF and the use of fast 

frequency-hopped, M-ary FSK or DPSK based spread spectrum signal 

structures. There appears a need to examine the possible anti-jam 

protection of high data rate systems. In this situation, the 

bandwidth occupied by the dehopped, modulated signal is of prime 

importance and relates directly to the degree of protection achie-

vable. Thus there appears a possible advantage in the use of a 

bandwidth efficient coherent frequency modulation scheme for the 

transmission of a number of bits dùring each hop interval. In 

particular, we will examine the broad class of band-efficient 

signals that can be generated or represented as a frequency modu-

lation by a multi-level partial response signalling with pulse 

shaping. This includes MSK, tamed FM and DPSK. This report is on 

these signals, their power spectrum and their reception. 

In working under previous contracts with the Space Systems 

Section of the Department of Communications, encoding [I], and 

signal-shaping techniques [2], for phase-continuous FSK were 

developed which gave improved spectral occupancy and error 

performance. Also new, less complicated receiver structures were 
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obtained [3-6]. 

In the present study the hopping rate is taken to be smaller 

than the rate of data transmission. Accordingly, processing gain 

is sacrificed to supply a multi-user service at both low and 

medium data rates. Since the processing gain is the ratio of the 

hopped bandwidth to the data bandwidth the precise computation of 

the latter is of considerable importance. In this study the power 

spectrum of frequency hopped, encoded digital frequency modulation 

(FM) is determined. The analysis holds for general hopping and 

data rates, and the modulated signal is taken to be phase coherent 

between frequency hops. In the latter part of the report the 

algorithm for noncoherent, maximum likelihood sequence detection 

is presented. 	This is for slow hopped, digital FM in an additive 

white Gaussian noise environment. 	Performance analysis should 

follow the earlier work in references [7, 8], when a hop-time does 

not occur in the data sequence for detection. The performance 

analysis of the more important case which involves a frequency hop 

during sequence detection is left for further study. 

2. SIGNAL MODEL 

In this section, we will present the signal under study. 	The 

signal is basically a hopped signal with a random hop occurring 

after every N transmitted symbols or every NT seconds. During any 

one hop interval, the modulation is assumed to be coherent 

frequency modulation, with correlative or partial response encod-

ing and shaping of the modulating pulses permissible. The trans- 
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mitter is shown in Fig.l. 	Thus the modulated signal of interest 

is of the form 

8(t) = 1 p(t-iNT) cos[it + f m(u)du + ei ] 
n=-oe 

where 	p(t) = 1 	0 < t < NT, 

	

= 0 	elsewhere, 

wi is the frequency of the ith  hop, 

ei is the initial phase at the start of the i
th 

hop, and 

m(t) is the correlatively encoded modulating signal. 

With the usual model for correlative encoding [1], the trans- 

mitted message can be written in terms of correlated variables 

co 

m(t) 	î J g(t-nT) 
n=-o• n  

where the correlated variables J
n 

are expressed in terms of the 

input symbols by 

•n• 

(1)  

(2)  

with the normalisation C = 	1 1k4 1. Alternatively, the modul- 
j=0 

ulating signal can be expressed as a modulation by overlapping 

pulses b(t), 

CO 

m(t) = 1 I
n 

b(t-nT), 
n=-0• 

where the overlapping pulses are given by 

1 
b(t) = - 	k g(t-iT) 

C 
i=0 

(4) 
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For M-ary transmission, the I
n 

are independent identically dis-

tributed random variables that can take on M discrete values. 

3. THE SPECTRUM OF PIECEWISE COHERENT FREQUENCY HOPPED DIGITAL FM 

In this section of the report we will derive an expression for 

the spectrum of our piecewise coherent M-ary FM signal which has 

been noncoherently hopped and then noncoherently dehopped. It is 

assumed that there is an intermediate frequency offset w
c 

(which 

could be zero) between the hopping and the dehopping frequencies. 

As expected, the spectrum will appear related to the spectrum of 

the coherent signal and that of a signal hopped every NT seconds. 

The modulated signal of interest is of the form 

Co 	 t  

8(t) 	p(t-iNT) cos[
we
t + f m(u)du +

i
] 

For M-ary transmission In  can take on the values ±1,±3 ..±(M-1). 

The incoherent hopping results in statistically independent random 

initial phases ei , that are assumed to be uniformly distributed 

over (0,20. 

The signal can be written in terms of a complex baseband 

equivalent 

s(t) = Relp(t)exp[itoctl} 

where 

Co 	 CO  

p( t ) 	î p( t-iNT)expj [ 	+ f 	î 	b(u-nT ) du 

Here Re denotes the real part, and * as a superscript denotes the 

complex conjugate. 

(5) 

(6) 
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The autocorrelation function will be used to find the signal 

spectrum. Then 

R(t,t+T) = (1/4)[Elp(t)p(t+T)}exPjwc(2t+T) + E{p(Op (t+T)}exP -jwc T 

* 	* 
+ Mr) (t)p(t+T)}eXPJWc T E{p (t)p (t+T)}exP-jwc ( 2t+T)]. 

Due to the assumption of uniformly distributed  ai ,  

Efp(t)p(t+T)1=0, and the first and last terms in the expression 

for R(t,t+T) vanish. Thus the autoccorrelation function 

R(t,t+T) = (1/2)Re{E{p
*
(t)p(t+T)lexPiteéT} 	(7) 

The expectation in (7) is given by 

co 	œ 

Eip (t)p(t+T)1 = 	p(t-iNT)p(t+T-JNT) 
1=-0à, j*-co 

where 

t+ 
g - Elexpj [ f m(u) du + 01 —e J} 

t-iNT+T 
= Efexpj[ f m(u) 

t-iNT 

In this last equation, use has been made of the cyclostationary 

nature of the modulating signal, in that there is no change in the 

expectation if the interval of integration is shifted by an in-

teger number of bits. Here the shift is by  IN bits or a duration 

of iNT. 

The autocorrelation function 

R(t,t+T) = (1/2)Re(E{p (t)p(t+T)lexp.teT1 

is a function of t. 	In other words the signal s(t) is not wide- 

sense stationary but is in fact cyclostationary (see [13]), that 

is, R(t+NT,t+T+NT) = R(t,t+T). This can be dealt with as follows. 

Since in practice we do not have a precise time origin, we can 

(8) 
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assume that the origin is uniformly distributed over (0,NT) 

The average autocorrelation function is 

ea  Et  { it( t t+ }* 

= (1/2)Re[Et elp,(t)p(t+T)))expjub T] 	(9) 

Now 

NT 

E
t
1E4 (t)p(t+T)}} = (1/NT) f E{p (t)p(t+T)} dt 

0 

NT 

= (1/NT) 	f p(t-iNT) p(t+T-iNT) E{exp[j f m(u)  du]} dt 
I 0 	 t-iNT 

t+T 

= (1/NT) f p(t) p(t+T) EfexpLi t f m(u) du} dt 	(10) 
— oo 

Finally, if (10) is substituted in (9), there results 

00 

R(T) = (1/2NT) f p(t) p(t+T) REK(t,t+T) dt, 	(11) 
oo 

where Rem  is the autocorrelation function of the corresponding 

digital FM signal given by 

R (t,t+T) 	Elcos(w é + fm(u) du)} 
FM 

Bit Timing and Hopping Unsynchronized 

Suppose that the hopping and bit timing are not synchronized. 

Then the results for the autocorrelation function and spectrum of 

the signal simplify dramatically. In this case, the initial time 

t, in (12) has a probability distribution over the interval (0,T) 

and the usual assumption of a uniform distribution will be made. 

(12) 



Then 

t+T 
RFm(t t+T) = (1/T) f E{cosfw + f 111(u) du} dt 	(13) 

0 	c 	t 

which is not a function of time and so will be denoted by RFm (T). 

It is the usual autocorrelation for digital FM. In this case (11) 

simplifies to give 

R(T) = (1/2NT)[RFm (T) Rp ] 	 (14) 

where R is the autocorrelation of the hopping pulse defined by 

oo 

R(t) = f p(t)p(t+T)dt 	 (15) 

The spectral density of the hopped signal simplifies to 

S(w) = ( 1/2NT)[SFm(w) * Sp(w)] 

Here S 	denotes the spectral density of the unhopped digital FM 
FM 

signal, 

S denotes the spectral density of the hopping pulse, and 

* denotes convolution. 

Typical spectra are shown in Figs. 2 to 6. In each case the 

spectrum is plotted for a number of hop intervals NT, ranging from 

a hop every T secs., to the case of an infinite hop interval (or 

no hop at all). It is seen that as the hop interval is increased, 

the spectrum approaches that of the unhopped signal with the 

underlying digital FM modulation. This is as would be expected. 

The following examples were chosen as typical. 

(a) Fig. 2. Digital FM with a rectangular pulse and modul-

ation index h=0.5. This is commonly referred to as MSK. 

(h) Fig. 3. 	Duobinary FM, h=0.5 and rectangular pulse 

shaping. 
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(c) Fig. 4. 	Duobinary FM, h=0.7 and rectangular pulse 

shaping. 

(d) Fig. 5. 	Partial response encoded FM, with polynomial 

(1+D) 2/4, h=0.5, and raised cosine frequency pulse shaping. This 

is commonly referred to as Tamed FM. 

(e) Fig. 6. 	Partial response encoded FM, with polynomial 

(1+D)
2
/4, h=0.7, and raised cosine frequency pulse shaping. 

4. RECEIVER THEORY 

4.1 Introduction 

Up to this point the spectral analysis of a frequency-hopped 

system using digital FM has been considered. In this section, the 

maximum likelihood sequence estimation (MLSE) receiver algorithm 

is derived. 	We will assume noncoherent processing and a constant 

offset phase over the sequence length. 	Such an assumption 

pertains to the case where a frequency hop does not occur during 

the sequence under consideration. Taking account of the phase-

jump that would occur at a frequency hop is non-trivial and is 

considered in Section 5. 

Our derivation of the MLSE algorithm follows the tutorial 

paper by Hayes [9]. The algorithm we obtain is simpler than that 

proposed by Pawula and Golden [10], whose work involved the in-

clusion of coding. Early work on the performance of noncoherent 

receivers for digital FM is given in references [7] and [8]. All 

the relevant references for coherent MLSE algorithms are given in 
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Hayes paper [9]. Our work herein closely follows the derivation 

of the algorithms presented in [5]; 	these algorithms are pre- 

sented in more detail in [6,111. 	There Thorpe considers a parti- 

ally coherent MLSE receiver algorithm. The algorithm presented 

here is for the noncoherent case. 

4.2 Sequence Detection Theory  

The sequence detection problem to be solved  cari  be stated as a 

hypothesis testing problem as follows: 	for 0 < t < NT decide 

which of the following M
N 

hypotheses holds 

H1 : r(t) 	cos(2wft + *(t) +8) + n(t) 

I = 1,2,..., M
N 

where 

N-1 
4(t) = leh 	J

ni 
g(t -nT) 

n=0 

and 

g(t) 	f p(T)er 

with J given by (3). 	Also if p(t) is of duration LT, g(LT) = 1 

and thus h is the modulation index. Finally, for the class of 

signals we consider E is the signal energy, T is the symbol 

interval, 8 is a constant, but random, phase offset and N is the 

length of the sequence of data symbols for sequence estimation. 

In our detection problem n(t) is white Gaussian noise with a 

spectral height of N0/2 W/Hz. 

The decision variable for the detection problem at hand can 

easily be shown to be [12, p.337] 
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(18) 

(19) 
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2 	NT 
t = E {exp[-- f r(t)s(t Aif 9)dtp i 	N 

o o 

where 	1 < i M
N

, 

s(t, A 	0) cos(2wf t + * (t) + A) (16a) 

A = {I 	1 1,1 , .. ., I 	} 	 (16b) 
0,i' 1,i''' 	N-1,i 

and E 0 {'}  denotes mathematical expectation with respect to the 

random variable 9. The N-tuple Ai  is the i-th possible sequence 

of the sequence being estimated. It is crucial to note that in 

sequence detection the N-tuple Ai  is fixed for the i-th possible 

signal in the hypothesis detection problem stated above. This 

leads to a simpler estimation algorithm than would occur for 

optimization using bit-by-bit detection. 

The remark we have just made leads to considerable simplifi-

cation relative to the noncoherent receiver algorithms considered 

in [7,8,10]. To proceed expand the cosine function in (16a) (with 

respect to 13) using standard trigonometric identities to give for 

t in (16): 

2a 	22 1/2 
Li 
	N 
= E {expi-- [ t

cNi 
+ t

sNi] 
	•cos(8 +) ))). 

o 

where 

NT 
t
cNi 

• f r(t)cos[21f
c
t +

i
(O]cit 

o 

NT 
L 	- f  r(t)sin[21fc

t + 4
i
(O]dt 

sNI 

(16) 
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-1 tsNi 
xj.  = tan 

and a = aTi.2'. Now let 8 be uniform in [0, 2w]. The expectation 

in (17) has occurred many times in detection theory for the random 

phase channel (see [12, p.339]). We have 

	

2a 	2 	2 1/2 
t 	( cNi + tsNi ) i 	o N

o 

where I
o
(x) is the modified Bessel function of order zero. 

The solution to the detection problem at hand is to substitute 

each N-tuple in (16b) into the right-hand-side of (20) and choose 

the index i that renders t
i 

a maximum. Fortunately the I
o
(.) 

operation can be dispensed with as I0(x) is a monotone increasing 

function. Thus an equivalent decision variable is 

2 	2 
0 0 	+0+ tsNi 

and in the next sub-section the detection algorithm is simplified. 

4.3 The Dynamic Programming Algorithm 

Of course the sequence of substitutions just described is too 

complex to be practical. As occurs in coherent systems, the 

optimization problem of maximizing ti can be done in an efficient, 

sequential manner using Bellman's Dymanic Programming. 

To proceed note that t
cNi 

and t
sNi 

in (18) and (19) respec-

tively, can be computed using the following difference equation. 

For, k = 0, 1, ..., N-1, 

cNi 

(20) 

(21) 
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(k+1)T 

2.c,k+1,i = tc,k,i 
+ 	f 	r(t)cos[211

c
t + *

i
(t)jdt 	(22) 

kT 

2. 
c,o,i 

= 0 	t
cNi 

= 
2.c,k+1,i 

for k = N - 1. 

Similarly, for tsNi  

(k+1)T 

ts,k+1,i ts,k,i 	
f 	r(t)sin(2wf

c
t +

i
(t))dt 	(23) 

kT 

ts,o,i = 0 	tsNi = ts,k+1,i 

for k = N - 1. 

At any stage k in the recursion 

, 	2 	2 
ecki eski 

Furthermore, 

2 
(ec,k -1,i 	6eck1 )2 
	

(es,k -1 i 	6eski )  

where (St
ei 

and 
814ski 

 represent the second terms in equations (22) 

and (23) respectively. 	Note from (24) and (25) that 2i-c , the 

metric, cannot be written in sequential form. However, it can be 

computed from the old information (It
c,k-1,i's,k-1 i

) and the new 

information (et 
	
62,ski)  in the k-th symbol interval. 

The application of Bellman's Dynamic Programming in equation 

(25) yields the following functional equation that must be solved 

to determine the optimal estimate of the received data sequence: 

* 
Ira* 	, , * 	‘ 2, tit  = max 
'''C,k-1,i + 6ecke

‘2 
 - as,k-1,i 4. 6eski' f  

8k-1k 

where the asterisk represents the optimal value of tic  and the 

maximum is computed ovér all states s
k-1 

that communicate with s 
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Note that instead of storing the best metric for state sk_, we 

must instead store the best pair (t
c,k-1,i 	

t
s,k-1,i

) for state 

8k-1• 
 This leads to an increased storage requirement over that 

for the perfectly coherent case (see [5]). An increased storage 

requirement also occured in the partially coherent case treated by 

Thorpe [6]. 

4.4 The Example of MSK 

Minimum-Shift-Keying is the simplest of the signals in the 

class of band-efficient digital FM signals. It occurs when h 

1/2 and the modulator pulse shape, p(t), is rectangular and of 

length T. NS show the state diagram for MSK in Fig. 7 and its 

phase tree in Fig. 8. The state variables are the numbers 1 

through 4 as shown in Fig. 7. During any bit interval the phase 

either increases or decreases by ¶12 radians, the phase trajectory 

being a ramp function of slope ±*/2T radians per sec. The trellis 

diagram is shown in Fig. 9. Also shown are the Type A and Type B 

transitions, as only two states can be reached in any bit 

interval. 

The computation of the metrics are produced by the structure 

shown in Fig. 10. For instance, tc+  is the value of (Ste  when the 

expected signal has an increasing phase. With this information 

the metrics for the Type A transitions are shown in Fig. 11. 

Those for Type B transitions are shown in Fig. 12. For instance 

for Type A transitions into state 2 one computes 
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(g 	+ 
tc+)

2 
+ (t

81 
+ ts+)

2 

and 

(tc3 - tc- )
2 
+ (t53 - ts - )

2 

and chooses the largest. 	If the maximum occurs for the 1 	2 

transition we update  (t ie 	as follows: 

t
c2 

+ tcl + t 

t
92 

+ tel + ts+ 

The other state transitions in Figs. 11 and 12 are handled in an 

exactly analogous manner. 

Note that sixteen quantities must be stored every two-bit 

intervals and also 8 squaring operations must be performed in the 

same period. In the coherent case, no squaring operation is 

involved and only four quantities are required for storage. 

The MLSE algorithm for any other CPM signal can be derived by 

following the development for the case of MSK signalling. In 

future work the error event probabilities will be determined which 

will produce upper and lower bounds to the bit-error-probability. 

The calculations will be similar to that given in references [7] 

and [8]. Also the important problem of coping with a discontinu-

ous phase shift that would occur at frequency hop times must be 

addressed. This is considered in the next section of the report. 
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5. PERIODICALLY DISCONTINUOUS PHASE JUMPS 

5.1 Introduction  

We now extend the theory in section 2 to include the case of a 

number of discontinuous phase jumps occurring over the period of 

the sequence detection. The receiver algorithm is relatively 

complex. However a special case of the algorithm can be combined 

with the algorithm of section 4 to produce a simple algorithm for 

a highly practical situation. This situation is'the case of slow 

hopping where the hop rate is many times smaller than the data 

rate. 

5.2 M Phase Jumps per N bit Intervals  

The model to be used is shown in Fig. 13. 	A sequence length 

of NT seconds is displayed that contains M phase jumps or phase 

discontinuities. These are the points in time where a frequency 

hop occurs. 	In the time interval 0 < t < NT there are K = N/M 

time intervals where the offset phase, 0i , is constant; 	it is 

constant over a time interval of length MT. Each 81  is uniform in 

[0, 2w] and all ei  are mutually independent. 

Let 0 be the K-tuple, (el , e2 ,. •• , 0n ). Then the likelihood 

function in (16) becomes 

NT 
2 

t. = E {exp[
N 

 -- r 	r(t)s(t, A , e)dt]) 
--1 	9 	n 

00  

(26) 
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(29)  
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where 

s(t, A 	0) = s(t, A
i'j

) 

- 

for(j-1)MT4t(jMTwhenj=1,...,K=N/M.Asthee.al 

mutually independent 

jMT 
t 	IT tz f 	r(t)s(t, A

i' 
0
j
)dtl 

.j j=1 v -o (j-1)MT 

If we repeat the manipulations in going from equation (17) to 

(20) in equation (27) we get the following result: 

2a i 2 	2 
L 	Ni I0 {- itoi   

j=1 	o 

where, analogous to equations (17) and (28), 

jMT 
f  

cji 	
(j -1)MT 

r(t)cos[2wf
c
t +(t)]dt 

and 

jMT 
t
sji 

= 	f 	r(t)sin[2wft + ipi (t)]dt 	(30) 
(j-1)MT 

The subscript "j" nnw denotes that the correlations in (29) and 

(30) are computed over the j-th interval of constant phase shown 

in Fig.13. Note that for K = 1, i.e., only one interval of 

constant phase, the result in (28) reduces to our earlier result 

in (20). 

Recall that one must compute t
i 

for all M
N 

values of the 

sequence Ai  in equation (16b). The computation in (28) can be 

done in a serial manner which leads to considerably less 

complexity. It is instructive to consider the case when K = N/M = 

2. 

(27) 

First let 0 	t (.MT. 	Our algorithm operates exactly as in 
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Section 4. 	At time MT we have found the best pair (t
cli'sli

) 

for each state variable in the trellis (see Fig. 9 for a trellis 

for the example of MSK). At time MT one computes 

2a 	2 	2 
I
o N 	tcli + t511 

o 

for each state in the trellis at time MT. 

The interesting point is what happens at the next time step. 

To illustrate this event, consider the state transition from 

states 1 and 3 into state 2 for the A-type transitions for MSK as 

shown in Fig.11. 	The state transitions under consideration are 

displayed in Fig.14. 	The first values of the new correlations 

(t
c2i 	£821

) are found from the structure in Fig.10. 	Let the 

value of 

2a  
I 

 N 
(-- [ t 	+ t 	[ 	) o 	

o 	
cli 	sli 

at time MT for state t be I
o
(t) where, in our example, t = 1 or 3 

and a = (2E/T)
1/2

. The comparison for the state transition 1 or 3 

+2 is 

2a 	2 	2 1/2 
I0 (1)I0%; [ £,.+ ts+ ] 	) 

(31) 

2a 	2 	2 1/2 VS I0 (2)I0(R- [ tc_ + 	I 	) 
o 

Note that the modified Bessel functions must now be retained as a 

product of such functions is needed for the metric computations. 

The computations of 
 c2i

' t821 ) proceed serially as for the case 

when j = 1. Note also that the value of No  is required which was 

not the case in section 2. The sequential detection algorithm has 

been described and the MSK example provided for N/M = K = 2. 
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However, the reader can easily generalize the algorithm for K > 2. 

5.3 Simplification: M > > L.  

Let the pulse length L of the frequency pulse for FM 

modulation be much less then M, where MT is the time interval over 

which the offset phase is constant. As such merges in the 

modulation trellis will occur much earlier than in M time 

intervals. This is illustrated in Fig. 15 for case of MSK (refer 

to Fig. 7 for the definition of state variables). Note that once 

the merge shown in Fig. 15 occurs, the factor I  occurs in 

both comparisons in (31). Thus this factor can be dropped and the 

algorithm reverts back to that discussed in section 2. 

Note that the more complicated comparisons like that in (31), 

which involve a table look up algorithm for the required Bessel 

functions, are required for only a few symbol intervals after the 

frequency hop. The number of such intervals as a multiple of the 

pulse length L would have to be determined by experiment. In any 

case for the case of slow hopping, i.e., M > > L, the MLSE detec-

tion algorithm can be simplified relative to the general case. 

6. CONCLUDING REMARKS 

A derivation of the power spectrum of piecewise coherent, 

frequency hopped, digital FM has been presented. Computations of 

the spectrum have been included for a number of bandwidth effici-

ent, encoded, FM signals. A general maximum likelihood sequence 
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estimation algorithm has been presented for a dehopped, digital FM 

signal. This algorithm can be simplified when the hopping rate is 

much smaller than the data rate. Future work will concentrate on 

spectral calculations when the hop time is synchronous with a 

multiple of the bit time and on the performance analysis of the 

MLSE algorithm presented in this report. 

REFERENCES 

1. G.S. Deshpande and P.H. Wittke, "Correlative Encoded Digital FM", 

IEEE Trans on Comm., Vol. COM  29, pp. 156-162, February 1981. 

2. G.S. Deshpande and P.H. ettke, "Optimum Pulse Shaping in Digital 

Angle Modulation", IEEE Trans. 	on Comm., Vol. COM-29, pp. 

162- 168, February 1981. 

3. S.J. 	Simmons and P.R. ettke, "Low Complexity Decoders for 

Constant Envelope Digital Modulation", IEEE Trans. on Comm., Vol. 

COM-31, pp. 1273- 1280, December, 1983. 

4. S.J. 	Simmons and P.J. McLane, "Low Complexity Phase Tracking 

Decoders for Continuous Phase Modulation", Proc. IEEE Int. Conf. 

on Comm. Amsterdam, May 1984, pp. 924-929, to appear IEEE Trans. 

on Commun. 

5. P.J. McLane, "The Viterbi Receiver for Correlative Encoded MSK 

Signals", IEEE Trans. 	on Comm., Vol. CO1-31, pp. 	290-295, 

February 1983. 

6. J.B. Thorpe and P.J. Mclane, "A Hybrid Phase/Data Viterbi Demodux 

lator for Encoded CPFSK Modulation", Proc. Globecom '83, San 

Diego, Calif., Nov. 198,3; to appear IEEE Trans. on Comm. 



-  20 - 

7. W.P. Osborne and M.B. Luntz, "Coherent and Noncoherent Detection 

of CPFSK", IEEE Trans. 	on Coin., Vol. COM-22, pp. 1023-1036, 

August 1974. 

8. T.A. 	Schonhoff, "Symbol Error Probabilities for M-Ary CPFSK: 

Coherent and Noncoherent Detection", IEEE Trans. 	on Comm., Vol. 

CO1-24, pp. 644-652, June 1976. 

9. J.F. Hayes, "The Viterbi Algorithm Applied to Digital Data Trans-

mission", Communications Society Magazine, Vol. 13, pp. 15-20, 

March 1975. 

10.R.F. Pawula and R. Golden, "Simulation of Convolutional Coding/ 

Viterbi Decoding with Noncoherent CPFSK", IEEE Trans. 	on Comm., 

Vol. COM-29, pp. 1522-1526, October 1981. 

11.J.B. Thorpe, "A Finite Metric Hybrid Phase/Data Demodulator for 

Encoded CPFSK Modulation", M.Sc. Thesis,  Queens University, 

October 1983. 

12. H.L. 	Van Trees, "Detection, Estimation, and Linear Modulation 

Theory, Part I", John Wiley and Sons, New York, 1968. 

13. L.E. Franks, Signal Theory,  Prentice-Hall Inc., 1969. 



m(t)e,  F. M. 
MODUL- 
ATOR 

FREQUENCY 
HOPPER 

s 

D D - 

Pk-} 
D 

r  o 

SIGNAL 
SHAPING 
FILTER 

lkol+ I k 	ik2 I+ 	ik m i 

Fig. 1. 	Bandwidth Efficient Frequency-hopped Transmitter. 



1 
8 4 

1 

FREQUENCY IN 1/T6 Hz 

1 
7 

Fig. 2 Hopped MSK 

10 

0 

—10 

—20 

cn 
o-30 

1-4 

fr  —40 

—50 

w-60 
X 

—70 

—90 

—90 

—100 

2T 

4T 

16T 

64T 

256T 

1024T 

MSK 

(no hops) 



10 

0 

—10 

—20 

s-30 

b-t 
—40 

ce  —50 

w-60 

—70 

—80 

—90 

— 1 00 

64T 

128T 

256T 

continuous 

phase 

modulation 

1 	. 	1 	, 	1  
3 	4 	5 	6 

FREQUENCY IN I/Tb Hz 
•eere/g. 3 Hopped Duobinary FSK, h=0.5 



-80 

-90 

3 	4 	5 
FREQUENCY IN I/Tb Hz 

100 

10 

-10 

-20 

T 

2T 

4T' 

16T 

64T 

256T 

1024T 
continuous 

r«.  r phase 

modulation 

ci -30 

>4 

° -50 a. 

w-60  

-70 

Fig. 4 Hopped Duobinary FSK, h=0.7 



10 

-10 

-20 

o-30 

-40 

e -50 

w-80 

-70 

-80 

-go 

100 
0 	1 	2 	3 	4 	5 

FREQUENCY IN 1/Tb Hz 
—Fig:.  5 1mMepped Tamed FM, h=0.5 

2T 

8T 

64T 

512T 

4096T 

32768T 

262144T 

Tamed FM 

7 

11•11•111.. 



10 

-10 

-20 

c3-30 

>4 

x -40 

c3  50 - 

z 
w -60 

-70 

-60 

-90 
ed FM 

. 	 1 
4 

FREQUENCY IN 1/Tb Hz 

100 

..01111101111Pria»...- 

Fig. 6 Hopped Tamed FM, h=0.7 

2T 

8T 

64T 

512T 

4096T 

32768T 

262144T 



I SENT 

0 SENT 

1m 
MM. .11•1MMI «VIM» 

‘•n 	 MSK 
MODULATION 

(h :z1/2) 

PHASE STATES 

STATE 
NUMBERS 

- 27 - 

Figure 	Phasor state diagram for MSK modulation 



n• 
I SENT 
0 SENT 

37r/2* 

7r • 

7r/2. 

• 	_ 
- 28 - 

-7r/2# 

-77  é MINIMUM 
DISTANCE 
PHASE TRAJECTORIES 

-37r/2 	 d f  2 

Figure ,8  Phase tree for MSK modulation 



MINIMUM DISTANCE PATH 

-L.-Eby)  • • — 	— •-• 
0 	/el 

2  / 1/2 / I 2 

u
s
i
n
g
 t
h
e
 V
i
t
e
r
b
i
  
d
e
t
e
c
t
o
r
 



• 

12L-- 
(.)d t 

- 30 - 

rT 
Odt 

o  

• 

cos' (27rfct +fit) 

sin (27rfct +Mt) 
2T 

Odt 

r(t) 

c ocs (2 7r fc t—e ) 

sir  ( 2 ir fct 	) 
2T 

rT 

Mdt 	
— 

o  

n 

Figure 10  Metrics for Coherent or noncoherent maximum likelihood 

sequence estimation for MSK. 



( iC h iS I )  

- 31 - 

TABLE TYPE - A TRANSITIONS 

. •JI1C+91S+)  

Figure 11  Path metrics for type A transitions for MSK. 



- 32 - 

TABLE TYPE B TRANSITIONS 

••• 

( Lc3,  1s2) 

( /c4 ,1s4 )  

( Lc2,is2 )  

C4'  $4)  

Figure 12  Path metrics for type B transitions for MSK. 



t =o 

i 	 . 

A 	A 	A 	a\ 

62 	93 	64 85 	e6  

y 	y 	y . 	 . 
MT 

N=6M 

2MT 

K=N/M=6 

0 

6MT 

NT 

Figure 13  Model for a series of phase discontinuities. 



- 34 - 

Figure 14  Illustration of the sequence 

detection algorithm at a phase 

jump. 
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