
Gouvernement du Canada 
Ministère des Communications 

Government of Canada 
Department of Communications 

REVERSIBLE LOGIC GRAMMARS FOR 

MACHINE TRANSLATION 

Marc Dymetman 

Pierre Isabelle 



'MIL  24 1998 JUL_ 

I ndu f trie Carl?,(1 7'_ 

308 

D954 

1988 

c.2 

2. L REVERSIBLE LOGIC GRAMMARS FOR 

MACHINE TRANSLATION 

Marc Dymetman_ 

Pierre Isabelle 

Canadian Workplace Automation Research 

Centre 

Department of Communications Canada 

Laval 

November 1988 



N°  de cat: 	Co 28-1/28-1989 E 

ISBN: 	0-662-16931-X 

This report was presented as a paper at the Second International 

Conference on Theoretical and Methodological Issues in Machine 

Translation of Natural Languages, June 12-14, Carnegie Mellon 

University, Pittsburgh, Pennsylvania. 

The views expressed in this report are those of the authors only. 

* Ce rapport est disponible aussi en français. 

bD 9 kpoie .77 

DI— 103 îlo(0 

1957 



- Abstract 

The CRITTER translation system makes use of a single grammar to 

perform analysis and synthesis tasks. The formalism used is a variant 

of DCG (Definite Clause Grammars), in which annotations have been 

added to allow for dual compilations of the grammar into analysis  and 

 synthesis Prolog programs sharing the same declarative content. 

These annotations are of two types: 1) annotations separating the 

declarative content of rules (logic) from goal-processing order 

(control), and 2) annotations which act as directives for the 

compiler(s) to perform "optimization" transformations on groups 

of rules making the target Prolog procedures better adapted to 

the - analysis or synthesis - task at hand. 

TOPIC AREAS: Logic Grammars, Machine Translation. 



1. The translation model. 

1.1 CRITTER 

CRITTER is an experimental system that we are currently 

developing as a test-bed for our translation model. 

It is designed to translate from English to French (and 

conversely) reports ,  concerning the meat trade market 

produced on a weekly basis by the Canadian Department of 

Agriculture. 

The following sentences provide a short sample of the 

language of these reports: 

Imports of slaughter cattle from the United States last 

week dropped 62% compared to the previous week, totalling 

334 steers and 50 heifers. 

La semaine dernière, les importations de bovins d'abattage 

ont chuté de 62% en regard de la semaine précédente, 

totalisant 334 bouvillons et 50 taures. 

1.2 Principal features of the translation model. 

We will briefly summarize the main features of the 

translation model. For a more detailed description, see 

<Isabelle et al., 1988>: 

The translation model can be viewed as the composition of 

1 
three relations: 



- the source analysis/synthesis 	relation: 

anasynt_s(T S, SurfSyn_S, Sem S) which defines a set 

of well-formed triples where T_S is a source language 

text, SurfSyn_S and and Sem_S are respectively a 

surface syntactic structure and a semantic structure 

for this text, both being source language dependent; 

- the target analysis/synthesis 	relation: 

anasynt_t(T T, SurfSyn_T, Sem_T) which is the 

analogue of anasynt_s for the target language. 

- the transfer relation: tr(Sem S, Sem T) which 

defines a set of couples where Sem_S and Sem_T are 

respectively source and target semantic structures 

which are considered to be translationally 

equivalent. 

Formally, the anasynt relations are described in the 

framework of definite clause grammars (DCGs) <Pereira, 

Warren 1980>, to which control annotations have been added 

(see section 2.2). 

As for the tr relation, it is defined through a set of 

clauses, obtained from the compilation of a transfer 

dictionary into Prolog. 

1.3 Semantic Structures. 

Consider as an example the (rather artificial) English 

sentence: 

In Edmonton, John gave hogs to Mary. 



4 — 

Ignoring for the moment the surface syntactic structure, 

anasynt_s - will assign the following semantic structure to 

this sentence: 

give 	, 
1 „.",..-"'''-el 	....":7:"'""'...........,..._ 1  

3 	-1 4,--.  .4te” 
john 	hog 	mary 	Spast 	in I 	

2 -1  

le 	 4/1/ 
' 

' $several 	 edmonton 

Fig.1 

The labels 1,2, 3 dan be read as argument positions 

relative to the predicate 'give'. As for the (-i) labels 

("inverse arguments"), they are a notational device that 

allows us to simultaneously represent predicate -argument 

relations as well as subordination relations.  

For instance the 'in' node has two arguments: the first (- 

1) being the giving event, the second (2) being the 

location of this event. The "inverse" notation for the 

first argument is a way of making the semantic structure 

reminiscent of the fact that "in Edmonton" is syntactically 

a dependent of 'give'. (For a justification of this 

approach, see <Isabelle et al., 1988>). 

2. Reversible Logic Grammars. 

2.1 Goals. 

Consider once again the anasynt relation (for specificity, 

we shall discuss the source analysis/synthesis relation, 

but everything will apply mutatis mutandis to the target 

relation). The declarative reading of the anasynt_s 



relation is just that it is a set of triples of the form: 

<T,SurfSyn,Sem >. From a computational perspective, the 

challenge posed by reversibility is to write a program P 

having the following properties: 

- inputting a specific text T to the program will 

result in the output of every Sem such that:•

3SurfSyn anasynt(T,SurfSyn,Sem) 

- inputting a specific Sem to the program will result 

in the output of every text T such that: 

3SurfSyn anasynt(T,SurfSyn,Sem). 

For instance, providing the program with the input "In 

Edmonton, John gave hogs to Mary" should result in the 

output of the semantic structure Sem of  Fig.l,  and giving 

to the program Sem as input should result in the output of 

each of the paraphrases of Fig.2 : 

In Edmonton, John gave hogs to Mary. 
In Edmonton, John gave Mary hogs. 

In Edmonton, hogs were given to Mary by John. 

In Edmonton, hogs were given by John to Mary. 

In Edmonton, Mary was given hogs by John. 

John gave hogs to Mary in Edmonton. 

John gave Mary hogs in Edmonton. 
Hogs were given to Mary by John in Edmonton. 

Hogs were given by John to Mary in Edmonton. 

Mary was given hogs by John in Edmonton. 

Fig.2 

2.2 Some Basic Assumptions. 

I)  In CRITTER, the anasynt relation can be seen as an 

interface between the reversible logic grammar and the 

transfer component. If s is the main-sentence nonterminal - 

and assuming for the time being a DCG-type translation of 



il  

ía  

nonterminals into clauses - it can be defined in the 

following way: 

anasynt(String,SurfSyn,Sem) :- 

s(S,String,[1), 

syn(S,SurfSyn), 

sem(S,Sem). 

.Here, syn (resp. sem) are access predicates, which assign 

to ,linguistic object S some structure representing its 

surface syntax (resp. its semantic representation). 

Generally speaking, nonterminals in the grammar appear 

under the uniform format: 

nt(NT) --> etc... 

where NT is some liriguistic object, which contains 

information of different types accessed through "selectors" 

like sem, syn, cat, number, etc... 

An important property of the grammar is its syntactic and 

semantic compositionality: all NTs are assigned one syn and 

one sein, and these are built out of the syns and seins  of 

the daughters of NT in the derivation tree. 

This dual syntactic/semantic aspect of linguistic objects 

is of basic importance for reversibility. It then makes 

sense e.g. to divide the task of synthesis into subtasks a) 

and b): 

a) from the semantics of NT, find the possible 

semantics of its daughters. 

b) from the semantics of the daughters, find their 

possible syntax. 

In a grammar which lacked this property, for instance a 

grammar which performed a one-shot mapping from the global 



— 7 — 

ii 

/11 

syntax of a sentence into a semantic representation, the 

computational problem of synthesis would be much more 

difficult. 

2.3 DCGs and Reversibility. 

2.3.1 ReVerSibility, through goal-ordering. 

Consider the following example of a DCG rule, and its 

standard translation into a definite clause: 

s(S) 	to. 	s(S,L1,L3) :- 
np(NP), 	 np(NP,L1,,L2), 
vp(VP), 	 vp(VP,L2,L3), 
(combine1(NP,VP,S)). 	 combine1(NP,VP,S). 

• 	 (a) 	 (b) 

Fig.3 

In this rule, the combinel predicate condenses the relation 

between the three linguistic objects NP, VP and S. Leaving 

a more detailed description of the operation of this rule 

for later discussion (section 3), suffice it to say here 

that the combinel predicate: 

- builds the syntax of S out of those of NP and VP, 

- builds the semantics of S out of those of NP and VP 

in such a way that i) the semantics of S and that of 

VP are immediately related (in fact they are 

unifiable), and ii) the semantics of NP 	is 

determined as soon as the semantics mld the syntax of 

VP are known. 

- performs agreement checking between NP and VP. 



— 8 — 

As it stands in Fig. 3, the s rule is fine for analysis 

purposes: 

In analysis, when 	is called, Ll is known (it is the 

string of characters representing the sentence to be 

parsed), S and L3 being uninstantiated. Thus np is 

called with Ll known and returns with L2 and NP 

known. Therefore vp is called with L2 known and 

returns with 0_ and VP known. Then combinel returns 

with S known, and finally s returns with L3  and S 

knownl. 

On the other hand, attempting to use (b) for 

synthesis purposes leads to catastrophic 

computational behavior: in synthesis when s is 

called, only the semantics part Sem S of S is known, 

Li and L3 being uninstantiated. Then np is called 

with NP, Li and L2 completely unknown. The best that 

can be hoped for then, barring looping, is for np to 

enumerate all noun phrases complete with syntax and 

semantics, waiting until vp and combinel to check 

these against the semantics of VP and S. 

In fact, what we need in the synthesis case is simply 

arrange for the calling order of np, vp and combinel to be 

as follows: 

7 i.) the call to combinel(NP,VP,S) 	should come 

first. At the time of call, S'em S is known. On 

return, Sem_VP will be known (it is unified to 

1 we are here really sketching an informal inductive proof that 

analysis will "work  a  soon as any nonterminal goal is called with 

input list instantiated, and a "cOmbination" call  cornes  after 

nonterminal subgoals, 



- 9 - 

- 

Sem S), as well as the fact that the subject (suj) of 

VP is NP. 

- ii.) the call to vp(VP,L2,L3) should come second. 

At the time of call, Sem VP is known. On return, VP 

will be fully instantiated; its syntax will be known, 

and, furthermore, the semantics of each of the groups 

subcategorized for by the lexical head of VP (the 

syntactic arguments of the verb) will be known (see 

section 3 for details). In particular, the semantics 

of the subject of VP will be known, which is to say 

(by i.) that Sem NP will be known. Also, L2 will be 

known: it has for prefix the string generated by the 

VP. 

- 	the call to np(NP,L1,L2) should come last. At 

the time of call, Sem NP is known. On return, NP will 

be fully instantiated, and Li  will be known: it has 

for prefix the string generated by the NP. 

The fact that efficiency, or even termination, of a Prolog 

program (at least when using the standard depth-first 

search interpreter) is strongly dependent on goal calling 

order and instantiation state will hardly come as a 

revelation to anyone. However, a refresher of some of the 

horrors to be expected is given in Fig. 4. 

Ht  



correct(L) :- 
ok(L), 
peano(L). 

peano([]). 
peano(L) :- 

L. [a112], 
peano(L'). 

ok([foo]). 
ok([a]). 

correct(L) :- 
peano(L), 
ok(L). 

correct(L) :- 
ok(L), 
peano(L). 

peano([]). 
peano(L) :- 

peano(L'), 
L [41. 

peano([]). 
peano(L) :- 

L= 
peano(L'). 

ok([foo]) 
ok([a]). 

ok([foo]). 
ok([a]). 

1 0 — 

A 

Behaviour of A, B, C on invocation of: correct(L) ? , where L is a variable: 

- in A , the solution L = [a] is found, and there is finite failure 

on backtrack, as desired. 

- in B, a loop occurs and no solution is found. 

- in C, the solution L = [a] is found, but a loop occurs on backtrack. 

Fig. 4 

The s rule above is just one among several. What is general 

in the foregoing discussion is an invariant property of the 

synthesis process which has to be maintained: 

When some nonterminal goal nt(NT,L1,L2) is called 

during synthesis, the semantics part NT Sem of NT is 

known at the time of call. nt finitely returns, and 

at that time NT is fully instantiated and (the string 

prefix generated by nt in) Li  is known. 

In fact, the previous discussion of analysis shows that 

there is a corresponding invariant which is maintained 

during the analysis process: 



— 11 — 

When some nonterminal goal nt(NT,L1,L2) is called 

during analysis, the input list  Li  is known at the 

time of call. nt finitely returns, and at that time 

NT is fully instantiated and the output list L2 is 

known. 

A more thorough analysis of the grammars already written 

for the analysis of French and the analysis of English 

convinced us that goal ordering 

obstacle to reversibility and that 

was indeed the main 

if we found a way to 

guarantee that nt(NT,L1,L2) was called only with  Li  known 

(analysis) or when Sem NT is known (synthesis), we would 

then get a realistic reversible grammar. 

Two ways of ensuring that ordering were tested, and are 

presented below (section 2.2.2 and 2.2.3). For reasons 

explained in the sequel, the second alternative was 

eventually retained. 

2.3.2 Dynamic goal -ordering through instantiation -driven 

control. 

The first alternative was to keep the DCG formalism intact, 

program in the 

makes heavy use 

PrologII which 

(demon firing) 

and to compile the grammar into a Prolog 

standard way. This Prolog program; however, 

of goal-freezing, an idea introduced in 

permits asynchronous evaluation of goals 

when some precondition is met'. 

1 . For an introduction to goal-freezing, the reader is referred to 

<Colmerauer 1982>. Unfortunately, most commercial Prologs do not as yet 

offer this facility, and we have had to implement it in the dialect of 

Prolog we use (Quintus Prolog) as efficiently as we could, i.e. not by 

meta-interpretation! 



— 12 — 

Fig. 5 gives an example of how this is made to work: 

(a) 

s(S) --> 

np wait(NP), 
vp wait(VP), 
{combine1(NP,VP,S)}. 

(b) 

s(S,L1 ,L3) :- 
np_wait(NP,L1 ,L2), 
vp_wait(VP, L2, L3), 
combine1(NP,VP,S). 

np_wait(NP,L1,L2) :- 
sem(NP,Sem_NP), 
freeze_cond( (nonvar(L1) ; nonvar(Sem_NP) ) , 

np(NP,L1,L2) ). 

vp wait(VP,L1 ,L2) :- 
sem(VP,Sem_VP), 
freeze_cond( (nonvar(L1) ; nonvar(Sem_VP) ) , 

vp(VP,L1,L2) ). 

(c) 

Fig. 5 

In the grammar, every nonterminal appears under two 

aspects: nt 

and nt_wàit 

5. 

and nt_wait. nt appears as the head of rules, 

appears in the body of rules as in (a) of Fig. 

A rule is translated by the standard DCG compiler as in (b) 

of Fig. 5. 

Finally instances of the following "clause schema" : 

nt_wait(NT,L1,L2) 

sem(NT,Sem NT), 

freeze_cond( 	(nonvar(L1) ; nonvar(Sem NT) ), 

nt(NT,L1,L2) 

) . 

are added to the Prolog program, as in (c) of Fig. 5. 

The meaning of such clauses is the following: when nt_wait 

is called, wait before calling nt itself (which implies 



— 13 — 

making some nondeterministic rule choice) until some 

precondition is met, namely the condition that either Ll be 

known, or Sem NT be known (where Sem NT is the semantics 

part of NT). As soon as the precondition is met, "fire" 

nt. 

The cOnsequences of such a formulation are the following in 

the case of Fig. 5 

- in analysis, when s is called with  Li  known -, np 

will be ready to  Lire  immediately, for its 

precondition is met, but vp will have to wait for L2 

to be instantiated before firing. As for combinel it 

will be called immediately'. 

- in synthesis, when s is called - with  Sem  _S known - 

, neither np nor vp will be ready to fire, for 

neither Sem NP nor Sem VP will be known at that time. 

On the other hand, combinel will be called 

immediately and return with Sem_VP known. Then vp 

will fire, and when it finally returns (meaning here 

that all pending subgoals of vp will have been fired) 

VP will be completely known and L2 partially known 

(the "string of VP" will be completely known). As a 

consequence, Sem NP will be known, so np will fire. 

When it finally returns, NP will be completely known, 

and Ll partially known (the "string of NP" will be 

completely known). Thus the string corresponding to s 

will have been generated. 

1  "immediately" here is to be understoed in a particular way: the 

exact order of firing events will depend on the details ()f-

implementation of the goal-freezing mechanism. What is important in 

such an asynchronOus seheme is not the exact order of calls, but rather 

the fact that a goal will not be flred before its precondition is met. 



— 14 — 

We have done some experiments in this framework which have 

shown it to be a workable idea. Indeed we were able to 

analyze and synthesize simple sentences. However, we 

encountered some problems: 

- debugging is difficult with asynchronous evaluation 

because it is difficult to trace a goal to its 

caller. This problem might perhaps be alleviated if 

one had tracing facilities adapted to goal-freezing. 

- the runtime overhèad to be paid for implementing 

goal-freezing in a language not specifically designed 

with this facility in mind is not negligible. Also, 

extended goal-freezing almost precludes optimized 

compilation of the Prolog program obtained from a 

grammar. 

- More fundamental, although not well understood, is 

the fact that chronological backtracking (the 

standard backtracking scheme in Prolog) does not mesh 

very well with asynchronous goal evaluation: 

backtracking on some goal can undo a lot of useful 

work which was done on previously called but 

logically unrelated goals. 

2.3.3 Static goal-ordering through double compilation. 

• Order Annotations. 

The problems mentioned in the preceding section led us to 

look for some other way to achieve the proper goal 

orderings for analysis and synthesis. , 

A natural alternative is to extend the DCG formalism in 

such a fashion that the grammar rule notation separates the 



— 15 — 

dec/arative content of the rule from the control 

information corresponding to the order in which goals 

should be executed in different evaluation contexts. 

Indeed,  if one reconsiders Fig. 3 above, one notices that 

the order in which nonterminals np and vp appedr in rule 

(a) really plays two different roles: 

- a specification of the order in which np and vp 

appear in the string, which is reflected in 

translation (b) by the respective associations of 

differential lists  Li, L2 and L3 to np and vp. 

- a specification of the order in which goals are 

going to be called by the Prolog interpreter. 

In order to separate between these two types of ordering, 

we add annotations into the syntax of DCG rules. An example 

of such annotations is given in Fig. 6: 

npUel 	 #g, 

vID(VP), 	#g, 
{continel(NPNU)}, 

Fig. 6 

These annotations appear on the right hand-side of each 

goal, and are in the form #(n), where n is some number. 

Their intent is to specify the relative order in which 

goals are to be executed during synthesis. As for the order 

in which goals are to be executed during analysis, it is 

the same as the textual order of goals'. 

Thus one has complete control over the order in which goals will be 

executed in analysis and synthesis, with the exception that in 

analysis, the order in which nonterminal'goals will be executed has to 

be the same as the order of nonterminals in the string, which is what 

is normally needed. 



— 16 — 

From these annotated rules, the grammar compiler will now 

perform two different tasks: 

- translate the grammar into an analysis Prolog 

program. 

- translate the grammar into a synthesis Prolog 

program. 

An ilustration of such a "double" compilation is given in 

Fig. 7: 

annotated 	s(S) 
rule 	 np(NP), 	 /0), 

vID(/P), 	 #(2), 

{combine1(NP,VP,S)}, 	#(1). 

target 
analysis 	 analysis 

.-----n
synthesis 	 target 

clause 	-4-•"----- 	
---.........e. 	synthesis 

clause 
s(S,L1,L3) :- 	 s(S,L1,L3) :- 

np(NP,L1,L2), 	 combine1(NP,VP,S), 
vp(VP,L2,L3), 	 vp(VP,L2,L3), 

conibinel (NP,VP,S). 	 np(NP,L1,L2). 

Fig. 7 

The target analysis and synthesis clauses thus produced 

share the same declarative content, but  will perform their 

calls in the appropriate order. 

• Handling left-recursion. 

There are further inadequacies of the DCG formalism from 

the point of view of reversibility that also need to be 

remedied. 



— 17 — 

One of these shortcomings has to do with rules such as the 

following: 

np(NP)--> 
np(NP'), 

PP(PP), 
(combine2(PP,NP',NP)). 

np(NP) 
n1(N1). 

Fig.  8 

The intent of the np rulel given above is to incorporate 

within a np an unspecified number of prepositional 

modifiers (the hotel in Vancouver with a Chinese roof). n1 

is the "bare" np (the hotel), and combine2 builds the 

syntactic and semantic structures of NP from those of  PP .  

and NP'. 

The obvious problem with this rule, however, is that it is 

"left-recursive": although its declarative reading is 

perfectly natural and directly represents the intended 

meaning of the rule, the standard DCG translation will 

result in a loop when used in analysis. 

For this reason, no DCG programmer ever writes such rules 

in the way shown in Fig. 8, but rather she transforms them 

into some equivalent rules, which although more complex, 

will display the desired computational behavior (see infra 

Fig. 9). 

On the other hand, it is interesting to observe that the 

rule of Fig. 8, when used in synthesis, will work perfectly 

1 This example is given for illustrative purposes only and does not 

claim linguistic adequacy. 



— 18 — 

well if only one takes care -  as in the previous vp example 

- to order the combine2 goal before the pp and np goals'. 

Fortunately, there is a way out of this difficulty: the 

grammarian should be allowed to write the np rule in the 

natural way, and the compiler should be made to perform the 

transformations needed for analysis and for synthesis. 

• 1 It is quite ironic that - in our experience - if one writes the np 

rtile in such a way as to eliminate left-recursion in analysis, then 

tries to reorder goals for use in synthesis, 'further difficulties 

reappear that make the whole process quite meaningless! 



analysis synthesis 

np(NP,L1,L2) :- 
n1 (NP,L1,L2). 

target 
analysis 
clauses 

np(NP,L1 ,L3) :- 
combine2(PP,NP',NP), 
pp(PP,L2,L3), 
np(NP',L1,L2). 

target 
synthesis 

clauses 

— 19 — 

This is predisely what is done in the CRITTER system, as 

illustrated in Fig. 9: 

original 
annotated 
rule 

#(1eft_recursion) 

np(NP) 
np(NP'), 

PP(PP), 
{combine2(PP,NP',NP)}, 

np(NP) 
n1 (N P). 

#(3), 
#(2), 
#(1) 

np(NPn,L1,L3) 
n1 (NPO,L1 ,L2), 
new_symbol(NPO,NPn,L2,L3). 

new_symbol(NPn,NPn,L1,L1). 

new_symbol(NPi,NPn,L1,L3) 
pp(PP1+1 ,L1 ,L2), 
new_symbol(NP1+1,NPn,L2,L3), 
combine2(PP1+1,NP1,NP1-F1). 

Fig. 9 

In the current implementation, it is necessary to indicate 

to the compiler where a left-recursive rule appears, and to 

flag the relevant block of rules. This explains the 

appearance of a #(1eft_recursion) directive, as well as 

that of the "separators" ::: and :: . The analysis 

translator will then introduce a "dummy" nonterminal 

new symbol, and perform a transformation leading to the 

target analysis clauses shown in the figuré. Space is 

lacking here to explain in detail the transformation done, 



— 20 — 

but it can be formally deMonstrated that the resulting 

clauses keep the intended meaning of the rule unchangedl. 

As for the synthesis clauses, they are similar to the 

original rules, apart from the fact that the order 

annotations in these have been used to order subgoals, as 

in the case of Fig. 7. 

• other notational devices. 

Taking advantage of the flexibility gained by the 

introduction of a custom-made compiler, we add a notational 

device similar to the functional notation used in 

unification grammars <Sag et al., 1986>, namely the ability 

to refer to substructures of a linguistic object by way of 

a "dot" notation. 

For instance, the rule of Fig. 6. is actually written in 

the following form: 

s(S) --> 

np(NP), 

vp(VP), 

(S.head = VP.head, 

S.head.subcat.suj = NP, 

:S.sem form = VP.sem_form, 

,NP.number = VP.number, 

} 

#(3), 

#(1 ). 

The compiler (in the case of analysis as well as synthesis) 

will then replace e.g. "S.head" by a variable Shead, add to 

1  The process is akin to techniques for putting à context-free grammar 

into some normal form. The delicate part, however, is the Way in which 

the constraints between variables should bé transferred. 



— 21 — 

the generated clause the constraint "head(S,Shead)" (and 

similarly for the other cases), and perform the 

unifications required by the equalities appearing in the 

rule. 

3. An Example. 

We now turn to an example which illustrates, albeit in a 

simplified manner, some essential features of our approach 

to reversibility. We concentrate on the problem of parsing 

and synthesizing sentences such as (1): 

(1) Jack seems to like Jill. 

The verb "seem" belongs to a class known as "raising 

verbs". According to a well-established analysis of those 

structures, the semantic representation associated with (1) 

would be something like (2): 

(2) seem'(like'(jack, jill)) 

That is, the surface subject "Jack" is not interpreted as 

an argument of seem'. Rather seem' is viewed as a 

propositional operator, and "Jack" is an argument in the 

predication expressed by the infinitival complement. 

In our grammatical model, such peculiarities of the 

syntax/semantics mapping are accounted for in the lexical 

component, in a way quite similar to that of <Pollard and 

Sag, 1988>. The lexicon assigns to "seem" a feature 

structure VB with the following properties: 



I  

VI 

j. 
Hi 

— 22 — 

(3) 

VB.cat = vb 	 (a) 

VB.cit_form = seem 	 (b) 

VB.head.subcat = [NP, VCOMP] 	(c) 

NP.cat = np 	 (d) 

VCOMP.cat = vp 	 (e) 

VCOMP.head.form — infinitive 	(f) 

VCOMP.head.sem form — A 	 (g) 

VCOMP.head.subcat = [VPSUBJ 1 X] 	(h) 

VPSUBJ.head.sem form = NP.head.sem form 	(i) 

VB.head.sem form = seem'(A) 	 (j) 

inflect(seem, NP.agree, VB.inflected_form) 	(k) 

In the desCription of (3), equations (c) through (j) assign 

to "seem" a head structure which, under the action of our 

syntax rules, will percolate up the parse tree until the 

maximal constituent of which "seem" is the head is reached. 

This head tructure contains a "subcat" substructure [NP, 

VP] (further described in (d) through (i)) and a semantic 

form seemi(A). The inflect predicate establishes the 

inflected form of the • verb on the basis of its citation 

form and agreement attributes (for simplicity, we ignore 

tense here). 

The subcat substructure accounts for the syntactic 

dependents of , "seem" both in terms of their syntactic 

properties and in terms of their contribution to the larger 

semantic structure. More specifically, "seem" requires a 

subject noun phrase and an infinitival complement. The 

latter is associated with a semantic object A which 

happens to be unified with the unique argument of seem' -- 

likei(jack,jill) in the case of sentence (1). Equations 

(h) and (i) bind the semantic value of the subject of 

"seem" with the sem form associated with the subject slot 

of the main verb of the infinitival complement. This 

I 



—23 — 

accounts for the fact that this complement is "controlled" 

by the subject of "seem". During the synthesis of the 

complement, the semantic value attached to its subject slot 

-- 'jack' in the case of sentence 1-- will become known. By 

the same token, the sem form of the subject of "seem" will 

become instantiated. 

The lexical specification of (3) provides an example of an 

important feature of "lexicalist" models: in a syntactic 

phrase, the mapping between syntactic configurations (or 

syntactic functions) and argument places in semantic 

structures is determined by lexical properties of the head. 

We write grammar rules such as the following: 

(4) 

s(S) --> 

{S.cat = s }, 

{S.daughters = [NP, VP]}, 

(S.head = VP.head), 

(S.head.subcat = [NP I  _J}, 

np(NP), 

vp(VP). 

np(NP) --> 

det(DET), 

... etc. 

np(NP) --> 

{NP.cat= nip}, 

{NP.daughters = [NPR]}, 

{NP.head = NPR.head}, 

npr(NPR). 



1 

•1 

1 

— 24 — 

vp(VP) --> 

{VP.cat = vp)}, 

{VP.daughters = [VB, COMP])}, 

{VP.head = VB.head}, 

{VP.head.subcat = [_, COMP]}, 

vb(VB), 

complement(COMP). 

complement(COMP) --> 

np(COMP). 

complement(COMP) --> 

pp(COMP). 

complement(COMP) --> 

vp(COMP). 

The s rule, for example, will be compiled into the 

following clause: 

(5) . 	s(S,  Li,  L2) :- 

cat(S, s), 

daughters(S, [NP, VP]), 

head(S, H), head(VP, H), 

subcat(H, [NP I  _]), 

np(NP, L1, L3), 

vp(VP, L3, L2). 

The resulting program will be capable of parsing sentence 

( 1) in an efficient manner. A call to the goal s(S, "Jack 

seems to like Jill", "") will succeed, instantiating S to 

an object having the intended properties. In particular, 

it will be established that: 

(6) 	S.head.sem form = seem'(like'(jack, jill)) 

In order for the parser to get that result, equation (i) of 

lexical entry (3) plays a critical role. 	Binding the 



— 25 — 

sem form of the subject of "seem" with the sem form of the 

subject of its complement produces the correct "lowering" 

effect. 

Now suppose we want to use the same program for synthesis. 

In that case, we have to demonstrate s(S, Li, ""), and all 

we know about S is that (6) holds. The problem is that the 

grammar starts by firing np(NP,  Li, L2) while NP, L1, and 

L2 are all uninstantiated variables. The program may well 

keep enumerating well-formed np's forever since some of the 

rules expanding np's are likely to provide for recursive 

modifier structures. Generally speaking, it makes little 

computational sense to attempt the synthesis of a 

substructure whose semantic form is not yet known. 

There is no way to determine the sem_form of that noun 

phrase by a mere examination of the sem_form of the 

sentence. What is required is to find in the dictionary a 

lexical item whose  sein  form matches that of the sentence; 

the relevant dictionary entry will then determine the 

mapping of semantic arguments onto syntactic positions 

The predicate seem' gives access to the entry of the verb 

"seem" where it is stipulated: 1) that the unique argument 

of the predicate seem' is to be associated with an 

infinitival complement on the verb, and 2) that the subject 

of the verb is bound to the subject slot of the infinitival 

complement. 

With other verbs, the situation could be different. The 

active form of a simple transitive verb generally maps the 

first argument of the corresponding predicate onto the 

subject position. With the passive form of the same verb, 

it is rather the second argument that is associated with 

the subject position. With so-called "tough-movement" 

adjectives, the syntactic subject is associated with a non-

subject syntactic slot in the infinitival complement: 



—  26  — 

(7) a) Mary is difficult to convince. 

b) difficult'(convince'(one, mary)) 

Given the requirement that the sem form of a phrase should 

be known before attempting synthesis, there is no choice 

but to synthesize the verb phrase before the subject noun 

phrase. For that purpose, we annotate the s rule •above as 

follows: 

(8) s(S) --> 

{S.cat = s, 

S.daughters = [NP, VP]), 

S.head = VP.head, 

S.head.subcat = [NP I  _I 1,  

np(NP), # (3) 

vp(VP),  

The compiler described in section 2.3.3 will compile rule 

(8) into the synthesis clause (9): 

(9) s(S,  Li,  L2) :- 

cat(S, s), 

daughters(S, [NP, VP]), 

head(S, H), head(VP, H), 

subcat(H, [NP I  _]), 

vp(VP, L3, L2), 

np(NP,  Li,  L3). 

The goal s(S,  Li,  L2) with only equation (6) known will 

trigger the following sequence of unifications: 

The s rule is started: 



27 — 

(a) S.head.sem form = seeml(likel(jack,jill)) 

(b) S.daughters = [NP, VP] 

(c) VP.head = S.head 

The vp rule is then called: 

(e) VP.daughters = [VB, COMPL] 

(f) VB.head = VP.head 

(g) VP.head.subcat = [ NP, VCOMP] 

Vp calls the vb rule, 	which performs a 

dictionary lookup: 

(h) VB.cat = vb 

(i) VB.cit_form = seem 

(j) VB.head.subcat = [NP, VCOMP] 

"Seem" takes an infinitival'complement whose 

sem form is bound to the unique argument of 

seem': 

(k) VCOMP.head.sem form = likel(jack,jill) 

The subject slot of the infinitival complement of 

"seem" and the subjet of "seem" share  the  same 

semantic content: 

(1) VCOMP.head.subcat = [N2 2 1 X] 

(m) NP2.sem form - NP.sem form 

.Since the syntactic form of the subject of "seem" 

is not yet known, the agreement values on the 



—28 — 

verb are not known. The process that inflects the 

verb has to be postponedl: 

(n) VB.inflected_form = ?? 

WAIT until NP.agree is instantiated: 

inflect(seem,NP.agree,VB.inflected_form) 

The vb rule returns, vp calls the complement rule 

which makes a new call to the vp rule, to synthesize 

the infinitival complement of "seem": 

(o) VCOMP.head = V32.head 

(p) VB2.form cit = like 

(q) VB2.head.subcat = [NP2, NP3] 

(r) NP2.sem form = NP.sem form = jack 

(s) NP3.sem form = jill 

The synthesis of the vp "to like Jill" is 

complete. Now the sem form of the subject of 

"seem" is known: it has been equated with the 

sem_form of subject slot of "like", which has 

itself been bound to the first argument of the 

predicate like', namely 'jack'. 

We now return to the larger vp. Its synthesis is also 

complete, except for the process dealing with the 

inflection of "seem" that remains on the waiting list 

of frozen goals. 

We then return to the level of s, which fires the subject 

np goal: 

1  This is done through the mechanism of goal-freezing (see section 

2.3.2). 



—29 — 

(t) NP:cit_form = 'Jack' 

(u) NP.agrSe.pers = p3 

(v) NP.agree.numb = sing 

The synthesis of the subject np is complete. Since 

NP.agree is now known, the delayed goal can now be 

"melted" . (i.e. called): 

(n') MELT: 

inflect(seem,NP.agree,VB.inflected_form) 

VB.inflected_form = seems 

(o) the goal s(S,  Li,  L2) succeeds with: 

Li  = "Jack seems to like Jill". 

4. Conclusion 

After experimenting with different approaches to the 

problem of reversibility in the framework of logic 

grammars, we have found that the solution of annotating 

rules with directives to perform compile-time goal ordering 

and global transformations - resulting in an analysis 

program and a synthesis program with the same grammatical 

content - was the most useful. 

This approach gives the linguist full control over the 

processing behaviour of the grammar - both in analysis and 

synthesis - without compromising the declarative 

perspicuity of grammatical specifications. 

Through the implementation of this idea, the CRITTER 

translation system is currently capable of translating 

moderately complex sentences from English to French and 



be two different grammars, one for 

overly permissive on the strings 

other synthesis (SG) . This is' for 

— 30 — 

vice-versa, using only one grammar for each language (the 

reversibility of the whole CRITTER system depends also on 

the reversibility of components other than the grammars, 

like the morphological and the transfer component, which 

have not been described in this paper). 

Using the system bidirectionnally - both in translational 

mode and especially in monolingual mode (analyzing and then 

"resynthesizing" a sentence to produce its paraphrases) 

has had some unexpected but ,interesting consequences: 

- It often happens that mistakes or omissions in 

grammatical description which can easily go unnoticed 

in analysis mode (because one doesn't naturally 

submit sentences exhibiting them) become immediately 

apparent when grammaticaly ill-formed paraphrases are 

synthesized. 

A reversible grammar thus acts as a powerful debugger 

to itself! 

- A grammar RG which is reversible has to be much 

closer to observational adequacy than would have to 

analysis (AG), the 

because AG can be 

it accepts, since 

it can depend to a large degree on the well-

formedness of the input textl. On the other hand SG 

can be overly ungenerous on the strings it generates, 

for it has to guarantee only the well-formedness of 

its output, not that it will output all possible 

variations in the expression of the same content. On 

the other hand, working with a reversible grammar RG 

1 Of course, this doesn't  corne free: underspecification of AG wilt 

eventually show up under the ugly face of false syntactic ambiguities, 

even when the input text can be relied on to be well-EorMed! 



— 31 — 

does put some pressure on the linguist, who is 

obliged to fine tune his descriptions to match 

linguistic reality. It is difficult at this point to 

assess whether this will finally be seen as a 

handicap or as a bonus. 

As the previous remarks show, the problem of grammar 

reversibility really ,  has two different facets: 

The problem of computational reversibility : how to 

computationally perform analysis and synthesis tasks 

from the same declarative grammar. This problem has 

substantially been solved in the case of DCG grammars 

by the techniques presented here. However, some work 

remains to be done to extend this treatment to handle 

unbounded dependencies, as in extraposition grammars 

<Pereira 1981>. 

The problem of linguistic reversibility : is it 

theoretically correct to use one and the same grammar 

to describe the linguistic aspects of analysis and of 

synthesis, and if so, is this practically feasible, 

or does it put unrealistic constraints on linguistic 

descriptions? On this question, which the present 

paper has hardly touched upon, much work remains to 

be done. 

Acknowledgments 

We would like to thank Elliott Macklovitch, ,jean-Luc 

Cochard, Ron Ferguson, François Perreault and Michel Simard 

for their comments and suggestions. 



- 32 - 

References 

-Appelt, D. (1987) "Bidirectional Grammars and the Design of 

Natural Language Generation Systems", in Theoretical Issues 

in Natural Language Processing,  New Mexico State 

University. 

Colmerauer A. (1982) PROLOG  II : Manuel de référence et  

modèle théorique.  Groupe d'Intelligence Artificielle, 

Faculté des Sciences de Luminy, Marseille. 

Isabelle P., Dymetman M., Macklovitch E. (1988)."CRITTER: 

a Translation System for Agricultural Market Reports", to 

appear in Proceeedings of COLING-88. 

Landsbergen, J (1987) Montague Grammar and Machine 

Translation.  Philips Research M.S. 14.026, Eindhoven. 

Pereira, F. 	(1981) 	"Extraposition Grammars", 	in 

Computational Linguistics  7.4, 243-256; 

Pereira F., Warren D.H.D. (1980) "Definite Clause Grammars 

for Natural Language Analysis", Artificial Intelligence, 

13, 231-278. 

Pollard, -C., Sag, I. (1988) Information-Based Syntax and 

Semantics, vol. 1* Fundamentals,  CSLI lecture Notes no 13, 

CSLI, Stanford University. 

Sag I., Kaplan R., Karttunen L., Kay M., Pollard C., 

Shieber S., Zaenen A. (1986) "Unification and Grammatical 

Theory", in Proceedings of the West Coast Conference on 

Formal Linguistics,  Stanford Linguistics Association, 

Stanford University. 



— 33— 

Zaharin Y, (1987) "String-Tree Correspondence Grammar: a 

declarative formalism for defining the correspondence 

between strings of terms and tree structures", in 

Proceedings of the Third Conference of the European Chapter  

of the Association for Computational Linguistics,  

Copenhagen. 



II  
QUEEN P 308 .D957 1988 c.2 

Dymetman, Marc 
Reversible logic grammars fo 

DYMETMAN, MARC 

--Reversible logic grammars for 
machine translation 

308 

D957e 

1988 

c.2 



ii 

4111 

Le Centre canadien de recherche 
sur l'informatisation du travail 

1575, boulevard Chomedey 
Laval (Québec) 
H7V 2X2 
(514) 682-3400 

il  

Canadian Workplace 
Automation Research Centre 
1575 Chomedey Blvd. 
Laval, Quebec 
H7V 2X2 
(514) 682-3400 

Pour plus de détails, 	 For more information, 
veuillez communiquer avec : 	 please contact: 

Il lb 


