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ABSTRACT

A study of plecewise coherent, frequency-hopped, spread
spectrum signals and their reception is carried out. The modu-
lation is assumed to be coherent in the interval between frequency
hops. A number of modulation schemes in which the signal between
hops is a bandwidth efficient, partial response encoded, digital
FM modulation, are considered, as the data modulation band oc-
cupancy must be compact in order for systems with a slow-to-medium
hopping rate to have reasonable processing gain. Power spectra
are determined for hopping rates that are less than or equal to
the symbol rate, A number of examples of spectra are plotted for
hopped MSK, duobinary and tamed FM signals. Then the maximum
likelihood sequence estimating receiver for reception over a
single hop interval is presented, and it is shown how the receiver
can be implemented by a practical recursive algorithm based on
dynamic programming ideas. The example of MSK is considered in
detail, Finally, the case of reception spanning frequency hops is

considered.




1. INTRODUCTION

Under the Space Sector military program, the Communications
Research Centre has from the Department of National Defence the
task of the development of spread spectrum modulation. The goai
is to provide an electronic counter—countermeasures capability to
military satellite communications. Recently, the trend in MIL-
SATCOM has been to communications at EHF and the use of fast
frequency-hopped, M-ary FSK or DPSK based spread spectrum signal
structures. There appears a need to examine the possible anti-jam
protection of high data rate systems. In this situation, the
bandwiﬁth occupied by the dehopped, modulated signal is of prime
importance and relates directly to the degree of protection achie-
vable, Thus there appears a possible advantage in the use of a
bandwidth efficient coherent frequency modulation scheme for the
transmission of a number of bits during each hop interval.. In
particﬁlar, we will examine the broad class of band-efficient
signals that can be generated or represented as a frequency modu-
lation by a multi-level partiai response signalling with pulse
shaping. This includes MSK, tamed FM and DPSK. This report is on
these signals, their power spectrum and their reception.

In working under pfevious contracts with the Space Systems
Section of the Department of Communications, encoding [1], and
signal—éhaping techniques [2], for phase-continuous FSK were
developed which gave improved spectral occupancy and error

performance. Also new, less complicated receiver structures were



obtained [3-6].

In the present study the hopping rate is taken to be smaller
than the rate of data transmission. Accordingly, processing gain
is sacrificed to supply a multi-user service at both lo& and
medium data rates. Since the processing gain is the ratio of the
hopped bandwidth to the data bandwidth the precise computation of
the latter is of considerable importance. In this study the power
spectrum of frequency hopped, encoded digital frequency modulation
(FM) 1is determined. The analysis holds for general hopping and
data rates, and the modulated signal is taken to be phase coherent
between frequency hops. In the latter part "of the report the
algorithm for noncoherent, maximum 1likelihood sequence detection
is presented. This is for slow hopped, digital FM in an additive
white Gaussian noise environment. Performance analysis should
follow the earlier work in references [7, 8], when a hop-time dbes
not occur 4n the data sequence for detection. The performance
analysis of the more important case which involves a frequency hop

during sequence detection is left for further study.
2. SIGNAL MODEL

In this section, we will present the signal under study. The
signal 1is basically a hopped signal with a random hop occurring
after every N transmitted symbols or every NT seconds. During any
one hop intervél, the modulation is assumed to be coherent
frequency modulation, with correlative or partial response encod-

ing and shaping of the modulating pulses permissible. The trans-



mitter is shown in Fig.l. Thus the modulated signal of interest

is of the form -

® t
s(t) = ] p(t-1iNT) cos[uit + [ m(u)du + ei] (1)
n=-ow :
where p(t) =1 0 <t <NT,
= ( elsewhere,

wy is the frequency of the ith hop,

6

h
3 is the initial phase at the start of the it hop, and

m(t) is the correlatively encoded modulating signal.

With the usual model for correlative encoding [1l], the trans-
mitted message can be written in terms of correlated variables
[ J
m(t) = § Jng(t-nT) (2)
n=-w
where the correlated variables Jn are expressed in terms of the
input symbols by

1
J =27 k I _ (3)
n ij0 n~-j
m
with the normalisation C = J ij . Alternatively, the modul-
j=0

ulating signal can be expressed as a modulation by overlapping
pulses b(t),
[ ]
m(t) = 7§ I b(t-nT), (4)
n=-w
where the overlapping pulses are given by
m

b(t) = ] kg 8(t-tD)
i=
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For M-ary transmission, the In are independent identically dis-
tributed random variables that can take on M discrete values.

3. THE SPECTRUM OF PIECEWISE COHERENT FREQUENCY HOPPED DIGITAL FM

In this section of the report we will derive an expression for
the spectrum of our piecewise coherent M~ary FM signal which has
been noncoherently hopped and then noncoherently dehopped. It is
assumed that there is an intermediate frequency offset w, (which
could be zero) between the hopping and the dehopping frequencies.
As expected, the spectrum will appear related"to the spectrum of
the coherent signal and that of a signal hopped every NT seconds.

The modulated signal of interest is of the form

o t
s(t) = z p(t-iNT) cos[uht + f m(u)du + ei] (5)
i=~c

For M-ary transmission In can take on the values #1,+3 ,.+(M-1).
The incoherent hopping results in statistically independent random
initial phases 6 » that are assumed to be uniformly distributed
over (0,21).
The signal can be written in terms of a complex baseband
equivalent
s(t) = Re{p(t)exp[ju t]}
where
© t o '
p(t) = Zp(t-iNT)expj[ei + ¥ I b(u-nT) du (6)
j=—c n=—co

Here Re denotes the real part, and * as a superscript denotes the

complex conjugate.



The autocorrelation function will be used to find the signal
spectrum. Then .
R(t,t+7) = (1/4)[E{p(t)p(t+1)}exPjub(2t+1) + E{p(t)p*(t+1)}exp-jwc1

+ E{p*(t)p(t+1)}expjuh1 + E{p*(t)p*(t+1)}exp—jwb(2t+1)]-
Due to the assumption of uniformly distributed 8y

E{p(t)p(t+7)}=0, and the first and last terms in the expression

for R(t,t+x) vanish. Thus the autoccorrelation function
* .
R(t,t+1) = (1/2)Re{E{p (t)p(t+1)}exPjubT} (7)

The expectation in (7) is given by
E{p (8)p(t+D)} = § ] p(t-INT)p(t+r—INT) £
==, j=-o

where

t+t

g = E{expj[ [ m(u) du + ¢,-0,]}
t

0
]
t-iNT+ ¢

= E{expj[ [ m(u) dul}.s |
t=iNT ’

(8)
In this last equation, use has been made of the cyclostationary
nature of the modulating signal, in that there is no change in the
expectation if the interval of integration is shifted by an in-
teger number of bits., Here the shift is by iN bits or a duration
of iINT.

The autocorrelation function

R(t,t+1) = (1/2Re{E{p (£)p(t+1)}exp]u, 1)
is a function of t. In other words the signal s(t) is not wide-
sense stationary but is in fact cyclostationary (see [13]), that

. is, R(t+NT,t++NT) = R(t,t+7). This can be dealt with as follows.

Since in practice we do not have a precise time origin, we can



assume that the origin is uniformly distributed over (O,NT)
ft(") = (1/NT) 0 <n <NT
=0 elsewhere.
The average autocorrelation function is

R(T) = Et{R(t,t+t)}.

- (1/2)RelE {E{p (£)p(t+D)} Jexpiu 1] (9)

Now

* NT
E {E{p (t)p(t+D}} = (1/NT) [ E{p (t)p(t+D)} dt
0

NT J t+r-iNT
= (1/NT) 2 f p(t-iNT) p(t+iNT) E{exp(j f m{u) dul]} dt
i o t-iNT
™ | t+1
= (1/NT) [ p(t) p(t+1) E{explj, [ m(u) du} dt (10)

Finally, if (10) is substituted in (9), there results
R(z) = (1/28T) [ p(t) p(t+r) Ry, (t,t+7) dt, (11)

where RFM is the autocorrelation function of the corresponding
digital FM signal given by
t+1

R (t,t+71) = E{cos(qy g + f m(u) du)} (12)
M t

Bit Timing and Hopping Unsynchronized

Suppose that the hopping and bit timing are not synchronized.

Tﬁen the results for the autocorrelation function and spectrum of
the sign#l simplify dramatically. In this case, the initial time

| t, in (12) has a probability distribution over the interval (0,T)

and the usual assumption of a uniform distribution will be made.

KS




Then
T Tt
RFM(t t+) = (I/T) f E{cos(w t + fm(u) du} dt (13)
0 ¢ t .
which is not a function of time and so will be denoted by RFM(T).
It is the usual autocorrelation for digital FM. 1In this case (1l1)

simplifies to give

R(7) = (1/28D) [Ry () R ] (14)

where Rp is the autocorrelation of the hopping pulse defined by

Rp(‘) = [ p(t)p(t+q)dt (15)

The spectral density of the hoppe& signal simplifies to

S(w) = (L/NTY[S, () , Sp(w)]

Here SFM denotes ﬁhe spectral density of the unhopped digital FM
signal,

Sp denotes the spectral density of the hopping pulse, and

* denotes convolution.

Typical spectra are shown in Figs, 2 to 6. In each case the
spectrﬁm is plotted for a number of hop intervals NT, ranging from
a hop every T secs., to the case of an infinite hop interval (or
no hop at all). It is seen that as the hop interval is increased,
the spectrum approaches that of the unhopped signal with the
underlying digital FM modulation. This is as would be expected.

The following examples were chosen as typical.

(a) Fig. 2. Digital M with a rectangular pulse and modul-
ation index h=0.5. This is commonly referred to as MSK.

(b) Fig. 3. Duobinary FM, h=0.5 and rectangular pulse

shaping.



(¢) Fig. 4. Duobinary FM, h=0.7 and rectangular pulse
shaping. )

(d) Fig. 5. Partial response encoded FM, with polynomial
(1+D)2/4; h=0.5, and raised cosine frequency pulse shaping. This
is commonly referred to as Tamed FM.

(e) Fig. 6. Partial response encoded FM, with polynomial

(1+D)2/4, h=0.7, and raised cosine frequency pulse shaping.
4, RECEIVER THEORY

4,1 Introduction

Up to this point the spectral analysis of a frequency-hopped
system using digital FM has been considered. In this section, the
maximum 1likelihood sequence estimation (MLSE) receiver algorithm
is derived. We will assume noncoherent processing and a constant
offset phase over the sequence length. Such an assumption
pertains to the case where a frequency hop does not occur during
the sequence under consideration. Taking account of the phase-
jump that would occur at a frequency hop is non-trivial and is
considered in Section 5.

Our derivation of the MLSE algorithm follows the tutorial
paper by Hayes [9]. The algorithm we obtain is simpler than that
proposed by Pawula and Golden [10], whose work involved the in-
clusion of coding. Early work on the performance of noncoherent
‘receivers for digital FM is given in references [7] and (8]. All

the relevant references for coherent MLSE algorithms are given in
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Hayes” paper [9]. Our work herein closely follows the derivation
of the algorithms presented in [5]; these algorithms are pre-
sented in more detail in [6,11]. There Thorpe considers a parti-
ally coherent MLSE receiver algorithm. The algorithm presented

here is for the noncoherent case.

4,2 Sequence Detection Theory

The sequence detection problem to be solved can be stated as a
hypothesis testing problem as follows: for 0 € t < NT decide

which of the following MN hypotheses holds

Hi: r(t) = /[zg cos(2wfct + Wi(t) +8) + n(t)

i=1,2,..., MN
where
N-1
¥(t) =m ] J  g(t-nl)
n=0
and

t
g(t) = [ p(rdr

with Jn given by (3). Also if p(t) is of duration LT, g(LT) =1
and thus h is the modulation index. Finally, for the class of
signals we consider E is the signal energy, T is the symbol
interval, 6 is a constant, but random, phase offset and N is the
length of the sequence of data symbols for sequence estimation.
In our detection problem n(t) is white Gaussian noise with a
spectral height of N°/2 W/Hz.

The decision varjable for the detection problem at hand can

easily be shown to be [12, p.337]
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2 NT
21 = Ee{exp[i- [ r(t)s(t, A,, 0)dt]} (16)
o o
. .
where 1 €1 <M,
s(t, A,, 0) =V 2%-cos(wact + ¢i(t) + 0) (16a)
Ay = {10’1, L) goees IN_I’i} (16b)

and Ee{°} denotes mathematical expectation with respect to the

random variable 8, The N-tuple A, 1is the i-th possible sequence

i
‘of the sequence being estimated. It 1is crucial to note that in

sequence detection the N-~tuple A, 1is fixed for the i-th possible

i
signal 1in the hypothesis detection problem stated above. This
leads to a simpler estimation algorithm than would occur for
optimization using bit-by-bit detection,

The remark we have just made leads to considerable simplifi-
cation relative to the noncoherent receiver algorithms considered

in [7,8,10]. To proceed expand the cosine function in (16a) (with

respect to 8) using standard trigonometric identities to give for

21 in (16):
g - Ee{exp{-t%-i- (22 + 2212 cos(0 +,0 )1} (17)
where
NT .
"t " of r(t)cos[27f t + ¥ (t)]dt (18)
NT
St " J r(t)sin[2nf t + y (t)]de (19)
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-1 *sni

= tgn = — .
Ai chi

and a = f2E/T. Now let ¢ be uniform in [0, 25]. The expectation
in (17) has occurred many times in detection theory for the random
phase channel (see [12, p.339]). We have

2 2

1/2
* i)

2a
L = Iolﬁ; ( chi )| (20)

where Io(x) is the modified Bessel function of order zero.

The solution to the detection problém at hand is to substitute
each N-tuple in (16b) into the right-hand-side of. (20) and choose
the index i that renders % a maximum. Fortunately the Io(-)
operation can be dispensed with as Io(x) is a monotone increasing
function. Thus an equivalent decision variable is

2 2

Rl SRR R (21)

and in the next sub-section the detection algorithm is simplified.

4,3 The Dynamic Programming Algorithm

Of course the sequence of substitutions Jjust described is too
complex to be practical. As occurs in coherent systems, the
optimization problem of maximizing zi can be done in an efficient,
sequential manner using Bellman”s Dymanic Programming.

h -—
To proceed note that ch and zsNi in (18) and (19) respec

i
tively, can be computed using the following difference equation.

For, k = 0, 1, ..., N-1,
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(k+1)T
ot T Rk, b [ - r(t)eos(2af b+ g (D)1de (22)

eNi zc,k+1,i
for k = N~ 1.

Similarly, for zsNi

(k+1)T .
fok+1,1 = Ykt t ij r(t)sin(2xf t + y (t))dt  (23)
%e,0,14 = O N1 Tt k41,1

for k =N-1,

At any stage k in the recursion

. 2 2 . ’
B ™ toks t %k (24)
Furthermore,
- = (g A L + 80,2 (25)
5 ¢, k-1,1 cki s, k-1 1 ski

where Gzcki and szski represent the second terms in equations (22)
and (23) respectively. Note from (24) and (25) that zﬁ, the
metric, cannot be written in sequential form. However, it can be

computed from the old information (zc k=11 * ) and the new
9 ’

s,k-1 1

information (szcki’ 628 ) in the k-th symbol interval.

ki
The application of Bellman”s Dynamic Programming in equation

(25) yields the following functional equation that must be solved

to determine the optimal estimate of the received data sequence:

S e * 2, ¢ 2
G mmax (R eg,g ¥ SRe)T (B g g F Sag)T)

where the asterisk represents the optimal value of z; and the

maximum is computed over all states sk_1 that communicate with sk.
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Note that instead of storing the best metric for state s we

k-1

* *
must instead store the best pair (zc k-1.4° % ) for state
- ’ ’

s,k-1,1i
81" This leads to an increased storage requirement over that
for the perfectly coherent case (see [5]). An increased storage

requirement also occured in the partially coherent case treated by

Thorpe [6].

4.4 The Example of MSK

Minimum—Shift-Keying is the simplest of the signals in the
class of band-efficient digital FM signals., Itnyoccurs when h =
1/2 and the modulator pulse shape, p(t), 1is rectangular and of
length T. We show the state diagram for MSK in Fig. 7 and its
phase tree in Fig. 8. The state variables are the numbers 1
through 4 as shown in Fig. 7. During any bit interval the phase
either increases or decreases by n/2 radians, the phase trajectory
being a ramp function of slope #x/2T radians per sec. The trellis
diagram is shown in Fig. 9. Also shown are the Type A and Type B
transitions, as only two states can be reached in any bit
interval.

The computation of the metrics are produced by the structufe
shown in Fig. 10. For instance, zb+ is the value of azc when the
expected signal has an increasing phase. With this information
the metrics for the Type A transitions are shown in Fig. 11,
Those for Type B transitions are shown in Fig. 12, For instance

for Type A transitions into state 2 one computes
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)2

2
(%1+ %+) +(%1+ %+

and

(2,4 - zc_)z + (g 4~ n,s,_)2

and chooses the largest., If the maximum occurs for the 1 + 2
transition we update (zcl, zsl) as follows:

fea * %) * et

g2 * %1 t oA,
The other state transitions 1in Figs, 1l and 12 are handled in an
exactly analogous manner. “

Note that sixteen quantities must be stored every two-bit
intervals and also 8 squaring operations must be performed in the
same period. In the coherent case, no squaring operatibn is
involved and only four quantities are required for storage.

The MLSE algorithm for any other CPM signal can be derived by
following the development for the case of MSK signalling. In
future work the error event probabilities will be determined which
will produce upper and lower bounds to the bit-error-probability.
The calculations will be similar to that given in references [7]
and [8]. Also the important problem of coping with a discontinu-
ous phase éhift that would occur at frequency hop times must be

addressed. This is considered in the next section of the report.
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5. PERIODICALLY DISCONTINUOUS PHASE JUMPS

5.1 Introduction

We now extend the thebry in section 2 to include the case of a
number of discontinuous phase jumps occurring over the period of
the sequence detection. The receiver algorithm is relatively
complex. However a special case of the algorithm can be cbmbined
with the algorithm of section 4 to produce a simple algorithm for
a highly practical situation. This situation is the case of slow
hopping where the hop rate is many times smaller than the data

rate.

5.2 M Phase Jumps per N bit Intervals

The model to be used is shown in Fig. 13. A sequence length
of NT seconds is displayed that contains M phase jumps or phase
discontinuities. These are the points in time where a frequency
hop occurs. In the time interval 0 ¢ t ¢ NT there are K = N/M
time intervals where the of fset phase, ei, is constant; it is
constant over a time interval of length MT. Each 8; is uniform in
[0, 2%] and all o, are mutu#lly independent.

Let § be the K-tuple, (91, Byseens aK). Then the likelihood
function in (16) becomes

NT

gy - Eg{exp[ﬁl [ r(o)s(t, A, g)tl} (26)
0 0
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where

s(t’ Ai’ 9) = S(t, Ai’ Bj) )

for (j=1)MT ¢ t < jJMT when j = 1,..., K= N/M. As the ej are

mutually independent

K , T .
g, = ® E {5 r(t)s(t, A, o,)dt} (27)
1 a1 4% (j-l{M’I‘ 13

If we repeat the manipulations in going from equation (17) to

(20) in equation (27) we get the following result:

2a 2 2
=7 Io{il: Legr * 4

o o2} (28)

where, analogous to equations (17) and (28),

"cji = (j-lj{:: r(t)cos[Zufct + g (B)]dt (29)
and
MT
”sji = (j-l{m r(t)sin[znfct + q;i(t:)]dt: (30)

The subscript "j" 'now denotes that the correlations in (29) and
(30) are computed over the j-th interval of constant phase shown
in Fig.l13. Note that for K= 1, 1i.e., only one interval of
constant phase, the result in (28) reduces to our earlier result
in (20).

Recall that one must compute L for all MN values of the
sequence Ai in equation (16b). The computation in (28) can be
done in a serial manner which leads to considerably 1less
complexity. It is instructive to consider the case when K = N/M =
2,

First let 0 < t <. MI. Our algorithm operates exactly as in
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Section 4, At time MT we have found the best pair (zc L ..)

11’ “sli
for each state variable in the trellis (see Fig. 9 for a trellis

 for the example of MSK). At time MT one computes

2a 2 2
Io {No v 2'cli + 2@11}

for each state in the trellis at time MT.

The interesting point is what happeﬁs at the next time step.
To illustrate this event, consider the state transition from
states 1 and 3 into state 2 for the A-type transitions for MSK as
shown in Fig.ll. The state transitions under consideration are
displayed 'in Fig.l4. The first values of the new correlations
(chi’ zbZi) are found from the structure in Fig.10. Let the
value of

2

1/2
111

2a 2
L [ ooy + 8 )

o
o
at time MT for state g be Io(g) where, in our example, £ = 1 or 3

and a = (2E/T)1/2. The comparison for the state transition 1 or 3

+ 2 1s
2a 2 2 ,1/2
Io(l)Io(ﬁ; [ e, +2.,01°7)
(31)
vs 10(2)10(%§ [ z:_ + 22_11/2)

Note that the modified Bessel functions must now be retained as a
producf of such functions is needed for the metric computations.
The computations of (2b21’ 2321) proceed serially as for the case
when j = 1. Note also that the value of N, is required which was
not the case in section 2. The sequential detection algorithm has

been described and the MSK example provided for N/M = K= 2,
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However, the reader can easily generalize the algorithm for K > 2.

5.3 Simplification: M > > L.

Let the pulse length L of the frequency pulse for FM
modulation be much less then M, where MT is the time interval 6ver
which the offset phase is constant. As such merges in the
modulation trellis will occur much earlier than in M time
intervals. This is illustrated in Fig. 15 for case of MSK (refer
to Fig., 7 for the definition of state variables). Note that once
the merge shown in Fig. 15 occurs, the factor I&v (1) occurs in
both comparisons in (31). Thus this factor can be dropped and the
algorithm reverts back to that discussed in section 2.

Note that the more complicated comparisons like that in (31),
which involve a table 1look up algorithm for the required Bessel
functions, are required for only a few symbol intervals after the
frequency hop. The number of such intervals as a multiple of the
pulse length L would have to be determined by experiment. In any
case for the case of slow hopping, 1i.e., M > > L, the MLSE detec-

tion algorithm can be simplified relative to the general case.
6. CONCLUDING REMARKS

A derivation of the power spectrum of piecewise coherent,
f}equency hopped, digital FM has been presented. Computations of
the spectrum have been included for a number of bandwidth effici-

ent, encoded, FM signals. A general maximum likelihood sequence
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estimation algorithm has been presented for a dehopped, digital FM
signal., This algorithm can be simplified when the hopping rate is
much smaller than the data rate. Future work will concentrate on
spectral calculations when the hop time is synchronous with a
multiple of the bit time and on the performance analysis of the

MLSE algorithm presented in this report.
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Figure 11 Path metrics for type A transitions for MSK.
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Figure 12 Path metrics for type B transitions for MSK.
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jump.



Figure 15

Illustration of the common factor I, (1) at a merge

in the modulation trellis.
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