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SUMMARY

A study has been carried out of frequency-hopped spread spectrum
systems in which the modulation between hops is a phase-continuous
coherent band efficient modulation. The bandwidth occupied by the
dehopped, modulated signal is of prime importance as it relates
directly to the processing gain, the number of possible users and the
degree of anti-jam protection achievable. Thus there appears a pos-
sible advantage in the use of a bandwidth efficient coherent frequency
modulation scheme for the transmission of a number of bits during each
hop interval. In this contract period, the band occupancy and
spectral study has ©been completed with an examination of the case
where the hopping frame is synchronous with the baud timing. Examples
have been calculated for a range of band-efficient modulations inclu-
ding MSK, duobinary and Tamed FM. Results on the power density
spectra of frequency-hopped signals with various partial response
encodings and pulse shaping, and different hop lengths show that in
general the spectrum becomes more compact with lower sidelobes and
approaéhes that of the CPM signal without hopping, as the length of
the hopvinterval increases. It is found that the use of higher order
partial response polynomials and pulse shaping, become effective in
bandwidth and sidelobe reduction as the hop interval increases.

Three algorithm based noncoherent receivers have been derived.
A maximum 1likelihood receiver that is optimum over a single hop
interval has been studied in greatest detail. It has the simplest

receiver structure and decoding algorithm, and it can be used for



sequence estimation on a hop-by—hop'basis. As well, the error perfor-
mance of this receiver has been analysed. It has higher error proba-
bility at the beginning and at the end of a hop. However, if some
channel throughput can be sacrificed, known symbols can be transmitted
at the beginning and end of a hop to force a merge in the modulation
trellis, and to improve error performance.

The MLSE receiver that detects a general frequency-hopped
signal has been obtained. It has the same structure as the one that
detects on a hop-by-hop basis but it has a more complicated decoding
algorithm. However, simplification of the decoding algorithm 1is
possible when the length of the hop interval is much greater than the
length of the frequency pulse. The receiver operates generally in the
same manner as the single hop receiver, but it has a subprocedure for
metric calculation across each frequency hop and relies on the as-
sumption that a merge in the trellis will occur well before the end of
a hop.

An additional simplified suboptimum receiver has been found.
For this receiver a different structure is required with a simpler
decoding algorithm and reduced memory and computation requirements.

The other main area of research under the contract has been in
the devélopment and application of trellis coding to hopped spread
spectrum systems. The common applications of coding and coded modu-
lations have been to the additive Gaussian noise channel where a
coherent modulation and demodulation has been possible. For example
the Trellis Codes of Ungerboeck, have been applied to 8-phase PSK and
16 point Quadrature Amplitude Modulation, to achieve coding gains of

the order of 3 dB with no penalty in transmission rate. However, for



hopped communications in the EHF band, coherent techniques do not
appear possible and it is a challenge to find effective coding and
decoding techniques that use noncoherent detection. In this report,
the principles and first results are presented on a coded Noncoherent
Frequency Shift Keying (NC-FSK) modulation that promises coding gains
of the order of 3-4 dB as has been achieved with trellis codes and
coherent systems., In addition, because the basic modulation 1is a
noncoherent M-ary FSK, the use of existing spectrum analyzer receivers

appears possible.
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I. HOPPED SPREAD SPECTRUM SYSTEMS WITH BAND-EFFICIENT MODULATIONS

1.INTRODUCTION

In recent years, there has been an increase in Electronic Coun-
ter-Counter-Measures (ECCM) in military satellite communications
(MILSATCOM). The trend in MILSATCOM has been to communications in the
Extremely High Frequency (EHF) Band using frequency-hopping tech-
niques.

Frequency-hopping techniques typically achieve much wider spread
spectrum bandwidth than direct sequence modulation techniques, resul-
ting in higher processing gain, which is defined as the ratio of the
hopped bandwidth to the information bandwidth [1]. Frequency bands
which are unusually noisy, are jammed, or exhibit severe fading can be
hopped around. Frequency-hopping is hence the preferred spread
spectrum technique over direct sequence tehcniques when the infor-
mation signal is to be spread over the wide bandwidths available at
the EHF band.

Consider a frequency-hopped spread spectrum system that is
required to handle high speed data. Thus although on an absolute
scale the frequency-hopping may be fast, relative to the data rate we
can have a slow hopping situation, that is, many or at least several
bits of data are transmitted per éhip interval, Slow frequency hop-
ping allows many data bits to be transmitted per hop and the resulting
transmitter and receiver are simpler and less expensive than for
faster frequency-hopping. Due to the wideband nature of the data and
the desire to enhance the spread spectrum processing gain as much as
possible, the modulated bandwidth of the data signal is of conside-

rable concern. A requirement exists to make wuse of a bandwidth ef-



ficient modulation scheme in order to both enhance the ECCM perfor-
mance and allow multiple users,

The bandwidth occupied by the dehopped, modulated signal is of
prime importance and relates directly to the degree of anti-jam pro-
tection achievable. Thus there appears a possible advantage in the
use of a bandwidth efficient coherent frequency modulation scheme for
the transmission of a number of bits during each hop interval. It has
been shown that continuous phase modulation (CPM) schemes are band
efficient and also power efficient when detected coherently [2].
Cor;elative encoding [3], also termed partial response signaling [4],
can be used for spectral shaping and to gain spe?tral efficiency.
Furthermore, baseband pulse shaping can be used to obtain more compact
spectra as well, A transmitter for this slbw frequency-hopping cor-

relative encoded digital FM spread spectrum system is shown in Fig. 1.
2 .SPECTRAL ANALYSIS
2.1 INTRODUCTION

Since the bandwidth occupied by the dehopped, modulated signal is
of prime importance and relates directly to the degree of protection
against jamming achievable, it is thus important to examine the power
density spectrum of the modulated signal. The signal is basically a
hopped signal with a random hop occurring after every N transmitted
symbols or every NT seconds. During any one hop interval, the modu-
iation is assumed to be coherent frequency modulation, with cor-

relative or partial response encoding and shaping of the modulating
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pulses permissible. The frequency-~hopped correlative encoded CPM

signal can be represented by

s(t) = £ p(t-iNT) cos[anit + ¥(t,a) + Qi] (2.1)

1=—o

where N is the number of symbols in a hop interval,
T is the symbol interval,
1 O<t<NT
p(t) =
0 elsewhere

fi is the carrier frequency of the ith hop,

A h
ei is the random initial phase at the beginning of the it hop, and the

ei’s are assumed to be independent random variables uniformly distributed

from 0 to 2m,

¥(t, a) is the information carrying phase function given by

¥W(t,a) = 27h I @ q(t-nT) (2.2)

Nn==— o

where h is the modulation index,

_(!={ ......a_z a_l (10 0.1 02 -0..0}
is the sequence of wuncorrelated input data symbols., For an M-ary
scheme,v each data symbol can take any of the values o = 1, 13,
cevess, iﬂM-l) with equal probability. q(t) 1is the phase response

given by

q(t) =_mft g(v) dx (2.3)

. For a correlative encoder with a partial response system (PRS)



polynomial given by

F(D) = (1/C) (k. + k.D + k.D> + ... +k D™) (2.4)
0 1 2 m
m .
where cC= I lkzt (2.5)
2=0
the frequency pulse g(t) is given by
m
g(t) = (1/¢) = ki b(t-1iT) (2.6)
i=0

b(t) is the baseband pulse with a duration of one symbol interval.
Speptral shaping can be accomplished by the choice of system poly-
nomial F(D) and by using various baseband pulse shapes such as the
raised cosine.

The 1length of the frequency pulse g(t) is then L=m+]l symbol
intervals. q(t) is normalized such that

q(LT) = 1/2 (2.7)

2.2 SPECTRAL ANALYSIS

There are various methods of calculating the power density
spectrum for digital FM [5]. Among these methods, the autocorrelation
method [6], is straightforward and easy to to use.

The complex baseband equivalent signal for the dehopped signal is

simply

-]

u(t) = exp{jei}p(t—iNT) ejw(t’i) (2.8)

i=—eo



The complex baseband autocorrelation function is given by
Ru(t,t+t) = E{ u*(t) u(t+1)}

-]

E{ I exp{—jei}p(t-iNT) e

i=~w

=3 "’(t’_‘}) .

©

) exp{jez}p(t+r—zNT) e

J'll)(t+1,_a)}

© ©

E{ I £ exp{j(6,-6,)} p(t-iNT) p(t+w &T).

j=—o =—c

.ej[\l)(t+T,_(l)" ‘{’(t,_a)]} (2.9)

Since the ei’s are uniformly distributed on [0,27] and are statisti-

cally independent

j -0, = g 2.1
E {exp[j(o,-8;)]} ) (2.10)
Hence,
Ru (t,t+71) = i=_zw p(t-iNT) p(t+viNT) RCPM(t,t+r) (2.11)

where RCPM (t,t+1) is the complex baseband autocorrelation function of

the pure CPM signal without any frequency-hopping and is given by

Ropu(t2E+ ) pled[WErn @ —ut, 9]

ej21rh I @ [q (t+7nT) - q(t—nT)j }

n=-w

= E{ (2.12)

The sum in the exponent in (2.12) can be written as a product and
averaged with respect to the sequence @, assuming that the M-ary data

are independent and are transmitted with equal probability 1/M. Then

® M/2
(t,t+1) = I {(2/M) I cos27h(2j-1)[q(t+r-nT)-q(t-nT)]}

R
CPM n=—o j=]_

(2.13)
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Since the frequency pulse g(t) is of finite duration LT, if we let

t = aT+1”, where a is a positive integer and 0<t"T, the infinite
product in (2.13) simplifies to

+1) = + -
RCPM(t,t 1) RCPM(t,t aT+17)

a+l M/2
= 1 {(2/M) I cos2th(2j-1)[q(t+1"-(n-a)T)-q(t-nT)]}

n=1-L j=1 (2.14)

Although the time average of R (t,t+1) can be taken over a symbol

CPM

interval T, the time average of Ru (t,t+1) has to be taken over NT in

order to eliminate the dependence of Ru (t,t+1) on the t variable.

. T
Ru(r) = 5 gN R (t,t+1) dt
- L INT b p (t-iNT) p(t++-iNT) R __ (t,t+1)dt
NT o i=-e CPM"
. 1 =
= N L, p(t)p(t+n) Ry (t,t+1)dt
1 T-x
84 RCPM (t,t+1) dt NT> 0
1 T .
=\ NT fHT Ropy (Estt1) dt -NT< <0 (2.15)
0 | t[>NT

Since RCPM (t,t+1) as given by Eq.(2.14) is periodic in t with

period T, if OKNT and we let r = aT + «°, where a is a positive

integer and 0<+°<T,

'Ru(1)= Ru(aT+T')

_ 1 I(N-a)T-r R

+aT+1”
RN CPM (t,t+aT+1") dt



1 (N-a-1)T
NT { fo R
_ 1 {N_irz (et
NT Do kT
(N-a)T-
* N-a-1)T

Since the CPM autocorre

therefore an even funct

{ (N-a-1)T R

- 11 -

(N-a)T-+~

+ -
(t,t+aT+<")dt + f(N—a—l)T Ropm

CPM (t,t+aT+t")dt}

)T ¢

CPM (t,tfaT+1")dt

L -
RCPM (t,t+aT+ 1" )dt }

-

- T-x
+
M (aT+17) + g R

CPM(t,t+aT+-r')d }

C

T-x" .
+aT+
ﬂ) RCPM(t,t aT+1")dt

(2.16)

lation function as given by (2.14) 1is real and

ion of 1, we have

Ru (-1) = Ru (1) (2.17)
Hence, we have
R (1) = R (aT+1")
u u
N-a-1 1 T-1"
= ————— R . (aT+1") + ——=— s R__ (t,t+aT+1")dt
N CPM Nt o Cf (2.18)
aT + 1 = |1,
where 0< v <T,
and a=0,1,2, a-un,N"l
R, (v) =0 {t} > NT
where R (aT+1"), which is the autocorrelation of the CPM signal

CPM

without frequency-hopping, is given by

T
i)
0

1

(aT+1") =
' T

RCPM

(t,t+aT+1")dt (2.19)

RCPM
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and RCPM(t,t+aT+r’) is given by Eq.(2.14). The power density spectrum
of the dehopped modulated signal 1s.then obtained via a Fast Fourier

Transform of the autocorrelation function of the signal, Ru(r).

2.3 DISCUSSION

The power density spectra of the dehopped modulated signals with
various partial response encodings together with different baseband
pulse shaping have been calculated. The power density spectra for
dehopped MSK for different lengths of hop interval are shown in Fig.2.
As the length of the hop interval increases, the power density
spectrum of the dehopped signal becomes more compact and the spectrum
approaches that of coherent MSK without frequency hopping. The
spectrum of the dehopped MSK is almost identical to the spectrum of
coherent MSK for hop intervals of length greater than 2048 T.

With a modulation index of 0.7 and no correlative encoding, the
spectrum of hopped CPFSK is as shown in Fig.3. If a comparison is
made with the spectrum of MSK which has a modulation index of 0.5, we
see that a change in the modulation index from 0.5 to 0.7 changes the
shape of the spectrum quite significantly especially for short hop
intervals. There are large side lobes when the length of the hop
interval is equal to the transmitted symbol interval T.

To see the effect of correlative encoding on the hopped signal
spectrum, the spectra for duobinary MSK are shown in Fig.4. Again the
bandwidth occupied by the frequency-hopped signal reduces as the
length of the hop interval increases, and the spectrum approaches that

of coherent duobinary MSK as the length of the hop interval becomes
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large. If the spectra are compared with MSK without correlative
encoding, we notice that correlative encoding does not give much
bandwidth reduction for short hop intervals. With long hop intervals
it does. For the same duoboinary polynomial (1+D)/2, but a higher
modulation index of 0.7, the spectra for the different hop’lengths are
as shown in Fig. 5. The signal bandwidth increases with an increase
in modulation index when the length of the hop interval is large. To
see 1if a higher order encoding polynomial would give a further impro-
vement in the spectral characteristic, spectra for the Tamed FM (TFM)
polynomial, which for coherent signaling is known to be an attractive
second order PRS polynomial, were calculated as shown in Fig.6. A
comparison of Fig. 6 and Fig. 2, shows that even for a higher order
polynomial the reduction in bandwidth is insignificant at short hop
intervals. However, for long hop intervals the higher order PRS
polynomial yields a spectrum of even greater compactness with very low
sidelobes.

To illustrate the ‘effects of baseband pulse shaping on the
spectra, the spectra for raised cosine pulse shaping with various
encoding polynomials are as shown in Figs.8 to 11, For long hop
lengths the spectra of the signals with raised cosine shaping are more
compact than their rectangularly shaped counterparts.

From these results we conclude that the spectrum becomes more
compact as the hop interval lengthens and in general approaches that
of the CPM signal without hopping. An increase in the modulation
index will increase the bandwidth occupied by the signal for long hop
lengths. For short hop lengths the increase in bandwidth due to an

increase in modulation index is not significant. Although it is well
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known that correlative encoding and raised cosine baseband pulse
shaping reduce the signal bandwidth and sidelobe level for con-
ventional continuous phase modulation, for frequency-hopped signals
with short hop interval lengths these techniques do not yield much
reduction in bandwidth. Substantial spectral improvemeﬁt with these

methods can be achieved at the longer hop intervals.
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3.NONCOHERENT RECEIVER

3.1 INTRODUCTION

Since the phase continuity of a CPM signal 1s not preserved from
one hop to the next and the initial carrier phase at the beginning of
each hop is unknown, noncoherent detection has to be used. Osborne
and Luntz [7] and also Schonhoff [8] have derived the noncoherent
maximﬁm likelihood receiver for CPFSK yielding symbol-by-symbol
decisions. The receiver observes 2n+l bits of a CPF?K signal and
decides on the (n+1)St or middle bit. Svensson and Sundberg [9] have
generalized the detection algorithm to allow the decision symbol to be
anywhere in the observation interval rather than just in the middle of
the observation interval and to include partially coherent detection,
which allows the error in the estimated carrier phase to have a nonu-
niform probability density function between -7 and . Noncoherent
symbol-by-symbol detection of correlative encoded CPM is also reported
in [10] and [11]. It has been observed that the symbol decisions
ought to be based on the entire received sequence [12]. For the slow
frequency-hopped correlative encoded CPM signal, a noncoherent maximum
likelihood sequence estimation (MLSE) receiver could be derived where
the observation interval is the entire transmission period. However
for simplicity and to gain insight into the problem, we will first
study the receiver that carries out an optimum detection over each hop

interval,
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3.2 OPTIMUM NONCOHERENT HOP-BY-HOP DETECTION

The received dehopped signal can be represented by

@

/2 z p(t—iNT)cos[anct + W(t,q) + ei] + n(t)

1
r(t) = (2E/T)
L (3.1)

where E is the symbol energy,

fC is the carrier frequency,

n(t) 1is additive white Gaussian noise with double-~sided power
spectral density of No/2 W/Hz. The other symbols and notation are as
defined and used previously.

Consider first a transmitted sequence a of length n, which is
less than or equal to N. Suppose the sequence lays 1in a single hop
interval 0 < t < NT. The initial random phase would then be constant
over the transmission period. Let the dehopped transmitted signal
over (0,nT), be denoted by s(tag,eo), where eo is the random phase due
to the hop. The phase is assumed uniformly distributed over (0,2w).
The detector must now find the sequence of data symbols &”, which

maximizes the likelihood function

nT
L(Exﬂf) = EO{ exp[(2a/No) S r(t)s(t,g{,@o) dt] } (3.2)
o 0

where a=(2E/T)l/2, n is the length of the transmitted sequence and

EO { } denotes the mathematical expectation with respect to the random
o

variable 9, The likelihood function is then given by

Kao) = I(a/N) [22(ae) + 1 (aa) 112 ) (3.3)
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where IO{ } is the zeroth-order modified Bessel function, and

L (o,07) = dnTr(t)cos[Zﬂfct + ¥(t, o) ]dt (3.4a)
2 (a,a) = d'“T r(t)sinf2af t + W(t, ) ]dt | (3.4b)

Since the Bessel function IO{ } is a monotone increasing
function, an equivalent likelihood function can simply be
V(ao) = 1 (ad) + 1 (o) (3.5)

A brute force method of finding the most 1ikely transmitted
signal 1s to correlate the received signal with the inphase and qua-
dratuge components of all possible transmitted waveforms and to choose
the transmitted sequence which gives the largest likelihood. However,
this approach would be highly impractical considering the large number
of correlators or matched filters required, particularly when the

length of the transmitted sequence is large.
3.3 MAXIMUM LIKELIHOOD SEQUENCE ESTIMATION (MLSE)

For cocherent detection, the Viterbi Algorithm, which was origi-
nally proposed for decoding convolutional codes, has been wused for
estimating the maximum likelihood sequence by calculating the like-
lihocod recursively [13-16]. Since the likelihood for nonccherent
detection as given by Eq.(3.5) is the sum of the square of the inphase
correlator output and the square of the quadrature correlator output,
the metric calculation is not as straightforward as in the coherent
case.

To derive a recursive maximum~likelihood decoding algorithm, we
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note that Qb(lbif) and ls(gtgf) given by Eq.(3.4) can be written as

the sum of the partial likelihoods as

n-1 (k+1)T

!Lc(_g,_g’) = I i) r(t)cos[21rfct + ¥(t,a”)] dt (3.6a)
k=0 kT
n-1 (k+1)T

R,S(_g,_a’) = I ! r(t)sin[21rfct + ¥(t,a)] dt (3.6b)
k=0 kT

which are simply the sum of the appropriate inphase and quadrature
correlator (or matched filter) outputs respectively.

The information carrying phase during the kth symbol interval can

be written as

k k-L
Y(t) = 27h I @ q(t-nT) + 27h I o q(LT) (3.7)
n=k-1+1" = "

for kT < t < (k+1)T

The first term represents the contribution of inputs actively af-
fecting the shape of the phase path during the kth interval. ~For a
given correlative encoder with PRS polynomial F(D) of degree m, the
state can be defined by the latest m, or L-1 input digits. A cor-
relative state vector can be defined as

Ck= [Qk_L+1)°°""°k_2a°k_l] (3.8)
The second term in (3.7) represents the underlying phase due to past
inputs, which can be called the phase state [14]

k-L

- [ 27h  © o q(LT) ]
N oy

mod 27 (3.9)

A . .
The combined state S = [Ck,¢k], that is, the correlative state
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vector and the phase state, together with the present input 4., com-
pletely specify the transmitted signal waveform during the kth
interval.

If h=2%/p for &2 and p relatively prime integers, there are at
most p possible distinct phase states (0, 2w/p, 47/p, .;., 2w(p~1)/p).
For M-ary transmission there will then be u=Mm different correlative
states and p phase states for a total of mwpu combined states at the
most. Since the mapping of the input data sequence to the state
sequence is one~to-one, estimation of the state sequence will given

the corresponding estimated transmitted data sequence.

The maximum—-likelihood decoding algorithm proceeds as follows.

Starting from a known initial state Sy = i, the decoder stores the
inphase and quadrature likelihoods of the node s, = j as
f o) = 8 (4,9) (3.10a)
2, C,l J - c l,J * a
*
L S’1(3) = 8,(1,3) (3.10b)

for j=1,2,...,m
where Gc(i,j) and Gs(i,j) are just the appropriate inphase and
quadrature matched filter outputs corresponding to the partial
likelihoods in Eq.(3.6) for the transition from the node i to the node
j during a symbol interval.
In general at time k(>2), the decoder compares for each node Sk=j
the likelihood functions of the n different paths leading to Sk=j’

.

l.e.

CCOIE NI COISE AR DI PN CORENC P D) L C R

i=1,2,¢000,n

Let the path with the largest 1likelihood function be called the
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survivor, since only this branch has the possibility of being a
portion of the maximum-likelihood path and hence should be preserved.

Other n-1 paths ending at s, =j can be discarded.

k

Thus the metric of the survivor at Sk=j is

* _max * . . anq12 * , . an12
O N DO EO R N EW D PN CO R CE M b
i (3.12)

where j = 1,2,.400,n and k >2.

*
While & k(j) is defined as the metric of the node s, =j at time k,

k

* *
the pair (2 c’k(j),z < k(j)) are stored for node Sk=j’ as given by

* % .

L c,k(J) =tk t §.(1,3) (3.13a)
* %

L S’k(J) = 2 s, k-1 + 68(1,3) (3.13b)

where i is the node index satisfying Eq.(3.12). The metric is com-
puted sequentially from the old information (2*c’k_l(j),z*s’k_l(j))
and the matched filter outputs (GC(i,j),GS(i,j)) in the kth interval
according to Eq.(3.12). The maximum likelihood decoding algorithm now
has to accumulate both the inphase and quadrature 1likelihood parame-
ters rather than just the inphase likelihood parameter as in the
coherent case.

We do not know the true state Sk at time k, but we do know that
it must be one of the finite number of states j, 1<{j<{n. Consequently,
while we cannot make a final decision as to the identity of the
initial segment of the maximum-likelihood state sequence at time k, we
know that the initial segment must be among the n survivors Ej’ 1<j<n,
one for each state j.

In principle the algorithm can make a final decision on the

initial state segment up to time (k-1)T when and only when all survi-
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vors at time KT have the same initial state sequence segment up to
time (k-1)T. That is, all surviving paths branch out from a common
node, say Sk—l=j° The initial segment of the maximum-likelihood path
is then uniquely determined independent of succeeding observation and
a firm decision is available from the algorithhm. The decoding delay

d is unbounded but is generally finite with probability 1 [12].
3.4 RECEIVER STRUCTURE

The noncoherent receiver must be able to provide the inphase and
quadrature correlations of the received signal with_ every possible
duration-T signal segment as indicated by Eq.(3.6). The inphase
correlation over the kth symbol interval required for the possible

I . . . t . .
transition from node i to node j during the k h symbol interval is

given by
(k+1)T
§ (i,5) = [ r(t)cos[2wf t + ¥(t,a”)] dt
(o4 c —_
kT
(k+1)T (k+1)T :
= f r (t)cos ¥(t,o")dt - f r (t) sin ¥(t,o”)dt
KT ¢ KT s
(3.14)
where rc(t) = r(t) cos 2wfct (3.15)
rs(t) = r(t) sin 2nfct (3.16)

The information carrying phase function w(ttg) during the kth symbol

interval as given by Eq. (3.7) can be written as

W(e,o”) = B, (E) + 4. kT < t < (k+1)T (3.17)
k
where Bki(t) = 27 h z o q(t-nT) (3.18)

n=k-L+1



- 32 -

aki(t) is one of the ML posible phase paths and s is one of the p
possible phase states as given by Eq.(3.9). Substituting Eq.(3.17)
into (3.14), we obtain -

(k+1)T
Gc(l,J) = cos ¢ki fkT rc(t) cos Bki(t)dt

(k+1)T
- sin ¢ki {kT rc(t) sin Bki(t)dt

(k+1)T
= cos 4. fkT rs(t) sin aki(t)dt

(k+1)T _
- sin ¢k§ s rs(t) cos Bki(t)dt (3.19)
T

. . th .
Similarly, the quadrature correlation over the k symbol interval for

the transition from node i to node j is given by

(k+1)T
és(i,j) = sin ¢ki fkT rc(t) cos Bki(t)dt
(k+1)T
+ cos ¢ki JLT rc(t) sin Bki(t)dt
(k+1)T
~ sin ) r (t) sin (t)dt
¢k1 KT S Bki
(k+1)T
+ cos ¢ki s rs(t) cos Bki(t)dt (3.20)
kT

where rc(t) and rs(t) are given by Eqs.(3.15) and (3.16), which are
obtained by multiplying the recéived signal by cos anct and sin 2nfct
to form quadrature channels, A baseband matched filter bank 1is
required to provide the correlations with the cosine and sine of all
posible phase paths Bki(t) over each symbol interval to obtain the

Gc(i,j) and és(i,j) required by the decoder. Notice that Gc(i,j) and
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Gs(i,j) given by Eqgs.(3.19) and (3.20) can share the same matched
filter bank, since the difference is only in the scaling multipliers,

sin ¢ki and cos ¢ki and the sign., -

The matched filter impulse response is simply

hci = cos[ﬁki(T—t)] 0<t<T,
= 0 elsewhere.
0
= cos 21 h % o, al(1-0)T-t] 0<t<T,
g=-L+l
= 0 elsewhere. (3.21)

to provide the correlation with the cosine of the it? possible phase
path., For the correlation with the sine of the ith possible phase

path, the impulse reponse of the required matched filter is given by

hsi(t) = sin [Bki(T—t)] 0<t<T,
=0 elsewhere,
0
= sin 27h z %, q[(1-2)T-t] o< t<T,
=-L+1}
=90 elsewhere, (3.22)

There are, at the most, ML possible distinct phase paths Ski(t).
Hence the number of matched filters required is AML at most., The
number of matched filters can be reduced by a factor of two by noting
that for every digit sequence, there is another sequence with opposite
signs. Therefore, at the most, ZML baseband matched filters are
required in total. A block diagram for the MLSE noncoherent receiver
is shown in Fig.l2.

The matched filter outputs are sampled every T seconds to obtain

the inphase and quadrature correlations Gc(i,j) and Gs(i,j) for the
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kth symbol interval, There will be n = pMm = pML_1 combined states

per interval at most. Hence the decoding algorithm requires 2n sto-

rage locations for storing the imphase and quadrature likelihoods
*
¥e k-1

*
(i) and zs k—l(i)’ 1 <i< n. At each time kT, the algorithm
bd

*
has to perform 2Mpn additions to find [zc k-1
bl
*

[zs k_l(i) + Gs(i,j)] followed by 2Mn squaring operations and Mn

(i) + Gc(i,j)] and

additions to obtain the likelihood & (a,qa"). (M-1)n binary compari-
sons are then required to determine the n survivors §j’ 1 < j< n with
the largest likelihood m:(j) » 1< 3j< n. Hence, at each time kT, a
total of 3pML additions and 2pML squaring operations and (M—l)pML—1

binary comparisons are performed by the decoder.

3.4,1 Matched Filters

In this section further detail on the matched filters is pre-
sented. Recall that the impulse response of the matched filters 1is

given as follows.

hci(t) = cos [Bi(T—t)] 0<tT,
=0 elsewhere.
0
= cos 2th % aizq[(l—z)T—t] 0<t<T,
g==L+1
= 0 elsewhere.
hsi(t) = sin [Bi(T-t)] 0<t<T,
=0 elsewhere.
0
= . sin 27h I o, ql(1-2)T-t] 0<t<T,

g==L+1
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= 0 ‘ elsewhere.

(a)Filters for Duobinary MSK (DMSK)
The modulation index h = 1/2, and

q(t) = 0 t<o0
t
AT 0<t<ar
1
> t > 2T

hci(t) = cos w[aio q(T-t) + % q(2T-t)]

- I-t
= cos wla;  GF) * o

2T-t
(_ZE_>]

= cos gz [o (T-t) + a;_ (21-t)]
o and ai—l can take on values of +1 and -1 for binary transmission.
Hence there are at most 22 = 4 possible cosine filters with hci(t)
given by
hcl(t) = cos fé [(T-t) + (2T-t)] = cos fé (3T-2t) = cos fé [2t—3T].
he,(t) = cos 7= [(T-t) - (2T-t)] = cos (- 7) = cos
hey(t) = cos 7 {=(T-t) + (2T-t)] = cos () = he,(t)
he,(¢) = cos 75 [=(T-t) = (21-t)] = cos 7= [-3T+2t]

= cos fé [2t-3T] = hcl(t)

Matched filter hcl is the same as hc4’ and hc2 is the same as hc3 .

vThus only two filters are required for each of the inphase and quad-

rature arms. The matched filters for the sine correlations are
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hs, (t) = sin zz [a (T-t) + o, _,(2T-t)]

Hence i

hs, (t) = sin 7z [(T-t) + (2T-t)] = sin 7z (37-2t)

hs,(t) = sin 7z [(T-t) - (2T-t)] = sin 77 [-T] = - sin A
hs,(t) = sin ff [-(T-t) + (2T-t)] = sin £ = - hs,(t)

hs, (t) = sin Jz [=(T-t) - (2T-t)] = sin 77 (73T+2t) = - hs (t)

Again only two distinct filters hsl(t) and hsz(t)'.are required for
each of the inphase and quadrature arms, or a total of four filters.
Thus the total number of matched filters required is eight. Note that
hcz(t) = cos n/4 , and hsz(t) = -gin n/4 , are just scaling integrate-

and-dump filters.

(b)Filters for Tamed FM (TFM)

We now present the matched filters required for rgception of

Tamed FM.
hci(t) = cos 21rh{aio q(T-t) + % _) q(2T~t) + % _, q(37-t)}
Loty o 3_t 1_t
= cos 2nh{aio(8 8T) + ai-l(8 4T) + ai—2(2 8T)}

1 _t_ .3 _ ¢t .1 _¢t_
cos 21rh{8 87 + 8 it + 5 8T}

ﬁcl(t)

= cos 2th[l - %5] (1)
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1 _t 3 t 1t
hcz(t) = cos 2wh{§ TRl §f}
t -
= cos 27th [ 451
mh
= CO0S ET t (2)
= L _ 3, 1 _ ¢t
hc3(t) = cos 2h{g iR R
= cos 2wh{l}
4
= cos I; (3)
= L_e _3,¢ _ 1, ¢t
hc4(t) = cos 21h {8 5% " + T3 + 8T}
= S
= cos 27h{ 3 + it (4)
= Ay 3 Lt
hcs(t) = cos 27h{ sterts i ts 8T}
= TER
= cos 21rh{4 AT
= hca(t)

hc6(t) = hc3(t)

hc7(t) hcz(t)

hc8(t) hcl(t)

Hence there appear to be 4 hci(t)fs given by Egs. (1) to (4), required.

hsl(t) = sin 2h{l - %E} (5
hsz(t) = gin 2wh{- %E} (6)
hs3(t) = sin (wh/2) (7
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3 +

hs,(t) = sin 2mh{- % it (8)
hss(t) = —hsa(t) )

hs6(t) = —hs3(t)

hs7(t) = —hsz(t)

hSS(t) = —hsl(t)

Each of the distinct matched filters hci and hsi must be implemented
in each of the inphase and quadrature arms. Hence it would first
appear that the total number of matched filters required for the Tamed

FM receiver 1is 16, However the response of hec and hs4 can be

4

obtained by scaling and adding the responses of hcz, hc3, hsz, and

hs3 and the number of matched filters required is only 12.
Note that hc3(t) = cos th/2 , and hs3(t) = sin vh/2 , are just scaling

integrate—and-dump filters.
3.5 ERROR PERFORMANCE ANALYSIS OF THE OPTIMUM HOP-BY-HOP RECEIVER

Given that the sequence o = @y O, seey is transmit-
q & {(10: 1° %0 ’ n—l}
ted, a sequence error occurs whenever the estimated sequence Q0= {a.,

- - -

By G s e an—l} is different from & in one or more places. Over
a long time the estimated path and the correct path will typically
diverge and remerge a number of times. Each distinct separation is

cailed an error event [12,13]. The set ek of all possible error
1

events starting at some time kl is a tree-like trellis which starts at
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Sk and each of whose branches ends on the correct path. For the MLSE
1

receiver described previously, a firm decision on the estimated
sequence o will be available as séon as a merge has occurred. Hence,
the probability of any particular error event fé , sStarting at time
le and ending at time sz is simply the probabiiity that the obser-

-

vation over the interval 0 to sz, 5%2, is more likely than 5%2.

The probability of any particular error event E is then simply

given by
Pr(E] = Pr{2°(g ,o ) > (g ,o0 )] (3.23)
%, "%, %, %,
- #
Ekz gkz
where
sz 2
27 ( ,o, ) =( f r(t) cos[2nf t + ¥(t,a”)]dt)
Ekz k2 0 c
kyT 2
+ (s r(t) sin [wact + ¥(t,a”)]dt) (3.24)
0
and
kZT 2
27 ( , ) =( 7 r(t) cos[2xf t + P(t,a)]dt)
%, %, 0 c L
k)T 2
+ (0% x() sin [27f t + ¥(t, ) ]dt) (3.25)
0

where ¢(th2) is the information carrying phase function given
previously. Since the correiator references are the inphase and
quadrature components of a constant amplitude waveform, 2'(Ez2;) may
be regarded as the output of a complex correlator with reference

s(t, o), which is given by
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wn
~
T
-
f
p\
~
]

cos [2nfct + ¢ (t,a)] + j sin [2nfct + W(t,a")]

exp j [21rfct + W(t,a")] (3.26)

The likelihood parameter 1’(555{) may be written in complex notation

as

k, T

Vima) = | £ r(e) exp j (20 t + W, 0] de ¥ = fz | (3.27)
0

Similarly, we have
k)T 2 2

(o, 0) = (] r(t) exp j [21rfct + y(t,a)] dt |° = ;ZZ; (3.28)
0

Since

P [47(007) > (o] =P [z 1> iz,1] J (3.29)

the probability of an error event is just the probability of one

Rician variable exceeding another and the solution is

P [E] = 5 [ 1= Q (/B,/a ) + Q (&, /)] (3.30)

where Q ( ) is the Marcum Q function defined by

Qx,y) = ;m exp (- ————:) I (xu) udu (3.31)

A recursive method for calculating the Marcum Q function is given in [18].

The parameters in Eq.(3.30) are given by

2 2 * 2 2
M7+ e - 2R 01 My 0) M | I, |

a 1
= == { + =— }  (3.32)
{b}- 2 1- el (- 1o

The parameters in Eq. (3.32) are given by

=
n

E {Zl}

=
it

E {ZZ}

Q
1

= Var{z,} = Var{z,} = E {(z- Ml)*(Zl - M)} (3.33)
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1 *
P = 73 E{(Zz— MZ) (Z1 - Ml)}

where the expectation is taken with respect to the Gaussian channel

noise., It can be shown that a and b are given by

k.E
{H: E%;L) (log, M) [ 1% {1 - | p(_a’_a,)‘z}l/zl (3.30)

where p(g,gf) is the complex correlation between the two complex
X = - = Ay 12 s R
signals s (t, o) and s (t,®. |p(a, o) | is given by

k,T

- —%
io(g,jf)iz = | Lo, 2 g (a,a”) s (a,0) dt [2
k2T 0 ==
sz
I T LA We,a)] mjl2nf v+ ue, ] g 02
kT
2 0
1 kZT 2
= ! Lo m J EXPj [lll(t,_a') - w(t’g)] dt‘
k2T 0
1 Rt 2
= (g3 Jyo cos [ut,07) - W, 0] dt)
2
1 &t 2
+ Cils 7% sin [u(e, ) - We, 9] db) (3.35)
2
Since ¥(t,o”) - Wt,a) = ¥ (t,a"-0a), the complex correlation o( o™, 0)
actually depends on the difference sequence y = o - a (3.36)

rather than on both o and a Eq. (3.35) can be rewritten as
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(o, o) I = lo(p 1

k. T k. T
2 2 1 2 2
( === f,7 cos W(t,ydt)” + ( gz [f.° sin ¥(t, y)dt)
k,T 70 k,T 70 = (3.37)

For an error event starting at time le, Wt, y)=0 for t<k1T, hence we

have
k. T
~ 2 _ 1 2 2
fo(p ™ = [ KT (kT + kaT cos y(t,y) dt)]
k,T -
1 2% 2
+ [ sz ng sin y(t, y)dt ] (3.38)

The probability of any particular error event starting and ending at
times le and sz respectively can then be calculated using
Eqs.(3.30), (3.34) and (3.38). It can be shown that error paths
having the largest complex correlations |{p(y)| will have the highest
probability of occurrence. A quantity related to the Euclidean dis-
tance in coherent detection is the equivalent FEuclidean distance,
introduced as an error performance measure for the ‘noncoherent
receiver in [9],[10],[11]. Asymptotically, the equivalent Euclidean
distance plays the same role as the Euclidean distance in the coherent
case and it relates to the complex correlation through the following

expression

d,~ = k2 (1 -1y DhH logz(M) (3.39)
A set of the error events which start at time O and have the
smallest equivalent distances, 1is first determined. The equivalent

distances of the error signal paths associated with these error events

starting at various times are then calculated. The equivalent dis-
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tance results for MSK, DMSK and TFM with rectangular pulse shaping are

shown in Figs.l3 to 15.

As can be seen from these results, some error events have equiva-
lent distances that stay constant independent of the starting time of
the error event. If the error phase path ¥(t,y) has a particular

shape over le to sz such that

k, T

2 . _
fkl'r sin ¥(t,y) dt =0 (3.40)
then
2 1 kZT 2
fo(D 1" = [ 1;;1—, (kT + lng cos Y(t,y) dt)] (3.41)

and the equivalent distance for this particular error path is

2 1 KT
d° =(k,. - k) -=1r cos Y(t,y) dt (3.42)
e 2 1 T -
le

For any error event which satisfies Eq.(3.40), de2 will be independent

1

of the de2 are constant independent of starting time.

of the starting time k. T of the error event. This explains why some

The probability of each of these error events at a SNR of 10 dB

is evaluated and plotted in Figs.l6 to 18.
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4. OPTIMUM MLSE RECEIVER SPANNING FREQUENCY HOPS

4.1 INTRODUCTION

In Chapter Three the MLSE receiver that detects transmitted
sequences of 1length less than or equal to the hop interval was pre-
sented. Such a receiver can be used to detect data on a hop-by-hop
basis. We now extend the detection algorithm so that the receiver
detects a transmitted sequence of arbitary length (greater than the
hop length), based on the maximum likelihood accumulated over the
entire transmission period. There will be periodic random phase jumps
every NT seconds in the dehopped waveform. As one would expect, the
receiver algorithm is more complex than the previous algorithm.
However, a special case of the algorithm can be combined with the
algorithm described in the previous chapter to give a simple practical
algorithm for the situation where the hop interval is much longer than

the length of the frequency pulse g(t).

4,2 RECEIVER THEORY
The received dehopped waveform is the same as that presented
previously in Eq.(3.1)

-]

I p(t-iNT) cos [2nf t + ¥(t, @) + 6] + n(t)

j_=—m

r(t) = (e/m)l/?

(4.1)

where the symbols used are those defined and used previously. For a

transmitted sequence of length n symbols and a hopping interval of

length N, the number of phase jumps occurring would be the nearest
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integer éreater than n/N denoted by q.

Let the dehopped waveform be denoted by s(t,a,6), where 6 is a
random vector, such that s(t,a,6) =_s(thg,9i) for iNT < t < (i+1) NT.
The detector must now find the sequence, of data symbols o”, which

maximizes the likelihood function

2a T -
o for(t).s(t,o,0) dt

2a,07) = Eg {e } (4.2)

Since the random initial phase ei's are statistically independent, the
expectation can be taken over each hop interval independently as
23 I?ZT r(t) s(t,o",0 _ )dt

No ~1)NT m~ } (4.3)

q
2’(_‘_],3’) = Il E {e
where q is the least integer greater than n/N. The expectation over
the random phase yields the zeroth-order modified Bessel function and

the likelihood becomes

q
o) = T T {(2a/N0) [ 12 (o) + 2 (w012 (4.4)
where
b (wa) = S T(E) cosl2nf t + ¥(t, o)t (4.5a)
g (@ 07) = f?gTI)NT r(t) sin[21rfct + ¥(t,o7)]dt (4.5b)

Comparing the likelihood function in Eq.(4.4) with that for n < N
gi?en in Eq.(3.5), we see that the maximum likelihood decoding algo-
rithm is now more complicated. The likelihood calculation involves

multiplications, Bessel function weighting, squaring and square root
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operations.

To reduce the number of multiplications involved, the log like-

lihood function may be used as given by

a 1/2

. d 2
Me,a™) = I a{I [F5

2 - 2 .
= Ca (2,07) + (2 (2,07))

1} (4.6)
The computation in Eq.(4.6) can be carried out in a serial manner as
follows. Initially during the first hop interval the equivalent
likélihood given by Eq.(3.5) can be used to determine the most likely
transmitted sequence in the first hop. Hence, the decoding algorithm
can proceed in the same manner as for n { N de3cribeé in Section 3.3.
At the end of the first hop, the decoder retains a list of survivors
*

*
having the largest 1likelihood pairs [& o N(j), L N(j)] for each
b b

state at time NT. The decoder now has to compute

() = min Bl e ) (4.7)

for each of the states 1 < j < n. We shall refer to these as the
partial log likelihoods accumulated over the first hop. To determine
the survivors in the second hop for time kT > NT, the decoder must use
the likelihood given by Eq. (4.6) rather than the equivalent like-~
lihood E'Qghg) as given by Eq. (3.5). Hence, to determine the sur-

vivor at time (N+1)T, the decoder computes the metric of the survivor

at SN+I = j as

max

O R SN CO I R S - G ILIC I DI I COE DD R DR )
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for i=1,2,..em
j=1,2,eeem
where Gc(i,j) and Gs(i,j) are _the inphase and quadrature matched
filter outputs for the transition from node i to node j during a
symbol interval. These are obtained in the same way as for the nonco-
herent receiver on a hop~by-hop detection basis presented previously.

For each of the nodes SN = j, 1<{j<n, the inphase and quadrature

+1

registers for accumulating the inphase and quadrature correlations

over the second hop, l*c,Z,N+1(j) and l*s,Z,N+l(j)’ are initialized as
* .
2¢,2,N+1(j) = 8.(1,9) (4.9a)
OUPR CPIE NEWED (4.9b)
Note that in the notation l*, 0 and i*’m’ , a second subscript m, has

. . t .
been introduced to indicate that the m b hop is under consideration and

the subscript n, as before, indicates that the states at time nT are
being evaluated. The partial 1log likelihood accumulated over the

first hop for the survivor at node Sn+ = j is also stored as

1

*
T l(J) = rl(i) (4.10)

where 1 is the survivor state at time N and is the node index i that

satisfies Eq. (4.8).

For k > N+1, laying in the second hop interval, the inphase and
quadrature correlation calculations are the same as for the first hop
except that comparison for determining the survivor at node Sk = j is

according to
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&n Ek*(j) = mix{r:(j) + Enblo{éi (EZ,Z,k—l(i) + Gc(i,j)] 2
* “‘:,z,k-a(i) + Gs(i:j)]z)l/z}} (4.11)

The inphase and quadrature correlations are updated as

*

Yok () = R'C,Z,k—l(l) + 6.(4,3) (4.12a)
* (-) . .

Voap G =8 5 () + 8 (1,5) (4.12b)

In general, for time k laying in the mth hop other than the first hop,

(m-1)N < k < mN, the metric of the node S, = j is défined as

k

w8 () = T @) o B )+ s (6,9
[ (1) + s (1L,11HY2 1) (4.13)
s,mk-1"" g tod *

*
where T m—l(j) is the sum of the partial log likelihoods accumulated

over the previous (m-1) hop intervals for the survivor ending at Sk=j’
and is equal to
* m-1
I‘m_l(J) = i=zl I'i(J) (4.14)

Note that the values a and No are required, which was not the case in

the receiver considered in Chapter Three and the partial log like-
*

lihood sum T m_1(j) has to be stored in addition to the usual inphase

* *
nd quadrature correlations j
and q % c,m,k(J)and [} s

(j). Natural log and
: ,m,k

Bessel function weightings have to be performed. This dictates a more
complex detection algorithm than previously obtained in hop-by-hop

detection.
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4.3 DECODER SIMPLIFICATION FOR L << N

-

If the length of the frequency pulse denoted by L is much less
than the hop length N, then merges in the modulation trellis will
usually occur much before the end of a hop. All the n different
survivors at time kT, branch out from a common node, say St’ where
(m=-1)NT < t < kT, hence Ih_?(j) will be common to all the contending

sequences.

ma () = "5 r Y )+ wr {22 ([, ey @) +”s(i,j)12
. 12 (1/2
+ [ R’s,m,k—l(l) + 81,517 )T
max

P, (22 (e )+ s,

Lt 4

+ [ R'S,m,k—l (1) + 6S(k,j)]2 )1/2} (4.15)

Hence once a merge has occurred within a hop the equivalent likelihood
can be used for determining the maximum likelihood sequence via
*7 ., _ max
R () =" {1l

c,m,k-1 (1,3) + ﬂfi’j)]z

A SCNRC DR RCO Dby (4.16)

The decoding algorithm can then revert to the simple one as for the
first hop. Note that the more complicated metric calculation in Eq.
(4.13) 1is required only for a few symbol intervals after a frequency

hop. Once a merge has occurred the comparison can then revert to the
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simple one as in Eq.(4.16).
4,4 RECEIVER STRUCTURE -

The only difference between the receiver obtained in this Chapter
and the one discussed in previous chapters is the decoding algorithm.
The receiver structure for generating Gc(i,j) and Gs(i,j) is the same

as that presented in Chapter Three,

5.SUBOPTIMUM NONCOHERENT RECEIVER

5.1 INTRODUCTION

The noncoherent receiver described previously is quite complex,
especially if the metric calculations are to be carried on across the
hop intervals, A simplified sub-optimal receiver structure with
reduced complexity may be obtained although error performance may be
sacrificed- For the correlative encoded CPM signal described, there
are correlator states (frequency states) as given by Eq. (3.8) and
phase states as given by Eq. (3.9). If the phase states are ignored
and only the correlator states are used to estimate the transmitted
sequence, We have a simplified sub-optimum decision algorithm, which
automatically takes care of the metric calculation across a frequency

hop.

5.2 SUBOPTIMUM RECEIVER
The information carrying phase function ¥(t) given in Eq. (3.7)

can be alternatively expressed in term of the correlated data symbols
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wWt) = 2th g Jn s(t-nT) (5.1)

n=o

where Jn are the correlated data symbols given by

1
J = z k [¢] _ (5.2)
n c =0 2 n—-%
and
s(t) = S5 (o) dv (5.3)

where b(t) is the baseband pulse of length T. s(t) is normalized such
that
s(T) = 1/2. (5.4)

t
During the k h symbol interval the information carrying phase function

can be given by

w(t) = 27 h Jk s(t-kT) + h AN (5.5)

kT < t < (k+1)T
The underlying phase, which stays constant during the kth symbol

interval is then

€k=1rh z Jn+6)i i N<k<(@(i+1) N (5.6)

Rather than having a random phase angle once per hop interval, we
can assume for noncoherent bit detection that we have a noncoherent
phase angle in each symbol interval, The suboptimum receiver must
find the data sequence o that maximizes the following likelihood

function.
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nT

wa,a”) = E{ exp{(2a/N ) 7 r(t)s(t,a ,8) dt] } (5.7)
0]
n-1 i
= kSO IO{(Za/No) Zk(ﬁk’gk)} (5.8)
where
(k+1)T 5
Zk(f%’fi )y =1[C r(t)cos[2nfct + ak(t,gf)]dt )
kT
(k+1)T
+ ( f r(t)sin[2xf t + ek(t,gr)]dt )2]1/2

kT ¢ (5.9)

and Bk(t,jf) is the shape of the phase path during the kth symbol

interval due to the kth correlated symbol Jk' given by

Bk(t,jf) =27t h Jk’ s(t=kT) (5.10)
and
1 m
‘Jk = c E k2 o k=1 (5.11)
=0

For M-ary transmission and a PRS polynomial of degree m, there would
be at most Mm states rather than pMm states for the MLSE receiver
presented in the previous Chapter. The memory and computational
requirement is then reduced.

Instead of having the likelihood function as a product of Rician
variables Zk<15£f)’ the log likelihood function can be used as given

by

M(a,a”) = & [l {(2a/No) z_(a,0")}] (5.12)
- k=0 ° k="

The Viterbi algorithm can be wused for calculating the metric

recursively through
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¥ . _ max * . ..
) = i {Ik_l(l) + 2z, (1,9)} (5.13)
* 3
where T k__l(i) is the metric of the survivor node Sk_l=i and z, (i,3)

is the Rician variable for transition from node i to node j cor-

responding to that given by Eq. (5.9).

5.3 SUBOPTIMUM RECEIVER STRUCTURE

Since the phase path Bk(t,if) during a symbol interval depends on
the correlated symbol Jk only, the number of possible distinct phase
paths is the number of possible distinct correlated symbols. _ The
receiver structure must be able to provide the partial log likelihood

LnIO{(Za/No).zk(jbif)} for every possible phase path during a symbol

interval. Following approach used in section 3.4, we have

(k+1)T
! r(t)cos [27f t + (t)] dt
KKT ¢ Flt
(k+1)T (k+1)T
=k% rc(t)cos Bki(t) dt - {T rs(t) sin Bki(t)dt (5.14)
and
(k+1)T
k% r(t)sin [Zﬂfct + Ski(t)]dt
(k+1)T (k+1)T
A= ;T rc(t)31n Bki(t)dt + é& rS(t) cos Bki(t) dt (5.15)
where
r (£) = r(t) cos 27f t
c . ¢
(5.16)
rs(t) = r(t) sin anct»

A baseband matched filter bank is . then required to provide the
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correlations with the cosine and sine of all possible phase paths
Bki(t) over each symbol interval. For the correlation with the cosine

of the ith possible phase path, the matched filter impulse response is

=
~
rt
~
]

cos [Bki(T—t)]

ci

- (cos [2 wh Ji s(T-t)] 0<t<T (5.17)

elsewhere

(o}

and the matched filter impulse response for the correlation with the sine

th
of the i possible phase path is

hsi(t) sin [Bki(T-t)]

- { sin [2n 3y s(T-t)] 0<t<T (5.18)

o
elsewhere

Comparing Eqs.(5.14) and (5.15) with Eqs.(3.19) and (3.20), we see
that . this suboptimum receiver requires the same number of matched
filters as the MLSE receiver. The scaling multipliers for the MLSE
receiver are not required but squaring operations and summers are
required as well as the weightings EnIO[(Za/No)/( )]. Note that
although the receiver may look as complex as the MLSE receiver, the
function weighting is now being done in hardware which can be much
faster. In the case where the software can handle the required mathe-
matical operations, the structure of the receiver is much simpler

indeed. The receiver block diagram is as shown in Fig.l9.
6. CONCLUSIONS

Spectral analysis of frequency-~hopped, correlative encoded con-

tinuous phase modulations has been presented. Results on the power
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density spectra of frequency-hopped signals with various partial
response encodings and pulse shaping, and different hop lengths have
been presented. In general, the spectrum becomes more compact with
lower sidelobes and approaches that of the CPM signal without hopping,
as the length of the hop interval increases.

It is found that the use of higher order PRS polynomials and pulse
shaping, which are known to reduce the bandwidth significantly for
usual continuous phase modulation, do not result in more compact
spectra 1if thg hop length is short. The use of higher order PRS
polynomials and pulse shaping is effective in bandwidth and sidelobe
reduction for long hop intervals.

Three noncoherent receivers have been presented. The maximum
likelihood receiver presented in Chapter Three is optimum over a
single hop interval. Consequently it can be used for sequence esti-
mation on a hop-by-hop basis. It has the simplest receiver structure
and decoding algorithm. Error performance of this receiver has been
analysed. It has higher error probability at the beginning and near
the end of a hop. If some channel throughput can be sacrificed, known
symbols can be transmitted at the end of a hop to force a merge in the
modulation trellis at the end of each hop.

In Chapter Four, the MLSE receiver that detects a general frequen-
cy-hopped signal has been presented. It has the same structure as the
one that detects on a hop-by-hop basis but it has a more complicated
decoding algorithm. However, simplification of the decoding algorithm
is possible when the length of the hop interval is much greater than
the length of the frequency pulse. The receiver operates generally in

"the same manner as the single hop receiver, but it has a subprocedure
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for metric calculation across each frequency hop and relies on the
assumption that a merge in the trellis will occur well before the end
of a hop. -

In Chapter Five, an additional simplified suboptimum receiver has
been presented. For this receiver a different structure is required
and the decoding algorithm is simpler. Memory requirements and compu-

tation are reduced.

Error performance analysis of the single-hop receiver has been

presented.
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II., TRELLIS CODING FOR HOPPED SPREAD SPECTRUM SYSTEMS

1. INTRODUCTION

The implementation of satellite communication systems usually
proves challenging due to the modest power available for down-link
transmission. Thus it is highly desirable to minimize the energy per
bit required to provide communication at the specified level of error
performance, This consideration certainly holds for EHF military
satellite coﬁmunications, where the trend is to communication at
higher and higher frequencies over wide bandwidths - at frequencies
where it is a technical challenge to produce signal sources éf even
modest level. Thus any technique such as coding that could reduce the
required energy per bit, would seem worthy of consideration. In
addition a reduced vulnerability to jamming could accrue.

The common applications of coding and coded modulations have
been to the additive Gaussian noise channel where a coherent modu-
lation and demodulation has been possible. For example the Trellis
codes of Ungerboeck [1], have been applied to 8-phase PSK and 16 point
Quadrature Amplitude Modulation, to achieve coding gains of the order
of 3-4 dB with no penalty in transmission rate. These codes are now
being used in commercial data transmission equipment. However, for
communications in the EHF band, coherent techniques do not appear
possible and it 1is a challenge to find effective coding and decoding
techniques that use noncoherent detection. In this report we provide
the principles and first results of work that has been started on a

coded Noncoherent Frequency Shift Keying (NC-FSK) modulation that
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promises coding gains of the order of 3-4 dB as has been achieved with
trellis codes and coherent systems. In addition, because the basic
modulation is a noncoherent M-ary FSK, the use of existing spectrum

analyzer receivers appears possible.

2. RESULTS

The basic uncoded modulation system from which the coded system
is derived, 1is a noncoherent M-ary FSK in which one of M orthogonal
tones is transmitted in each baud interval. Cases are being consi-
dered where M = 2,4,8. The coding technique being applied, is ana-
logous 1in a sense to that used by Ungerboeck for coherent transmis-
sion, where he obtained coding gain by use of a convolutioﬁal code,
but avoided a lowering of transmission rate by increasing the number
of points in the signal constellation to compensate for the redundancy
in the code.

Here we introduce a convolutional encoding but suffer no rate
reduction because we allow simultaneous use of more than one tone in
the orthogonal signal set. If it is desired to control the maximum
amplitude variation permissible, it is possible to place a constraint
on the number of tones used. For example, 1in an eight tone system,
the constraint could be to encode by the particular choice of four out
of the eight possible tones.

Although our fundamental goal is to evaluate the performance for
noncoherent reception, the error performance for coherent reception is
relatively easy to analyse and so this analysis is being carried out
as well, The error performance of the coded systems is being compared

with uncoded M-ary FSK for which the theoretical error performance is
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known. Also simulation results due to Keightley [2] are available and
are being used for comparison.

The optimum receivers for the encoded multitone signals have
been obtained in a straightforward manner. For noncoherent reception,
the receiver consists of a conventional inphase and quadrature
spectrum analyzer receiver. Samples of the inphase and quadrature
components at the various frequencies are taken for processing by the
decoder which is a Viterbi decoder.

Trellis coding can be considered as a binary convolutional
encoding with a mapping of the encoded bits into an expanded set of
channel signals, Rate 1/2, 2/3 and 3/4 codes with various constraint
lengths are being studied with both hard and soft decisions at the
output of the spectrum analyzer and input to the decoder. We have
been able to show that the Euclidean distance in the FSK signal set is
proportional to the Hamming distance in the modulating binary signal
set. Thus for the modulation scheme being considered, optimal codes
are obtained by maximizing dfree' An upper bound on the error perfor-
mance for the coded system has been obtained from the code generating
function and the probability of error for the uncoded system. This
requires computer evaluation. As well, a computer simulation is being
carried out to corroborate the theoretical work, Coding gains of the
order of 3 dB. are being obtained, much the same as in the coherent

Ungerboeck encoding.
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