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O. INTRODUCTION 	• 

Various aspects of code division multiple access spread spectrum 

have been studied during the period of this contract and are reported on 

here. Certain problems associated with the generation and state estimation 

of maximum length shift register (pseudo random) sequences are first 

considered. This includes an efficient algorithm to generate primitive 

polynomials of degree 89 and 127. In addition an algorithm to generate 

the state of the generating shift register given an initial state and the 

elapsed number of clock cycles is outlined in section 2. The problem of 

determining the number of,clock cycles between two given states is also 

considered and shown to be equivalent to the problem of finding logarithms 

in a finite field. The third section extends previous work on the difficult 

problem of acquiring and tracking the spreading sequence. The performance 

of the proposed scheme is compared to previous schemes. An acquisition 

method based on a reduced state trellis search algorithm is also proposed 

and discussed. The final section considers three aspects of coded spread 

spectrum systems. 

1 



1. APPLICATION OF FINITE FIELD THEORY 

The following two problems are considered; 

1. The generation of primitive polynomials of high degree. 

2. Two problems of linear feedback shift registers. 

Both problems are straight forward applications of finite field theory, 

except for one of the problems of 2. The purpose of this report is to 

present the results in a coherent fashion to ease their application to 

the spread spectrum systems under consideration. 

1.1. The Generation of Primitive  Polynomials of High Degree  

Let N be a prime such that 2
N
-1 is a Mersenne prime. While 

many of the results and techniques do not require these assumptions there 

are a few valuable simplifications that can be made because of them. In 

addition these appear to be the values of interest in the applications. 

Let a be a root of the primitive trinomial x
N 
+ x

K 
+  land 

thus a primitive element of GF(2
N
). Since N is assumed prime, the only 

subfield of GF(2
N
) is GF(2) and every element of G = GF(2

N
)\GF(2) is 

primitive. Every irreducible polynomial of degree N over GF(2) is, in 

fact, primitive and the minimal polynomial of some element of G. The 

number of such polynomials is 

(2
N
-2)/N. 

To generate primitive polynomials of degree N it is sufficient 

to find the minimal pOlynomials of elements in G. Each such minimal 

polynomial corresponds to a cyclotomic coset of the integers modulo 2
N
-1 

and every cyclotomic coset has order N (a simplification of the general 

2 , 



3. 

case afforded by the assumption 2N-1 is a Mersenne prime). Furthermore, 

all cosets containing the elements 1,3,5,..., 9,, 	< 2 (N+1)/2-1 are 

distinct ([1], p.262), which is true even when 2N-1 is not a Mersenne 

prime. To generate primitive polynomials it then suffices to find minimal 

polynomials of elements aj , J < 2 (N+1)/2-1, J odd, and for distinct J, 

distinct primitive polynomials result. This is a significant saving since 

in general it will be tedious to check whether or not two elements are in 

the same cyclotomic coset. The remainder of the section describes an 

algorithm to find the minimal polynomial of a given element. 

Let a be a root of the primitive trinomial xN + x
K 
+ 1 and 

thus a primitive element of GF(2N), and let Q = {1,a,a
2
,...,aN-1 , which 

will be used as a basis for GF(2N) over GF(2). Corresponding to each 

element of GF(2N),  a',  there is a representation in term of binary N-tuples: 

N-1 ( 	(j  
aj  = 	a. 	E- (a

j) 
 ,a ."- a(J) ) 	aP") eGF(2) 

	

i=0 1 	0 	1 	N-1 

Define the (N-1) X N binary array A whose ith row is  a(±+),  1 5 i 5 N-1  

(i.e. the (N-1) rows of the array are the binary representations of ai , 

N 5 i 5 2N-2 with respect'to the basis Q). 

Consider now the problem of multiplying two elements of GF(2N), 
J 	(J) K 	J K 	J+K say a 	a 	and a E a

(K) . Clearly a .a = a 	but only the vectors 

a (J.) and a (K)  are available. Notice that 

N-1 N-1 aJ 	N-1 .(1K 	v a(J) atril  a (K) ajl 
a (K)  ai+i  

. L 	1 
1=0 	j=0 	j=0 i=0 

1 	j 

2N-2 s 
= 	a(j)  a 2,-i(K)I  a/  , 	r = max (2,-(N-1),0) 

£=0 i=r 	s = min (£,N-1) 



N-1 	. 

i=0 1  j  

4. 

The term in the inner bracket is in GF(2) (either 0 or 1).. TO find the 

. .1+K 	. 
binary N-tuple.representing a 	we•can replace each power of a by its 

corresponding N-tuple and add those for which_ the coefficient is nonzero. 

Since the highest power of a appearing in this  terni  is 2N-2 this is easily 

achieved by using the rows of the array A. It will he convenient to refer 

to this operation of multiplication as 

J K _ 
 a

(J) 	(K) 
Œ Œ 

 
x a 

A routine to achieve this multiplication of binary N-tuples is quite simple 

to program (at least in APL). It is actually achieving multiplication of 

the polynomials 

N-1 
N-1 

O.) 	(J) i an d 	f (K) (X) 	
a(K) . 	x i=0 

i=0 

modulo the trinomial x
N
+x
K
+1 and expressing the result as a binary N-tuple. 

th Define also the N x N array B such that the i row is the binary 

2i-1 
representation of a 	,i=1,2,...,N. Notice that this is easily achieved 

using the above definition of multiplication since if b (J) is the J
th 

row 

then the (.1+1) st row ,  is simply 

b(J+1)(J) =b 	xb 

and a recursive construction of the array is straight forward. 

The Minimal Polynomial of a j . The first step in the algorithm is to 

determine the representation of a with respect Co the basis Q. 'This is 

fairly easy to do with the multiplication routine  k and the array B. If 



5. 

n 
X ... X 

c (J)  

C l  (.3') 

then 

2 	• 
a 	x 

where {j ,j 	...,j 4  } are the nonzero coefficients in the binary expansion 
il i2 ' 	-n 

of J. All of the required vectors are stored as rows in the array B. There 

are other methods of computing the representation of a with respect to the 

basis Q, but the above method appears to be quite economical and efficient 

in terms of speed, complexity and memory requirements. 

The second step in the algorithm is to construct the N x (N+1) 

. (K-1)J 
array whose kth column is the binary representation of a 	with 

exponents reduced modulo 21g-1 as necessary, with respect to the basis 

1 K (N+1). Notice that each. column in this array is a times the 

previous column, and the array is easily constructed.recursively. Row 

reducing this matrix (interdhange of . rows allowed) will always put it in 

the form 

11,1  

\ I 
CN-1 

j  and the minimum polynomial of a is 

f (J) (x) = C
(J) 

 + C
(J)

x + 
C(J)x2 

 ++ C
(J) 

x
N-1 

+ X
N 
 . 

1 	2 	N-1 
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Let N=5 and let a be a root of the primitive polynomial x
5
+x

2
+1. 

of GF(2
5
) over GF(2) is {1,a,a

2 
 ,a

3 
 ,a

4 
 }, and the array A is 

Ii  0 1 0 0 

0 1 0 1 0 

0 0 1 0 1 

1 0 1 1 0 

Example. 

The basis 

A = 

a(5) 

a(6) 

a(7) 

a(8) 

0 1 0 0 0 

0 0 1 0 0 

0 0 0 . 0 1 

1 0 1 1 0 

11  0 1 1 

6. 

while 

. a (1) 

a (2) 

B = 	a(4)  

a (8 ) 

. 
a
(16 

1 
To find the minimal polynomial of, say, c 9 , notice first that 

19 = 1.2
4 
+ 0.2

3 
+ 0.2

2 
+ 1.2 + 1 

and so 

19 	(16) • 	(2) • 	(1) 
Œ =a 	xa 	xa•  

One way of viewing the multiplication algorithmfor x is asfollows: to 

determine 
a(16) 

;c  a
(2) 

write 

a (16) 
= 1 1 0 1 1 

a
(2) 

= 00100  

0 0 1 1 0 1 1 

position 0 1 2 3 4 5 6 . 

By the array A a 1 in position 5 "corresponds" to 1 0 1 0 0 and a 1 in 

position 6 to 0 1 0 1 O. Thus 
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(.16) • 	(.2) 
a 	x a 	= 0 0 1 1 0 

1 0 1 0 0 

"0 '1 0 '1 0  

1 1 0 0 0 	= a 
(18), 

By the same technique 

(18) • 	(1) a 	a  = 1 1 0 0 0 

0 '1 0 0 0 

(19) 
0 1 1 0 0 0 = 0 1 1 0 0 

For the second step of the algorithm we form the 5 x 6 array as follows: 

1 	0 	0 	1 	1 	0 

0 	1 . 0 	1 	0 	0 

0 	1 	1 	1 	1 	1 

0 	0 	0 	0 	1 	0 

0 	0 	1 	1 	1 	0 

i 	i 
a(°) I

1 
 a(7)  I 	a(14)  1 

a (19) 	a(26) 	a(2) 

and row reducing this matrix places it in the form 

1 	0 	0 	0 	0 	1 	
. 

0 	1 	0 	0 	0 	1 

0 	0 	1 	00 	1 

0 	0 	0 	1 	0 	1 

0 	0 	0 	0 	1 	0 

'3 
and the minimum polynomial of a

19 
is x

5 
 + x + x

2 
 + x + 1. This same 

polynomial also hasa
7 
 ,a

14 
 ,a

28 
 ,a

25 
 as roots (i.e. the set of elements 

{7,14,28,25,19 }  is a cyclotomic coset - it is closed under multiplication 

by 2 mod 31). 
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The following two tables present a listing  of minimal primitive 

polynomials. 

Table I contains two hundred primitive polynomials of degree 89 and 

Table II has two hundred of degree 127. The polynomials are given in 

octal representation (0=000, 1 = 001, 2 = 010, 3 = 011, 	7 = 111) 

with the coefficients of the highest degree on the . left and the constant 

term on the right. The polynomial opposite J in the table is the 

minimum polynomial of a where a is a root of the first polynomial 

in the table (x
89 

+ x
38 

+ 1 for N = 89, Table I, and x
127 

+ x + 1 

for N = 127, Table II). Thus for J = 37 and N = 89 the primitive 

polynomial in octal representation is 

40010 	00000 	00015 	00606 	02000 	00001 

and the actual polynomial is 

89 	77 	48 	47 	45 	38 	37 	25 x +x+x+x+x+x+x+x+ 1 

The octal digits are grouped in sets of 5 for ease of reading only. The 

"initial" polynomials x
89 

+ x
38 

+ 1  and x127  +  x+  I were obtained from [2]. 

Each entry in each table was tested for irreducibility, as a 

check, according to the following method ([2 3 , [3 3 ). If f(x) is the 

minimal polynomial under test, form the (N-1) x N array L whose ith row 

consists of the coefficients of x
2i
-x

i
,  i  = 1,2,..., N-1, each row reduced 

modulo f(x). Then f(x) is irreducible (and hence in our case also primitive), 

if and only if, the rank of L is N-1. 



J MINIMAL POLYNOMIAL OF a TO JTH POWER 

	

1 	40000 00000 00000 004b0 00000 00001 

	

3 	40000 10000 02000 00400 00000 00001 

	

5 	40000 00002 00000 00410 00000 00001 

	

7 	40000 01000 00000 00400 40000 00001 

	

9 	40000 10000 02000 00402 01000 00001 

	

11 	40000 00200 00200 00401 00001 00001 

	

13 	40000 00000 00000 63400 00000 00001 

	

15 	40000 10000 02040 40400 00200 04001 

	

17 	44000 00000 00000 04400 00000 00001 

	

19 	40000 00000 00000 00524 00000 00125 

	

21 	40000 1000002022 00444 40400 00001 

	

23 	40000 00010 00000 20600 10102 00001 

	

25 	40000 00014 00000 00651 00000 00001 

	

27 	40000 10020 02010 00402 00402 00401 

	

29 	40000 04001 00020 00444 00100 40201 

	

31 	40000 20000 40001 04400 10000 01001 

	

33 	40000 10200 12205 00400 02001 00041 

	

35 	42004 21000 10400 00400 02100 00001 

	

37 	40010 00000 00015 00600 02000 00001 

	

39 	40000 50000 56000 12400 70000 20001 

	

41 	40000 04004 10210 42402 00204 00001 

	

43 	40100 00441 10004 00432 04010 20001 

	

45 	40002 50002 12040 42612 41000 00001 

	

47 	40000 20011 00000 66432 11040 02001 

	

49 	40002 00000 16050 60641 40301 40001 

	

51 	74000 36000 17000 07400 00000 00001 

	

53 	40404 06000 40205 05440 20200 04001 

	

55 	40000 02000 03112 01500 00001 10111 

	

57 	40000 12001 02500 04534 00000 00125 

	

59 	40000 00220 41002 33664 00440 40001 

	

61 	40001 00002 02044 00540 12 103 02041 

	

63 	40000 14200 03040 00610 00000 00001 

	

65 	40060 03004 40360 12416 07400 00401 

	

67 	40000 40014 22116 72410 42000 40201 

	

69 	40000 10040 06512 35725 10002 41201 

	

71 	40205 02402 01426 12400 00000 00041 

	

73 	40010 00114 06000 41546 42140 10401 

	

75 	40040 10004 02001 04467 03340 06001 

	

77 	40000 04520 00454 26444 40000 60001 

	

79 	41020 01000 04122 52747 34414 60001 

9. 

TABLE I PRIMITIVE POLYNOMIALS OF DEGREE 89 



J MINIMAL POLYNOMIAL OF a TO JTH POWER 

	

81 	40001 10006 42015 10634 01000 20001 

	

83 	40000 02020 24615 52602 40000 04001 

	

85 	44000 02002 00200 16452 05000 00001 

	

87 	40404 12121 62131 04721 60141 20201 

	

89 	60140 30060 00000 00400 03006 01403 

	

91 	40203 01007 00402 34513 00220 14001 

	

93 	40020 10010 03406 40201 10010 00111 

	

95 	40010 10202 22241 50676 40100 00125 

	

97 	40002 04540 31651 41045 36020 44001 

	

99 	40003 10114 22032 25072 14163 00001 

	

101 	40003 10005 30000 53620 00010 00001 

	

103 	40020 00040 01307 43700 02416 01401 

	

105 	40100 10000 36140 36420 26420 40201 

	

107 	40000 11203 47024 52102 25002 11201 

	

109 	40200 01006 03030 36530 50240 00041 

	

111 	40011 10222 16757 31115 65103 00001 

	

.113 	40100 50260 73013 53760 72370 01001 

	

115 	40000 00100 22042 71404 30360 60001 

	

117 	41010 51636 16440 12100 40004 21001 

	

119 	44001 01001 01030 54431 03400 00001 

	

121 	52504 05002 20121 10400 10000 24001 

	

123 	40444 50514 53250 73301 41044 20001 

	

125 	40000 10600 06146 31630 71261 40301 

	

127 	40000 00010 00000 00402 00001 00213 

	

129 	40200 50742 17652 27361 44614 14101 

	

131 	40220 05062 67232 51314 16400 21111 

	

133 	40000 20041 70672 15673 76500 20125 

	

135 	41000 55134 64720 55576 34062 04401 

	

137 	42102 30410 06203 60765 14573 43001 

	

139 	40005 00657 27577 10472 44701 00001 

	

141 	40001 10102 01224 03456 05634 05401 

	

143 	40040 04110 43657 23154 76532 40621 

	

145 	40102 21412 55770 16707 70200 01001 

	

147 	40010 10001 04460 13030 32643 10241 

	

149 	40021 21156 60562 25156 66742 10401 

	

151 	40100 40152 54507 77334 15340 06001 

	

153 	74000 36000 56600 27402 51030 20001 

	

155 	40404 26565 76115 47614 53214 03001 

	

157 	44044 40361 24143 56732 12410 60001 

	

159 	50020 12004  021447  00410 42401 00001 

10. 



J - MINIMAL POLYNOMIAL OF lot TO JTH POWER 

161 	40010 00015 06236 41040 00645 12111 

163 	41001 42205 46657 27762 72021 10101 

165 	40000 15070 02335 00414 00460 14233 

167 	40020 00161 44523 34531 03024 34301 

169 	40201 42570 57145 73425 26052 33111 

171 	40000 12043 37010 04044 00041 24125 

173 	41224 11406 62357 33462 06412 20001 

175 	40110 62315 66204 51524 26556 00041 

177 	40020 14177 44173 31547 40220 20001 

179 	40003 00330 42372 55564 47112 06401 

181 	41000 15027 42132 44366 65011 40601 

183 	40003 34005 14071 75503 47221 01041 

185 	40000 13200 03230 02735 02421 01041 

187 	44022 02302 62374 07364 63501 00001 

189 	40404 14201 42602 01712 43210 04001 

191 	73160 35400 16634 52520 00000 20001 

193 	40400 14103 02131 5346C 41215 41041 

195 	44420 57312 26347 54371 64410 00001 

197 	40000 10000 23021 23457 44605 00405 

199 	40012 04351 30652 42265 70512 02101 

201 	41061 14161 54056 55433 36513 14001 

203 	40002 16565 22030 10577 02006 01023 

205 	40030 10646 50400 70301 45064 54401 

207 	40114 13743 25717 11210 03462 10111 

209 	41000 70624 35054 57521 57201 25125 

211 	40041 01100 12231 24140 45641 02401 

213 	42311 51434 46220 56672 50327 40041 

215 	40170 24502 37267 52621 20100 00001 

217 	40000 56010 10557 70051 064.20 40401 

219 	40040 72766 54147 00213 22704 54221 

221 	44110 33311 53376 70665 12060 03001 

223 	50002 14012 50040 12640 13062 15241 

225 	44400 73604 76464 14161 73130 52401 

227 	40014 14157 70443 40444 27660 40201 

229 	66214 03113 54004 00222 73310 60001 

231 	40602 10576 46322 20110 25405 21001 

233 	40201 06272 10625 31024 67130 10001 

235 	40000 22531 62321 31130 66666 16025 

237 	40030 50506 06661 06047 04541 50101 

239 	1420144  14432 02713  3 14320  21516 64341 

11. 



J MINIMAL POLYNOMIAL OF a TO JTH POWER 

241 	40001 15244 30672 72410 45502 21043 
243 	40061 17340 22703 62451 04104 64401 
245 	40000 20205 35757 74643 54077 64111 
247 	40102 01153 42174 37416 57665 05325 
249 	40015 52375 74052 01235 34501 04001 
251 	40202 66735 26246 57511 10512 22401 
253 	40342 61260 23664 14053 25314 42001 
255 	74000 31400 13242 46601 76622 44401 
257 	40404 62667 72401 55630 14152 00201 
259 	40400 06006 57403 67222 02520 53001 
261 	50400 30302 26744 12405 32005 20041 
263 	40415 13302 13325 62221 31543 60201 
265 	41001 53066 73342 17e4 56467 07201 
267 	60140 21040 26254 10622 67104 21403 
269 	40221 57214 43464 70530 70654 20101 
271 	40003 42235 73750 12306 33315 24101 
273 	40002 12254 74274 00000 33111 44421 
275 	40225 51455 07412 21245 52530 50111 
277 	40051 22114 02536 14736 03661 20201 
279 	40061 05157 04262 77057 42770 05453 
281 	40020 13422 60010 07110 44312 04101 
283 	41124 13704 04632 34141 24323 41311 
285 	40001 13417 14350 25756 03717 75325 
287 	40203 13372 26646 53130 56616 42401 
289 	44223 36416 45667 20717 72222 40001 
291 	40705 06335 75547 00550 20020 01001 
293 	62000 01000 12200 24543 61720 36401 
295 	41632 45452 31567 30730 37305 64621 
297 	40025 16372 21532 26253 35574 17241 
299 	52111 55514 13672 60072 57242 70241 
301 	44050 13402 41425 71270 43403 30401 
303 	40022 03341 42306 12761 12070 70101 
305 	40003 12767 64014 70027 70074 74537 
307 	40000 43252 65200 35462 24423 16141 
309 	40121 17262 64351 61415 17035 71011 
311 	40020 52276 11677 72735 71046 72021 
313 	40022 47066 74773 47127 00215 32401 
315 	40100 32606 63174 77560 22241 46001 
317 	40144 42625 36152 11621 34575 24473 
319 	40000 00003 00504 07403 17740 22301 



13. 

J MINIMAL POLYNOMIAL OF a TO JTH POWER 

321 	40032 31342 57447 64544 73262 61331 
323 	45133 10036 65576 54072 16535 25125 
325 	52423 72057 36356 30345 02535 40041 
327 	40200 15335 61451 76205 00152 16041 
329 	40704 25423 52145 27427 52504 44001 
331 	57262 51457 47574 64443 32602 00401 
333 	40010 31444 31527 63276 70441 74641 
335 	44045 51126 70403 62041 37776 11241 
337 	52565 05142 70206 63504 74363 05041 
339 	41021 52435 00123 77305 62324 70211 
341 	42131 47044 65476 03727 47500 52001 
343 	40014 00666 76042 67410 26452 65675 
345 	40002 54320 70343 74311 66454 70201 
347 	40250 25241 00372 54715 43164 21001 
349 	40140 75536 22120 32522 65614 74425 
351 	40024 55760 40645 72247 65550 13111 
353 	40022 05703 01361 04614 67031 76141 
355 	40300 05775 77162 56101 45473 50463 
357 	74001 46206 25351 53712 16532 46401 
359 	41436 05432 73521 00322 54251 10111 
361 	44440 04717 73373 50736 36041 27125 
363 	50537 21532 32603 03002 65615 65401 
365 	40041 17347 50500 36637 00400 16241 
367 	40604 03662 22642 02250 60311 20001 
369 	55153 03122 23536 55313 50244 14401 
371 	40025 00417 15443 51325 14227 03261 
373 	44207 12212 05231 63265 56152 01201 
375 	40210 10116 21001 16040 20210 02565 
377 	41225 46102 45437 10612 07711 55511 
379 	41132 27345 63030 76074 32722 47001 
381 	40000 10012 02505 76777 21453 62005 
383 	40051 07333 74063 72563 73612 70401 
385 	41001 34025 40424 52676 24372 27201 
387 	41011 75247 33026 25077 27550 52005 
389 	40040 07513 63563 65031 36115 53451 
391 	46235 33722 31124 52244 70023 14201 
393 	40636 10100 77412 11060 00000 00403 
395 	71522 71622 70056 62310 64766 27401 
397 	41001 51231 16656 47167 43404 465 1  
399 	40126 57217 32100 60776 75225 37365 



MINIMAL POLYNOMIAL OF a TO JTH POWER 

	

1 	00200 00000 00000 00000 00000 00000 00000 00000 00003 

	

3 	00200 00000 00000 02000 00000 00000 20000 00000 00003 

	

5 	00200 00000 00000 00000 00000 00100 00000 04000 00003 

	

7 	00200 00020 00002 00000 20000 02000 00200 00020 00003 

	

9 	00200 00400 00000 00000 00000 00000 00000 00001 00003 

	

11 	00200 00000 40000 00000 00000 20000 00040 00000 10003 

	

13 	00200 00000 00000 20000 00000 40020 00001 00040 02003 

	

15 	00200 00000 00000 02000 00400 00000 20020 00004 01003 

	

17 	00200 00000 00000 00001 00000 00001 00400 00401 00403 

	

19 	00200 00004 00000 10000 00000 01000 00020 00000 40203 

	

21 	00202 00000 20200 00000 00000 00000 00002 02000 00203 

	

23 	00200 04000 00020 00000 00000 00040 01000 20000 00103 

	

25 	00200 00000 00000 00000 00002 00102 00000 00100 04103 

	

27 	00200 00400 00000 00040 00000 00000 00400 00001 02043 

	

29 	00200 00000 00004 00000 00100 10000 02000 10200 40043 

	

31 	00200 00000 00000 00200 40100 00000 04210 00104 01043 

	

33 	00200 00000 00000 02104 00000 00000 20042 00042 00423 

	

35 	00200 00020 00402 00040 20004 02000 00200 00220 04023 

	

37 	00200 00000 20000 00000 00000 02001 00442 20010 44223 

	

39 	00200 01000 00000 02000 10004 00002 20001 00400 02023 

	

41 	00200 00000 00010 00000 00000 40404 40002 20020 22223 

	

43 	00200 00000 00000 00440 00440 00000 10000 11010 00113 

	

45 	00200 00400 00100 00000 00400 01010 00000 04401 10013 

	

47 	00200 00000 02000 01002 00440 10002 04410 02004 44113 

	

49 	00200 00020 00002 00000 22040 02000 00200 05020 20013 

	

51 	00200 00000 00000 02040 00000 00040 20001 00000 22453 

	

53 	00200 00000 00100 00004 10040 00402 04000 01040 12013 

	

55 	00200 00000 00200 00100 50240 00100 50200 20000 42253 

	

57 	00200 00000 00000 02010 00240 24004 20520 40010 50013 

	

59 	00200 00200 00200 01040 01000 01200 00000 24050 00253 

	

61 	00200 00000 02500 00000 25200 00000 50420 02024 01013 

	

63 	00252 52525 25252 52525 25252 52525 25252 52525 25253 

	

65 	00200 00000 00000 00000 00000 00401 20004 01202 10527 

	

67 	00200 00000 00012 00000 00000 12012 02400 02402 02407 

	

69 	00200 00001 00000 02100 02010 40200 25005 20000 22127 

	

71 	00200 00000 00000 00004 02010 04201 20122 00051 00007 

	

73 	00200 00010 04000 10000 02412 04020 00204 00500 01327 

	

75 	00200 00001 02000 02400 20012 04410 24022 01124 44207 

	

77 	00200 00020 00002 00002 20000 22050 00654 02265 40267 

	

79 	00200 00100 20040 10200 04111 02200 51000 64000 00007 

14. 

TABLE II PRIMITIVE POLYNOMIALS OF DEGREE 127 



MINIMAL POLYNOMIAL OF a TO JTH POWER 

	

81 	00200 00400 10002 00004 41111 00202 40044 00111 22067 

	

83 	00200 00000 04004 04001 00101 01021 02002 20202 66207 

	

85 	00200 00000 00000 01100 00000 00110 00554 00100 15417 

	

87 	00200 00000 00444 02200 20100 14044 62202 01030 50007 

	

89 	00200 00040 00011 00402 02001 40442 03101 46043 22117 

	

91 	00200 00020 00002 01000 20310 06211 14221 10562 30307 

	

93 	00200 00200 00000 42200 40000 06104 20300 65014 64217 

	

95 	00210 40104 00042 10000 00014 43006 20000 00000 00007 

	

97 	00200 01000 04010 00043 00010 43001 00614 02503 16117 

	

99 	00200 00400 00001 04106 10610 01410 41141 00145 20307 

	

101 	00204 10200 10004 10600 0040420004 10020 40410 50217 

	

103 	00200 00000 00040 40010 60004 30002 12363 06100 32007 

	

105 	00202 00000 20600 04001 41010 14042 43416 06340 41657 

	

107 	00200 00000 04020 00001 41410 10010 34703 23726 14047 

	

109 	00200 00000 00003 00004 00000 04400 07040 30156 00317 

	

111 	00200 40100 00060 06010 00011 02000 60400 00120 00007 

	

113 	00200 00000 00400 00100 01003 003Q0 00004 04505 45157 

	

115 	00200 00001 00010 00600 46015 00220 15700 23071 43047 

	

117 	00200 01400 04000 04002 40012 20040 00546 00367 05317 

	

119 	00200 0016Q 00046 00004 60010 06001 00600 10060 01007 

	

121 	00200 00001 30000 00144 00005 01200 06106 70120 22157 

	

.123 	00200 00000 00060 16000 00010 00204 60000 00100 02047 

	

125 	00200 00000 00000 00000 00014 00000 00003 00001 40317 

	

127 	00377 77777 77777 77777 77777 77777 77777 77777 77775 

	

129 	00200 00000 00000 03340 71560 00000 24250 00124 05051 

	

131 	00200 00000 02300 00001 20240 00141 40764 06034 23255 

	

133 	00200 00022 00003 26000 32540 03776 40273 30024 11071 

	

135 	00200 00600 00200 00000 01200 00010 04030 00043 25375 

	

137 	00200 00000 40000 40024 01500 07003 Oà003 00066 05451 

	

139 	00200 00006 00000 24006 00420 53417 41361 17027 71655 

	

141 	00200 20060 00010 03600 20540 60106 20005 44246 01471 

	

143 	00200 00000 00000 20001 70000 04101 40630 23505 52375 

	

145 	00201 00406 01004 12010 14040 71504 61200 42400 03451 

	

147 	00202 00010 20300 01400 06120 61707 17033 52104 40655 

	

149 	00200 04000 40010 10406 00121 61210 04217 31042 51471 

	

151 	00200 00000 04001 06101 01023 40120 01424 13731 06275 

	

153 	00200 00400 00000 60060 00043 41061 50115 34442 15251 

	

155 	00200 20021 00102 10410 60021 50154 36441 76107 11555 

	

157 	00200 00000 10001 42104 13561 04610 26322 63252 22271 

	

159 	00200 00000 00000 03106 00000 00200 24043 02022 13515 

15. 



16. 
a 

MINIMAL POLYNOMIAL OF « TO JTH POWER 

161 	00200 00020 00003 04400 34440 23467 32271 33320 53671 
163 	00200 00000 21000 06011 04007 23447 46642 76573 30075 
165 	00200 10000 00000 13011 50406 03022 25750 02331 70251 
167 	00200 00001 00010 00444 04200 27127 40306 41405 07315 
169 	00222 22020 02200 02422 20440 00220 55040 10264 24071 
171 	00200 00404 40101 01022 00206 05144 55346 02511 42175 
173 	00200 04001 00004 04001 00662 75104 25714 47641 77241 
175 	00200 00022 00403 02044 30046 47523 46713 24242 61345 
177 	00204 00200 00024 02240 51042 03246 63641 73507 42571 
179 	00200 00040 00012 20004 41040 10030 12451 51502 74075 
181 	00200 00002 01000 22450 30244 52542 63301 26677 57701 
183 	00200 20000 02012 02200 20060 46156 60252 43703 61245 
185 	00200 00000 04204 25040 05101 04066 26134 05155 12071 
187 	00200 00012 00100 10105 03425 05734 01630 14300 27175 
189 	00252 52525 25252 53777 77777 77777 60000 00000 00001 
191 	00200 00000 00000 00000 00000 00401 30004 01302 12561 
193 • 00200 00012 10012 50504 42104 77137 66354 51415 06535 
195 	06200 00000 01005 06001 04026 22126  23503 15531 77211 
197 	.00200 20000 02012 05204 25135 16166 42012 11502 20305 
199 	00200 00410 04024 02213 06004 01232 44151 01327 56061 
201 	00200 02000 02403 26010 25236 11772 34313 53721 37635 
203 	00204 00024 50022 44202 64014 26405 52600 47160 01711 
205 	00200 00100 24041 32004 54117 53452 14162 02440 22005 
207 	00200 00411 10020 04140 40327 61432 54374 73717 27721 
209 	00200 00040 00410 44121 33225 70553 64751 56246 12535 
211 	00202 22202 02200 21332 22115 30640 22127 24123 47451 
213 	00200 00010 11140 02642 44762 17351 70435 35452 52445 
215 	00200 00044 02030 00046 64013 41304 35604 51756 40771 
217 	00200 00420 01146 00300 60413 16445 20630 06331 12725 
219 	00200 00200 00201 02412 12052 36244 15002 35717 42611 
221 	00210 40100 23102 30001 31414 24266 71600 15540 00005 
223 	00200 01000 04010 06041 11000 17207 30172 75276 05531 
225 	00200 20401 02143 04116 60616 45071 46661 63650 17165 
227 	00204 10200 00030 61630 10003 02055 45404 02573 44651 
229 	00200 00000 04040 06001 21144 11404 65107 01577 34605 
231 	00202 00040 60600 00102 07140 50770 14544 56371 41771 
233 	00200 01000 00100 61406 41531 36135 25750 22017 42065 
235 	00200 00000 01011 02442 04505 76320 15127 00402 06251 
237 	00200 40300 10240 32254 25043 00212 43737 36202 25005 
239 	00200 00060 00404 00141 61013 20303 11064 46152 53071 

1 



ii 

MINIMAL POLYNOMIAL OF a TO JTH POWER 

241 	00200 14006 00300 06001 70625 34175 26760 24171 17465 
243 	00200 03400 16002 04072 01513 77574 06135 51203 43451 
245 	00200 00320 00452 00575 63265 34302 53415 53244 13405 
247 	00200 00000 30001 00544 00544 70407 22412 53732 46671 
249 	00200 00000 04140 32003 27372 53453 10471 12155 55065 
251 	00200 00000 00000 00720 64350 00000 01242 00121 00251 
253 	00346 01400 00600 00000 00140 00000 00000 00000 00005 
255 	00200 00000 00000 03340 71560 00000 32164 00072 06437 
257 	00200 00000 04700 62002 35735 57114 60635 44614 45751 
259 	00200 00030 50003 07164 30470 55450 43135 66666 75163 
261 	00200 00620 00160 00110 03110.42511 47040 11003 26225 
263 	00200 01400 43003 26026 75414 41552 41535 75407 26617 
265 	00200 14002 40000 11510 34066 13566 66620 45761 75071 
267 	00200 00070 01407 22221 41523 70727 01373 45174 57643 
269 	00200 00200 00000 44001 51410 15620 20641 12234 37405 
271 	00201 00405 01403 12005 37517 01023 42515 51263 65437 
273 	00202 00004 30340 01701 07737 74654 25575 20264 14351 
275 	00202 06060 40204 12547 55307 44346 31050 67560 10163 
277 	00200 04001 00020 06002 01040 21005 77134 15531 34625 
279 	00204 10400 10014 00655 13435 44245 40635 15603 30017 
281 	00200 00420 02041 04646 33544 32572 34720 75430 10571 
283 	00200 01000 10004 67021 66315 01314 16601 71145 20643 
285 	00200 02100 62004 02157 22512 27747 26400 00176 00005 
287 	00200 00030 40003 04414 36564 01043 61105 22341 07357 
289 	00201 00002 20500 45135 06021 20717 57625 20402 06611 
291 	00200 00044 26013 37166 33222 75360 77701 34350 27703 
293 	00200 01000 14011 40022 30545 54636 36113 44632 67065 
295 	00222 02000 00213 10500 31115 10024 60151 30211 02577 
297 	00200 00400 04100 44001 12053 26025 1 • 045 62400 11771 
299 	00200 00000 12000 41454 40464 76115 32601 72230 35313 
301 	00200 01020 02142 00057 00617 70063 11126 15042 40605 
303 	00204 00200 41202 56146 07772 45030 60353 34445 07057 
305 	00200 00001 00002 00562 41040 73655 63710 60162 25451 
307 	00200 00010 44100 63343 37110 35751 43435 24515 70533 
309 	00200 00020 40302 66263 66472 53237 62372 54536 47465 
311 	00200 05001 24305 07671 62342 13061 14773 71721 70777 
313 	00200 00200 50500 10521 45340 05233 02240 21224 20371 
315 	00252 52525 25252 52527 77777 77777 77777 76525 25253 
317 	00240 40120 20071 05024 00010 51200 00016 34000 00005 
319 	00200 00012 10013 54500 47306 47607 11636 31203 57543 



MINIMAL POLYNOMIAL OF a TO JTH POWER 

321 	00200 04001 00012 03474 61715 54757 34005 41573 71471 
323 	00200 04024 10530 41547 53457 32316 06534 25147 44067 
325 	00200 00012 50000 12130 06015 57373 57334 03206 00465 
327 	00200 02000 20021 13101 30211 35355 40451 41525 70763 
329 	00200 00025 00223 53137 67516 35104 41063 50473 67151 
331 	00200 00122 20051 30354 74343 33145 67404 30200 40407 
333 	00200 04500 32226 55367 47635 76403 03164 40203 40605 
335 	00200 00000 00412 44360 04024 02024 65722 25577 40143 
337 	00220 22202 06402 07742 60552 23530 61031 53174 23631 
339 	00200 00001 00044 02744 27041 72412 10374 07310 45517 
341 	00200 10040 00251 02012 00252 20006 62151 50503 33435 
343 	00200 00020 01012 06441 20755 34513 27122 17225 65123 
345 	00200 00210 00000 46150 44256 40201 11513 55162 71241 
347 	00210 40100 63110 31125 23635 01544 25201 74003 50007 
349 	00210 03102 15060 64606 34031 00310 00540 070d0 30005 
351 	00200 20441 06041 25120 43034 03361 50162 56111 51773 
353 	00204 10004 51020 33363 20523 00346 36620 51777 52131 
355 	00200 10200 12241 46463 56232 13572 41553 23261 20017 
357 	00202 04041 21254 54505 41414 04347 55457 50110 22735 
359 	00200 01010 24041 62007 51133 66462 05115 35124 24163 
361 	00200 00001 01025 03604 37123 57242 64363 72316 17441 
363 	00200 40101 10040 22434 06112 32751 01524 17236 30307 
365 	00200 60050 21445 17360 41030 14704 03040 00410 20305 
367 	00200 14000 00341 52457 22070 50571 67461 71216 72573 
369 	00200 04401 32026 45173 20673 61603 40171 07727 57431 
371 	00200 00120 04056 03404 60414 32767 62715 61674 00217 
373 	00200 00126 30001 62524 01101 24204 51120 42255 50135 
375 	00200 00000 00040 13000 20054 10627 70000 00140 00063 
377 	00200 00000 00040 13000 00010 00204 64001 00300 41141 
379 	00342 60560 00270 54000 00042 50021 20000 00000 00007 
381 	00377 77777 77777 74000 00000 00000 20000 00000 00003 
383 	00200 00000 04700 62000 74655 57062 00302 74723 24137 
385 	00200 00022 00002 02000 21300 02000 20374 10420 04243 
387 	00200 00622 00367 05330 25222 52140 31367 46530 13707 
389 	00200 00000 44100 24150 22755 37352 60167 15610 25303 
391 	00200 10001 10154 40066 62626 71320 33174 20470 63177 
393 	00200 30000 03510 33413 26324 47774 21712 31170 02603 
395 	00200 20240 20246 45221 10171 04116 16356 64355 42607 
397 	00200 00204 00004 10200 34004 71120 46006 76365 27403 
399 	00203 01006  243214  51503 51464 75253 23341 72770  142737  

18. 
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1.2. 	Two Problems of Linear Feedback Shift Registers  

A linear feedback shift register of length N is started in state 

S
(0) 

= (xN_/ , xN_2 , ..., x0 ) and j clock cycles later is in state S (j) = 

(xj+N-1 xj+N-2' 	xj+1' xj). The feedback connections of the shift 

register are assumed known and the two problems of interest are: 

i) given S
(0) 

 and M, the companion or "next state" matrix of 

the shift register, determine an efficient algorithm to compute S (j)  for 

any j, 1 5 j 

(0) 
ii) given S , M and S 	determine an efficient algorithm to 

compute j, the number of clock cycles between the two states. 

The first problem is relatively easy and the only interest is 

in making sure the algorithm is an efficient as possible. The theory 

behind the second problem is also quite straight forward but it is shown 

easily to be equivalent to the problem of finding logs in a finite field, 

a problem known to be difficult. A "quasi-algorithm" has recently been 

found for this and its application will be discussed here. 

1.2.1 	State Generation for Linear Feedback Shift Registers. 

The maximum length feedback shift register corresponding to the 

binary primitive polynomial f(x) = xN + a_ 1 x
N-1 + 	+ a1  x + ao 

is 
N-  

shown in Figure 1. 
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1 

1 

1 

M = 

x j+N°1 xj+N-2 	- 	- 	° 	x1+2 	X  

Figure 1. 

The NxN companion matrix associated with the shift register is 

0 	100 	... 	0 	0 

0 	0 	1 	0 	... 	0 	0 

0 	0 	0 	1 	•.. 	0 	0 

0 	... 	0 	1 	.] 

aN-2 aN-1 

Define the state of the,shift register at time j to be 

S (j) = (x
j+N-1 	' x. 	x 	x .). For any given initial state 

j 

S (0) = (x14_ 1 , xN_2 , 	xl, xo) , the state j clock cycles later is 

given by S (j )  = MS (°)  or 

1 

0 

a
o 

a
l 

a
2 

a
3 



M3  

N71 
ri 

J= 	L j.2 
i=0 1  

05J :5_ 2N-1 

21. 

s (j )  = 

X .  

xj+1 

x
o 

x
1 

•nn••• 

A convenient method for calculating the state j clock cycles later 

is as follows. 

Let 1 
= (4-1, 	• 	j1 ,  j o ) be the binary representation of j 

i.e. 

The quantity Mi  can be expressed in the form 

N-1 j
2 	2 

N-2 j
N- 

Mj = (M
2 	) N-1 	(m

2 	) 	(14) 	(M) ° 

which can be realized in at most 2(N-1) matrix multiplications. For 

large N , say of the order 100, the space requiremenis for such a 

computation would be prohibitive. In such a case the following procedure 

could be used. 

Load the matrix M into register A and the intial state S (0) 

j 0 (0) 	(jo) 
into register B . Replace the contents of B by M S 	= S 

eote M°  = IN , the NXN identity matrix). Multiply the matrix in A 



22. 

21 
by itself to give M

2 
 . Multiply the vector in B by ( 4 ) 	to give 

o
+j

1
.2) 	 2

2 	
4 

. Multiply the matrix in A by itself to give M = M . 

22 	
(i o+i 1

.2+j
2
.2) 

Multiply the vector in B by (14)
j2 

to give S 	and 

so on until the desired state S (i) is reached. The memory storage 

2 
requirements are thus kept to N +N bits and all arithmetic is binary 

(mod 2). Additional memory of the order of at least N
2 

bits will be 

required for intermediate results. The algorithm is easily formalized 

into a procedure. The following detailed example illustrates the technique. 

1.Ê1121-Ê. 	Let N=5 and consider the feedback shift register shown in 

2 
Fig.2 governed by the polynomial f(x) = x 

5 
  + x + 1. Choose as the 

initial state S
(0) 

= 1 0 1 0 0 = (x
4' 

x
3' 

x
2' 

x
1, 

x
o
). For illustration 

xi+4  x1+3  xi+2  xi1. 1 	xi 

Figure 2. 

purposes only,the complete set of states the register cycles through 

is: 



23 

State S (S) xi +4  x +3  xi +2  xi +1  X.  

	

o 	 1 	o 	1 	0 	0 

1 	 , 	1 	1 	0 	1 	0 

	

2 	 0 	1 	1 	0 	1 

	

3 	 0 	0 	1 	1 	0 

	

4 	 1 	0 	0 	1 	1 

	

5 	 1 	1 	0 	0 	1 

	

6 	 1 	1 	1 	0 	0 

	

7 	 1 	1 ' 	1 	1 	0 

	

8 	 1 	1 	1 	1 	1 

	

9 	 0 	1 	1 	1 	1 

	

10 	 0 	0 	1 	' 1 	1 

	

11 	 0 	0 	0 	1 	1 

	

12 	 1 	0 	0 	0 	1 

13' 	 1 	1 	0 	0 	. 0 

	

14 	 0 	1 	1 	0 	0 

	

15 	 1 	0 	1 	1 	0 

	

16 	 1 	1 	0 	1 	1 

	

17 	 1 	1 	1 	0 	1 

	

18 	 0 	1 	1 	1 	0 

	

19 	 1 	0 	1 	1 	1 

	

20 	 0 	1 	0 	1 	1 

	

21 	 1 	0 	1 	0 	1 

	

22 	 0 	1 	0 	1 	0 

	

23 	 0 	0 	1 	0 	1 

	

24 	 0 	0 	0 	1 	0 

	

25 	 0 	0 	0 	0 	1 

	

26 	 1 	0 	0 	0 	0 

	

27 	 0 	1 	0 	0 	0 

	

28 	 0 	0 	1 . 	0 	0 

	

29 	 1 	0 	0 	1 	0 

	

30 	 • 0 	1 	0 	0 	1 

	

31 	= 0 	 1 	0 	1 	0 	0 



0 
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0 

1 
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1 

1 
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The companion matrix of the register is 

0  10 0 0 

0 0 1 0 0 

0 0 0  1 0 

0 0 0 0 1 

1 0 1 0 0 

To compute the state 11 clock cycles later, S
(11) 

note that 

11 -4j 4 	j 2  j 1  j o ). Load the initial state S (0) = (1 0 1 0 0) 

into register B and the companion matrix M into register A . Since 

replace the contents of B by M
jo

S
(o) 

= MS
(o) 

= S
(1) 

where 

0  10 0 0 

• 0 	0 	1 	0 	0 

	

S
(1) 

= 0 	0 	0 	1 0 

0 0 0 0 1 

1 0 1 0 0 

M = 

j o= 1 

Multiply the matrix (in register A) M, by- itself to give 

0 0 1 0 0 

0 0 0 1 0 

M
2 

= 0 0 0 0 1 

1 0 1 0 0 

0 1 0 1 0 

2 ji(1) 	2..1 1 (1) 	(3) 	_ Replace the contents of B by (14 ) 	S 	= M 	S 	= S 	- 

2 
(0 0 1 1 0). Multiply the matrix of A by itself to give M

2 
= M . 

Since j 2  = 0, the state vector in B is not multiplied. Multiply the 

23 
• 

8 
matrix of A by itself to give M = M 

 



or 

••••••• n•n• 

1.•••• 

1 0 1 1 0 

1 0 1 1 

M
s 

= 1 0 0 0 1 

1110  0 

1 1 0 0 

and since j
3 
= 1 the vector in B is multiplied by M

8 
to give 

=
(0.2

4 
+ 1.2

3 
+ 0.2

2 
+ 1.2 + 1.2 0 ) 

(11) S 	= (0 0 0 1 1) . 

1.2,2. " DeterMining théSUmber  Of  CIO* CyclesletWeen . Given States  

, Given two Ètates S (0) and S (j) of a linear feedback shift register, 

it is required to find the number of elapsed clock cycles between them. It 

is first observed that this problem is essentially equivalent to finding 

logarithms in a finite field. Using S
(0)

, S
(j) 

and M the states  

(N-1) 
and S 

 
, 	are found and it is noted that 

25. 

3 
s
(11) 

= S
(1+1.2 + 0.2 2 

+ 1.2 ) or 

I 	I 	I 
(j ) 	 (i+1) SS 

V  

1 
 •

1  — 

(0)  
S 	S 	S 

••••n 

m 

n••n4 

SL(0) = 	
S 

)• 

Each of these matrices can be shown to be invertible and 

M = SS 
--(i) —(0 ) 

The first row of Mi  is simply the binary N-tuple which expresses a i  with 
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respect to the basis {1,a,...,a
N-1

1. Thus given S
(0) 

S
(j) 

and M, this 

representation of aj  is found and the problem is to find j, i.e, to find the 

logarithm of  

This problem has arisen in a variety of contexts, mainly to do 

with shift register computations but also for computing a finite field and 

for compromising the security of certain recent public key crypto-systems. 

An algorithm for this in GF(2
N
), 2

N
-1 a Mersenne prime, was recently proposed 

by Herlestam and Johannesson [4]. Little analysis of the running time of 

this algorithm was given there and it is possible that for many elements 

in the field GF(2
N
), the running time will be unreasonably large. Nonetheless 

it worked very effectively on all logarithms attempted for all Mersenne 

primes up to 2
31 

- 1 and it is a very significant development. It has 

particularly devestating implications for public key systems implemented 

which assume this problem could not be solved in a reasonable time. Armed 

with the existence of such an algorithm it is clear that further research 

is called for. For the remainder of the section a description of the 

algorithm is given. 

Denote by V the vector space of dimension N over GF(2), 2
N
-1 a 

Mersenne prime and let S be the squaring transformation: 

S: V 

2 

Notice that since the field has characteristic 2, this is a linear transforma- 

N-1 tion on V, S(x+y) = S(x) + S(y). Also note that I, S, S
2

, 	S 	are 

distinct and linearly independent (in L(V,V), the vector space of linear 

transformations of V to itself). Each element of GF(2
N

) is identified with 

1. 

1 
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a binary N-tuple (a
0'  a1 , .' aN-1 

.. 	) which is equated with a binary 

polynomial ao  + al  x + 	+ 	x
N-1 

of degree at most N-1. Multiplication 

is modulo f(x), a fixed primitive polynomial of degree N with a a root. 

With this terminology define the linear transformation T on GF(2N) as: 

T: GF(2
N
)----eGF(2

N
) 

a(x)E-----exa(x) 	mod f(x). 

If f(x) = 1 + xg(x) then g(x) E x 	f(x) and the inverse transformation 

of T is 

T
-1

: GF(2
N
)----sGF(2

N
) 

a(x)i------en g(x)a(x) 	mod f(x). 

Since f(x) is primitive it is readily verified that T
-1

, T
-2, 

T
-22

, 

-2N-1  • are distinct as are the transformations 

- r s 
T

2 
S , 0 5 r,s 5 N-1. 

where 

T
-2 

S
s GF(2
NN) 

-2r 	2s  
a (x)1 	e x 	(a(x)) . 

Notice that 
r 

log (T-'
1 
 Ss  a(x)) = -2r  + 2s  log (a(x)). 

These transformations are used in the following manner to find the 

. logarithm of a(x). 

1). Set v = 0, a (0)  (x) = a(x). 

-2
r  s (v) 

2). Set a
(v)

(x) = T 	S a 	(x) 0 5 r,s 5 N-1 
rs 

and let a
(v+1) (x) be any of the polynomials a

(v) (s) of 
rs 

lowest Hamming weight (fewest nonzero coefficients). 

(1) 
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3). If the Hamming weight of a
(v+1) (x) > 1, increment v by 1 

and go to step 2, otherwise stop. 

Once a polynomial of Hamming weight 1 has been found, the logarithm of 

a(x) is easily found by retracing the values of r and s used at each stage 

and applying equation (1). It has apparently not been shown that the 

algorithm at step 2 always produces a polynomial of lower weight after 

the iteration. In addition there is considerable arbitrariness in choosing 

the next polynomial. Refinements of the procedure are suggested to assist 

with these problems. One saving can be realized by terminating the 

procedure at step 3 when the Hamming weight of the polynomial is either 

1 or 2 and storing the logs of the N-1 elements of the form 1 +  

1 5 i 5 N-1. 

Further research on either this algorithm or formulating another 

algorithm should prove useful. 
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2. COMPLEX SPREAD SPECTRUM SEQUENCES 

In most spread spectrum applications binary ± 1 sequences are used 

as spreading functions and these are invariably chosen to be pseudonoise 

randomsequences or Gold sequences. It is possible however that system 

performance could be improved by not restricting the sequence alphabet to be 

binary and an alternative that has received attention in the literature is 

sequences defined over the complex nth roots of unity, for some integer n. 

In this section a new construction for such sequences Is given. 

Let Q = { aj
'  ai, 	aN-1 	' 

j  ) • J = 1 2 	M]. denote a set of M 
0 1  

1 	ji 
complexsequencesoflengthN,Îpa

2 
 .1= 1, j = 1,2,...,M. Define the 

i=1 

correlations 
N-1 . 	. 

c..(k) =£0 a 
-.3 

£ 
a
£+k ij 

= 

where either the sequences are to be viewed as periodic or the subscripts 

are to be reduced modulo N and let 

C = max I 	(k)I Cii  

or 

k#0 

Welch [1] has shown that 

n2k 	1 	MN  
MN-1 [ (N+k-1\ 

k 

and as a special case, by choosing k = 1, 

C 
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These two bounds have proved to be remarkably effective in evaluating 

sequences and several sets exist which, for a 'given set of parameters, are either 

close to or meet these bounds. For large M and N however the bounds become 

" 	" 2k > 
	

k!  
C  (NA-k+1)(N+k -2)...(N -1) 

and 

C 	1/  v . 

In particular it has been shown [2] that C lte if M (1\14.1)
2

. It would 

appear from this that for M » N the bound is probably quite weak since it 

depends only on N and not M. Further work on this bound, which is used, 

surprisingly, to evaluate both binary and complex sequences, might repair 

this apparent deficiency. The work of Sarwate [2] uses the Welch bounding 

technique to investigate the trade-off between the maximum off peak auto-

correlation and the maximum cross correlation. 

Recently Alltop [3] has determined three sets of sequences of the 

type of interest here and their construction and properties are briefly 

reviewed. 

i) Quadric phase sequences: Let 	be a primitive nth root of 

unity and define the jth sequence in a set of (p-1) sequences of length N, 

N an odd integer greater than two and p the smallest prime divisor of it, by 

a
j = N

-112 
to
j

2
2, 

= 0,1,..., N-1. 

It can then be shown that 

c(k) = 1 if i=j, k=0 

0 if i#j, k=0 

15 otherwise 
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Establishing these properties requires the use of some involved, but straight 

forward manipulations of sums of complex exponentials. 

ii) Cubic phase sequences:  Let p be an odd prime greater than or 

equal to 5 and define the jth sequence in a set of p sequences of length p, 

by 

a
j 

= p 
-1/2  

As before it can be shown that 

= 0,1,...,p . 

c(k) = 1 	if i=j, k=0 

0 	if i=j, kg.) 

p 
-1/2 

otherwise . 

iii) Power residue sequences:  Let p be a prime of the form 

p = MN-I-1 and y a primitive root of GF(p) and hence a primitive (p-1)th root 

of unity. If S = y then S is a primitive Nth root of unity. The elements 

1 form a subgroup of the multiplicative group of GF(p), 

GF(p)*, and the elements {1,1,1
2
,...,yM-1 } are coset representatives. Thus 

every nonzero element of GF(p)* can be represented by a product of the form 

0 5.1. 21-1, 05..j5.N-1. Define the jth sequence in a set of M sequences 

of length N by 

j 	-1/ 
w z a = N 

2 

It can be shown that for this set of sequences 

Cii (k) = 	1 if i=j, k=0 

S
n 	

otherwise 

where 

N-1 
an . S

n 
 = N-1/2 1 

t=0 
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x 

e(x) = e P 

where 
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In the case where 1,13,13
2N-1 

forms a cyclic difference set in GF(p) 

it is straight forward to show that 

1 	1 1/2 IS = N 
	
(1 — +1)1/2 

 MN 

Unfortunately the only infinite family of such difference sets has p = 2N + 1 

which produces only a pair of sequences. 

The new construction which is proposed here appears to bear some 

relation to the quadric and cubic phase sequences. Let f(x) = 	a
i
x
i 
be a 

1=0 
polynomial of degree r over GF(p) for some odd prime p and let 

p -1 
S = 	e(f(k)) 

k=1 
(1) 

Such sums have been studied in the mathematical literature and applied to 

• certain problems of coding theory. In particular it has been shown [4] that 

IS' 	(r-1)pi/2-  

In fact this result has been generalized considerably [4] to the following 

situation:letF(x)=1a.xi be a polynomial over GF(q), q = p
n 

and define 
1 i=0 

2ui 	, , 

	

“x) 	n-1 
e T (x) = e P 	, t(x) = 	x 

i=0 

i.e. t(.) is a trace function from GF(pn) to GF(p). Then ([4]) if 

S' = 	e'(F(a)) 
asGF(q) 

it can be shown that 

IsT1 $ (1...4)p1/ 2 

provided that F(x) is not a polynomial of the form C(x)'-C(x)+b, b GF(q), 
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C(X) E GP(q)[X]. For convenience however only.the.testricted fOrm of 

equation (I) will be used. 

Let a be a primitive element of GF(p) and "label" the co-ordinate 

positions of the sequences to.be  constructed by' 1 = 
 

consecutively - the sequences will be  of.  length. (p-1). To each polynomial 

f(x) of degree r over GY(p) is associated  the  Complex sequence 

a (f)  = re (a() \, e fal‘, . 	e ((P.-2P 	e (a) = eXP(27ri .f(e) ) f 	f` 	• °' f 	f 

The sequences here will not be scaled to have unity length, as were the 

r+1 
Alltop sequences mentioned earlier. There are p. such sequences and we 

wish to use the bound of equation (1) to determine a set with good auto-

correlation and cross correlation properties. For this purpose, not all 

polynomials can be used and we investigate those that can be used. Let 

• p-2 
C
ff'

(k) = 	e (a ) 
f'

(a
2,+k) . 

=0 

The following simple lemma will assist with the task. 

Lemma. 	i) 	If f'(x) = f(x)+b, beGF(p)-, f,f' of degree r <(p-1) over 

GF(p) then 1Off ,(k)1 = p-1 . 

r fl% 4 
ii) If f1 (x) = 	

a`•"e ' 2 f (x) = 	a(2)  
•

xl , then the sequence 
i=0 	i=0 j  

a
(f2) 	(fi)   _ 

is a cyclic shift of a 	if and only if a
(1) 	(2) j 

- a 	j 

	

a 	= 0,1,2,...,r 

Proof 	Only part ii) need be proved and it is only necessary to show that 

(1) _ (2) 	(1) ir 	(1) i(r-1) 
r f (a

i) = f2 (a 1) iff a. 	- a. a . Since f1
(ai) =a 	a +a

r-1
a 

1 	J 	J 
(1) i 	(1) 

... +a
1 
 a +a

o 

and 
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a
i+1

) = a 
(2) a (i+l)r 	(2) (i+1)(r-1) 	(2) i+1 	(2) f ( + a

r-1 
a 	±...+ a

l 
a 	+a0  

2 

(2) r 	ir . (a 	
ci. 
 ) a 	1. c  (2) r-1 	i(r1) 

ar la  ) a  
+ 	+ a

(2)
a-a

i 
+ a

(2) 

1 	0 

and the condition is trivially true if 
a(1). 

a
(2)

a
j

,  j=0,1,.. ,r. The 

converse is shown by observing that a polynomial of degree r is uniquely 

determined by its values at r + 1 points. 

The implications of this lemma are clear: if the sequence a (f)  

is to be included in the set, then no sequence of the form 
a(f.b), 

 b#0, 

beGF(p),is to be included or a correlation of magnitude (p-1) will result. 

Similarly if the sequence a (f)  is to be included in the set, f(x) = a
r
x
r 
+ 

a
r-1

xr-1 + 	+ a
1
x + a

0' 
 then no polynomial of the form 

r(x) = (a
r
a
ir

) x
r 
+ (a

r-1
i(r-1)

) x
r-1 

+ 	+ (a
1
ar-1) x +  a0 

 

= 

should be included since the corresponding sequence will be the ith shift of 

the original sequence. Thus the set of all sequences can be divided into 

"equivalence classes". We consider only the case where all the polynomial 

coefficients 
a1,a2''ar 

are nonzero since complications in determining 

the size of each class can occur wheù some coefficients 'are allowed to be 

zero. It is assumed that all sequences in the set have corresponding 

polynomials with zero constant term to accommodate part i) of the lemma. 

Of the (p-1)
r 

such polynomials, only (p-1)
r-1 

of them correspond to 

cyclically distinct sequences. The cross correlation of any two of these 

sequences, or any cyclic shifts of them, will then be of the form 
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p-2 
— 

C
ff'

(k) = 	e2(œ  ) ef ,(a 	) 
t=0 

2111 
p-2 	(f(a

t
)  -f "(a

k
)) 

= 
9.=0 

Since f(a ) 	f'(a
t+k

) can be evaluated as f"(ë) for some appropriately 

chosen polynomial f" of degree at most r, the result of equation (1) can be 

applied to yield' 

ICff' (k)I 	(r-1)  V . 

, 
We conclude there exists at leat (p-1)

r-1 
 sequences of length (p-1) such that 

C 	(r-1) 	. 

Bef  ore  giving an example of this procedure, notice that the form 

of this bound is intuitively appealing since the bound increases with the 

number of sequences in the set. The earlier comment on the Welch bound, in 

that asymptotically it does not depend on M is now.  recalled. It is interesting 

to conjecture that a modified version of the Welch bound, similar in appearance 

to the above bound, should be possible for a lower bound on C, implying that 

the present bound is asymptotically "good". 

Example.  The procedure is illustrated for p=5, r=2. The following polynomials 

and their corresponding sequences are cyclically distinct and have a correlation, 

both auto and cross, between any two of them or between any cyclic shifts of 

them,of. at most 1r5 . Although there are only (p-1)
r-1 = 4 such sequences, in 

fact three more sequences could be added to the set without violating the 

bound, these sequences corresponding to polynomials with some coefficients 

zero. 



1 

1 

2 

2 

polynomial coefficients 	sequences 

a
2 	

a
1 
	a0  

1 	0 	
(
w
2

, 	w
1

, 	w, 	w
2

) 
0 

2 	0 	(w
3

, 	w
3

, 	w
4

, 	w) 
0 

	

3 	0 	1 	1 
1 	0 	(w, 	w, 	w, 	w) 

	

4 	2 	o 	4 

	

(w, 	w, 	w, 	w)  
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3. SYNCHRONIZATION IN CODED SPREAD SPECTRUM SYSTEMS 

Spread spectrum communication has a number of applications. 

By far the most pertinent ones are multiple access, ranging, and anti-

jamming. In all cases signal acquisition is an important feature. The 

acquisition techniques for these cases are somewhat different depending 

on the interference patterns, the spreading sequences employed and the 

type of code division multiple access used. Ranging (a single user case) 

and multiple access (a multi-user case) may employ code sequences that 

are short compared to anti-jamming. In the latter case it is desirable 

(and may be imperative) to use a spreading code which is long and diffi-

cult to identify by .an intruder. A long spreading sequence implies that 

the receiver may have to acquire the signal when the transmission has been 

taking place for some time and hence the initial state of the code gener-

ator would be unknown. In this case the matched filtering technique .  

proposed in [5] for signal acquisition in a multiple access spread spec-

trum communications situation would be infeasible for anti-jamming purposes. 

In this section we consider the signal acquisition problem in - 

a multi-user situation (multiple access spread spectrum) and in a single 

user situation (ranging). Acquisition for the latter càse when pn sequences 

are employed as spreading sequences has been considered by Ward [1], Kilgus 

[2], Ward and Yiu [3] and Hopkins [4]. The anti-jamming case requires 

further study on the design of "secured" sequences. Signal acquisition 

in a jamming environment is left for a future study. 

3.1 Acquisition of Pseudonoise Signals in a Multi-user Environment  

The subsequence matched filtering method for signal acquisition 

' proposed in [5] assumes that the received signal is (time) continuously 
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shifted through the subsequence matched filters (SMFs) so that the maximum 

output response would correspond to the situation when the matched filter 

is in exact synchronism (in frequency and phase) with the signal imbedded 

in the received signal. Thus there is no need to search for the code 

phase (delay). In [5] it was assumed that one period of the pn séquence 

corresponds exactly to one message data symbol, so that the proposed 

acquisition method is a "one" shot per SMF per data symbol strategy. 

Since there are L SMls, the method offers L shots at synch per data 

symbol interval. Also, since each data symbol interval contains one 

complete period of the pn sequence, the SMEs serve as a cyclic redundancy 

check 'for subsequent data symbol intervals. In [5] a cumulative corre-

lator was used to ascertain the correctness of signal acquisition. A 

drawback in using a cumulative correlator in this manner is that it may 

be falsely triggered and engaged by a false alarm. In the present study 

we consider the subsequence matched filtering method with feedback control 

for signal acquisition in the manner shown in Fig. 3.1. 

3.1.1. Continuous-Time Subsequence Matched Filtering for Signal Acquisition 

Here we consider the acquisition of pn signals in a direct 

sequence (DS) CDMA spread spectrum system. The method is readily extend-

able to an FH/DS hybrid system. 

In what follows we assume user #1 to be the desired user so that 

{a (1) }  is the pn séquence  (associated with user #1) which we wish to 

synchronize. The acquisition model shown in Fig. 3.1 operates as follows: 

Each SMF is of length m > n bits, where n is the length of the pu  sequence 

generator. Adjacent subsequence matched filters are separated from each 
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other by B digits, where m 5 B 5 h, N = 2
n
-1 is the length of the pn 

sequence, L is the number of SMFs and the symbol 	denotes the integer 

smaller than or equal to the argument. As the received signal r(t) 

traverses through the SMFs, the outputs are compared and the maximum 

,L selected. Let ta
£=1 

be the outputs of the Sles and let a = max  

(a l , a2 , 	aL). If a exceeds the threshold Vth
(1) 

 , then a synch is 

(1) 
declared. Suppose a =

£ 
> V

th ' 
i.e., the £th SMF is in synchronism 

(1) with the received signal. Then the n-tuple a (1) = (a
(1) 
(£-1)B+1 a (£-1)B+2' °°°' 

a(1)3 )  is loaded into the local pn sequence generator and the clock 

started at the indicated phase. 

The delay in the main path preceding the correlator accounts for 

any delay time in the generation of the local pn sequence. The received 

signal r(t) and the locally generated pn signal al (t) cos(wc (t-T i) + 6 1), 

where 

al (t) = ? 	a l)  PT  (t-k Tc), 	 (3.1) 

T
1 

and 6
1 

are the delay and phase of the signal component in the received 

signal and Tc  is the chip time, are correlated. The correlation (integra-

tion) in the main path carries on for T sec, where T is the data symbol 

duration, while that in the feedback synch control path carries on for 

M T
c secs (M m). If the synch indication is correct, the correlator 

(in the feedback path) output will coherently accumulate and is expected 

(2) to exceed the threshold V
th before time M T

c 
sec from the start. If it 

were a false synch the feedback signal to the Decision Controller in 

' Fig. 3.1 would be zero. Whatever the case may be, based on the two inputs 
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at positionsOanda the Decision Controller takes the following actions: 

a) If position() input is a "1", ignore input() and allow the 

pn sequence generation and the correlation processes to 

continue. 

If input O is a "0" and input() is a "1" load pn sequence 

generator with new state estimate from(D. 

c) If inputs° and° are both "0", take no action. 

Intuitively, the above described actions of the Decision Controller (with 

feedforward signal from the SMFs and feedback signal from the correlator) 

are necessary and sufficient to acquire and to maintain synchronization 

for a bi-phase coded multiple access spread spectrum communication system. 

Let the data sequence from user #1 be {d
(1)

} 	and the corre- , 

sponding spreading sequence be { 4
1)

1. Consider the acquisition of the 

{a
9, 

}  sequence and hence reception of the data sequence {d
(1)

1 in the 
(1) 

presence of other unwanted signals and additive white Gaussian noise. 

With binary phase shift keying and since binary phase modulation corre-

sponds to double sideband suppressed carrier modulation, the transmitted 

signal from user i is 

s i (0=12F.a.(t) .d.(t) • cos(w ct + e.) 

whereiEisthesignalamplitude,a.(t) is of the form given in (3.1), wc 

is the carrier frequency, e i  is the phase offset and di (t) 	is given by 

d.(t) = E 	d (i) P
T 
 (t-2, T), 	 (3.4) 

is the ith user's data sequence, P
T
(t) is of the form given by (3.2) t  , 

with duration T sec. The received signal is given by 

(3.3) 
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r(t) = /IF a
1
(t-T 1) d1 (t-T 1) cos(wc (t-T1

) + 0
1

) 

I/ 

lIF E a.(t"T.) .d.(t-T.) cos(
wc

(t-T i) + 0. i=2 1  
11 

+ n(t) 	 (3.5) 

The first  tarin on the right-hand side is the desired signal, the second 

term is the composite of (K-1) unwanted signals and n(t) is a zero mean 

11 additive white Gaussian noise with two-sided power spectral density N0/2 

watts/liz.TheparameterT.is  the propagation delay. The impulse response 	
11 

of the tth SMF is characterized by 

(t-1)B+m 

4
1 	'1 

 = a
(1) P Tc 

(t-kTc-T 1+0 1)r• COS(W c (t-T 1)+0 1
) (3.6) k k..(9,1)B+1 

In (3.6) we have anticipated that the (passive) SMFs will eventually 	11 

be matched with the corresponding subsequence in the desired signal com-

ponent of r(t). Without loss in generality we can set T 1  = 0 and 0 1  = O. 

The response of the £th SMF to r(t) at time m T is representable by 
II c 	. 

fm  
' 	

T
c 	ft 

(1) 	(1) 
Yst 	r(t) 	(0 dt 

• 	0 	, 11 

Assuming wc >> 2u(m Tc) -1 (this is true for any reasonable choice of m), 

y
2. 

(1) 
II can be shown to be [6]. 

(1\ 	1.FT. m 	d.V')  + Z2,  + n2, 	, if'in synch 	' II / _ 
t 	

_ 

	 (3.7) 
z

2, 
+ Z 2, + n2, 	, if not in synch 

IIwhere 
K 	(1,\  

Z
2, 

= 1/..FTÎ. . E 	[d  R.'
1 
 (Tk 	cl. ) + 	k) ik,1 (Tk)]cos (pk , j-1 	,  

II h=2 

T 
.RIL,I CT)  = f ak(t-T) .al (t) dt, 

11 
. o 0 ..r._mT c fm T 

Rk,l (T)  7- 	
c 

 ak(t-T) . ai (t) dt, 
11 T 



and 

z
9, 

= 	cl (1)  r (i) i 0 

N
o 	 

-1 
K-1 4. 	I 	[K-1 	 

SNR
SMF 	N 	2PmT 	N 	m.SNR co 

-1 

( .8) 

- w 
4)k 	(3k 	c Tk' 

fm T
c n

9, 
= 	n(t) f

(1) 
(t) dt, 

2, 

43. 

(9,-1)B+m 
rt (i) = 	

a(1) a (1) 

-15=( 9,-1)B+1 	P 	P-14 	o  

In (3.7) 	it is assumed that the observation interval is contained in 

the jth data symbol. 

• 	(1) 	. 
. When'the 

tth SMF is in synch,* the signal power,is P m
2
T
2
/2. In [5] it was shown 

that z
t 
is Gaussian with mean and variance giveri by 

= 
(K-1)/F7I 

 m
2
Tc Po  

2 	(K-1)  2 2 P 
2 	 m- T

c 
7 

Also, the variance of n
t 

is given by 

a 2 1 = — N m T 
n  4 o 	c  

The non-zero mean p
o 

contributes to a d.c. power which is negligibly 

.small ( - << 1) compared to a
2
• For all intents and purposes the signal- 

to-noise power ratio at any one of the SMF outputs under the synchronism 

condition is given by 

where the approximate symbol is used by virtue of the approximation made 

, for a
2 

above, and SNR
o 
= 2E/N

o 
is the signal-to-noise ratio in the band- 

width of the message signal. The energy per data symbol is E = PT = PNTc. 
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The probability of error associated with synch acquisition using any one 

of the SMFs is thus approximately given by 

e/smF Q(SNR 1/2 
SMF ) 

where the function Q(a) is defined by 

foe

a -x

2 /2  

Q(a) = vîn-7 	e 	/ dx 

The probability of error in acquiring the signal within a data symbol 

time is then 	• 

=  e/symbol 	[Q (SNR 	
1/2

)] SMF 
1/2 

. ( .9) 

(3.10) 

The probability of acquisition within m chip times of a data symbol time 

is then 

= 1 Q(SNR
S

1/2) 
Pac/SMF/syibol 

and the probability of acquisition per symbol is 

=  ac/symbol 1 - [Q(SNRSMF 
1/2)

] P   

(3.11) 

'(3 .12) 

In the performance evaluation of signal acquisition the inter-

pretation of signal-to-noise ratio is of critical importance. In his cal-

culation of correctness probability Ward [1,3] defines the signal-to-noise 

1 ratio as in the bandwidth of one chip time, which is — of SNR
o 
defined 

above. On the other hand, Pursley's [6] definition of signal-to-noise 

ratio is SNRo defined above. However, Pursley was concerned with post-

detection performance and not signal acquisition. 

For our purpose, since m chip time coherent accumulation is 

considered to provide a sufficiently large dynamic range between the 

coherent peak and the incoherent accumulation of (K-1) unwanted signals 
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plus additive noise, we define the signal-to-noise ratio as in  the band- 

width of m chip times, so that 

2 E 
SNR à 

m= N 

where Em  = P m Tc . Comparing with Ward's [1] definition SNRm  = m 
ware 

From (8) we have 

,K-1 , 1 
SNRSMF - L—N -r- SNR

m 

For K = 1 user, SNRsle  = SNRm . 

The probability of acquiring the signal within m chip times 

given the signal is present is given by (3.11). Hence the average acquisi- 

tion 	the SMF method is  time, T
a;SMF' 

-1 

Ta,SmF - 
m T

c 
+T 

e 

[1 Q(SNRsmF
1/2

)](1 - P
fd

)(1 - P 
fa 

(3.13) 

where P
fd 

and P
fa 

are the probability of false dismissal and the probability , 

of false alarm, 

P
fd 

= Q(SNR 
S

1/2
MF 

(2) 

	

P=P[y(T)> v ) 	absent] 
fa 	r 	e' 	th 

(2) 
where V

th 
is the threshold in the feedback path and T

e 
is the examination 

(2) 
interval. Choosing V

th 
= P • (coherent peak after M T

c 
sec.) 

= PIF7i M Tc 	 P 5. 1 

then 
1/2 

P 	Q[p (— SNR ) fa 	m m 

where the approximation is due to neglecting the variance of the unwanted 

signals. The acquisition is minimized when Pfa  is made equal to Pfd 
[1]. 



1 - Q[(SNRill›
1/2 

 ] 

M T
c 
+ Te  

Ta,SMF (3.14) 
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In this case 

and the threshold becomes 

V (2) 
=  Vin M P/2 T

c th 

Under this condition the average time to acquisition, 
TSME, 

 becomes 
a,  

T
a,SMF 

[1-Q(SNR 	
1/2

)](1-P 
SMF 	fa 

 

For small probability of false alarm, the (1-P
fa

)
2 

term is approximately 

1. The probability of synch acquisition and the average acquisition time 

for m = 1000, n = 16, N = 2/1-1 = 32,767, are plotted in Figs. 3.2 and 3.3, 

respectively. Ode have assumed Te  = m Te). 

The average acquisition time for the RASE [1] and RARASE [3] 

methods, for small probability of false alarm, are given by 

Te ,  
T
a,RASE =  

p
n 

and 
Te 	2 	

k. 
T
a, RARASE = n 	±P 	3(1-P)

2
) 

P 	• 

where Te is the examination period with minimum value equal to n Tc
, k 

is the nuuber of 3-input mod-2 adders in the RARASE method [3], and p is 

related to the signal-to-noise ratio SNRm  by 	- 

p = 1 - Q[(-  SNR )
1/2

] 
m m 

For K = 100, N = 2 16
-1 and SNR

m 
5 10, SNR

S 
 = SNR

m• Then 
MF 

ac/SMF/syMbol 	
1/2 = 1 - QUSNRIII) 	] P   

Then, we have 

m T
c 
+ T

e 
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For the case m = 100, n = 16, T = m T , curves for Ta, RASE, 
T
a, RARASE 

and T
a, 	

are plotted in Fig. 3.4 as a function of SNR . Similar plots 
SMF 

for m = 300 and 500 are shown in Figs. 3.5 and 3.6. It is observed that' 

the SMF method offers faster acquisition than either RASE [1] or RARASE 

[3]. 

It,is appropriate to remark here that for the SNRm's considered 

the additive noise swamps out the combined interference from unwanted users 

for K 100 in the SMF method. This desirable feature is a consequence 

of the despreading property of the SMF method. Since the RASE and RARASE 

methods are designed for acquisition of a single.pn  sequence in additive 

noise, they cannot cope with a multi-user environment, as neither of these 

two methods has the despreading feature during the acquisition mode. 

It appears that smaller values of m offers faster acquisition. 

For despreading purposes however, m should be at least 5 times the shift 

register length n. 

Once the signal has been acquired the correlation in the main 

path will despread the received signal and reject noise components lying 

outside of the bandwidth of the message signal. Sampling the correlator 

output signal at a rate 1/T and threshold detecting the-samples will pro-

duce a "good" estimate of the message sequence {d
(1)

1. Intuitively, 

encoding the message sequence by a convolutional code (or any other form 

of error correcting code) will add protection against additive noise at 

the post-detection stage. A comparison of performance of systems with 

and without convolutional code is given in section 4. 

3.1.2 Discrete-Time Subsequence Matched Filtering for Signal Acquisition  

In the preceding section it was assumed that incoming signal 

r(t) is continuously propagated through the SEFs so that the maximum 
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response occurs at the instant when the SMF impulse response  and the 

incoming signal are exactly matched in frequency and phase. If the SMF's_ 

are sampled-data systems, the input signal has to be sampled and clocked 

into the SMFs. Then sampling the received signal at the correct phase is 

of critical importance, particularly when the received pulse shape is 

non-rectangular. In the preceding section we assumed a rectangular pulse 

P
Tc

(t) for each chip and that the received pulse shape remains rectangular. 

In practice the received pulse would be the convolution of PT  (t) with the 

impluse response of the communication channel. The received pulse shape 

g(t) will not be rectangular and of duration greater than  T. The latter 

characteristic is due to pulse stretching. Adjacent pulses will overlap 

If the overlapping is severe, i.e., complete or almost complete overlap, 

a distortion known as intersymbol interference (ISI) takes place. If the 

overlap is only partial then the main part of the pulse remains undistorted. 

It is important that the pulse be sampled at the undistorted part, usually 

the maximum point. For discrete time matched filtering, knowledge of the 

initial sampling offset can be critical. In the RASE [1] and RARASE [3] 

schemes, the received signal is low-pass filtered and hard-limited before 

sampling. Hard-limiting produces a constant envelope; it also has an 

inherent weak signal suppression effect. In a multi-user environment in 

which the combined effect of unwanted signals may dominate, hard-limiting 

prior to despreading by the SMF is undesirable. 

Ignoring for the moment the information data and consider the 

reception of the pu  sequence {a
(1)

}. The model for the received composite 

signal can be represented by 

p__ K 
r(t) = /27 a1 (t-1 1) cos(wc (t-T 1) + 0

1
) + 1l2P E ai (t-T i ) 

1=2 

, cos(wc (t•T i) + 6 i) + n(t) 
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where 

Co  

ai (t)  E 	g(t-kT), 
k=-oe 

T.J.S the delay offset and g(t) is the received pulse shape. The received 

signal r(t) is sampled at the input to the SMFs as shown in Fig. 3.7. It 

is desired to make an accurate determination of T
1 

from operations performed 

on r(t). Assume that the best sampling instants are at t = kT + 

(1) 
k = 0, ± 1, ± 2, 	. The objective is to recover  {a , }  from operations 

on r(kT + T
1
), where T

1 
is an estimate of the parameter T

1. 

Except for the sampler at the input to the SMFà the acquisition 

model of Fig. 3.7 is similar to that shown in Fig. 3.1. An additional pn 

sequence generator and correlator combination is used tp facilitate estima-

tion of the offset T
1. 

The error in the estimate is within one chip time, 

i.e.,  J T
1
-T

1 
	T. 	Operationally,.the Decision Controller performs 

the same actions stated previously plus the following: When an SMF indi-

cates synch, the Decision Controller initiates pn sequence generator #1 

in the indicated state and phase, i.e., at offset T
1, 

and the other pn 

sequence generator in the same state but at offset T 1+ 6 . After one 

examination interval (an examination interval is approximately m T
c
) the 

outputs of the correlators are compared. If the output of correlator #2 

is larger than that of correlator #1, then T
I
(nee.) = T

1
(old) + 6 and 

pn sequence generator #1 is re-clocked at T
I
(new). 	At the saine  time 

the sampler is also re-clocked to reflect the new estimate «new). The 

procedure is repeatedly executed, always in a direction to improve the 

estimate T
1 
based on comparison of the correlator outputs. This is done 

on a per examination interval basis to upgrade and to track the estimate 

1. The algorithm adjusts the offset estimate by a fixed amount  S. A 
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flowchart for implementing the algorithm is shown in Fig. 3.8. Since 

T
1
-T

1 
< T

c
, a reasonable choice of 6 is T

c
/4. Pn sequence generator 

#1 is selected as the main local reference and generator #2 is used to 

adjust the offset estimate. A "good" estimate is made within 2 examination 

intervals. In fact the estimation time is zero if the initial estimate 

is correct, equal to one examination interval T
e 

if the first 6 adjust 

is in the correct direction, or equal to two examination intervals if the 

first 6 adjust is in the wrong direction. Finer adjustments can be made 

by executing the algorithm more than once. 

For the digital subsequence matched filtering method the output 

of the £th SMF is given by (3.7) modified by a gain factor g(T1-T1). . 

The desired signal component is thus given by 

xst  = 	m Tc  g(T
11 	• 

) d(/) 

where  g( T 1-T1) 5 g(o) = 1. The signal power at the output of the matched 

" 	2 	2 " 
filter under synchronism is g2 (T

1-
T
1
) Pm

2 
 T
2
c
/ . The g (T

1
-T

1
) will also 

appear in the interference and noise terms, so that the signal-to-noise 

ratio at the output of the se remains the same as in the previous section 

and the average time to acquisition, 
Ta,SMF 

 is given by-Eqn. (3.13) or 

Eqn. (3.14) plus the estimation time mentioned above. 

3.2 Acquisition of Psuedonoise Signals By Suboptimum State Estimation 

The communication situation being considered in this section is 

a single user transmitting over a noisy channel in which a pn code is used 

for performance enhancement. Such z system is normally used for "ranging" 

applications. Signal acquisition for such a system has been considered 
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by Ward [1], Kilgus [2], Ward and Yiu [3] and Hopkins [4]. We are intèrested 

in the acquisition of a pn sequence using a suboptimum state (reduced state) . 

estimation with feedback control as shown in Fig. 3.9. 

The demodulated signal is low-pass filtered, hard-limited and 

then sampled at a rate 1/Tc . The sampled sequence is then searched in a 

reduced trellis to estimate a correct state, which is then loaded into the 

pn sequence generator. The generated pn sequence is then correlated with 

the low-pass filtered signal to provide a feedback control signal. If the 

correlator output indicates synch, the Decision Controller,  ignores infor-

mation from the state estimator. If synch is not indicated at the end of 

an examination interval, a new state estimate is reloaded to restart the 

pn sequence generation. In this section we are primarily concerned with 

describing the suboptimum reduced itate estimation technique. 

Let the state vector of an n-stage shift register generator be 

s=  (s
1' 

s
2' 

..., s
n
). Let s

1 
= s

1 
and s

2 
= s , s = (ss

2
) is  a-state  

n 

vedtor of the reduced state space. s is a superstate which can assume the 

2-tuple 00, 01, 10, or 11. That is, any state vector (0, s 2 , 	sn_l, 0) 

will be mapped into the superstate (0, 0), (0, s
2' 

..., 
sn-1' 

1) into 

superstate (0,1), (1, s
2' 

..., 
5n-1' 

0) into superstate-(1,0) and (1, s
2' 

5n-1
, 1) into superstate (1, 1). The first superstate variable is 

the pn generator autonomously generated input and the second superstate 

variable is the pn generator output symbol. 

In general each superstate has 4 predecessors and 4 successors. 

The trellis diagram for the 4-superstate space is shown in Fig. 3.10. The 

branch values in the trellis diagram of Fig. 3.10 is x.(y.)(L (y.)), where 
I a. 	p

i
I • 

x.representsthepngeneratorinputand Y
1
.the possible generator output 

t  
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• at the ith iteration or depth in the trellis. Thus the 2-tuple (xi ,yi) . 

represents the next state in the reduced trellis. L (y.) represents the 
p
i 
 1 

cumulative path metric between the received bit p
i 

and the possible gen-. 

erator output yi  at depth i, where 

L
pI

(y
I
) = - E 	I p.-y. 1, I = 1, 2, ... 

i=1 

The quantity - I pi-y.  I is the branch metric at the ith depth. As illus-

trated in Fig. 3.10, LpI(y
I) 
 can take on one of the values 0, -1, -2 only. 

At each depth the trellis is pruned. There are 4 inputs to each superstate. 

The pruning process cuts off 3 of the 4 branch inputs to each state which 

have smaller cumulative path metrics. In the case of a tie, the lower 

branch (or branches) is cut arbitrarily. At any depth only 4 paths sur-

vived. One of these 4 paths will exhibit the maximum cumulative path 

metric. The above reduced trellis search procedure has been described in 

[5] and is refered to as a maximum likelihood search. The cumulative path 

metric L (y ) is equivalent to the likelihood function. n consecutive 
p
I 

I 

branch values yi  of the surviving path (the heavy path in Fig. 3.10) in 

the reduced trellis constitute a state vector. 

Any n consecutive bits of a pn sequence represent a state of the 

pn generator. A one bit error can thus affect n consecutive states. Our 

study in reduced trellis search indicates that a one bit error causes an 

error in one superstate (dotted heavy line in Fig. 3.10). In fact the 

erroneous state is not a logical successor to the preceding correct state. 

Based on this fact it is proposed to use a majority decision strategy in 

the reduced state space search to provide an estimate of the state vector 

for loading into the pn generator shown in Fig. 3.9. By a majority 
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decision strategy it is meant that after searching I levels into the 

reduced state trellis, a majority of consecutive superstates satisfying 

the pn generator state transitions is taken to give rise to a "good" state 

estimate.natis,thebranch•values yi.of  n consecutive logical state 

transitions in which the majority are correct is taken as the good estimate 

for loading into the local pn sequence generator. 
2 PT

c  Define the signal-to-noise ratio by SNRT  = 	where'liF 
No 

is the amplitude of the transmitted signal, as in the preceding section, 

N
o
/2 is the two-sided noise power spectral density and T

c 
is the chip time. 

The channel can be viewed as a binary symmetric channel (BSC) with cross-

over probability e = Q(SNRTe 1/2). The probability of correctly determining 

1/ a state from the reduced state trellis search is p = 1-e = 1-Q(SNR
Tc 

2 ) 

• (p is the same as Ward's correctness probability [1]). The average time 

to acquisition, T
a'RTS ' 

where RTS stands for reduced trellis search, is 

given by 

T
a,TS 

- 	 

where I is the search interval before making a premature decision and T
e 

is the examination interval in the feedback path. In the decoding of con-

volutional codes using a full trellis search, a premature decision can be 

made after 5 constraint lengths. On this basis, we can let I = 5n. 

On the average p/e consecutive superstates are correct. The maxi-

mum number of correct consecutive superstates is B
Max 

 p/e. Over the 5n 

depth of the reduced trellis, it is reasonable to expect that at least one 

run of correct consecutive superstates = B
Max

. Comparing with the RASE 

I T
c
+T

e 



T
a,RASE Te/pn  

I T
c  

 = (1 + 	) P 
n-1 
 • T

e 
(3.15) 

T
a, 	

(I T
c
+T

e
)/p 

RTS  
- 	2 	2k  n 

.a,RARASE Te (p +3(1-p) ) /p 

I T
c n-1 2 

= 	+ -T  ) P /(P +3( 1-P)
2
)
k 

(3.16) 

method [1] and RARASE method [3], the improvement factor is given by 

• 	Ta,RTS 	
(I T+T

e
)/p 

63. . 

where k is the number of 3-input mod 2 adders used for decision making in 

the RARASE method [3]. 

It is noted that for a given e the worst case for our method is 

when the el erroneous superstates are uniformly distributed over the I 

superstates searched (this corresponds to eI channel error bits uniformly 

distributed over I received bits). A run of maximum number of correct 

consecutive superstates would be longer if some of the error bits are 

bunched together. 

Consider for example,  E  = 0.15866 (corresponding to a SNR
T 

= 0 d B), 

the average number of correct consecutive superstates is p/e = 5.6. Over 

a search depth I = 5n, any run of consistent consecutive superstates 

exceeding 7 can be used to generate a state estimate, i.e., the branch 

values of the maximum run and its extensions to n consecutive superstates 

are taken to comprise the state estimate. 

It is only necessary to search a depth I = 5N/2 for p/e 5_ n/2. 

For p/e > -1.j);. , the amount of search can be reduced since the average run of 



64. 

1 

1 

correct consecutive superstates exceeds half the number of stages in the 

pn generator and there is every likelihood that the maximum run would be 

longer. It is conjectured that a search depth of I = 3 p/e may be sufficient. 

To obtain a state estimate by majority decision and logical state•

extension it is necessary to execute a second pass search of the reduced 

state trellis. At this time we only conjecture that the reduced state 

space search with a majority decision strategy appears to be a viable 

acquisition scheme for pn signals. Further investigations, both analyt-

ically to prove that a single error only affects a single superstate in 

the reduced trellis search and by computer simulation, will be pursued. 

1 
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4. RECENT APPROACHES TO SPREAD SPECTRUM SYSTEMS 

The sUbject of spread spectrum systems continues to receive 

considerable attention in the literature. It is perhaps characterized by 

a diversity of approaches and system configurations that are often only 

partially motivated, making a full comprehension difficult. This section 

of the report attempts to review certain aspects of this work with a view 

to future directions. 

4.1. Review of the PerformanCe"Of'Codéd'Siread'SieCtrut'S stems. 

Despite the accepted importance of coded systems for spread 

spectrum applications, there have been relatively few contributions in the 

open literature in this area. Perhaps the most significant of these are 

the papers by Viterbi [1] and Viterbi and Jacobs [2]. Some of these 

results which may prove useful for future work are briefly reviewed here, 

along with some comments on a problem raised by Campbell [3]. 

Consider first the error bounds ([1], equations (4) and (5)) for 

bit error probabilities: 

P < 
-K(c -l)  

block code 

2
-Ka 

P
b 
< 

1-a 2 ' 
convolutional code 

(1-2 	) 
(4.1.1) 

where a = r
o
/r,  •r the code rate and ro the so called computational cut off 

rate. The parameter K is the number of information bits per block in the 

block code case and the constraint length of the convolutional code. The 

parameter r
o 

is perhaps more appropriately referred to as an error exponent 

break point for block and convolutional codes rather than the computational 

, cut off point, which refers to the point for which the average number of 
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computations for sequential decoding becomes unbounded. 

For the binary input, additive white Gaussian noise channel this 

break point in the error exponent curve for block codes is at the point 

([4], p.142) 

1 2 1  

E(l) = max {-Xi.' î{î q(x)ip(y/xq 
y x 

= 1 - log2 (1 + Z) 

where 

Z = î(p(y/O)p(y/1)) 1/2  = exp(-Es /No ) 
Y 

and Es is the energy per dimension. For rates R < E(l) the error exponent 

is given by 	 • 
E0 (1). 

-N(E0 (1)-R) 	-NR( 	R  -1) 
P
b 
 < 2 	=2  

-K(-2-  -1) 	-K(Œ-1) 
=2  R 
	

=2  

in the notation of Viterbi [1]. Thus the error exponent decreases linearly 

for rates R between  (0,R). Between R
o 

and capacity C the error exponent 

curve is more complicated. The situation is similar for convolutional 

codes ([5]) except that the curve is constant for rates between 0 and Ro
, 

a fact which leads to the superiority of convolutional codes over block 

codes. For rates above R
o 

the curve is again more complicated. Thus the 

simple error bounds of (4.1.1) are valid only for rates between 0 and Ro . 

A question of interest posed by Campbell [3] was to determine 

the tradeoff between pure direct sequence spread spectrum and a coded 

version of it. For the direct sequence system using coherent binary phase 

shift keying (BPSK) the probability of bit error is given by 
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2E ) 

Pb 	( Nb  

where Q( • ) is the usual complementary error function (which here will be 

approximated by [6] 

1 	
2 

-x /2 
), 

1127r(14-x2 ) 

In the pure direct sequence system the data is BPSK modulated and multiplied 

by the spectrum spreading direct sequence and Eb  denotes the energy per 

data bit. For the coded/direct sequence version the data is first convolution-

ally encoded with a code of rate r so that Es  = Ebr where Es  is the energy 

per encoded bit. The result is then multiplied with the same direct 

sequence as the first sequence. 

The question arises as to 	what rate code should be used. It 

is assumed that the problem of the (pn) direct sequence tracking loop is 

the same for both systems and that the signal to noise ratio at the input 

to the tracking loop is not a limiting factor i.e. a sufficiently 

sophisticated despreading technique is available to operate at the expected 

SNR. The decoder however is assumed to require an input SNR of at least 

1.5 db. ([3]). 

To compare the effect of convolutional coding on system performance, 

assume that a convolutional code of constraint length 8 is used to allow 

for the possibility of Viterbi decoding and that the SNR at the decoder 

input is 1.5 db. For a given Pb  the value of a can be determined 

(graphically, in this case) from equation (4.1.1). The value of E /N 
s o 

determines r
o 

and from these two values the code rate r can be determined 

, and hence Eb /N
o 

= E /rN . The performance of the direct sequence system s 	o 

Q(x) 



1 

I 

I. 

1 
-E

b
/N

o 

to 
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using this SNR  cari  then be calculated and compared with the coded system. 

The results of this process are shown in Table 1 and it is concluded that, 

for the range of parameters used and under the assumptions stated, the 

performance of the coded system is superior. It would appear that as long as 

P
b(

cony. code) 10 

code rate 	.356 	.338 	.317 	.303 	.289 	.272 	.261 

2.523x10
-3 

1.985x10
-3 

1.460x10
-3 

1.164x10
-3 

9.081x10
-4 

6.482x10
-4 

5.124x10
-4 

Table 1. 

the SNR condition at the decoder input is met and as long as the SNR at the 

input to the despreader is not a factor, the coded system will offer superior 

performance. 	• 

It is shown in [1] that the effect on the direct sequence BPSK system 

of a pulse or non-uniform jammer is to reduce the probability of bit error 

from 

-4 
5x10

-5 
2x10

-5 
10

-5 
5x10

-6 
2x10

-6 
10

-6 

II P
b 

(uncoded) 

P
b 
< e

-1
/(E
bo

) 

for the optimal jammer who jams the fraction 

p.= 1/(E
b
/N

o
) 

of the band or jans 100p % of the time with a noise density of No
/p. It is 

also shown that the drop in performance from exponential dependence to inverse 

linear dependence can be recovered using coding. This section is concluded 

by elaborating on these results with some material from [2]. 
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The aim of the paper is to treat three types of channel impairments; 

Rayleigh fading, partial band noise and unregulated multiple access inter-

ference. The Rayleigh fading is characterized by a received amplitude (in 

the binary signalling case) of aEb  where a is a random variable with 

probability density function 

a2  
p(a) = 2a e 	9 	a > 0 

normalized so that E(a
2
) = 1. For partial band noise it is assumed that a 

fraction p of . the available band is jammed with a spectral density No b, 

to equate the total noise power with the unjammed case. In a frequency 

hopping system this partial band jamming 	has an equivalent effect of 

partial time jamming. The multiple access interference case actually 

follows, for frequency hopped systems, from results for the partial band 

jamming. The highlights of the interesting contribution of Viterbi and 

Jacobs [2] with the relevant equations having a number referring to the 

equation number in [2]. 

Recall first [7] that for binary antipodal signals with coherent 

detection, the probability of error is given by 

p  = Q f 2Eb  

N
o 

For orthogonal signals with coherent detection it is 

Pe =Qe) 
0 

while for noncoherent (uniform phase distribution of received carrier) 

1 
P
e 

= 	exp
b
/2N

o
) . 



P. 	e 1/(E
b
/N

o
) 	

' P  = 2N0 /E10  5 1 (5) 
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Now consider the noncoherent case employing 2 orthogonal signals 

on a channel subject to Rayleigh fading. The probability of error, after 

averaging over the Rayleigh density, is 

1  
P - 
e 2 + (Eb /No) 

and the catastrophic result that the probability of error is now inversely 

proportional to the SNR rather than exponentially, is noted. For partial 

band interference (noncoherent, 2 orthogonal signals) with a fraction p of 

the band jammed, the probability of error is 

Pe (p) = (P 12) exp(-pEb /2N0 ) 	 (4) 

and maximizing this expression with respect to p, corresponding to the 

worst case partial band interference gives 

(3) 

with equality when Eb /N
o 

2. Again the inverse linear relationship results. 

For example, to achieve an error probability of 10
-5 

using antipodal signals 

and coherent detection requires 
Eb/No 

of 9.6 db while for noncoherent 

orthogonal signals 13.4 db is required. For the case of orthogonal signals, 

noncoherent detection on the fading channel,an E b /No  of 50 db is required 

while for the worst case partial band channel it is 45.7 db. 

To improve upon these results some form of diversity transmission 

is required, where, say, L independent observations per bit are combined 

in some manner to yield a decision statistic yielding an improved perform-

ance. A common form of diversity transmission is that employing L centre 

frequencies spread uniformly across the available band. Each data bit 



1 
Rayleigh fading: P 

 
e 2 

p = 1/(2+E
b
/N

o
L) 	(8) 

1 
worst case partial band: P 

min max 
e L 05..p51 	

)), E
b
/N

o
L=4 (13) e 	2 	b o 

1 

1 
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interval is divided into L chip intervals and typically, the carrier is 

hopped to each frequency. during one data bit. Such a scheme can be used to 

overcome frequency selective fading since the estimates during each chip 

interval can be assumed independent, contributing to an overall statistic. 

If the fading is not frequency selective then some form of time diversity 

can be employed, such as interleaving. 

It is shown that for noncoherent reception of 2 orthogonal signals 

using L chip diversity, the probability of error can be upper bounded for: 

worst case partial band: P
e 
< 

1 
2 E 
[4e-1 

/N 
o

1, provided Eb /NoL 3 (10) 
b 

Minimizing these expressions over L yields: 

Rayleigh fading: Pe  < 1 exp(-0.149(Eb /N0 )) 	Eb/NoL = 3 	(12) 

To compare these results for the 2 orthogonal signal case, noncoherent 

reception with L chip diversity to achieve a probability of error of 10
-5 , 

the SNR required for: 

Rayleigh fading: 18.6 db , 	L = 24 

worst case partial band: 16.4 db, 	L = 11 

It is noted in [2] that these results can immediately be applied to the 

multiple access channel by assuming that when the centre frequency of two 

users fall on the same frequency during a given chip interval, one will 

appear as Gaussian noise to the other. If each user has rate R and the 

system bandwidth is W then the SNR of the jth user is 



Rayleigh fading: p = 0.149 Eb /Not. = 3 
(17) 
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Eb. 
E /N - (14 
b. 

 

o 	R 

-5 
From (13) it can be shown that to achieve Pe

=10 a ratio W/R of approximately 

40(N-1) is required where N is the total number of users on the system. 

Coding can be used effectively to improve the SNR's derived so 

far and the effect of block orthogonal coding is first considered. Assume 

that one of M=2
k 

signals can be transmitted during a given interval, giving 

a signal energy of kEb  and L chip/bit diversity is used. A straight forward 

application of the union bound then yields a probability of bit error 

P < 2
k-2 

exp( -pkE
b
/N

o
) 

for optimum diversity where: 

Eb 
 nj m 

(16) 

worst case partial band: p = 1/4 	Eb/NoL = 4. 

For k=3, P
b
<10

-5
, an Eb /N

o 
of 14.4 db is required with,L = 9 for fading and 

12.1 db with L = 4 for worst case partial band. These results could be 

improved by using different block codes at the expense of increased receiver 

complexity and decreased signal distance. 

Because of the ability of Viterbi decoders, as well as other 

convolutional code decoders, to use soft information in addition to a 

superior random coding exponent, superior performance can be expected from 

such codes. Three distinct classes of convolutional codes are considered 

here; dual k, orthogonal and semi orthogonal. The structure of these codes 

is considered in [2] but will be omitted here. For dual k codes, for 

example, the probability of bit error, using L chip diversity can be upper 

bounded as 
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(19) 

Rayleigh fading: ii  = 0.149 , 	Eb
/N L = 3 o 

(20) 

P< 
b 

 
(1-exp(-pE

b
/N

o
) 	(2

k
-2)exp(-p(k-1)E

b
/N

o
))

2 

2
k-2 

exp(-211kEb/No) 

where 

worst case partial band: p = 114 	Eb/NoL = 4 

The other classes of convolutional codes appear to yield even better 

performance. 

The performance results of the various cases considered in [2] 

are given in Table 2, fromwhich it can be seen that coding both reduces the 

SNR requirements and the amount of diversity required to achieve a given 

performance level. Applied to the multiple access channel these results 

can be shown to greatly reduce the number of users, each user enjoying a 

given level of performance. 

The results and techniques developed in this paper ([2]) should prove 

applicable and very useful to analyzing the performance of any given spread 

spectrum system under a variety of assumptions on the type of coding (block, 

convolutional or a concatenated version of both). It is hoped to build on 

these results to achieve this purpose. 	-  
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Eb /No ,db 	Channel 	 Comments 

	

9.6 	coherent 	binary antipodal signals 

	

13.4 	noncoherent 	binary orthogonal signals 

50 	fading 	2 orthogonal signals 

	

45.7 	wcpb* 	2 orthogonal signals 

	

18.6 	fading 	2 orthogonal signals, L = Eb /3N0  = 24 

	

16.4 	wcpb 	2 orthogonal signals, L = Eb /4N0  = 11 

	

14.4 	fading 	2
3 

orthogonal block code, L = 9 

	

12.1 	wcpb 	2
3 

orthogonal block code, L = 4 

	

9.3 	wcpb 	dual 3 code, L = 2 

	

8.3 	wcpb 	semiorthogonal, K = 7, k = 3, optimum diversity 

Table 2. Required Eb /No  for Pe  < 



+ 	n(t)a.,(t)dt 

0 

(4.2.1) 

1 

1 
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4.2. The  Multiple Access Problem. 

The error analysis of direct sequence code division multiple access 

(CDMA) spread spectrum communication systems has been investigated in two 

recent papers ([8], [9]). These contributions are reviewed here with a 

view to establishing their significance to the literature of this area. ' 

Let the spreading sequence of the ith_ user be denoted by the 

function 

a.(t) = 	a
1 1 

. (1) (t) 	9 	aij real 1  j=1 

where go (t), j=1,..0,n is a sequence of n orthonOrmal functions on (0,T) 

and we assume that 

22 
E = ,f.  a.(t) dt = 

1 
j=1

aij  

0 

Thissequenceismodulatedwithadatastresmb.(t), which is either +1 or 

-1 on (0,T). Now suppose there are K users transmitting to distinct 

receivers, each with a random delay i.e. operation is asynchronous. For 

receiver 1 the received signal is despread by multiplying it by al (t) which 

is assumed to be synchronized with the spreading sequence ai (t) contained 

in the signal. Thus the output of the matched filter of receiver 1 is [8] 

y = f a
2
(t) b

1
(t) dt + 	f a.(t-T )b.(t-T )a (t)dt 

1 
0 	

i=2 0 

where 
T2'T3'0..'TK 

are independent, uniformly distributed random variables. 

The model of Yao [8] included carriers with random phases, which we delete 

1 
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here. Equation (4.2,1) can.be  expressed'as 

y = Eb + Z + n 

where b is the data bit, n is a Gaussian random variable With Mean 0 and 

variance.a
2 

and Z is.a random variable whiCh is- à Complicated function of 

the K-1 random delays. The probability of error, assuming that b = +1,is 

P(Eb + Z + n < 0) and the overall probability of error is [8] 

1 	1 
P
e 

= -2  - P (E + Z + n < 0) + P (.--E + Z + n > 0) 

-h+Z 
= E  

where 

Q(x) 	f exp(-y2 /2)dy „ 1 

and the expectation is over all the delays T
2'

...,TK . 

Yao [8] derives upper and lower bounds to this probability of 

error using moment space methods. These are found to be quite tight for 

most situations of interest. An additional conclusion of the work is that 

the random variable Z is well approximated by a Gaussian random variable 

except for small K and small n. This is seen as justifying a useful and 

common assumption in spread spectrum work. 

Mazo [9] was also concerned with the probability of error in 

CDMA/SS systems, but only in the synchronous  case.  Define the cross 

correlations of the spread functions as 

f T 

n 
Ep ij  = 	ai (t)a.(t)dt = i a a.  

0 

v' 2r  X 



If b
1
(t) = 1, the probability of error ignoring noise is 

K+1 
Pe (K) = P (1 + • î h p 

i=2  

where b J. is the data bit 
intended for user i and b1 

= + 1 and there are K 

other users on the channel. It is first shown that if theare chosen aik  

independently and with an identical distribution to be±1, then an upper 

(random coding) bound on Pe
(K.) is 

-n/2K 
P(K) 5 e 
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(4.2.2) 

An alternative point of view is to consider the other user inter-

ference to be uniformly distributed over the channel bandwidth W. If each 

user contributes a power P the one sided power spectral density is then 

- KP 
N = — 
o W 

The problem now is to detect antipodal signals in Gaussian noise for which 

the result is 

Pe (K) = Q e 
IÎÊ) -e/N 

• 

• 	o 	-n/2K 

o  
e  

as before. The question arises as to what interpretation can be placed on 

these bounds. One interpretation is that there exists a code for (K+1) 

users so that each user has an error rate no larger than exp(-n/2K). The 

Gaussian approximation placed no restriction on the total number of possible 

users and, in particular, is unrelated to the maximum cross correlation. 

The interpretation here is that Pe (K) is an average error rate, averaged 

over all sets of K+1 users and, presumably, some sets of (K+1) users will 

have very bad performance. 

83 



-1/2Kom  - 2 
P
e
(K) e 	ax  (42.3) 
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The question of interest [9] is.the.level of.performance.that 

could be guaranteed for.(KA-1) users choSen from a total set of M users. 

The parameter' M now plays à more Visible role in  the  proceedings and it is 

shown that 

where p
max 

is the maximum cross correlation betWeen any two user sequences. 

The relationship between M, n and .p - has receixed .  Some attention in the 
max 

literature but the relationshiP is not well. established._ One result, due 

to Welch [111 is that 

2 
p max > 1 — - 

M- n 

and for M large compared to  n  2
max 

?_ l/n, for which value (4.2 .3) reduces 

to the random coding bound. A variation on the . problem of determining a 

lower bound on p
max 

for a given M and n is to consider the more restricted 

case where p is determined by the absolute value of the correlations is 
max 

used rather than the correlations themselves. Some recent results on this 

problem [1]] are considered, but many questions remain open. 
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New_Approaches to Spread Sprectum Systems. 

Spread spectrum systems offer considerable scope for the imaginative 

use of time and bandwidth to either combat intentional interference (jamming) 

or other user interference where the entire bandwidth is shared among all 

users on a non-assigned basis (CDMA). A recent system apparently proposed 

by Viterbi [12] (reference not yet available to the authors) is a good example 

of this and a brief description of this system and its performance is given 

here as described by Einarsson D:U. 

Let Q be either a prime or power of a prime (so that the finite 

field GF(Q) exists) and L be an integer, less than or equal to Q-1. During 

each interval of length T seconds a symbol fram GF(Q) is transmitted (thus 

log2Q bits) by the following scheme. The interval is divided into L chips, 

each of length T/L seconds and during each chip one of Q frequencies is 

transmitte4, each frequency corresponding to an element of GF(Q). Each 

user is assigned a codeword of frequencies of length L over GF(Q) 

a = (aa 	... a ) ' 
	

a .EGF(Q) -m 	ml,  m2 	mL 	mi 

If during a particular data interval of length T it is desired to transmit 

the symbol xm  the following sequence of frequencies is transmitted: 

y_m  = a 	x  • 1 = (ami+xm,am2-1-xm,...,amexm) ami ,xmEGF(Q) 

where 1 is the all ones vector and the additions are in GF(Q). To obtain 

xm at the receiver the users address is subtracted from the sequence of 

received frequencies, leaving the vector xm•1 in the absence of interference. 

Viewing each codeword of frequencies inaQxLfrequency-time array, after 

decoding in the absence of interference, a row of frequencies xm  appears 

and the received vector is decoded to the symbol xm. 
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For such a scheme to work each user must be assigned a codeword 

so there is minimum interference, regardless of what data is being trans-

mitted. Assume first that all users ara syuchronized at the data interval 

level and that user m is assigned the address 

a =
m
e ) , 	ymeGF(Q) —m 	m 

where 5 is a fixed primitive element of GF(Q). Now viewing two user 

sequences 

it is easily shown that the same frequency can result in at most one chip 

interval. Thus after user 1 decodes there will be exactly one row in the 

array. If there are ML users, correct decoding will take place since the 

frequencies of the other M-1 users could, in  the  worst case combine to 

produce a row with at most M-1 entries. Clearly, at most Q users can be 

accommodated in this scheme. 

The above situation can be modified to the nonsynchronous case 

by identifying user m with an element y
m
EGF(Q) and, for data xm, transmit 

the frequency sequence 

s = (1 8 2 ,.. .,eL-1 ) 	- 

Again it can be shown that the user 1 sequence /1  and any shift of user 

sequence y2  can interfere (have the same frequency) in at most one chip. 

The error probability analysis of these schemes, in the presence 

of interference from (M-1) other users only can be easily bounded. In the 

synchronous case the following two bounds on the word error probability 

are given [11 



82. 

P
e 
5 (Q-1) 1-1 (14-i)/QL  

i=1 

and 
L-1 	14-1.74  

P
e 
5 (Q-1) II 	- (1 

• 

For the nonsynchronous case it is shown that - 
* L 	• 
7 

 P
e 	

(Q-1) 	[1 - (1 - 	
M-1-1] 2 

 
Q-1  i=0 

The above frequency hopping scheme takes a novel approach to the 

use of the frequency hops for transmitting data, although the elements of 

a similar scheme were suggested in Sarwate and Pursley DA. The possibilities 

for innovation-with such schemes seem considerable. For example perhaps 

there would be advantages to considering a combined time-frequency-correlation 

approach, rather than just the time-frequency approach discussed above. 

Specifically, let 	C
1  (t),C2 

 (t),...,C
N 
 (t) be N binary (±1) sequences of 

time of duration one chip time T/L (using the saine notation as the previous 

discussion) with the property that 
1 fT 
C (t)C.(t)dt = 

0 

and p
ij 

takes on values in a restricted set S = {S
l' S2'K}. 

During 

each chip interval the signal transmitted is of the form C.(t) Cos (w 

i t) 

leading to a form of combined direct sequence/frequency hopping system. 

At the receiver, during each chip interval, the frequency is first 

determined and the tone removed. The correlation between the direct 

sequence Ci (t) and a given fixed direct sequence is then determined, 

, giving a value in S. Ti-Lus  during each chip interval both a correlation 
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and a frequency is determined. This would  sein  to allow various possibilities 

for coding to assist with synchronization and reduce the effects of other •  

user interference. It would appear that this scheme, or similar ones, are 

worthy of further consideration. 
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