
over nment ci Canada 	 Gouvernement du Canada
epaetment f Communicaticns Ministere Ces Communications CanaM

DFFICE 	 PROGRAMME
:ONIMUNICATIONS 	DE LA
;VS-I-EMS PROGRAIV1 	BUREAUTIQUE

;4 USER INTERFACE DESIGN FOR
OFFICE COMMUNICATIONS SYSTEMS (

Dr./Tom Carey

	ri 	ri 	F--- 	ri 	rj

_I

CANilk

A?, 1 2,4

(9

r
_

.._- v. e.4,
HF
5548.2 -.
043E-
1984(4

-AcknoWledganents: Grant Boyd - 1,as contract officer, content moderator

and bureaucratic troubleshooter; Roger Tessier, Art Benjamin and

Andre. Dubois were instrumental in initiating this series of reports.

Sabine Rohlfs made impor•ant.contributions to the content of

chapters two and three, .Dick Mason influenced both the style and

content of chapter three.

Preparation of this report wee:handled most competently by

janis Pettis, with assistance from Terry De Haan. 	.

Dick Foe,ter, BlairSonnecke and John Verstérfelt provided

belpful comments on.earlier ,drafts.

a

Table of Contents

Summary

1. The Elusive All-Purpose User Interface 	1.1

1.1 Wish Lists, Guidelines, Principles and Standards...... 	1.1

1.2 Conceptual Model Integration 	1.11

1.3 Integrating Applications 	1.19

1.4 Integrating Excursion Tasks 	1.22

2. Design Principles for User and Interface Evolution 	2.1

2.1 Multifunction Office Systems 	2.1

2.2 User Evolution 	2.6

2.3 System Design Factors 	 2.9

2.4 Product Design Factors 	2.11

3. User Interface Testing 	3.1

3.1 Lab Exercises 	3.1

3.2 Testing Prototypes 	3.6

3.3 Interface Testing Techniques 	3.15

3.4 Interface Malfunction 	3.22

4. Sample Elements in Office Conceptual Models 	4.1

4.1 Conceptual System Objects 	4.1

42 Office Procedures 	4.7

4.3 Future Office Models and Tools 	4.16

Appendix: Summary of User Interface Tools for OCS

Reference's

I

I .

HI

Summary: User Interface Design for

Office Communications Systems

This report is the second in a series of three reports

prepared for the Office Communications Systems (OCS) OrOup

.of the Dept. of Communications. The first repOrt, User

Interface Components for GCS looked at the principles of

human-computer interactions, via a framework of interface'

levelS. User Interface Tools for OCS, the third report,

considers software tools, formal techniques and _knowledge

• representations as applied to user interfaces.

This second report, focuses on designing. .user

interfaces for the next generation of office system

products. Drawing on research in the human factors of

computer systems.and on experimental OCS projects, we can

map out some of the design - decisions for GCS products and

their implications.

In the first chapter we ask to what extent a standard

interface for GCS products can be developed. An initial

section outlines the role of interface standards versus

-guidelines or principles. Then we demonstrate that

different - office task's require different comceptual models

- of various:entities; accordinlly, a multifunctional office

- system must support more than one conceptual model of office

- entities to seem natural .to use r- s 	iven this limit on

. oonçaptual -model integration, we exanine-the implication for

intagration-of.office services.into a single user interface.

Our conclusion is that manipulation of information or

objects is more resistant to integration than information or

object management. Another good candidate for

. standardization is the user task of navigating within the

computer system: finding out "how do I get there from

here", when there and here are relatively vague in the

user's mind. We outline two experimental systems which

focus on these 'excursion task' activities.

The second chapter explores a set of design issues for

OCS. It beains with a mention of system scope--a designer

gILISC achieve a proper mix of central, local and personal

facilities. Various views of user evolution are presented

next, with their implications for a progression of

interaction styles. The third section briefly reviews some

system design questions like impacts on oraanizational

structures and participative design. The design framework

from the User Interface Components report is re-examined,

with interest on the design process and its staged outputs.

Desian pragmatics, involvina conflicting interests and

numerous iterations to undo past errors, is the last topic

considered.

liven the current inadequate state of our knowledge

about human factors, we must rely on extensive testing of a

user » interface to reduce incompatabilities between user and

system, a topic surveyed in chapter three. Some of this

testin2, done as experiments in research labs, need not be

repeated every cime we desiln an interface. But the

particular mix of ingredients in any one systan will always

demand testing with prototypes at various stages. This. _

testing process can be improved by a set of techniques

- surveyed in the third section of this chapter. Finally we

consider how to interpret and use the information about

interfacakness which - we obtain during the testing

process. 	.

The 'fourth chapter provides a conceptual perspective on

current experimental OCS projects. We do not present•arly

extensive examples—these are available in the various

references cited. The focus -instead is on .understanding the

conceptual differences between various systems and 	at the

effects might- be.- These conceptual differences include the

origins of the system concepts (distributed data bases,

– message systemS or document processing), and the mechanism

for specifying office procedural information.

An understanding of these design considerations helps

us to see the decisions reqUired in GCS products. That is

the real challenge for designers: to see beyond their

personal view of the 'ultimateinterface' for the 'real

office', to appreciate how their designs fit within the

larger DraneworK of diverse office communications systems.

1. THE ELUSIVE ALL-PURPOSE USER INTERFACE

Is there a user interface fit 'for all seasons', a

universal OCS access tool Which opens up a full spectrum of

services to a full variety of users? The answer depends on

the level we which to address the question: at the

conceptual model level the answer appears to be no. At the

dialogue level it seems the answer is close to a yes:

integrated interfaces are appearing which attempt a

consistent view of the user/system interaction. This

includes assistance and excursion taSks.

1.1 dish Lists, Guidelines, Principles and Standards

User interfaces, once badly neglected, now may be

suffering from too much attention. Every new software

product announcement contains an obligatory reference to

'ease of use', 'user-friendly' or 'ergonomics'. Most users

feel that only experience with the product will serve as an

evaluation. Use of a genuinely poor interface reveals its

failings; use of a merely mediocre interface may be

accepted, since the additional capadility'of a superior

interface may not be evident- Paradoxically, use of a ood

interface often stimulates the appetite and may result in

more user demands!

Ii

1.2

User interface design is still emerging as an area of

study, and remains encumbered by proverbs and folklore.

Designers seeking training will find some help in coanitive

- psychology, some in software engineering, and some farther

afield in traditiOnal ergonomics, graphic arts,

organizational. design, _industrial socioloay, etc. • Managers

looking for- •practical measures• will find a mixture of wish

lists, guidelines, principles, and standards.

Wish lists -- Much of the early literature on human factors

in user interfaces appears now to be in the 'wish list'

cate2ory: a set of desirable properties described by their .

effects on users. For instance, one checklist of office

system .usabildty factors 1 	suggests that user interfaces

be

1.
"Approachable

--Suitable (to the tas<)

...àequire little manorization

...Supportive..."

etc. There was.certainly a . need at one time for interface

designers to be sensitized td these kindÉ of user needs.

but such a Check-list offersat best_ desirable factors, not

, auidance in - achieving or implenentin2 tnem. .

,.3,

The checklist can be made more detailed:

"Display formats for data input should be designed so as to

minimize user actions require-d for cursor movement from one

entry -field to the next" 2 . This still leaves us to

subjectively evaluate whether a given design 'minimizes',

and no help in techniques to implement, a better scheme.

Guidelines - there have been some attempts to specify a set

of design guidelines which would provide the know-how

lacking in the wish lists. For example:

"Rule 15: Provide a reset command that clearly

aborts the current activity oack to a

con-venient checkpoint..." 3

or 	"In pre.senting data or .small display screens,

no more than 50-55 characters per line

should be displayed... II

Software engineers are not used to ,,rorking, with

explicitly detailed guidelines to the same extent as

traditional ergono:nics might be. The tradition of

individual autonomy may account in part for the lack of

agreement on many -guidelines. The canpilers of the

guidelines from .which the last quote was taxai were oblig.ed

Co :nark crase entries on which their sponsor committee could

not reach alreei-nent. Every major section contains these

1 . 4

'arguable' guidelines.

There are additional contributing factors to. the

failure of guidelines to have wide'impact:

-other human factors handbooks are based on -extensive

quantitative field data. "Empirical data on

human-computer interfaces are simply not 'available for

many of the questions on which designers need

guidelines. A quantitative human factors reference

.handbook for interactive systems design appears to be

well beyond our current capability". 5

-the design decisions are not easily separable. ' Thus

one valid guidelines may recommend providing:the user

with all necessary information to 'determine system

state. Another may recommend that screen displays not

be cluttered with more than a certain density of

information. In practice the two guidelines may

-frequently be in conflict.

-the right level . .of detail in guidelines is very hard

to jUdge. Too much:detail of course negates the

impact of the useful information. ' Most designers

would be hard-pressed to think of any alternative to

the following guideline:

'1'.he displayed .cursor should be stable, i.e. 	should

1.5

remain where it is placed until:moved by the. user (or

Computer) to another position." 6

On the other hand,. less detailed guidelines might mis s .

subtle decisions like the following (from the same list):

"User action confirming entry of multiple data items

should result in input of all items, regardless of

where the cursor is placed on the display." 7

Regardless of whether one agrees with this guideline,

on reflection it is a decision we would want, to make

consistent (one way or another) across a user interface.

Principles - what is needed is not just know-how but

Know-when. This has two sides:

-Know when decisions are being made. Design guidance

can only be effective. when design decisions are

explicitly recognized.

-Know wnen certain guidelines should take effect, by

understanding the principles on which they are based.

For exanple, the guideline above on line length is

based on eye movement patterns and the difficulty of

returning to the beginning of the next line when the'

line lengtt is too great. Thus the guideline has more

importance in displays of long text than in single

line messages surrounded by blank space.

1.6

Design principles must be linked to the design cycle , .

so that design questions are not missed. A set of desigm

principles must "identify issues, suggest alternatives, and

- present . (where they exist) hard human-factors data at the

point in the design process at which this information is

most relevant." 8

• In a companion report, User • Interface Components for

OCS, 9 	an initial effort was made towards a set of design

principles for the limited --domain . of office systems. No

attempt at an .'ultimate interface' was made; rather the

questions raised within the design cycle were outlined,

along with selected principles (and references to more).

The principles were embedded in a top-do wn design framework

which•„attempted to give priority to the more fundanental

decisions.about the interface. That design cycle is 	-

reviewed.in Chapter 2.

• These initial efforts need to be tested in practice,

revised, and 'extended. _Additional inputs to the design

• process include

--7design techniques, the body of engineering knowledge on how.

to solVe specific problems

-better formaLisms within the discipline of user interface

design. Some of these are discUssed in another rep'crt. 1C) At

an informal level, consider the notion of 'operation' a

semantiC unit which alters the state of a conceptual object.

1.7

Several operations may accomplish the same function of

achieving a target state carrying out the operation may

entail a sequence of commands and responses.

in designing operations, the set of decisions to be

11 made includes at least the following

a) number of places in the operation predicate (roughly,

the number of parameters)

b) length of commands sequence in the operation

c) invertibility

J) commutivity

e) transitivity

f) structure of appropriate command sequences

g) action type (move, create, remove, etc.)

A paricular operation can change its form dependin2 on

the way it COffleS to be used.

ele have a much fuller vocabulary for addressing lower

levels of the interface like syntax and physical action than

we do at the level of semantic unit or conceptual models.

it is in these latter areas that the most fundanental

I

I

Ic

Ir,

it

11
11

1 . 8

breakthroughs will be made.

-knowledge from other fields which establishes the

cause-effect relationship behind the principles. For

example•,from linguistics we could borrow ideas like 1 2

a) dependency grammars to explicitly compare the syntax of

user languages with•that of•natural language

b) semantic diagrams to explain the meaning of words in the

interface language

- c) . .linguistic parameters like valence of verbs, to help

•develop the characteristics of operations as.described

. - above.

Standards - Aile we'await better design principles,

software jevelopment organizations need internal standards.

These could be restricted to. a given project, or apply

across numerous applications to be offered to the saine group

of users. The level of consistency the uses observe is

discussed below in section 1.3. From the' organizational

perspective standards can represent

-co-ordination amongst many developers working on the same

application. This has the ultimate ail•of increasing

consistency to reduce complexity for the users.

1

li

I.

1 .9

-reusability of interface components across applications,

both for users and developers.

--capitalization of the Knowledge of the best designers. For

example, a guideline cited above prescribed certain line

lengths for displays. Depending on the application, a

better scheme might restrict normal data to start in column

21 of a display, reserving a wide left marlin for subtitles,

- prompts etc. 13 This convention, articulated by a graphics

designer, makes this expertise available across an

_oraanization when applied as a-standard for certain

applications.

.-standard development cycles for interfaces to facilitate

monitoring, feedback and management control.

Standards, unlike guidelines, must be enforceable. A

standard can be enforced by

-requiring use of an interface management system, which by

providing certain lower-level features enforces a standard 14

-use of quantifiable metrics, which developers must apply to

prove that their designs fall within the standard. These

measures are currently only applicable after implamentation

of a sizable part of the interface. Testina. with

appropriate sample groups can then assess usability.

Techniques for testing are discussed in Chapter 4. Figure

1 -. 10

fi

II

I

II

1.1 shows one proposed System Attribute Specification for

usability. 15

-use of standard lists of allowed-words, syntax, etc. For

example, recent human engineering guidelines for management

information systems in the U.S. Army provide a list of 39

acceptable command words, and a six page list of potential

commands which they are to replace. 16

-a 'usability committee', which receives Proposed designs

and applies a standard review. Peview items typically

include 17

command syntax and semantics

b) display and function key design

c) system message texts

d) printed output:

The committee works best when its standards are communicated

beforehand to:designers,_so that it functions in a reView

and not a design role. SOmetimes the coMmittee defaUlts to

a committee of one: the 'manager responsible for a project.

rThe mana:i.er normally hàs , more cran enough to do without

looking at interface.detaiis; any large project-requires

'independent reviewers.

1

1.11

1

-some standards may be policed by Outside certification.

This is common in prog..ramming language compilers and

hardware interfaces. An effort for user interfaces has been

- initiated by the CODASYL committee. 18 Their developnent of

a video interface model for an operating system has only

recently 'begun (i.e. is still at the wish list and

preliminary guideline stage). Other trade organizations,

even outside the computing industry, may follow.

1.2 Conceptual Model Integration

A dominant theme in discussion of projected office

system use is the integration of variOus-application

services into a consistent interface. The intent is to

minimize learning overheads and promote ease of use. Much

of the work on widelines and standards with software '

-developnent organizations in intended to achieve a hie

degree of consistency across products.

In our framework of user interface levels, true

integration within the system would have to bezin at the

conceptual model level. de need to consider what kind of

inte:zration is appropriate at that level before considering.

(in Section 1.3) the levels at which integration is usually

examined--dialogue style and semantics, syntax and lalw.uae,

and physical action or display.

Conceptual models as metaphors: the user's conceptual model

of system objects and facilities must be closely tied to the.

•

I

1-.12 •

objects and functions of the task world. The interface

designer must build an explicit model and convey it to the

 user

Analogies are frequently used to help initially

communicate the model 20 . For exanple, a user of an

eleCtronic file cabinet might be told that the electronic

files are like manual office files, the electronic

wastebasket is a counterpart to the physical wastebasket,

and so on. - The analogy must usually be left behind When it

has served its purpose as an orientation device. Users

would be told that the electronic file differs from-its

physical counterpart in that a document may be

simultaneously present in more than one file; changes to

the document may automatically appear in each file, unlike

physical'files in which only static copies can be placed in

different files.

The concept of the old physical files was derived from

two different views: the file as container and the file . as

relationship. As a container, the file physically held

documents, and no document was physically present in more

than one disjoint container.. But the file was •not

referenced arbitrarily by a nunoer: it was given a naine

 that expressed the relationship of documents withln it.

In searching for a document manually the container view

was dominant. In the electronic system, the relationship

view oecomes dominant. Ac ara therefore building a new

1.13

model in which old notions like copyin g and deleting

documents must be.rethought—is a copy static or does it

change along with the original? dow do I delete a document

-completely fràm the file system (and . not just from one

relationship) when it exists simultaneously in several

files?

Rather than encourage users to build a cohceptual model

of the file system from their model of a manual system, we

could have used slightly different analogies and build a

different conceptual view. We could have constructed the

file systeM so that all documents belong to one 'container'

file, but there are 'relationship' files which are index

lists of document names. A document would exist in only one

container; a copy could be made but it becoMes a separate

document. The delete function could be applied tAo- an index

list to remove a relationship; applied to a container it

removes the document and appearances of its name in

relationships.

We don't want to argue here about which model is more

efficient, whether a synthesis is possible,- or which one is

more marketable to new users. The point is just that the

models are different, in terms of basic object types,

organization of functions, etc. The way we construct

operation semantics az lower interface levels depends on

elich model we want the user to have.

1. 14

Given •that the same- application could have different

conceptual models, how do we want to design the models to

promote integration? . We can apply the following vocabulary

• to conceptual models for different applications

-the models are compatible if they are separate but

not contradictoy, for.exanple, a simple service Which

retrieves time of day or on2oing weather may not share

any common structure with a filing service

• -the models are - coherent if they share .some.common

structure but cannot be integrated into a single Whole

-the-models are consistent • if they can De seen as

specializations•of a more general concept, i.e. they . .

can be. integrated into a larger whole

For instance, we may have facilities for-manipulating

documents of text or line drawings. Our models of the

documents could be made consistent if the same kinds of

functions and organization are to be applied to each if they

are orzanized hierarchically, say; and we are zoing to be

editinz the documents. The models could be consistent even

though the mechaniSms for input could De separate and the

property choices to be made could be different (typeface for

text, width of line for drawin2s).

1.15

On the other hand, if the line drawinas are to be

animated there is a set of facilities for them Which have no

counterpart for text. The most we cduld have then would be

coherent models of the two domàins. (The vocabulary of

coherence and consistency comes from the study of

metaphor 21 , and it is-suggestive to think of our

- conceptual models as metaphoric in nature 	.)

We will apply these terms to a pbpular model of some

office activities, the electronic desktop.

Desktop as model: the electronic desktop model was

pioneered in commercial products by the Xerox Star

workstation and adopted by Apple's Lisa system.

The major ideas are:

-available objects, typically files and documents, are

represented as graphic symbols on the desktop (display

screen)

-when in une, pales of the documents appear on the

screen possibly overlappina as they would on a desk

-movement of documents or their parts is the major

operation for object management

-objects, properties and commands are meant to be

visible to the user, especially in their altered state

1.16 '

after a change..

Is the electronic desktop the foundation for a

consistent conceptual model across different applications?

The Xerox experience suggests this will not, in fact cannot,

be the case. "In a -functionally rich system, it is probably

not possible to e represent everything in terms of a single

model...Star's record-prOcessing facility cannot use the

physical-office model because physical offices have no

'records processing' worthy of the name... Therefore we

invented a different model..." 22

The models of records processing and document

processing in Star are thus coherent but'not consistent,

using the terms in the technical- sense above.. Records

processing, .involving common operations in sequence for

. records in a file, has no real analogue in documents.

.'Cutting and pasting' operations on documents are not

implemented for sharing across record files. The models are

kept coherent by using documents to define and display

record files.

Another view- of the difference between the models comes

from noting that the manipulations desired on documents are

easily visualized, and the Star ensures that they are

visible. But the relationship of records within files or

processing records in sequence is not to easy to visualize.

Some manipulations of record files which.could not be - made

easily visible, like specifying joins across files, were

1. 17

omitted to preserve the conceptual simplicity of the

interface 23

A different model of course might allow visualization

of these operations 24 • But some concepts like event and

time will not be easily treated in a consistent visual way.

It is important that these kinds of concepts not be

distorted to fit an interface style: recent research

confirms that the Way in which concepts are represented

affects the ease with which users can manipulate them

As we move past records processing to user-created office

procedures, it is not clear what kinds of representation can

be effective, or how they can be linked as coherent models.

When the conceptual entities are restricted to objects,

their management can be treated consistently by stressine

visibility. As events, timings and actions need to be

manajed, the electronic desktop has to be extended to the

true electronic office. No standard model seems likely to

emerge. We survey some proposed models in Chapter 4.

Other potential common areas: as well . as object management,

other cOmmon aspects of conceptual models may be utilized to

increase coherence. For exanple, the amount of change

expected for various objects and attributes represents a

fundamental aspect which may ce similar across different,

views of the sane information.

1..18

This is illustrated by a conceptual model for the

professional tasks of accounting professionals, developed by

D.N. Podger. 25The accounting process model was derived from

. study of accountants at work. The author identified three

zones of activity:

-an inner zone of basic values, objects and principles

which the system must not allow to be overruled.

-an intermediate zone of general procedures which

might be customized via user function.

-an outer zone of specific procedures which might

undergo more frequent alteration.

- (These zones have some overlap with the scope of processing

discussion in section 2.1) 	•

- From this task anaWis, a set of functions can be

. defined which is local t.cp a given task group. de therefore

do not expect these facilities to be shared across

- applications, although their definition structure might well

oe.

Wbile the contents of the different zones of change may

differ, we might fini similar mechanisms to direct the

change: the outer zone for instance mi2ht aIwayS:be

parameterized operations, while the intermediate zone may

require user-written procedures to implement change.

1

I

1.19

1.3 Integrating Applications

The'previous section illustrated that conceptual models

are unlikely candidates for uniformity. Differences at the

conceptual interface level imply that custom interfaces for

specific tasks will always prove more effective than any

standardized interface that cannot be tailored.

On the other hand, a good deal of user activity (even

in different conceptual realms) is common. Objects are

created, removed, related, displayed, etc. While the

structures of the displays or relations may be diverse,

there remains a set of common operations for managing them.

In keeping with the notion of consistency in the previous

section, these common operations should be consistently

invoked. Typically this is done by defining generic

operations which have equivalent semantics across a broad

range of object types. The challenge then becomes to

construct an interface dialogue level Which complements both

the common object management operations and the specific

object manipulation operations.

The problem is compounded Where different applications

are to run concurrently. de then want an interface which is

integrated as well as consistent. An integrated interface

presents a single dialogue level view to the user. Jbjects

are transferable between applications, although their

semantic properties may change.

1.20.

Integrated applications will be subject to the usual

tradeoffs. For example, integration of data objects will

require additional processing, and generic operations may

not be as powerful for any one application as a customized

•set. 'While integration at the various interface levels

appears natural, there are some inherent challenges and
o

limitations.

Integrating data objects: The simplest route to

(practically) integrating:data objects is to reduce all

• objects transferred across applications to a lowest common

denominator of structure. This is typically characters and

numbers in text. •Graphs and spreadsheets can be moved into

docunents by this conversion, but if the data is edited in

some way (say two spreadsheet columns swapped) then they

cannot always be moved back.

Sometimes the one-directional movement starts with the

document, with the target a formatter for addition of other

media like facsimile Or for typesetting. Movanent in the

other direction is more difficult: makine an editing change

on the typeset version cannot usually be done by sendine

some wall portion back to a word processor. The change

must often be made to the original document and have it all

formatted again. (usually a time-consumine process.)

1.21

It is now possible to maintain data on a workstatiOn in

more than one application at the carne time. A spreadsheet

is moved into a document, but future changes in the

spreadsheet application are automatically transferred to. the

document. Keeping track of these structural views

simultaneously will become more complex as record structures

and data relations appear at the workstation.

Integrating dialogue styles: an interaction style optimized

for applications stressing visibility, like the Xerox Star

workstation, is not necessarily optimal for dialogue itself.

A choice to emphasize marking and selecting leads to use of

command menus for dialogue. Practiced users might want to

type commands, but to maintain consistency we might have to

allow typing of parameter values and thus open the door to

more complicated specification of document pieces.

Construction of office procedures may be more effective if

the editor program has some structural semantics built in,

out how do we relate this to the structure of other

documents?

The search for generic operations also becomes more

difficult as the application realm becomes less tangible.

Can move and copy operations be applied to move links

bet,reen records or to copy values between tuples in a

relation?

Integrating language and physical action: 	at the lan2uage

1.22*

and physical actions-level it is easier to standardize on

common features. Often this is Lmplemented through a user

:interface manage r . which provides standard parsing and device

.handling characteristics..

In the user langua2e, one-has to try to choose , command

names whose syntax or use in natural language follows the

prescribed-standard. The designers of the 'Xerox Star

illustrate the problem with the example of printing a

document. 26This is performed using the generic operation of

. moving the document's symbol (icon) to the printer symbol.

In other cases, the move operation ranoves the symbol from

its original pot.ition. - But requesting that a document be

printed normally sends a copy to the printer and leaves the

document in its existing location. -One could require the

user to make a copy before printing to ensure consistency,

but the designers chose instead to allow the symbol to

remain.

At the physical.level issues, like the choice of

function keys need to be considered in integration. There

. have been attempts to standardize a 'universall set of

key‹ . 27 	; other key sets are customized to . a ziven

application- 28- . DynaMically labelled 'soft' keys can also

be used, but this raises questions of consistent

• positioning,.frequenCy, etc..

L:23 -

1.4 Integrating Excursion Tasks

The previous section exanined ways in Which a user

interface might support a diverse set of application

services while presenting as consistant a perspective as

possible to the user. One of the services which will be

inevitably required is a route for 'excursion tasks'--an

exploration of syst,em facilities to determine an appropriate

operation sequence fora desired function.

• • There is a distinction between help at this level and

help wiun the semantics or syntax of particular commands .

In the semantic case, there should be no new concepts to be

manipulated outside the conceptual model for the system

implementation of the task domain. In the syntax case,

effective use of examples and natural language parallels can

likewise keep the conversation to applications- related

elements.

But the excursion task by its very nature involves

manipulating system concepts in an effort to navigate from

one application state to a new target state. The

organization of system functions becomes the keY clamait to

be explored. User action in response to a message which

reports inability to carry out a command or an unexpected

result (formerly known as error messages) can also trier

 excursions. Ametimes the message results in specific help

requests, but other times the assistance may have to address

"how do I get there from here", where there and here are

1.24

only vaguely understood.

- As discussed in section 1 and 2 above, it appears that

no universal conceptual model will develop to encompass all

likely user taskS. We could therefore envision a separate

set of interface tools Which provide orientation within the

system. .Some suggested tools using artificial intelligence

are-reviewed in -a-separate réport. 29

We outline here two experimental schemes which attempt

• to provide excursion tasks as a primary service. Other

- applications are integrated into the orientation framework,

rather than the usual practice - of adding assistance to an

interaction style designed .for other purposes.

ZOG

ZOG is an experimental system developed at Carnegie

Mellon University;Sand based on ideas originating in an

earlier application system, PROMIS, at the University of

Vermont Medical School :31The system •is intended to provide a

large set of screen displays *• accessed by menu selection.

A new screen appears almost instantly after user selection.

Selection can invoke actions as well as à new screen, and

Users can extend the display set

Referred to as "frames" in ZOG. This suggests »frames"

in the artificial intelligence sence, Which is too „strong • a

word for the ZOG contents. '

1.25

Rather than a hierarchy, the screen displays are

organized as a (potentially vast) network. For any

available application, termed a subjob, an explanation -

- network can be constructed to allow users to navigate

throue the application.

Wavigatin2 in ZOG: On each screen there is a menu of

selections which will generate new displays In addition, at

any time the user may examine

-the trail of previous display content::

-a list of screens with forward links (i.e.

selections) to the current screen

-a set of screens specially marked along the way.

The user can also

-clear the previously-held trail

-establish additional marks

-jump to an arbitrary screen (each has a reference)

-search for a character string in the screen network

(or particular parts of screens)

Builders of excursion assistance can use the ZOG tools

to. allow users to orient - themselves and explore a network of

facilities.

Special hardware has been adapted to rapidly generate

new-displays, and software is available to design and

organize storage of new screens.

However experimentation with ZOG has shown that users

can readily became disoriented. The problem seems to be the

. very local span of information structure: the display

- panels need to have a map of the vicinity as well as a

'zoom-out' feature Which provides an overview.

XS- 1

XS-1 is an experimental system beveloped at the Swiss

Federal Institute of Technology to run on a personal

workstation. 32The research goal was to design a single

consistent framework with dialogue support at all levels,

with amphasis on excursion tasks. XS-1 provides better

orientation than ZOG by using additional windows on the

screen to 'zoom-out' of the current activity.and place it in

context. There is a set of commands.which can be applied at

. any time to these dialogue control windows, but doing so

does not dishupt the current activity.

1 ..27

There are three basic concepts in te XS-1 frameWork:

-a site, the current data objects accessible
•

-a mode, the current valid command set

-a trail, the history of previous interactions viewed as

sites, modes and commands.

These are meant to answer questions like

-where an I?

-what can I do?

-how did I get here and where can I go?

The tails are presented as .sequences, 	the site and

mode spaces are viewed as trees. The user can explore any

of these by scrolline the appropriate display. He can also

move to new data, a new command mode, or a new command by

jumpine from the current active locatiOn to an arbitrary new

location, or py movine within the tree or sequence: up,

down, (and right or left in trees). This also allows a

particular trail to be rerun or even undone.

1.28

•The. current XS-1 assumes that the data and operation

spaces can be structured as • trees. An interaction kernel

provides • the interface for application prOgrams to the

. central dialogue contrOl.. The syntax of commands is defined

to the interaction kernel by syntax tables, and the file

structure and editor are built tO support tress. (HoweVer

the same concepts could be extended to more general network

structures with enhanced movement commands).

Thus the dialogue author can take advantage of existing

functions like automatic_ menus for commands and prompting

for parameter completion. The dialogue author has to

•structure the data and mode spaces to fit the XS-1

conventions of many small objects linked together. The XS-1

developers see this constraint as an advantage in preventing

poorly-designed interfaces.

Some additional sophistication could be added to allow

the spaces to each be structured differently, and for the

dialogue author to prOvide additional levels of structure

allowing the user to obtain an overview of mode clusters.

Diverse qonceptual models will still require varying

exploration mechanisms. For instance, a user of 3 3

dimensional spreadsheet might want in the site window to

move between sheets, and in the data window to scroll actoss

the given - n:heet. There might needto be another window to

show the columns which are defined on a currently active

• coiumn.• Even forms definition and use in general may

re.quire different movement facilities.

1.29

The extensions of the previous paraz.raph are meant to

show that the X3-1 excursion facilities need not be viewed

as universal. But XS-1 does provide a suggestive mechanism

• for displaying the organization of large command sets and

structured data. 'Arnile we may not be able to integrate data

and command structure into a single uniform framework, we

can achieve integration on a different level: access and

control facilities which allow us to display and explore the

interface object can be unified.

2. Design Principles for User and Interface Evolution

2.1 Multifunctional Office Systems

The last chapter suggested that some aspects of office communica-

tions systems - those at the conceptual model level - are not likely to

be standardized across different kinds of office work. We are still

learning how to think about the properties of office work as they relate

to computing systems. Some aspects of dialogue style, language syntax

and excursion tasks can be consistent, but there does not appear to be a

magic model which will make all the interface complexity dissolve. We

are used to switching rapidly between different contexts, like record

processing and text processing. In future multi-functional office

systems, we will have to tell the machine about the new context and

adjust to a new set of manipulation operations.

This process will never be wholly natural. Suppose we say that we

can make communication with the machine at best "90% natural", without

attempting to define that term further. * If two kinds of application

services are each 90% natural, but I have to remember their features as

I switch between them, then the overall system effect may be about 80%.

That is, the probability of the communication not seeming artificially

constrained may well be the product of the individual components. With

more types of functions, the adequacy of the interface will drop

further.

except to say that we may derive some such number based on communi-
cation between people from different cultures.

I
2.2

We may raise our vague number of 90% to 95% by using artificial

intelligence techniques or other advances, but by then we will likely be

attempting to integrate even more functionality. The history of the

computing industry suggests that our reach has almost always exceeded

our grasp.

The design challenge is to build interfaces which treat information

in diverse ways but for which the overall complexity does not rise

quickly with the number of different views. If we are not able to

address this problem, to design so that the overall 'naturalness' is not

much worse than any individual application, the consequences may include

- rejection, partial use, or even abuse of the office communication

system

- resigned acquiescence, where users adjust to the constraints and

suffer the erosion of their creative ability to do things in

innovative ways.

Of course office procedures often seem now to be artificially

constrained, so one may argue that office communication systems will

replace one kind of bureaucracy with another, more efficient one. This

would ignàre the potential of information technology to expand our

creativity. It also ignores the fact that office technology is being

designed to integrate personal task management into the office system.

We are challenged both by diversity of applications and by differing

scope of control.

2.3

Me-Us-Them - Developers of organization information systems sometimes

categorize their products as shown in Figure 2.1.

The operational products represent the corporate infrastructure by

which data is recorded and managed. This includes transaction process-

ing, standard exception and control reporting and other data management

functions.

The informational products represent information access and commun-

ication on an unstructured, ad hoc basis. Various query and retrieval

languages are the common products supporting these functions.

The decisional products represent personal toolkits applied by

individuals to the information they have obtained. Decision-maker

support falls into this category; in a broader sense so does computer-

aided design.

The three categories are supported by different development life

cycles. The operational systems, because of their wide impact, are

developed to meet firm requirements. The informational systems are

built in gradual but distinct stages, or are built by users with generic

support tools. The decisional systems are often too complex to be built

effectively by users, but are built in an evolutionary fashion in

response to user experience with working releases.

Operational 	- transaction processing (order entry, etc.)

- administrative operations (payroll, personnel)

- scheduled reports

- data dictionary

Informational - data base query

- ad hoc reports: trend analysis, exception reporting,
etc.

Decisional 	- decision maker support systems

- computer aided design

- other professional task support

Information System Product Categories

Figure 2.1

2.5

This view of application or service scope is adapted from Art

Benjamin, 1 who sometimes refers to the levels as "me-us-them". That

corresponds roughly to the degree of control to be expected by indivi-

duals in organizing the facility and the information.

The history of "management information systems" failures should

remind us of the danger of locating control and development within the

wrong scope. Any attempt to build centralized systems for supporting

individualized activities faces major difficulties. As the growth of

personal computers in large corporations attests, local tool acquisition

must be considered a factor in office system design.

The design principles to be drawn from these considerations are

- design the scope of an application service and its development

with a thoughtful mix of central, local and personal components.

For systems designers within organizations, this means matching

the organizational culture with the right set of products. For

product designers, this means an explicit awareness of the scope

of control and development in the intended market.

- expect the addition of personal facilities which will need access

to information and which will benefit from integration of dia-

logue styles, with central facilities. This will mean product

design which allows customization at the workstation level, so

that a heavy user of a personal tool can adapt the central

facilities to a personal style (and vice versa).

2.6

2.2 User Evolution

We have previously considered the effects of user differences in

degree of exposure and kind of exposure to an office communication

system. 2 From a design perspective, we consider here only the exposure

differences over which a designer has direct control: the evolution of

user behaviour caused by increased exPosure to one system in one task.

There are several different perspectives from which one can examine

the evolution of an individual's usage over time:

Knowledge view - this view considers the increased knowledge users

acquire through more use. Typical growth stages might be 3

- using packaged facilities with no prerequisite knowledge

- learning the basics with continual support

- independent knowledge of standard features

- probing more complex features

- evaluative and comparative knowledge (seeing the interface as it

could be)

If our interface is truly successful, users will reach this last stage

and request extensions and new features, as well as constructing s'ome

themselves.

Language view - it is possible to view user growth as measured by

linguistic units employed in user input. This corresponds to the way

people learn natural language. Possible growth stages might be4

2. 14

In the office environment, the infrastructure consists of elements

like forms, messages and procedures. The information access involves

file systems, with file organization having a localized, unstructured

flavour. The personal tools include calendars and project management

support.

Word processing has sometimes appeared at the infrastructure level,

where an organization creates a word processing pool as a corporate

service. It is now more frequently treated as a generic function but

with local organization. Workstations like the Xerox Star make some

document preparation a strictly personal task, while leaving more

general functions.,like text entry in a locally-shared word processor

facility.

The categories by which we think of office system facilities thus

depend less on the perceived type of function and more on the scope of

control and scope of data management. Figure 2.2 shows a vdew of office

systems which parallels the information systems view but revises it

(corrects it?). Some facilities like electronic communication are most

naturally central in scope, including access to external networks.

These standardized systems will likely •be built with traditional or

semi-traditional (prototypes, etc.) life cycle development. Filing and

some procedures will often be local to a given working group, and will

be developed locally from generic functions. Many individual tools will

be very personal and built or acquired in many ways.

Central

a

Central data base

Forms definition and control

Messaging systems

External network access

Other shared resources (e.g. mass storage)

Local File systems

Professional tools

Conferencing and project control

Other shared resources (e.g. printers)

Personal 	Private tools and files

Mailbox

Personal procedures

Office System Product Categories

Figure 2.2

2. 7

- word communication: user thinks of one word at a time

- phrase communication: user thinks in groups, e.g. all parameters

- sentence communication: user thinks of complete command lines

- paragraph communication: user thinks in sequences of command

lines

- creative communication: user creates new words and phrases as

appropriate

If we have highly unnatural words, like complex command abbrevia-

tions, communication may even degenerate to one character at a time.

Concerns view - Another perspective sees users advancing through several

different major concerns about the user interface. A typical progres-

sion would be

- ease of learning

- ease of use

- efficiency of use

- ease of extension and modification

Interaction style - all of the above perspectives culminate in a

practical progression of interaction styles. Each stage in the pro-

gression requires increased user knowledge or language facility, but

offers increased efficiency and natural use. Typical stages of inter-

action would be

2.8

- system displays value, user explicitly accepts or rejects. The

concrete implementation could be a question/answer dialogue with

yes/no options. This would suit only casual, novice users.

- system displays set of values, user chooses one or more. The

implementation would typically be a menu with some form of

selection.

- prompted value entry (no value display before entry). The

implementation could be a form to be filled in or a question/

answer dialogue where the user enters a value.

- free choice entry. The implementation could be a command

language, possibly with prompts to indicate a mode, i.e. a

grouping of available commands.

- user customized entries. This could include user-selected

options for error messages (terse or verbose), defaults, para-

meterized commands, user profiles, etc.

- user created entries. This could include user created command

macros, command abbreviations, and packaged kits.

There are other perspectives which consider changes in acceptance

and satisfaction as well as the cognitive changes. 5

Beside providing appropriate interaction styles for users at

various stages of learning, interface design must plan for encouraging

growth of experience. There must be a consistent progression of

facilities. To encourage user learning, earlier interaction styles like

2. 9

menus must use the command names which a later style will need; some-

times a menu or question/answer style echoes back a command in command

language form to reinforce the learning process.

• 	In the other direction, users who fall back from a command sentence

to a word entry should not receive an error message. They should be

treated as if word or phrase communication is perfectly natural, subject

to the need to reinforce a growth path. This may involve providing a

form filling mode, a menu or question/answer.

2.3 System Design Factors

Designers of office products are the major audience for this

report. System analysts within a user organization, who must match

their organizational needs to a given set of products and plans, face a

somewhat different set of problems. The role performed by marketing

groups in a product organization -- determining the target market,

establishing cost/functionality tradeoffs -- will lie with the analysts

in a system design environment. We sketch here three concerns these

analysts will want to bear in mind; the product designers will want to

consider how these issues affect their designs.

2.10

Integration and scope: as discussed in section 2.1, the system analyst

will have to plan for an integrated service within which central, local

and personal scopes of control can co-exist. This will include choosing

carefully an analysis and development strategy suitable to the planned

scope.
G

Organizational design: an organizational authority structure and

communication pattern can be either enforced or altered by introduction

of an office communication system. System designers will want to under-

stand the implications of their designs for organizational relation-

ships. For example, monitor mechanisms in a new message system or

assignment of authority for changes in user privileges are important

aspects of organizational politics. 6

Participative design: System designers who can identify their users

have more opportunity than product designers to utilize participative

design methods. This represents an effort to improve task level design

by major involvement of users. A deliberate effort is made to view the

proposed system as both a technical and a social entity. In particular,

improved job satisfaction of the users becomes a stated objective.

There are various alternatives for user participation, and case

studies to outline their merits and drawbacks.7

2.11

2.4 Product Design Factors

The last three sections have discussed the environment within which

user interfaces of office systems products must function. That environ-

ment includes a mix of system development strategies and organizational

scopes, and a mix of users in different growth stages of system use.

In this section we examine the evolution of products designed for

that environment, during the product design cycle. We consider first a

design cycle for perfect designers with complete understanding of their

target and complete control over the process! This gives us a framework

for the design sequence, within which we can then consider design

reality with its iteration, backing-up and compromise.

Design framework

The design framework attempts to make explicit the decisions being

made and to order them in priority. Since low priority decisions are

deliberately delayed as long as possible in the design process, this

framework is similar in flavour to what is usually termed top-down

design for functional or computational program systems. Top-down design

derives its name*from levels of organization for program systems, in

which the top level outlines overall module structure and details are

delayed to lower levelS.

2.12

In user interface design, the levels correspond to organization as

perceived or experienced by the user. (The actual implementation of the

interface may thus be quite dissimilar in structure to this organiza-

tion.) The design process attempts to model the user task at the top

level of modularity, and delay action details for lower levels. Since

the interaction is a series of communication acts, the framework assumes

that semantic structures are more fundamental than syntactic rules and

lexical variations.

The design framework sketched here reviews the user interface

components previously discussed: task, concepts, dialogue, language and

physical actions. They are presented here as outputs from design

phases.

Task phase: the user interface designer has to have more than a func-

tional specification to understand the role a proposed system will have

in the users' tasks. The additional information about task context

begins with the purpose of the task within a wider setting. For

example, the wider task is not to send messages but to communicate

information about project management, say. We also need to know about

- the degree of predictability and structure

- relative importance to the user

- frequency, interruptions, elapsed time.

2.13

This task analysis may be given to us as requirements, but more

• often it will need to be constructed from interaction with target users,

marketing staff and management.

The result of the task design phase can be expressed via specifi-

cations describing the system functionality in the user task domain,

plus some narrative or scenario scripts 8 filling in the task context.

The output from the task phase avoids any vocabulary not already present

in the original task. There may also be scenario scripts for current

activities to illustrate the existing task context.

Conceptual phase: The conceptual design phase establishes a system

model, and provides a mapping between task entities and system entities.

The system model categorizes all the task-related objects with

which the user will come in contact: files, documents, records, -

messages, etc. Potential states and values of these objects are in-

cluded as part of the model - e.g., perhaps files can be of type record

or type message, with different characteristics. There must also be a

map for the organization of the system states, so that the system

functions are defined by showing possible transformations of the

objects. Where the functions themselves are organized -- into modes or

access levels --the map must bring that out.

2.1 11

The system model can be expressed via

- a glossary of objects and terms. The glossary is helpful later

in restricting system response messages to a planned vocabulary.

- diagrams showing organization of objects and mapping "how to get

there from here".

- enhanced scenario scripts. The scripts from the task phase are

expanded to describe the system concepts being manipulated during

• the interaction.

The conceptual design phase normally produces a set of system

models, corresponding to levels of user exposure. 9 The first model may

rely heavily on analogies from the existing task environment. Subse-

quent models will represent planned growth in user knowledge. Certain

models may be selected as primary, designating the largest usage

classes.

Dialogue phase: at this point we have defined the information content

of user-system interaction, but said nothing about the method of

communication. In the dialogue design phase we define the interaction

style or abstract means of communication. Later we can specify the

concrete contents of interaction and the necessary physical actions.

In designing the interaction style we have to choose

- a sequence of dialogue types (menus, command language, etc.)

which promote development of user knowledge and efficiency

• 	2.15

- the semantics of user operations which perform the conceptual-

level state changes: "what operations are valid for each element,

what information is needed for the manipulation of each element,

what the results of the operations are, and what errors may

occur" 10

- system responses, including meaning of various forms for system

output.

At this design phase we have to consider not only the original

tasks of the user, but also the new tasks of learning about and navi-

gating in the system. Adding features for these activities may expand

the conceptual model, when additional help modes or assistance compo-

nents are to be distinguished. The set of conceptual operations expands

to include these facilities.

The output from this design phase includes

- a specification of the dialogue user operations and system

responses

- expanded scenario scripts showing usage sequences.

The structure of the dialogue is often specified in diagram form,

as a high level tree of user choices or a more general interaction

diagram." The specification must also explicitly relate the contents

of the system display to the conceptual stateS of the system objects --

is what you see what you get?

I

2.16

Language phase: designing the interaction language involves defining

the concrete terms to be used in communication and their organization.

This includes the actual words to be used for commands, the grammar

rules of a command language, the order of terms on a menu and the

meaning of spatial or typographic cues on displays.

The output from this phase includes

- a language grammar, including error correction and reporting

algorithms

- a dictionary of command words (with the semantics described in

the dialogue phase), menus and system messages

- expanded scenarios

Physical action phase: in the language design phase, we might have

specified user selection from a menu. For the physical action design

phase, we decide on the mechanism of selection: light pen, cursor

movement in various ways, typing, etc. This defines at the device level

what is actually happening. We would also define elements like function

keys and their positions, and specific typefonts, colours or sizes for

display outputs.

Output from this phase includes

- keyboard layout and detailed screen layout charts

- physical parameters for system display or user inputs

- final details of scenarios.

1

I,

1
2.17

Format of phase outputs: we have not discussed at length the actual

format for grammar rules, dictionaries, etc. Many will take advantage

of automated aids and be used as tools during'implementation. 12 The

scenarios can, for the language level and the physical level, be imple-

mented in appropriate prototype tools, as discussed in chapter three.

In certain application domains like data entry, the task can be

partially described with standard checklists to automate part of the

task design phase. 13

Formats used for the conceptual model are much more diverse and

informal in nature. Some work in knowledge representation may be help-

ful in making these notions more precise. 14

Another suggestive set of terms for the design framework 15 d

scribes these design phases as

- intention

- connotation

- denotation

- rules

- constituents

2.18

Design reality

In the interests of simplicity, the framework outlined above

deliberately ignored several aspects of realistic design. In practice

the sequential, top-down process consists of several iterations as

knowledge is added from other sources. That is, the framework above

accounts only for input from a single designer. While overall interface

design usually maintains its integrity by allocating design responsi-

bility to one individual, the interface is improved by contributions

from other professional developers, from management, marketing or other

organizational perspectives, and from users.

Design teams: the relation of user interface design to other design

elements is still being explored. Originally, user interface design (if

it could be called that) was a last sequential stage once the functional

implementation was complete. More recently, some development methods

recommend the exact opposite sequence - user interface design precedes

all functional development. 16

In new products, where the tradeoffs of various elements are

initially unclear, it appears inevitable that functional and interaction

components will be designed and developed in parallel (along with any

special hardware). This can be done either by accident -- returning to

earlier stages in one design cycle or the other as errors and omissions

appear in the sequenced development -- or by deliberate intent to have

both kinds of design proceed concurrently.

2.19

The communication and control paths between the two design streams

are still unclear, although some effort is now going into definition of

concurrent design methods. 17

Design politics: "The designer must face the fact that design is as

much a political as a conceptual process. Unfortunately politics have

been equated with evil.., but politics are the process of getting

commitment, or building support, or creating momentum for change. n18

A designer's view of the user interface will thus have to be

defended to, corrected by and modified for the following groups within

the designer's organization:

- a development group, whose perspective will stress ease of

implementation and maintenance

- a 'product integrity' group, whose perspective will stress con-

sistency across product lines.

- a marketing uoup, which may be seen as representing the users'

perspective

- other Management levels, concerned with cost-effective develop-

ment and an opportunity window (the time within which the product

must reach the market in order to be most successful).

Design iterations: the various input sources and the testing strategies

of the next chapter will inevitably produce loops back to modify earlier

design decisions. The lure of a quick fix to a perceived problem, must

2.20

be resisted; concern for maintaining design consistency requires that

change at any level causes us to rethink the interface level above it,

as well as letting the changes affect lower levels. This feedback

requires that an explicit representation of the interface exists at the

higher levels.

Experienced designers evolve a set of informal design techniques

and rules for understanding the effects of tradeoffs and change across

levels. The choice of object/verb versus verb/object syntax in a

command language, for example, is determined in large part by the con-

ceptual view and dialogue style of the interface. The object/verb

organization does make default entries slightly more efficient, but we

wouldn't want to sacrifice much conceptual integrity for efficiency.

User-oriented design

The participation of users in the system design process was men-

tioned briefly in section 2.3. For product design, it may not be as

easy to identify representative users and secure their co-operation; for

reasons of practicality or organizational protocol, a marketing repre-

sentative may represent the users during product design.

If the feedback from users can be obtained early in the design

process, the following points need to be remembered to take advantage of

the feedback19.

2.21

- users are not inventors, and will not usually be able to suggest

new methods to replace those deemed unsatisfactory

- users cannot usually relate to tradeoffs except in very concrete

terms

- users should take a reactive perspective, expressing likes and

dislikes, and reasons.

For later design stages, the user interface testing techniques of

the next chapter can be applied.

Note: we have not discussed the design of user documentation.

3. User Interface Testing

User interfaces need to be tested before, during and after imple-

mentation. These test stages involve lab exercises, simulated use,

demonstration prototypes and field trial versions. Testing guidelines

and techniques increase the benefit from each stage. When users

experience difficulty, we need to determine where the trouble occurs,

how the trouble occurs and why the trouble occurs.

3.1 Lab Exercises

There is a growing body of behavioural science research addressing

the psychology of user interfaces. These laboratory exercises can also

be used early in systems development.

A typical lab exercise contains the following steps:

- isolation of a single issue to'be studied

- design of a quantifiable test exercise related to the issue

- administration of the test exercise to sample groups

- analysis, formal or informal, of the test results

- interpretation of test results relative to the original issues

A classic lab study which illustrates the steps was performed by

S.K. Card and others to evaluate a mouse cursor control against other

mechanisms. 1 The original issue was which device (mouse, joystick or

key controls) was more effective as a text selection device for text

displayed on a terminal. The test exercise involved timing users as

3.2

they positioned the terminal cursor onto displayed targets. The results

showed that mouse users took less time than users of other devices.

Formally, the result was statistically significant; informally, users

saved fractions of a second, on average, for each target selection. . One

plausible interpretation of the results is that a mouse interface will

be more effective for text selection.

The central strength and central weakness of lab exercises are one

and the same: the original issue is reduced to a one-dimensional

problem. This reduction lets us isolate and study a single behaviour;

it also ignores other interesting behaviours. For example, the mouse

study did not consider mouse learning times, user anxieties, the problem

of hand movement from keyboard to mouse, etc. Even in restricted

settings, lab behaviour and field behaviour may not match.

Surveys of reported lab exercises and a view of their implications

are just now beginning to appear. 2 While these are not specific to any

one system, there are instances in developing particular systems when

suitable issues arise for informal lab exercises. Here are two

representative examples:

-- To study user compatibility of a set of proposed operations, sample

users are given a list of operation definitions. Then a series of task

situations is presented and the users are asked to match these cases to

operations (or sequences of operations).

3.3

Where the user responses differ from what the designers were

expecting, we will suspect that either our descriptions are inadequate,

the breakdown of operations is inappropriate, or the whole task model

needs rethinking. If new descriptions do not produce any change, we

will want to try new decompositions of the system functions into
a

operations.

It is important that command names not be introduced before we have

investigated the clarity of the operation set. Of course well-chosen

nameb will aid understanding of descriptions; however, the various ways

names interact will make it difficult to distinguish poor name choices

from poor operation definition.3 (We may want to ask the user subjects

to name the operations as an indication of description clarity, but we

shouldn't expect users to be skilled at choosing good names for others

to use.) 4 On the other hand, a lab exercise could help determine the

boundaries of user vocabulary at the conceptual leve1. 5 '

Similarly the operation descriptions should be at the same level of

generality. Otherwise, on first exposure more people may tend to use

generic operations, 6 regardless of the clarity of function decomposi-

tion.

-- The previous example examined a conceptual-level question where

testing during use was not suitable. Usage, real or simulated, would

have required the dialogue, language and physical levels td be speci-

3,»4

fied, and we would lose the conceptual-level question. Lab exercises

can also be useful at the opposite end of the design cycle, to study

execution issues like the mouse vs. key control study outlined above.

A major difficulty facing execution level studies is the effect of

learning. We know that efficiency of use is not a concern in the first

stage of user exposure. Lab exercises typically employ novices as

subjects. This minimizes the interference effect of previous learning

but makes it unclear how the lab result should be generalized to actual

use. With physical actions like mouse control this may not be impor-

tant, but studies of the efficiency of different syntax rules will be

more difficult to interpret.

The organization of output displays has been frequently examined

using subjects without prior system exposure. One particularly inter-

esting example compared a fixed format for display of messages with a

format which users could adjust. 7 This was done early in the design

process to help indicate whether personalized display formats were worth

adding as a feature.

Two groups were exposed to a timed sequence of messages. One group

was encouraged to design their own order for the different message

components (eighteen in all); the other group was given a fixed format

chosen by the designer. Both groups were allowed to take notes. After

the messages were completed, a comprehension test was administered

(without notes).

3.5

Subjects allowed to personalize their message formats made a

similar number of errors on comprehension tests as did subjects shown a

fixed format. However, the personalized format group took much fewer

notes on messages during the exercise, possibly suggesting that their

message formats may indeed have been more effective in conveying infor-

mation. There was also a good deal of agreement on the personalized

formats, indicating that the designers' original choice of display

format probably needed improvement.

Note that users were always tested by objective measures rather

than by their own preferences. Given equal performance, we may want to

let user opinion have considerable weight. However, it is difficult for

users to always estimate or evaluate the impacts of system variables on

their effectiveness. 8

Outside of a lab exercise format with strict controls, statistical

formalism is frequently not productive. Individual differences in

performance amongst experienced system users is often as high as 30 to

1. That variability and the inability to limit external factors make

valid experimental design difficult in the prototype testing situations

to be described next. Only obvious performance differences between

groups will be significant, and then only as we analyze their causes. We

will rely in prototypes more on differences between observed and

expected user behaviour.

I

3.6

3.2 Testing Prototypes

Software developers recognize the value of constructing functional

prototypes. 9 Early in the system life cycle, users can provide feedback

and view progress. Prototypes can correct incomplete or faulty func-

tional requirements specifications; less tangible, but possibly as

important, they develop a sense of system ownership for users. Manage-

ment within software development also responds positively to viewing a

prototype - including funding decisions in a product environment.

Using prototypes to test user interface characteristics is some-

times more difficult. Users exposed to early system mockups comment

quickly on missing functions or faulty logic. But awkward features and

inconsistencies, when noticed at all, may be attributed to lack of

training or personal inadequacy. By the time an initial release is made

available, the complexity of interaction may encourage designers to look

for quick fixes to problems rather than their underlying causes.

Patching up on-line assistance messages often replaces careful diagnosis

of usability flaws.

In this section, we consider the different stages of interface

testing with various prototypes, including the kinds of user interface

problems which may be exposed at each stage. Section 3.3 contains

guidelines for running test sessions which address interface quality.

Table 3.1 summarizes the prototype stages.

I

Table 3.1

Testing Summary

Lab exercise 	- single issue experiment

- implications typically for novice use

Scenario 	- increased knowledge of users and task

very useful in requirements specifications

3.7

Demonstration - observations of novice use

- shows impact of all interface levels

- shows ease of learning

Field Trial - actual usage patterns revealed

- observation of intermediate and practiced use

- shows ease of use and efficiency of use

3.8

Scenarios

A scenario is a simulation of a prototype system capability.

Unlike a lab exercise, users should see themselves in an actual task

situation. Unlike a demonstration prototype, a scenario prototype

responds to only a restricted subset of the user options available. The

scenario is frequently implemented in a quite different way than the

final system.

Scenario scripts were mentioned in chapter two as a design tool.

These include task descriptions constructed by analysts or users, and

system interaction descriptions constructed by designers or independent

reviewers. Scenario prototypes differ from scenario scripts in inten-

tion. Prototypes are meant to allow users to experience, early in the

design cycle, what it will be like to use the system being developed.

. They-should be an animation of the current design - to make it come

alive.

Scenarios impose two artificial aspects on system usage

- functionality is simulated, so that response times are not

necessarily realistic

- the problem or example is chosen by the designer, not the users.

Within these constraints, scenarios can help in the following testing

areas:

- evaluating a narrow focus question (much like a lab exercise) in

relation to a specific current design

3.9

-- examining the correctness of control flow and information

display

- observing problem solving and information handling by users

• The degree of realism required by the scenario depends on what we

want to test. A paper simulation can capture enough of the live

experience to address single issues, like a lab exercise. A software

prototype provides better animation, so that we can get information on a

wider range of questions. We can work from a fixed script and obtain

user opinion and reaction for control flow and information display. To

observe problem solving, we prepare a scenario which follows enough

decision paths to allow users to make choices. We can record the

choices and times to yield objective data, as well as noting subjective

reactions.

Within data processing literature, there are numerous examples of

scenario usage to examine contrOl flow and correctness of information by

user opinion." The following two examples illustrate ways to address

single design issues of problem-solving behaviour.

-- A quick and simple test of a videotex interface was performed to

consider the effectiveness of the initial instruction set.11 A drawing

of a sample keypad and the set of proposed instructions was given to a

large group (students in a classroom). After reading the instructions,

the subjects were to write, in a space provided, the label on the key

which they would press first in response to the instructions. Over half

3.10

the respondents had the wrong key. Several design iterations followed,

each using the same convenient test method, until the instructions were

deemed effective.

-- 	A computerized Flight Design System to aid in planning space

shuttle flights was simulated on paper in increasing levels of detail 12

(requiring use of more specific commands as the design proceeded). In

each simulation, the goal was to determine the extent to which the task

structure requiréd by the user was properly supported. All computer

responses were calculated or estimated by the designers on the spot.

Demonstrations

A demonstration prototype provides realistic processing of user

queries or data within some restricted limits. The system responses are

not built in; the users- can therefore bring their own problem data

provided it fits the prototype's limited functionality. The users must

receive training so that they employ the actual commands of the current

design.

In demonstrations we typically need to probe the reasons for user

actions. In this way we try to determine which of many contributing

factors is helping to shape the observed behaviour - training materials,

interference from other systems, and the various levels of the system

interface. For scenario prototypes, we have to define in advance the

3.11

kind of test data we will use, given what kinds of observations are of

most interest. In demonstrations we may start with sample cases, but

asking users to bring along current work helps to detect unusual cases.

Example demonstration payoffs include:

- detection of menu problems in an IBM System/34 user interface. 13 A

prototype version was programmed and run with sample tasks and

participants for various user groups. Usage problems fell into two

clear classes: cases where more than one menu item seemed a likely

choice, and cases where no menu item seemed likely and a shotgun

approach resulted. With this information, the designers were able to

generate a new menu set. A second set of demonstration runs con-

firmed that the major problems had been addressed.

- improvement to help messages for a business graphics package. 14

Faced with an already existing system in which only the assistance

messages fell within their mandate, the experimenters produced four

redesigns of the help facility in response to user error patterns.

These examples illustrate a more focussed demonstration than is

usually possible. Unlike lab exercises or scenarios, demonstrations

sometimes must serve as 'fishing expeditions' where we are not sure what

user behaviour will be of interest until it appears. The most we can do

then is note the user responses we expect on the sample data. Tech-

3.12

1

1

1

niques for recording the actual behaviour are treated in section 3.3;

some suggestions for categorizing the causes of problems are included in

section 3.4.

Field trial or version '0' usage

Demonstration prototypes are usually exercised with close inter-

action and recording by developers. That fact alone makes usage arti-

ficial to some degree. There are also limitations on duration of use

and the scope of actual test cases.

Testing, therefore, has to include use in a real task environment

by real users. The users should be typical, but sometimes for political

reasons the test sites are selected in unusually supportive surround-

ings. User management must be prepared for the additional burden of

- developer observation and some product flaws yet to surface. Field

trials within the system developmen depar%ment are not as instructive

as an external trial or 'version 0' of a product.

A version 0 or field trial prototype is a working release of a

system which is intended to receive use under conditions approaching the

production environment. While it is specifically designed as a test

release, it is usually expected that the final product will build on

version 0 by enhancing the implementation of functions, adding requested

alterations, and generating additional documentation.

3.13

The field trial is the first objective source of information on

intermediate and practiced users. Since the volume of data generated by

the trial will be large, we want to look for patterns of use rather than

individual incidents as in a demonstration.

Table 3.2 lists the various techniques to be employed and their

goals. Techniques are described further in section 3.3.

Many field trial techniques have been used to observe production

release use. Such observations record surprise about commands which

were used improperly or never used at all. There are also numerous

accounts of partial use, in which users stick to a small subset of

commands and ignore other system features which could be easier for them

to use.

Descriptions of planned field trials are available for products

like a decision support system15 and an electronic mail system. 16 For

each, a variety of observations, measurements and interviews was used to

illuminate patterns of use. In the first case, in which the phrase

'version 0' is used, the major payoff was a better fit with the task

structure. In the mail system trial, an attempt was also made to

measure productivity gains.

Table 3.2

Field trial data collection

3.1 14

Question

What are users doing?
(incl. documentation usage,
asking other users)

Data Collection Technique

Software logs
Observation and recording

Why are they doing it? Debriefing, talk-through sessions

What do users think they're
doing? (conceptual model)

What do users think about what
they're doing (job
satisfaction) .

Interviews, questionnaires, talk-
through sessions. Possibly
scenarios (alternate scenarios to
evaluate conceptual model)

What would users like to do 	Interviews, possibly scenarios
(including task model)

3.15

3.3 Interface Testing Techniques

During the stages of interface testing summarized in Table 3.1, the

need arises to observe and record user behaviour. This includes both

visible activities and the cognitive activities behind them. The

techniques used are summarized in Table 3.2.

Interviews and questionnaires are well-known instruments for data

collection. We will describe in more detail observation records,

software logs, and talk-through sessions.

Observati6n records

User activities communicated to the system can be recorded by the

system in a software log. Other simultaneous activities must be

recorded separately to interpret the meaning and timing of the software

log. Such activities include:

- reflection
- consulting other users
- consulting printed documentation or written instructions
- composing personal notes about the system
- task activities not directly related to the system, such as

interaction with clients.

An observer during a demonstration or field trial can note any of

the above which appèar to be of interest. But it is more productive to

have an observation routine in addition. The observer can still be free

3.16

to record particular items which fall outside the routine. Some of the

routine may repeat measures taken before system use to estimate system

impact.

A variety of observation methods are outlined in Table 3.3. In 0

each case it has to be clear to the users that it is the system being

evaluated, and not them. To reduce bias, observers should not be the

designers. The evaluators or observers should make this apparent (that

they have no personal interest in the current design), so that the users

will not suppress comments out of politeness.

Task records, communication diaries, etc.: 17 These tools were mentioned

in chapter three as an early part of the design cycle. Their repetition

here may serve as a measure of system impact. If used in that way,

there should be a control group who do not use the system but who

complete the measurements in the same way. This may reveal the effects

of a second record, independent of the system.

Activity sampling: 18 This technique may also have been used early in

design. At periodic intervals, the user's activity at that instant is

recorded. A typical interval time is 15 seconds, which provides a

detailed record of actions but permits time for encoding. Observers are

given training in use of special coding forms.

Table 3.3

Observation. recording methods .

Task record, communication diary 	Compare with same record before
system use to assess impacts

Activity sampling 	Compare with same record before
system use to assess impacts

Video recording 	Synchronize system interactions
with other activities

Audio recording 	Synchronize system interactions
with talk-through sessions

3. 17

3.18

Video recording: A videotape or film of a user session can be electron-

ically synchronized with a software log, and can be timed separately by

frame or with a visible clock. This permits detailed analysis of the

causes for system problems, need for documentation, etc. It is especi-

ally useful as an animeion of user difficulties for the designers.

Audio recording: In sessions where users are encouraged to talk through

what they are doing, and to work co-operatively with another person, an

audio tape recording captures the conversation. It is again a vivid

presentation for the designers. Stereo tapes have been used in which

one track carries user keystrokes and one conversation.

Talk-throughs

A 'talk-through' or 'thinking aloud' session involves users who

make verbal commen 'ts as they work in an interactive session. The goal

is to illuminate the reasons behind various actions, for later analysis.

Recording of such remarks was discussed above. We will note here some

procedural considerations; a fuller discussion appears in a report by

Clayton Lewis. 1 9

A natural way to encourage comments about the interactive process

is to have users work in pairs, one at the terminal and the other

adjacent, acting as a helper. 20 This is most useful for observation of

novice users who can be expected to seek out advice.

3.19

A less natural but equally effective technique is the presence of a

'silent partner', to whom questions and comments are addressed. The

observer must be perceived as neutral, i.e. having no stake in the

system. It is usually important for the observer to initially prompt

the users to keep talking. The observer's comments must not influence

the user's course of action, so they are limited to questions like "What

thoughts are coming to you now?" (not "Why did you do that?"). If the

observer wants to ask detailed questions, the session can be replayed

later as a debriefing with the user.

Thus, the user may ask questions of the obsèrver but will not get

answers. In extreme cases - the user is about to quit - perhaps that

rule could be waived in the interest of keeping the session going. At

times users are informed that they will be given the answers to only a

fixed number of questions (say, 3) during their task. Users should be

encouraged to express frustrations and emotions as well as conceptual

problems!

Software logs

The observation records listed above provide anecdotal and context >

material which supplements the record of user-system interactions.

There is no substitute for data shoWing actual usage of the system,

especially if statistics on large-scale use are desired. With minimal

software overhead, such data can be recorded by the system itself.

3.20

A software log records user entries and system responses. The

records may be coded if the monitor is an integral component of the

system. Otherwise the actual dialogue is recorded and later parsed to

recover language constructs from the charasters transmitted.

The log will furnish frequency statistics after a little lexical

analysis. The occurrences of various commands, error messages and help

messages are thus readily available.

Commands: Designers have sometimes been surprised to learn about the

relative frequency of command use (or lack of use) .21 To analyze

command usage further, pattern recognition techniques can be employed,

with some effort, to distinguish different activities based on length of

an interactive session and command pattern. 22 Formal models can then be

built of the different types of system . use.

Similarly, keyword parameter frequency is easy to obtain. It may

also be of interest to analyze user-detected errors by recording lines

deleted before full entry, erasures within a line, etc.

Errors: The frequency of error messages, expressed as a raw statistic,

will not usually yield all the information we need to improve the inter-

face. A sophisticated software log will also compute the frequencies of

various pre-error patterns (eg. the preceding 3 commands) and post-error

patterns. Post-error patterns are particularly interesting when another

3.21

error message follows, indicating the original error diagnosis or

suggested options were unsuccessful. We can also detect probable typing

mistakes by comparing the command strings before and after error

messages, so that examining error patterns distinguishes keying problems

from more serious difficulties.

Tracking use of an undo operation, which reverses the effect of a

previous command, can likewise aid understanding user behaviour. Help

messages can be analyzed in similar fashion to error messages.

Privacy concerns: A software log naturally raises the issue of user

privacy. The simpler frequency statistics can be kept without reference

to a specific user. Analyzing patterns requires recording of at least a

few commands in sequence, but there again need not be associated with a

particular person. All non-keyword entries like filenames should either

not be logged or be coded to disguise the user.

To analyze whole sessions, user learning, or variability between

people, the usage record must be tied to a subject. If the number of

users is small or some users have distinctive patterns then their

identity may be recovered from their pattern of use. Users should be

told the purpose of the software log and how to turn it on if they wish

to contribute. Note that this is not the same as being given the

option to turn off the monitor. Moreover the decision to participate

3.22

must be revocable - once a user chooses not to participate, due to the

nature of the data desired, no software log will be kept from then on

(i.e., the log cannot be disabled for one session only).

3.4 Interface Malfunction

The information obtained by interface testing is, of course,

pointless unless we are able to apply it for improved products. We need

to consider the data on user-system interaction to determine what

situations need to be classified as problems and analyze them appro-

priately.

The term malfunction is deliberately chosen to label undesirable

performance without assessing blame (unlike the labels (user) error,

(software) bug or flaw). It is a mismatch or poor fit between the task

requirements and the human resources applied.

We will consider

- where the problem appears (the external appearance of the mal-

function)

- how the problem emerged (the interface level of the malfunction)

- why the problem occurred (the mechanism of malfunction)

Some of our terminology here is adopted from another interface area

in which malfunctions can be critical -- control displays for nuclear

a

3.23

reactors. 21 Extensive testing is performed on operators using simula-

tors, since critical incidents are rare but have enormous consequences. *

 Each instance of malfunction is analyzed for the benefit of the operator

and the interface designers. The symptoms and interface levels of

malfunctions are different in an office system environment, but the

underlying mechanism of malfunctions appear to be task-independent.

External appearance of malfunctions: The most obvious symptom of

malfunction is detection by the computer system of an incorrect user

request. This could be triggered by

- omission of a required item within an entry

- a syntactically invalid entry (grammar rules broken)

- a semantically inappropriate entry, i.e. syntactically legal but

not correct

For example, if user wants to send an electronic mail message, MAIL1,

and the proper command is

SEND MAIL1 TO SRON ,

then 	MAIL1 TO SRON 	is an omission,

SEND SRON MAIL1 	is a syntax problem,

and 	SEND MAIL2 TO SRON 	if MAIL2 does not exist, is semanti-

cally incorrect.

Reading the accounts of errors occurring on nuclear plant simulators
is not recommended for the faint of heart.

3.24

Of course, a more worrisome case would occur if MAIL2 does exist

and gets sent instead of MAIL1. When the system doesn't detect the

problem, the symptoms will be

- cancellation or reversal (undo) of the operation

- repeating the operation with changes.

The former case can be located in a software log, but the latter cases

must usually be noted on a one by one basis.

A final type of external malfunction appearance concerns timings:

- unexpected elapsed time between entries (user takes longer than

expected to decide next entry

- unexpected length of operation sequence (user takes a seemingly

roundabout way to reach a target state).

Instances of long elapsed time between entries will be recorded by

software logs, but may have extraneous causes, like interruptions from

external sources. Apparently inefficient use is typically not detected

by the user.

Malfunction level: The external appearance is the symptom of malfunc-

tion. It shows where a problem has occurred. How the problem arose

requires further analysis. Typically, we have to examine malfunction

patterns, study think-aloud records, and interview users. Figure 3.1

uses the levels of an interface to describe malfunctions.

3.25

TASK

intentions not fully formed

task goals not supported

status or target 	CONCEPTUAL
identification inappropriate

operation inappropriate 	DIALOGUE

language expression inappropriate 	LANGUAGE

physical execution inappropriate 	PHYSICAL

Malfunction Levels

Figure 3.1

In the previous discussion of interface levels, we noted that the

stages may not be distinct, particularly past novice or intermediate

exposure. However, before we can improve the interface, we have to

attempt this kind of analysis. It is pointless to emphasize language

syntax for example, when we really need to alter the semantics of system

functions.

The first element of the figure could really occur at any stage in

which the user's attention has not been sufficiently focussed on the

problem at hand. Reasons for this are discussed later in this section.

3.26

At the task level, the malfunction may have arisen when the user

attempted a task not supported by the interface. This could typically

be an attempt to reach a task state which is not attainable, including

information access in an excursion task. The user may have chosen the

closest alternative available in hopes of arriving at the desired state.

At the conceptual level, the user may have misinterpreted the

current status of the system or attempted to reach an incorrect (but

reachable) target system state. Where these states have been correctly

identified, an inappropriate operation may have been chosen (at the

dialogue level) which will not move from current to target state. This

may include interruption or other facilitative operations.

Syntax errors, invalid command names, turn-passing omission (eg.

failing to press RETURN key) are examples of language-related mal-

functions. Typograph'ic errors and perceptual mistakes like reading a

word incorrectly are typical physical level problems.

The connection between external appearance of a malfunction and the

action which brought it about is often indirect. Tracing back from the

symptoms of a problem to the action can be challenging, frustrating, or

both. However, knowledge of the user's intent, a record of the action

sequence and an understanding of the interface will always hold the clue

to how errors or wrong answers have arisen (inefficient usage as a

malfunction is less straightforward).

3.27

Malfunction mechanism: To understand why a malfunction has occurred, we

need to determine the user's cognitive actions which determined the

observable actions. Not all of these will be accessible, so we will

often have to infer the processes by which actions developed.

Figure 3.2 illustrates some of the analysis questions which might

be asked to clarify possible interface improvements.

Where normal attention has not been applied, most of the causes

will not be under the control of the interface designer. Improving the

aesthetic appeal of the display or providing more media of output can

alleviate some boredom, but motivation or fatigue problems are job

related. They do indicate a mismatch between the resources demanded by

the task and the resources applied.

Physical problems are often mixed in with stereotypes. Where a

display is too small to read or keys are hard to reach, the problems

(and solutions) are physical in nature. Where a person reads or types a

word incorrectly, the actions may involve predicting/confirming skills

and suffer from interference of similar words. In these cases, we may

need to alter the word choices at the language level to avoid mistake.

Stereotyped behaviour can involve more than perception. For

example, a user may correctly "read". a. status display, but the infor-

mation may not register. That is, the need for higher level processing

3.28

may not be noticed and a common response may be involved incorrectly.

To correct this kind of malfunction, we will need to foster user aware-

ness of non-typical situations and more noticeable displays.

Where the need for appropriate knowledgea has been recognized, the

information may not have been applied. The user may have not recalled

the required knowledge, may have recalled it incorrectly, or may never

have known the needed facts. In each such case we might need to improve

the interface (including supporting training and documentation) so that

information is easier to learn, recall and access.

Sometimes false conclusions will be drawn from correct information.

An analysis of such situations may lead us to reduce the complexity of

mental processing required, to provide more information cues in poten-

tially difficult cases, or to alter training materials to include them.

Partial use of an interface, where users are satisfied with a

subset of knowledge (sometimes applied awkwardly), is typical in early

use. If it persists into intermediate or practiced use, then the inter-

face is failing to encourage user development. The fault may be in

documentation and support materials, or in an overly complex pattern

which discourages learners.

3.29

These mechanisms of malfunction appear to arise in most cognitive

processing tasks. User interface designers have to develop the humility

to blame their designs -- and not the users -- when the interface

requires more work than they can apply.

6

4. Sample Elements in Office Conceptual Models

Some aspects of conceptual models for office systems were discussed

in section 1.2 above to illustrate the difficulty of designing a single

model of diverse, multifunction systems. We compare here some elements

of proposed conceptual models (implicit or explicit) to see how an

underlying model affects the orientation of a system and what its

designers considered as important.

These models differ from analytic models whose purpose is to log

and categorize actual office activities, e.g. information control netsl

or the Kayak EA/AQ 2 family. The analysis models may be used to help

design portions of the office system, but they are not intended to form

the users' framework during interaction.

Our focus is on two aspects of conceptual models.

- the objects in the system and their organization

- the mechanism for describing information management procedures or

automated methods.

In particular, we will not discuss information manipulations like

various editing strategies or query language structures.

4.1 Conceptual System Objects

Three basic orientations appear in conceptual models for office

systems, yielding three perspectives on the central activity of an

office:

4.2

- office functions can be perceived as centering around the infor-

mation stored and manipulated by individuals and groups. From

this perspective, office services are viewed as a distributed

data base and central concerns include data consistency and

access.

- office functions can be perceived as centering on the output

produced by office workers. From this perspective, office work

focuses on document production and distribution.

- office functions can be perceived as centering on the commun-

ication process amongst people and groups. From this perspec-

tive, the major system functions are message processes and

co-ordination.

We present the conceptual models of information management in three

distinct systems: the Xerox Star records processing, which has its

origins in document production; IBM's Office-by-Example (OBE) research

system, which has its origins in data base systems; and the Office Forms

System (OFS) from University of Toronto, an experimental system derived

from data base work but deliberately aimed at transcending the limita-

tions of a data base orientation. OFS includes plans for extensive

message co-ordination, which we will not dwell on; other systems explor-

ing a messaging perspective are Officetalk-D 3 and the Kayak4 family. The

conceptual objects are summarized in figure 4.1

14.3

Figure 4.1

Conceptual Entities

Definition 	Storage 	Display and Query

Star 	Defining document 	Record file 	Display document
Filter
Sort order

OBE 	(Table definition) 	Tables 	Form
Report
(menu, program)

OFS 	Form type 	Form instances 	Form templates
Forms 	(text, voice, data)

Star: the Star's information management facilities form the records

processing extension to the original document production functions. 5

Since it was a released product before records processing was added,

particular effort was directed at maintaining consistency with the

original document conceptual model (discussed in section 1.2).

Record files are initially defined through a defining document,

whose field structure and names are carried into the file definition.

Display or query ofa file requires a view, consisting of

- a display document, which selects a subset of record fields and

possibly combines them with other information

- a filter, which selects a subset of records

-.a sort order, which determines the sequence in which records are

presented.

14 . 14

Insertion, update and deletion of records follows basically a

document editing model. The notion of a blank form used for updating is

foreign to the spirit of this model; record insertion is like inserting

a line in a document. Similarly, a filter requires a specification of

patterns to be matched in a record, following the model of an editor

searching for all occurrences of a pattern.

The document paradigm does not easily handle rules or relations

amongst fields of a record. The defining document may have rules to

fill in fields from other fields, but these are,consistency checks and

are not maintained as part of the record file.

Office-by-Example (OBE): OBE derives from its relational database

origins (child of QBE) a perspective with relational tables at its

centre. 6 The tables are defined first. Data objects which can be

linked to tables include forms and reports - forms are used for both

input and output, reports are output only. Forms are generalizations of

relation tables; they are not tied to single tables the way Star's views

are tied to a single record file. Reports and forms are linked to

tables dynamically by specifying example elements shared by the table

and the other data objects.

Where the Star regards record processing as an extension of text

processing, OBE views text processing as a degenerate case of a report -

one in which no fields are related to tables. 7 In a wider sense, tables

14.5

are seen as prototypes for general two-dimensional boxes, which may also

contain sequences of commands (programs) or preset forms and relations

(menus).

Office Forms System (OFS) : OFS has its origins in data base management

systems and has more concern for data types and consistency contro1. 8

The ubiquitous word form is given a very general meaning here and

several variations.

- a form type specifies the data types of fields in a form and

optionally some procedures for consistency checks, generating

field values from other fields, etc.

- a form instance is an occurrence of an object with a given form

type, plus results from associated procedures. For instance, a

form type may include a procedure for logging changes to a

particular field, so that the form'instance contains a history of

previous values. Form instances have unique identifiers to track

time of creation and user.

- a form is the set of field values (= a form instance without

attendant procedures)

- a form template specifies a way of interpreting or displaying a

form instance. Text templates can be used as display documents

in the Star sense; data templates can be used to treat the data

in form instances as a relational table. Templates are more

general than OBE forms, since they can also transform data in the

14. 6

form instance itself. Many different templates can be defined

for a form type, providing alternate views of a file of form

instances.

OFS thus attempts to generalize beyond its data base roots to allow

a variety of interactions between fields in a form, via form type pro-

cedures and template mappings. This requires the careful separation of

types and instances (technically we could have spoken of template types

and template instances), and a departure from OBE's world of pure

relations. Consistency issues and maintenance of data base integrity

are addressed in a more general way when the procedural elements are

tied to the form type.

We have examined three different conceptual models for functions

which seem on the surface to be similar. The conceptual model we choose

will structure the user's thinking and interactions with the system.

There are other models which depart even further from what we might

be used to in traditional office objects, for instance a system modelled

on 'migrating forms' which are independent processes moving about a

network. 9 If the forms carry the.intelligence and the workstations are

seen as passive servers, this is nearly a reversal of roles. In pre-

vious work in programming languages this kind of metaphoric change in

system initiative and control has been disruptive." Choosing the right

model for a given group, especially the degree of alteration in tradi-

tional models of work, has to be approached modestly and cautiously.

4.7

4.2 Office Procedures

The objects and operations described in the last section mechanize

certain task actions, like searching through files, and offer substan-

tial integration of various tasks into a common framework. In order to

accomplish some measure of task automation, we need a mechanism for

recording sequences of decisions and operations - an automated office

procedure. To go further and offer task augmentation, i.e., opening new

tasks within the office, we would require new capabilities like monitor-

ing of current workstation loads or of delays in processing.

In this section we compare elements of several schemes for office

procedure processing. The proposals are in various stages of develop-

ment ranging from research design to substantial (but incomplete)

implementation.

One way of viewing procedures examines whether they express a set

of activities associated with office services or a set of activities

associated with office control. Office services procedures describe the

actions of a single role or position with respect to a given work unit -

document, message, etc. They are thus local in scope and may need to be

modified by clerical or professional staff performing a service on the

work unit. Service procedures could be linked to positions, roles or

even particular workstations.

14.8

Office control procedures would automate or support co-ordination

of numerous tasks or roles operating on a unit of work. The actions of

a purchasing agent with respect to a purchase order are part of a

service procedure; the co-ordination of actions of the purchasing agent,

accounts payable, receiving department, and so on from an office control

procedure. These are likely to be under centralized control, with scope

covering a large organizational unit. Authority for these procedures

will be limited, and change more restricted. There will be a greater

need to track progress of such a process, so that the procedure may be

associated with a given workstation but it will need to have access

throughout the office.

This distinction in perspective is, of course, sometimes blurred:

the service performed by some office groups is primarily one of control

or monitoring, perhaps as an after-the-fact audit. Another view of the

distinction perceives the difference as one of hierarchical structure,

in which the control procedure occupies a high-level or more abstract

role and the services procedures are the concrete low-level activities.

We choose to view office procedures by looking at their scope of

application because it clarifies some major differences between con-

trasting systems proposals -- in terms of operations, control condi-

tions, specification method, and system processing.

4.9

Office services procedures

A primitive form of procedure is provided in the form editing

conditions or fill-in rules provided in the system objects of the last

section. They were part of the mechanics of filling in a blank form and

maintaining integrity during later manipulations.

A service procedure represents typical form processing by an office

worker. The operations for checking input forms, manipulating infor-

mation, and generating output, use facilities such as those outlined in

section 4.1. In addition, we must be able to specify decision condi-

tions and their effects.

Conditions: The kinds of conditions affecting processing reflect the

conceptual model of system entities.

The OBE system, with its heavy data base orientation, uses modifi-

cations to the data base as a key 'trigger' in initiating actions.

Certain timings can also be given to start events, including periods

like daily or weekly. There are conditions on field contents to pick

out specific modified records.

OBE does not have explicit conditions based on arrival of a message

of given type from a specified source (although of course it can be

handled in a more cumbersome way by using a MAIL relation). OFS does

provide for checks on origins of documents, including ability to

14.10

list origin points which are not to be selected for processing. Other

desirable conditions include elapsed time: if no confirmation message

arrives within three days of receipt of a form, then certain action is

to begin. We might also want general pattern matching in documents; for

example, a mention within a document of a particular product may mean a

copy is sent to a certain department.

Specification: How do users express the relationship of operations and

conditions?

OBE uses trigger programs: a list of commands dependent on various

triggers, including commands to execute other programs. Trigger pro-

grams can be easily packaged into menus for invocation by other users.

OFS tries to stay within a forms paradigm rather than create a new

command box like OBE. Procedures are a collection of form 'sketches' :11

- a precondition sketch which describes the form field values of

interest, using a form template

- an action sketch which describes the changed values on various

forms, using form templates

- 'pseudo-sketches' which allow for additional conditions like

point of origin and operations like sending a form instance to a

destination.

14.11

The new vocabulary of form sketches and pseudo-sketches is roughly anal-

agous to condition boxes and command boxes in OBE. The OFS developers

feel it is desirable to retain a form for everything and everything in

its form.

Another way of specifying procedures is to use a simulation, in

which a sequences of user operations is recorded for future use. 12 This

can be extended to a procedure-by-example format, in which the user

provides operation sequences on sample data and the system asks for

conditions when two sequences differ. 1 3 In this last case, the condi-

tion could produce an iteration construct; in the other specifications,

the only looping is the implied loop on all records in a file.

A proposed system from Siemens with more explicit iterations has

been described as "a nonprocedural specification language for process

reactions to trigger stimuli". 14 It includes a 'whenever' construct,

which gives a logical condition whose change at any time from false to

true will initiate specified actions.

Procedure handling: service procedures can be associated with the users

who create them, with copies sent to others. Procedures can also be

linked to the form type for general access.

When triggers are placed on a data base, a central monitor must

initiate the procedure. When triggers are placed on messages for

certain u.sers, the initiation can be done by a central monitor or a

14.12

local, workstation process. This latter organization implies that the

workstation is either always active or can be activated by message

arrivals; timing triggers can be implemented with similar conditions.

Office control procedures

The OFS developers distinguish between a desk activity, a mail

activity and a co-ordination activity. 15 Desk activities correspond

closely to service procedures; co-ordination activities correspond

roughly to office control procedures. Mail activities fall somewhere in

between, depending whether they are specified by the user or centrally.

However, the portion of OFS implementing procedures does not provide

extensive co-ordination: decisions made after processing a form are

difficult to handle, and there is no mechanism for passing procedural

control from one workstation (user) to another.

OBE would handle co-ordination indirectly through a data base

relation. If we wanted to say that department one must pass a form

before department two, then we would have to create a field which was

modified by department one.

An experimental system from Xerox Palo Alto Research Centre,

Officetalk-D 16 uses a database with precedence relations to handle

co-ordination. This specifies the sequence of activities through which

a given task must progress. Workstation users are notified when

14.13

activities for which they are authorized are available for processing.

An alternate scheduling process would require a user performing an

activity to initiate the next task step if possible.

Two systems which directly address the notion of procedural flow

between workers are the Business Definition Language (BDL) 17 and the

Office Procedure Automation System (OPAS). 18

BDL

BDL was an experimental system developed within IBM to explore high

level generation of data processing applications. Its data transforma-

tions do not encompass all that we would want in an office system,

particularly text processing. But there is an explicit document orien-

tation and a Document Flow Component which shows the sequence of

processes for a given document, like a purchase order or travel request.

To specify the document control procedure, users interact with a

graph editor which creates a top-down hierarchy of graphs describing

document flow. The graphs illustrate control flow by document flow - a

correct document goes to one next step, an incorrect document goes

somewhere else. Another description mechanism allows specification of

actual processing at each step.

14.1 14

BDL is of interest partly for what it does not contain - general

purpose communication and messaging. In keeping with the document

paradigm, events are not easily triggered by a confirmation message from

a given user; either there is a separate form for that purpose, or the

condition is hidden outside the Document Flow Component. Similarly, the

data processing applications are not perceived as requiring a separate

timing mechanism to trigger clocked events or measure elapsed times.

A later development with some roots in BDL is the Office Specifi-

cation Language (OSL). 1 9 OSL is intended to be more flexible, more

interactive and less structured than data processing specification

languages. The conceptual model of-OSL involves documents but is

'function-oriented': its developers want to "focus on the end being

achieved rather than the means." 20 This organizational perspective

restricts its utility for general users. OSL is intended for specialist

users, partly as a modelling tool and partly as a policy device.

OPAS

OPAS contains a forms processing component similar in most aspects

to OFS, except that each process only has one resulting action. Indivi-

dual processes manipulate form contents under specified conditions to

yield output forms. A separate mechanism exists to link the processes.

4.15

A procedure specification form shows a sequence of activities to be

performed, with triggers and conditions. As usual, the triggers are

event-oriented (RECEIPT of a form, COMPLETION of an activity, ERROR in

an activity) and the conditions are data-oriented. There are potential

timing triggers for initiation of each activity, along with a parameter

list, input and output forms, and error handling statements.

Each activity causes a forms process or another procedure to be

initiated. These can be specified to run concurrently or in sequence.

One can also give a specific workstation where the activity is to take

place.

There are REPEAT actions, but these are intended to keep a pro-

cedure active rather than cause an iteration. That is, a procedure

instance is an active entity: it must be invoked by a user or another

activity. This is a slightly different concept than an OBE or OFS

process in which it would be inactive but invoked automatically when its

conditions are met.

This causes the user to need REPEAT statements to keep the pro-

cedure instance running, but it also permits dynamic update to the

procedure definition. Once a procedure is active, the definition can be

changed without affecting the already active copy. Alternately, if a

procedure instance suspends execution, its procedure specification form

/4.16

can be edited without affecting the main procedure definition. This

yields a convenient way to patch around errors in unanticipated

exceptions.

The listing of input forms required also serves as an execution

condition, since the procedure can be active but awaiting their input.

The timing triggers do not permit relative or variable times, 'one hour

after receipt' or similar.

The procedure specifications form provides a fairly general purpose

mechanism with a document and message orientation. It remains to be

seen how easy the technique will be to use. The final:form would be

more effective if its two dimensions were used more creatively. 21 Also,

some combination of a data flow graph like BDC and a procedure form like

OPAS might prove particularly effective. The graph would give a flow

overview, while the form would specify the details.

4.3 Future Office Models and Tools

The future of integrated interfaces appears to be in user interface

management systems. The future of system design and user evolution may

lie in better tools for representing both the interface under develop-

ment and the prospective users. The future of procedural specification

and the incorporation of better conceptual models appears to lie in

knowledge representation techniques which can connect with user thinking

rather than just user action.

4.17

These three areas are assessed in a companion report, for which a

summary follows as an appendix.

Summary:User Interface Tools for Office Communicatins Sytems

This report is the third in a series of three reports

prepared for the Office Communications Systems (OCS) Group.

of the Dept, of Communications. The first report, User

Interface Componenets for OCS, looked at the principles of

human-computer interactions, via 3 framework of interface

levels. User Interface Design for OCS, the second report,.

focused on designing user interfaces for the next generation

of office system products.

This third report considers Software tools, formal

techniques and knowledge representation applied to user

interfaces. Each of these kinds of tools has been primarily

a research effort, although in limited ways their influence

has already begun to appear (cg. software tools in the

Augment User Interface Serive).

The software tools fOrm a user interface management

system. Development of these systems has some parallels

with development of data base management systems. * The dbms

centralizes certain Specialized functions in a data-crientad

'bac<-end' module. The user interface management system

centralizes other specialized functions in a user-oriented

'front-end' module. This could be a software component or a

separate intelligent workstation processor. The uims can

A comparison suggeste• oy J. D. Foley

provide dialogue control, command translation, language

parsing, device mapping and assistance facilities.

, 	Formal representations of user interfaces would be

useful during design, implementation and testing. 	For

programming lanauages, the existance of formal tools has led

to compilercompilers and test case generators. The second

chapter . of this report considers proposed tools for

specification of a user interface, for prediction of user

performance with the interface, and for analysis of :user

knowledge required for the interface.

Providina guidance on-line for the user. demands- some

representation of the semantics of user actions and some

representation of possible user goals and plans. Various

techniques for utilizina conceptual and semantic level

Knowledge have been deVeloped by researchers in artificial

'intelligence (AI). The third chapter surveys advances in

this field .and projects potential impacts on office -systems.

We conclude that a number- of state of the art AI techniques

have short term applicability in user interfaces for - OCS.

A special listing of readinas on AI in office systems

is .included at the close of chapter three.

.

8.

References

1. 	Seybold, P.B., Comparing the Usability of Office Systems,
AFIPTS Office Automation Conference, 1982, p. 225-236.

2. 	Smith, S.C., Requiranents definition and design guidelines
for the man-machine interface in C system acquisition,
Report M30-10. The Mitre Corporation, 1980. 	'

3. 	Gaines, B.P., The technology of interaction-dialogue
programming rules, Intl. J. of Man-Machine Studies, 1981,
p. 	145.

4 • 	Williges, B.H. and R.C. Williges, User Considerations in
Computer-Based Information Systems, Technical Report for
Engineering Psychology Program, U.S. Office of Naval.
Research 1981.

5. 	Ramsey, H.R. and M.F. Atwood, Man-Computer Interface
Design Guidance: State of the Art, Proc. Human Factors
Society 24th Annual Meeting, 1980, p. 87.

in ref [2].

in ref [2].

Ramsey, H.R. and M.E. Atwood, in ref [5].

9. .. Carey, T. User Interface Components for Office
Communications Systems, Dept. of Communications, August,
1982.

.10. Carey, T. User Interface Tools for Office Communications
Systems, Dept. of Communications, March 1983.

11. Morton, J. et al., Components of Incompatability in
Man-Computer Interactions, 8th Intl. Symposium on Human
Factors in TelecomMunications, 1977.

12. 	Rohlfs, S., Linguistic Considerations For User Interface
Design, in N. Naffah, ed., Integrated Office Systans,
North-dolland, 1980.

1.3: Marcus, A. Typdgraphic Design for Interfaces of Information
Systems, Proc. Conf. ,on Human Factors in Computer Systans, .
1932, p. .23-j0.

14. 	see crj. 	1 in ref [11]

15. 	Bennett, J.L., Mana.2ement to Meet Usability Goals, âFIPS
Office Automation C:bnference Digest, 1982,'p. 163, with

credit to T. Gibb, "Design by Objectives", unpublished
draft.

16. Hendricks, D. et . al.Human Engineering Guidelines for
Management Information Systems, U.S. Army Material
Development and Readiness Command, November 1982.

Y. Demers, R.A., System Design for Useability, CACM (24) 1931,
p. 494 -501.

18. Clamons, E.H., A Model for a Video Driven Common Operating
System Language, 2nd Phoenix Conference on Computers and
Communications, 1983, p. 591-596.

19. cf ch. 2 of ref. [11]

20. Halasz, F. and T. Moran, Analogy Considered Harmful, Proc.
Conf. on Human Factors in Computer Systems, 1982, p.

363 -386 .

21. Lakoff, G. and M. Johnson, Metaphors u\fe. Live By, U. of
Chicago Press, 1980.

22. Smith, D.C. et al. Designing the Star User Interface,
Byte, April 1982, p. 258.

23. Purvy, R., J. Farrell and P. Klose, The Design of Star's
Records Processing, ACM Trans. Office Inf. systems, Vol.
1 , P. 	5.

24. cf Elmasri, R. and J.A. Larson, A - User-Friendly Interface
for Specifying Hierarchical Queries on an ER Graph Database,
in J.A. Larson, Ed., Tutorial: End User Facilities in the
1980's, IEEE Press, 1982.

25. Podger, D.N., High Level Lanugages--A Basis for
Participative Design, in Szyperski, N. and E. Grochla,
ed., Design and Lnplementation of Computer-Based Information
Systems, Sijthoff and Noordhoff Pub, 1979;

26. Smith, D.C., et al., Designing the Star User Interfae, Byte,
April 1982, p. 210.

21. Williams, G., The Epson QX-10/Valdors Systen, Byte,
September 1982, p. 65.

28. p. 2/4 in ref 1.25J.

29. ref. 	[11]

30. Robertson, G., D. McCrocxen and A. Newell, The ZOG
Approach to Man-Machine Communication, Carnegie Mellon
University Technical Report CMU-CS-(9-148, 1979.

31. Schultz, J. and L. Davis, The Technology of Promis,

Proceedings of the IEEE, September, 1979.

32. . Baratta, G. et al., XS-1 - An integrated interactive system
and its kernal, 6th ICSE, 1982, p. 340-349.

References Çhapter 2

1. Benjamin, Art, Automating the Office of Yesterday, CIPS Conference
83, Ottawa 1983.

2. Ch. 3 of Carey, T., User Interface Components for OCS, Dept. of
Communications, August 1982.

3. Mozeiro, H., A Human/Computer Interface to Accommodate User
Learning Stages, CACM Feb. 1982, p. 100-104.

4. Schneider, M.L. et al., Designing Control Languages from the User's
Perspective, in Beech, D., ed., Control Language Directions, North-
Holland Pub., 1980.

5. Gilfoil, D.M., Warming Up to Computers: A Study of Cognitive and
Affective Interaction Over Time, Proc. Conf. on Human Factors in
Computer Systems, 1982, p. 245-250.

6. Sirbu, M., Programming Organizational Design, Proc. ICCC, 1980.

7. Mumford, E. and D. Henshall, A Participating Approach to Computer
System Design, Wiley Pub., 1979. Also Mumford, E., Designing
Secretaries, Manchester University Press, 1982.

8. Pearsall, R.J., Technique for assessing external design of soft-
ware, IBM System Journal, 1982, p. 211-219.

9. Schorer, P., Structure the Use, Computer, 1981, p. 77-86.

10. Meyrowitz, N. and A. Van Dam, Interactive Editing Systems, ACM
Computing Surveys, Vol. 14 (1982), p. 325.

11. Denert, E., Specification and Design of Dialogue Systems with
State Diagrams, in Monet, E. and D. Ribbens, eds., Intl. Computing
Symposium 1977, North-Holland Pub., 1977.

12. cf. ch. 1 and 2 of Carey, T., User Interface Tools for OCS,. Dept.
of Communications, March 1983.

13. Smith, S., Patterned Prose for Automatic Specification Generation,
Proc. Conf. on Human Factors in Computer Systems, 1982,
p. 342-346.

14. 'cf. ref (3), ch. 3.

15. Dunn, R.M., A Control Structure Model for Interaction, in Guedj, R.
et al., ed., Methodology of Interaction, North-Holland Pub., 1980,
P. 53.

16. Mason, R.E.A. and T. Carey, An Approach to Prototyping Information
Systems,-CACM, May 1983.

17. Nicholls, R.E., Programming by the End-User, Infotech State of the
Art report on Man/Computer Communications, Pergamon.Press, 1981,

. p. 270-271. Also Yunten, T. and H.R. Hartson, Human-Computer
System Development Methodology for the Dialogue Management System,
CS Tech. Report CSIE-82-7, Virginià Polytechnic, 1982.

la. Williamson, H. and S. Rohlfs, The User Interface Design Process,
Computer Message Systems, N. Noffah ed., North-Holland Pub. 1981.
The second sentence is a quote from Keen, P., Information system
and organizational change, CACM, Vol. 24 (1981).

19. Wynn, E., Linking User Responses to the Design Chain, AFIPS Office
Automation Conference Digest, 1982, p. 169-175.

References Chapter 3

1. Card, S.K., W.K. English and B.J. Burr, Evaluation of Mouse,
Rate-Controlled Isometric Joystick, Step Keys and Text Keys for
Text Selection on a CRT, Ergonomics 21:8, 1978, p. 601-613.

2. eg. Human/Computer Interaction Series, ed. B. Shneiderman, Ablex
Publishers.

3. Scapin, D.L., Evaluation of an Electronic Mail Language, 6th ACM
European Regional Conference, 1981, p. 425-432.

4 • Black J.B. and T.P. Moran, Learning and Remembering Command Names,
Proc. Conf. on Human Factors in Computer Systems, 1982, p. 8-11.

5. See the first exercise in Clark, I.A., Software simulation as a
tool for usable product design, IBM Systems Journal, Vol. 20, No.
3, 1981, p. 272-292.

6. Scapin, D.L., ref. (3).

7. Geiselman, R.E. and Sanet, M.G., Notetaking and Comprehension for
Computer-Displayed Messages, ?roc. Conf. on Human Factors in
Computer Systems, 1982, p. 45-50.

8. Bair, j.H., Avoiding Workinz Non-Solutions to Office Communication
System Design, Proc. IEEE Compcon, Spring 1980, p.

9. eg. Carey, T.T. and R.E.A. Mason, Information System Prototyping,•
to appear in INFOR, 1983.

10. Tombauh, j., personal communication.

11. Ramsey, H.P., et al. , Paper Simulation Techniques in User F.ci , ir-
ments Analysis, Proc. Human Factors Society, 1979, p. 64 - 63

12. Savage, R.E. et al., Design Simulation and Evaluation of a Menu
Driven User Interface, Proc. Conf. on Human Factors in Computer
Systems, 1982, p. 30-40.

13. Clark, I.A., Ref. (5).

14. Keen, P. and T.J. Gambino, The Mythical Man-Month Revisited,
Proceedings APL Conference, 1980.

15. Tapscott, D., Investigating the Electronic Office, Datamation,
March 1982, p. 130-138.

16. Conrath, D.W., R.H. Irving, C.S. Thachenkary and C. Zanetti,
Measuring Office Activity for Bureautique: Data Collection
Instruments and Procedures, Proceedings 2nd International Workshop
on Office Inf. Systems, Saint Maximin, France, 1981.

17. Hoecher, D.G., Activity Sampling Applied to Interactive System
Designs, Proc. Human Factors Society, 1981, p. 462-466.

18. Lewis, C., Using the "Thinking-aloud" Method in Cognitive Interface
Design, IBM Researèh ,,Report RC9265, 2/17/82.

19. Booth, T.L., R. Amwar and R. Lenk, An Instrumentation System to
Measure User Performance in Interactive Systems, Journal of Systems
and Software, Vol. 2, p. 139-146, 1981.

20. Wimmer, K.E., Research on Human Interface Considerations for Inter-
active Text Generation, Proc. ICCC 78, p. 720-732.

21. Rasmussen, J., Some Trends in Man-Machine Interface Design for
Industrial Process Plants, in Computer Applications in Shipping and
Shipbuilding, North-Holland Pub., 1980.

References Chapter 4

1. Ellis, C.A. and G. Nutt, Computer Science and Office Information
Systems, Computing Surveys, 1980.

2. Dumas, P. and G. Du Roure, Office Modelling: The CETMA/KAYAK
Families of Models, Proc. Workshop on Integrated Office Systems,
St. Maximin, 1981. 	.

Ellis, C.A. and M. Bernal, Officetalk-D: An Experimental Office
Information System, Proc. ACM Conf. on Office Information Systems,
1981, p. 131-140.

• 4. Naffah, N., Communication Protocolà for Integrated Office Systems,
Proc. Workshop on Integrated Office Systems, St. Maximin, 1981.

5. Purvy, R., J. Farrell, and Paul Klose, The Design of Staris Records
Processing, ACM Trans. on Office Information Systems, 1983,
P. 3-24.

6. Zloof, M., Office-by-Example: A business language that unifies
data and word processing and electronic mail, IBM Systems Journal,
1982, p.272-304.

7. ref. (6), p. 287.

8. Tsichritzis, D., Form Management, CACM 1982, p. 453-478.

9. Ellis, C.A., An Office Information System Based on Migrating Pro-
cesses, Proc. Workshop on Integrated Office Systems, St. Maximin,
1981.

10. Carey, T. and R.E.A. Mason, Productivity Experiences with a
Scenario Tool, Proc. IEEE Fall Compcon, 1981. -

11. Hogg, J., O.M. Nierstrasz and D. Tsichritzis, Form Procedures, in
Tsichritzis, D. ed., Omega Alpha, Tech. Report CSRG-127, U. of
Toronto, 1981, p. 101-133.

12. Ellis, C.A. and M. Bernal, Officetalk-D: An Experimental Office
Information System, Proc. ACM Conf. on Office Information Systems,
Philadelphia, 1982, p. 134.

13. Attardi, G. and M. Simi, The Power of Programming by Examples,
Proc. Intl. Workshop on Office Information Systems, St. Maximin,
1981.

14. Kofer, R., Saving Money while doing Empirical User Research, Proc.
Intl. Workshop on Office Information Systems, St. Maximin, 1981.

15. Tsichritzis, D., OFS: An Integrated Form Management System, Proc.
6th Conf. on Very Large Data Bases, p. 165.

16. ref. (3).

17. Hammer, M. et al., A very high level programming language for data
processing applications, CACM, 1977, p. 832-840.

18. Lum, V.Y., D.M. Choy and N.C. Shu, OPAS: An office procedure
automation system, IBM System Journal, 1982, p. 327-350.

19. Hammer, M. and J.S. Kurrin, Design Principles of an Office
Specification Language, Proc. NCC 1980, p. 541-547.

20. ref. (19), P. 544.

21. eg. Larson, J., A Data Manipulation Language for Electronic Forms,
Proc. Compsac 81, 1981, p. 348-354.

QUEEN HF 5548.2 .C32 1984
Ca - ey, Tom

User interface design for of

DUE DATE

201-6503
Printed

in USA

