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1. Introduction. 

Several aspects of the performance of communication systems 

operating on an interférence or jamming channel are considered in this 

report. 

In the next section a new technique to acquire synchronism with 

a pn sequence is described and analyzed. The technique is particularly 

effective for long shift register lengths and low signal-to-noise ratios 

where other techniques are inoperable. It involves more signal processing 

than other schemes and requires bit synchronism. This work was done with 

a student, Mr. Gordon Stuber and will be submitted . for publication. 

Section 3 considers the various coding options available for 

the interference channel and their performance. While this work was done 

fur a specific application; it is viewed also as a general background for 

further work into the problem. Many interesting questions are raised for 

future investigation. 

There have recently appeared a number of conference articles 

which attempt to analyze the interference channel from an information 

theoretic/computational cut-off point of view. A brief review of these 

is given in section 4. It is hoped that future work will extend these 

approaches and allow them to be used with specific coding systems for 

evaluation on interference channels. The aim of such work would be to 

obtain a better understanding of communicating in the presence of intent-

ional interference. 



2. Sequence Acquisition'tisihg'Bit'EStiMàtiôh ' Techniques.  

2.1. Introduction. 

Many communication systems use pseudonoise (PN) sequences for 

either their spectral or acquisition properties. They are especially 

important for the successful operation of many spread spectrum and multiple 

access systems where the spectrum spreading and signal discrimination 

depend crucially on the sequence properties. The performance of these 

systems depends on the ability of a local generator to synchronize itself 

with the sequence in the received signal and many techniques have been 

suggested to achieve this. 

Perhaps the simplest technique uses a sliding correlator 

containing either the full or partial sequence which is correlated with 

the received signal. Exceedance of some threshold after correlation over 

soms predetermined interval will be an indication of synchronism. If 

synchronism is not achieved the received sequence is slipped by one bit 

or chip interval and correlation is again tried. This technique is viewed 

as essehtially passive in that the synchronizer makes no attempt to 

estimate the state of the sequence generator but waits until the state of 

the received sequence matches that in its correlator. On average then it 

will take approximately half the length of the sequence to acquire 

synchronism. In systems using very long sequences this may be unacceptable. 

In these situations techniques which actively estimate the state 

of the received sequence are likely to perform better. The RASE (rapid 

acquisition by sequential estimation) method of Ward [1] and the RARASE 

(recursion-aided RASE) method of Ward and Yiu [2] operate in this manner 

and give excellent performance at moderate signal-to-noise ratios (SNR's) 

and relatively short shift register lengths. 

2. 



The threshold decoding estimate technique of Pearce and 

Ristenbatt [3] and the majority logic decoding technique of Kilgus [4] 

use knowledge of the shift register feedback taps to generate parity 

checks from which a state estimate is obtained. These estimates however 

are derived from hard quantized data and hence involve a loss of channel 

information. The technique introduced here also uses parity checks but 

in a unique manner to take more advantage of the cilennel information. 

This method is discussed in section 3. It is more complex and difficult 

to implement than either the RASE or RARASE methods and its performance 

is superior for sequences of very long length operating in very low SNR's. 

For comparison purposes the other techniques will be introduced in the 

next section. Comparisons between the new technique introduced in this 

paper and these other methods are made in section 4. 

The problems of automatic gain control and synchronization, or 

their effects on the analysis, are not considered here. These considera-

tions are likely to be similar for any system and should not materially 

affect the comparisons. In the system which motivated this study, a 

master clock was available, uncontaminated with  noise and bit synchroniza-

tion was not a significant problem. Inmany other systems a coarse syn-

chronization can be maintained. The techniques introduced here depend 

upon chip interval synchronization being available. 

3 



2.2 Review of Acquisition Techniques. 

Numerous techniques have been devised for the acquisition of 

PN sequences under a variety of conditions and assumptions. The model 

assumed for this paper, to which  ail  other methods will be translated, 

is as follows. The PN sequence will be assumed to have a feedback generator 

polynomial h(x) of degree L, the sequence having period L = 2
2,
-1. The 

binary(0,1)sequencewillbedesignatedby{b.}and the binary (-1, +I) 

sequeliceactuallytransmitted.,by{a i},a...1-2b. The received sequence 

willbedenotedby Y.=a. + n
i 
where n. is a noise variable assumed to 

i 

benormallydistributed.withmeanOandvarianceo-2 ,(0,a
2
), n. and 

n. independent random variables, i j. The noise variables are intended 

to reflect any processing such as law pass and matched filtering prior to 

sampling. 

e Y1  

hard quantized to form a (-1, 41) sequence from which an estimate.of the 

shift register state-is obtained. The probability that any particular 

bit is correct is given by • 

p = P(yi  > 0 	ai,= +1) 

co 
exp(-(y-1)

2
/2a

2
) 

dy 
117 a 0 

= 	exp (-z
2
/2) dz = 	(1/a). 

j  -l/ 

The probability the state estimate is correct is then p. For each such 

estimate the local register is initiated in that state and correlated with 

the received sequence for an examination period of Ne  chips at the end of 

4 



P(AT) = (p
3 
+ 3p(1-p)

2
)
m 

(2.1) 

which a decision on the initial state is made. If X is the number of 

trials to achieve acquisition then 

k-1 
P(X=k) = (13 2)(1 - p L) 	, k=1,2,... 

and the average acquisition time (in chips) is then 

Na  = 	Na)/P2' 

and the probability of acquisition on or before the kth trial is 

1 - (1-p
t
)
k

. 

Notice that with the sliding or stepping correlator, on average about 

half the states would be *examined to achieve acquisition yieldirig 

N 	2 9. -1 N . 
a 

The recursion aided version of RASE attempts to check the 

validity of each state estimate before commencing an examination interval, 

thereby eliminating an examination period for those state estimates which 

fail. The technique is to use 3-input modulo 2 adders on the state 

estimate and incoming estimate. If p is the probability a given symbol 

is correct, the probability the recursion on the three input bits is 

satisfied is the probability that either no errors or two errors have 

occurred i.e. p
3 
+ 3p(1-p)

2
. If m such adders are used and no bits in 

the estimate are checked more than once then the probability of attempting 

to track is 

5. 



The prObability that all 2,-Fm bits used in the estimation and checking 

are correct is p9el-m . The conditional probability that the 2, bit state 

estimate is correct, given that tracking is attempted (the m checks are 

6. 

satisfied) is P(ST), the probability of a successful track, 

P(ST) = I) n  / (P
3 
+ 3P( 1-P)

2
)
m 
= P/(P

2 
+ 3 (1-P)

2
)
m 

The ratio of acquisition times between RASE and RARASE is given by 

T
a,RARASE  2 (p +  

Ta RASE  

( 2.. 2) 

if it is assumed that the correlation time is much greater than the phase 

examination period. A similar but more complicated expression can be derived 

when the 3-input mod 2 adders are allowed to overlap in the bits they check. 

When a set of £1-m bit estimates satisfies the m checks the register is loaded 

with that estimate and the incoming sequence correlated with-the locally 

generated version for N
e 
chips. This examination time, and the correlation 

threshold at the end of it, is set to achieve a given probability of false 

alarm and false dismissal. For an examination time of N
e 

chip intervals the 

average number of chip intervals to achieve synchronization, N
a, RARASE is 

 easily derived [2] as follows. The average number of chip intervals that 

must be processed to give a state estimate that passes the checking adders is 

1  
P(AT) 

The average number of such "successful" state estimates that must be 

examined before a correct one is produced is just 1/P(ST) and for each 

such estimate N
e 

further bits are processed during the examination interval. 

Thus the average number  of bits  examined to achieve acquisition is given by 
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N
e  

Na,RARASE = [1-1 
4_ 
 P(AT)] P(ST) 	P(ST) 
 1 

(2.3) 

The length of the examination interval, Ne
, determines the false alarm 

and false dismissal probabilities, important parameters for the performance 

of the system. Expressions for these probabilities will not be considered 

here. 

In the RARASE approach to acquisition, knowledge of the sequence 

structure is used only to check the validity of the state estimate. A 

more active method of using this information to obtain an actual estimate 

of the state using a majority logic, threshold decoding approach is given 

by Pearce and Ristenbatt [3] and Kilgus [4]. The two approaches are 

essentially equivalent and the result of Kilgus is briefly described. 

J-1 
There are 2 -1 parity checks of weight 3 orthogonal  on .a  given position 

of the sequenCe. TOgéther with the received'bit in the given position a 

total Of 
22.,1 

estimates result. If q is  the  prdbabiIity a hard quantized 

received bit is in error: then the probability a given parity check 

equation is in error is Q = 2q(1-q). If r parity check equations are 

used, along with the quantized bit itself, to estimate the bit and r is 

assumed to be even then the probability the resulting majority logic 

estimate of the bit is in error is given by 

r 
— 	

'i. 

= -1 2 	

(

/

-k) 	̀ qb E r 	
,r-k fl n‘ k .1.  ,(r yr/2 	

/2 

r  
k=0 	 2 

and pb  = 1-qb . The bit estimates of the state of the shift register 

will in general use the same bits in the received sequence and hence the 

bit estimates are not in general independent. A lower bound on the 



probability that the state estimate is correct is 1-nqb  (it is readily 

observed that for q
b 

small,  (1_q) ' 
	

1 - nq
b
). In the next section another 

technique for using parity checks of weight 3 to obtain bit estimates is 

introduced and its relationship to that of Kilgus [4] will be clear. 

The problem of how to use the sequence structure to obtain bit 

estimates in an easily implementable way, appears to be difficult. An 

aposteriori probability approach to the problem using orthogonal parity 

checks is described by Massey [5] and the performance of a simplified 

version of it is considered by Tanaka et al [6]. The simplified algorithm 

is iterative in nature and uses approximations to certain log likelihood 

ratios. The algorithm performance can only be approximated accurately at 

high signal-to-noise ratios. For these reasons it was not felt to be 

suitable for the application of interest here where computational simplicity 

at low signal-to-noise ratios are important. 

The techniques described so far sharethe common feature that 

. the received sequence must be hard quantized on a chip by chip basis in 

order to use the parity check information for bit estimation. The technique 

introduced in the next section uses these parity checks on soft decisions 

in a novel way to obtain improved bit estimates on the state of the 

sequence. These improved bit estimates are then used with the ordinary 

RARASE technique to obtain shorter acquisition times. Thus the central 

contribution of the paper is to show how to obtain these improved bit 

estimates and to evaluate their effect on acquisition times. 

It is implicit in this discussion that techniques using parity 

checks are inherently more complicated than the correlator, RASE or RARASE 

methods and are really only acceptable in situations where the signal must 

be acquired in relatively low SNR's or for relatively long shift register 

lengths. In such situations the only alternative is to trade complexity 

for performance. 

8. 
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b + b. + b. 
o 	1 	j 

(mod 2). 

2.3. State Estimate Bit Error Probabilities using Channel Information. 

The binary (0,1) PN sequence of length 21 is the dual of the 

Hamming code and is often referred to as the simplex code. The Hamming 

code of length (2/-1) has (2 /-1)(21-2)/6 codewords of weight 3 and if the 

ith column of the parity check matrix H (generator matrix of the Hamming 

code) is the representation of a
i 
with respect to the standard basis in 

9. 

GF(2) over GF(2), 

such parity check 

the form 1 + ai  + 

where a is a primitive element of GF(2 / ), then each 

of weight 3 corresponds to a "trinomial" equation of 

= 0, in GF(2) 1 5 i, j 5 2 /-2. The methods of 

generating these trinomials is an interesting question and some comments 

are made on the problem in the appendix. Assume that n such trinomials 

are available. In coding theory  ternis  they represent n orthogonal parity 

checks on a given bit of the PN sequence. Thus the trinomial 1 + a
i 
+ ai  = 0 • 

represents the parity check equation 

onthebinary(0,1)sequence {b.}. On the binary (-1,+1) sequence the 

equatimlireliesthatila=1-2130=41thella-alida.are of like sign, 0  1 	J 

eitherboth+lorboth-1.1fa=-1thens.and a. are of opposite 0   i 	J 

sign. It is this fact which is exploited  in  this paper to use channel 

information to estimate a
o 
assuming we have the n trinomials (parity 

Consider the estimate of a, â
(s)

, formed by 
o o 

is 	is 
checks) 1 + a + a = 0, s  

0,a
2
) a(s) 	 • 

=, (a_ + n )(a. + n. ),1s5n,n. ,n. 
ss 	J s 	Js 	

j 
s 	s 



It is readily seen that â (s) is a random variable with mean g
e 
= +1 if 

a
o 
= +1 and a mean of ge 

= -1 if a
o 

= -1. In either case the variance of 

(S) 	2 
is

e 
= 2a

2 
+ a

4 a 	
. .The normalized sum. of these estimates 

z=  1: 	â(s)  
s=1 

is, by the Central Limit Theorem ([7]), approximately a normally distributed 

random variable with mean ±1 and variance 

2 
a
n 

= (2a
2 
+ a

4
)/n. 

The final (hard) estimate of a
o 

is then given by the symmetric 2-level 

quantization of the statistic Z. The probability this bit estimate is 

correct is given by 

= i» 	exp 	(y-32.)
2
) y =  

J O /FIT a
n 	

2an  

For n large enough the variance of this estimate can be reduced below a
2 

and thus discrimination between the two cases considerably improved over 

that obtained by using a hard quantization of a
o 
+ n

o 
for which the 

probability of a correct bit estimate is (1)(11a). 

Anunfortnnateaspectoftheestimateé s) =(a.-1-n. 
)
(a. 	n. ) 

ss J s 	J s 

is the fact that its variance increases as a
4 

and for large values of a 

it requires a large number of parity checks to reduce an  below a and thus 

improve the probability the bit estimate is correct. It is desirable to 

10. 



choose a function 

â (s) = f(a
is 
+ n. , a. + n. ) 

o Is 	Js 	Js 

such that the bit estimate obtained by hard quantizing 

z = 	â(s) 
0 s= L  

has a maximum probability of being correct. The authors were unable to 

find a solution to this problem and several functions were tested. The 

results for these are reported on briefly belay. 

Perhaps the simplest such function to implement is to hard quantize 

each received bit and form the estimate 

• (s) a.0 _. sel ( a.1. 4. /.1 .) sgn  (a. + n. ) 
1 

J s . s 	s 

where sgn(.),is the signum function. Such a function is related to the 

work. of Pearce and Ristenbatt [3] and Kilgus [4] but is used here in a 

multiplicative rather than additive manner. Again ) the estimate 

z= 	â(s)  
n 	o 

s=1 

is formed and hard quantized to give the estimate of â
o
. For this 

estimate it is possible to derive both an exact expression and an 

approximation to the probability the resulting bit estimate is correct. 

To develop the approximation it is noted that the mean of â (s) can be 

shown to be 

= a 	a. (2(1)(1/a)-1) 
i 	j s 	s 

11. 
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and the variance is 

a
e
2 	2 
=lui  - 

e 
 

Applying the Central Limit Theorem to the statistic Z gives the 

approximation to the probability the bit estimate being correct as 

p
b 

= cP 	e 
_ 

a
e 

As mentioned, an exact expression for this probability can be determined 

as follows. The probability that an individual estimate â
o
(s)  is correct 

is just 

p = P((l+ni)>0 and (l+ni )>0) + P((l+ni)<0 and (l+ni )<O) 

= P((l+n)>0)
2 
+ P((l+n)<0 

= (1)(1/a)
2 
 + (1-cD(1/a)) 

asSuming that ao  = 41. The same expression results if it is assumed 

a
o 

= -1. If the final decision function is 

Z = sgn(Esgn(a. +n ) sgn(a. +n. 
s=1 	is  is 	J 	J s 	s 

then the probability of a final correct estimate for a
o 

is just the 

probability that more than one half of the individual estimates are 

correct: 

n  
( i)P

i 
 ( 1°P) n-i  

i= 	+1 
I 2 I 

where in the event of a tie, when m is even, it is assumed the bit estimate 

12. 
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It is interesting to compare this exact result with the previous approxima-

tion. The results are shown graphically for the range of variances of 

interest in .Figure 2.1. 

The two functions considered so far are perhaps the simplest 

possible. In the search for a function which wmuld provide improved 

discrimination (higher probability of correct bit estimate for a given 

noise variance) several other functions were examined. Some of these 

are given in table 1 along with expressions for their means, variances 

and probabilities of bit correctness. Curves for the probability of bit 

correctness for the range of variances of interest are given in Fig. 2.2 

from which it is concluded that, for this range, the estimate (a. +n. ). 
is  is  

(a. +n. ) is superior. It is not at all certain however that functions 
J 	1  s 	s 

which offer better bit estimation properties do not exist and it would be 

an interesting exercise to determine one. Fig. - 2.3 gives Curves for the 

probability of correct bit estimation as a function of n, the number of 

trinomial parity checks, for variances in the range of interest, for this 

. function. 

Also shown in Fig,. :2..2 is the curve for the probability of correct 

bit estimate using 100 orthogonal parity checks of weight 3 on hard quantized 

data using majority logic as in Kilgus [4]. The curve for the probability 

a single hard quantized bit is correct, as is used for the RARASE technique, 

is also shown. 

In the next section the improved (over one bit hard 	quantiza- 

tion) bit estimates offered by the functions (a. +n. )(a. +n. ) and 
J 	J s 	s 	s 	s 

sgn(a. +n. )sgn(a. +n. ), which is regarded as a particularly simple 
is is 	J 	J s 	s 

13. 



a
1
a

2 a
e 

(a1
+n1

)(a
2

-11.12 ) 2a2 	
4 + a 

 

sgn(aen1)sgn(a2+n2) a1  a2  (20(
1) -1) 2 

 a 
4Pa/1 

a
e 

2 
1-pe CLT approx. 

g(a1+n1)g(a2+n2
) 

g(x) 	 x , -15x51 
1  x1 
-1 x 5 -1 

sgn(a1+n1)sgn(a2+n2 ). (parameters determined by numerical integration) 

11/31 

	

la +n ! 	la +n 1 1/3  

	

1 1 	2 2 

Function 	Mean pe Variance a
e
2 

, Prob. bit correctness 

Exact. (n) p i(1p)n-i 

1.1-n-11+1 

'T! 

I 	2 	2 
(1 — 

2 	2 	i-ii‘ 2 
la i+a2-nen 21 	p ..2(20P-)-1) al. e-lici  , e,1 	a 	 ,1 ae,1'.(2a2+4)(e-,-)+. 17i,) -tie 

/.. 
a1  a2  =+1  • 

2a 2 
a = 	 2 = 2a2 (1 - --) p — 

' ala2= -1 	e,2 	u e,2 r 

no simple expression 

2 r 	2 	a 	
_2/a 	2 	bri. a

2 	2 
a

1a2 r2“-jr)-1) 21r (1*-e 	[1 - a — + 	(244—) 
•-

] 2  2 
1) -p u 	2 	a 

p 
— e ce 

Table 1. 
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function to implement, are used with the RARASE acquisition method and 

compared in performance with the standard RARASE method. It should be 

noted again that even the function (a. +n )(a. +n. ) is not optimal in 
3 s 	s 	s 	s 

the sense of maximizing the probability of correct bit estimation but is 

used here simply as a convenient and simple function which offers improved 

performance over other techniques. 

As a final comment of this section it is noted that after . , 

obtaining bit estimates of the state, the probability an individual bit in 

this estimate is correct can be inproved by using majority logic techniques 

on binary data. Suppose for example that r orthogonal parity checks are 

available on a. given bit and that each bit used by . these parity checks has 

aprobabilityp.of being correct. Thus the estimation techniques describéd 

in preceding, paragraphs would have to be used on eadh bit used by these r 

orthogonal parity checks. These parity checks can then be used in the 

standard majority logic manner to further improve the probability of bit 

correctness,p0 .Therelationshipbetweenp.and p
o 

using r orthogonal 

parity checks is shown in Fig: 2.4. This technique, which uses orthogonal 

parity checks. in two distinct ways, first using them in a soft decision 

manner to arrive at a hard bit estimate-, and then using the second set in 

a standard majOrity logic way to enhance the probability of bit correctness, 

is complicated to implement and is considered no further here. It does 

however present a real possibility for system improvement. 

18. 
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2.4. Comparison of System Performance.  

In this section the average number of chip intervals it is 

required to examine to achieve synchronism is compared for the standard 

RARASE system and the RARASE system which incorporates the bit *stimation 

techniques'introduced in the previous section. Only the bit estimation 

functions (a.+n.)(a.+n.) and sgn(a.-1-n.)sgn(a.+n.) are used and it is noted 
a. 	a. 	J 

from figure 2 that this last function gives slightly poorer performance 

than the majority logic method of Kilgus [4] but is very simple to implement. 

A precise comparison of the systems is difficult to achieve because of 

certain assumptions which must be made. 

For the RARASE system the average number of chip intervals which 

must be examined to achieve synchronism
/

N RAmsE) is given by equation (2.3) 

where P(AT) and P(ST) are given by equations (2.1) and (2.2) respectively and 

p is the Probability of correct bit estimation using hard quantization. 

For ail  systems considered the number of 3 input mod 2 adaers checking the 

phase estimation bits is assumed to be the maximum possible,  j2J2J. N
e

, 

the number of bits examined when the phase passes ail of the mod 2 adder 

checks, is assumed to be k£ where k is either 5 or 20. It is noted again 

that N
e 

and an appropriate threshold set the false alarm and false 

dismissal probabilities but expressions for these quantities will not be 

considered here, being comparable for all systems under the conditions 

stated. 

The average number of chip intervals which must be examined to 

achieve synchronism when the bit estimation techniques are used, N
a,est' 

is given by 

20. 



M(2,,n) =(2n(2g'-2)) 1/2 
(2.6) 

21. 

-1..."1 ] 	1 	+ 	kg" 	+ M(t,n) + (2.5) N
a,est = [51'+m-j. 	P(AT) P(ST) 	P(ST) 

where P(AT) and P(ST) are as in equations (2.1) and (2.2), respectively, 

with p replaced by pb . M(2,,n) is the minimum number of bits that must 

be considered, from the bit being estimated to have n trinomial parity 

checks. From  the comments in the appendix on this problem it will be 

assumed that 

From the limited evidence available it would appear that this is a very 

reasonable approximation when M(t,n)/(2
t
-2) > • 1. 

Two comments on the expression in equation (2.6) are in order. 

First it is noted that each.tri.nomial parity check can actually be used 

to generate three orthogonal parity ,  checks if it is permissible to use 

bits in the received sequence on either side of the bit béing estimated. 

This would lead to a considerable saving in the number of bits that must 

be examined, but also leads to greater complexity,and is not considered 

further. As a second point note that, as a measure of comparison between 

the two systems, the number of bits that must be "considered" is used. 

This is a little misleading for the system introduced here since there 

is considerably more processing involved on the bits used. On the other 

hand the number of bits actually used in the estimation process is 

relatively small. Assuming that processing power is relatively cheap, 

this method would seem to be a fair comparison. 

e 	' The results are shown in Figs. (2,5) to (2.9) and ar lax'gely  

self explanatory. The curves using the estimating function (a. +n. )(a +n. ) 
is  is 	j s  j s  
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Acquisition Time vs Noise Variance for 2., = 15, k = 20 
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Figure 2.7 

Acquisition Time vs Noise Variance for 2. = 30, k = 5 
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are simply marked (a.+n.) while the curves for the function sgn(a. +n ) i s  i s  

sgn(a. +n. )  are simply marked sgn. The improvement in acquisiton times 

over a standard RARASE system using either the (a.+n.) or signum function 

over the range of variances indicated, is clear. In Figs. - (2.5) — (2.7) it 

is noticed that there are ranges of variances over which some optimum 

number of trinomial parity checks should be used. The use of more parity 

checks makes matters worse by forcing the examination of bits far away 

from the bit being estimated. This effect is shown more clearly in 

Fig.(2.9)for the (aen i) function where, for a given variance, the number 

of parity checks that should be used is clear. Fig.(2.8)illustrates the 

effect of increasing the shift register length, using an examination 

interval of N
e = 

52, bits and 200 parity checks. In all the figures only ' 

the range of variances of 2 to 9 was considered. Improvements over the 

standard RARASE techniques can also be achieved at lower variances by 

using fewer parity checks and thus, to show the bit estimation technique 

off to greater advantage, the number of parity checks used should be 

optimized for each variance. The apparent advantage of RARASE at the 

lower variances would then disappear. 
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2.5. Comments. 

A new acquisition technique for PN sequences, effective for 

very long sequences operating at very low signal to noise ratios, as might 

occur for example in certain spread spectrum systems,has been discussed. 

Under these conditions the technique has better performance than previous 

methods but it is also considerably more complex. A particular problem 

is the generation of weight 3 parity checks with the properties required. 

Methods to generate these parity checks are straight forward and in 

systems for which the sequence is fixed for a relatively long tims it is 

not seen to be a real problem. For some systems, such as perhaps certain 

antijamming spread spectrum systems, where the sequence generators might 

regularly change, some computing power would be required at the receiver. 

This tradeoff between performance and complexity for systems of the type 

considered here, would seem, to be unavoidable. 

28. 
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It is required to generate "trinomial" equations of the form 

a
i 

ai  -I- 1 = 0 in GF(2) where a is a root of a given primitive polynomial. 

This problem actually occurs in a variety of contexts and, depending on 

2,, is generally accepted to be a difficult computational problem. For a 

given value of i, the corresponding value of j is called the Zech logarithm 

of i ([8]). The problem is also equivalent to the problem of finding 

logarithms in GF(2). When the order of the multiplicative subgroup of 

GF(2), 2 Z-1, is highly composite with the largest prime factor being small, 

the problem is fairly simple ([9]). When 2
2,
-1 is prime or has a very large 

prime factor there is no computionally feasible algorithm known for solving 

the problem. 

In estimating a given bit in the sequence it is desirable to form 

as many trinomial parity check equations as "close" to the given bit as 

possible. More precisely it is of interest to determine as many such parity 
i
s 	i s  

checks a -I- a -I- 1 = 0 as possible where both is  and j s  are both less than 

some given positive integer. Denote by t = M(2,,n) the largest exponent 

required to obtain n such parity checks. Thus in the state estimation 

technique, t bits from the bit being estimated, will have to "be considered". 

From a computational point of view, for reasonable values of n and 2,, a 

brute force method appears to be as efficient as any for finding these 

parity checks. For example suppose each element
i
EGF(2), 1515.t, is 

expressed as a binary 2,-tuple with respect to the fixed basis of GF(2) 

over GF(2), eg 1,a,a
2
,...,a. In this representation of a

i 
the bit 

corresponding to the basis element 1 is camplemented and this binary 

2,-tup1e e  the representation of ai, is compared with others in the list 

to find the value of j, if i<j 	t. 
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For the analysis of the acquisition scheme of section 4 the 

determination of M(2,,n) is of interest. It is very difficult to determine 

exactly as it depends on the representation of the field used and the 

particular primitive element used. It is not the intention here to 

investigate this problem in detail. Instead an approximation to M(2,,n) 

is developed and limited experimental evidence given which supports the 

approximation, as far as it goes. 
j
i 	/ Consider the set of relationships {1+al  = a , i = 1,2,...,2 -2=L }  

and suppose the integers j
i 
are assigned at random so that the ordered 

L-tuple (j
1
,j

2
...,j

L!) 
is a random permutation of (1,2,...,L). In this 

model let N 	be the number of the j 1.4t, that are themselves less 

than or equal to t. Then N 	is a random variable and the probability 

that N 	equals s is given by a hypergeometric distribution, under 

these assumptions, 

31. 

P(N=s)   9 

()  

Lt = 2 e-2, t = M(2,,n) 

The mean of this distribution is t
2 
 /L. Since the trinomial relationships 

occur in pairs the approximation to the function 14(£,n) will be 

û = E(N)/2 = t
2
/2L' = M(2n)

2
/2L' 

1/2 or M(2,,n) 	(2n(2 , 
 -2))  

The same result is achieved by adopting a binomial rather than hypergeometric 

model. 

This approximation is compared with generated results for certain 

primitive polynomials of degree 10 and one polynomial of. degree 15. These 

are given in table 2 along with the values for the approximation. The 



amount of data given is far too limited to draw any conclusions but it 

would appear that the approximation is reasonable, particularly when the 

ratio t/(2
ft
-2) is greater than about .1. In spite of the restricted 

amount of evidence, the approximation will be used in the analysis of the 

acquisition scheme introduced in this paper. 
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x
15
+x+1 28 	71 	142 

50 100 150 goo 250 300 150 400 450 500 550 600 650 700 750 800 850 900 950 1000 

• 
_ 

------- 

3 	6 	18 	19 	29 	44 	65 	80 	96 118 144 175 208 245 272 315 354 396 442 	491 

1 	5 	10 	20 	30 	43 	61 	75 	98 121 147 174 208 240 275 316 355 395 441 	489 

2 	4 	10 	17 	28 	46 	63 	81 	95 121 147 176 211 241 275 310 353 394 442 	489 

0 	5 	10 	20 	32 	43 	60 	78 103 124 150 174 206 240 274 313 354 395 440 	489 

Expected Number 	1.2 	4.9 	11.0 19.6 30.6 44.0 59.9 78.3 99.1 122.3 148.0 176.1 206.7 239.7 275.2 313.1 353.5 396.3 441.6 489.2 

t
2
/2(2-2) 

(a) 	/.10 

61, 0 , Expected 4umber 	15.3 

t
2
/2(2-2) 

(b) 

Table 2. 
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3. Codin:  Options for Interference Channels. 

3.1. General S stem Considerations and AssumPtions. 

The interference or jamming channel has received considerable 

attention in the literature and a variety of models and assumptions 

arrived at. The appropriateness of these models and assumptions is very 

much context dependendent. The purpose of this section is to examine 

thesemodels and to make specific coding recommsndations regarding a 

particular model. 

The general model under consideration is shown in figure 3.1 

34. 

Figure 3.1 

The effect of the insertion of the direct sequence (DS) is to simply add 

time diversity i.e. each coded bit is divided into Z chips which are 

interleaved to provide, at the receiver, Z independent estimates of the 

coded bit. It is assumed that the demodulator performs chip-by-chip 

matched filtering and soft decisions are presented to the input of the 

decoder. In practice 3-bit quantization would be sufficient, implying 

that the deinterleaver requires 3 times the storage requiremsnts of the 

interleaver, depending on how it is implemented. It is assumed the 

interleaver is ideal implying that it renders the interference channel 

memoryless which effectively spreads burst type interference into additive 

white Gaussian noise for Z sufficiently large. For small Z however, the 



channel remains bursty and the analysis of the coding schemes presented 

in succeeding sections may be applicable. 

It will be assumed that the input to the receiver DS is of the 

form ± 1 +n, n % N(0,a
2
). The effect of the diversity Z will be to reduce 

the noise variance per symbol, after removal of the DS diversity, to a
2
/Z. 

For either the pulse jamming case or the partial band jamming 

case, it will be assumed that at the output of the deinterleaver 

(neglecting quantization) the probability a chip is disturbed by noise 

with variance a
2
/p is p and with variance 0 is (1-p) .  Thus p is either 

the duty cycle for the pulse jammer or the fraction of the band jammed 

for the partial band jammer. In this case it is easy to sho* that after 

the diversity is removed (equivalent to matched filtering) the symbols 

are of the form -1-1+n/ , nin,N(o,a/
2
) a

/2 *
= a

2
/Z. Thus the pulse jamming 

and partial band jamminghavethe same effect as choosing p =1 here, and 

this will be done. 

The inclusion of a quantizer implies some form of automatic 

gain control should be used. This problem of designing such a controller 

for the interference channel is seen as a challenging one and is not 

considered here. 

One type of coding system not considered in these notes is the 

concatenated Reed Solomon/convolutional. The only results available on 

this system appear to be either from experimentation or simulation of 

rate 1/2 convolutional codes with Viterbi decoding concatenated with 

high rate RS codes. The problem lies in characterizing the output error 

statistics of the Viterbi decoder. Whileit may in fact be a good system 

it does not seem reasonable to attempt an analysis of it at this point. 
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It is considered to be an expensive system and it is doubtful its perform- 

ance would be significantly better than the other options considered. 
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3.2. Coding Options. 

Various coding options that have appeared in the literature are 

discussed and analyzed in this section. For the purposes of comparison 

it will be assumed that the number of chips, after the direct sequence, 

per data bit is not greater than 288. Thus the code rate and the number 

of chips per coded symbol combine to give a ratio less than 1/288. 

I. Block Orthogonal Signalling. 

Code description.  K bits are mapped into one of 2
K 

possible 

binary (± 1) orthogonal sequences. The scheme will be evaluated for K = 4, 

6 or 8 with diversities 72, 27 and 9 respectively. On the surface it may 

àppear a complex task to realize, for K = 8, 256 matched filters. Because 

of the method of generation however, the optimum receiver can be realized 

with at most 32 matched filters of length 16 used sequentially in two 

stages or 20 matched filters of lengths 8 and 4 used sequentially in three 

stages. 

Analysis.  The analysis here is quite standard except for a 

computational technique due to Berlekamp [1]. Let g(x) be a normal 

probability density function with mean zero and variance a
2 , g(x)%N(O 2 ) 

let f(x) 	N(0,1) and 0(x) the cumulative distribution function. Let 

P
E
(K

' Z) be the probabilityofmrderror using 2K  orthogonal signals with 

diversity Z. By standard analysis, assuming inputs to the decoder are of 

the form ±1+n, rne(0,a
2
), then 

a 
P(correct) = 

-co 

g(a....2K/2 ) 	f gma  

—oo 	

da. 
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shift, one of 2
K 

orthogonal binary (±1) signals 

is selected for transmission, as in case I. 

K STAGE SR 

I 	• 	• 	• 

and, after simple transformation: 

• 	2K/2  2 -1 
P(correct) = f  f(x 

U
- ) 4.(x) 	dx. 

-co 

Integrating by parts gives 

2
K/2 	K 

P
E
(K,Z) = (2K-1) f 4.(x 	) 4

2 -2
(x) f.(x)dx. 

The probability of bit error is related to this expression: 

2
K-1 	co 	

2
K/2 

P P
b
(K,Z) - 

2
K
-1 

E 
(K,Z) = 2

K-1 
4(x -- 	) 4(x)

2 -2 
f(x)dx. 

1 Curves of P
b
(K,Z) vs 101og

10
(-

2 ) are given in figure 3.2 for values 
a 

(K,Z) = (4,72), (6,27) and (8,9) and in each case the overall rate is 

1/288; 

A convenient upper bound to this expression, apparently good for 

P
E 
5 10-3, is 

P
b
(K,Z) 5 2 K 	Q (

2(K-1)

o.

/2 	
Q(x) = 1 - 

II. 	Orthogonal Convolutional Codes  

Code Description.  This method uses a K-stage shift register, 

bits shifted in 1 bit at a time. After each 

38. 

I SIGNAL SELECT F-0,- 
Only 3 cases will be considered: 

i) K=8, Z=1 	ii) K=7, Z=2 	iii) K=6, Z=4. 

In each case the overall code rate is 1/256. 
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Analysis.  The analysis of this scheme is straightforward using 

the techniques of Viterbi [2],[3]. The method is given here for future 

reference ,  

Let T(L,N) be the generating function of path lengths and number 

of input ones: 

NLK(1-L)  
T(L,N) - 

l-L(1+N)+NLK  

A typical term 
t2,nL

L
N
n 

means there are 
t2,11 

paths of length 2, caused by 

n input ones. Consider a path of length 2, (i.e. 2. branches away from the 

all zeros branch) and assume the all zeros branch has N = 2K (4-1)T s on it. 

Each other branch has precisely N/2=2
K-1 (-1)'s on it. The probability 

that such an incorrect path will be chosen over the correct (all zeros) 

path, is then given by 

2,2
K-1  

P 2, =Pr( 	37  i.<0) = Pr (path increment along an incorrect 3  
j=1 	path of length 2, exceeds that along 

the correct path) 

11£2K-1  
=  Q ( 	)exp(

j2K-2

2 ) Q (1/
d2K-1

) 2.-d=j 
a 	a 
2 

a
2 

d = min. dist. of code 
= number of branches away from 

the all zero branch. 

Using the arguments of Viterbi [2],[3] the bit error probability is 

derived as follows: 

P
b 

= bit error probability 

d 
T(L,N) 

dN 	IN=1 replace P
2, 
 for 
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9K-2 	v9K -2 ] 2 
1 	) + exp(- === ) 	. 

a
2 
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2 

, 

This upper bound is plotted in figure 3.2 for the values of K and Z stated 

- 
 i.e. P

b 
is plotted vs 101og10

(1/a
2

) with thevalueso-2  /Z shown. 

III. M-ary Orthogonal Signalling. 

Code description.  This is a variant of the orthogonal convolutional 

code. Bits are shifted into the K stage shift 

register, 1 bit at a time. For each K bit in 

the register, m bits are formed by linear 

operations on the K bits and these m bits 

used to select one of 2m  orthogonal signals. 

Analysis.  The performance of this class of codes depends on the 

distance structure of the trellis formed by the tap connections. The 

objective is to maximize the number of levels in the trellis over which 



any path is unmerged with the ail  zeros path, rather than in maximizing 

as is usual. Relatively little work has been done on this problem. d
free 

Two codes, each with K=7, are listed in Table B-6 in Clark and Cain [4] 

For code 1, m=2 and, with the tap connections listed 

P
b
(K,Z) < 7P

7 
+ 39P

8 
+ 134P

9 
+ 808P

10 
1000P

11 

where K=7, Z=72 and Pk  is as in section II. 

For code 2, m=3 and, with the tap connections listed 

P
b
(K

'
Z) < P

7 
+ 4P

8 
+ 8P

9 
+ 

66P10 
600P

11 

where K=7, Z=36. 

The performance of this class is expected to be between that of 

the orthogonal convolutional  and pure  convolutional. It was not plotted. 

IV. 	Concatenated Reed Solomon-Orthogonal Codes. 

Code Description. The outer code is a Reed-Solomon RS(n,k) code 

and the inner code is an orthogonal code. The outer code is defined over 

GF(2
K
). It forms blocks of K-bits into symbols over OF(2

K
) and maps k 

such symbols into n symbols over OF(2
K
). The inner orthogonal code maps 

each K-bit symbol into one of 2
K 

orthogonal signals. 

k K 	1 
Analysis.  The overall  code rate  is 71- . 

ik 	
. The word error 

probability of the block orthogonal code is P = PE (K,Z). 

The Reed-Solomon decoder will be assumed to be an errors only algorithm. 

With a symbol error probability of Ps  the bit error probability of the 

output of the RS decoder is given by (Berlekamp [1]) 

42. 
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J 	(r 
j  1
) Pj  (1-P = 	

2(n+1) 	s 	s 
P
b   

j=d 
P
s 

= P
E
(K

'
Z). 

A slightly more pessimistic bound for the bit error probability is given 

by (Cain and Clark [4]) 

2
K-1 

P < 	
(j+t) 	• 

b 	K
(5 P3  (1 P

s
) n-j 

2 -1 j=t+1 n 	s 	
d=2t+1 

The Berlekamp expression is evaluated and shown in figure 3.3 for the 

following sets of parameters: 

Inner Code Parameters 	Outer Code Parameters 	Diversity 	Overall Code 
Rate 

	A 	 

2
K 

Rate 	n 	k 	Rate 

6 	64 	3/32 	32 	16 	1/2 	12 	1/256 
. 	 . 

6 	64 	3/32 	64 	32 	1/2 	12 	1/256 

6 	64 	3/32 	64 	16 	1/4 - 	6 	1/256 

8 	256 	1/32 	100 	50 	1/2 	4 	1/256 

8 	256 	1/32 	100 	25 	1/4 	2 	1/256 

V. 	Pure Convolutional Code. 

Code Description. Standard convolutional coder. Unfortunately 

constructions for very low rate convolutional codes do not appear to be 

available and only rate 1/2 and rate 1/3, as given in table B-1 of Clark 

and Cain [4] are considered here. 

Analysis.  Again using the analysis of Viterbi [3] 

P
b 

< 
I d 	dT(D,N) 

a
2 ) ex13 .̀

2a
2 )  dN  

CO 

, 1 	= 
N=1, D=exi:R 	k=d  

2a 
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Figure 3.3 Comparison of Bit Error Probability 
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where P
k 
= Q(1h7) and Ck  = total information weight of all paths of weight 

la 

k merging with the all zeros path. i.e. 

T(D,N) 	+ 

t.. = number of paths at distance i from the all zero path (from 

divergence to reemergence) caused by j input data l's. 

45. 

d 
T(D,N) = 	+ 

N=1 

and 

C
k 
 = jt . = total information weight of all merging paths of 
 kJ 

weight kc  

Code 1: K=8, Rate = 1/3. (Clark & Cain, table B-1, p.402). 

P
b 

< P
16 

+ 
24P18 

+ 113P
20 	

, Z=96 

Code 2: K=8, Rate = 1/2 (Clark & Cain, table B-2, p.402) . 

P
b 

<  2P10+  22P11 + 
60P12 

+ 148P
13 

+ 340P
14' 	

Z=144. 

(The effective noise variance to be used is a
2
/Z). These upper bounds are 

shown in figure 3.3. 

VI. 	Cascaded Convolutional Codes. 

Code description.  It has been mentioned there is a lack of 

information on the structure of very low rate convolutional codes. 

Generally the code performance grows with dfree  which is a function of 

constraint length. Unfortunately the decoder complexity grows exponentially 

with constraint length. The possibility of cascading convolutional codes 

is considered here, as shown in the diagram. 



INNER 
CODE 

(R 2 ,v2 ) 

OUTER 
CODE 

(R 1 ,1, 1 ) 

INTER- 
LEAVER 

INTER 
LEAVER 

Figure 3.4  

The purpose of the inner interleaver is to make the ' cÈannel appear random 

to the inner code decoder. The implication here is that adjacent chips on 

the channel must be separated sufficiently to achieve this. Some comments 

on interleaving will be given later. 

The inner code decoder, if operating effectively, makes errors 

in bursts when it makes errors. The interleaver between the CATO coders is 

there to distribute these errors sufficiently that the outer code decoder 

can handle them.  This  requires less complexity than  the  outer interleaver. 

Code analysis.  This system can be analyzed by standard methods 

used in previous,pections. The diversity is used to bring the overall 

rate up to 1/288. The analysis was done and results plotted using 

convolutional codes of rates 1/2 and 1/3. The problem encountered is 

that the performance bounds are upper bounds and are very steep with 

respect to signal to noise ratio. Thus using the upper bound to the 

probability of bit error of the output of the inner code decoder as the 

crossover probability of a binary symmetric channel which the outer code 

decoder sees, because this probability of error is slightly above the 

actual probability of error (figures of 1/2 to 1 db are often quoted in 

the literature) and because of the steepness of the outer code performance 

curve, the overall performance calculated is relatively poor. These 

results are not given here, being of little interest. Nonetheless there 
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is little doubt this  ystem could be quite effective for the situation 

under study. 

The values of 101og
10 

(
1

2
-) required to obtain bit error probabilities 

a 

of 10
-3 

and 10
-5 

for the various coding schemes are tabulated in table 3.1. 
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10
-3 

10-5  

K=4, Z=72 

K=6, Z=27 
K=8, Z=9 

ORTHOGONAL 	K=4, Z=16 
CONVOLUTIONAL 	K=6, Z=4 
CODE. 	K=8, Z=1 

ORTHOGONAL 
BLOCK CODES. 

-16.3 

-17.5 
-18.0 

-16.8 

-17.7 
-18.7 

-14.0 

-15.3 
-16.1 

-14.3 
16.1 

-17.3 

-18.0 
-18.4 

UNCODED. -14.5 	-12.0 

PROBABILITY OF BIT ERROR. 

48. 

CONCATENATED 	RS=(32,16), K=6, Z=12 	-18.7 	-17.5 
REED SOLOMON/ 	RS=(64,32), K=6, Z-12 	-19.8 	-18.5 
ORTHOGONAL. 	RS=(64,16), K=6, Z=6 	-18.0 	-17.4 

RS=(100,50), K=8, Z=4 	-20.4 	-19.7 
RS=(100,25), K=8, Z=2 	-18.0 	-17.5 

PURE 	K=8, Rate 1/2, Z=144 	-19.5 
CONVOLUTIONAL 	K=8, Rate 1/3, Z=96 	-20.0 
CODE. 	K=7, Rate 1/3, Z=96 	-19.7 

K=6, Rate 1/3, Z=96 	-19.2 

1 Table 3.1. Values of 101og
10 

(---) to obtain probability of bit error of 
 a

2 

10
-3

, 10
-5

. 



3.3. A Comparison of the Coding Complexitz. 

The simplest system to implement, even with K=8 (256 orthogonal 

signals) would probably be the block orthogonal. The pure convolutional 

system would be quite straight forward to implement, using the Viterbi 

algorithm. The cascaded convolutional coding system would require two 

such decoders but their constraint lengths might be shorter to obtain the 

same performance and hence may not be twice as complex as the pure 

convolutional code. The orthogonal convolutional code requires both an 

orthogonal code decoder and a Viterbi decoder to implement. Similar 

comments apply to the M-ary orthogonal convolutional code. The concatenated 

Reed-Solomon/Orthogonal coding system is perhaps the most complicated, 

requiring both an orthogonal code decoder and a complex Reed-Solomon 

decoder. Even if this were made an erasure based decoder it would in all 

probability require considerable effort to implement effectively. 

From the results presented here it appears that the pure 

convolutibnal code offers the best compromise between cost-complexity and 

performance. It should be noted that all systems could be fine-tuned and 

perhaps better performance obtained. Viterbi decoding is straight forward 

to implement and for relatively low rates much of it could be implemented 

in microprocessor software. Other systems, particularly the Reed-Solomon 

decoder, would require a major effort in hardware design. For the small 

gains in performance over the pure convolutional code case (with the 

assumptions made here) the effort is not felt to be cost effective at this 

time. It is recommended however that some thought be given to the design 

and construction of a Reed-Solomon decoder as a good investment for future 

applications. 
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<  
k= C

k
P
k 

d 
(3.1) 

3.4. Coding Recommendations. 

Certain considerations in choosing the rate and constraint length 

of a convolutional code are discussed here. It will be argued that for 

the application of interest there is little point in using a code of rate 

much less than about 1/3 and that the constraint length should be chosen 

as large as possible consistent with the complexity and time constraints 

on the decoder. 

The bit error probability of a convolutional'code on the AWGN 

channel (N
o
/2, double sided), is of the form 

50. 

where d
f 

is the free distance of the code, Pk is given by 

E
s 

= transmitted energy per coded symbol. 

Q = complementary error function. 

and C
k 

is the total number of input ones on all paths of weight k merging 

with the all zeros state at a given point in the trellis. The importance 

of having a convolutional code with a large df  is thus clear, since Q(x) 

is monotonically decreasing with x. The problem of constructing such 

codes is well investigated and the important point to note here is that, 

for the same constraint length and code rate, nonsystematic codes have 

larger free distances than the corresponding systematic code. This is 

not the case for block codes where the two are equivalent. 

The search for good convolutional codes is done largely by 

computer. For rate R = l/n codes a tight upper bound on df  due to Heller 

(as.given in [5],[6]) is  

12kEs  

Pk 	Q (r  .N 	) 
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[2
L-1  

d < min 	(K-1-2.-1)1 
f 

2._?-.1 
(3.2) 

for constraint length K. In fact, for short constraint lengths (K 10) 

and rates R = 1/n, n 8, codes have been constructed [6] which meet this 

bound although only a few, or none, of the parameters C
k 

are known. In 

cases where the parameters Ck  are not known only the lead term can be used 

to give an approximation of code performance. To give an indication of 

how this lead term varies as a function of code rate R = l/n for fixed 

constraint length K, we assume a code meeting the Heller bound (3.2) can be 

constructed for each n. The square of argument of the Q function can be 

expressed as 

. 	 . 
. 2df . Eb 	df 2E

b 
 . 

—........_ = ..._ . , , ,, 	.0 7 - = constant. 
N
o 

n : 	
o

- 
- 

Thus, if other aspects of the codes considered (i.e. the parameters Ck  for 

the various codes) are equal performance is largely determined by df/n. 

For K=8 we have the following: 

d
f
/n 

2 	 5 

3 	 51/3  

4 	 51/2  

5 	 53/5  

6 	 52/3  

7 	 55/7  



Decreasing the rate of the convolutional code much below R = 1/3 or 1/4 

is prêbability not effective for the marginal improvement in performance. 

It appears that, for this reason, convolutional codes of rates below 1/4 

are seldom used on the AWGN, although the price to pay is fairly small - 

a linear increase in the decoder memory requirements. 

It has been stated [7] that increasing the constraint length by 

1 will give about a .4 db improvement in performance at the cost of 

doubling the decoder complexity. This effect was observed in the figures 

given later. It is also reported that the bound in (3.1) is typically about 

1 db pessimistic from the performance observed by simulation or measure-

ments. 

Little attention was given to sequential decoding in this work. 

The error curveS for these decoders are steeper than for Viterbi decoders. 

For a 10
-5 

error probability the performance of a rate 1/2 Viterbi 

decoder, K=5 to 7 is comparable to a K=41, rate 1/2 hard decision 

sequential decoder. At lower error rates the sequential decoder is more 

attractive. (Note that for a sequential decoder complexity increases 

linearly with K as opposed to exponentially for Viberbi decoders). There 

is a 2db advantage in using soft decisions over hard decisions and this 

advantage should be utilized, particularly for the data rates contemplated. 

This is difficult to do in the implementation of sequential decoders but 

relatively simple for Viterbi decoders. 

A summary of the probability of error performance for various 

rate codes is given in table 3.2. The rate 1/2 and 1/3 codes come from 

appendix B in [4]. The rate 1/4 code is from [5] and the rate 1/6 is 

52. 

from [6]. 



A small study was done on the K=8, R=1/2, 1/3 codes to determine 

the effect of using only the 1st term for P. In each case it amounted 

to about ldb at P
e
=10

-5
, but this figure is given as an indication only. 

The implication is that the bounds for the rate 1/4 and 1/6 codes, where 

no information on the path parameters other than df  are available, are 

about 1 db too optimistic. 
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3 	-0.8 
4 	-1.6 (1/3, 2) 

.10log
10 

 (I/a
2 
 ) at P

b 

(Rate, Z) 	K 	10
-3 

10
-5 

3 	-17.7 	-15.7 
4 	-18.05 	-16.2 

(1/2, 144) 	5 	-18.4 	-16.6 
6 	-18.65 	-16.95 
7 	-19.0 	-17.45 

8 	-19.35 	-17.8 
9 	-19.55 	-18.1 

3 	-1.25 
(1/2, 3) 	4 	-1.60 

5 	-1.90 

6 	-2.15 	-0.2 

7 	-2.45 	-0.60 

8 	-2.90 	-1.00 
9 	-3.0 	-1.3 

3 	-17.55 	-15.65 
(1/3, 96) 	4 	-18.40 	-16.40 

5 	-18.85 	-16.90 

6 	-19.20 	-17.40 
7 	-19.70 	-17.85 
8 	-19.95 	-18.25 
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5 	-2.05 	-0.15 
6 	-2.40 	-0.6 
7 	-2.9 	-1.05 
8 	-3.15 	-1.45 

(114, 72) 	8* 	-22.2 	-19.4 	de=22 

8* 	-21.3 	-18.5 	(gYSTEMATIC, df=18) 

(1/6, 48) 	8* 	-22.3 	-19.5 	4=34 (SAME PERF. 
K=8, R=1/8, d =45 

Z=36). 

(1/6, 1) 	8* 	-5.5 	-2.7 	(df=34) 

*FIRST TERM ONLY. 

Table 3.2. Values of 101og
10 

 (-
1  
--) to obtain probability of 

 a
2 

bit error of 10
-3

, 10
-5

. 



From the above comments it is suggested that a rate 1/3 code of 

constraint length 5,6,7 or 8 is used. The generators for the codes are 

4 	
given in [4], Appendix B. It is anticipated that most of the algorithm 

will be in software. A constraint length 5 should be considered first to 

see if it can accommodate the desired rate. If not, some of the functions 

may have to be transferred to hardware. If it can, an estimate can be 

made as to the largest constraint length the implementation can handle. 

In cases where the system is to support more thanone data rate, 

it may be advantageous to use the same convolutional code and merely change 

the amount of diversity, rather than using a very low rate code for the 

lower data rate. Some figures are tabulated in table 3.2 where the overall 

rates are 1/6 and 1/288 respectively. The figures for the rate 1/6 code, 

using the lead term of (1) only with coefficient unity, is optimistic and 

the differences between say a rate 1/2, Z=3 and rate 1/6, Z=1, is not as 

great as it appears. 

55. 



3.5. Interleaver Considerations. 

The comments of this section are interpretations of section 8.3 

in [4], adapted to the problem of interest. 

An ordinary periodic block or convolutional interleaver is 

unsuitable for an AS situation since periodicities in the interleaver 

output can be exploited by the jammer. The following pseudo-random inter-

leaver would seem to have the advantages of being simple to implement in 

software and effective both in distributing burst errors and providing a 

measure of security against simple jamming strategies. 

Suppose, taking into account the code rate, possible jamming 

strategies and allowable delay at the various data rates, it is decided 

to use a RAM capable of holding 2
k 
bits. The coded bits are read into the 

memory locations in a.sequential fashion, using only  2l locations and 

omitting the initial location. A set of primitive polynomials of degree k 

is stored in a ROM. One of these is chosen as the feedback connections 

for a linear feedback shift register located in a memory address controller. 

An initial address load obtained from the PN sequence generator used in the 

DS is also incorporated to avoid a periodic known data bit. 
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The memory address controller contains a clock which steps the 

address register (shift register) through its 2
k
-1 non—zero states until 

it returns to the initial state. A new (nonzero) initial state is taken 

from the PN sequence generator and another primitive polynomial chosen from 

the ROM, either sequentially or at random, and the process repeats. Dual 

data RAM's would be used for continuous data flow. 

The deinterleaver will require RAM's three times the size of the 

interleaver RAM's to accommodate soft decision demodulation. 
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-N  
P(c) 5 2 	

E(R) 
(4.1) 

4. Modulation and Coding for Digital Communication over An Interference 

Channel  

4.1 Digital Communication over an Additive White Gaussian Channel. 

Forward error correction codes can be used quite effectively against 

additive white Gaussian noise. A salient feature of white Gaussian noise 

is that it is memoryless so that the joint probability density function of 

an n-dimensional Gaussian vector has a product form. For any memoryless 

discrete channel the minimum attainableerror probability is bounded above by 

an expression of the form [1] 

59. 

in which N is the number of times that the channel is used in the trans- 

mission of a code word (or a signal vector), R is the information rate in 

bits per channel use, and E(R) is a reliability function. Provided E(R)>O, 

the probability of error, P(E), can be made as small as we wish by increasing 

N indefinitely. (N. is also the constraint length in sequential decoding so 

that the decoding complexity increases with N). A typical reliability 

function E(R) is sketched in Fig. 4.1, where C denotes the channel capacity, 

R
c 

is the critical rate, and R
o 

is the zero-rate intercept of the straight 

line tangent to the E(R) at R=Rc . E(R) is a convex downward function of R 

Figure 4.1 



with slope -1 at R=Rc . Hence 

E(R) Ro-R 

and the probability of error can be upper bounded by 

P(E)
-N(R

o
-R)  
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(4.2) 

(4 .3Y 

R
o

, which is also 
Rcomp' 

the computational cutoff rate in sequential de-

coding, is the rate beyond which the average number of computations re-

quired per information bit becomes infinitely large. 

From the digital encoding and decoding point of view, the channel is 

comprised of the modulator, transmission link and the demodulator in 

tandem (the subsystem inside the dotted box of Fig. 4,2) and is characterized 

by  R.  If {s IM  is a set of M orthogonal (or simplex) signals, the 
-k k=1 

channel will consist of M discrete inputs and M continuous outputs = 

(y1 , y2 , ..., ym). The unquantized Ro  is given by 

R
o 

= max {-log
2  f 	[2; Pk  VP( ik )]

2
dy. 	(4.4) -03  

{p
k
1• 	k=1 

where 
{PkI' 

1 k M is the probability distribution of the transmitted 

signal and P(yjk) is the conditional probability of the output given that 

the k
th 
 signal was sent. 

For a discrete memoryless channel with M inputs and J outputs, 

R = max  5 -log2 	[ 	PkNIP(j1k1 
° {Pic l 	j=1 	k=1 

(4.5) 

As mentioned above, provided that E(R) > 0, P(E) can be made as 

small as we wish by increasing N. It is observed that in the region 

Ro<R<C, E(R) remains positive, but the encoding constraint length needs to 

be made infinitely large for P(E) to approach zero. The region Ro<R<C 
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is therefore of no practical significance and, for all intents and 

purposes, the usuable rate is O<R.R.o 

Suppose we desire to send one of M messages. We can select M 

sequences { 	k=1, 2, ...,M for transmission over the discrete meffiory- 

less channel. The information rate R in bits per channel use is then 

given by 

1 
R = -log

2
M 	 (4.6) 

Substituting (4.6) in (4.3), we have 

-NR 
P(c) 5. N2 'o 	 (4.7) 

which is the union bound. 

For a given N, P(E) is minimized if E(R) is maximized. From the 

information transfer point of view it is desired to simultaneously maximize 

E(R) and R.  From Fig. 4.1 it is observed that the best operating point 	' 

is at 
R=Rc" 

In the neighbourhood R;.--R E(R) can be maximized by maxi- 

mizing  R.  

The maximization in (4.4) and (4.5) for the Gaussian channel is achieved 

1 
when 

Pk' 
=- k=1, 2, ...,M and, using the product form of the joint Gaussian 
M 

pdf, the unquantized R
o 

simplifies to [2] 

R
o 

= 1og 2 	 co  

1+ ( --1) f -.11) 	(y) P (Y) dY] s+n 	n 

= log2M-log2  [1..+(M-1)[t. 
es+n(Y) 

 P(y) 
	(4.8) 



for orthogonal signals 
(4j1) 

for simplex signals 

where Ps+n
(y) and  P(y) are the conditional probabilities of y given 

the signal present and the signal absent, respectively. Define 

D =s+n(y)  P(y) dy 
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(4.9) 

Then 

R 	log
2
M-log

2 
[1 + (M-1)D] (4.10) 

Equ (4.10) 	is the generalized expression for Ro , derived by Omura and 

Levitt [10] using a different argument. Since D is a non-negative quantity 

and  1og
2
[1+(M-1)D]0, maximizing R

o is equivalent to minimizing D. 

For a phase coherent zero mean Gaussian channel with two-sided power 

spectral density N0/2 watts/Hz,  

r xp (-E /2N ) 
D= 

 
c 	o 

exp (-E /N ) 
c o 

where  E=ST  is the signal energy per T seconds and Sis  the average signal 

power. Then 

log2M - log2 [1+(M-1)Exp(-Eo/2N0)], orthogonal signals 
(4.12) 

log2M - log2 [1+(M-1) Exp(-E c/N0)], simplex signals 

To facilitate digital processing at the receiver it is necessary to 

quantize the received signal to a finite number of levels. Intuitively, 

Ro is influenced by the effect of quantization and increases with the 

number of quantizing levels used. Massey [3] has presented numerical results 

which confirm this intuition. 

Let the number of output levels be J=M, 2. an integer. Then  2.=1 

corresponds to "hard decision" and 2.>1 corresponds to varying degrees of 

"soft decision". From (4.5), we have 



= -2 log 

( J- 
P =  

1 	-x
2
/2 

dx, orthogonol signals 

(4.16) 

00 

2m  

Je7E-Ti- 	271.  
C .  o 

1 — e 
 

-x /2 
 1 

M2. 
 

R
o 

= max {-lo g
2 
1 [ 	P

k \
IF-(71i1 2 ). 

{Pk1 	j=1 k=1 
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For hard decision, i.e., £=1, Ro  becomes [1] 

M-1 
Ro = -21og 2 j.Ni p/M (4.13) 

where q=1-p is the probability that any particular hard decision is 

correct. 

With log2J=£ log 2M Wozencraft and Kennedy [1] have considered re-

taining an ordered list of the £ a posteriori most probable signals, 

resulting in an £ log2M bit number as the quantizer output and shown that, 

for a list-of-£ channel, 

where 

j-1  
1) 

-co 
lc° Ps+n(x)dx 	[f ..Pn(y)dy] M-i  [f P (y)dY] 

j -1  

is the probability of the correct signal occupying position j in the list. 

For binary signalling, the unquantized Ro  is, from (4.12), siven by 

1-log2  R   

o 
1-log 9  1-log2  

= 1 -log 2  

where 

[1+exp(-E o/2N0 ) 

[1+exp(-Eo /N0 )] 

s, from (4.13), 

[1+2 iP(1-P) ] 

], orthogonol signals 

, antipodal signals 

given by The hard-decisioned R
o 

i 

4.14) 

(4.15) 

antipodal signals 
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The unquantized and hard-decisioned Ro 's for binary signalling are 

plotted in Fig. 4.3 

4.2 Communication over  a Partial-Band Jamming Channel. 

Assuming ideal interleaving and deinterleaving, an interference 

channel, as viewed by the encoder/decoder pair, can be assumed to be 

memoryless. Then the interference channel problem can be treated as in 

the additive white Gaussian case. The probability of error is again 

bounded from above by the union bound: 

P(E) M2-NRo 

The cutoff rate R
o 
is some function of the encoded symbol energy to noise 

ratio: 

R
o 
= f(E /N ) 

c o 

and 

E
c
/N

o 
= r Eb /N

o 

where r is the code rate in bits/channel signal, E
b 

is the energy per bit, 

E
c 

is the encoded symbol energy, and N
o 

is the jammer power spectral density. 

Let S be the average signal, R be the data transmission rate in bits/sec, 

J be the jammer power and W be the equivalent noise bandwidth, then 

E / 	SIR 

b.
N 
 o - J/W 

Define the signal processing gain as the bandwidth expansion factor: 

à W 
PG =- 

Then 

1 
E b /N = PG --- 

o 	J/S 

In fact R
o 

is a function of the modulation, demodulation and quantization 

processes as well as E /N . As shown in the previous section R is 
c o 	 o  
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expressible as 

R
o 

= log
2
M - log

2 
[1+(M-1)D] 

67. 

(4.10) 

where D is a function of modulation, channel characteristic, demodulation 

and quantization as well as symbol energy-to-noise ratio E /N . In what 
c o 

follows we focus attention onbinary antipodal signalling with optimum 

matched filter reception under the assumption of ideal interleaving and 

deinterleaving. Then Ro  becomes 

R
o 

= 1-log
2 

[1+D] 	 (4.17) 

Under a frequency hopping scheme an intelligent jammer will not 

attempt to jam the whole band. Rather, it will concentrate its jamming 

power over only a fraction 0 , Ocpl, of the band. Likewise, in a direct 

sequence spreading environment the jammer will concentrate his power over 

a fraction of the signal duration. The fraction p is then the duty 

cycle. These two jamming situations exert similar effects on the trans- 

mitted signal. In the discussions to,follow we will consider a partial-band 

jamming situation. Here we model the partial-band jamming by a random 

variable. 

1 , with probability p 
z = 

0 , with probability (1-p) 

With this partial-band jamming model, the value of D given by (4.11) is 

appropriately modified to account for knowledge of the jammer state to 

yield [10] 

(i) 	Unquantized and known jammer state 

• 	. 	-p(E /N ) D =ziax pe - co 
1 

Ope • 



. It has been shown in [7] • hat the maximizing p is 
X
o 

E /N 	
E /N > X 

p* 	C 0 	
o c o 

1 	, 	E /N 5 X 
c o 	o 
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(ii) Hard decision and known jammer state 

D = 
max 

2
p 
-Vp  (J -p) 

2 0<p51 

(iii) Unquantized and unknown jammer 

D
3 

= 

(iv) Hard decision and unknown jammer state 

where 

MaX 

 = 	
(i_pp) 

D4 0<p51 

A 

P  = QQ N 

2.p'E
c 	

jc.° 	
1 

 e 	dx
-x

2 /2 

o 	lf-TFÉ": /Fr 

Substituting the Di 's in (4.17) we have 

Ro =.1-log2 [11-DA, i=1,2,3,4. 

where X
o 

is the solution of the equation 

( 75) 	 = 
ii717 

The value of Xo has been computed in [7] to be Xo=0.709. Thus, an 

intelligent jammer can optimize his jamming strategy depending on the 

value of symbol energy-to-jammer noise power spectral density ratio. 

4.3 Comments  

Optimization of signal transmission over an interference channel is 

tantamount to a maximization of the cutoff rate R
o °

r a minimization of 

the parameter D. We have examined the unquantized and hard decision 
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performance of communication over an interference channel. In the 

unquantized case, it has been implicitly assumed that the receiver is a 

maximum likelihood receiver. With soft decision the assumption of maxi-

mum likelihood reception is only suboptimum. 

Massey [3] has suggested an approach to optimize the soft decision 

threshold. It appears that optimum quantization for an interference 

channel needs further investigation. Also, the selection of Ro  is inde-

pendent of the coder/decoder pair. Intuitively, coupling the code design 

to the R selection can potentially improve the performance of digital 

communication over an interference channel. The whole area of modelling 

interference channels and the matching of modulation and coding systems 

for such channels requires further consideration to improve our under- 
. 	. 

standing. Recent work in this area has indicated considerable improve- 

. ments may result. 
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