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SUMMARY 

A study has been carried out of frequency-hopped spread spectrum 

systems in which the modulation between hops is a phase-continuous 

coherent band efficient modulation. The bandwidth occupied by the 

dehopped, modulated signal is of prime importance as it relates 

directly to the processing gain, the number of possible users and the 

degree of anti-jam protection achievable. Thus there appears a pos-

sible advantage in the use of a bandwidth efficient coherent frequency 

modulation scheme for the transmission of a number of bits during each 

hop interval. In this contract period, the band occupancy and 

spectral study has been completed with an examination of the case 

where the hopping frame is synchronous with the baud timing. Examples 

have been calculated for a range of band-efficient modulations inclu-

ding MSK, duobinary and Tamed FM. Results on the power density 

spectra of frequency-hopped signals with various partial response 

encodings and pulse shaping, and different hop lengths show that in 

general the spectrum becomes more compact with lower sidelobes and 

approaches that of the CPM signal without hopping, as the length of 

the hop interval increases. It is found that the use of higher order 

partial response polynomials and pulse shaping, become effective in 

bandwidth and sidelobe reduction as the hop interval increases. 

Three algorithm based noncoherent receivers have been derived. 

A maximum likelihood receiver that is optimum over a single hop 

interval has been studied in greatest detail. It has the simplest 

receiver structure and decoding algorithm, and it can be used for 
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sequence estimation on a hop-by-hop basis. As well, the error perfor- 

mance of this receiver has been analysed. 	It has higher error proba- 

bility at the beginning and at the end of a hop. 	However, if some 

channel throughput can be sacrificed, known symbols can be transmitted 

at the beginning and end of a hop to force a merge in the modulation 

trellis, and to improve error performance. 

The MLSE receiver that detects a general frequency-hopped 

signal has been obtained. It has the same structure as the one that 

detects on a hop-by-hop basis but it has a more complicated decoding 

algorithm. However, simplification of the decoding algorithm is 

possible when the length of the hop interval is much greater than the 

length of the frequency pulse. The receiver operates generally in the 

same manner as the single hop receiver, but it has a subprocedure for 

metric calculation across each frequency hop and relies on the as-

sumption that a merge in the trellis will occur well before the end of 

a hop. 

An additional simplified suboptimum receiver has been found. 

For this receiver a different structure is required with a simpler 

decoding algorithm and reduced memory and computation requirements. 

The other main area of research under the contract has been in 

the development and application of trellis coding to hopped spread 

spectrum systems. The common applications of coding and coded modu-

lations have been to the additive Gaussian noise channel where a 

coherent modulation and demodulation has been possible. For example 

the Trellis Codes of Ungerboeck, have been applied to 8-phase PSK and 

16 point Quadrature Amplitude Modulation, to achieve coding gains of 

the order of 3 dB with no penalty in transmission rate. However, for 
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hopped communications in the EHF band, coherent techniques do not 

appear possible and it is a challenge to find effective coding and 

decoding techniques that use noncoherent detection. In this report, 

the principles and first results are presented on a coded Noncoherent 

Frequency Shift Keying (NC-FSK) modulation that promises coding gains 

of the order of 3-4 dB as has been achieved with trellis codes and 

coherent systems. In addition, because the basic modulation is a 

noncoherent M-ary FSK, the use of existing spectrum analyzer receivers 

appears possible. 
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I. HOPPED SPREAD SPECTRUM SYSTEMS WITH BAND-EFFICIENT MODULATIONS  

1.INTRODUCTION 

In recent years, there has been an increase in Electronic Coun-

ter-Counter-Measures (ECCM) in military satellite communications 

(MILSATCOM). The trend in MILSATCOM has been to communications in the 

Extremely High Frequency (EHF) Band using frequency-hopping tech-

niques. 

Frequency-hopping techniques typically achieve much wider spread 

spectrum bandwidth than direct sequence modulation techniques, resul-

ting in higher processing gain, which is defined as the ratio of the 

hopped bandwidth to the information bandwidth [1]. Frequency bands 

which are unusually noisy, are jammed, or exhibit severe fading can be 

hopped around. Frequency-hopping is hence the preferred spread 

spectrum technique over direct sequence tehcniques when the infor-

mation signal is to be spread over the wide bandwidths available at 

the EHF band. 

Consider a frequency-hopped spread spectrum system that is 

required to handle high speed data. Thus although on an absolute 

scale the frequency-hopping may be fast, relative to the data rate we 

can have a slow hopping situation, that is, many or at least several 

bits of data are transmitted per chip interval. Slow frequency hop-

ping allows many data bits to be transmitted per hop and the resulting 

transmitter and receiver are simpler and less expensive than for 

faster frequency-hopping. Due to the wideband nature of the data and 

the desire to enhance the spread spectrum processing gain as much as 

possible, the modulated bandwidth of the data signal is of conside-

rable concern. A requirement exists to make use of a bandwidth ef- 
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ficient modulation scheme in order to both enhance the ECCM perfor-

mance and allow multiple users. 

The bandwidth occupied by the dehopped, modulated signal is of 

prime importance and relates directly to the degree of anti-jam pro-

tection achievable. Thus there appears a possible advantage in the 

use of a bandwidth efficient coherent frequency modulation scheme for 

the transmission of a number of bits during each hop interval. It has 

been shown that continuous phase modulation (CPM) schemes are band 

efficient and also power efficient when detected coherently [2]. 

Correlative encoding [3], also termed partial response signaling [4], 

can be used for spectral shaping and to gain spectral efficiency. 

Furthermore, baseband pulse shaping can be used to obtain more compact 

spectra as well. A transmitter for this slow frequency-hopping cor-

relative encoded digital FM spread spectrum system is shown in Fig. 1. 

2.SPECTRAL ANALYSIS 

2.1 INTRODUCTION 

Since the bandwidth occupied by the dehopped, modulated signal is 

of prime importance and relates directly to the degree of protection 

against jamming achievable, it is thus important to examine the power 

density spectrum of the modulated signal. The signal is basically a 

hopped signal with a random hop occurring after every N transmitted 

symbols or every NT seconds. During any one hop interval, the modu-

lation is assumed to be coherent frequency modulation, with cor-

relative or partial response encoding and shaping of the modulating 
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0<t<NT 

elsewhere 

pulses permissible. 	The frequency-hopped correlative encoded CPM 

signal can be represented by 

CO 

s(t)  =Z 	p(t-iNT) cos[2nf 1 t + 	+ e.] (2.1) 

where N is the number of symbols in a hop interval, 

T is the symbol interval, 

1  p(t) =  

o  

f is  the carrier frequency of the i th  hop, 

0.is the random initial phase at the beginning of the i
th 

hop, and the 

0.'s are assumed to be independent random variables uniformly distributed 

from 0 to 2n, 

Igt,a) is the information carrying phase function given by 

CO 

= 2nh E 	a q(t-nT) 	 (2.2) 
n  

where h is the modulation index, 

Œ2Œ1Œ0 Œ1  a2 

is the sequence of uncorrelated input data symbols. 	For an M-ary 

scheme, each data symbol can take any of the values ai  = +1, +3, 

 , +(M-1) with equal probability. q(t) is the phase response 

given by 

q(t) =_ .ft  g(T) dY 	 (2.3) 

For a correlative encoder with a partial response system (PRS) 

= 
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polynomial given by 

F(D) = (I/C) (k
0 

+ k
I
D + k

2
D
2 

+ 	+k
m
Dm) 

where 	C = E 
t=0 

the frequency pulse g(t) is given by 

(2.4) 

(2.5) 

g(t) = (1/C) 	E k. b(t-iT) 	 (2.6) 
i=0 1  

b(t) is the baseband pulse with a duration of one symbol interval. 

Spectral shaping can be accomplished by the choice of system poly-

nomial F(D) and by using various baseband pulse shapes such as the 

raised cosine. 

The length of the frequency pulse g(t) is then L=m+1 symbol 

intervals. q(t) is normalized such that 

q(LT) = 1/2 	 (2.7) 

2.2 SPECTRAL ANALYSIS 

There are various methods of calculating the power density 

spectrum for digital FM [5]. Among these methods, the autocorrelation 

method [6], is straightforward and easy to to use. 

The complex baseband equivalent signal for the dehopped signal is 

simply 

U(t) = E exPljeilP(t-iNT) ejet ' a)  
j.- co 

( 2 .8 ) 
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The complex baseband autocorrelation function is given by 

R
u
(t,t+Y) = El u*(t) u(t+y)} 

= El Z expl-je 4(t-iNT) e -jet '14) . 
i=-co 

.Z exP{i 0 }P(t+ T- 9,NT) ei et-FT ,  a) 
eœ—co 

CO 

= E{ E 
i=-co 

exp{j(0
2,
- o . )} p(t-iNT) p(t+-r-tNT). 

f(t,1!)] 1  
(2.9) 

Since the 01 's are uniformly distributed on [0,2n] and are statisti-

cally independent 

E fexp[j(0 2,- 01 )il = 6 	 (2.10) 

Hence, 

CO 

(2.11) R
u 

(t,t+T) = 	E p(t-iNT) p(t+/-iNT) R
um

(t
'
t+T) 

i=-03 

where R
CPM 

(t
'
t+T) is the complex baseband autocorrelation function of 

the pure CPM signal without any frequency-hopping and is given by 

RCPM (t,t+T) = EleiWt+T,a) -11)(t,o!)] 1 

CO 

= Elej2eh E 
a [q (t+/-nT) - q(t-nT)] 

n=-0* 
(2.12) 

The sum in the exponent in (2.12) can be written as a product and 

averaged with respect to the sequence a, assuming that the M-ary data 

are independent and are transmitted with equal probability 1/M. Then 

M/2 
RCPM (t,t+Y) = H 1(2/M) E cos2n11(2j-1)[q(t+/-nT)-q(t-nT)]} 

n=-. 	j=1 (2.13) 



1 	
f
NT 

NT o 
• T 	p (t-iNT) p(t+T-iNT) R 	(t

' 
 t+T)dt 

1=- oe 	 CPM  

1_ iNT-T 
17\1-T 	0 	Rcpm 

(4- 4-.J.\ dt 

= 	1 	,NT 
RCPM (t ' 

 t+T) dt 
I71   

0 0 

NT> -r>0 

-NT< T<0 

I T1>NT 

(2.15) 
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Since the frequency pulse g(t) is of finite duration LT, if we let 

T = aT+T", where a is a positive integer and 0<-("<T, the infinite 

product in (2.13) simplifies to 

RCPM (t,t+T) = R
CPM 

 (t,t+aT+T") 

a+1 	M/2 
= H {(21M) Z cos2nh(2j-1)[q(t+T"--(n-a)T)-q(t-nT)]} 
n=1-L 	j=1 

(2.14) 

Although the time average of Rcpm  (t,t+T) can be taken over a symbol 

interval T, the time average of Ru  (t,t+T) has to be taken over NT in 

order to eliminate the dependence of R
u 

(t,t+T) on the t variable. 

R
u

( T) = 
1_ 
FIT 0J 	Ru 

 (t,t+-0 dt 

. 

I. P(OP(t+T) R cpm  (t,t+T)dt 

Since RCPM (t,t+T) as given by Eq.(2.14) is periodic in t with 

period T, if O<T<NT and we let T = aT + T', where a is a positive 

integer and 0<1"<T, 

R
u
(-)= R

u
(aT+T') 

= 1- f(N-a)T-T' R
CPM 

(t
'
t+aT+T") dt 

NT o 



1 	T- t'  

+ 	I R(t
'
t+aT+T- )dt 

CPM 
NT 0 (2.18) 

N -a -1 

R
u 

( T) = 0 ITI > NT 

-11- 

L 	(N-a-1)T 
171" 	

f
o 	RCPM (t ' 

 t+aT+T-)dt +
(N-a)T-T- 
(N-a-1)T RCPM' 

(t t+aT+t - )dt} 

N-a-2 
1 	(k+1)T = 	1 E 	R 	(t t4aT+T- )dt 
NT 

	

k=0 	
CPM 	' 

+ I
N-a-1)T 
(N-a)T-T- 

RCPM (t ' 	
T' t+aT+)dt } 

(  

- 

- 	
, 
(N-a-1)T RCPM (aT+() + efT-

T 
R 	(t

' 
 t+aT+1')d } 

CPM  

N-a-1 1 	T- Y' 
RCPM (aT+() + 	R(t

'
t+aT+T- )dt 

NT o 
(2.16) 

Since the CPM autocorrelation function as given by (2.14) is real and 

therefore an even function of Y, we have 

R
u 

( - Y) = R
u 

(T) 	 (2.17) 

Hence, we have 

R
u 
(r) =  R

u
(aT+T') 

aT + T' = IT1, 

where 	0<  T' 	T, 

and 	a=0,1,2, ....,N-1 

where R
CPM 

 (aT+T'), which is the autocorrelation of the CPM signal 

without frequency-hopping, is given by 

1 	T 
f 

RCPM' 
 (t t+aT+()dt 

T 	0 
(2.19) RCPM (aT+T') = 
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and R
CPM 

 (t,t+aT-FT') is given by Eq.(2.14). The power density spectrum 

of the dehopped modulated signal is_then obtained via a Fast Fourier 

Transform of the autocorrelation function of the signal, R
u
(T). 

2.3 DISCUSSION 

The power density spectra of the dehopped modulated signals with 

various partial response encodings together with different baseband 

pulse shaping have been calculated. The power density spectra for 

dehopped MSK for different lengths of hop interval are shown in Fig.2. 

As the length of the hop interval increases, the power density 

spectrum of the dehopped signal becomes more compact and the spectrum 

approaches that of coherent MSK without frequency hopping. The 

spectrum of the dehopped MSK is almost identical to the spectrum of 

coherent MSK for hop intervals of length greater than 2048 T. 

With a modulation index of 0.7 and no correlative encoding, the 

spectrum of hopped CPFSK is as shown in Fig.3. If a comparison is 

made with the spectrum of MSK which has a modulation index of 0.5, we 

see that a change in the modulation index from 0.5 to 0.7 changes the 

shape of the spectrum quite significantly especially for short hop 

intervals. There are large side lobes when the length of the hop 

interval is equal to the transmitted symbol interval T. 

To see the effect of correlative encoding on the hopped signal 

spectrum, the spectra for duobinary MSK are shown in Fig.4. Again the 

bandwidth occupied by the frequency—hopped signal reduces as the 

length of the hop interval increases, and the spectrum approaches that 

of coherent duobinary MSK as the length of the hop interval becomes 



-23 - 

large. 	If the spectra are compared with MSK without correlative 

encoding, we notice that correlative encoding does not give much 

bandwidth reduction for short hop intervals. 	With long hop intervals 

it does. 	For the same duoboinary polynomial (1+D)/2, but a higher 

modulation index of 0.7, the spectra for the different hop lengths are 

as shown in Fig. 5. 	The signal bandwidth increases with an increase 

in modulation index when the length of the hop interval is large. 	To 

see if a higher order encoding polynomial would give a further impro-

vement in the spectral characteristic, spectra for the Tamed FM (TFM) 

polynomial, which for coherent signaling is known to be an attractive 

second order PRS polynomial, were calculated as shown in Fig.6. A 

comparison of Fig. 6 and Fig. 2, shows that even for a higher order 

polynomial the reduction in bandwidth is insignificant at short hop 

intervals. However, for long hop intervals the higher order PRS 

polynomial yields a spectrum of even greater compactness with very low 

sidelobes. 

To illustrate the effects of baseband pulse shaping on the 

spectra, the spectra for raised cosine pulse shaping with various 

encoding polynomials are as shown in Figs.8 to 11. For long hop 

lengths the spectra of the signals with raised cosine shaping are more 

compact than their rectangularly shaped counterparts. 

From these results we conclude that the spectrum becomes more 

compact as the hop interval lengthens and in general approaches that 

of the CPM signal without hopping. 	An increase in the modulation 

index will increase the bandwidth occupied by the signal for long hop 

lengths. 	For short hop lengths the increase in bandwidth due to an 

increase in modulation index is not significant. 	Although it is well 
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known that correlative encoding and raised cosine baseband pulse 

shaping reduce the signal bandwidth and sidelobe level for con-

ventional continuous phase modulation, for frequency-hopped signals 

with short hop interval lengths these techniques do not yield much 

reduction in bandwidth. Substantial spectral improvement with these 

methods can be achieved at the longer hop intervals. 
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3.NONCOHERENT RECEIVER 

3.1 INTRODUCTION 

Since the phase continuity of a CPM signal is not preserved from 

one hop to the next and the initial carrier phase at the beginning of 

each hop is unknown, noncoherent detection has to be used. Osborne 

and Luntz [7] and also Schonhoff [8] have derived the noncoherent 

maximum likelihood receiver for CPFSK yielding symbol-by-symbol 

decisions. The receiver observes 2n+1 bits of a CPFSK signal and 

decides on the (n+1)
St 

or middle bit. Svensson and Sundberg [9] have 

generalized the detection algorithm to allow the decision symbol to be 

anywhere in the observation interval rather than just in the middle of 

the observation interval and to include partially coherent detection, 

which allows the error in the estimated carrier phase to have a nonu-

niform probability density function between -n and n. Noncoherent 

symbol-by-symbol detection of correlative encoded CPM is also reported 

in [10] and [11]. 	It has been observed that the symbol decisions 

ought to be based on the entire received sequence [12]. 	For the slow 

frequency-hopped correlative encoded CPM signal, a noncoherent maximum 

likelihood sequence estimation (MLSE) receiver could be derived where 

the observation interval is the entire transmission period. However 

for simplicity and to gain insight into the problem, we will first 

study the receiver that carries out an optimum detection over each hop 

interval. 
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3.2  OPTIMUM NONCOHERENT HOP-BY-HOP DETECTION 

The received dehopped signal can be represented by 

r(t) = (2E/T)
1/2 î 

p(t-iNT)cos[2wf
c
t + IP(t,a) + 01. ] + n(t) (3.1) 

 i=-0* 

where E is the symbol energy, 

f
c 

is the carrier frequency, 

n(t) is additive white Gaussian noise with double-sided power 

spectral density of No/2 W/Hz. The other symbols and notation are as 

defined and used previously. 

Consider first a transmitted sequence a of length n, which is 

less than or equal to N. Suppose the sequence lays in a single hop 

interval 0 < t < NT. 	The initial random phase would then be constant 

over the transmission period. 	Let the dehopped transmitted signal 

over (0,nT), be denoted by s(t,a,0), where 0
o 

is the random phase due 

to the hop. 	The phase is assumed uniformly distributed over (0,2n). 

The detector must now find the sequence of data symbols a', which 

maximizes the likelihood function 

CO 

nT 
= E

0 
 { exp[(2a/N ) I r(t)s(t,É,G) dt] } 

— 	o 	° 0 
(3.2) 

where a=(2E/T)
1/2

, n is the length of the transmitted sequence and 

E 0 { } denotes the mathematical expectation with respect to the random 
o 

variable 0. The likelihood function is then given by 

tc2 ( ct,  cc. ) 	ts  2 ( et, cc. ) 	1/2 } 

= I o {(2a/N ) [ o  (3.3) 
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where I
o
{ } is the zeroth-order modified Bessel function, and 

= 	r(t)cos[211f
c
t + t1)(t, a- )]dt 	(3.4a) 

c -- 

	

ts (a,d) = crer  r(t)sin[2irf c t + 11)(t,(-)]dt 	(3.4b) 

Since the Bessel function I
o
1 1 is a monotone increasing 

function, an equivalent likelihood function can simply be 

= t 
2

( a, a' ) + t 
2

( a, 	) 	 (3.5) 
— — 	c -- 	s — — 

A brute force method of finding the most likely transmitted 

signal is to correlate the received signal with the inphase and qua-

drature components of all possible transmitted waveforms and to choose 

the transmitted sequence which gives the largest likelihood. However, 

this approach would be highly impractical considering the large number 

of correlators or matched filters required, particularly when the 

length of the transmitted sequence is large. 

3.3 MAXIMUM LIKELIHOOD SEQUENCE ESTIMATION (MLSE) 

For coherent detection, the Viterbi Algorithm, which was origi-

nally proposed for decoding convolutional codes, has been used for 

estimating the maximum likelihood sequence by calculating the like-

lihood recursively [13-16]. Since the likelihood for noncoherent 

detection as given by Eq.(3.5) is the sum of the square of the inphase 

correlator output and the square of the quadrature correlator output, 

the metric calculation is not as straightforward as in the coherent 

case. 

To derive a recursive maximum-likelihood decoding algorithm, we 



Ck = [alt-L+1' 	ak-2 
(3.8) 
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note that t (a,o() and 	(a,c() gtven by Eq.(3.4) can be written as c 	s -- 

the sum of the partial likelihoods as 

	

n-1 	(k+1)T 
9.( a, 	) = z 	f r(t)cos[2nft + Ip(t,e)] dt 

C  

	

k=0 	kT 

	

n- 1 	(k+I)T 

	

E 	f r(t)sin[2e
c
t + ip(t,c()] dt s — — 

	

k=0 	kT 

(3.6a) 

(3.6b) 

which are simply the sum of the appropriate inphase and quadrature 

correlator (or matched filter) outputs respectively. 

The information carrying phase during the k
th 

symbol interval can 

be written as 

k-L 
11)(t) = 2mh 	E 	a q(t-nT) + 2nh 	E an  q(LT) 

n=k-L+1 n 	n=0 
(3.7) 

for kT < t < (k+1)T 

The first term represents the contribution of inputs actively af-

fecting the shape of the phase path during the k
th 

interval. 	For a 

given correlative encoder with PRS polynomial F(D) of degree m, the 

state can be defined by the latest m, or L-1 input digits. A cor-

relative state vector can be defined as 

The second term in (3.7) represents the underlying phase due to past 

inputs, which can be called the phase state [14] 

k-L 
= [ 2nh 	E a q(LT) ]

mod 2n 
n=0 n  

(3.9) 

à 
The combined state s

k 
= [C

k 	
], that is, the correlative state 

It 



c,1 (j) = cS
c
(i,j) (3.10a) 

t 
s,1 (j) = 6s(i,j) 

(3.10b) 

- 29 - 

vector and the phase state, together with the present input lk , com- 

pletely specify the transmitted signal waveform during the kth  

interval. 

If h=2t/p for t and p relatively prime integers, there are at 

most p possible distinct phase states (0, 2n/p, 4n/p, 2n(p-1)/p). 

For M-ary transmission there will then be p=Mm  different correlative 

states and p phase states for a total of n=pp combined states at the 

most. Since the mapping of the input data sequence to the state 

sequence is one-to-one, estimation of the state sequence will given 

the corresponding estimated transmitted data sequence. 

The maximum-likelihood decoding algorithm proceeds as follows. 

Starting from a known initial state s o  = i, the decoder stores the 

inphase and quadrature likelihoods of the node s l  = j as 

for j=1,2,...,n 

where 6
c
(i,j) and (5

s
(i,j) are just the appropriate inphase and 

quadrature matched filter outputs corresponding to the partial 

likelihoods in Eq.(3.6) for the transition from the node i to the node 

j during a symbol interval. 

In general at time k(>2), the decoder compares for each node 

the likelihood functions of the n different paths leading to 

i.e. 

[9,
*
c,k-1 (i) + c (i,j)]

2 
+ [t

*
s,k-1(i)  + s (i,j)]

2 

i=1,2, 	 

(3.11) 

Let the path with the largest likelihood function be called the 
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survivor, since only this branch has the possibility of being a 

portion of the maximum-likelihood path and hence should be preserved. 

Other n-1 paths ending at s
k
=j can be discarded. 

Thus the metric of the survivor at s
k
=j is 

max 

t*k (j) 	
* 

= 	1[2, c,k-1 (1) + 6 (i,j)]
2 

+ [ts,k-1(i)  + 	(i,j)]
2

1 
(3.12) 

where j = 1,2,....,n and k >2. 

While t 
k
(j) is defined as the metric of the node s

k
=j at time k, 

the pair 
(1  c,k(i) ' 1  s,k(i)) 

are stored for node s k=j, as given by 

= t (3.13a) 
c,k-1 

+
c
(i,j) 

= t
*

s,k-1 + 6s (i,j) 	
(3.13b) 

where i is the node index satisfying Eq.(3.12). 	The metric is com- 

puted sequentially from the old information (9.,*
c,k-1

(j),t9e
s,k-1

(j)) 

and the matched filter outputs (d
c
(i,j),(5

s
(i,j)) in the k

th 
interval 

according to Eq.(3.12). The maximum likelihood decoding algorithm now 

has to accumulate both the inphase and quadrature likelihood parame-

ters rather than just the inphase likelihood parameter as in the 

coherent case. 

We do not know the true state s
k 

at time k, but we do know that 

it must be one of the finite number of states j, 1<j<n. Consequently, 

while we cannot make a final decision as to the identity of the 

initial segment of the maximum-likelihood state sequence at time k, we 

know that the initial segment must be among the n survivors s„ 1<j<n, 

one for each state j. 

In principle the algorithm can make a final decision on the 

initial state segment up to time (k-1)T when and only when all survi- 



(3.15) 

(3.16) 
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vors at time kT have the same initial state sequence segment up to 

time (k-1)T. That is, all surviving paths branch out from a common 

node, say sk-1=j•  The initial segment of the maximum-likelihood path 

is then uniquely determined independent of succeeding observation and 

a firm decision is available from the algorithhm. The decoding delay 

d is unbounded but is generally finite with probability 1 [12]. 

3.4 RECEIVER STRUCTURE 

The noncoherent receiver must be able to provide the inphase and 

quadrature correlations of the received signal with every possible 

duration-T signal segment as indicated by Eq.(3.6). 	The inphase 

correlation over the k
th 

symbol interval required for the possible 

transition from node i to node j during the k
th 

symbol interval is 

given by 

(k+1)T 
f 	r(t)cos[2nf t + 11)(t,a')] dt 
kT 

(k+1 )T 
f 

kT 

(k+1)T 
r
c
(t)cos *(t,ar)dt - f 	rs (t) sin Ip(t,o()dt 

kT 
(3.14) 

where 	r
c 	

= r(t) cos 2nf
c
t 

r
s
(t) = r(t) sin 2nf

c
t 

The information carrying phase function Ip(t,a) during the k
th 

symbol 

interval as given by Eq. (3.7) can be written as 

= 	( t ) + 4\ci  kT < t < (k+1)T 	(3.17) 

where 	.(t) = 2n h 	E 	an  q(t-nT) 
n=k-L+1 

(3.18) 
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laki (t) is one of the M
L 

posible phase paths and àki  is one of the p 

possible phase states as given by Eq.(3.9). 	Substituting Eq.(3.17) 

into (3.14), we obtain 

(k+1)T 
cos 	I 	r(t) cos 	(t)dt 

1  kT 

(k+1)T 
- sin à

Si 

	

	
r (0 sin eki (t)dt 

kT 

(k+1)T 
- cos t." f 	rs (t) sin giki (t)dt 

kT 

(k+1)T 
- sin  ct, 	f 	rs (t) cos aki (t)dt 

iT 
(3.19) 

Similarly, the quadrature correlation over the k
th 

symbol interval for 

the transition from node i to node j is given by 

(k+1)T 
ds (i,j) = sin àk . f 	r(t) cos elki (t)dt 

1  kT 

(k+1)T 
+ cos (pki  f 	rc (t) sin elki (t)dt 

kT 

(k+1)T 
- sin cpk , f 	rs (t) sin rriki (t)dt 

1  kT 

(k+1)T 
+ cos àk . f 	r(t) cos Ld. (t)dt 

1  kT 
(3.20) 

where r
c
(t) and  r(t) are given by Eqs.(3.15) and (3.16), which are 

obtained by multiplying the received signal by cos 21rf
c
t and sin 271-f

c
t 

to form quadrature channels. A baseband matched filter bank is 

required to provide the correlations with the cosine and sine of all 

posiblephasepathsa.t) over each symbol interval to obtain the 

(i,j) and 6 (i,j) required by the decoder. Notice that (5 (i,j) and 



0 < t < T, 

elsewhere. 
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given by Eqs.(3.19) and (3.20) can share the same matched 

filter bank, since the difference is only in the scaling multipliers, 

sine.andcosà.and the sign. 

The matched filter impulse response is simply 

hc. = cns[8. .(T-t)] 
1 	IK1 

=0 

0 
= cos 2n h 	E 	a 	q[(1-50T-t] 

t=-L+1 
Œ• 

 t 
. 0 

0 < t < T, 

elsewhere. 	(3.21) 

th 
to provide the correlation with the cosine of the i 	possible phase 

path. 	For the correlation with the sine of the i
th 

possible phase 

path, the impulse reponse of the required matched filter is given by 

hs.(t) = sin [B. 
i
.(T-0] 	o < t < T, 

ic 

= 0 	 elsewhere. 

0 
= sin 2nh 	E 	a 	q[(1-10T-t] 	o < t < T, 

it 

= 0 	 elsewhere. 	(3.22) 

There are, at the most, M
L 

possible distinct phase paths 	(t). 
IKi 

Hence the number of matched filters required is 4M
L 

at most. 	The 

number of matched filters can be reduced by a factor of two by noting 

that for every digit sequence, there is another sequence with opposite 

signs. Therefore, at the most, 2M
L 

baseband matched filters are 

required in total. 	A block diagram for the MLSE noncoherent receiver 

is shown in Fig.12. 

The matched filter outputs are sampled every T seconds to obtain 

the inphase and quadrature correlations dc (i,j) and %(i,j) for the 
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th 	 m 	L-1 
k 

 
symbol interval. 	There will be n = PM = PM 	combined states 

per interval at most. 	Hence the decoding algorithm requires 2n sto- 

rage locations for storing the inphase and quadrature likelihoods 

c,k-1
(i) and 2 

s,k-1
(i)

' 
1 < i < n • At each time kT, the algorithm 

has to perform 2Mn additions to find [itc,k-1(1)  + c
(i,j)] and 

Et (i) + ds (i,j)] followed by 2Mn squaring operations and Mn 

additions to obtain the likelihood e(a,a'). (M-1)n binary compari- 

sons are then required to determine the n survivors Si , 1 < j< n with 
— 

the largest likelihood etk (j) , 1< j< n • Hence, at each time kT, a — — 

total of 3pM
L 
 additions and 2pM squaring operations and (M-1)pM

L-1 

binary comparisons are performed by the decoder. 

3.4.1 Matched Filters  

In this section further detail on the matched filters is pre-

sented. Recall that the impulse response of the matched filters is 

given as follows. 

11C.(0 := cos  [.(T—t)]  
1 	1 

=0  

0 
• cos 27rh 	E  

it 

0 < t T, 

elsewhere. 

0 < t < T, 

• 0 	 elsewhere. 

	

hs(0=sin[8.(T-t)] 	 0 < t < T, 

=  O 	 elsewhere. 

0 
= 	sin 2 nh 	E 	ait q[(1 - ) T-t] 	0 < t <  T,  

t=-L+1 
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= 	0 	 elsewhere. 

(a)Filters for Duobinary MSK (DMSK)  

The modulation index h = 1/2, and 

0 	t < 0 
cl(t) = 

47 	o < t < 2T 

t > 2T 

hci (t) = cos n[aio  q(T—t) + ai_1  q(2T—t)] 

	

T—t 	2T—t = cos n[ai 	)+cz  

	

o  (4,1— 
	i-1 	4T  

it 
= cos -- [a. (T—t) + a 

4T 	io 	1-1  
(2T —t)] 

a. 	and a 	can take on values of +1 and —1 for binary transmission. 
10 	i-1 

Hence there are at most 2
2 

= 4 possible cosine filters with hc 

given by 

hc 1 (t) = cos i>71,- [(T—t) + (2T—t)] = cos 7.1 ,1; (3T-2t) = cos 47  [2t-3T] 

hc 2 (t) = cos i7  [(T—t) — (2T—t)] = cos (— 7.7, ) = cos i 

hc 3 (t) = cos 27.  {—(T—t) + (2T—t)] = cos (7:) = hc 2 (t) 

hc
4
(t) = cos ri  [ — (T—t) — (2T—t)] = cos 	[-3T+2t] 

= cos -- [2t-3T] = hc
1
(t) 

4T 

Matched filter hc
1 

is the same as hc
4' 

and hc
2 

is the same as hc
3 • 

Thus only two filters are required for each of the inphase and quad-

rature arms. The matched filters for the sine correlations are 
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hs.(t) = sin —
it 
— [a. (T—t) + a 	(2T—t)] 1 	4T 	10 	i-1 

Hence 

hs (t) = sin 71  [(T—t) + (2T—t)] = sin 41, ( 3T-2t) 

hs 2 (t) = sin 71:7 [(T—t) — (2T—t)] = sin 71  [—T] = — sin -4 

hs
3 
 (t) = sin 	[—(T—t) + (2T—t)] = sin — = — hs

2
(t)  4T 	 4 

hs
4 
 (t) = sin 	 0 n [—(T—t) — (2T—t)] = sin 471,- "ff  (-3T+2 	= — hs i (t) 

Again only two distinct filters hs
1
(t) and hs

2 
 (t) are required for 

each of the inphase and quadrature arms, or a total of four filters. 

Thus the total number of matched filters required is eight. Note that 

hc
2
(t) = cos n/4 , and hs

2
(t) = —sin n/4 , are just scaling integrate-

and—dump filters. 

(b)Filters for Tamed FM (TFM)  

We now present the matched filters required for reception of 

Tamed FM. 

fic1(0=cos2nhia.0 
	i-1 	i 
q(T—t) + a 	q(2T—t) + a 	q(3T—t)} 
1-2 

= cos 2nhfa. —  
(1 L ) 	1 t_m  

3 	t—) 	(11.-2 ( 2. 	UT lo 8 	8T 

1t3t1 	t 
hc

1 
 (t) = cos 21b1— — 	+ — — 	+ — — -- I 
 8 8T 8 4T 2 	8T 

= cos 2mb[1 — ( 1) 



(2) 

(3)  

(4)  
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, 1 	t 	3 	t 	1 	t hc2 (t) = cos  

= cos 2nh [- --] 
4T 

nh 
= cos -- t 

2T 

, hc
3
(t) = cos Lnniu - 	- à + 	, 	_  

1 = cos 2mb{-} 
4 

= cos -- 
2 

1t3t1 	t hc4 (t) = cos 2nh 	-  

3 	t = cos 2mb{-4 + 

lt hc5 (t) = cos 2whf-à + 	+ 3t1 	t  

3 	t = cos 2mblz - 

= hc4 (t) 

hyt) = hc 3 (t) 

hc 7 (t) = hc 2 (t) 

hc8 (t) = hc i (t) 

Hence there appear to be 4 hci (O's given by Eqs. (1) to (4), required. 

hs i (t) = sin 2nhI1 - 

hs
2
(0 = sin 2mb{-- 

hs 3 (t) = sin (nh/2) 

(5) 

(6) 

(7) 
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(8) 
3 	t hs4 (t) = sin 2mhf- 	+ 

hs5 (t) = -hs4 (t) 

hs6 (t) = -hs 3 (t) 

hs 7 (t) = -hs 2 (t) 

hs 8 (t) = -hs i (t) 

Eachofthedistinctmatchedfiltershc.and hs
i 

must be implemented 

in each of the inphase and quadrature arms. Hence it would first 

appear that the total number of matched filters required for the Tamed 

FM receiver is 16. However the response of hc4  and hs 4  can be 

obtained by scaling and adding the responses of hc
2' 

hc
3' 

hs
2' 

and 

hs
3 

and the number of matched filters required is only 12. 

Note that hc
3
(0 = cos nh/2 , and hs

3
(0 = sin uh/2 , are just scaling 

integrate-and-dump filters. 

3.5 ERROR PERFORMANCE ANALYSIS OF THE OPTIMUM HOP-BY-HOP RECEIVER 

Given that the sequence a 	= la
' 
 Œ1 , a

2 
 ..., 

an-1} 
 is  transmit- 

-n 0' 

ted, a sequence error occurs whenever the estimated sequence a = {c, 
0 

a 	a2  , 	a
n-1

} is different from a in one or more places. Over 
—n 

a long time the estimated path and the correct path will typically 

diverge and remerge a number of times. 	Each distinct separation is 

called an error event [12,13]. 	The set EIK 	of all possible error 
1 

events starting at some time k 1  is a tree-like trellis which starts at 



vation over the interval 0 to k
2' 

 T a , is more likely than a 
2 	 -2 

The probability of any particular error event E is then simply 
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S
k 

and each of whose branches ends on the correct path. For the MLSE 
l 

 

receiver described previously, a firm decision on the estimated 

sequence a will be available as soon as a merge has occurred. Hence, 

the probability of any particular error event 	, starting at time 
2 

k
I

T and ending at time k
2
T is simply the probability that the obser- 

given by 

a p_k Pr[E] = Pr{1-2e2k2 
) 	

— 	
)] 

2 	2 

# "2  

where 

kT 
r(t) cos[2

c
t + ip(t,e)Idt)

2 
k 	

2 	 e 
-K

2
'- 

2 	0 

k
2

T 
+ ( f 	r(t) sin [211-f t + tp(t,d)jdt)

2 

0 

and 

k2 T 
= ( 	f 	r(t) cos[2nf c t + tp(t,a)]dt)

2 

2 	2 	0 

k
2

T 
+ ( f 	r(t) sin [21rf t + 11,(t,a)]dt) 2 

0 

(3.23) 

(3.24) 

(3.25) 

where 11)(t,a) 	is the information carrying phase function given 

previously. 	Since the correlator references are the inphase and 

quadrature components of a constant amplitude waveform, e(a,d) may 

be regarded as the output of a complex correlator with reference 

- 

s(t,o(), which is given by 



k,T 
= 1 	4  r(t) exp j [2Trf

c
t + ip(t, a- )] dt 1 2  = 1Z 1 1 2  

0 

as 

(3.27) 
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; (t,e) = cos [2.ec t + 	(t,onj + j sin (2mf c t + Ip(t,or)] 

= exp j 12 irf c t + ti)( t , 	) 	 (3.26) 

The likelihood parameter e(a a') may be written in complex notation 

Similarly, we have 

k,T 
r(t) exp j [2.rrf t + il)(t , a)] dt 1 2  =

2
1 2  

0 

Since 

(3.28) 

Pr  [ t"( a, a') > 	( a, a)] = Pr  [ 1Z 1  1 > 1Z 2 1] 	(3.29) 

the probability of an error event is just the probability of one 

Rician variable exceeding another and the solution is 

P r  [E] = 12' [ 1- Q ("E-07Î- ) + Q 	 (3.30) 

where Q ( ) is the Marcum Q function defined by 

Q(x,y) = f exp ( 	
x
2+u2 ) 1 (xu) udu 

Y 	 2 
(3.31) 

A recursive method for calculating the Marcum Q function is given in [18]. 

The parameters in Eq.(3.30) are given by 

* 
{a}  
r -

1 
- 	

{ 1m 1 2 + 1M2 1 2- 2R (M
1 

M
2 

p) 	1M
2 

1 2 - 1M
1

1 2 
1  

2 b 	
e 	+ 1 	(3.32) 

2a
7 	 1 - 1p1 	(1 - 41 2 ) 1/2 

The parameters in Eq. (3.32) are given by 

M = E} 
1 	1 

M
2 

= E { Z
2

} 

a2 = Var{Z
1 
 } = Var{Z 2

} = E {(Z
1
- M

1
) * (Z

1 
- M

1
)} (3.33) 
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1 p 	= 	Ef(Z 2 - M2 ) (Z 1  - M I )} 
a 

where the expectation is taken with respect to the Gaussian channel 

noise. It can be shown that a and b are given by 

k E 
(10g2  M) [ 1 ; 	_ 	p( a, or ) 12 1 1/2 ]  

2N
o  

(3.34) 

where p( a, d") is the complex correlation between the two complex 

- 
signals s (t, a") and s (t, a). 1p( a, a') 1

2 
is given by 

1 	k 2T  - 	-* 
(Œ) 1 2  = 1 --- I 	s (a,e) s (a,a) dt 1 2 

k
2
T 0 

k
2
T 

1 	, 	e j [2 If c t + *(t, a')] e -j[2nf c t + 4(t, c&)1 dt12 

2 	0 

1 	k2 T 

= 	7-7 	exP j [4)( t 	) - g)( t , 	at 1 2  
2 

1 	
k

2
T 

= 	fo 	cos [ 4)( t ( ) - 4)( t 	dt ) 2 

2 

= 1 

k
2
T 

+ ( -1- 	f 	sin [4,(t, a") - tp(t, a)] dt)
2 

k
2
T 0 

(3.35) 

Since  4(t, c() - tgt, 	=  i  (t, 	a), the complex correlation p( 	a) 

(3.36) actually depends on the difference sequence y = 	- a 

rather than on both a' and a. Eq. (3.35) can be rewritten as 
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p( 	ce) 
 

I 	
k
2
T 	 k T 

= ( 	fo  cos 11)(t,y)dt)
2 

+ ( 	fo
2 

sin *(t,y)dt) 2 

2 	 2 	(3.37) 

For an error event starting at time k i T, ip(t,y)=0 for t<k 1 T, hence we 

have 

k
2
T 

1 1p(y) 12 = [
k2T 

 (k
1  T + k

1
T 

I 	cos i(t,y) dt)] 2 

+1  
k
2
T 

. -I- 	f 	sin11)(t
' 
 y)dt ]

2 
- k

2
T k T 

1 
(3.38) 

The probability of any particular error event starting and ending at 

times k
1
T and 	k

2
T respectively can then be calculated using 

Eqs.(3.30), (3.34) and (3.38). 	It can be shown that error paths 

having the largest complex correlations lp(y) 1 will have the highest 

probability of occurrence. A quantity related to the Euclidean dis-

tance in coherent detection is the equivalent Euclidean distance, 

introduced as an error performance measure for the noncoherent 

receiver in [9],[10],[11]. Asymptotically, the equivalent Euclidean 

distance plays the same role as the Euclidean distance in the coherent 

case and it relates to the complex correlation through the following 

expression 

d
e
2 

= k
2 

(1 - 1P(Y)1) log
2
(M) 	 (3.39) 

A set of the error events which start at time 0 and have the 

smallest equivalent distances, is first determined. The equivalent 

distances of the error signal paths associated with these error events 

starting at various times are then calculated. The equivalent dis- 



k T 
I
k
2
T 

sin *(t,y) dt = 0 
1 

(3.40) 

then 

IP(Y)12  = [ -1-  (k T + 
rk2

T 

k
2
T 	1 	T 	

cos *(t,y) dt)] 2  
1 

(3.41) 
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tance results for MSK, DMSK and TFM with rectangular pulse shaping are 

shown in Figs.13 to 15. 

As can be seen from these results, some error events have equiva-

lent distances that stay constant independent of the starting time of 

the error event. If the error phase path *(t,y) has a particular 

shape over k
1
T to k

2
T such that 

and the equivalent distance for this particular error path is 

I 
k
2
T 

d
2 

= (k
2 
- k

1 
 ) - 71  I 	cos *(t,y) dt 

e  
k

I
T 

(3.42) 

For any error event which satisfies Eq.(3.40), d
2 

 will be independent 

of the starting time k
I
T of the error event. 	This explains why some 

of the d
e
2 
are constant independent of starting time. 

The probability of each of these error events at a SNR of 10 dB 

is evaluated and plotted in Figs.16 to 18. 



Œ  

0 
(1) 

4 

E
G

U
I V

A
L

E
N

T
 D

IS
T

A
N

C
E

 

1-- 1 	1 	J 	1 —  1 	T 	 T 	 1 	T 	 ' 	T 	T 	 i I 	I 

10 	20 	30 	40 	50 	60 	70 	BO 	90 	100 

.11••n••n•nn•-...1 	.....nnnn•nn•• 	•n•••nn•••••••n 111••n 	•••nn••nn•••• IMO M1.1. •n••n•••••• nIn 11.0 •n•••nnn•--aw• 	 •••n••nn•n••• .00 len• •n•nnn• 

I 

I I  

5 4 

Fig. 13 d
2 

for MSK 

ERROR EVENT STARTING TIME 



amil, 
1..nnn••n•nn•••• 

IIM• 

1••••n•••••••••••••• 	
............................ 	 ...«,/m./../Mea.«/OM-• 

nnnn mum1MnI. «OM. 

, ..------ — 

••n•n•••n••n••n•• 

10 	20 	30 - 	40 	50 	8.0 	10 
ERROR EVENT STARTING TIME 

80 90 

Fig. 14 
2 

d
e 
 for DMSK 

.••• 

•••• MI. .1••••••••nn•nn .11••• di.. M.., VIII 111.0n•n••n•11n1 .1.I.•n• 

Mal. alMil 4111n••n Mau,  a«, 

SQ
UA
R
E
D
 
E
Q
U
I
V
A
L
E
N
T
 D
I
S
T
A
N
C
E  

—1 
1 00 



M.M1 OM, 
ONO 

.1111.•nn•-••—n 	 ten• 

••• MIO IMO 	 IMMMIIMe••••• IMO 	 MOIMelen•••• 1111M ••• 

«OM MO 11••• 	 11n11n Mr» 
M.> Mal nn•n• III••• 

«MO 

SQ
UA

R
E
D
 
E
Q
U
I
V
A
L
E
N
T
 D
IS
TA
N
CE
 

1 

-------- 

e  

I/ 
pl 

.M11,  .1.1. 

7°. 	 n••n 

75 

•M. •n•••nn/«.«. 	 //mu. ....•n•••••••••• 

11•1•1  •••• 

1•••n 

' 	20 	2Ô 	' 	:41 	' 0 	50 	60 	70 	80 	90 	100  
ERROR EVENT STARTING TIME 

Fig. 15 	d
2 
e 

for TFM 



10
o  

10 

10 

-8  
10-!  

- 
1

4
0 

-a 
10 

-7 

JO 

-8 
10 

Fig.16 P
e 

for MSK 

PR
OB

A
B
I
L
I
T
Y
 O
F
 ER

RO
R 

EV
EN

T 

-a 
10 

T 	g --r —r--  g 	g 	 r—  r 	u g 1"--r-7 10 	20 	 10 30 	40 	50 	60 	70 	80 
ERROR EVENT STARTING TIME 



100  

10 

-2 
0 

-a 
10 

- 

1
a

0 

-e 
10 

P
R
O
B
A
B
I
L
I
T
Y
 O
F
 ER

RO
R 

EV
EN

T 

-5 
0 

-4 
0 

- 

1
a

0 

-7 
10 

1 	
—r 	r 	___T________T 	—1 10 	2Ô 	5Ô 	60 	70 	80 	90 	100 

ERROR EVENT STARTING TIME 
Fig. 17 	P

e 
for DMSK 



- i4 
0 

-a 
0 

-a 
i 0 

-7 
I 0 

10
o  

10 

i
-2 

-a 
0 

MOM 
OMB • 

11••• IMO MM. 

OM., MIND 
n•n•• Iamb 

011.• •n•• 0•1••nn.... 	
011.• •n••nn• 

«me Mo. •n•••nn•n••• 	n•nn••••n•• 

Fig. 18 P
e for TFM 

P
R
O
B
A
B
I
L
I
T
Y
 O
F
 ER

RO
R  

EV
EN
T 

-9 - I `. n.... 	
—. 

— .... n tO 1 \'‘ 	n 	... 

: 	
n\ 

-9 - 1 	. 
t 0 '-it 	1 

 
- 

- --- — , 

Mau 

-io 
10 	r--1.---T- r---1---, 1 	ii-r--,-- -I- -7 ---1-- 1- 1-1—  --r 	il 10 	20 	30 	40 	50 	60 	70 	80 	90 	IÔO 

ERROR EVENT STARTING TIME 



-  51 - 

4. OPTIMUM MLSE RECEIVER SPANNING FREQUENCY HOPS 

4.1 INTRODUCTION 

In Chapter Three the MLSE receiver that detects transmitted 

sequences of length less than or equal to the hop interval was pre- 

sented. 	Such a receiver can be used to detect data on a hop-by-hop 

basis. 	We now extend the detection algorithm so that the receiver 

detects a transmitted sequence of arbitary length (greater than the 

hop length), based on the maximum likelihood accumulated over the 

entire transmission period. There will be periodic random phase jumps 

every NT seconds in the dehopped waveform. As one would expect, the 

receiver algorithm is more complex than the previous algorithm. 

However, a special case of the algorithm can be combined with the 

algorithm described in the previous chapter to give a simple practical 

algorithm for the situation where the hop interval is much longer than 

the length of the frequency pulse g(t). 

4.2 RECEIVER THEORY 

The received dehopped waveform is the same as that presented 

previously in Eq.(3.1) 

CO 

r(t) = (2E/T)
112 
	E p(t-iNT) cos [27rf t + *(t,a) +  e1 ]  + n(t) 

co (4. 1) 

where the symbols used are those defined and used previously. 	For a 

transmitted sequence of length n symbols and a hopping interval of 

length N, the number of phase jumps occurring would be the nearest 
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integer greater than n/N denoted by q. 

Let the dehopped waveform be denoted by s(t,a,0), where 0 is a 

random vector, such that s(t,a,0) =_s(t,a,0 i ) for iNT < t < (1+1) NT. 

The detector must now find the sequence, of data symbols a', which 

maximizes the likelihood function 

2a 	T 
Im r(t).s(t,a',0) dt 

= E
0 
 {e WC; o 	- - (4.2) 

Sincetherandminitialphase0.'s are statistically independent, the 

expectation can be taken over each hop interval independently as 

r(t) s(t,or,0
1 
 )dt 

2a JJÉNT 

= 	H 	'1;17) 	( 
E r, le 	011-1)NT 

m=1 	'Im_1 	
m-  , (4.3) 

where q is the least integer greater than n/N. 	The expectation over 

the random phase yields the zeroth-order modified Bessel function and 

the likelihood becomes 

= 	II 	I
o

f (2a/No) [ 	
2

( a, a") + 	
2
( a, ) 

1/ 2
}  cm -- 	sm - - m=1 

where 

(a,a') = 	 r(t) cos[21rf t + 111(t,a')]dt 
cm - - 	jeNT 

 
(m-ONT 	 - 

=
T
„ 

m-1)NT 
 r(t) sin[2irf

c
t + 4)(t,a- ndt 

(4.4) 

(4.5a) 

(4.5h) 

Comparing the likelihood function in Eq.(4.4) with that for n < N 

given in Eq.(3.5), we see that the maximum likelihood decoding algo-

rithm is now more complicated. The likelihood calculation involves 

multiplications, Bessel function weighting, squaring and square root 
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operations. 

To reduce the number of multiplications involved, the log like- 

lihood function may be used as given by 

2a 	2 
r(a,e) = 	E 	tn{I [ 	a -- ( t 	(a,') + (t 

2
(a,a'))

1/2
1} 

=1 	o m 	No 	cm - - 	sm - - (4.6) 

The computation in Eq.(4.6) can be carried out in a serial manner as 

follows. 	Initially during the first hop interval the equivalent 

likelihood given by Eq.(3.5) can be used to determine the most likely 

transmitted sequence in the first hop. Hence, the decoding algorithm 

can proceed in the same manner as for n < N described in Section 3.3. 

At the end of the first hop, the decoder retains a list of survivors 

having the largest likelihood pairs [t c,N(j),  t 
 s,N

(pi  for each 

state at time NT. The decoder now has to compute 

2a 	* 	2 	* 	2 1/2 r
1
(j) = o 	( t

c,N

(j) 	ts,N(j) 	) (4.7) 

for each of the states 1 < j < n. 	We shall refer to these as the 

partial log likelihoods accumulated over the first hop. 	To determine 

the survivors in the second hop for time kT > NT, the decoder must use 

the likelihood given by Eq. (4.6) rather than the equivalent like-

lihood e(a,a) as given by Eq. (3.5). Hence, to determine the sur-

vivor at time (N+1)T, the decoder computes the metric of the survivor 

at S
N+1 

 =j as 

max 	2a 	2(i j)  9.9N<+i (j) 	{ ri (i) + 	 ( de ,j) + 
	2 ( . 	1/2 	(4.8)

o No  



(4.9a) 

(4.9b) 

r 1
(J) = r1

(i) (4.10) 
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for i=1,2,...n 
j=1,2,...n 

where (5
c
(i,j) and d

s
(i,j) are the inphase and quadrature matched 

filter outputs for the transition from node i to node j during a 

symbol interval. These are obtained in the same way as for the nonco-

herent receiver on a hop-by-hop detection basis presented previously. 

For each of the nodes S
N+1 

= j, 1<j<n, the inphase and quadrature 

registers for accumulating the inphase and quadrature correlations 

over the second hop, t 
c,2,N+1(j) 

 and t 
s,2,N+1(j), 

 are initialized as 

tc,2,N+1 ( j ) = 6c ( i,j) 

s,2,N+1 (3) = 6s (i,j) 

Note that in the notation St 	and t, a second subscript m, has 
c,m,n 	s,m,n 

been introduced to indicate that the m
th 

hop is under consideration and 

the subscript n, as before, indicates that the states at time nT are 

being evaluated. The partial log likelihood accumulated over the 

first hop for the survivor at node S
n+1 

= j is also stored as 

where i is the survivor state at time N and is the node index i that 

satisfies Eq. (4.8). 

For k > N+1, laying in the second hop interval, the inphase and 

quadrature correlation calculations are the same as for the first hop 

except that comparison for determining the survivor at node S
k 

= j is 

according to 



m-1 
rm_ i (j) = E 	ri (i) 

i=1 
(4.14) 
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max * 	2a 	* 	2 * 
tn Ric (j) = 	{ ri (j) + 	+

o N 
o  

+ [2's,2,k_1(i) + s (i,j)]
2

)
1/2

11 

The inphase and quadrature correlations are updated as 

(j)  c,2,k 	= c,2,k-1 (i) +  

s,2,k 
(j)

s,2,k -1 (i) + d(i,j) 

(4.11) 

(4.12a) 

(4.12b) 

In general, for time k laying in the m
th 

hop other than the first hop, 

(m-1)N < k < mN, the metric of the node Sk  = j is defined as 

* 	2a 	* 	2 tn 9.k
*
(j ) = 

max 
{ r* (j)  + 	i l oF;  [ 	

(i) ( /c,m,k-1  

+ [2,s,m,k-1(i)  + 6s (i,j)]
2

)
1/2 

1 1 (4.13) 

where r 
m-1

(j) is the sum of the partial log likelihoods accumulated 

over the previous (m-1) hop intervals for the survivor ending at Sk=j, 

and is equal to 

Note that the values a and N
o 

are required, which was not the case in 

the receiver considered in Chapter Three and the partial log like- 

* 
lihood sum r m-1 (j) has to be stored in addition to the usual inphase 

and quadrature correlations t 	
k
(j)and t 

k (j). 
Natural log and 

c,m, 	s,m, 
 

Bessel function weightings have to be performed. This dictates a more 

complex detection algorithm than previously obtained in hop-by-hop 

detection. 



+ [ t
s ,m,k-1 (i,j) + 6s 	)1

2
} (4.16) 
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4.3 DECODER SIMPLIFICATION FOR L << N 

If the length of the frequency pulse denoted by L is much less 

than the hop length N, then merges in the modulation trellis will 

usually occur much before the end of a hop. All the n different 

survivors at time kT, branch out from a common node, say S t' where 

(m-ONT < t < kT, hence T
m-1

(j) will be common to all the contending 

sequences. 

tint:(j) = mr r  rin* 1 (j) + tnIo 	
([1c,m,k-1 (i) + 6(i,j)12 

+ [ s,m,k-1 (i) + 6s (1,j)]
2 

)
1/2

11 

max 	2a 
= 	1 tnIo { NO" ( 

[9,c,m,k-1(i) 

 + 6(i,j)1 2  

+ [t
s,m,k-1 	+ 6 (k,j)1

2 
)
1 12

1 (4.15) 

Hence once a merge has occurred within a hop the equivalent likelihood 

can be used for determining the maximum likelihood sequence via 

*- _ max 
Vj) - 	[ c,m,k-1 

(i,j) + 61o (i,j)1 2  

The decoding algorithm can then revert to the simple one as for the 

first hop. Note that the more complicated metric calculation in Eq. 

(4.13) is required only for a few symbol intervals after a frequency 

hop. Once a merge has occurred the comparison can then revert to the 
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simple one as in Eq.(4.16). 

4.4 RECEIVER STRUCTURE 

The only difference between the receiver obtained in this Chapter 

and the one discussed in previous chapters is the decoding algorithm. 

The receiver structure for generating d
c
(i,j) and d

s
(i,j) is the same 

as that presented in Chapter Three. 

5.SUBOPTIMUM NONCOHERENT RECEIVER 

5.1 INTRODUCTION 

The noncoherent receiver described previously is quite complex, 

especially if the metric calculations are to be carried on across the 

hop intervals. A simplified sub-optimal receiver structure with 

reduced complexity may be obtained although error performance may be 

sacrificed. For the correlative encoded CPM signal described, there 

are correlator states (frequency states) as given by Eq. (3.8) and 

phase states as given by Eq. (3.9). If the phase states are ignored 

and only the correlator states are used to estimate the transmitted 

sequence, we have a simplified sub-optimum decision algorithm, which 

automatically takes care of the metric calculation across a frequency 

hop. 

5.2 SUBOPTIMUM RECEIVER 

The information carrying phase function *(t) given in Eq. (3.7) 

can be alternatively expressed in term of the correlated data symbols 



k-1 
= n h 	E Jn 

+ i 
n=o 

I N < k < (1+1) N 	(5.6) 
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J
n 

as 

Ip(t) = 2nh E J
n 

s(t-nT) 
n=o 

where J
n 

are the correlated data symbols given by 

1 
J
n 

= -
C 	

Z k an-9, 

o 

and 

s(t) = ft  b(y) dy 

(5.1) 

(5.2) 

(5.3) 

where b(t) is the baseband pulse of length T. s(t) is normalized such 

that 

s(T) = 1/2. 	 (5.4) 

During the k
th 

symbol interval the information carrying phase function 

can be given by 

k-1 
Ip(t) = 2n h J

k 
s(t-kT) + nh 	E 	J

n 
n=o 

(5.5) 

kT < t < (k+1)T 

The underlying phase, which stays constant during the k
th 

symbol 

interval is then 

Rather than having a random phase angle once per hop interval, we 

can assume for noncoherent bit detection that we have a noncoherent 

phase angle in each symbol interval. The suboptimum receiver must 

find the data sequence a that maximizes the following likelihood 

function. 



1 
J
k 

E k ar k—st 
t=o 

(5.11) 
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nT 
=  E{  exp[(2a/N ) I r(t)s(t a' 0 dti } (5.7) 

° 0 

n-1 
= 	H Il(2a/N ) z (a '220} o   o k 

k=0 

where 

(5.8) 

(k+1)T 
zk(ok,lç(  ) = [( f r(t)cos[2nf ct + ek(t,c()]dt )

2 

kT 

(k+1)T 
( f r(t)sin[2nf

c
t + ek(t,e)]dt )

2 ] 1/2 

kT 	 (5.9) 

and elk (t,d) is the shape of the phase path during the kth  symbol 

interval due to the k
th 

correlated symbol Jk
' given by 

ek (t,e) = 2n h Jk' s(t-kT) 	 (5.10) 

and 

For M-ary transmission and a PRS polynomial of degree m, there would 

be at most M
m 

states rather than pM
m 

states for the MLSE receiver 

presented in the previous Chapter. 	The memory and computational 

requirement is then reduced. 

Instead of having the likelihood function as a product of Rician 

variables z (a a')
' 
 the log likelihood function can be used as given 

by 

n-1 
ci, 	= 	E tn[I0 {(2a/No) zk  (ct,c()}] 

k=o 
(5.12) 

The Viterbi 	algorithm can be used for calculating the metric 

recursively through 
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max 
r (j) = 	Irk_ 1 (i) + zk (i,j)} (5.13) 

where r 
k-1 (i) is the metric of the survivor node 

Sk-1=i 
 and z

k 
(i

'
j) 

is the Rician variable for transition from node i to node j cor- 

responding to that given by Eq. (5.9). 

5.3 SUBOPTIMUM RECEIVER STRUCTURE 

Since the phase path el1 (t,01() during a symbol interval depends on 

the correlated symbol Jk  only, the number of possible distinct phase 

paths is the number of possible distinct correlated symbols. The 

receiver structure must be able to provide the partial log likelihood 

tnI
o
{(2a/No).z

k 
 (a,e)} for every possible phase path during a symbol 
 -- 

interval. Following approach used in section 3.4, we have 

(k+1)T 
r(t)cos [27f c t + rOki (t)] dt 

kKT 

(k+1)T 	(k+1)T 
f 	r c (t)cos eki (t) dt - f 	r(t) sin f3ki (t)dt 

kT 	 kT 

(k+1)T 
r(t)sin [2nf t + 	(t)]dt 

C kT 

and 

(5.14) 

(k+1)T 	(k+1)T 
f 	r c (t)sin 13ki (t)dt + f 	r(t) cos Bki(t)  dt 	(5.15) 
kT 	 kT 

where 

r 	= r(t) cos 27rf t 

(5.16) 
r 	= r(t) sin 271rf t 

A baseband matched filter bank is then required to provide the 



0 < t < T 	(5.17) 

elsewhere 
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correlations with the cosine and sine of all possible phase paths 

13, JO over each symbol interval. For the correlation with the cosine ki 

of the i
th 

possible phase path, the matched filzer impulse response is 

hci (t) = cos  [.(T-t)] 

= / cos [27rh J i  s(T-t)] 

o 

and the matched filter impulse response for the correlation with the sine 

of the i
th 

possible phase path is 

h (t) = sin [R (T-t)] si 

= 	sin [27r J. s(T-t)] 	0 < t < T 	(5.18) 

o 
elsewhere 

Comparing Eqs.(5.14) and (5.15) with Eqs.(3.19) and (3.20), we see 

that this suboptimum receiver requires the same number of matched 

filters as the MLSE receiver. The scaling multipliers for the MLSE 

receiver are not required but squaring operations and summers are 

required as well as the weightings 9.nI
o
[(2a/No)/( )]. Note that 

although the receiver may look as complex as the MLSE receiver, the 

function weighting is now being done in hardware which can be much 

faster. In the case where the software can handle the required mathe-

matical operations, the structure of the receiver is much simpler 

indeed. The receiver block diagram is as shown in Fig.19. 

6. CONCLUSIONS 

Spectral analysis of frequency-hopped, correlative encoded con- 

tinuous phase modulations has been presented. 	Results on the power 
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density spectra of frequency-hopped signals with various partial 

response encodings and pulse shaping, and different hop lengths have 

been presented. In general, the spectrum becomes more compact with 

lower sidelobes and approaches that of the CPM signal without hopping, 

as the length of the hop interval increases. 

It is found that the use of higher order PRS polynomials and pulse 

shaping, which are known to reduce the bandwidth significantly for 

usual continuous phase modulation, do not result in more compact 

spectra if the hop length is short. The use of higher order PRS 

polynomials and pulse shaping is effective in bandwidth and sidelobe 

reduction for long hop intervals. 

Three noncoherent receivers have been presented. 	The maximum 

likelihood receiver presented in Chapter Three is optimum over a 

single hop interval. 	Consequently it can be used for sequence esti- 

mation on a hop-by-hop basis. 	It has the simplest receiver structure 

and decoding algorithm. 	Error performance of this receiver has been 

analysed. 	It has higher error probability at the beginning and near 

the end of a hop. If some channel throughput can be sacrificed, known 

symbols can be transmitted at the end of a hop to force a merge in the 

modulation trellis at the end of each hop. 

In Chapter Four, the MLSE receiver that detects a general frequen-

cy-hopped signal has been presented. It has the same structure as the 

one that detects on a hop-by-hop basis but it has a more complicated 

decoding algorithm. However, simplification of the decoding algorithm 

is possible when the length of the hop interval is much greater than 

the length of the frequency pulse. The receiver operates generally in 

the same manner as the single hop receiver, but it has a subprocedure 
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for metric calculation across each frequency hop and relies on the 

assumption that a merge in the trellis will occur well before the end 

of a hop. 

In Chapter Five, an additional simplified suboptimum receiver has 

been presented. For this receiver a different structure is required 

and the decoding algorithm is simpler. Memory requirements and compu-

tation are reduced. 

Error performance analysis of the single-hop receiver has been 

presented. 
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TRELLIS CODING FOR HOPPED SPREAD SPECTRUM SYSTEMS 

1. INTRODUCTION 

The implementation of satellite communication systems usually 

proves challenging due to the modest power available for down-link 

transmission. Thus it is highly desirable to minimize the energy per 

bit required to provide communication at the specified level of error 

performance. This consideration certainly holds for EHF military 

satellite communications, where the trend is to communication at 

higher and higher frequencies over wide bandwidths - at frequencies 

where it is a technical challenge to produce signal sources of even 

modest level. Thus any technique such as coding that could reduce the 

required energy per bit, would seem worthy of consideration. In 

addition a reduced vulnerability to jamming could accrue. 

The common applications of coding and coded modulations have 

been to the additive Gaussian noise channel where a coherent modu-

lation and demodulation has been possible. For example the Trellis 

codes of Ungerboeck [1], have been applied to 8-phase PSK and 16 point 

Quadrature Amplitude Modulation, to achieve coding gains of the order 

of 3-4 dB with no penalty in transmission rate. 	These codes are now 

being used in commercial data transmission equipment. 	However, for 

communications in the EHF band, coherent techniques do not appear 

possible and it is a challenge to find effective coding and decoding 

techniques that use noncoherent detection. In this report we provide 

the principles and first results of work that has been started on a 

coded Noncoherent Frequency Shift Keying (NC-FSK) modulation that 
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promises coding gains of the order of 3-4 dB as has been achieved with 

trellis codes and coherent systems. In addition, because the basic 

modulation is a noncoherent M-ary FSK, the use of existing spectrum 

analyzer receivers appears possible. 

2. RESULTS 

The basic uncoded modulation system from which the coded system 

is derived, is a noncoherent M-ary FSK in which one of M orthogonal 

tones is transmitted in each baud interval. 	Cases are being consi- 

dered where M = 2,4,8. 	The coding technique being applied, is ana- 

logous in a sense to that used by Ungerboeck for coherent transmis-

sion, where he obtained coding gain by use of a convolutional code, 

but avoided a lowering of transmission rate by increasing the number 

of points in the signal constellation to compensate for the redundancy 

in the code. 

Here we introduce a convolutional encoding but suffer no rate 

reduction because we allow simultaneous use of more than one tone in 

the orthogonal signal set. If it is desired to control the maximum 

amplitude variation permissible, it is possible to place a constraint 

on the number of tones used. For example, in an eight tone system, 

the constraint could be to encode by the particular choice of four out 

of the eight possible tones. 

Although our fundamental goal is to evaluate the performance for 

noncoherent reception, the error performance for coherent reception is 

relatively easy to analyse and so this analysis is being carried out 

as well. The error performance of the coded systems is being compared 

with uncoded M-ary FSK for which the theoretical error performance is 
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known. Also simulation results due to Keightley [2] are available and 

are being used for comparison. 

The optimum receivers for the encoded multitone signals have 

been obtained in a straightforward manner. For noncoherent reception, 

the receiver consists of a conventional inphase and quadrature 

spectrum analyzer receiver. Samples of the inphase and quadrature 

components at the various frequencies are taken for processing by the 

decoder which is a Viterbi decoder. 

Trellis coding can be considered as a binary convolutional 

encoding with a mapping of the encoded bits into an expanded set of 

channel signals. Rate 1/2, 2/3 and 3/4 codes with various constraint 

lengths are being studied with both hard and soft decisions at the 

output of the spectrum analyzer and input to the decoder. We have 

been able to show that the Euclidean distance in the FSK signal set is 

proportional to the Hamming distance in the modulating binary signal 

set. Thus for the modulation scheme being considered, optimal codes 

are obtained by maximizing d free . An upper bound on the error perfor- 

mance for the coded system has been obtained from the code generating 

function and the probability of error for the uncoded system. 	This 

requires computer evaluation. As well, a computer simulation is being 

carried out to corroborate the theoretical work. 	Coding gains of the 

order of 3 dB. 	are being obtained, much the same as in the coherent 

Ungerboeck encoding. 
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