IC

LKC

91
.C654

B53
1982

University of
Waterloo Research Institute

Code Division for
Spread Spectrum Multiple Access

Final Report
Prepared for

The Department of Communications under
DSS Contract No. OSU81-00078

by

lan F. Blake and Jon W. Mark
Department of Electrical Engineering
University of Waterloo




TS
A

Code Division for Spread Spectrum Multiple Access
Final Report
Prepared for
The Department of Communications under
DSS Contract No. 0SU81-00078
by
Ian F, Blake and Jon W. Mark

Department of Electrical Engineering
University of Waterloo

Scientific Authority

_ Dr. J.L. Pearce
Communications Research Centre
Ottawa

Industry Canada
Library - Queen

AT 4 B 7012

Industrie Canada
Bibliothéque - Queen

WRI Project No. 808-01-04.

March 1982

COMTTUNIGATIONS CANADA |~
CRC

\‘a&,‘} 1963
/\

LIBRARY — -BIBLIOTHEQUE




Db 350522
J) 9/ ? /J) EEEEE ”

QO\\ 6\3,/ |

e logme
v, Q}@ i
SRS

RN
:_ v




TABLE OF CONTENTS

1. Introduction.

2. Sequence Acquisition using Bit Estimation Techniques.

2.1

2.2

2.3

2.4

2.5

Introduction

Review of Acquisition Techniques

page

State Estimate Bit Error Probabilities using Channel

Information
Comparison of System Performance
Comments

Appendix

3. Coding Options for the Interference Channel -

3.1

3.2

3.3

3.4

3.5

General System Considerations and Assumptions
Coding Options
Comparison of Coding Complexity -

Coding Recommendations

Interleaver Recommendations

20
28
30
34
34
37
49.
50

56

4. Modulation and Coding for Digital Communication over .an
Interference Channel )

4.1

4,2

4.3

Digital'Communication over an Additive White
Gaussian Channel

Communication over a Partial-Band Jamming Channel

Comments

(i1)

59

59
65

68 |

COMMUNICATIONS CANADA

CRC

Jov-18 1903

LIBRARY — BIBLIOTHEQUE

3
7



Fig. 2.1
Fig. 2.2
Fig. 2.3
Fig. 2.4
Fig. 2.5
Fig. 2.6
Fig. 2.7
Fig. 2.8
Fig. 2.9
Fig. 3.1
Fig. 3.2
Fig. 3.3
Fig. 3.4
Fig., 3.5
Fig. 4.1
Fig. 4.2
Fig. 4.3

LIST OF FIGURES

Deviation in Probability of Bit Correctness

‘between the Gentral Limit Theorem Approximation

and the Exact Expression, n = 100 parity checks

Probébility of Bit Correctness vs Noise Variance
for various functions, n = 100

Probability of Bit Correctness vs Number of Trinqmial
Parity Checks for the function (al+nl)(a2+n2)

Output Probability Bit Correctness vs Input
Probability Bit Correctness using r Orthogonal
Parity Checks

Acquisition: Time ve Noise Variance for £ =15, k = 5

Acquisition Time vs Noise Variance for % = 15, k = 20

Acquisition Time vs Noise Variance for & = 30, k=5

il

Acquisition Time vs Noise Variance for k-

Acquisition Time vs Number of Trinomial Checks for

% =15, k = 5, m = 7 using the function (al+nl)(a2+n2)

A Spread Spectrum Communication Model with Coding
Bit Error Probability for different Codiﬁg Schemes

Comparison of Bit Error Probability for different
Coding Schemes : '

Cascaded Convolutional Encoding
A Model for Random Interleaving
A Typical Reliability Function E(R)

Functional Block Diagram of a Digital Communication
System

Curves of Cutoff Rate for Bimary Signalling

(iii)

5, n = 200 .

page

15
16

17

19
22
23
24

25

26
34

39

bt
46
56

59

61

66




-1. Introduction.

Several aspects of the performance of communication systems
operating on an interference or jamming channel are considered in this
report.

In the next section a new technique to acquire synchronism with
a pn sequence is described and analyzed. The technique is particulariy
effective for long shift register lengths and low signal—to—noiée ratios
where.other techniques are inoperable. It involves more signal ﬁrocessing
than other schemes and requires bit synchronism. ' This work was done with
a student, Mr. Gordon Stuber and will be submitted~for publication.

Section 3 considers the varioﬁs coding optiqns'a&éilable for
thé interference channel and their perforﬁanqé.' While this work was done
fdr a specific application,'it is viewed -also as a geherai‘backgrouﬁd for
further work into thé.pfoblem. Many inferesting.quéStions aré raised for
future investigation.

There have recently appeared a number of conference afticles
which attempt to analyze the interference channel from an information
theoretic/computational cut-off point of vigw. A brief review of these
is given in section 4. It is hoped that future work will extend these
approaches and allow them to be used with specific coding systems for-
evaluation on interference channels. The aim of such work would be to
obtain a better understanding of communicating in the presence of intent-

ional interference.




2. Sequence Acquisition using Bit Estimation Teéchnidues.

2.1l. Introduction.

Many communication systems use pseudbnoiée (PN} sequences for
either their spectral or acquisition properties.v They are especially
important for the successful operation of many spread spectrum and multiple
access systems where the spectrum spreading and signal discrimination
depend crucially on ﬁhe sequence properties. The performance of these
systems depends on the ability of a local generator to synchronize itself
with the sequence in the received signal and many techniques have been
suggested to achieve.this.

Perhaps the simplest technique uses a sliding correlator
containing either the full or partial sequence which is correlated with
the received signal. Exceedance of some threshold after correlation over
éome predetermined interval will be an indication of synchronism. If
synéhfonism is not achieved the received sequehce is slipped by one bit
or chip interval and correlation is again tried. This technique is viewed
as esseritially passive in that the synchronizer makes no attempt to
estimate the state of-the sequence génerator but waits until the state of
the received sequence matches that in its correlator. On average then it
will take approximately half the length of the seéuence to acquire
synchronism. In systems using very long sequences this may be unacceptable.

In these situations techniques which actively estimate the state
of the received sequence are likely to perform better. The RASE (rapid
acquisition by sequential estimation) method of Ward [1l] and the RARASE
(recursion-aided RASE) method of Ward and Yiu [2] operate in this manner
and give excellent performance at moderate signal-to-noise ratios (SNR's)

and relatively short shift register lengths.




The threshold decoding estimate technique of Pearce and
Ristenbatt [3] and the majority logic decoding technique of Kilgus [4]
use knowledge of the shift register feedback taps to generate parity
checks from which a state estimate is obtained. These estimates however
are derived from hard quantized data and hence involve a loss of channel
information. The technique introduced here also uses parity checks but
in a unique manner to take more advantage of the channel information.
This method is discussed in section 3. It is more compiex and_diffiéult
to implement than eithef the RASE or RARASE methods and its performance
is superior for sequences of very long length operating in very low SNR's.
For comparison purposes the other techniques will be introduced in the
next section. Comparisons between the new tedhnique introduced in this-
papgr-and these other methods are maﬁe(in‘sec;idn~4;

The.pfoblems of automatic gain control and.syncﬁronization,'or
their effects on the analjsié, are not considéred hére. Thesenconsideré~
tions are likely to be similar for any system and should not materially
affect the comparisons. In the system which.motivated this study; a

‘master clock was available, uncontaminated with_néise,and bit synchroniza-
tion was not a significant problem. Inﬁnany'other systems a coarse syn-
chronization can be maintained. The techniques introduced here depend

upon chip interval synchronization being available.



2.2 Review of Acquisition Techniques.

Numer ous techniques have been devised for the acquisition of
PN sequences under a variety of conditions and assqmptionsa The model
assumed for fhis paper, to which all other methods will be translated,
1s as follows. The PN sequence will be assumed to have a feedback generator
polynomial h(x) of deéree %, the sequence having period L = 2£~l. The
binary (0,1) sequence will be designatéd by'{bi} and the binary (-1, +1)
sequence actually transmitted, by {ai}, a, = l—2bi° The reéeived sequence
. will be denoted by v, < ay + n, where n, is a noilse variable assumed to
bé normally distributed. with mean 0 and variance 62, ng v N(0,0z), n, and
nj independent random vériables, i # j. The noise variables.are intended
to reflect any processing such.as low pass and matched filtering prior to
sampling.'

In the RASE technique L consecutive received_samplés y; are
hard quantized to form a (-1, +1) sequence from which an estimate of the
shift register state-is obtained. The probability that any particuiar

bit is correct is given by
P = P(yi >0 | a, = +1)

[ emGG-ni2et 4

0 V21 o

. exp (-z2/2) dz = ¢ (1/0).

-1/0 V2n

‘g ] . . L
The probability the state estimate is correct is then p . For each such

estimate the local register is initiated in that state and correlated with

L4

the received sequence for an examination period of Ne chips at the end of
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which a decision on the initial state is made. If X is the number of

trials to achieve acquisition then

k-1
P(X=k) = (p) (L - p%) , k=1,2,...

and the average acquisition time (in chips) is then
N =(z+N)/l
a e’ /P
and the probability of acquisition on or before the kth trial is

1- (l—pz)k.

Notice that with the sliding or stepping. correlator, on average about

half the states would be examined to achieve acquiéition yielding

N gzl'lN.
a e

" The recursion aided versioﬁ of RASE aﬁteﬁpts‘té chegk the
validity of each state estiﬁate before commencing én éxamiﬁation interval,.
thereby eliminating an examination period for those state estimates which
fail. The technique is to use 3-input modulo 2 adders on the state
estimate and incoming estimate. If p is the probability a given symbol
is correct, the probability the recursion on the three input bits is
satisfied is the probability that either no errors or two errors have
occﬁrred i.e. p3 + 3p(l—p)2. If m such adders are used and no bits in
the estimate are checked more than once then the probability of attempting

to track is

PAT) = (p° + 3p(l-p) D)™ @1




The probability that all %+m bits used in the estimation and checking
are correct is pHm° The conditional probability that the % bit state
estimate is correct, given that tracking is attempted (the m checks are

satisfied) is P(ST), the probability of a successful track,

P(ST) = p’“‘m / (p3' + 3p(l-p)2)m = pz/(p2 + 3(l-p)2)m. (2.

- The ratio of acquisition times between RASE and RARASE is given by

L., RARASE

2
T = (p
a,RASE

+3-p "

if it is assumed that the correlation time ié much greater than the phase
examination period. A similar but more complicated expression can be derived
when the 3-input mod 2 adders are allowed to overlap in the bits they check.
When a set of f+m bit'éétimates satisfies the m checks the regisfer is loaded
.with that estimate and the incoming sequence correlated with-the locally
generated version for Ne chips. This examination time, and the’correlation
threshold at the end of it, is set to achieve a given probability of false
alarm\and false dismissal. For an examination time of N, chip intervals the
average number of chip intervals to achieve synchronization, Na,RARASE’ is

easily derived [2] as follows. The average number of chip intervals that

must be processed to give a state estimate that passes the checking adders is

1
P(AT)

L4m-1 +

The average number of such "successful" state estimates that must be
examined before a correct one is produced is just 1/P(ST) and for each
such estimate Ne further bits are processed during the examination interval.

Thus the average number of bits examined to achieve acquisition is given by




A

N
- 1 1 e .
N, RARASE ~ lj”‘*m'l * P(AT)] 7S T BGED (2.3)

The length of the examination igterval, Ne’ determines tﬁe false alarm
and false dismissal probabilities, important parameters for the performance
of the system. Expressions for these probabilities will not be considered
here.

In the RARASE approach to acquisition, knowledge of the sequence
structure is used only to check the validity of the state estimate. A
more dctive method of using this information to.obtain an actual estimate
of the state using a majority logic, threéﬁbld deco&ing épproach‘is given -
by Pearce and Ristembatt [3] and Kilgus [4]. ‘The,two-appfoachés ére

essentially equivalent and the result of Kilgus is briefly déséribed.

There are 2% 1-1 parity checks of weight 3 orthogonal onaa:giveh position"

of the sequence. -Tbgether with the received bit in the given position a

.'total df'2£’1 estimates result. If q‘ié theuprObability'a hard quantized

received bit is in.errof then the'ﬁrobability'a given'pariﬁy chéék.
equation is in error is Q = 2q(1l-q). If r parity check éqgations are
used, along with the quantized bit itseif, tovéstimate.the Bit and r is
assumed to be even then the probability the resulting majority iogic :
estimate of the bit is in error is given by

LA o
2 _ . /2

4% = <§_k> ™ (1-0% + (’;.).Qr/ ? (1-0
k=0 \

2

and Py = 1-q, . The bit estimates of the state of the shift register

b

will in general use the same bits in the received sequence and hence the

bit estimates are not in general independent. A lower bound on the



probability that thé statévestimate is correct is lmnqb (it ié readily

observed that for qb small,(l-qb)n =1 - nqb). In the next section another

technique for using parity checks of weight 3 to obtain bit estimates is

introduced and its relationship to that of Kilgus [4] will be clear. »
The problem of how to use the sequence structure to obtain bit

estimates in an easily implementable way, appears to be difficult. An

aposteriori probability approach to the problem using orthogonal parity

checks is described by Massey [5] and the performance of a simplified
version of it is considered by Tanaka et al [6]. The simplified algorithm
is iterative in nature and uses approximations to certain logvlikelihood
ratios. The algorithm performance‘caﬁ only be approximated accurately at
high'sigﬁal—to-noise raﬁios. For these reasons it was not felt to be
suitable for the application of interest here where cbmpﬁtational siﬁplicity

at low signal-to-noise ratios are important.

The techniques desériﬁed so far sharethé common feature that
the received sequence must be hard quantized on a chip by chip basis in”
order to use the parity check information for bit estimation; The technique
Introduced in the next section uses these parity checks on soft decisions
in a novel way to obtain improved bit estimates on the state of the
sequence. These impfovéd bit estimates are then used with the ordinary
RARASE technique to obtain shorter acquisition times. Thus the central
contribution of the paper.is to show how to obtain these improved bit
estimates and to evaluate their effect on acquisition times.
It is implicit in this discussion that techniques using parity
checks are inherently more complicated than the correlator; RASE”or RARASE
~methods and are really only acceptable in situations where the signal must -
be acquired in. relatively low SNR's or for relatively long shift register
lengths. 1In such situations the only alternative is to trade complexity

for performance.
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2.3. State Estimate Bit Error Probabilities using Channel Information.

The binary (0,1) PN sequence of length Zz}l is thg dual of the
Hamming code and is often feferred to as the simplex codew The Hamming
code of length (22—1) has (22—1)(22—2)/6 codewords of weight 3 and if the
ith column of the parity check matrix H (generator matrix of the Hamming -
code) is the representation of ai with respecﬁ to the standard basis in
GF(Zz) over GF(2), where @ is a primitive element of GF(éz), then each
such parity check of weight 3 corresponds to a "trinomial" eauation of

the form 1 + o* + o = 0, 1n er(2%) 1 =1, 3 = 2*-2. The methods of
generating these trinomials is an interesting questioﬁ and SOmevcomments
are made on the problem in the appendix. Assume that n such trinomials

are available. In coding theory terms they reprgsent,n_ortﬁogonal parity

checks on a given bit of the PN sequende; Thus the trinomial 1 + o + ol =0 "

represents the parity check equation

bo + b'i.+'bj =0 (mod 2).

on the binary (0,1) sequence {bi}. On thé binary (;l;%l) seqﬁence'ﬁhe
equatibn impliés that if a = l—2bo = +1 tﬁen ai and_aﬁ are of like sign,.
either both fl or both ~1. 1If a, = -1 then a and aj are of 6pposite
sign. It is this fact which ié exploited in this paper to use channel

information to estimate a, assuming we have the n trinomials (parity
is js

checks) 1 +a +ao =0, s =1,2,...,n.

a(s)

o

Consider the estimate of a s , formed by

g ‘ \ 2
al®) - (a, +mn, )(a, +1n. ), 1Ss=n,n, ,n, ~N(0,0")
0 ls is Js Js ls JS



10.

(9)

It is readily seen that ao

is a random variable with mean B +1 if -

a, = +1 and a mean of Ho = -1 if a, = ~1. In either case the variance of

»
éés) is Gi = 202 + 04. .The normalized sum of these estimates
. n
Z=J'-= Zé<3)
n o
s=1
is, by the Central Limit Theorem ([7]),‘approximate1y a normally distributed
random variable with mean *1 and variance
02 = (202 + 64)/n.
n
The final (hard) estimate of a is then given by the symmetric 2-level
quantization of the statistic Z. The probability thié bit estimate is
correct is given by -
1 - (y-1 _ - .
Pb=] I exp(‘("y_’é_)_ dy = e(/a) - ”
- V2m o 2ag ' ' '
- o n n

For n large enough the variance of this estimate can be reduced below 62
and thus discrimination between the two cases considerably improved over
that obtained by using a hard quanﬁization qf a, + n for which the
probability of a correct bit estimate is 9(1/0).

é(.S)
(o]

An unfortunate aspect of the estimate = (ai + n, )(aj + nj )

S 8 S S

is the fact that its variance increases as 04 and for large values of ¢
it requires a large number of parity checks to reduce S below ¢ and thus

improve the probability the bit estimate is correct. It is desirable to




ES)

11.

choose a function

(s)
a = f(a, +n a, +mn, )
o iS is’ ig ig

such that the bit estimate obtained by hard quantizing
n
Z=l Z a(S)
: n SN}
s=1

has a maximum probability of being correct. ‘The‘authors were unable to
find a solution.to this problem and several functions weré tested. The
results for these are reported on briefly below.

Pérhaps the.simplest such fuﬁctioﬁ to implement is to hard quantize'

each received bit and form the estimate

(s) : '
ao = sgn (ai + n, ) sgn (aj + nj )'

S ] s .78

where sgn(.+)_ is the signum function. Such a functiom is related to the

work of Pearce and Ristembatt [3] and Kilgus [4] but is used here in a

multiplicative rather than additive manner. Again,the estimate

zZ =

=N

3 al®)
=1 °

is formed and hard quantized to give the estimate of éo. For this
estimate it is possible to derive both an exact expression and an

approximation to the probability the resulting bit estimate is correct. |

(s)

o

To develop the approximation it is noted that the mean of &4 can be

shown to be

B 2
g = aiS ajs(2®(l/c) 1)
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and the variance is

Applying the Central Limit Theorem to the statistic Z gives the

approximation to the probability the bit estimate being correct as

g
' e

" As mentioned, an exact expression for this probability can be determined

as follows. The probability that an individual estimate éo(s) is correct
is just
p = P((l+ni)>0'and (l+nj)>0) + P((l+ni)<0 and (l+nj)<0)
L 2 12
= P((14n)>0)" 4+ P((1l+n)<0)
, 2 2
= 3(1/0)" + (1-2(1/0))
assuming that a, = +1l. The same expression results if it is assumed
a, = -1. If the final decision function is

n
Z = sgn ngn(a. +ni ) sgn(a, +n, )
S=1 s s Js s
then the probability of a final correct estimate for a is just the
probability that more than one half of the individual estimates are

correct:

[ 4

where in the event of a tie, when m is even, it is assumed the bit estimate

is wrong.
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It is interesting to compare this exact result with the préﬁious approxima-
tion. The results are shown graphically for the range of variances of
interest in .Figure 2.1. |

The two functions considered so far are perhaps the simplest
possible. In the search for a.function which would providetimproved
discrimination (higher probability of correct bit estimate fof a given
noisé variance) several other functions were ekamined. Some of ;hese
are given in table 1 along with expressions for their means, variances
and probabilities of bit correctness. Curves for the probability of bit
correctness for the range of variances of interest are given in Eig,.2;2'
from which it is cbncluded that, for this rangé,\the‘eétimate (ai,+ni ).

) § s

(aj +ni ) is superior. It is not at all certain however that functions
s s '

which offer better bit estimation properties do not exist and it would be
anvintéreSting.exercise‘to determine.oné. Fig,;z;S giﬁes cﬁrves fdr the"
probability of cofrect Bit estimation as a function ofvn,the numﬁe; of
trinomial parity checks, for variances in tﬁé range of interest; for.this
function.

Also shown in Fig;:;2.2 is thé cﬁrve for the probability of correct
bit estimate using 100 orthogonal parity checks of weight 3 on hard quantized
data using majority logic as in Kilgus [4]. The curve for the probability
a single hard quantized bit is correct, as is used for the RARASE technique;
is also shown.

| In the next section the improved (over ome bit hard quantiza-

tion) bit estimates offered by the functioﬁs (ai +ni Y(a, +n. ) and
s Ts s s
Sgn(ai +ni )sgn(aj +nj ), which is regarded as a particularly simple
s s s s
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Function Mean = ¥, Varlance = o, Pb’ Prob. bit correctness
2, 4 Al
(al+n1)(az+n2) a,a, 267 + o @(g;}
1 2 ) “e‘/g
sgn(al+n1)sgn(az+n2) alaz(ZQ(Ea -1) l—ue CLT approx. [ o
X n i a-1
Exact. 2: (i) p (1-p)
1"[&:’:}“ ‘
2
12 1.2
p = @(E) + Q- ¢(69)
Vz 26 -1/a° 2 _iog (/2) (—@)_2
|31f32+n1fﬂ2| ue’lzz(;@(—g 1)+ ;5 e . aesl-(Za +)f ¢ ) Ak - Mo 1 ne simple expression
alaz=+1
29 _ 2 - 2 _ 2,
Ve .2 = »878,=-1 9,2 2¢” (1 - 2)
2.2 .2 2 w Vo
2 o ~-2/a e 2 9 2y e e :
gla tn )g(aytn,) a3, [(z@(g)—n - =G )] [1 o 2+ 20 - 1) -ul - ef-2
. e

1 x=>1

glx) = { x , -1=x<1
-1 x=-1

sgn(al+n1)sgn(az+n2)-

1/3 1/3
Balfnl| / fa,m, | /

(parameters determined by numerical integration)

Table 1.

s
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function to implement, are used with the RARASE acquisition method and
compared in performance with the standard RARASE method. It should be

noted again that even the function (ai +ni )(a.j +nj ) is not optimal in
s 8 “s

the sense of maximizing the probability of correct bit estimation but is
used here simply as a convenient and simple function which offers improved
perférmance over other techniques.

| As a final comment of this section it is notedvthat after
obtaining bit estimates of the state, the probability an individual bit in
this estimate is correct can be jimproved by using majority logic techniques
6n binary'dafa. Suppose for'example that r orthogonal parity checks are
available on a.givén bit and that each bit used by these parity Ehecks has
g probability P, of being cor?ect. Thus the'estiﬁgtion techniquesvdescribéd
in preceding . paragraphs would have to be used on each‘bit used'by these r o
orthogonal paritf checks, = These parity checks can thén be used in the
standard majority logic manner to further imp:ove the probability of bit
correctness, P,- The relatipnship betwéén P, and po'using ¥ orthogonal
parity checks is shown in Fig. 2.4. This technique, which uses orthogonal
parity checks in two distinct ways, first using.them in a soft decision |
manner to arrive at a hard bit estimate, and then using the second set in
a standard majérity logic way to enhance the probability of bit correctness,
is complicated to implement and is considered no further here. It does

however present a real possibility for system improvement.
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2.4, Comparison of System Performance.

In this section the average number of chip intervals it is
required to examine to achiéve synchronism is compared f&r the sténdard
RARASE system and the RARASE system which incorporatés the bit -estimation
techniques‘introduced in the previous section; Onlyy;hefbit estimation
functions (ai+ni)(aj+nj) and'sgn(ai+ni)sgn(ajfnj) arevuséd and it is noted
from figure 2 that this last functiontgives slightly poorer performance
than the majority logic method of Kilgus [4] but is very simple to implement;
A precise compérison of the systems is difficult to achieve because.of
certain assumptions which must be made. :

'For*the RARASE system the average number of chip'intervals which

must be examined to achieve synchronism, N is given by equation (2.3)

»RARASE’
wheré P(AT) and P(ST) are glven by equations (2.1) and (2.2) regpectlvely and
p is the probablllty of correct blt estimation u91ng hard quantlzatlon.
For all systems considered the number of 3 input mod 2 adders checking the
phase estimation bits is assumea to be the maximum possible, {#/2]. Ne’
the number of bits examined when the phase passes all of the mod 2 adder
checks? is assumed to be kf where k is either 5 or 20. It is noted again
that Ne and an appropriate threshold set the false alarm and false
dismissal probabilities but expressions for these quantities will not be
considered here, being comparable for all systems uﬁder the conditibns
stated.

The average number of chip intervals which must be examined to
achieve synchronism when the bitlestimatioh techniques are used, N

a,est’

is giﬁen by

20.




N = [.Q,+m-l + + M(%2,n) + %+m-1 (2.5)

1T 1 ke
a,est )

PCAT) | PCST) T P(ST)
where P(AT) and P(ST) are as in equations (2.1) and (2.2), respeétively,
with p replaced by pb. M(2,n) is the minimum number of bits that must
be considered, from the bit being estimated to have n trinomial parity
checks. From the comments in the appendix on this problem it will be

assumed that

M(2,m) = (2n(2*-2))1/2 | 2.8

From the limited évidence available it would afpear:that this‘is a very
reasonabile app?oximation whén M(&,n)/(Zl—Z) > . 1.

Two comments on the expression in equation (2.6) are in or&er.
First it is-goted.;haﬁ'each_trinomial parity check.gan actuaily\bg used
to generéte three orthogqui parityAchecké if:it';s,permissible to use |
bits in.thé;réceived sequence on either side of,ﬁhe bit.Béing estimated.
This would lead to a considerable saving'inAthe number of bits that ﬁust
be examined, but also leads to greater doﬁplekity\and is not considered
further. As a second point note that, as a measure of comparison between
the two systems, the number of bits that must be “"considered" is used.
This is a little misleading for the system introduced here since there
is ;onsiderably mote,processing‘involved on the gits usedi On the other
hand the number of bits actually used in the eétimation process is
relatively small. Assuming that processing power is relatively cheap;
this method would seem to be a fair comparison.

The results are shown in Figs. (Z.5) to (2.9) and are ldrgely

self explanatory. The curves using the estimating function (ai +ni )(aj +nj )
s s s s

21,
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Acquisition Time vs Noise Variance for & = 15, k = 5
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Acquisition Time vs Noise Variance for & = 15, k = 20
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Acquisition Time vs Noise Variance for £ = 30, k = 5
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>

are simply marked (ai+ni) while the curves for the function sgn(ai +ny )
. : S S

sgn(aj +nj ) are simply marked sgn. The improvement in acquisiton times
s s

over a standard RARASE system using either the (ai+ni) or signum function
over the range of variances indicated, is‘clear. In Figs. (2.5).- (2.7) it
is noticed that there are ranges of variances over which some optimum
number of trinomial parity checks should be used. The use of more parity
checks makes matters worse by forcing,the examination of bits far away
from the bit béing estimated, This effect is shown more*clearly in
Fig.(ZgQ)for the (ai+ni) function where, fof a gi&en vafiaﬁge, the number
bof parity checks that should be uséd is cleér. Fig.(2,8)illﬁs£rapes théu
éffect of incréasing the shift register length, using an ekamination '
intgryal of N_ = 52‘bit§ and 200 parity checks. InAall:thé'figureé_cply :
the rénge cf'va:iaﬁées of 23t6‘9‘was'ccnsidergd. Impfdvémeﬁté over thel
standard RARASE techniéuES‘can.alsc be a;hieved at lower Qariances.by. .
‘using fewer parity checks and thus, to show the bit estimation Eéchnique
off to greater.aanntage,.the qumber of parity checks used shcuid bé
optimized for each,variénéé. The apparent advantage of RARASE aﬁ the:

lower variances would then disappear.
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2.5. Comments,

A ne& acéuisiti?n technique for PN sequences,'effective for
very long sequences operating at very low signal to noise ratios, as might
occur for example in certain spread spectrum systems, has been discussed.,
Under these conditions the technique has better performance than previous
methods but it is also considerably more complex; A particular problem
is the generation of weight 3 parity cheéks with the properties required.
Methods to generate these parity checks are straight forward and in
systems for which the sequence is fiied for a relatively long time it is
. not seen to be a real problem. ForySome systeﬁs, such as perhaps certain
antijamming spread spectrum systems, where the sequence generators might
regularly change, some computing power would be required at the receiver.
This tradeoff between per£ormance and complexity for syétems of the type

considered here, would seem to be unavoidable,
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Appendix.

It is required to generate "trinomiai" equations of the form
ai + aj + 1 =20 din GF(ZZ) where d is a root of a given primitive polynomial.
This problem actually occurs in a variety of contexts and;'depending on
%, is generally accepted to be a difficult computational pfoblem. For a
given value of i, the corresponding value of j is called the Zech logarithm
of i ([8]). The problem is also equivalent to the problem of finding
logarithms in GF(Zy“)° When the order of the multiplicative subgroup of
GF(Zz), 22-1, is highly composite with the largest prime factor béiné small;
the problem is fairly simple ([9]); When 22—1 is prime or has a very large
prime factor there is no computionally feasible algorithm known for solving
the problem.

In esﬁimating a given bit in the sequence it ié desirable to form
as many trinémial pariﬁy-check.equations as "close" to the given bit as
possible. Morg precisely it is of interest to determine as many such parity

i h|

checks o 5 5 o °

+1=0 as poésible where both is_and js are both less than
some given positive integer. Denote by t = M(2,n) the largest exponent
requiréd to obtain n such parity checks. Thus in the state estimation
technique, t bits from the bit being estimated, will have to "be considered".
From a computational point of view, for reasonable values of n and i, a
brute force ﬁethod appears to be as efficient as any for finding these
parity checks. For example suppose each element aieGF(ZZ), 1=is<t, is |
expressed as a binary {-tuple with respect to the fixed basis of GF(Zz)

over GF(2), eg l,a,az,...,ag_l

. In this representation of al the bit
corresponding to the basis element 1 is complemented and this binary
4~tuple, the representation of aJ, is compared with others in the list

to find the value of j, if di<j = ¢, ' .
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For the analysis of the acquisition scheme of section 4 the
determination of M(&,n) is of interest. It is very difficult to determine
exactly as it depends on thé representation of the field.used and the
particular primitive element used. ,Itlié not the intention here to
investigate this problem in detail. Instead an approkimation to M(z;n)
is developed and limited experimental evidence given whicﬁ éupports the
approximation, as far as it goes. |

Consider the set of relationships'{l%ci = q -2=1}
and suppose the integers ji are assigned at randqﬁ so that the ordered
ﬁ—fuple'(jl,jz...,jlp is a random permutation of (1;2;}.;:1511A1n this
model let N be the numbef of the ji;'ixét, théﬁ'aré theﬁselves‘lesé
than or equal to>t. Then Nl is a raﬁdom variable and fhe probability
that =N | . equals s is given by a hypergeometricidistribution; uqder
these assumptions, . | | | | ”

(M-t

P(N=s) = FAC ’ Ll = 22“23' t = M{(&,n). : .‘
S\t

. . . . . 2 . R o . ;
The mean of this.distribution is t /. Since the trinomial relationships

occur in pairs the approximation to the function M(L,n) will be
= E(N)/2 = t2/2L' = M(%,n)2/2L"

or M(%,n) == (2n(2¥-2))}/2

The same result is achieved by édopting a binomial rather phan hypergeometric
model.

This approximation is compared with generated reéults for certain
primitive polynomials of degree 10 and one polynomial of degree 15. These

are glven in table 2 along with the values for the approximation. The



amount ofAdata given is far too limited to draw any conclusions but it
would appear that the épproximation is reasonable, particularly when the
ratio t/(2£m2) is greater than about .l. In spite of tﬁe.restricted‘
amount of evidence, the approximation will be used in the analysis of the

acquisition scheme introduced in this paper.
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450

Prinitive 50 100 150 200 250 300 350 400 500 550 600 650 700 750 800 850 900 950 1000
Polynomial : . : : e e e
on 3 6 10 19 290 4 65 80 9 .118 144 175 208 245 272 315 354 396 442 491
10, 8,3 2. ‘
T ] 1 5 10 20 30 43 63 75 98 121 147 174 208 240 275 316 355 395 441 489
10, 6,5 3 2 :
Pl 2 4 10 17 28 46 63 Bl 95 121 147 176 211 241 275 310 353 39k 442 489
10, 9. 8 7.6, 5 _ o
Ol x L Bax © 5 10 20 32 43 60 78 103 124 150 174 206 240 274 313 354 395 440 489
+x1‘+x3+1 :
Expected Number 1.2 4.9 11.0 19.6 30.6 44.0 59.9 78.3 99.1 122.3 148.0 176.1 206.7 239.7 275.2 313.1 353.5 396.3 441.6 489.2
t22¢2%-2)
(a) £=10
t

Primitive 1,000 2,000 3,000

Polynomial . o . .

x i 28 n’ 142

Expected Humber 15.3 461;0 . 137.3

t2/2(2%2) '
(b)  2=15

Table 2.

‘€e
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3. _Coding Options for Interferemce Channels.

3.1, General System Considerations and Assumptioms.

The interference or jamming channel has received considerable
attention in the literature and a variety of models and assumptions
arrived at. The appropriateness of these models and assumptions is very .
much context dependendent, The purpose of this section is to examine
these models and to make specific coding recommendations regarding a V
particular model.

The general model under consideration is shown in figure 3.1

CODER

| DS (DIVERSITY) 0S|
[ I ’ . I
| |
| §
. INTER- DEINTER I )
i LEA/ER MOD CHANNEL|—=IDEMOD = "2 er -~DECODER [—>
I ' : ol
i «
' |
Figure 3.1

Tﬁe effect of the insertion.of the direct sequence (DS) is to simply add
time diversity i.e. each coded bit is divided into Z chips which are
interleavgd to provide, at the receiver, Z independent estimates of the
coded bit. IE is assumed that the demodulator pexrforms chip-by-chip
matched filtering and soft decisions are presented to the input of the
decoder. In practice 3-bit quantization would be sufficient, implying
that the deinterleaver requires 3 times the storage requirements of the
interleéver, depending on how it is implemented. It is assumed the
interleaver is ideal implying that it renders the interference channel
memoryless which effectively spreads burst type interference into additive

white Gaussian noise for Z sufficiently large. For small Z however, the




channel remains bursty and the analysis of the coding schemes presented
in succeeding sections may be applicable.

| It will be assumed that the input to the receiver DS ié of the
form + 1 4m, n ~ N(O,Gz). The effect of the diversity Z will be to reduce
the noise variance per symbol, after removal of the DS diversity, to 02/2.

Fbr either the pulse jamming case or the partial band jamming
case, it will be assumed that at the output of the deinterleaver
(neglecting quantization) the probability a chib is disturbed by noise
with variance Gz/p is o and with variance 0 is (l-p). Thus p is either
the duty cycle for the pulse jammer or the fraction of the band jammed
for the partial band jammer. Invthis case it is easy to show tﬁat aftef
thé diversity is removed (equivalent to matched filtering) the symbols
are of the forﬁ.il+n’}.n’&N(o,oﬁ2) q{zi= 62/2. Thus the puige'jammiﬁg‘
~and partial band jamming have the same effect.as‘choosing p =1 here, and1
this will be done. | .. |

The inclusion of a quantizer implies some form of automatic
gain control should be used. This problem of designing such a controller
for the interference channel is séen as a challenging one and is not
considered here.

One type of coding system not considered in these notes is the
concatenated Reed Solomon/convolutional. The only results available on
this system appear to be either from experimentation or simulation of
rate 1/2 convolutional codes with Viterbi decoding concatenated with
high rate RS codes. The problem lies in charactérizing the output error
statistics of the Viterbi decoder. Whileit may in fact be a good system

it does not seem reasonable to attempt an analysis of it at this point.



It is considered to be an éxpensive system and it is doubtful its perform-

ance would be significantly better than the other options considered.
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3.2. Coding Options.

Various coding options that have appeared in the literature are
discussed and analyzed in this section. For the purposes of comparison
it will be assumed that the number of chips, after the direct sequence,
per data bit is not greater than 288. Thus the code rate and the number
of chips per coded symbol combine to give a ratio less than 1/288.

I. Block Orthogonal Signalling.

Code description. K bits are mapped into one of 2K possible

binary (£ 1) orthogonal sequences. The scheme will be evaluated.for K =4,
6 or 8 With‘diversities 72, 27 and 9 respectively. Omn the.surface it may
appear a coﬁplex task to realize, for K = 8, 256 matched filters. Because
of the method of generation however, the optimum receiver can-be-realized
With at most 32 matched filters of leﬁgth 16 used sequentially in two |
stages or 20 matched filters of 1engfhs 8 and 4 uséd sequéntiélly in three}
stages.,

Analysis. The analysis here is quite standard except for a
computational technique due to Berlekamp [1]. Let g(x) be a normal
probability demsity function with mean zero and variance 02, g(x)@N(O,oz),
let £(x) ~ N(0,1) and ¢(x) the cumulative distribution function. Let
PE(K,Z)‘be the probability of word error using ZK orthogonal signals with
diversity Z. By standard analysis, assuming inputs to the decoder are of

the form *1+4n, nNN(O,oz), then

o o
P(correct) = f g(a—zK/Z) [ f g(B)dB } da.

-0
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and, after simple transformation:

o : K/2 K
P(correct) = J f(x - %- ) <I>(x)2 -1 dx.

O

Integrating by parts gives

o(x ~ 2 ) 0% "2(x) £(x)dx.

o K/2 2K
o

_ K
P,(K,Z) = (2-1)

-0

The probability of bit error is related to this expression:

2K—l

2K 1

w K/2 K
P (K,z) = 271 J 2z~ 2 ) ow? 2 £(x)ax.

OO

Pb(K,Z) =

Curves of Pb(K,Z) vs lOlogiOG—%)'are given in figure 3.2 for values
: o

(X,Z) = (4,72), (6,27) and (8,9) and in each case the overall rate is

1/288.
A convenient upper bound to this expression, apparently good for
PE = 10~3, is
(R-1)/2 :
k-1 2 V7.
PL(K,Z) £ 27 Q (F—p—D), Q(®) = 1 - 3(x).
II. Orthogonal Convolutional Codes
Code Description. This method uses a K-stage shift registér,
bits shifted in 1 bit at a time. After each
K STAGE SR shift, one of ZK orthogonal binary (+1) signals
l I N I I I is selected for transmission, as in case I.
LSIGNAL SELECT Only 3 cases will be considered:

i) K=8, Z=1 ii) K=7, Z=2 iii) K=6, Z=4.

In each case the overall code rate is 1/256.




BIT ERROR PROBABILITY, P,

102~
107+
03-
|0 ~® ORTHOG. BLOCK CODES K<4,Z
® " K=8,Z%
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(D) ORTHOG. CONV. CODE K =4,Z:=16
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Figure 3.2 Bit Error Probability

. 39.




40.

Analysis. The analysis of this scheme is straightforward using
the techniques of Viterbi [2],[3]. The method is given here for future
reference.

Let T(L,N) be the generating function of path lengths and number
of input ones:

NX (1-1)
1-L(14N) +NLE

T(L,N) =

A typical term tanan means there are ton paths of length & cauéed by

n input ones. Considér a path of length & (i.e. % branches away from the
all zeros branch) and assume the all zerps.branch has N = ZK:GiYs on it.
Each other branch hasvpreciséiy N/2=2K_l (-1)'s on it. The probability
that such an incorrect ﬁath will be chosen over the correct (all Zeros)
path, is then given by

g2kl

Pr ( z .y. < 0) = Pr (path increment along an incorrect
j=1 J path of length & exceeds that along
the correct path)

K-1 . nK~2 K-1
= (ﬂ/“2 ) = exp@E—) @ (VEE  p-dsg
[0

g [*]

+J
It

d = min. dist. of code
= pumber of branches away from
the all zero branch.

Using the arguments of Viterbi [2],[3] the bit error probability is
derived as follows:

Pb = bit error probability

d
< Eﬁ'T(L’N)|N=l, replace Pz for Lz
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~ Faw? :
= K2 = LGP
(1-214L7) subs. k=d
 (eay2¥?
= Z G Q ¢ ) =)
[¢)
K-1 K2 K-2

d2 2 K2
e W& Hew & I o exmp(-52 .

o o} k=d o

K-1 k-2

d2 d2 dT(L,
- q ( ) expd ) LN J&-2

c o N=1, L=exp(- 5 )

. [¢)
K=2 k=2 2
K2 K2 ~ —2
d2 42 K2y ricexp (A
P, =Q ( G ) exp(;—2 ) exp ( 02 ) {1-exp( 02 )}
K2 K3 o 7
1-2exp (- Z-g ) + exp(- % )
o . o

This upper bound .is plotted in figure 3.2 for the values of K-and 7 stated

i.e. Pb‘ is plotted vs lOloglO(l/cz) with the values cz/Z shown..

III. M-ary Orthogonal Signalling.

Code description. This is a variant of the orthogonal convolutional

K STAGE SR code. Bilts are shifted into the K stage shift

e 1 1 register, 1 bit at a time. For each K bit in

m ADDERS S the register, m bits are formed by linear

(LTI}

m STAGE SR used to select one of 2" orthogonal signals,

operations on the K bits and these m bits

Analysis. The performance of this class of codes depends on the
distance structure of the trellis formed by the tap connections. The

objective is to maximize the number of levels in the trellis over which
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any path is ummerged with the all zeros path, rather than in maximizing

dfree as is usual., Relatively little work has been done on this problem.

Two codes, each with K=7, are listed in Table B~6 in Clark and Cain [4]

For code 1, m=2 and, with the tap connections listed

F 1000P

Pb(K,Z) < 7P, + 39P8 + 134P9 + 808P10 11

7

where K=7, Z=72 and P, is as in section II.

k

For code 2, m=3 and, with the tap comnections listed

P, (K,2) <P + 66P_ ., + 600P

7 10 11

+ §P8 + 8P9

where K=7, Z=36.
The performance of this class is expected to be between that of
the orthogonal convpiutional and pure convolutional. It was not plotted.

IV. Concatenated Reed Solomon—OrthogOnal Codes.

Code Descfiption. The outer.code is a Reed-Solomon RS(n,k) codé

and the immer code is an orthogonal code. The outer code is defined over
GF(ZK). Tt forms blocks of K~bits into symbols over GF(ZK) and maps k
such symbols into n symbols over GF(ZK). The inner orthogonal code maps

each K—Bit symbol into omne of 2K orthogonal signals.

Analysis. The overall coderate is %-o EK . %-. The word error
' 2

probability of the block orthogonal code is PS = PE(K,Z).

The Reed-Solomon decoder will be assumed to be an errors only algorithm.

With a symbol error probability of P, the bit error probability of the

S
output of the RS decoder is given by (Berlekamp [1])




43.

n

- J 0y 53 cq_p O3 -
- ‘ Pb B jzd 2 (n+l) (j) Ps (1 Ps) : Ps PE<K’Z)°

A slightly more pessimistic bound for the bit error probability is given
by (Cain and Clark [4])

K-1 n

P, < gif" p o A o Pl (1-p )" d=2t+1
21 =t+1 T J

The Berlekamp expression is evaluated and shown in figure 3.3 for the

following sets of parameters:

Inner Code Parameters Outer Code Parameters ‘Diveréity Overall Code
‘ : Rate
K 2 Rate il k Rate ‘
- 6 64 3/32 32. 16 1/2 12 1/256
6 64  3/32 64 - 32 /2 12 - 1/256
: 6 64 3/32 64 16 1/4 ”_“ 6 ) 1/256 .
8 256 1/32 100 50  1/2 4 1/256
8 256 1/32 100 25 1/4 2 - 1/256 -
V. Pure Convolutional Code.

Code Description. Standard convolutional coder. Unfortunately

constructions for very low rate convolutional codes do not appear to be
available and only rate 1/2 and rate 1/3, as given in table B-1 of Clark
and Cain [4] are considered here.

Analysis. Again using the analysis of Viterbi [3]

- e d_ . dT(D,N) v
po<q W) ew@p O 1 =] e
b : i 92 AN =L, D exp ( 202) keq Kk
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1o - PURE CONV. CODE K:=8, R=1/2,Z=144
" * " K=8,R=1/3,2:96
CONCAT. RS/ORTH. RS(64,32), 128,0RTH(K=6,2+I2)
" " RS(64,32),1=15,0RTH(K=6,Z=I2)
" . " RS(64,16), t = 24,0RTH(K=6,2-6)
" " RS(100,50),1=25,0RTH (K=8,224)
" " RS(l00,25),1=37, ORTH (K =8,Z=2)
109
©
z ® BO® @
107 |—
-4
1O}
=5
(O
-6
10 l | | | | 1 |
-2l =20 -I9 -18 -7 -6 -15 -|4

10 log,q (1/0°2)

Figure 3.3 Comparison of Bit Error Probability
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where Pk = Q(‘,—EO and Ck = total information weight of all paths of weight
: o]

k merging with the all zeros path. il.e.
T(D,N) = ... + tileNJ + oens

tij = number of paths at distance 1 from the all zero path (from

divergence to reemergence) caused by j input data 1's.

g—NT(D,N) = ... +jti.D1+
N=1 J

and

Ck = Z‘jtkj = totélAinformation welght of all merging paths of
j . ‘
: weight k.

Code 1: K=8, Rate = 1/3. (Clark & Cain, table B-1, p.402).

P, < Py + 24P;g + 113P, » 296 | |
1/2 (Clark & Cain, table B-2, p.402)

Code 2: K=8, Rate

P, < 2P '+ 22P__ + 60P., + 148P.. + 340P Z=144,

b 10 11 12 13 142 .
(The effective noise variance to be used is 02/2). These upper bounds are

shown in figure 3.3.

VI. Cascaded Convolutional Codes.

Code description. It has been mentioned there is a lack of
information on the structure of very low rate convolutional codes.

Generally the code performance grows with d e which is a function of

fre
constraint length. Unfortunately the decoder complexity grows exponentially
with constraint length. The possibility of cascading convolutional codes

is considered here, as shown in the diagram.
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OUTER INTER-{ " _|INNER | _|. | | INTER | '
1 CODE LEAVER[ | copE | & DNVERSITY = \VER '
(Ryvy) (Ry4vp)
Figure 3.4

The purpose of the inner interleaver is to make thélcﬁannel appear random
to the inmer code decoder. The implication here is that adjacent chips on
the channel must be separated sufficiently to achieve this. Some comments
on interleaving will be given later.
 The inner code decoder, if dperating effectively, makes errors

in bursts when it makes errors. The interleaver between Ehe two coders is
there to distribute these errors sufficiently that the outer codé decoder
can handle them. This requires less complexity than the outer interleaver.

Code analysis. This system can be analyzed by standard methods

used in previous sections. The diversity is used to bring the overall
rate up to 1/288. The,analysis was déne and results plotted using
convolutional codes of rates 1/2 and 1/3. The problem encountered is
that the performance bounds are upper bounds and are very steep.with
respect to signal to noise ratio. Thué using the upper bouﬁd to the
probability of bit error of the output of the inner code decoder as the
crossover probability of a'binary symmetric channel which the outer code
decoder sees, because this probability of error is slightly above the
actual probability of error (figures of 1/2 to 1 db are often quoted in
the literature) and because of the steepness of the outer code performance
curve, the ovefall perf&rmance calculated is relatively poor. These

results are not given here, being of little interest. WNonetheless there




is little doubt this system could be quite effective for the situation

under study.

The values of lOlog10 (159 required to obtain bit error probabilities
o A

of 10_3 and 10-5 for the various coding schemes are tabulated in table 3.1.
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PROBABILITY OF BIT ERROR.

1073 107
ORTHOGONAL K=4, 7=72 -16.3 =14.0
BLOCK CODES. K=6, 7=27 -17.5 ~15.3
K=8, Z=9 -18.0 ~16.1
ORTHOGONAL KR=4, 7=16 ~16.8 -14.3
CONVOLUTIONAL K=6, Z=4 -17.7 ~-16.1
CODE. K=8, 7=1 -18.7 -17.3
CONCATENATED RS=(32,16), K=6, 7=12 -18.7 -17.5
REED SOLOMON/ RS=(64,32), K=6, Z-12 -19.8 -18.5
ORTHOGONAL. RS=(64,16), K=6, 7=6 -18.0 -17.4
RS=(100,50), K=8, Z=4 -20.4 -19.7 .
RS=(100,25), K=8, Z=2 -18.0 -17.5
PURE K=8, Rate 1/2, Z=144 ~19.5 -18.0
CONVOLUTIONAL K=8, Rate 1/3, Z=96 -20.0 -18.4
CODE. » K=7, Rate 1/3, 7z=96 ~-19.7
' K=6, Rate 1/3, 7Z=96 -19.2
"UNCODED. -12.0 -

Tablé 3.1. Values of 1010g10(l§) to obtain probability of bit error of
o

1073, 1077,

48,
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3.3. A Comparison of the Coding Complexity.

The simplest system to implement, even with K=8 (256 orthogonal
signals) would probably be the block orthogomal. The pure céﬁﬁolutional
system would be quite straight forward to implement, using the Viterbi
algorithm. The cascaded convolutional coding system‘would requiré_two
such decoders but their constraint lengths might be shorter to obtain the
same performance and hence may not be twice as complex as the pure
convolutional éode. The orthogonal convolutional code requires both an
orthogonal code decoder and a Viterbi decoder to implement. Similar‘
comments apply‘to the M-ary orthogoﬁal convolutional code. . The coﬁcatenatéd
Reed-Solomon/Orthogonal coding system is perhaps the‘most compli¢ated,
requiring both an orthogoﬁal code decoder and a compléx Reed-Solémon
decoder.” Even if this were made an erasure based decoder it'wpuld‘inualii
probabiliﬁy require considerabie effort to.implément:effectively. |
| From the results presented here it appears‘that thé pure.
convolutional code offers the best'compromise between cost—complexity and
performance. ~ It should be noted that all éystéms could be fine-tuned and
perhaps better performance obtained. Viterbi decoding is straighﬁ férward,
to implement énd for relatively low rates much of it could be implemented
in microprocessor software. Other systems, particularly the Reed-Solomon
decoder, would require a major effort in hérdware-design. For the small
gains in performance over the pure convolutional code case (with the
assumptions made here) the effort is not felt to be cost effective at this
time. It is recommended however that some thought be given to the design
and construction of a Reed-Solomon decoder as a good investment for future

applications. ™
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3.4, deing Recommendations.

Certain. considerations in Ehoosing the rate and constraint.length
of a convolutional code are discussed here. It will be érgued that for
the apﬁlication of interest there is little point in using a code of rate
much less than about 1/3 and that the constraint length should be chosen
as large as possible consistent with the complexity and time constraints
on the decoder.

The bit error probability of a convolutional'code on the AWGN

channel (NO/Z, double sided), is of the form

P < ) CP ' (3.1)

where df is the free distance of the code, P, is given by

) k
" [2kE :
Pk = Q ( "N 5y, ES = transmitted energy per coded symbol.
o ‘ :
Q = complementary error function.

and Ck is the_total numbér of input ones on all paths of weight k merging
with the all zeros state at a given paint in the trellis. The importanée
of having a convolutional code with a large df is thus clear, since Q(x)
is ménotonically decreasing with x. The problem of constructing such
codes is well investigated and the important point to note here is that,
for the same constraint length and code rate, nonsystematic codes have
larger free distances than the corresponding systematic code. This is
not the case for block codes where the two are equivalent;

The search for good convolutional codes is done largely by
computer. For rate R = 1/n codes a tight upper bound on d_. due to Heller

£
(as.given in [5],[6]) is




5%.

-1

d. = min

(R+2-1) | (3.2)
o1 | 2% ~

for constraint length K. In fact, for short constraint lengths (K = 10)
and rates R = 1/n, n < 8, codes have been constructed [6] which meet this

are known. In
k

cases where the parameters Ck are not known only the lead term can be used

bound although only a few, or none, of the parameters C

to give an approximation of code performance. To give an indication of

how this lead term varies as a function of code rate R = 1/n for fixed
constraint length K, we assume a code meeting the Heller bound (3.2) can be
constructed fo£ each n. The square of argﬁmeﬁt:of the Q function can be:

expressed as : .

2d, d 2E,
f§.=:~£ . C, .C = b constant. o I
n n : No' » .

=
O {rh

Thus, if other aspects of the codes considered (i.e. the parameters Ck'for ‘

the various codes) are equal performance is largely.determined by df/n.

For K=8 we have the following:

n df/n
2 5

3 51/3
4 | 51/2
5 5 3/5
6 52/3

7 55/7
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Decreasing the rate of the convolutional code much below R = 1/3 or 1/4
is probability not effective‘for the marginal impfovement in performance.
It appears that, for this reason, convolutional codes of rates below 1/4
are seldom used on the AWGN, although the price to pay is fairly small -~
a linear increase in the'decoder memory requirements.

It'has been stated [7]‘that increasing the constraint length by
1 will give about a .4 db improvement in.performance at the cost of
doubling the decoder complexity. This effect was observgd in tﬁe figures
given later. It is also reported that the bound iﬁ (3.1) is'typically about
1 db pessimistic from the performénce observed by simulation or measure-
ments. | | | |

Little attention was given to sequential decoding in this work.
The errof cur&eé for these decoders are steeper than for Viterbi decoders.
For a lOfn5 error probability the performancé of a rate 1/2 Viterbi
decoder, K=5 to 7 is comparable to a K=41l, rate 1/2 hard decision
sequential decoder. At lower error rages the sequential decoder is more
attractive. . (Note that for a sequential decoder complexity increases
linearly with K as opposed to exponentially for Viberbi decoders). There
is a 2db advantage in using soft decisions over hard decisions and this
advantage should be utilized, particularly for the data rates contemplated.
This is difficult to do in the implementation of sequential decoders but
relatively simple for Viterbi decoders.

A summary of the probability of error performance for various
rate codes is givén in table 3.2. The rate 1/2 and 1/3 codes come from
appendix B in [4]. The rate 1/4 code is from [5] and the rate 1/6 is

B

from [6].
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A small study was done on the K=8, ﬁ;l/Z, 1/3 codes to.determine
the effect of using only the lst term for Pe' In each case it amounted
to about 1db at Pe=10—5, but this figure is given as an indication only.
The implication is that the bounds for the rate 1/4 and 1/6 codes, where

no information on the path parameters other than df are available, are

about 1 db too optimistic.



(Rate, Z)

(1/2,

(1/2,

s,

(1/3,

(1/4,

(1/6,

(1/6,

144)

3)

96)

2)

72)

48)

1)

.10l0g10(1/62) at P

10~

=

=17.7
~-18.05
-18.4
=18.65
-19.0
- ~19.35
-19.55

oo B~W

-1.25
-1.60
-1.90
-2.15
-2.45
-2.90
~3.0

oo MW

~17.55
 -18.40
-18.85

-19.70
-19.95

tooNOYL MW

~-0.8
-1.6
-2.05
-2.40
~-2.9
-3.15

co~NOTUL P~ W

8% : -22.2
8% , -21.3

8# -22.3

8% =5.5

*FIRST TERM ONLY.

-19.20

b

107>

=15.7
-16.2
-16.6
~16.95
-17.45
~17.8
-18.1

~-0.2

~0.60
-1.00
-1.3°

-15.65 .

-16.40
-16.90

C=17.40

~=17.85

-18.25 -

~0.15
=0.6

-1.05

=1.45

~19.4
-18.5

=19.5

d =22
(gYSTEMATIC, df=18)

d _=34 (SAME PERF.
AS K=8, R=1/8, d_=45
7=36) .

(d=34)

Table 3.2. Values of lOloglO(li) to obtain probability of

g
3

bit error of 10 ~, 10

-5
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From the above comments it is suggested that a rate 1/3 code of
constraint length 5,6,7 or 8 is used. The generators for the codes are
given in [4], Appendix B. It is anticipated that most of the algorithm
will be in sofﬁware. A constraint length 5 should be considered first to
see if it can accommodate the desired rate. If not, some of the functioms
may have to be transferred to hardware. TIf it can, an estimate can be
made as to the largest constraint length the implementation can handle.

In cases where the system is to support more thanone data raté,
it may be advantageous to use the same convolutional.code.and merely change
the amount of diversity, rather than using a very low rate code for the
lower data rate. Some figures are tabulated in table 3,2 where the overall
rates are 1/6 and 1/288 respectively. The figures;for~the rate 1/6 code,
using the lead term of (1) only with coefficient unity, is optimistic{and
the.differences between say. a raﬁe 1/2, Z=3 and.ra£e'l/6; Zfl, is not as

great as it appears.
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3.5, Inter;eaver Considerations°

The comments of this section are interpretations of section 8.3
in [4], adapted to the problem of interest.

An ordinary periodic block or convolutional interleaver is
unsuitable for an AJ situation since periodicities in the interleaver
output can be exploited by the jammer. The following pseud0~rand0m:inter~
leaver would seem to have the advantages of being simple to implement in
software and effective both in distributing burst errors and providing a
measure of security against simple jamming strategies.

Suppose, taking into account the code rate, possible jamming
strategies and allowable.delay at the various data rates, it is decided '
to use a RAM capable of holding Zk bits. The coded bits are read into the
memory locations in a .sequential fashion, using only 2k¥1 locations and
omitting the initial location. A set of primitive polynomials of degree k'
is stored in a ROM. .One of these is chosen as the feedback éonnections
for a linear feedback shift register located in a memory address controller.:
An initial address load obtained from the PN sequence generator used in the

DS is also incorporated to avoid a periodic known data bit.

PN GENERATOR

INITIAL STATE
DATA
DATA IN RAM
| - - (PRIM
ngﬁﬁgé POLYS.)
CONTROLLER

DATA OUT

Y

Figure 3.5.




The memory address controller contains a clock which steps the
address register (shift register) through its Zk-l non~zero states until
it returns to the initial state. A neW‘(nonzero) initial state is taken
from the PN sequence generator and another primitive polynomial chosen from
the ROM, either sequentially or at random, and the process repeats. Dual
data RAM's would be used for continuous data flow. |

The deinterleaver will require RAM's three times the size-of the

interleaver RAM's to accommodate soft decision demodulation.

57.



" ‘Referernces.

[1] E.R. Berlekamp, The.Technology of Error Correcting Codes, Proc. IEEE,
V. 68, 1980, pp.564-593,

[2] A.J. Viterbi, Error Bounds for Convolutional Codes and an Asymptotically
Optimum Decoding Algorithm, IEEE Trans, Inf. Th., V=13, 1967,
260-269 ° '

[3] A.J. Viterbi, Convolutional Codes and their .Performance in Communication
Systems, IEEE Trans. Comm. Tech., V-19, 1971, pp. -751-772.

[4] G.C. Clark Jr. and J.B. Cain, Error Correction Coding for Digital
Communications, Plenum Press, New York, 1981.

[5] K.J. Larsen, Short Convolutional Codes with Maximal Free Distance for
Rates 1/2, 1/3 and 1/4, IEEE Trans. Inf. Th., May, 1973, 371-372.

[6] D.G. Daut, J.W. Modestlno and L.D. Wismer, New Short Constraint Length
Convolutlonal Code Constructions for Selected Rational Rates, to
appear.

[7] J.A.-Heller and I.M. Jacobs, Viterbi Decoding for Satellite and Space
Communication, IEEE Trans. Comm. Tech.,; October 1971, 835-848.




59.

4, Modulation and Coding for Digital Communication over An Interference

Channel

4.1 Digital Communication over an Additive White Gaussian Channel.

Forward error correction codes can be used quite effectively against
additive white Gaussian noise. A salient feature of white Gaussian noise
is that it is memoryless so that the joint probability density function of
an n-dimensional Gaussian vector has a product form. For any memoryless
discrete channel the minimum attainable error probability is.bounded above by

an expression of the form [1]

Pe) < 2-N E(R)

(4.1)

~in which N is the number of times that the channel is used in the trans-
mission of a code word (or a signal vector), R is thg information rate in
bits per chamnel use, and E(R) is a reliability’funétion; Provided E(R);O;

" the probability of error, P(e), can be made as small asiﬁeiwish by increasing
N indefiniteiy. (N is also the constraint length in sequeﬁfial decoding S0
that the decoding complexity increases with N). A typical reliability
function E(R) is sketched in Fig. 4.1, where C denoteé~the channel capacity,

RC is the critical rate, and Ro is the zero-rate intercept of the straight

line tangent to the E(R) at R=RC. E(R) is a convex downward function of R

Figure 4.1
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with slope -1 at R=Rc' Hence
ER) = RO—R : (4.2)
and the probability of error can be upper bounded by

p(e) < 2 NR,R) (4.3)

Ro’ which is also Rcbmp,’the computational cutoff rate in sequential de-
coding, is the rate beyond which the average number of computations re-
quired per information bit becomes infinitely 1arge;

From the digitallencoding and decoding point of view, the channel is
comprised of the modulator, transmission link and the demodulator in
tandem (the subsystem inside the dotted box of Fig. 4,2) and is characterized
by R - If'{gk}g_l'is a set of M orthogonal (or simplex) signals, the
channel will consist of M discrete inputs and M continuous outputs y =
(yl, Voo coes yM). The unquantized RO is given by

. w M ) ‘
R = max {-log [2 P /P(y|k)] dy (4.4)
o a4 B Kk
, {Pl} k=1 .
< .
where {Pk}’ 1 =k =M is the probability distribution of the transmitted
signal and P(Xjk) is the conditional probability of the output y given that

the kth signal was sent.

For a discrete memoryless channel with M inputs and J outputs,

J M
R0 = max -log2 ? [ Z Pk\)P(jlk)Jz (4.5)
{ Pk} j=1 k=1

As mentioned above, provided that E(R) > 0, P(e) can be made as
small as we wish by increasing N. It is observed that in the region
Rd<R<C, E(R) remains positive, but the encoding constraint length needs to

be made infinitely large for P(e) to approach zero. The region Rd<R<C
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Figure 4.2 Functional Block Diagram of a Dlig'itall Communication
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is therefore of no practical significance and, for all intents and
purposes,.the usuable rate is O<RSRO.

Suppose we desire to send one éf M messages. We caﬁ“sélect M
sequences'{ §k}’ k=1, 2, ...,M for transmission over the discrete memory-

_ less channel. The information rate R in bits per cﬂannel use is then
given by
R = = log.M (4.6)
N 2
Substituting (4.6) in (4.3), we have
p(e) = w2 R, | (4.7)
>which is the union bound.

For a given.N, P(e) is minimized if E(R) is maximized. TFrom the
information transfer poiﬁt of view it is desired to simultaneously magimizé
E(R) and R. From Fig., 4.1 it is bbservgd that the best opgrating point
is at R=Ré. In Ehe neighboufhood R%RC, E(R) can be maximiied by maxi-
mizing RO.

The maximization in (4.4) and (4.5) for the Gaussian channel is achieved

when P k=1, 2, ...,M and, using the product form of the joint Gaussian

L
k M
pdf, the unquantized Ro simplifies to [2]

R = log2

M
1+@=1) | r \[Psﬁ(y) P (y) dy]

log,M-log, IEH(M-l)[f_ \jPSJrn(y) P (y) dy]] (4.8)
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where Ps+n(y) and Pn(y) are the conditional probabilities of y given

the signal present and the signal absent, respectively. Define

D = J_mvPs_l_n(Y) P (y) dy (4.9)
Then

R, = log,M-log, [1 + (M-1)D] (4.10)
Equ (4.10) is the generalized expression for Ro’ derived by Omura and

Levitt [10] using a different argument. Since D ig a non—ﬁegative quantity
and log2[1+(M-l)D]20, maximizing RO is equivalent to minimizing D.
. For a phase coherent zero mean Gaussian channel with two-sided power

spectral density No/2 watts/Hz,

exp (—EC/ZNO) for orthogonal signals o
D = 3 . o - (4.11)

exp (—EC/NO) . for simplex signals
where EC=ST is the signal energy péf T seconds;and.sfis'the aﬁerage signal .
power. Then

(4.12)

log M - log, [1+(M-1)Exp(~E /2N )], orthogonal éignals
R .= %- 2 2 c 0
° log2M - log2[1+(M—l) Exp(—Ec/No)], simplex signals

To facilitate digital processing at.the receiver it is necessary to
quantize the received signal to a finite number of levels. ihtuitively,
R, is influenced by the effect of quantization and increases with the
number of quantizing levels used. Massey [3] has presented numerical results
which confirm this intuition.

Let the number of output levels be J=MZ, 2 an integer. Then =1
corresponds to "hard decision'" and 2>; corresponds to varying degrees of

"soft decision". From (4.5), we have
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Ve g s 2}
R = max {-log, 2 [ P ‘E("‘ k)]
° '{Pk}{ 2 je1 k=1 © :

For hard decision, i.e., =1, RO becomes [1]

R, = -2log, [{[p/M + | (4.13)
where g=1l-p is the probabilify that any particular hard decision is
correct.

With log2J=2 logZM Wozencraft and Kennedy [1l] have coﬁsidered re—
taining an ordered list of.the % a posteriori most probable signals,.

resulting in an % logZM bit number as the quantizer output and shown that,

for é list=of-% channél,

| L 2 [T\ |
R -2 log { = = M-l [1-Z o,
© ZQ/M-j=l V%3 +\J M j=-lJ)
X

. -1 oo ) : vy o . J_l
o (?«1) J_m Ps+n(x)dx [J_wan(y)dy] [Jx Pn(Y)dy]

is the probability of the correct signal occupying position j in the list.

where

For binary signalling, the unquantized RO is, from (4.12),,givén by

l—log2 [l+exp(—Ec/2No)], orthogonol signals
Ro = : (4.14)
l—log2 [l+exp(—Ec/No)], antipodal signals

The hard-decisioned RO is; from (4.13), given by

RO = l--log2 [1+2 V/P(1-P) ] (4.15)
where .
® 1 —x2/2
J “om e dx, orthogonol signals
14 N ’
P = c' o (4.16)

1 —x2/2

£v§ﬁ—7ﬁ— —on © dx, antipodal signals
¢ o
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The unquantized and hard-decisioned Ro's for binary signalling are
plotted in Fig. 4.3

4.2 Communication over a Partial-Band Jamming Channel.

Assuming ideal interleaving and deinterleaving, an interference
channel, as viewed by the encoder/decoder pair, can be assumed té be
memoryless. Then the interference channel problem can be treated as in
the additive white Gaussian case. The probability of error is again
bounded from abqve by the union bound:

Ple) = M2 Vo
The cutoff rate R0 is some function of the encoded symbol’energy\to noise
ratio:

Ro = f(EC/NO)
“and ‘

?c/No - EE/NO

where r is the code rate in bits/channel signal, Eb is the ehergy per bit,

EC is the encoded symbol energy, and No is the jammer power spectral density.
Let S be the average signal, R be the data traﬁsmission rate in bits/sec,
J be the jammer power and W be the equivalent noise bandwidth, then

- S/R
E/N = T

Define the signal processing gain as the bandwidth expansion factor:

AW
PG = R

Then

i
[xv}
(]

Eb/NO
In fact R0 is a function of the modulation, demodulation and quantization

processes as well as Ec/No' As shown in the previous section Ro is
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expressible as

R = logzM - log2 [1+(M-1)D] (4.10) .

where D is a function of modulation, channel characteristic, demodulation
and quantization as well as symbql energy—to;noise ratio Ec/No' In what
follows we focus attention onbinary antipodal signalling with optimum
matched filter reception under the assumption of ideal interleaving and
deinterleaving. Then Ro becomes

R, = 1-log, [1+D] | | (4.17)

Under a frequency hopping scheme an intelligeﬁt jammer will not -
attempt to jam the whole baﬁd.' Rather, it will concentréte its>jamming
power over only a fraction p , O<p=<l, of the band. Likewise, in a direct
sequence spreading environﬁent the jammer will concentrate hisvpower over

a fraction of the signél duration. The fractiOn'p is then-theAduty )

‘cycle. These two jamming situations exert similar eéffects on the trans-

mitted signal; In the discqssioﬁs‘to.follow we ﬁill:consider a partial-band
jamming situétion. Here we model the partial-band jamming By a random
variable. ‘ | | |

1 , with probability p

0 , with probability (1-p)
With this partial-band jamming model, the value of D given by (4,11) is
appropriately modified to account for knowledge of the jammer state to
yield [10]
(1) Unquantized and known jammer state

D =nmax fe} e—p(Ec/No)

1 O<pxl
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(ii) Hard decision and known jammer state : : -

_ max . e

e

(iid) Unquantized and unknown jammer

D3 = 1

(iv) Hard decision and unknown jammer state

_ max o=
D, = o<pﬂ\/l»op (1-pp)

ToE ” .2
P & Q( N <) = J L e X /zdx
0 2';')E.c Vo

Substituting the Di's in (4.17) we have

where

R = 1l-log, [14+D,], i=1,2,3,4.
o] 2 i

. It has been shown in [7] that the maximizing p is

XO i :

% = Ec/No ’ Ec/No s Xo
P )

1 . E/N =X

cC 0 o]

where XO is the solution of the equation

-X
Q(/Z—X')—-—‘/k—i—=o
Vg

The value of XO has been computed in [7] to be XO=O.7O9. Thus, ap
intelligent jammer can optimize his jamming strategy depending on the
value of symbol energy—to—jammér noise power spectral density ratio.
4.3 Comments

Optimization of signal transmission over an interference channel is
tantamoﬁnt to a maximization of the cutoff rate ROAor a minimization of

the parameter D. We have examined the unquantized and hard decision
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performance of communication over an interference chammel. In the
unquantized case, it has been implicitly assumed that the recei&er is a
maximum likelihood receiver. With soft decision the assuﬁption of maxi-
mum likelihood reception is only suboptimum.

Massey [3] has suggested an approach to optimize the sof; decisiop
threshold. It appears that optimum quantization for an interference
channel needs further investigation. Also, the selection of R0 is inde-
pendent of the coder/decoder pair. Intuitively, coupling the code desigh
to the Ro selection can potentially improve the performance of digipal
communication over an interference‘chanﬁel; The whole area of modelling
interferenqe channelsAand>the matching of modﬁlation and>cbdihg_systeﬁs
for such channels réquires further consi@eration to improve our unde;—
~ standing. Recent‘work in this area has iﬁdicated considerable_imprOVe_

ments may result.
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