(

QUEEN

5548 2
.C32
1984

IFFICE PROGRAMMIE

MUNICRTIONS DE LA
EMVIS PROGRAM BUREAUTIQUE

H USER INTERFACE DESIGN FOR
OFFICE COMMUNICATIONS SYSTEMSJ,

/.
Dr. Eom Carey

!

il
5
3

it

|

RYRNAIANAS

¥ 2 (‘ iei
Canaca Gouvernement du Canada anada
Communicaticns Mimistére des Communications /

~ - B

Acknowledgements: Grant Boyd was contract officer, content moderator

and ouresaucratic trouoleshooter; Roger Tessier, Art Benjamin aﬁd
André Dubois were instrumental in initiating this series of reports.
Sabine Rohlfs made importantAcontributioné t§ tha content of
chapters two and thfee;-Dick Mason influenced poth the style and
content of chapter three.
Preparation of this raport was handled most competently oy
Janis Pettis, wlbh assistance from Terry De Haaﬂ.
Diex Foster, Blair HNonnecks and John Verﬂterfﬁlt prov1ded

halpful comments on.sarlier drafts.

Ue('}p-y

NV 28 7998

4 I'
Bb,mh héau

banada
o j
—alUSen |

S L!blln g

o

~Table of Contents

Summary

1. The Elusive All-Purpose User Inberface.cececscessccccecnconsss
1.1 Wish Lists, Guidelines, Principles and Standards........
1.2 Conceptual Model Integration......................f.....
1.3 Integrating Applications............,...............}...

1.4 Integrating Excursion TaSKSueeessoesoansesssrsesaosnssosne

2. Design Principles for User and Interface EvolutioN.eeeeeeeess

2.1 Multifunction Office SyStemS..ieeeeeseseresnsnscssnesnss

2.2 USSP EVOlution....-...-n..-.--.....-a..--.a...-;--..-.-;

2.3 System Design Faotors..ﬂ................................

2.4 Product Design FaC OISy e eveeseosessensosnnnsonnnnnnnssns

‘3. USEP Intefface TEéting.'aonntoao-tatt-.O.!ot-;||oanononconnoa’
3.1_ Lab EXePCiSeS.o.|ao..l!o.0000000lco.;ooa;i|naon¢ycoo|.!l:

3.2 Testing PrototypeSeeeeeeescceesnoecnsoesocsasssessnaness

3.3 Interface Tesbing TechNiqUeS.cueeceeesssosseessssssnsens

3.4 Interface Malfunotion.;..................:..........;.ﬁ.

4. Sample Elements in Office Conceptual ModelS...eeeeseeseeseons.
4.1 Conceptual System Objects.....................;.......}.‘

)4.'2 Off‘ice Pr;océdurxeS.........-...'-....".‘...;;'.';‘.....V.'..')~

4,3 Future Office Models and TOOLS. .eesesseesocesssossonnoss

Appendix:‘ Summary -of User‘Intefface Tools for 0OCS

. " References.

1.1
1.1

T.11

301‘

3.6
3.15

3.22

b1
§.q

4-7
k.16

Summary: User Interface Design for

Office Communications Systems

" Tnis report is tha sscond in a series of threse reports

prepared for the Office Communications Systems (0CS) Group

.of the Dept. of Communications. The first report, User

Interface Components for OCS looked at the principles of
kuman-rompUCQr 1ﬂterahtlonu, via a framework of interface
levels., User Interface Tools for 0CS, the third report,

considers software tools, formal techniques and .knowledge

‘reprasentations as applied to user interfaces.

(n

=3
<

=~

Tnis second report, focuses on designing u
interfaces for the next Jencratloﬂ of office system
proeducts. Drawing on research in the human factors of
computer systems and on =xpur1mnntal 23S projects, We can
map out some of the design dacisions for OC5 products and

their implications.

In 'the first chapter we ask to wnat extent a standard
interfaca for OCS preducts can de developed. An initial

ction outlines the rols of interface standards versus

.Ju1d°llnes or principles. Than we demonstrate that

different office tasks require diffarent comeceptual models
of various antities; accerdinzly, a multifunctional cifiece

| system must support more than on2 conceptual model of office

antitiss Lo s2a2m 1acural o users. Given this limit on

cone puual modol 1nce;raulou, we 2xaninz2- the implication for

intagration of offica sarvicass.into a single user interface.

AOur conclusion is that manipulation of information or
objects is more resistant to integration than information or
object management. Another good candidate fdr
standardization is the user task of navigating within the
computer system: finding out "how do I get there from
here', when there and here are relatively vague in the
user's mind. We outline two experimental systems which

focus on thess 'excursion task' activities.

Tne second chapter explores a set of design issues for
OCS. It Dbegins with a mention of system scop2--a designer
MUST achieve a proper mix of central, local and personal
facilities. Various views of user 2volution arz presented
n2xt, Wwith their implications for a pregression of
interaction styles. The third section briefly reviews some
systam design questions like impacts on organizational
structures and participative design. Tha desizn framework
from the User Interface Components report is re-exanined,
With interest on the design process and its staged outputs.
vesign pragmatics, invelving conflicting interests and
aumerous literations to undo past errors, is the last topic

considered.

Glven th2 currant inadeguate state of our xnowledze
apout ruman factors, we must rely on axtensive testing of a
user intarface to readuce incompatabilities detwesn user and
system, a topie surveayed in crapter thrze. Some of this

(SN

1
+
o]
0ou
Ci.

aone as axperiments in ressarel labs, need not ba

rep2atad every tlne we design an interrace. Bul tne

- 'message syst

particular mix of ingredients in any one system will always
damand testing with prototypes at various stages. This

testing process can bz improved by a set of techniques

- surveyad in the third section of this chapter. Finally we

consider how to interpret and use the information about
interface weakness wnich we odbtain during the testing

procass.

The fourth chapter provides a concaptual perspactive on
current éxperimental ocs pfojects. #e do not present any
extensive exémples——these are available in the varipus
references cited. Tne focus instead is onlunderstanding the
conceptual differences oetween various systens and what tha
effects wight be.. These conceptual differences include the

origins of the system concepts (distriputed Jdata basszs,

[

ms or document processing), and .the mechanism

(

for specirying office procedural information.

An understanding of these design considerations helps
uS to see the decisions requirad in OCS products. That is
the real challenge for designers: to see dayond their
pefsonal view of tha 'ultimate interface' for the 'rzal
office', to appreciats how their designs fit within the

larzar framework of diverse office conmunications systems.

1: THE ELUSIVE ALL-PURPOSE USER INTERFACE

Is there a user interface fit 'for all seasons', a
universal OCS access tool which opens up a fpll spectrum of
services to a full variety of users? The answer depends on
the level we which to address the question: at the
conceptual model levelvthe>answer appears to be no. At the
dialogue level it seems the.answer is close to a yes:
integrated interfaces are appearing which attempt a
consistent view of the user/system interaction. This

includes assistance and excursion tasks.

1.7 Wish Lists, Guidelines, Principles and Standards

User interfaces, once badly neglectead, oW may oe
suffering from too much attention. Every new software
product announcement contains an obligatory reference to
'ease of use', 'user-friendly' or 'ergonomies'. w™ost users
feel that only 2xperience with the product will serve as an
evaluation. Use of a genuinely poor interface reveals its
failings; wuse of a merely medioecrs interface may de
accepted, since the additional capapility of a superior

interface inay not de avident. Paradoxically, use of a good

ry

interface often stipulates the appetits and may result in

mors user denands!

-

~ -

_, -

. 4
—

-l

~—

o o

- ek em am A W

2

User interface design is still emerging as an area of
study, and remains encumbered Dy proverds and folklore.

Designers sseking training will find some help in cognitive

- psycrolog some in software enginegering, and some farther
cJ 2 -~ <

afield in traditional ergononics, graphic arts,
orzanizational design, industrial sociology, etc. Managers
looking for practical measures-will find a mixture of wish

lists, guidelines, principles, and standards.

Wisr lists == Much of the early literature on human factors

in user interfaces appsars now to be in the 'wisn list!
category: a sat of desirable properties deseribed by their
effects on users. For instance,.one checklist of office

1

system.usability factors suggests that user interfaces

1

e
"Approachable
- Suitable (to the task)
. .Requiré lit\:le' menorization

.. 3upportive...

ete. Tnere was certainly a nead at one time for interface

. 1
designers to be sensitized tq thase kind& of usar needs.

I

Zut !

such a check-list offers at oest. desiraole factors, not

-guidance in achlavinZ or implenanting tnam.

s 1 . 3

Tne checklist can be made more detailed:

"Display formats for data input should be designed so as to
minimize user actions required for cursor movenent from one
entry field to ths next" 2, Tnis still leaves us to
supjectively evaluate whether a given design 'minimizes?',

and no nelp in tecrniques to implement a bdetter scheme.

Guidelines - there have bDeen some attempis to specify a set
of design guidelines which would provide the xKnow-row

lacking in the wish lists. For example:
"Rule 15: Provide a resat command that clearly
aports the current activity oack to a

convenient checxpoint..."3

or "In presenting data or small display screens,
no more than 50-35 characters per lins
_ . Y
should be Jdisplayed...”

Software engineers are ﬁot vsad to working with
explicitly detailed guidelines to the sane axtent as
traditionsal ergcnomics might pe. The tradition of
individual autoncmy may account in part for the lacxk of
agraament on many Zuldelines. The compilers of tne
guidelines from whien the last quola was taken were ooliged
Lo mark trose 2ntries on wnich treir sponsor coammittze could

not rezacn afreemant. Every amajer saction contains these

(31

on M Sy om OB eN =

1.4

'arguapble’ guidelines.

There are additional contriobuting factors to. the

failure of guidelines to have wide impact:

-other human factors handbooks are based on axtensive
quantitative field data. "Empirical data on
hunan-computer interfaces are simply not "available for

many of the Qquestions on wnich designers nead

guidelines. A guantitative human factors reference

‘handboock for interactive systems design appears to be

well beyond our current capability". >

-the design decisions are not easily separable. = Thus

“one valid guidelines may recommend providing the user

’

with all necessary information to ‘determine system -
state. Another may recommnend that screen displays not

oe cluttered with more than a certain density of

information. In practice the two guidelines may

frequently be in conflict.

-the right level of detail in guidelines is very hard
to judze. Too huchjdetéii of course negates .the
impact of the useful information. Most designers
would e hard-pressad to think of any al#ernative to

the following guideline:

"Tna displayed cursor should oe stable, 1i.e. should

.1'.5
remain where it is placed until moved oy tha user (or

conputer) to another position." ©

Un the other hand, less detailed guidelines might miss

sudtle decisions like the following (from the same list):

"User action confirming entry of multiple data items
should result in Input of all items, regzardless of

Where the cursor is placed on the display."7

Regardless of whether one agrees with this guideline,
on reflection it is a dacision we would want to make
consistent (one way or another) across a user interface.
Principles - what is nz2aded it not just know-how out

Know-when. This has two sides:

-KNOW When decisions are deing made. Design zuidance
can only o= efrective when design decisions are

explicitly recognized.

=£N0W Wnen certain guldelines should take effact, oy
understanding th2 principles on whien they are based.
For example, the guideline aocve on line lenszth is
dased on sye movenent patterns and the difficulty of
returning to the deginninz of the naxt lins when the
ling lengtn is too graat. Thus tre guidsline has more
lmportance in displays of long text than in sinzgle

line messages surroundead oy dlank space.

— ~

e = o

- em o

- s e ==

- e oW e

1.6

Design principles must pe linkad to the design cycley
so that design questions are not missed. A set of desizn

principles must "identify issuss, suggest alternatives, and

" present (where they exist) hard human-factors data at the

point in the design process at which this information is

MOSt relevant."5

In a companion report, User ‘Interface Componants for
3,7 an initial effort was made towards a set of desizn
principles for the limited domain of office systems. No
attampt at an 'ultilmate interface' was made; rather the
quastions raised within the design cycle were outlined,
along with selected principles (and references to more).
The principles wefe enpbadded in a top-down design framework
which,aftempted to Zive priority-to the more fundamental
decisions .about the interface. That degign cyele is

reviewad. in Chapter 2.

Tnese initial efforts need to be tasted in practice,
revised, and extended. .Additional inputs to the design

preeess include

- =desgizn tecrniques, tne pody of 2nginsering knowledge on how .

o sclve specific proolems

Ccr

=patter formalisms within the discipline of usar -intarface

. A P : , . X 0. -
desizn. Some of these are discussed 1n another reportﬂ‘ At
an informal level, consider the notion of 'operation' a

semantic unit wnieh alters the stats of a conceptual oopject.

1.7

Several operations mmay accomplish the same function of
achieving a target state; carrying out the operation may

entail a sequence of commands and responsses.,

In designing operations, the set of decisions to be

made includes at least the following M

a) numoer of places in the operation predicate (roughly,

the numoer of.parameters)

o) length of commands saquence in the operation
c). invertipility

d) commutivity

e) transitivity

f) structure of appropriats conmmand saquences

g) action type (move, create, remove, 2tc.)

A partlcular operation can change its form dependinz on

trhe Wway it comes to o2 used.

de rave a mueh {uller vocapulary for addrassing lowsr
lavels of tne iInterfaca like syntax and physical action than
w2 do at the level of sanpantic unit or conceptual models,

it 18 in these latler areas that the most fundanental

o e o S e

-

- e an A) am

-m o e

1.8
breakthroughs will be made.
-knowledge from other fields wnich estaplishas the

cause-effect relationship benhind the principles. For

exanple ,from linguistics we could borrow ideas like 12

a) dependéncy grammaré to explicitly ccmpare the syntax of

user languages with that of natural language

D) semantic diagrams to explain thz meaning of words in the

interface languagze

'¢) -linguistic parameters like valence of verbs, to help

- .develop th2 characteristics of operations as. described

above.

Standards - Wfiile we” awalt petter design principles,

software development orzanizations néed internal standards.
Triese could be restricted to a given project, or apply
across numerous applications to de offered to the sams aroup
of users. Tne level of consistency ﬁhe users coserve is
discuésed pelow in section:1.j. Fron the organizational

perspective standards can represent

-co-ordination amongst any developers working on tha same
application. Tris nas tha ultimate aim:of increasing

consistency to redjucs complexity for tne users.

1.9

-reusadility of interface cocmponents across applications,

both for users and developers.

- -capitalization of the knowledge of the best designers. For
examnple, a gulideline cited above prescriped certain line
lengtns for displays. Depending on the application, a
petter scbeme might restrict normal data to start in column
21 of a display, reserving a wide left margin for suotitles,
“pronpts ete., 13 Tris convention, articulated by a graphiecs
désigner, makKa2s this expertise availaole across an
_organ;zation when applied as a standard for certain

applications.

-standard developnent cycles for interfaces to facilitats

inonitoring, feedback and management control.

Standards, unlike zuidelines, wmust bz enforceable. A

Standard can be anforeced by

-requiring use of an interface management system, wWnich dy

. . . . -~ '
providing certain lowser-level features anforces a standard 14

-use of guantifiaple metricé, which developers must apply to
preve thaﬁ tna2ir Jesigns fall witrin the standard. Tnese
measures ars currently only applicaple after lmplementation
of a sizable part of the interféce. Testing with
appropriacte sanple greoups can then asséss usaoility.

Techniquas for testing are discussad in Chapter 4. Figure

o G an gu M Gy & an .

~ X i

- e o

1.10

1.1 shows one proposed System Attribute Specification for

usaoility. 12

-use of standard lists of allowed words, syntax, ete. For
example, recent human engineering guidelines for managenment
information systems in the U.S. Army provide a list of 39
acceptaole conmand wordé,~ahd a six.page list bf poténtial

comnands which they are to replace. 10
-a 'usability committee', which receives proposed designs
and applies a standard review. Review items typically

include 7

a) command syntax and semantics

'b) display and function key design

C) system message texts

d) printed output.

~Tne committes WOrks Dest when 1ts standards are comnunicatsd

peforenand to desizners, so that it functions in a review
and not a design role. Somestimes the committze defaults to

a comnittee of on2: -the wmanager rasponsible for a project.

"The manager normally has more than enouzh to do without

looking at interrace dstails; any large project reguires

" independent raviswers.

.11

-some standafds may be policed by Sutside certification.
This is common in programning language compilers and
hardware interfaces. An effort for user interfaces has been
initiated b& the CODASYL committee.'® Their development of
a video interface model for an operating system has only
recently oegun (i.e. 1s still at the wish list and
preliminary guideline stage). Other trade organizations,

even outside The computing industry, mnay follow.

1.2 Conceptual Model Integration

A dominant theme in discussion of projected office
systamn use 1is the integration of various application
services into a consistent interface. The intent is to
minimize learning overheads and promcte 2as2 of use. Much
of ‘the work on guidelines and standards with éoftware
development organizations in intended to achieve a high

dezree of consistancy across products.

in our frameswork of user interface levels, true
integration within the system would have to bezin at tha
conceptual model level. wWe need to consider what kind of
integration is appropriate at that level befofg considering
(in 3ection 1.3) the levels at which integration is usually
2xaminad--dialogue style and samantics, syntax and language,

and prnysical zction or display.

Conceptual medals as metaphors: the us

(%)

r's conceptual model

of systen objects and facilities must oe closely tied to the.

-;I

1512

objects and functions of the task world. The interface
designer must build an explicit model and convey it to the-

user 19 .

Analogies are frequently used to help initially
communicate tha model?® . For exanple, avuser of an
electronic file cadinet might pe told that the'electrqnic
files are like manval office files, the electronic
wastepaskat 1s a counterpart to the physical wastebasket,
and so on. The analogy must usuaily be left behind when it
has served its purpose as an-érientation device. Users
would be told that tha electronic file differs from its
pnysical counterpart in that a document may dbe
simu;taneously present in more than one file; changes to
the documentvmay avtomatically appear in each file, unlike

physical files in wnich only static copies can be placed in

different files.

The concept of the old physical files was derived from
two different views: the file as container and the file as
relationship. As a container, the file physically nheld
ﬁoéuments, and no document was physically presant in more

tran one disjoint container. 8ut the file was not

~referenced aroitrarily by a aunoer: iU was given a name

trat exprassad tne relationship of documents within it.

in searching for a document manually th2e container view
was dominant. In the electronic system, the ralationship

view o2comes dominant. - e are therefore oulilding a naw

model in which old notions likeucopying and deleting
documents must pa rethought--is a copy static or does it
change along with the original? dow do i delete a docunent
completely from the file system (and not just from one
relationship) when it exists simultansously in several

files?

Rather than encourage users to ouild a coriceptual model
of the file systen from their model of a manual system, w2
could have used slightly different analogies and build a
different conceptual view. wWe could have constructed the
file system so that all documents belong to one 'container'
file, but there are 'relationship' files wnieh are index
lists of docuaent names. A Jocument would exist in only one
container; a copy could de made but it decomes a separate
docunent. The delets function could be applied to an index
list to remove a relationsnip; appli2d to a containasr it
removes the dccunent and appearances of its nane in

relationsnips.

de don't want to argue nere about which model is more
efficient, whathar a synthagis 1s possiole, or wnier one is
mora markataole to new users. Tne point is just that tha
models are different, in terms of basic object types,
orzanizaticn of rfunctions, 2te. Tns way we construct
oparation samantics at_lower_interface>levels depends on

Y

which model we want {he user to nave.

~

- ey ey = wn

- G

-y =

~

~

- g W ey m) am em - e e M

- G

property cholces to -pe made could pe different (typeface for

.7

Given that the same application could have different
conceptual models,'how do w2 want to design the meodels to
promote integration? . We can apply the following vocadulary

to conceptual meodels for different applications

-the models are compatible if they are separate out
not contradictoy, for.example, a simple serviece whieh
retrieves time of day or ongoing weather mnay not share

any comnon structure with a filing serviece

-the models are coherent if they snare .some.commnon

structure put cannot be integrated into a single whole

-the models are consistant if they can de seen as
speclalizations of a more general concept, i.e. they

can De integrated into a larger whole

For instance, we may have facilities for.manipulating

documents of text or line drawings. OQur models of the

documents could be made consistent if tha same «inds of

funetions and organization are to be applied to 2ach if they
are organizad hierarchically, say; and w2 arz zZoing to be
editing the documents. Tn2 models could be consistent even

thouzh the mecranisms for input could oe separate and the

o

text, width of line for drawinzs).

1.15

On the other hand, if the line drawings are-to be
animated there is a sat of facilities for them which have noA
counterpart for text. The most we could have then would o=
coherent models of the two domains. (The vocadulary of
coherence and consistency comas from the study of
metaphor21 , and it is~suggestive to think of our

conceptual models as wmetaphoric in nature)

We will apply these terms to a popular model of some

office activities, th2 electronic desktop.

Desktop as model: the electronic desktop model was

pioneered in commercial products by the Xerox Star

workstation and adopted by Apple's Lisa system.
Tne major ideas are:
-available objects, typically files and doccuments, are

represented as graphic symbols on the desktop (display

sereaen)

-Whien in use, pages of the documents appsar on the

Screan possioly overlapping as they would on a desk

-movenant of documents or treir parts is the major

oparation for object manazenant

-onjects, properties and comnands ara meant to oe

visidle to the usar, =spacially in their altered state

I I\.‘

-

- o

?

\y

- W e e

-y -

~

s ek &9 s M tm b o an

w w =

) e

1.16
after a change.

Is the electronic desktop the foundation for a
consistent conceptual model across differsnt applications?
The Xerox’experiencé suggests this will not, in fact cannot,
obe the case. "In a functionally rich system, it is probably
not possiole to®represent evefything in terms of a single
model...Star's recofd-processing facility cannot use the
physical-office model because physical offices have no
'records processing' worthy of the nams... Theréfore we

invented a different model..." 22.

The models of records proéessing and document
processing in Star are thus coherent but'notrconsistent,
using the terms in the tachnical sense above. Records
processing, involving commonboperations in sequence for
records in a file, has no real analogue in documents.
'Cutting and pasﬁing' operations'on docunents are not
implementsd for snaring across record riles. Tns models are
Kept coherent by using documents to define and display

record files.

Another‘view'of the difference petwzen the nodels comes
from noting that the manipulations-désiréd on docunents are
easily visualized, and the Star ensures that they are
visible.:.ch the relationship of records within files or
processinz rescords in séquence isahotAtOieasy to visvalize.
Some-manipulaﬁions of record files which,could:not ne qpade

2asily visiole, like specifying joins across files, were

anitted to preserve'the conceptual simplicity of the

interface 23 .

A different model of course might allow visvalization
-of these operations 24 . Bul some concepts like event and
time will not be easily treated in a consistent visual way.
It is important that these kinds of concepts not pe
distorted to fit an interface style: recent research
confirms that trhe way in wnich concepts are represanted
affects the ease with which users can manipulate tham .
As we move past records processing to user-created office
procedures, it is not clear what Kkinds of representation can

pe effective, or how they can be linked as coherent models.

Whan the conceptual entities are restrictad to objects,
thelr management can De freated consistently Dy stressing
visibility. As events, timinzs and actions nesd to be
managed, the electronic desktop has to oe axtended to the
trus electronic office. No standard model seens likaly to

emerge. wWe survey some proposed models in Chapter 4.

Jthier potential common areas: as wall as object management,

ottier common aspacts of conceptual models imay 2e utilized to

increase coherence. rtor exanple, the amount of chang

(¢

axpected for various odjects and attrinutes represents a
fundamental aspect wnich may oe similar across different

vizaws cf the sane information.

-~

'
;
)
|
;

- ey w W

- oo d W @ e

- ey e

- em e

1.13

This is illuétrated by a conceptﬁal model forbtbe
professional tasks of accounting professionals, developed by
D. N, Podger.ZSThe accounting process model was derived from
study of accountants at work. The author identified three
zones of activity:

8
-an inner zone of pasic valuszs, oodjects and principleé

wnich the system must not allow to be overruled.

-an intermediate zone of general procedures wnich

might bde customizad via user function.

-an outer zone of spacific procedures which mizht

undergo more frequent alteration.

(These zones have some overlap with the sccope of processing

- disecussion in section 2.1)

From this task analyzis, a set of funections can de
defined which is local to a given task group. We therefore

do not expect these facilities to be shared across

'applications, although their definition structure night wall

be.

wWhile the contents of the different zones of change way

diffar, we might find similar mechanisms to dirsct the

change: the outer zone for instance mizht always pe

parameterizad cparations, while tha internediate zonz may

require user-wWritten procedures to implenent cnange.

1.3 Integrating Applications

The previous section illustratad that conceptual models
are unlikely candidates fdr uniformity. Differences at the

conceptual interface level imply that custom interfaces for

n

pecific tasxs will always prove inore effective than any

standardized interface that cannot be tailored,

On the other hand, a good deal of user activity (even
in different conceptual realms) is common. Oojects are
created, removed, relatad, displayed, ete. Wnile the
structures of the displays or relations may be diverse,
there remains a set of common operations for managing then.
In Xeeping with the notion of consistency in ths previous
section, these common operations should oe consistently
invoked. Typically this is done by defining generic
operations which have equivalent semantics across a droad

range of object types. The challenge then becomes to

0

onstruct an interface dialogus level which complenents both
tne common odject management operations and the spzcifie

ooject manipulation operations.

The proolan is compounded wnera Jiffasrent applications
are to run concurrently. de then want an intsrface whier is
integrated as well as consistent. An integrated interface
presents a single dislogus level view Lo the usar. Jbjects
are transieradle between applications, althouzh thair

semantic properties may change.

i

~
‘“

e

as -I

- oy

~

- o e oy

M

- - -

i

- -

Integrated applications will e subject to ths usual
tradeoffs. For example, integration of data objects will

require additional processing, and generic operations may

not be as powerful for any one application as a customizad

set. while integration at the various interface levels

appears natural, there are some inherent challenges and
. 2
limitations.

Integrating data objects: The simplest route to

(practically) intégrating'data objects is to reduce all

objects transferred across applications to a lowest common

denominatof of structure. This is typically characters and
numpers in text. -Graphs and spreadsheets can be movad into
documents by this conversion, but if the data is edited in
some way (say two spreadsheet columns swappad) then they

cannot always be moved Dack.

Sometiines the one-diréctional movement stafts with the
document, with the target a formatter for addition of othsar
media like facsimile or for typesetting. Movanent in the
other direction is more difficult: making an editihg change
bn the typesel version cannot usually 22 dons Dy sending
some small portion back to a word processor. The crange
must oftan be made to the original_docunentAénd have it all

formatted again. (usually a time-consuming process.)

1.21

It 1s now poséible to maintain data on a workstation in
more than one application ;t the same time.v A spreadshee
is moved into a document, but future changes in the
spreadsheet application are auvtomatically transferred to. the
documnent. Keeping track of these structural views
simultaneously Wwill becane more complex as record structures

and data relations appzar at the workstation.

Integrating dialogue styles: an interaction style optimized

for épplications stressing visipility, like the Xerox Star
workstation, is not nscessarily optimal for dialogue itself.
A choice to emphasize marking and selecting leads to use of
comnand menus for dialogue. Practiced users might want to
type commands, dut to maintain consistency we might have to
allow typing of paranster values and thus opan the deor to
more complicated spescification of document pieces.
Construction of office procedures may oe more effective if
the aditor program has some structural semantiecs puilt in,
out how do w2 relate this to the structure of other

deocuments?

The search for genaric cperations also becomes more
dirfiecult as the application realin beccmes less tangible.
Can move and copy operations oe applied to move links
Datwean racords or to copy valuas between tuples in a

realacion?

Integrating languaze and physical action: at the language

| eow ==

-

o - e

o o4 By &

/

o e ool W & = w

ey e e

mly

1,220

and physical actions level it is easier to standardize on
common features. Often this is implemented through a user

‘interface manager which provides standard parsing and device

~handling characteristics.:

In»the user language, one . has to try to choose. command
nanes whose syntax or use in naturai languagze follows the
prescribed standard. The designers of the Xerox Star
illustrate the problem with the example of printing a

document .?®This is performed using the generic operation of

.movihg tha Jdocumnent's symbol (icon) to the printer'symbol.

In other cases, the mcve operation ranoves the symbol from
its original podition. But requasting that a docunent be
printed normally sends a copy to the printer and leaves the
document in its existing location. - One could require the
user to make a copy before printing to ensure consistency,
but the designers chose instéad to allow the symbol to

remain.

At the physical level issuss, like the choica of

function Keys need to be considerad in intezration. There

"have been attempts to standardizs a 'universal' set of

Kays 2T ; Other kay sets are customized to a gZiven

application»ZB‘ . Dyﬁamioally labelled 'éoft"keys can also

be used, out this raisss questions of consistant

o

positioning, frequandy, =tec.

1.4 Integrating Excursion Tasks

Trie previous section 2xaminad ways in which a user
interface might support a diverss sét of application
services wnile presenting as consistant a perspective as
possible to the user. One of the services which will be‘
inevitably required is a rouvte for 'excursion tasks'--an
eiploration of system facilities to determinz an appropriate

operation sequence for -a desired function.

-There is a distinction betwsen help at this level and
help with the semantics or syntax of particular commands .
In the semantic case, thare should %e no new concepts to de
manipulated outside the conceptual model for the system
implementation of the task donain. In the syntax case,
effective use of examples and natural language parallels can
likewise ksep ths conversation to applications- related

elenents.

But the excursion task oy its very nature involves
manipulating system concepts in an effort to navigate from
one'application state to a new target state. Tne
organization of system functions decomes the Key alament to
be explorad. User action in response to a messaze which
reports inaoility to carry out a comnand or an unexpected
result (rormerly xnown as aerror messagZas) can also trigger

excursions. Somstimes the massage ra

(8]
n
—

vltes in specifie nelp

(

raguests,

O

Ut otner times the assistance may have to address

"how do I gzt there fron rare", whare there and here are

o mg o Gm 8y By wPm

my

-

.- =

only vaguely understood.

As discussed in s2ction 1 and 2 above, it appears that

" no universal conceptual model will develop to encompass all

likaly user tasks. We could therefore envision a separate

set of interface tools which provide orientation within the
system. Some suggested tools using artificial intelligence

are raviewed in a ssparate report.29

We outline here two experimental schemes which attempt
to provide excursion tasks as a primary service. Other
applications‘afe integrated into the orientation framswork,
réther than the usual practice of adding assistance to an

2

interaction style designed for other purposes.

Z0G is an experimental system developad at Carnegie

h o - § T
Mellon Unlver51ty;;and based on. ideas originating in an

earlier application system, PROMIS, at the University of
Vermont Medicél School.31The systen is intended to provide a

large set of seresen displays * accessad by menu sslection.

A new screen appears almost instantly after usar salection.

Selection ean invoke actions as wall as a3 new sarean, and

users can extend the display set.

s s o et e e e s e e

Referrad to as "frames" in Z0G.. This suggests 'framas"
in -the artificial intelligence sance, Wnich is toc strong-a

word for tha ‘ZOG contants.

1.25

Rather than a hierarcﬁy, tha secreen displays are
organized as a (potentially vast) network. For any
available application, termed a subjoo, an explanation:
" network can be constructed to allow users to navigate

through the application.

Navigating in Z0G: On e2ach screen there is a menu of

selections which will generate new displays In addition, at

any time the user may 2xamine
-the trail of previous display contents

-a list of seresens with forward links (i.e.

selectionsg) to tha current screen

-a s2t of screens spacially marksd along the way.

The usar can also
-clear the previously-held trail
-estaolish additional warks

-junp to an aroitrary secreen (each has a reference)

-s2arch for a character string in ths sereen nstwork

(or particular parts of screens)

-
A

oy e oy on &y B o

‘.

e an ood e WD A W e

.IIW

.26

Builders of excursion assistance can use the Z0G tools
to. allow users to orient themselves and explore a network of

facilities.

Special hardware has been adapted to rapidly generate
new displays, and software is available to design and

organize storage of new screens.

dowever experimentation with ZOG has shown that users
can réadily pecome disoriented. The problem seems to bde the
very local span of infprmation structure: the display
panels nead to have a map of'tﬁe vicinity as well as a

'zoomm-out' feature which provides an overview.

|72
2.
=
{n
tn

£S-1 is an experimental system developed at the
Federal Institute of Technology to run on a personal
workstation.32The research_goai was to design a single
consisteﬁt framework with dialogue support at all levels,
With emphasis on excursion tasks. X3-1 Qrovides petter
orientation than Z0OG oy using additional windows on the
scraen to 'zoom-cut' of the current activity-and place it in
context. There ig a sa2t of éommands,which can oe applied at
any time to these dialogue control windows, out doing s=o

does not disrupt the current activity.

1.27 -

There are three basic concepts in te XS-1 framework:
-a site, the current data objects accessible
-a mode, the current valid command set

-a trail, the history of previous intsractions viewed as

sites, modes and comnands.

Tness are meant to answer questions liks
-wheres an 17
-what can I do?

-how did I get here and where can I 207
The trails ars presanted as .sequences, wnlle the site and
mode spaces are viewed as treas. The user can sxplore any
of these by serolling the approp}iate display. Hes can also
move to naw data, a new comrand mode, orAa new command oy
jumping from the currant active location to an arbitrary new
locatioﬁ, or oy :ncving within the tree or ssquance: up,
down, (and rigrt or left in tress). This also allows a

partiecular trail to 22 rarun or 2ven undone.

- ey BN Sy Gy Sy By Sw Gy oy Oy @ ON & AN

-y

- e ew ws e

o e e e ae o W W S W

1.28

‘The current XS-1 assumes that the data and operation

spaces can be structured as trees. An interaction ksrnal

provides the interface for application programs to the

. central dialogue control. The syntax of commands is defined

to the interaction kernel by syntax tables, and the file

structure and editor are built to support tress. (Howaver

the same concepts could be extended to more general network

structures with enhanced movemant commands).

Thus the dialogue author can take advantage of existing

functions like automatic menus for commands and prompting

. for parameter completion. The dialogue author has fto

structure the data and mode spaces to fit the XS-1
conventions of many small objects linked together. The XS-1
developers sse this constraint as an advantage in preventing

poorly-designed interfaces.

Some additional sophistication could be added to allow
the spaces to each dDe structured differently, and for the
dialogue author to provide additional levels of structure
allowing the user to obtain an overview of mode clusters.
Diyerse-conceptual models will still require varying
exploration mechanisms. For instance, a user of a 3
dimensional spreadshset, might want in the site window to
move betwsen sheets, and in tbe data window Lo seroll across
the given'sheet. Thefé might nesd to de ;nother Qindow té
show the columns wnich are defined on a currently active
column;- Even forms definition and use in zeneral may

require different movement facilities.

1.29

The extensions of the previous parazraph are meant to
show that the X3-1 excursion facilities nzed noﬁ be viewed
as universal. But XS-1 does provide a suggestive mechanism
-for displaying the organization of large command sets and
structurad data. Wnile we may not be adle to intezrate data
and command structure into a single uniform framework, we
can achiave intezgration on a different level: access and
control facilities which allow us to display and explore the

interface object can be unified.

- - N -

oy ey oy oy o9 Ay O O B Ay

)

- By ey es S e GO sk 8 od w WD O W i OB W e

2. Design Principles for User and Interface Evolution

2.1 Multifunctional Office Systems

The last chapter suggested that some éspects of office éommunica-
tions systems - those at the conceptual model level - are not likely to
be standardized across different kinds of office work., We are still
-learning how to think about the properties of office work as they relate
to computing systems. Some aspects of dialogue style, language syntax
and excursion tasks can be consistent, but there does not appear to be a
magic model which will make all the interface complexity dissolve., We
are used to switching rapidly between different-contexts; like record
processing and text processing. In future multi-funetional office

systems, we will have to tell the machine about the new context and

adjust to a new set of manipulation operations.

This process will never be wholly natﬁral; .Suppose we say that we
can make communication with the machine at best "90%'natural", without
attemptiqg to define that term further.® If two kinds of application
services are each 90% natural, but I have to remember their features as
I switch between them, then the overall system effeét may be about 80%.
That is, the probability of the communication not seeming artificially
constraihed may well be the product of the individual components. With
more types of functions, the adequacy of the interface will drop
further.

* except to'say that we may derive some such number based on communi-
~cation between people from different cultures.

2.2

We may raise our vague number of 90% to 95% by using artificial
intelligence techniques or other advances, but by then we will likely be
attempting to integréte even more functionality. The history of the
computing industry suggests that our reach has almost always exceeded

our grasp.

The design challenge is to build interfaces which treat information
in diverse ways but for which the overall complexity does not rise
quickly with the number of different views. If we are not able to
address this problem, to design so that the overall 'naturalness' is not
much worse than any individual application, the consequences may include

- rejection, partial use, or even abuse of the office communication

system

- resigned acquiescence, where users adjust to the constraints and

suffer the erosion of theirrcreative ability to do things in

innovative ways.

Of course office brocedures often seem now to be artificially
constrained, so one may argue that office communication systems will
replace one kind of bureaucracy with another, more efficient one. This
would ignore the potential of information techpology to expand our
creativity. It also ignores the fact that office technology is being
designed to integrate personal task management into the office system.
We are challenged both by diversity of applications and by differing

scope of control.

o oy By Sy Gn On Sy 4 PN N An an Em o

A By e W e G B Ge Gd Gr s R A VR W R WS s

2.3V

Me-Us-Them - Developers of organization information systems sometimes

categorize their products as shown in Figure 2.1.

The operational products represent the corporate infrastructure by

‘which data is recorded and managed. This includes transaction process-

ing, standard exception and control reporting and other data management

functions,

The informational products represent information access and éommun-
ication on an unstrﬁcturéd, ad hoc basis. Various query and retrieval
langgages are the common products supporting these functions.

The decisional products represent personal toolkits applied by
individuals to the information they have obtained., Decision-maker
support falls into fhis category; in a broader sense so does computer-

aided design.

The three categories are supported by different development life
cycles. The operational systems, because of their wide impact, are

developed to meet firm requirements. The informational systems are.

built in gradual but distinet stages, or are built by users with generic

support tools., The decisional systems are often too complex to be built
effectively by users, but are built in an evolutionary fashion in

response to user experience with working releases.

- - ,-

‘Operational - transaction processing (order. entry, etec.)
-~ administrative operations (payroll, personnel)

~ 3cheduled reports

- data dictionary

Informational ~ data base query
- ad hoc reports: trend analysis, exception reporting,
ete.
Decisional -~ decision maker support systems

- computer aided design

- other professional task support

Information System Product Categories

Figure 2.1

‘- o wm W

- WA S N WE G GN SO GN SN N W

2.5
This view of application or service scope is adapted from Art
Benjamin,! who sometimes refers to the levels as "me-us-them", That .

corresponds roughly to the degree of control to be expected by indivi-

duals in organizing the facility and the information.

"The history of "management information systems" failures should
remind us of the danger of locating control and development within the
wrong scope. Any attempt to build centralized systems for supporting
individualized activities faces major difficulties. As the grcwth of
personal comﬁuters in-large corporations éttests, local tool acquisition

must be considered a factor in office system design.

The design principles to be drawn from these considerations are

- design the scope of an application service and its development
with.aAthouéhtful mix of central, local and personal components.
For-systemS'désigners within organizations{ this means matching
the organizational éulture with the right set of products. For
product designers, this means an explicit awarenesé of the scope
of control and development in the intended ﬁarket.

- expect the addition of personal facilities which will need access
to information and which will benefit from integration of dia-
logue styles, with centra; facilities. This will mean product
design which allows customization at the workstation level, so
that é heavy user of a pérSdnal tool can adapt the central

facilities to a personal style (and vice versa).

2.6

2.2 User Evolution

We have previously considered the effects of user differences in
degree of exposure and kind of exposure to an office communication
system.2 From a design perspective, we consider here only the exposure

8

differences over which a designer has direct control: the evolution of

user behaviour caused by increased exposure to one system in one task.

There are several different perspectives from which one can examine

the evolution of an individual's usage over time:

Knowledge view - this view considers the increased knowledge users

acquire through more use, Typical growth stages might be3

using packaged facilities with no prerequisite knowledge

- learning the basics with continual support

.= independent knowledge of standard features

- probing more complex features

- evaluative and comparative knowledge (seeing the interface as it

could be)

If our interface is truly successful, users will reach this last stage
and request extensions and new features, as well as constructing some

themselves,

Language view - it is possible to view user growth as measured by

linguistic units employed in user input. This corresponds to the way

people learn natural language. Possible growth stages might bet

o W) a5 am am a8 o

e o0 e S8 en e o4

- o

w -

2.4

In the office environment, the infrastructure consists of elements
like forms, messages and procedures. The information access involves
file systems, with file organization having a localized, unstructured
flavour. The personal tools include calendars and-préject management

support.

Word processing has sométimes appeared at the infrastructure level}
where an organization creates a word processing pool as a corporate
service, It is now more‘frequently treated as a generic function but
with lbcai organizatioh. WOrkstations like the Xerox Star make some
‘docgment preparation a strictly personal task, while leaving more
general functions like text entry in a locally-shared word pfocessob

facility.

The categoriés by which we think of office system facilities thus
depend less on the perceived type of function and more on the scope of
control and scope of data management. Figure 2.2 shows a view of office
systems which parallels the inforiation systems view but revises it
(corrects it?). Some facilities like electronic communication are most
naturally central in~scope, including access to external networks.

These staﬁdardized systems will likely be built with traditional or
semi-traditional (prototypes, etc.) life cycle development., Filing and
some procedures will often be iocal to a given'working group, and will
be developed locally from generié.functiéns. Many indi?idual.tools will

be very personal and built or acquired in many ways.

Central

Local

Personal

Central data base

Forms definition and control
Messaging systems

External network access

Other shared resources (e.g. mass storage)

File systems

Professional tools

‘Conferencing and project control

Other shared resources (e.g. printers)

Private tools and files
Mailbox

Personal procedures

Office System Product Categories

Figure 2.2

]

-y o9 Oy oo GU Gn G 0 o8

oy W

-l B DU SN BN G GY S0 OGN ON OGN WY @

2.7

- word communication: user thinks of one word at a time

- phrase communication: user thinks in groups, e.g. all parameters

- sentence cbmmunication: user thinks of complete command lines

- paragraph communication: user thinks in sequences of command
lines

- creative communication: user creates hew words and phrases as

appropriate

If we have highly unnatural words, like complex command abbrevia-

tions, communication may even degenerate to one character at a time,

Concerns view - Another perspective sees users advancing through several

different major concerns about the user interface, A typical progres-

sion would be
- ease of learning
- ease of use
- efficiency of use

- ease of extension and modification

Interaction style - all of the abovevperSpectives culminate in a

practical progression . of interaction styles. Each stage in the pro-
gression requires increased user knowledge or language facility, but
offers increased efficiency and hatural use. Typical stages of inter-

action would be

2.8

- system displays value, user explicitly accepts or rejects. The
concrete implementation could be a questioﬁ/answer dialogue with
yes/no options. This would suit only casual, novice users,

- system displays-set of values, user chooses one‘or more. The
implementation would typically be a menu gith some form of
selection.

- prompted value entry (no value display before ent}y). The
implementation could be a form to be filled in or a question/
answer dialogue where_the user enters a value,

- free choice entry. The implementation could be a command
language, possibly with prompts to indicate a mode, i.e. a
grouping of available commands.

- user custémized entries. This could include user-selected
options for error messages (terse or verbose), defaults, para-
meterized commands, user profiles, ete.

- user created entries, This could include user creafed comﬁand

macros, command abbreviations, and packaged kits,

There are other perspectives which consider changes in acceptance

and satisfaction as well as the cognitive changes.>

Beside providing appropriate interaction styles for users at
various stages of learning, interface design must plan for encouraging
growth of experience. There must be a consistent. progression of

facilities. To encourage user learning, earlier interaction styles like

- /-‘

G Sy S0 Sm S0 P OU e GO Gy e M) an

2.9

menus must use the command names which a later style will need; some-

times a menu or question/answer style echoes back a command in command

language form to reinforée the learning process.

In the other direction, usefs who fali back from a command sentence
to a word entry should not receive an error message. They should be
treated as if word or phrase coﬁmunication is perfectly natural, subject
to‘the need to reinforce a growth path. This may involve providing a

form filling mode, a menu or question/answer.
2.3 System Design Factors

Designers of office products are the major audience for this
report. System analyéts within a user organizétion, whb must match
their organizational needs to a given set of pfoducts and plans, face a
somewhat different set of problems. The role performed by marketing
groups in a prbduct_organization -- determining the target market,
establishing cost/functionélity tradeoffs -- will lie with the analysts
in a system design environment. We sketch here three concerns these
anglysts will want to bear in mind; the product designers will want to

consideblhow these issues affect their designs.

2.10

Integration and scope: as discussed in section 2.1, the system analyst
will have to plan for an integrated service within which central, local
and personal scopes of control can co-exist. This will include choosing
carefully an analysis and development strétegy suitable to the planned

Scope.

Organizational design: an organizational authority structure and

communication pattern can be either enforced or altered by introduction
of an office communication system. System designers will want to under-
stand the implications of their designs for organizational relation-
ships. For‘example, monitor mechanisms in a new message system or
assigﬁment of authority for changes in user privileges are important

aspects of organizational politics.6

Participative design: System designers who can identify their users

have more opportunity than product designers to dtilize participative
design methods. This represents an effort to improve task level design
by major involvement of users. A deliberate effort is made to view the
proposed system as both a technical and a social entity. 1In particular,
improved job satisfaction of the users becomes a stated objective.

There ére various alternatives for user participation, and caée

studies to outline their merits and drawbacks.”

2.4 Product Design Factors

The last three éections have discussed the environment within which
user interfaces of office systems products must function. That environ-
ment includes a mix of system development strategies and organizational

scopes, and a mix of users in different growth stages of system use.

In this section we examine the evolution of prbducts designed fér
that environment, during the product design cycle. We consider first a
design cycle for perfect designers with complete undefstanding of their
target and complete control over the process! This gives us a framework

for the design sequence, within which we can then consider design

| reality with its iterétion, backing-up and compromise,

Design framework

TheAdesign framework attempts to make explicit the decisions being'
made and to order them in priority. Since low priority decisions are
deliberately delayed as long as- possible in the design process, this
framework is similar in flavour to what isvusually termed top-down
deéign for functional or computa@ional program systems. Top-down design
derives its name'froﬁ levels of organization for program systems, in
which the top level outlines overall module structure and details are

delayed to,lower.ievelé.

In user interface design, the levels correspond to organization as
perceived or experienced py the Eggg. (The actual implementation of the
interface may thus be quite dissimilar in structure to this organiza-
tion.) The design process attempts to model the user task at the top
level of modularity, and delay action details for lower levels. Since
the interaction is a series of communication acts, the framework assumes
that semantic .structures are more fundamental than syntactic rules and

lexical variations.

The’design framework sketched here reviews the user interface
- components previously discussed: task, concepts, dialogue, language and
physical actions. They are presented here as outputs from design

phases.

Task phase: the user interface designer has to have more than a func-
tional specification to understand the role a proposed system will have
in the users' tasks.' The additional information about task context
begins with the purpose of the task within a wider setting. For
example, the wider task is not to send messages but to communicate
information about project management, say. We also need to know about

- the degree of predictability and structure

- relative importance to the user

- frequency, interruptions, elapsed time.

2.13

This task analysis may be given to us as requirements, but more
often it will need to be constructed from interaction with target users,

marketiﬁg staff and management.

The result of the task design phase can be expressed via specifi-
cations describing the system functionality in the user task domain,
plus some narrative or séenario seripts® filling in the task context.
The output from the task phase avoids any vocabulary not already present
in the original task. There may also be scenario scripts for current

activities to illustrate the existing task context.

Conceptual phase: The conceptual design phase establishes a system

model, and provides a mapping between task entities and system entities.

The system model categorizes all the task-related objects with

which the user will come in contact: files, documents, records, -

- messages, etc. Potential states and values of these objects are in-

cluded as part. of the model - e.é., perhaps‘files can be of type .record
or type message, with different charaéteristics. There must also be a
map for the organization of the,system_states, so that the system
functions are defined by showing possiblevtransformations of the
objects. Where the functions themse;ves are organized -- into modes or

access levels --the map must bring that out.

The system model can be expressed via

- a glossary of objects and terms. The glossary is helpful later
in restricting system response messages to a planned vocabulary.

- diagrams showing organization of objects and mapping "how to get
there from here".

- enhanced scenario scripts. The scripts from the task phase are

expanded to describe the system concepts being manipulated during

- the interaction.

The conceptual design phase normally produces a set of system
-models, corresponding to levels of user exposure.9 The first model may
rely heavily on analogies from the existing task environment. Subse-
quent models‘will repfesent planned growth in user knowledge. Certain
models may be selectgd as primary, designating the largest usage

classes,

Dialogue phase: at this point we have defined the information content

of user-system interaction, but said nothing about the method of
communication. In the dialogue design phase we define the interaction
style or abstract means of communication., Later we can specify the

concrete contents of interaction and the necessary physical actions.

In designing the inﬁeraction style we have to choose
- a sequence of dialogue types (menus, command language, etc.)

which promote development of user knowledge and efficiency

2.15

- the semantics of user operations which perform the conceptual-
1ével state changes: "what operations are valid for each element,
what information‘is'needed for the manipulation of each element,
what the results of the oberations are, and what errors may
ocecur™ 10

- system responses, including meaning of various forms for system

output.

At this design phase we have to consider not only the original

tasks of the user, but also the new tasks of learning about and navi-

‘gating in the system, Adding features for these activities may expand

the conceptual model, when additional help modes or assistance compo-
nents are to be distinguished. The set of conceptual operations expands

to include these facilities.

The output from this design phase includes
- a specification of the dialogue user operations and system
responses

- expanded scenario scripts showing usage sequences,

The structure of the dialogue is often specified in diagram form,

as a high level tree of user choices or a more general interaction

‘diagram.?! The specification must also explicitly relate the contents

'_of»the system display to the conceptual states of the system objects --

is What’ydu see'what'you get?

2.16

Language phase: designing the interaction language involves defining

the concrete terms to be used in communication and their organization.
This includes the actual words to be used for commands, the grammar
rules of a command language, the order of terms on a menu and the

meaning of spatial or typographic cues on displays.

The output from this phase includes

- a language grammar, including error correction and reporting
algofithms

- a dictionary of command words (with the semantics described in
the dialogue phase), menus and system messages

~ expanded scenarios

Physical action phase: in the language design phase, we might have

specified user selection from a menu. For the physical action design
phase, we decide on the mechanism of selection: 1light pen, cursor
movement in various ways, typing, etc. This defines at the device level
what is actually happening. We would also define elements like function
keys and their positions, and specific typefonts, colours or sizes for

display outputs.

Output from this phase includes
-~ keyboard layout and detailed screen layout charts
- physical parameters for system display or user inputs

- final details of scenarios.

- 2.17

Format of phase outputs: we have not discussed at length the actual

format for grammar rules, dictionaries, etc. Many will take advantage

of automated aids and be used as tools during implementation.!2 The

scenafios'can,~for the language level and the physical level, be imple-

mented in appropriate prototype tools, as discussed in chapter three.

In certain application domains like data entry, the task can be
partially described with standard checklists to automate part of the

task design phase.l13
Formats used for the conceptual model are much more diverse and
informal in nature. Some work in. knowledge representation may be help-

ful in making these notions more precise.1“

Another suggestive set of terms for the design framework15 de-

~ scribes these design phases as

- intention

- connotation
- denotation
—_rules

- constituents

Design reality

‘In the interests of simplicity, the framework outlined above
deliberately ignored several aspects of realistic design. In practice
the sequential, top-down process consists of several iterations as
knowledge is added from other sources. That is, the framework above
accounts only for input from a single designer. Whilé overall interface
design usually maiﬁtains its integrity by allocating design responsi-
bility to one individual, the interface is improved by contributions
from other professional developers, from management, marketing or other

organizational perspectives, and from users,

Design teams: the relation of user interface design to other design

elements is still being explored. Originally, user interface design (if
it could be called that) was a last sequential stage once the functional
implementation was complete. More recently, some development methods
recommend the exact opposite sequence - user interface design precedes

all functional development.16

In new products, where the tradeoffs of various elements are
initially uncleaf, it appears inevitable that functional and interaction
components will be designed and developed in parallel (along with any
special hardware). This can be done either by accident -- returning to
earlier stages in one design cycle or the other as errors and omissions
appear in the sequenced development -- or by deliberate intent to have

both kinds of design proceed concurrently.

The communication and control paths between the two design streams
are still unclear, although some effort is now going into definition of

concurrent design methods. 17

Design politics: "The designer must face the fact that design is as

much a political as a conceptual process. Unfortunately polities have
been equated with evil.,.. but politics are the process of getting

commitment, or building support, or creating momentum for change."18

A designer's view of the user interface will thus have to be
defended to, corrected by and modified for the following groups within

the designer's organization:

a development group, whose perspective will stressbease of

implementation and maintenance

- a 'product integrity' group, whose perspective will stress con-
sistency across product lines.

- a marketing group, which may be seen as representing the users!
perspective‘

- other management levels, concerned with cost-effective develop-

ment and an‘Opportunity-window (the time withih which the product

must reach the market in order to be most successful).

Design iterations: the various input sources and the testing strategies
of the next chapter will inevitably produce locps back-tovmodify earlier

design decisions. The lure of a quick fix to a perceived problem, must

2.20

be resisted; concefn for maintaining design consistency requires that
change at any level causes us to rethink the interface level above it,
as well as letting the changes affect lower levels. This feedback
requires that an explicit representation of the interface exists at the

higher levels.

Experienced designers evolve a set of informal design techniques
and rules for understaﬁding the effects of tradeoffs and change across
levels. The choice of object/verb versus verb/object syntax in a
command language, for example, is determined in large part by the con-
ceptual view and dialogue style of the interface. The object/verb
organization does make default entries slightly more efficient, but we

wouldn't want to sacrifice much conceptual integrity for efficiency.

User-oriented design

The participation of users in the system design process was men-
tioned briefly in section 2.3. For product design, it may not be as
easy to identify representative users and secure their co-operation; for
reasons of practicality or organizational protocol, a marketing repre-

sentative may represent the users during product design.

If the feedback from users can be obtained early in the design
process, the following points need to be remembered to take advantage of

the feedba¢k19.

-2.21

- users are not ihventors, and will not usually be able to suggest
new methods to replace those deemed unsatisfactory

- ‘users cannot usually relate to tradeoffs except in very concrete“
terms |

- users should take a reactive perspective, expressing likes and ‘

dislikes, and reasons.

For later design stages, the user interface testing techniques of

the next chapter can be applied.

Note: we have not discussed the design of user documentation.

3. User Interface Testing

User interfaces need to be tested before, during and after imple-

mentation. These test stages involve lab exercises, simulated use,

demonstration prototypes and field trial versions. Testing guidelines
and techniques increase the benefit from %ﬁch stage. When users
experience difficulty, we need to determine where the trouble occurs;

how the trouble occurs and why the trouble occurs.
3.1 Lab Exercises

There is a growing body of behavioural science research addressing
the psychology of user interfaces. These laboratory exercises can also

be used early in systems developmént.
-A typical lab exercise contains the following steps:

-~ isolation of a single issue to be studied

- design of a quantifiable test exercise related to the issue
- administration of the test exefcise to sample groupé

- analysis, formal or informal, of the test results

- interpretation of test results relative to the original issues

A classic lab study which illustrates the steps was performed by
S.K. Card and others to evaluate a mouse cursor control against other
mechanisms.! The original issue was which device (mouse, joystick .or

key controls) was more effeétive as a text seléction'device.er,text>

‘displayed on a terminal. The test exercise involved timing users as

3.2

they positioned'the terminal cursof onto displayed targets. The results
showed that mouse users took less time than users of other devices.
Formally, the result was statistically significant; informally, users
saved fractions of a second, on average, for each target selection. One
plausible interpretation of the results is that a mouse interface will

be mdpe effective for text selection.

The central strength and central weakness of lab exercises are one
and the same: the original issue is reduced to a one-dimensional
problem., This reduction lets us isolate and study a single behaviour;
it also ignores other interesting behaviours. For example, the mouse
study did not consider mouse learning times, user anxieties, the problem
of hand movement from keyboard to mouse, etc. Even in restricted

settings, lab behaviour and field behaviour may not match.

Surveys of reported lab exércises and a view of their implications
are just now beginning to appear'.2 While these are not specific to ahy
one system, there are instances in developing particular systems when
suitable issues arise for informal lab exercises. Here are two

representative examples:

- To study user compatibility of a set of proposed operations, sample
users are given a list of operation definitions. Then a series of task
situations is presented and the users are asked to match these cases to

operations (or sequences of operations).

3.3

Where the user responses differ from what the designers were
expecfing, we will suspect that'either our descriptions are inadequate,
the breakdown of operations is inappropriate, or the whole task model
needs rethinking. If new descriptiéns do not produce any change, wé
will want to tf& new decompositions of the system functions.ﬁfto

operations..

It is important that command names not be introduced before we have
investigated the clarity of the operation set. Of course well-chosen
names will aid understanding of descriptions; however, the various ways

names interact will make it difficult to distinguish poor name choices

from'poor operation definition.3 (We may want to ask the user subjects

to name the operations as an indication of descriptidn clarity, but we

- shouldn't expect users to be skilled at choosing good names for others

to use.)” On the other hand, a lab exercise could help determine the

boundaries of user vocabulary at the conceptual level.5

Similarly the operation descriptions should be at the same level of
generality. Otherwise, on first exposure more people may tend to use

generic"operations,6vregardless of the clarity of function decomposi-

tion.

-- _ The previous example examined a conceptual-level question where

testing during use was not suitable. Usage, real or simulated, would

have required the dialogue, language and physical levels to be speci-

3-’4

fied, and we would lose the conceptual-level question. Lab exercises

can also be useful at the opposite eﬁd of the design cycle, to study

execution issues like the mouse vs. key control study outlined above.
’

A major difficulty facing execution level studies is the effect of
learning.4AWe know that efficiency of use is not a concern in the first
stage of user exposure, Lab exercises tYpically employ novices as |
subjécts. This minimizes tﬁe interference effect of previous learning
but makes it unclear how the lab result should be generalized to actual
use. With physical actions like mouse control this may not be impor-
tant, but studies of the efficiency of different syntax rules will be

more difficult to interpret.

The organization of output displays has been frequently examined
using subjects without prior system exposure. One particularly inter-
esting example compared a fixed format for display of messages with a
format which users could adjust.7 " This was done early in the design
process to help indicate whether personalized display formats were worth

adding as a feature.

Two groups wefe exposed to a timéd sequence of messages. One group
was encouraged to design their own ofder for the different message
components (eighteen in all); the other group was given a fixed format
chosen by the designer. Both groups were allowed to take notes. After
the messages were completed, a comprehension test was administered

(without notes).

3.5

Subjects allowed to personalizevtheir message formats made a
similar number of errors on comprehension tests as did subjects shown a
fixed format.' However, the pebsonalized format group took much fewer
notes on'messagés during the exercise, possibly suggeéting that their 5
message formats may indeed haVe been more effective in conveying infor-
mation. There was also a good deal of agreement on ﬁhe personalized

formats, indicating that the designers' original choice of display

- format probably needed improvement.

Note that users were always tested by objective measures rather
than by their own preferences. Given equal performance, we may want to
let‘user opiﬁion have considerable weight. However, it is difficult for
users to always estimate or evaluate the impacts of system variables on

their effectiveness.8

OQutside of a léb exercise format with strict controls, statistical
formalism is fréquently not productive, Individﬁal differences in
performance amongst experienced system users is often as high as 30 to
1. . That Qariability and the inability to limit external factors make
valid experimental deéign difficult in the prototype testing situations
to be described next. Only obvious performancé differences between
groups will be significant, and then only as we analyze their causes. We
will rely in protoﬁypes more on differences beéﬁéen observed and

expected user behaviour.

3.6

3.2 Testing Prototypes

Software developers recognize the value of constructing functional
-prototypes.g Early in the system life cycle, users can provide feedback
and view progress. Prototypes can correct incomplete or faulty func-
tional requirements specifications; less tangible, but possibly as
important, they develop a sense of system ownership for users. Manage-
ment within software development also responds positively to viewing a

prototype - including funding decisions in a product environment.

Using prototypes to test user interface characteristics is some-
times more difficult. Users exposed to early system mockups comment
quickly on missing functions or faulty logic. But awkward features and
inconsistencies, when noticed at all, may be attributed to lack of
training or personal inadequacy. By the time an initial release is made
available, the complexity of interaction may encourage designers to look
for quick fixes to problems rather than their underlying causes.
Patching up on-line assistance messages often replaces careful diagnosis

of usability flaws.

In this section, we consider the different stages of interface
testing with various prototypes, including the kinds of user interface
problems which may be exposed at each stage. Section 3.3 contains
guidelines for running test sessions which address interface quality.

Table 3.1 summarizes the prototype stages.

Lab exercise

Secenario

Demonstration

Field Trial

3.7

Table 3.1

Testing Summary

single issue experiment

implications typically for novice use

increased knowledge of users and task

very useful in requirements specifications

observations of novice use
shows impact of all interface levels

shows ease of learning

actual usage patterns revealed

- observation of intermediate and practiced use

shows ease of use and efficiency of use

3.8

Scenarios

A scenario is a simulation oan prototype system capability.
Unlike a lab exercise, users should see themselves in an actual task
situation. Unlike a demonstration prototype, a scenario prototype
responds to only a restricted subset of the user options available. The
scenario is frequently implemented in a quite different way than the

final system.

Scenario scripts were mentioned in chapter two as a design tool.
These include task descriptions constructed by analysts or users, and
system interaction descriptions constructed by designers or independent
reviewers. Scenario prototypes differ from scenario seripts in inten-
tion. Prototypes are meant to allow users to experiehce, early in the
design cycle, what it will be like to use the system being developed.
They- should be an animation of the current design - to make it come

alive.

Scenarios impose two artificial aspects on system usage
- functionality.is simulated, so that response time; are not
necessarily realistiec |
- the problem or example is chosen by the designer, not the users.
Within these constraints, scenarios can help in the following testing
areas:
- evaluating a narrow focus question (much like a lab exercise) in

relation to a specific current design

i

3.9

-~ examining the correctness of control flow and information
display

- observing problem solving and information handling by users

The degree of realism required by the scenario depends on what we
want to test. A paper .simulation can capture enough of the live
experience to address single.issues, like a lab exercise. A software

prototype provides better animation, so that we can get information on a

-wider range of questions. We can work from a fixed script and obtain

user opinion and reaction for control flow and information display. To
observe problem solving, we prepare a scenarid which follows €nough
decision paths to allow users to make choices. We can record the
choices and times to yield objeotive data, as well as noting subjective

reactions.

Within data processing literature, there are numerous examples of

. scenario usage to examine control flow and correctness of information by

user opinion.10 The following two examples illustrate ways to address

single design issues of problem-solving behaviour.

-= A quick and simple test of a videotex interface was performed to

consider the effectiveness of the initial instruction set.!! A drawing
of a sample keypad and the set of proposed'instructions wés given to a
large group (students in a classréom). After reading,the'inétruétiéns,
the subjects were to write, in a space pfévided, the label on the kéy

which they would press first in response to the instructions. Over half

3.10

the respondents had the wrong key. Several design iterations followed,
each using the same convenient test method, until the instructions were

deemed effectivef

== A computerized Flight Design System to aid in planning space
shuttle flights was simulated on paper in increasing levels of detaill?
(requiring_use of more specific commands as the design proceeded). In
each simulation, the goal was to determine the extent to which the task
structure required by the user was properly supported. All computer

responses were calculated or estimated by the designers on the spot.

Demonstrations

A demonstration prototype provides realistic processing of user
queries or data within some restricted limits., The system responses are
not built in; the users can therefore bring their own problem data
provided it fits the prototype's limitea functionality. The users must
recelve training so that they employ the actual commands of the current
design.

In demonstrations we typically need to probe the reasons for user
actions, In this way we try to determine which of many contributing
factors is helping to shape the observed behaviour - training materials,
interference from other systems, and fhe various levels of the system

interface. For scenario prototypes, we have to define in advance the

3.11

kind of test data we will use, given what kinds of observations are of
most interest. In demonstrations we may start with sémple cases, but

asking users to bring along current work helps to detect unusual cases.

AExample demonstrationApayoffs ineclude:

- detection of menu problems in an IBM System/34 user interface.13 &
prototype version was programmed and run with sample tasks and
participants for various user groups. Usage problems fell .into two
clear classes: cases where more than one menu item seemed a likely
choice, and cases'where no menu item seemed likely and a shotgun
approach resulted. With this information, the designers were.able to

generate a new menu set, A second set of demonstration runs con-

firmed that the major problems had been addressed.

- improvement to help messages for a business graphics package.1u
Faced with an already -existing system in which only the assistance
messages fell within their mandate, the experimenters produced four

- redesigns of the help facility in response to user error -patterns.,

These examples illustrate a more focussed demonstration than is
usually possible. Unlike lab exercises or scenarios, demonstrations

sometimes must serve as 'fishing expeditions' where we are not sure what

user behaviour will be of interest until it appears.. The most we can do

then is note the user respohses we expect on the sample data. Tech-

3.12

niques for recording the actual behaviour are treated in section 3.3;
some suggestions for categorizing the causes of problems are included in

section 3.4,

Field trial or version '0' usage

Demonstration prototypes are usually exercised with close inter-
action and recordirng by developers. That fact alone makes usage arti-
ficial to some degree. There are also limitations on duration of use
and the scope of actual test cases.

Testing, therefore, has to include use in a real task environment
by real users. The users should be typical, but sometimes for political
reasons the test sites are selected in unusually supportive surround-
ings. User management must be prepared for the additional burden of
developer observation and some product flaws yet to surface. Field
trials within the system developmen@ depaftment are not as instructive

as an external trial or 'version O' of a product,.

A version O or field trial prototype is a working release of a
§ystem which is intended to receive use under conditions épproaching_the
production environment. While it is specifically designed as a test
release, it is usually expected that the final product will build on
version 0 by enhancing the implementation of functions,‘adding requested

alterations, and generating additional documentation.

3.13

The field trial is the first objective source of information on

" intermediate and practiced users. ‘Since the volume of data generated by

the trial will be large, we want to look for patterns of use rather than

individual incidents as in a demonstration.

Table 3.2 lists the various techniques to be employed and their

goals., Techniques are described further in section 3.3.

Many field trial techniques have been used to observe production
release use, Such observations record surprise about commands which
were used improperly or never used at all. There are also numerous

accounts of partial use, in which users stick to a small subset of

- commands and ignore other system features which could be easier for them

to use.

Descriptions of planned field trials are available for products

like a decision support system!® and an electronic mail system.16 For

"~ each, a variety of observations, measurements and interviews was used to

illuminate patterns of use. In the first case, in which the phrase
'version O' is used, the major payoff was a better fit with,the'task
structure. In the mail system trial, an attempt was also made to

measure productivity gains.

Table 3.2

Field trial data collection

Question

What are users doing?
(incl, documentation usage,
asking other users)

Why are they doing it?

What do users think they're
doing? (conceptual model)
What do users think about what
they're doing (job.

satisfaction)

What would users like to do
(including task model)

Data Collection Technique

Software logs
Observation and recording

Debriefing, talk-through sessions

Interviews, questionnaires, talk-
through sessions., Possibly
scenarios (alternate scenarios to
evaluate conceptual model)

Interviews, possibly scenarios

N

3.3 Interface Testing Techniques

During the stages of interface testing summarized in Table 3.1, the
need arises to observe and record user behaviour. This includes both
visible activities and the cognitive activities behind them. The

techniques used are summarized in Table 3.2.
Interviews and questionnaires are well-known instruments for data
collection. We will describe in more detail observation records,

software logs, and talk-through sessions.

Observation records

User activities communicated to the system can be recorded by the

system in a software log. Other simultaneous activities must be

. recorded separately to interpret the meaning and timing of the software

log. Such activities include:

- reflection

- consulting other users

- consulting printed documentation or written instructions

- composing personal notes about the system

- task activities not directly related to the system, such as
interaction with clients. '

An observer during a demonstration or field trial can note any'of
the above which appear to be of interest. But it is more productive to

have an observation routine in addition. The observer. can still be free

3.16

to rqcord particular items which fall outside the routine. Some of the
routine may repeat measures taken before system use to estimate system

impact.

o A variety of observation méthods are outlined in Table 3.3. In
each case it has to be clear fo the users that it is the system being
evaluated, énd not them. To reduce bias, observers should not be the
designers. The evaluators or observers should make this apparent (that
they have no personal interest in the current design), so that the users

~will not suppress comments out of politeness.

Task recprds, communication diaries, etc.:17 These tools were mentioned
in chapter three as an early part of the design cycle. Their repetition
here may serve as a measure of system impact. If used in that way,
there should be a control group who do noﬁ use the system but who
"complete the measurements in the same way. This may reveal the effects

of a second record, independent of the system.

Activity sampling:18 This technique may also have been used early in

design. At periodic intervals, the user's activity at that instant is
recorded. A typical interval time is 15 seconds, which provides a
detailed record of actions but permits time for encoding. Observers are

given training in use of special coding forms.

.) . N f

3.17

Table 3.3

Observation. recording methods

Task record, communication diary

Activity sampling

Video recording

Audio recording

Compare with same record before
system use to assess impacts

Compare with same record before
system use to assess impacts

Synchronize system interactions
with other activities

Synchronize system interactions
with talk-through sessions

3.18

Video recording: A videotape or film of a user session can be electron-

ically synchronized with a software log, and can be timed separately by
frame or with a visible clock. This permits detailed analysis of the
causes for system problems, need for documentation, etc. It is especi-

ally useful as an animation of user difficulties for the designers.

Audio recording: In sessions where users are encouraged to talk through

what they are doing, and to work co-operatively with another person, an
audio tape recording captures the conversation. It is again a vivid
presentation for the designers. Stereo tapes have been used in which

one track carries user keystrokes and one conversation.

Talk~-throughs

A 'talk-through' or 'thinking aloud' session involves uéers who
make verbal commenfs as they work in an interactive session. The goal
is to illuminate the reasons behind various actions, for later analysis,
Recording of such remarks was discussed above. We will note here some
procedural considerations; a fuller discussion appeérs in a report by

Clayton Lewis,19

A natural way to encourage comments about the interactive process
is to have users work in pairs, one at the terminal and the other
adjacent, acting as a helper.20 This is most useful for observation of

novice users who can be expected to seek out advice.

A less.natural but equally effective technique.is the presence of a
'silent partner', to whom questions and comments are addressed. The
observer must be berceived as neutfal, i.e., having ﬁo stake in the
system. It is usually important for the obéerver to initially prompt
the users to keeé talking. The observér's comments must not influence
the user's course of action, so they are limited‘to questions like "What
thoughts are coming to you now?" (not "Why did you do that?"). If the
observer wants to ask detailed questions, the session can be replayed

later as a debriefing with the user.

Thus, the user may ask‘qﬁestions of the obsérver but will not get
anéwers. In extreme cases - the user is about to quit -‘pgrhaps that
rule could be Qaived in the interest of keeping the session going. At
times users are informed that they will be given the answers to only a
fixed number of questions (say, 3) during their task. Users should be
encouraged to express frustrations and emotions as well as conceptual

problems!

Software logs

The observation records listed above provide anecdotal and context

--material which supplemeﬁts.the record of user-system interactions.

There is no substitute for data showing actual usage of the systen,
especially if statistics on large-scale use are desired.,_With minimai

software overhead, such déta can be recorded by the system itself,

3.20

A software log records user entries and system responses. The
records may be coded if the monitor is an integral component of the
system. Otherwise the actual dialogue is recorded and later parsed to

recover language constructs from the charagters transmitted.

The log will furnish frequency statistics after a little lexical
analysis. The occurrences of various commands, error messages and help

messages are thus readily available,

Commands: Designers have sometimes been surprised to learn about the
relative frequency of command use (or lack of use).2! To analyze
command usage further, pattern recégnition techniques can be employed,
with some effort, to distinguish different activities based on length of
an interactive session and command pattern.22 Formal models can then be

built of the different types of system use.

Similarly, keyword parameter frequency is easy to obtain., It may
also be of interest to analyze user-detected errors by recording lines

deleted before full entry, erasures within a line, etc.

Errors: The frequency of error messages, expressed as a raw statistic,

will not usually yield all the information we need to improve the inter-
face. A sophisticated software log will also compute the frequencies of
various pre-error patterns (eg. the preceding 3 commands) and post-error

patterns. Post-error patterns are particularly interesting when another

Al E BN = N I B N B BN BN 2 D B N B) EE e

3.21

error message follows, indicating the original errér diagnosis.or
suggested options were unsuccessful. We can also detect probable typing
mistakes by comparing the command strings before and after error
messages, SO thaﬁ examining error patterns distinguishés keying problems

from more serious difficulties,

Tracking use of an undo operation, which reverses the effect of a
previous command, can likewise aid understanding user behaviour. Help

messages can be analyzed in .similar fashion to error messages.

Privacy concerns: A software log naturally raises the issﬁe of user.
privacy. The simpler frequency statisties cén'be kept without refegence
to a specific user. Analyzing patterns requires recording’of at least a
few commands in sequence, but there again need not be associated with a

particular person. All non-keyword entries like filenames should either

"not be logged or be coded to disguise the user.

To analyze whole sessions, user learning, or Qariability between
people, the usage record must be tied to a subject. If the number of
users is small or some users have distinctive patterns then their
identity may be recovered from their pattern Qf use. Users should be
told the purpbsevof the software log and how to turn it on if they wish
to contribute. Note that this is not the same as being given the

option to turn off the monitor. Moreover the decision to“partigipate

3.22

must be revocable - once a user chooses not to participate, due to the
nature of the data desired, no software log will be kept from then on

(i.e., the log cannot be disabled for one session only).
3.4 Interface Malfunction

The information obtained by interface testing is, of course,
pointless unless we are able to apply it for improved products. We need
to consider the data on user-system interaction to determine what
situations need to be classified as problems and analyze them appro-

priately.

The term malfunction is deliberately chosen to label undesirable
performance without assessing blame (unlike the labels (user) error,
(software) bug or flaw). It is a mismatch or poor fit between the task

requirements and ﬁhe human resources applied.

We will consider

- where the problem appears (the external appearance of the mal-
function)

- how the problem emerged (the interface level of the maifunction)

- why the problem occurred (the mechanism of malfunction)

Some of our terminology here is adopted from another interface area

in which malfunctions can be critical -- control displays for nuclear

'3.23

1r*eact:or‘.$:.}é1 Extensive testing is performed on operators using simula;
tors, since critical incidents are rare but have enormous consequences.*
Each instance of malfunction is analyzed for the benefit of thé-operator
and the interface Aesigners. The symptoms and interface levels of
mélfunctions afe different in an office system environment, but the

underlying mechanism of malfunctions appear to be task-independent.

External appearance of malfunctions: ' The most obvious symptom of

malfunction is detection by the computer system of an incorrect user
request. This could be triggered by

- omission of a required item within an entry

- a syntactically invalid entry (grammar rules broken)

- a semantically inéppropriate entry, i.e, syntactically legal but

not correct

For example, if user wants to send an electronic mail message, MAIL1,
and the proper command is

SEND '‘MAIL1 TO SRON ,

then MAILt TO SRON is an omission,
SEND SRON MAIL1 is a syntax problen,
and SEND MAIL2 TO SRON if MAIL2 does not exist, is semanti-

cally incorrect.

* Reading the accounts of errérs occurring on nuclear plant simulators
is not recommended for the faint of heart.

‘3.2H

Of course, a more worrisome case would occur if MAIL2 does exist
and gets sent instead of MAIL1. When the system doesn't detect the
problem, the symptoms will be

- cancellation or reversal (undo) of the operation

- repeéting the operation with changes.

The former case can be located in a software log, but the latter cases

must usually be noted on a one by one basis.

A final type of external malfunction appearance concerns timings:

- unexpected elapsed time between entries (user takes longer than
expeéted to decide next entry

- unexpected length of operation sequence (user takes a seemingly

roundabout way to reach a target state).

Instances of long elapsed time between entries will be recorded by
software logs, but may have extraneous causes, like interruptions from
external sources. Apparently inefficient use is typically not detected

by the user,

Malfunction level: The external appearance is the symptom of malfunc-

tion. It shows where a problem has occurred. How the problem arose
requires further analysis. Typically, we have to examine malfunction
patterns, study think-aloud records, and interview users. Figure 3.1

uses the levels of an interface to describe malfunctions.

ﬁ-m :] - - -

intentions not fully formed
task goals not supported

status or target
identification inappropriate

operation inappropriate

language expression inappropriate

physical execution inappropriate

Malfunction Levels

Figure 3.1

TASK

CONCEPTUAL

DIALOGUE

LANGUAGE

PHYSICAL

3.25

In the previous discussion of interface levels, we noted that the

stages may not be distinct, particularly past novice or intermediate

exposure. However, before we can improve the interface, we have to

attempt this kind of analysis. It is pointless to emphasize language

syntax for example, when we really need to alter the semantics of system

functions.

The first element of the figure could really occur at any stage in

which the user's attention has not been sufficiently focussed on the

problem at hand. Reasons for this are discussed later in this section.

3.26

At the task level, thg malfunction may have arisen when the user
attempted a task not supported by the interface. This could typically
be an attempt to reach a task state which is not attainable, including
information access in an excursion task. The user may have chosen the

closest alternative avail§ble in hopes of arriving at the desired state.

At the conceptual level, the-user may have misinterpreted the
current status of the system or attempted to reach an incorrect (but
reachable) target system state. Where these states have been correctly
identified, an inappropriate operation may have been chosen (at the
dialogue level) which will not move from current to target state. This

may include interruption or other facilitative operations.

Syntax errors, invalid command names, turn-passing omission (eg.
failing to press RETURN- key) are examples of language-related mal-
functions. Typographic errors and perceptual mistakes like reading a

word incorrectly are typical physical level problems.

The connection between external appearance of a malfunction and the
action which brought it about is often indirect.. Tracing back from the
symptoms of a problem to‘the action can be challenging, frust;ating, or
both. However, knowledge of the user's intent, a record of the action
sequence and an understanding of the interface will always hold the clue
to how errors or wrong answerés have arisen (inefficient usage as a

malfunction is-less straightforward).

\

3.27.

Malfunction mechanism: To understand why a malfunction has occufred, we

need to determine the user's cognitive actions which determined the

observable actions., Not all of these will be accessible, so we will

- often have to. infer the processes by which actions developed.

Figure 3.2 illustrates some of the analysis questions which might

be asked to clarify possible interface improvements.

Where normal attention_has.not been applied, most of the causes
will not be under the control of the interface designer. Improving the
aesthetic appeal of the display or providing more media of output caﬁ
alleviate some boredom, but motivétion or fatigue ﬁroblems are job
related. They do indicate a mismatch between the resources. demanded by

the task and the resources applied.

Physical problems are often mixed in with stereotypes. Where a
display is too small to read or keys are hard to reach, the problems
(and solutions) are physical in nature. Where a person reads or types a

word incorrectly, the actions may involve predicting/confirming skills

and suffer from interference of similar words. In these.cases, we may

need to alter the word choices at the language level to avoid mistake.

Stereotyped behaviour can involve more than perception. For

~example, a user may correctly "read" a status display, but the infor-

‘mation may not‘register.‘ That is, the need for higher level processing

3.28

may not be noticed and a common response may be involved incorrectly.
To correct this kind of malfunction, we will need to foster user aware-

ness of non-typical situations and more noticeable displays.

Where the need for appropriate knowledge, has been recognized, the
information may not have been applied., The user may have not recalled-
the required knowledge, may have recalled it incorrectly, or may never
have known the needed facts. in each such case we might need to improve
the interface (including supporting training and documentation) so that

.information is easier to learn, recall and access.

Sometimes false conclusions will be drawn from correct information.
An analysis of such situations may lead us to reduce the complexity of
mental processing required, to provide more information.cues in poten-

tially difficult cases, or to alter training materials to include them,

Partial use of an interface, where users are satisfied with a
subset of knowledge (sometimes applied awkwardly), is typical in early
use. If it persists into intermediate or practiced use, then the inter-
face is failing to encourage user development. The fault may be in
documentation and support materials, or in an overly complex pattern

which discourages learners.

3.29

These mechanisms of malfunction appear to arise in most cognitive
processing tasks., User interface designers have to develop the humility
to blame their designs -~ and not the users -- when the interface

requires more work than they can apply.

4. Sample Elements in Office Conceptual Models

Some aspects of conceptual models for office systems were discussed
in section 1.2 above to illustrate the difficulty of designing a single

model of diverse, multifunction systems. We compare here some elements

of proposed conceptual models (implicit or explicit) to see how an

underlying model affects the orientation of a system and what its

" designers considered as important.

These models differ from analytic models whose purpose is to log

and categorize actual office activities, e.g. information control nets’

‘or the Kayak EA/AQ2 family. The analysis models may be used to help

design portions of the office system, but they are not intended to form

the users' framework during interaction.

Our focus is on two aspects of conceptual models,
- the objects in the s&stem and their organization
- the mechanism for describing information management procedures or
automated methods.
In particular, we yill not discuss information manipulations like

various editing strategies or gquery language structures, -
4,1 Conceptual System Objects

. Three basic orientations appear in conceptual models for office
systems, yielding three perspeétives_on'the central activity of an

office:

4,2

- office'functions can be perceived as centering around the infor-
mation stored and manipulated by individuals and groups. From
this perspective, office services are viewed as a distributed
data base and central concerns include data consisténcy and
access,

- office functions can be perceived as centering on the output
produced by office workers, From this perspective, office work
focuses on document production and distribution.

- office functions can be perceived as centering on the commun-
.ication process amongst people and groups. From this perspec-
tive, the major system functions are message processes and

co=-ordination.

We present the conceptual models of information management in three
distinct systems: the Xerox Star records processing, which has its
origins in document production; IBM's Office-by-Example (OBE) research
system, which has its origins in data base systems; and the O0ffice Forms
System (OFS) from University of Toronto, an experimental system derived
from data base work but deliberately aimed at transcending the limita-
tions of a data base orientation. OFS includes plans for extensive
message co-ordination, which we will not dwell on; other systems explor-
ing a messaging perspective are Officetalk-D3 and the Kayak4 family. The

conceptual objects are summarized in figure 4.1

?igure b,

Conceptual Entities

Definition _ Storage
Star - Defining document Record file
OBE (Table definition) Tables
OFS Form type . Form instances
Forms

4.3

Display and Query

Display document
Filter
Sort order

Form
Report
(menu, program)

Form templates
(text, voice, data)

Star: the Star's information management facilities form the records

processing extension to the original document production functions.5

Since it was a released product before records processing was added,

particular effort was directed at maintaining consistency with the

Record files are initially defined through a

‘original document conceptual model (discussed in section 1.2).

defining document,

whose field structure and names are carried into the file definition.

Display or query of a file requires a view, consisting of

- a display document, which selects a subset of record fields and

possibly combines them with other information

- a filter, which selects a subset of records
-.a sort order, which determines the sequence

,presénted.

in which records are

4.4

Insertion, update and deletion of records follows basically a
.document editing model. The notion of a blank form used for updating is
foreign to the spirit of this model; record insertion is like inserting
a line in a document. Similarly; a filter requires a specification of
patterns to be matched in a record, following the model of an editor

searching for all occurrences of a pattern.

The document paradigm does not easily handle rules or relations
amongst fields of a record. The defining document may have rules to
fill in fields from other fields, but these are consistency checks and

are not maintained as part of the record file.

Office-by-Examplé (OBE): OBE derives from its relational database

origins (child of QBE) a perspective with relational tables at its
centre.® The tables are defined first. Data objects which can be

linked to tables include forms and reports - forms are used for both

input and output, reports are output only. Forms are generalizations of

relation tables; they are not tied to single tables the way Star's views
are tied to a single record file. Reports and forms are linked to
tables dynamically by specifying example elements shared by the table

and the other data objects.

Where the Star regards record processing as an extension of text
processing, OBE views text processing as a degenerate case of a2 report -

one in which no fields are related to tables.” In a wider sense, tables

4.5

are seen as prototypes for general two-dimensional boxes, which may also
contain sequences of commands (programs) or preset forms and relations

(menus).

Office Forms System (OFS) : OFS has its origins in data base management
systems and has more concérn for data types énd consistency control.8
The ubiquitous word form is given a very general meaning here and
several variations.

- a form type specifies the data types of fields inia form énd
optionally some procedures for.consistency checks, generating
field values from other fields, etc. |

- a form instance is an occurrence of an object Qith a given form
type, plus results from associated procedures. For instance, a
‘form type may include a procedure for loggingvchénges to a
particular field, so that the form instance cohtains a history of
previous values. Form instances have unique identifiers to‘track
time of creatiqn and user.

- a form is the set of field values (= a form instance without
attendant procedures)

- a form templaté specifies a way of interpreting or displaying a
form instance. Téxt»templates één be used as display documents
in the Star sense; data teﬁplates can be used to treat the déta
in form instances as a relational table. Templates are more

general than OBE forms, since they can also transform data in the

4.6

form instance itself., Many different templates can be defined
for a form type, providing alternate views of a file of form

instances.

OFS thus attempts to generalize beyond its data base roots to allow
a variety of interactions between fields in a form, via form type pro-
cedures and template mappings. This requires the careful separation of
types and instances (techﬁically we could have spoken of template types
and template instances), and a departgre from OBE's world of pure
relations. Consistency issues and maintenancexof data base integrity
are addressed in a more general way when the procedural elements ar?

tied to the form type.

We have examined three different conceptual models for functions
which seem on the surface to be similar. The conceptual model we choose

will structure the user's thinking and interactions with the system.

There are other models which depart even further from what we might
be used to ih traditional office objects, for instance a system modelled
on 'migrating forms' which are independent processes moving about a
network.9 If the forms carry the. intelligence and the workstations are
seen as passive servers, this is nearly a reversal of roles. In pre-
vious work in programming languages this kind of metaphoric change in
system initiative and control has been disruptive.10 Choosing the right
model for a given group, especially the degree of alteration in tradi-

tiqhal models of work, has to be approached modestly and cautiously.

4.7

4,2 Office Procedures

The objects and operations described in the last section mechanize

‘certain task aétions, like searching through files, and offer substan-

tial integration of various tasks into a commbn framework., In order to
accomplish some measure of task autémation, we need a mechanism'for
recording sequences of decisions and operations - an automated office
procedure. To go further and offer task augmentation, i.e., opening new

tasks within the office, we would require new capabilities like monitor-

- ing of current workstation loads or of delays in processing.

In this section we compare elements of several schemes for office
procedure processing. ~The proposals are in various stages of develop-
ment ranging from research design to substantial (but incomplete)

implementation.

One way of viewing procedures examines whether they express a set
of activities associated with office servi§es or a set of activities
assoclated with office control. Office services procedures describe the
actions of a single role or position with respect to a giveh work unit -
document, message, etc. They are thus local in scope and may need to be
modified by clerical or profgssional staff performing a service on the
work unit, Service procedures could.be linked to positions, roles or

even particular workstations.

4.8

Office control procedures would automate or support co-ordination
of numerous tasks or roles operating on a unit of work. The actions of
a purchasing agent with respect to a purchase order are part of a
service pfocedure; the co-ordination of actions of the purchasing agent,
accounts payable, receiving depértment, and so on from an office control
procedure., These are likely to be under centralized control, with scope
covefing a large organizational unit. Authority for these procedures
will be limited, and change more restricted. There will be a_greater
need to track progress of such a process, so that the progedure may be
associated with a given workstation but it will need to have acceés

throughout the office.

This distinction in perspective is, of course, sometimes blurred:
the service performed by some office groups is primarily one of control
or monitoring, perhaps as an after-the-fact audit. Another view of the
distinction perceives the difference as one of hierarchical structure,
in which the control procedure occupies a high-level or more abstract

role and the services procedures are the concrete low-level activities.,

We choose to view office procedures by looking at their scope of
application because it clarifies some major differences between con-
trasting systems proposals -- in terms of operations, control condi-

tions, specification method, and system processing.

4.9

Office services procedures

A primiti?e form of procedure is provided in the form editing
conditions or fill-in rules provided in the system objects .of the last
section. They were part of the mechanics of filling in a blank form and

maintaining integrity during later manipulations.

A service procedure represents typical form processing by an office
worker., The operations for checking input forms, manipulating infor-
mation, and generating output, use facilities such as those outlined in

section 4.1. In addition, we must be able to specify decision condi-

tions and their effects.

.Conditions: The kinds of conditions affecting processing reflect the

conceptual model of system entities.

The OBE system, with its heavy data base orientation, uses modifi-
cations to the data ‘base as a key 'trigger' in initiating actions.
Certain timings can also be giQen to start events, including periods
like daily or weekly. There are conditions on field contents to pick

out specific modified records.

OBE does not have explicit conditions based on arrival of a message

of given type from a'specified source (although of course it can be

. handled in a mbre cumbersome way by using a MAIL relation). OFS does

provide for checks on origins of documents, including abiiity to

4.10

list origin points which are not to be selected for processing. Other
- desirable conditions include elapsed time: if no confirmation message
arrives wiﬁhin three days of receipt of a form, then certain action is
to begin. We might also want general pattern matching in documents; for
example, a mention within a document of a particular product may mean a

copy is sent to a certain department.

Specification: How do users express the relationship of operations and

conditions?

OBE uses trigger programs: a list of commands dependent on various
triggers, including commands to execute other prograﬁs. Trigger pro-

grams can be easily packaged into menus for invocation by other users.

OFS tries to stay within a forms paradigm rather than create a new
command box like OBE. Procedures are a collection of form 'sketches':1!

- a precondition sketch which describes the form field wvalues of
interest, using a form template

- an action sketch which describes the changed values on various
forms, using form templates

- 'pseudo-sketches' which allow for additional conditions>like
point of origin and operations like sending a form instance to a

destination.

4,11

The new vocabulary of form sketches and pseudo-sketches is roughly anal-
agous to condition boxes and command boxes in OBE. The OFS developers

feel it is desirable to retain a form for everything and everything in

its form.

Another way of specifying procedures is to use a simulation, in
which é sequences of user operations is recorded for future use.'? This
can be extended to a procedure-by-example format, in which the user
provides operation sequences on sample data and the system asks for
conditions when two sequences differ.'3 1In this last case, the condi-
tion could produce an iteration construct; in the other specificatiﬁﬁs,

the only looping is the implied loop on all records in a file.

A proposed system from Siemens with more explicitAiterations has
been described -as "a nonprocedural specification language for process
reactions to trigger stimuli", ¥ It includes a 'whenever' construct,
which gives a logical condition whose change at any time from false to

true will initiate specified actions.

Procedure handling: service procedures can be associated with the users

who create them, with copies sent to others. Procedures can also be

linked to the form type for general access,

When triggers are placed on a data base, a central monitor must

initiate the procedure. When triggers are placed on messages for

certain users, the initiation can be done by a central monitor or a

4,12

local, workstation process. This latter organization implies that the
workstation is either always active-or can be activated by message

arrivals; timing triggers can be implemented with similar conditions.

Office control procedures

The OFS developers distinguish between a desk activity, a mail
activity and a co-ordination activity.15 Desk activities correspond
closely to service procedures; co-ordination activities correspond
roughly to office coﬁtrol procedures. Mail activities fall somewhere in
between, depending whether they ére specified by the user or centrally.
However, the pobtion of OFS implementing procedures does not provide
extensive co-ordination: decisions made after processing a form ére
difficult to handle, and ﬁhere is no mechanism for passing procedural

control from one workstation (user) to another.

OBE would handle co-ordination indirectly through a data base
relation. If we wanted to say that department one must pass a form
before department two, then we would have to create a field which was

modified by department one.

An experimental system from Xerox Palo Alto Research Centre,
Officetalk-D16 uses a database with precedence relations to handle
co-ordination. This specifies the sequence of activities through which

a given task must progress. Workstation users are notified when

4,13

activities for which they are authorized are available for processing.
An alternate scheduling process would require a user performing an

activity to initiate the next task step if possible.

Two systems which directly address the notion of procedural flow
between workers are the Business Definition Language (BDL) 17 and the
Office Procedure Automation System (opAs). 18

BDL

BDL was an experimental system developed within IBM to explore high

"level generation of data processing applications. Its data transforma-

tions do not encompass all that we would want in an office system,

particularly text processing. But there is an explicit document orien-

‘tation and a Document Flow Component which shows the sequence of

processes for a given document, like a purchase order or travel request.

To specify the document control procedure, users interact with a
graph editor which-cfeates a top-down hierarchy of graphs describing
document flow. The graphs illustrate control flow by document flow - a
correqt document goes to one next step, an incorrect document goes
somewhere else, Another descripfion mechanism allows specification of

actual processing at each step.

4.1y

BDL is of interest partly for what it does not contain - general
purpose communication and messaging. In keeping with the document
paradigm, events are not easily triggered by a confirmation message from
a given user; either there is a separate form for that purpose, or the
condition is hidden outside the Document Flow Component. Similarly, the
data processing applications are not perceived as requiring a separate

timing mechanism to trigger clocked events or measure elapsed times,

A later development with some roots in BDL is the Office Specifi-
cation Language (OSL).!9 OSL is intended to be more flexible, more
interactive and less structured than data processing-specification
- languages. The conceptual model of. OSL involves documents but is
'function~oriented’: its developers want to "focus on the end being
achieved rather than the means."20 This orgaﬁizational perspective
restricts its utility for general users. OSL is intended for specialist

users, partly as a modelling tool and partly as a policy device.
OPAS

OPAS contains a forms processing component similar in most aspects
to OFS, except that each process only has one resulting action. Indivi-
dual processes manipulate form contents under specified conditions to

yield output forms. A separate mechanism exists to link the processes.

4.15

A prqcedure Spécificabion form shows a sequence of activities to be
performed, with triggers and conditions. As usual, the triggers are
event-oriented (RECEIPT of a form, COMPLETION of an activity, ERROR in
an activity) and the conditions are data-oriented. There are potential
timing triggers for initiation of each activity, along with a paraméter

list, input and output forms, and error handling statements.

Each activity causes a forms process or another procedure to be
initiated. These can be specified to run concurrently or in sequence.
One can also give a specific workstation where the activity is to take

place.

‘There are REPEAT actions, but these are intended to keep a pro-
cedure active rather than cause an iteration., That is, a procedure
instance is.an active entity: it must be invoked by a user or another
activity. This is a slightly different concept than an OBE or OFS
process in which it would be inactive but invoked automatically when its

conditions are met,

This causes the user to need REPEAT statements to keep the pro-
cedure instance running, but it also permits dynamic update to the
pfocedure definition. Once a procedure is active, the definition éan be
changedeithout affgdting the already active copy. Alternately, if a

procedure instance suspends execution, its procedure specification form

4.16

can be edited without affecting the main procedure definition. This
yields a convenient way to patch around errors in unanticipated

exceptions.

The listing of input forms required also serves as an execution
condition, since the procedure can be active but awaiting their input.
The timing triggers do not permit relative or variable times, 'one hour

after receipt' or similar,

The procedure specifications form provides a fairly general purpose
mechanism with a document and message orientation., It remains to be
seen how easy the technique will be to use., The final form would be
more effective if its two dimensions were used more creatively.2! Also,
some combination of a data flow graph like BDC and a procedure fofm like
OPAS might prove particularly effective. The graph would give a flow

overview, while the form would specify the details.

4.3 Future Office Models and Tools

The future of integrated interfaces appears to be in user interface
management systems. The future of system design and user evolution may
lie in better tools for representing both the interface under develop-
ment and the prospective users. The future of procedural specification
and the incorporation of better conceptual models appears to lie in
knowledge representation techniques which can connect with user thinking

rather than just user action.

These three areas are assessed in a companion report, for which a

summary follows as an appendix.

Summnary:User Interface Tools for Office Communicatins Sytems

This report is the third in a series of three reports

prepared for the Office Communications Systems (0CS) Group-

of the Dept. of Communications. The first report, User

Interface Componenets for OCS, looked at the principles of '

hunan-computer interactions, via a3 framework of interface

levels. User Interface Design for OCS, the second report, .

focused on designing user interfaces for the next generation

of office systen products.

Tais third report considers software tools, formal
techniques and knowledge representation applied to user
interfaces. Each orf thase kinds of tools has besn primarily
a research effort, although in limited ways their influence
has already begun to appear (eg. software tools in the

Augment User Interface Serive).

Tne software tools forin a user interface management
system. Development of these systems has some parallels
Witn development of data base management systems.” The doms
centralizes certain specislizad functions in a data-crientad
'pack-and' module. The wusar interface wmanagement systam
centralizes other specialized functions in a usar-orientad
"front-end' module. Tnis could be a software ccmponent or a

Separate intelligent workstation processor. The uims can

- s wmp e

provide dialogue control, command translation, language

parsing, device mapping and assistance facilities.

Formal représentations' of wuser interfaces would be
useful during design, implementation and testing. For
programming languages, the existance of formal tools has led
Lo compiler-compilers and test case genérators. The second
chapter of this report considers proposed tools for

specification of a wuser interface, for prediction of user

performance with the interface, and for analysis of .user

knowledge required for the interface.

- Providing gzuidance on—liﬁe for the wuser demands‘ some
representation of the semanﬁics of user actiqns and some
representatioﬁ of possiple user goals and plans. Various
techniques for wutilizing conceptual and. samantic level
«nowledge have peen developed oy researchers in artificial
intelligence (AIL). The third c¢hapter surveys advances in
this field and projects potential impacts on office systans.
we conclude that a nunber of state of the art Al techniques

have short term applicapility in user interfaces for OCS.

A spacial listing of readings on AI in office systens

is-included at the clos2 of chapter three.

10,

1.

]2.

13,

14,

1o.

" References

Seyoold, P.B., Comparing the Usability of Office Systems,

. AFIPTS Office Automation Conference, 1932, p. 225-236.

Smith, S.C., Requirements definition and design guidelines

-for the man-machine interface in C system acquisition,

Report M30-10. The Mitre Corporation, 1930C.

Gaines, B.R., The technology of interaction-dialogue
programming rules, Intl. J. of Man-Machine Studiess, 1937,
p. 145,

Williges, B.H. and R.C. Williges, User Considerations in
Computer-Based Information Systems, Technical Report for
Enzinesering Psychology Program, U.S. Office of Naval.
Research 1981. '

Ramsey,‘H.R. and M.E. Aéwood, Man-Computer Interface
Design Guidance: State of the Art, Proc. Human Factors
Society 24tn Annual Mesting, 1930, p. 37.

in ref [2].

in ref [21;

Ramsey, H.R. and M.E. Atwood, in ref [5].
Caray, T. User Interface Components for Office

Comnunications Systems, Dept. of Communications, August,
1982.

Carey, T. Usesr Interface Tools for Office Communications
Systems, Dept. of Communications, March 1933.

Morton, J. et al., Components of Incompatadbility in
Man-Computer Interactions, 8th Intl. Symposiun on Human
Factors in Telecommunications, 1977.

Rohlfs, S., Linguistic Considerations For User Interface
Design, 'in §. Naffah; ad., Integrated Office Systems,
Nortri-dolland, 193C. '

Marcus, A. Typographic Design for. Interfaces of Information
Systams, Proc. Conf. on Human Factors in Computer Systems, .
1982, p. <2o-30. :

see en. 1in ref [11]

Bennatt, J.L., Manazenant to Mest Usability Goals, AFIPS
Of fice Automation Conferencs Digest, 1942, ‘p. 103, wWith

1.
18.
19.
20.
21,
22.

23.

24,

20.
27,

23.
29.
30,

31,

credit to‘T. Gipb, "Design oy Objectives", unpdblished
draft. '

Hendricks, D. et al.Human Engineering Guidelines for
Management Information Systems, U.S. Army Material

Development and Readiness Command, November 1332.

Demers, R.A., System Design for Useability, CACM (24) 1931,
p. U49u-501. -

Clanons, E.H., A Hodel for a Video Driven Common Operating
System Language, 2nd Proenix Confersnce on Computers and
Communications, 1933, . 591-596.

ef eh., 2 of ref. [11]

dalasz, F. and T. Moran, Analogy Considered Harmful, Proc.
Conf. on Human Factors in Computer Systems, 1932, p.
303-3380.

Lakoff, G. and M. Johnsen, ietaphors We Live By, U. of
Chicago Press, 1930.

Smith, D.C. =2t al. Designing the Star User Interface,
Byte, April 1932, p. 258.

Purvy, R., J. Farrell and P. Klose, The Desizn of 3tar's
Records Processing, ACM Trans. Office Inf. systems, Vol.
1, p. O.

cf Elmasri, R. and J.A. Larson, A User-Friendly Interface
for Spscifying Hierarchical Queries on an ER Graph Datapase,
in J.A., Larson, Ed., Tutorial: End User Facilities in the
1930's, IEEE Press, 1932. -

Podzer, D.N., High Level Lanugages--A Basis for
Participative Design, in Szyperski, N. and E. Groehla,
ed., Design and ILnplementation of Computer-Based Information
Systems, 3ijthoff and Noordhoff Pub, 1979.

Smith, D.C.; et al., Designing the Star User Interfas, Byte,
April 1932, p. 270,

Ailliams, G., The Epson QX-10/Valders Systen, Byts,
Septanber 1932, p. ©5.

[

p. 274 in ref (25].
ref. [11]

Rooertson, G., D. #eflrocksn and A. WNewell, Tne Z0OG
Approacr to #an-#Macrine Communication, Carnszis ¥Mellon
University Technical Rzport CMU-C3-79-143, 1979.

Sehultz, J. and L. Davis, Tne Teschnclogy of Promis,

32.

Proceedings of the IEEE, September, 1979.

~Berepta, G. et al., XS-1 - an integrated interactive system
‘and its kernal, 6th ICSE, 1932, p. 340-349,

References Chapter 2

1.

10.

1.

12.

13.

14,

15.

Benjamin, Art, Automating the Office of Yeéterday, CIPS Conference
83, Ottawa 1983.

Ch. 3 of Carey, T., User Interface Components for OCS, Dept. of
Communications, August 1982.

Mozeiro, H., A Human/Computer Interface to Accommodate User
Learning Stages, CACM Feb. 1982, p. 100-104.

Schneider, M.L. et al., Designing Control Languages from the User's
Perspective, in Beech, D., ed., Control Language Directions, North-
Holland Pub., 1980.

Gilfoil, D.M., Warming Up to Computers: A Study of Cognitive and
Affective Interaction Over Time, Proc. Conf. on Human Factors in
Computer Systems, 1982, p. 245-250.

Sirbu, M., Programming Organizational Design, Proc., ICCC, 1980.

Mumford, E., and D, Henshall, A Participating Approach to Computer
System Design, Wiley Pub., 1979. Also Mumford, E., Designing

" Secretaries, Manchester University Press, 1982.

Pearsall, R.J., Technique for assessing external design of soft-
ware, IBM System Journal, 1982, p. 211-219.

Schorer, P., Structure the Use, Computer, 1981, p. 77-86.

Meyrowitz, N. and A. Van Dam, Interactive Editing Systems, ACM
Computing Surveys, Vol. 14 (1982), p. 325.

Denert, E., Specification and Design of Dialogue Systems with
State Diagrams, in Morlet, E. and D. Ribbens, eds., Intl. Computing
Symposium 1977, North-Holland Pub., 1977.

ef. c¢h. 1 and 2 of Carey, T., User Interface Tools for OCS, Dept.
of Communications, March 1983. -

Smith, S., Patterned Prose for Automatic Specification Generation,
Proc. Conf. on Human Factors in Computer Systems, 1982,
p. 342-346. '

“ef. ref (3), ch. 3.

Dunn, R.M., A Control Structure Model for Interaction,.in Guedj, R.
et al., ed., Methodology of Interaction, North-Holland Pub., 1980,
p. 53. - :

16.

7.

18.

19.

Mason, R.E.A, and T. Carey, An Approach to Prototyplng Information
Systems, CACM, May 1983.

NlChOllS R.E., Programmlng by the End User Infotech State of the
Art report on Man/Computer Communications, Pergamon Press, 1981,
p. 270-271. Also Yunten, T. and H.R. Hartson, Human-Computer
System Development Methodology for the Dialogue Management System,
CS Tech. Report CSIE-82-7, Virginia Polytechnie, 1982,

Williamson, H. and S. Rohlfs, The User Interface Design Process,
Computer Message Systems, N. Noffah ed., North-Holland Pub. 1981,
The second sentence is a quote from Keen, P., Informaulon system
and organizational change, CACM, Vol. 24 (1981).

Wynn, E., Linking User Responses to the Design Chain, AFIPS Office
Automation Conference Digest, 1982, p. 169-175.

References Chapter 3

1.

Card, S.K., W.K. English and B.J., Burr, Evaluation of Mouse,
Rate-Controlled Isometric Joystick, Step Keys and Text Keys for
Text Selection on a CRT, Ergonomics 21:8, 1978, p. 601-613.

eg. Human/Computer Interaction Series, ed. B. Shneiderman, iblex
Publishers,

Scapin, D.L., Evaluation of an Electronic Mail Language, 6th ACM
European Regional Conference, 1981, p. U425-432.

Black J.B. and T.P. Moran, Learning and Remembering Command Names,
Proc. Conf. on Human Factors in Computer Systems, 1982, p. 8-11.

See the first exercise in Clark, I.A.,, Software simulation as a
tool for usable product design, IBM Systems Journal, Vol. 20, No.
3, 1981, p. 272-292.

Seapin, D.L., ref. (3).

Geiselmzn, R.E. and Sanet, M.G., Notetaking and Comprehension for
Computer-Displayad Messages, Proc. Conf. on Zuman Factors in
Computer Systems, 1932, p. 45-50.

Bair, J.H., Avoi

i king Non-Soluticns to Cffice Communicaticn
System Design, P

§ &
<
[}
w0
O
3
i
3
l‘l’
(o)
-y
3
v
cr
-
o
o3
w)
)
n

rstam Prototyping,

Tombaugn, J., Derscral communication,
D - - ~ -~ H p 3 <
Ramsey, H.R., et 21,, Pzper Simulztion Technigues in User Reguirs-
o P ™ P T LA d 3 a X 3 < 4 A an
ments Anzlysis, Proc. Human FTactors Socisty, 1979, ». &L-58.

12.

14,

15.

16.

17.
18.

19.

- 20.

21.

Savage, R.E. et al., Design Simulation and Evaluation of a Menu
Driven User Interface, Proc. Conf. on Human Factors in Computer
Systems, 1982, p. 30-40.

Clark, I.A., Ref. (5).

Keen, P. and T.J. Gambino, The Mythical Man-Month Revisited,
Proceedings APL Conference, 1980.

Tapscott, D., Investigating the Electronic Office, Datamation,

- March 1982, p. 130-138.

Conrath, D.W., R.H. Irving, C.S. Thachenkary and C. Zanetti,
Measuring Office Activity for Bureautique: Data Collection
Instruments and Procedures, Proceedings 2nd International Workshop
on Office Inf, Systems, Saint Maximin, France, 1981.

Hoecher, D.G., Activity Sampling Applied to Interactive System

Lewis, C., Using~the "Thinking-aloud" Method in Cognitive Interface
Design, IBM ResearchiReport RC9265, 2/17/82.

Booth, T.L., R. Amwar and R. Lenk, An Instrumentation System to
Measure User Performance in Interactive Systems, Journal of Systems
and Software, Vol. 2, p. 139-146, 1981,

Wimmer, K.E., Research on Human Interface Considerations for Inter-
active Text Generation, Proc. ICCC 78, p. 720-732.

Rasmussen, J., Some Trends in Man-Machine Interface Design for
Industrial Process Plants, in Computer Applications in Shipping and
Shipbuilding, North-Holland Pub., 1980.

References Chapter U4

1.

Ellis, C.A. and G. Nutt, Computer Science and Office Information
Systems, Computing Surveys, 1980.

Dumas, P. and G. Du Roure, Office Modelling: The CETMA/KAYAK
Families of Models, Proc. Workshop on Integrated Office Systems,
St. Maximin, 1981,

Ellis, C.A. and M, Bernal, Officetalk-D: An Experimental Office
Information System, Proc. ACM Conf. on Office Information Systems,
1981, p. 131-140. :

Naffah, N., Communication Protocols for Integrated Office Systems,
Proc. Workshop on Integrated Office Systems, St. Maximin, 1981..

10.

1.

120

13.

14,

15.

.16,

17.

18.

19.

20.

21.

Purvy, R., J. Farrell, and Paul Klose, The Design of Star's Records
Processing, ACM Trans. on Office Information Systems, 1983,
pc 3-2)4.

Zloof, M,, Office-by-Example: A business language that unifies
data and word processing and electronic mail, IBM Systems Journal,

ref. (6), p. 287.

Tsichritzis, D., Form Management, CACM 1982, p. 453-478,

Ellis, C.A., An Office Information System Based on Migrating Pro-
cesses, Proc. Workshop on Integrated Office Systems, St. Maximin,

1981.

Carey, T. and R.E.A. Mason, Productivity Expefiénces with a
Scenario Tool, Proc. IEEE Fall Compcon, 1981.

Hogg, J., 0.M, Nierstrasz and D. Tsichritzis, Form Procedures, in
Tsichritzis, D. ed., Omega Alpha, Tech. Report CSRG-127, U. of
Toronto, 1981, p. 101-133.

Ellis, C.A. énd M. Bernal, Officetalk-D: An Experimental Office
Information System, Proc. ACM Conf. on Office Information Systems,
Philadelphia, 1982, p. 134.

Attardi, G. and M. Simi, The Power of Programming by Examples,
Proc. Intl. Workshop on Office Information Systems, St. Maximin,
1981. : ‘

Kofer, R., Saving Money while doing Empirical User Research, Proc.
Intl. Workshop on Office Information Systems, St. Maximin, 1981.

Tsichritzis, D., OFS: An Integrated Form Management System, Proc.
6th Conf. on Very Large Data Bases, p. 165.

ref. (3).

Hammer, M. et al., A very high level programming language for data
processing applications, CACM, 1977, p. 832-840,

Lum, V.Y., D.M. Choy and N.C. Shu, OPAS: An office procedure
automation system, IBM System Journal, 1982, p. 327-350.

Hammer, M, and J.S. Kurrin, Design Principles of an Office
Specification Language, Proc. NCC 1980, p. 541-547,

ref. (19), p. 544,

eg. Larson, J., A Data Manipulation Language for Electronic Forms,
Proc, Compsac 81, 1981, p. 3u48-354,

QUEEN HF 5548.2 .C32 1984
Ca;ay, Tom
User interface design for of

DUE DATE

Printed
in USA

