
RATP: A NEW FORMAL I SM IN THE

UNIFICATION GRAMMAR FAM I LY

Marc Dymetman

QUEEN 	•
* Gouvernement du Canada 	Government of Canada

Ministère des Communications 	Department of Communications

QA
76.7
.D99
1987

• • •
• • • • •

Le Centre canadien de recherche sur l'informatisation du travail

Canadian Workplace Automation Research Centre •

Department of Communications Canada

Laval

April 87

76.7

D9901

1987

Industry Canada-
Library Queen

MI 2 4 1990

Industrie Canada
Bibliothèque

Queen

/ RATP: A NEW FORMAL I SM IN THE

UNIFICATION GRAMMAR FAM I LY I

Marc Dymetman'

Canadian Workplace Automation Research

Centre

-7/
7 2

N° de cat. Co 28-1/32-1989E

ISBN 0-662-17121-7

-Do /S O/

(0_17,(

The views expressed in this report are those of the author only.

* Ce rapport est disponible aussi en français.

— 1 —

1 - INTRODUCTION

1.1 Overview of RATP

RATP is a formalism for writing Unification Grammars that integrates, in

a natural way, a component giving it the power of a general programming

language. This "programming language" component has a structure

analogous to a set of Horn clauses in pure Prolog, with the difference

that DAGs (Directed Acyclic Graphs) rather than terms act as basic data

structures.

The inclusion of such a component adds to the modularity of the grammar

formalism, thus allowing easy definition and reuse of groups of

grammatical features. It also helps clarify the concepts of conjunction,

disjunction and negation as applied to functional structures and

provides for introducing the possibility of delayed evaluation ("goal-

freezing").

A compiler has been written that takes an RATP grammar and produces

« Prolog Code. This translation is made easier by a simple encoding of

DAGs as terms and by the direct application of Prolog's unification

mechani.sm to the result of this encoding.

This embedding of RATP in Prolog has the advantage that it provides a

powerful programming environment (in this case MProlog) and that, in

view of the parallelism that exists between the structure of an RATP

program and a Prolog one, the two languages can easily be made to

communicate in a natural way.

1.2 Unification Grammars

What is referred to here by the general term "Unification Grammars"

actually corresponds to a group of grammar formalisms, of which the best

1 2

1

1

1

known are: Lexical Functional Grammar (Bresnan, Kaplan 1983),

Unification Grammar (Kay 1983) and PATR II (Shieber 1984).

Though they differ, these formalisms share certain important

characteristics:

- Grammatical structures are seen as recursive structures which

associate values with labels, where these values in turn may be

structures of the same type.

1

1

- These structures, which go by a variety of names ("feature

structures", "functional structures", "f-structures", etc), may be

seen from a formal standpoint as special cases of the DAG (for

"Directed Acyclic Graph") concept.

- In these structures, it is possible to access the values of

various levels by following "access paths" consisting of chains of

labels.

- Substructures within the structure may be "shared", that is a

single substructure may be accessed through different access paths

starting from the same structure above it.

- The basic mechanism for computing grammatical structures is a

composition process which "takes" several relatively elementary

structures and "assembles" them into a more complex structure,

using a unification mechanism.

1.3 Parallels between Unification Grammars and Logical Grammars.

DAGs and Terms

Another approach currently in vogue in the field of grammar formalisms

goes by the generic name of "logical grammars". This term describes

those grammar formalisms built "around" Prolog. As is well known, this

language was specifically designed for the purpose of grammatical

1

description. It has given rise to a variety of formalisms. Particularly

noteworthy are: "metamorphosis grammars" (Colmerauer 1978), "DCG"

(Pereira, Warren 1980), "extraposition grammars" (Pereira 1981) and

"gapping grammars" (Dahl 1985).

Logical grammars have a great deal in common with unification grammars.

In both cases, the mechanism for unifying grammatical structures plays a

fundamental role. In fact, the difference between the two classes of

formalism lies essentially in the type of basic data structure

manipulated by the systems: DAGs in the case of unification grammars,

and terms in the case of logical grammars.

While in a DAG substructures are accessed by specifying a label (or

string of labels) and may be of indefinite length, in a term

substructures are differentiated by their positions as arguments, the

number of arguments in a term being fixed once and for all. Furthermore,

the notion of accessing the "deep" substructures of a structure is much

less relied on in the case of terms than in the case of DAGs; the ease

of describing such access in unification grammars leads to a different

programming style which seems to have the advantage of clarity for

writing grammars.

Starting from this fact that the two kinds of formalisms are

distinguished essentially by their basic data structures, it is natural

to ask:

(1) Whether DAGs may be encoded as terms and whether terms may be

encoded as DAGs. ,

(2) Whether the unification mechanism for terms and the

unification mechanism for DAGs may not be reduced to a common

underlying mechanism.

The answer to both questions is yes, as the rest of the report shows in

greater detail. Given that these two properties are real, it is possible

— 4 —

to use the Prolog unification mechanism to effectively implement

unification grammars, more specifically a new formalism for the class of

unification grammars: RATP.

1.4 RATP as a grammar formalism and as a programming language

RATP is a grammar writing language which, within the class of

"unification grammars", resembles the PATR formalism (Shieber 1984), but

which introduces certain innovations (general predicates on structures).

An RATP grammar is made up of two types of textual constructions:

- augmented context-free grammar rules;

- predicate definitions, in the form of a particular type of Horn

clauses.

- Each grammar rule is composed of:

- a context-free "skeleton"

- the "flesh" on the bones of this skeleton(!), including a

sequence of equations and predicates which have to be verified by

the grammatical structures associated with the skeleton's non-

terminals and terminals, or by the substructures within these

structures. Such substructures are accessed by access paths formed

of labels bearing some grammatical meaning.

- Predicate definitions are stated in the form of Horn clauses, as in

Prolog. The essential difference from Prolog is that the objects to

which the prèdicates apply are "feature structures" (DAGs), whereas in

Prolog they are terms.

The introduction of predicate definitions of this type considerably

enhances the power of the formalism, as these predicates make it

possible to specify arbitrarily complex classes of DAGs and use them to

encapsulate sets of structural constraints.

— 5 —

In fact, the introduction of these predicates gives the formalism the

power of a universal programming language similar to Prolog (see the

"multiplication" example in section 2), which is of secondary importance

here, yet with the significant consequences that new light is shed on

the concepts of conjunction, disjunction and negation, and that some

useful Prolog concepts (eg "freeze") can be naturally imported into the

formalism.

Another, and perhaps the most important consequence of this approach is .

that the formalism highlights the fact that "unification grammars" and

"logical grammars" are very close variants of a common paradigm, a fact

which certain schools of thought tend to obscure.

2 RATP FORMALISM

We shall begin by giving a few examples of structures produced by RATP

analysisl, on which we will comment briefly; we will then describe the

structure of the .à.rammar which made these results possible.

2.1 Examples of structures produced by RWIT

2.1.1 Examples

Example 1: Analysis of "a dog eats the steaks"

[a, dog, eats, the, steaks]

1 It is worth mentioning that RATP may be used for both synthesis and

analysis, a feature which this fdrmalism shares with DCG. In both RATP

and DCG, the difference between analysis and synthesis is simply a

difference in the propagation of instantiations of variables.

Mamma

global structure associated
r—to the sentence

—substructure
associated to arg1

i—substructure
"'associated to cat

etc._

1.n11

--substructure
associated to arg2

111n11

substructure

Eassociated to cat

'

substructure
associated to obj

etc ...

6

reference of the substructure
"11--- associated to arg1

.4_____reference of the substructure

associated to are

the substructure associated to

obj is the same as that

• associated to arg2.1t is not

repeated.

the substructure associated to

subj is the same as that
associated to argl .It is not
repeated.

arg1 :

arg2:

arg1 :

<1>

cat:

np

det:

a

noun:

dog

number:

sin

semconf:
<2>

animate:

yes

eatable:

no

arg2:

<3>

cat:

np

det:

the

noun:

steak

number:

plu
semconf:

<4>

animate:

no

eatable:

yes

cat:

obj:
<3>

sem_restr:

semconf_of_

<2>

semconf_of_

<4>

subj:

<1>

verb:

eat

voice:

active

— 7 ;—

Example 2: Analysis of "several steaks are eaten"

[Several, steaks, are, eaten]

arg2:
<1>

cat
np

det

several
noun:

steak
number

plu
semcont

<2>
animate:

no

eatable:
yes

cat

sem_restr:
semconf_of_arg1:

animate:
yes

semconf_of_arg2:

<2>

subj:
<1>

verb:
eat

voice:
passive

this time the subject is
the second argument

2.1.2 Explanation of. . examples

8

np

y dog

cat r noun 	a

d jrt_.....œ.....„.œ.er sin

number 	animate". yes

semconf 	 eatable
--sn no

semconf_of_argl

verb

semconf_of_arg2

semconf

'cat

noun

det

sem_restr

obj

arg2

no

animate

eatable
yes

steak

number

\ plu

the

eat

active cat

2.1.2,1 Notation

Let us examine example 1. The structure given represents the result of

the analysis of the sentence: "a dog eats the steaks". This structure is

a DAG2 , which can be graphically represented in the following way:

DAG associated with "a dog eats the steaks"

2 Strictly speaking, a distinction should be drawn between ground DAGs

and non -ground (or variable) DAGs, but this distinction need not

concern us here. The structure shown is in fact a non-ground DAG, it

represents an infinite family , of ground DAGs.

Preliminary remarks:

In the resulting structure on page 6, the order of the labels

arg 1, arg 2, cat, obj, subj, verb, voice is alphabetic. This

"vertical" order has no special significance, and a different

order is used in the graph on page 8 (cat, verb, • etc) for reasons

of visual clarity.

The DAG represented on page 7 is the structure resulting from analysis

of the sentence "a dog eats the steaks". This DAG has the following

properties:

- its "cat" (category) has the value "s" ("s" is a degenerate DAG

consisting of just one symbol) 	-

- its "verb" has the value "eat" (idem)

- its "voice" has the value "active" (idem)

- its "subj" has the value of a DAG (non-degenerate) whose "cat"

has the value "np", •etc.

- The value of its."arg 1" is the same DAG as for its "subj". In

the graph (p 8), this is apparent in that the two DAGs have the

same root, while in the "textual" representation (p 6), it is

indicated bY the fact that the labels "arg 1" and "subj" are

associated by the cross-reference (1). Convention dictates that in

a DAG -- on paper -- the content of two identical sub-DAGs is not

repeated; cross-references of this kind are used instead, thus

simplifying the writing, but only in the case of non-degenerate

DAGs that appear more than once3 .

3 3 These cross-references also have an "intensional" value: two cross-

referenced entities have been unified at some point and will remain so

if the structure is used again subsequently. This fact would not be

no

— 10 —

The concept of access paths can be illtistrated in this example as

follows: if the "overall" DAG is designated A, then the access path

A.argl.semconf (where "arg 1" and "semconf" are labels and A is the

constant which represents the overall DAG) is an "access path" to DAG B,

where B is the constant which represents the DAG:

yes

animate

This same entity B can be accessed through other access paths, namely

A.subj.semconf A.sem_restr.semconf_of_argl (shared substructures).

2.1.2.2 Linguistic remarks

The grammar which produces these structures (the grammar presented in

section 2.2), although quite rudimentary, generates structures which may

be read on several levels, in particular "syntactic" and "logical". On a

syntactic level, the structure in example 1 ("a dog eats the steaks")

produces a "verb", a "sutij" and an "obj", while on a logical level,

"verb", "arg 1" and "arg 2" appear.

It should be noted that in this example, the substructures "accessed" by

the labels "subj" and "argl" are identical, as are those "accessed" by

the labels "obj" and "arg2", which, for transitive verbs, corresponds to

the active voice: the syntactic subject and the first logical argument

are the same, and the syntactic object and the second logical argument

are the same 4 .

apparent if we were to be content with printing the content of the two

structures.

4 There is an obvious analogy with both the "dependency" structures of

GETA and the functional structures of Lexical Functional Grammar. In

(1)

(2)

(3)

- 11 -

On the other hand,.in example 2 -- "several steaks are eaten" -- there

is only one argument present on a logical level, and this is expressed

syntactically by the subject function "subj". This matches one of the

patterns for the passive voice, the other being the case where argl

shows up syntactically as the function "by-phrase".

2.2 The FiACFP grannnlar that produces these examples

2.2.1 The grammar

By way of exampre, here is the (very elementary) RATP grammar by which

. the examples in section 2.1 were analyzed.

A. Augmented context -free rules

S -> NP VP,
S.cat=s,
NP.cat=np,
VP.cat=vp,
number agreement(NP,VP),

verbal head features_sharing(S,VP),
voice -rreatment(S);

VP -> V,
VP.cat=vp,
V.type=finite,
intransitive verb(V),
VP.voice=actiVe,
verbal head features_sharing(VP,V),
VP.nurrEer=V7number;

VP -> V NP,
VP.cat=vp,
NP.cat=np,
V.cat=v,
V.type=finite,
transitive verb(V),
VP.voice=a-Etive,
VP.obj=NP,

these, as also herè, the structures associated with arguments are of the

same kind as those associated with syntactic functions. In fact, these

structures are shared by logical and syntactic functions.

- 12 -

VP.number=V.number,
verbal_pead features sharing(VP,V),
VP.sem_rest7.semconflof_arg2=NP.semconf;

VP -> AUX V,
VP.cat=vp,
AUX.cat=aux,
be(AUX),
V.cat=v, 	-
V.type=past_participle,
transitive_yerb(V),
VP.voice=passive,
VP.number=AUX.number,
verbal_head features_sharing(VP,V);

AUX -> is,
be(AUX),
finite_singular(AUX);

AUX -> are,
be(AUX),
finite_plural(AUX);

NP -> Det Noun,
NP.cat=np,
Det.cat=det,
Noun.cat=noun,
NP.det=Det.det,
number agreement(NP,Det),
NP.numSer=Noun.number,
NP.noun=Noun.noun,
NP.semconf=Noun.semconf;

Noun ->.dog,
Noun.noun=dog,
sinnoun(Noun),
high_status_animal(Noun);

Noun -> rats,
Noun.noun=rat,
plunoun(Noun),
high_status_animal(Noun);

Noun -> steaks,
Noun.noun=steak,
plunoun(Noun),
standard eatable(Noun);

V -> sleep,
intransitive_yerb(V),
V.verb=sleep,
animate argl(V),
finite_Piural(V);

V -> dreams,
intransitive verb(V), -

 V.verb=dream7
animate_argl(V),

(4)

(5)

(6)

(7)

(8)

(9)

(10)

(11)

(12)

(13)

(14)

(15)

(16)

(17)

- 13 -

finiteLsingular(V);

V -> eats,
transitive verb(V),
animate ai-(5.-1(V),
eatable-àrg2(V),
V.verbat,
finite_singular(V);

V -> eaten,
transitive verb(V),
animate aiiil(V),
eatablè-arg2(V),
V.verb=--e-at,
past_participle(V);

Det -> a,
Det.cat=det,
Det.det=a,
Det.number=sin;

Det -> the,
Det.cat=det,
Det.det=the,
Det.number=DetNbr,
freeze(DetNbr,sin_or_plu(Det));

Det -> several,
Det.cat=det,
Det.det=several,
Det.number=p1u;

B. Predicate definitions on DAGs

sinnoun(Noun):
Noun.cat=noun, 	 (1)
Noun.number=sin;

plunoun(Noun):
Noun.cat=noun, 	 (2)
Noun.number-plu;

sin or_plu(X):
X.ni.imber=sin;

(3)
sin or_plu(X):
X.n1.7.Mber=plu;

number agreement(X,Y):
X.numbe-r=Y.number; 	(4)

finite_plural(Verb):
Verb.type=finite, 	(5)
Verb.number=p1u;

finite_singular (Verb) :

(6)

(7)

(8)

(9)

(10)

(11)

(13)

(14)

(15)

(16)

(17)

(18)

— 14 —

Verb.type=finite,
Verb.number=sin;

past_participle(V):
V.type=past_participle;

be(AUX):
AUX.cat=aux,
AUX.verb=be;

transitive_yerb(V):
V.cat=v,
V.transit=trans;

intransitive_yerb(V):
V.cat=v,
V.transit=int;

verbal head features sharing(X,Y):
X.sem 7.estr=Y.sem retr,
X.obj=Y.obj,
X.subj=Y.subj,
X.arg1=Y.argl,
X.arg2=Y.arg2,
X.verb=Y.verb,
X.voice=Y:voice;

voice_treatment(S):
S.voice=active,
S.arg1=S.subj,
S.arg2=S.obj,
S.sem restr.semconf_of_arg1=S.argl.semconf;

(12)
voice treatment(S):
S.voi-&=passive, •
S.arg2=S.subj,
S.sem restr.semconf_of_arg2=S.arg2.semconf;

animate(X):
X.semconf.animate=yes;

nonanimate(X):
X.semconf.animate=no;

eatable(X):
X.semconf.eatable=yes;

noneatable(X):
X.semconf.eatable=no;

high status animal(X):
animite (X) ,
noneatable(X);

standard eatable(X):
eatable(X),
nonanimate(X);

— 15 —

animate argl(V):
V.sem ié-str.semconf_of_argl.animate=yes; (19)

eatable_arg2(V):
V.sem_restr.semconf_of_arg2.ea -Eable=yes; (20)

2.2.2 Explanation of the grammar

The grammar in the preceding section is very elementary, but it

illustrates the mo'st important aspects of the RATP formalism.

We have divided the grammar into two parts:

- Part A consists of a set of "augmented context-free rules"

- Part B consists of a set of "predicate definitions on DAGs"

The only purpose of this division here is to make reading easier. In an

RATP grammar, both types of construction can be arbitrarily mixed.

2.2.2.1 Augmented context-free grammar rules

Let us consider Rule (1)

S -> NP VP, 	 a
S.cat=s, 	 b.1
NP.cat=np, 	 b.2
VP.cat=vp, 	 b.3
number agreement(NP,VP), 	b.4
S.subj;NP, 	 b.5
verbal head features sharing(S,VP), 	b.6
voice Ereatiiient(S); 	b.7

In this rule, line (a) and lins (b.1) through (b.7) have different

roles:

- line (a) -- the "skeleton" of the rule -- describes a context-

free rule. Here, S, NP and VP are non-terminal nodes in the

classic sense.

HI

-16 —

- lines (b.1) through (b.7) -- the "body" of the rule -- describe

rela -Cions (or constraints) which have to be verified between

substructures (that is, between DAGs). Here, S, NP and VP are

variables representing DAGs, namely DAGs associated with the non-

terminal nodes S, NP and VP in the skeleton.

It must therefore be kept in mind that the symbols S, NP and VP play a

double role in a grammar rule: in the skeleton they are non-terminal

nodes, and in the body they are variables designating DAGs which

represent the structures obtained foi each of the non-terminal nodes. It

should be noted in passing that in this role of variables designating

DAGs (identifier beginning with a capital letter and appearing in the

body of a rule), an identifier may appear "freely", ie not associated

with a non-terminal node (eg DetNbr in rule (16)); it then plays an

auxiliary role in verifying constraints.

Now let us consider one by one lines (b.1) through (b.7) in rule (1).

(b.1) states an equality constraint. It may be read in the following

way: the sub-DAG (substructure) accessed from the DAG associated with S

via the access path (consisting of a single label) "S.cat" is equal 5 to

the DAG (degenerate, that is, reduced to a symbol) "s" (a constant).

In other words, the category of the DAG associated with S is "s".

(b.2) and (b.3) can be understood in the same way.

(b.4) expresses a two-argument "predicative" constraint, namely that the •

"number-agreement" relation must be verified between the two DAGs

associated with NP and VP. To know the specification of this constraint,

one has to refer to definition (6) of the "number-agreement" predicate

in Part B of the grammar. This predicate reads: number-agreement (X,Y)

5 or rather "unifiable" (see Section III)

— 17 —

is true when X and Y are two DAGs such that the Sub-DAG of X accessed by

the access path "X.number" is equal. to the sub-DAG of Y accessed by the

access path "Y.number". In other words, the "number" of X is equal to

that of Y.

(b.5) expresses an equality constraint: the sub-DAG of S accessed by the

access path S.subj is equal to the DAG associated with NP. In other

words, the "subj" (subject) of S is the whole NP (that is, the entire

structure associated with NP).

If (b.1) and (b.5) are compared, it can be seen that, from the point of

view of the formalism, both a simple grammatical feature like "s" and a

complex structure like . that associated with a noun phrase are treated in

the same way. They are both -sub-DAGs of DAGs, one degenerate and the

other complex, accessed by the access paths "S.cat" and S.subj"

respectively.

(b.6) expresses a predicative constraint (having two arguments), namely

that there is "sharing" of "verbal_head_features" (subj, obj, argl,

arg2, verb, voice, sem_restr) between S and VP.

The content of this constraint is spelled out in the definition

(definition II in B) of the predicate "verbal_head_features sharing".

(b.7) expresses a predicative constraint (with one argument), "voice

treatment", which has to be verified by the DAG S. On referring to the

definition of the "voice_treatment" predicate (B, definition (12), we

notice a new aspect of the formalism: there are two "statements"

corresponding to the "voice_treatment" predicate. These two statements

may be read as a disjunction of conditions: for DAG S to verify the

voice-treatment constraint, requires (among other things) that the sub-

DAG of S accessed by the access path S.arg2 be equal to the sub-DAG of S

accessed by the access path S.obj, while in the case of the passive

voice, the constraint requires (among other things) that the sub-DAG of

S accessed by the access path S.arg2 be equal to the sub-DAG of S

— 18 —

accessed by the access path S.subj. Section 2.1 shows emamples of these

two basic types.

2.2.2.2 Predicate definitions

The comments in the preceding section have already illustrated the role

of predicate definitions; these definitions make it possible to describe

the constraints between DAGs independently of any grammar rule, and

also:

(1) to reuse the same relation in several different rules (e.g.,

the "transitive-verb" definition is used in several different

grammar rules)

(2) to considerably augment the language's descriptive power (see

section 2.3).

There is a formal similarity between the predicate definitions of RATP

and those of pure Prolog:

- A predicate definition contains a certain number of statements -

(two in the case of "voice_treatment")

- In statements, a distinctiOnis made between the "head" (e.g.,

"voice treatmeht") and the "body", or "tail" (S.voice=active,

S.arg1=S.subj, S.arg2=S.obj, S.sem restr.semconf_of

àrg1=S:argl.semconf)

- Identifications of variables begin with a capital letter (e.g.,

HSU)

— 19 —

- Identifications of constants begin with a lower-case letter

(e.g., "active") 6 . This convention is analogous to that used in

some dialects of Prolog (Edinburgh syntax).

Certain differences should also be noted:

- Variables designate DAGs rather than terms.

- Substructures are accessed by access paths (e.g., "S.sem

restr.semconf of arg2"), whereas in Prolog there is no explicit

. concept of access to subterms but only implied access determined

by the position of a subterm below a term.

2.3 RATP as a formalism for writing grammars and as a

programming language

2.3.1 RATP as a formalism for writing grammars

As a formalism for writing grammars, RATP is a language which falls

exactly midway between PATR (representing the class of unification

grammars) and DCGs (representing the clasà of logical grammars).

Let us consider the following three rules, taken from the grammar in

section 2.2.1:

NP -> Det Noun,
NP.cat=np,
Det.cat=det,
Noun.cat=noun,
NP.det=Det.det,
number_agreement(NP,Det),
NP.number=Noun.number,
NP.noun=Noun.noun,
NP.semconf=Noun.semconf;

6 Note that in the statements in definition (12), "voice", "subj",

"argl", etc do not denote constant DAGs but are labels. One should not

confuse these two kinds of labels.

—20 —

Det -> a,
Det.cat=det,
Det.det=a,
Det.number=sin;

Noun -> dog,
Noun.noun=dog,
sinnoun(Noun),
high_status_animal(Noun);

In DCG, an approximate equivalent might be:

np(N,Nbr,X,Det,Y,Z,Semconf) -->
det(Det,Nbr1), noun(N,Nbr2,Semconf),
(nbr_agr(np(N,Nbr,X,Det,Y,Z,Semconf),det(Det,Nbr1))) .

det(a,sin) --> [a].

• noun(dog,Semconf) --> [dog],
(sinnoun(noun(dog,Semconf))1,
fhigh_status_animal(noun(dog,Semconf))1.

Here, as in RATP, it is possible to invoke predicates which constrain

the structures being built. In DCG, these structures are terms with a

fixed "arity", whereas in RATP they are DAGs which may refer a priori to

• an indefinite number of substructures.

In PATR, an approximate equivalent of these three rules would be:

NP -> Det Noun,
NP.cat=np,
Det.cat=det,
Noun.cat=noun,
NP.det=Det.det,
NP.number=Det.number,
NP.number=Noun.number,
NP.noun=Noun.noun,
NP.semconf=Noun.semconf;

Det -> a,
Det.cat=det,
Det.det=a,
Det.number=sin;

Noun -> dog,
Noun.noun=dog,
Noun.cat=noun,

% number_agreement(NP,Det)

% sinnoun(Noun)

— 21 —

Noun.number=sin,
% high_status_animal(Noun)

% animate(X)
% noneatable(X)

The esSential difference from RATP is that it is impossible in PATR to

define classes of structures using predicates.

• Furthermore, in cases where RATP can make unrestricted use of recursive

predicates between them (cyclicity, see next section), it is generally

impossible to translate an RATP grammar into PATR formalism.

Even when cyclicity is imposed, RATP's predicative mechanism allows for

greater modularity in the definition of structures; it also makes it

possible to account in a natural way for the disjunction of classes of

structures (e.g., the predicate "voice treatment" in the grammar sample

given).

2.3.2 RATP as a programming language

We have seen that predicate definitions in RATP have a structure very

similar to that of predicate definitions in Prolog, with certain

differences:

- DAGs instead of terms

- access paths

This is clearly not a matter of chance: predicate structure in RATP was

directly inspired by that of Prolog, the main difference being due to

the fact that the arguments of an RATP predicate are DAGs rather than

terms (the consequences of this distinction are explored more fully in

section 3).

In Prolog, a statement (that is, a "Horn clause") of the type:

p(T1,...,Tm) <-- q1(T11, 	,T1m1), 	, qn (Tnl, 	Tnmn)

X.semconf.animate=yes,
X.semconf.eatable=no;

I.

° —22 —

may be read as follows: if for every i (1(i(n) the mi-uplet (TII, Timi)

belongs to the relation qi, then the m-uplet (T1,...,Tm) belongs to the

relation p.

In other words, a Prolog program may be thought of as specifying ever

more closely classes of n-uplets of terms, namely the classes associated

with each of the program's predicates: one begins by slotting ground-

terms into the classes corresponding to predicates appearing in "tail-

less" (that is, unconditionally verified) statements, and as soon as a

new term appears in the class qi, it leads to the appearance of new

terms in a class p. This process produces, in the limit, for each

predicate in the program, a set of n-uplets of terms which satisfy it 7 .

Thus a Prolog program can be seen as an effective means of describing

and computing classes of structures, these structures being terms in

this case.

In RATP, the same mechanism is used: RATP predicate definitions make it

possible to define classes of DAGs recursively. Thus, the predicate

"sinor_plu(X)" (Clefinition 3 .3, p 13) produces a definition of the .

class of DAGs where "humber" has the value of either "sin" or "plu"; the

predicate "transitive_verb" (B.9) allows for the definition of all DAGs

which are transitive(having "trans" as their transit (transitivity)

value) verbs (that is, which have the category "v").

For instance, DAG A, which follows, belongs to the class associated with

the predicate sin_or_plu 8 :

7 The formal concept corresponding to this informal description is

called the least fixed point in the program (Lloyd 1984).

8 Obviously, in the case of predicates with several arguments, n-uplets

of DAGs are considered.

— 23 —

np

ca 	
dog

noun

<let

number

sin

A

Predicates can "call" on each other; thus, for example, the predicate

high status_animal (B.17) is defined with the assistance of the

predicates "animate" and "noneatable".

DAG B below therefore belongs to the class "high_status_animal":

yes

animate

eatat;le 	table

no

The "ever-closer" definition mechanism provides the language with great

nndularity and expressive power: as soon a class of structures has been

defined, it can be used in turn to define new classes of structures.

Two basic types of cases can be distinguished, depending on the use made

of this capacity.

— -24 —

First type: the expressive power of the language is limited by not

allowing "cycles" in predicate definitions (cycle means that a predicate

pl can call on a predicate p2, which can in turn call on a predicate

..., which can call on predicate pl, whence the process began).

If this limitation is upheld, it can easily be shown that predicates can

describe precisely those classes of structures which can be described

solely with path equations, without recourse to predicates.

In other words, if this limitation is upheld, nothing is gained -- from

a theoretical standpoint -- by allowing the use of predicates in the

grammar:it would be sufficient to use grammar rules amplified by

equations 9 ; but a great . deal is gained practically because of the

modularity and the reuse capability introduced by predicates.

Second type: cycles are allowed in predicate definitions.

In this case, a predicate may call on itself, either directly or through

other predicates. This is the situation in Prolog, and it is this option

which makes Prolog a universal programming language, ie any class of

"recursively enumerable" terms can be described by a predicate of this

type.

Similarly, if cycles are allowed in predicate definitions in RATP, the

language's descriptive power is considerably enhanced, as it is then

possible to use RATP predicates to describe any class of recursively

enumerable DAGs 10 .

9 This is the case in PATR II, as far as grammar is concerned, but

PATR II introduces certain mechanisms which extend its scope, for

example, in lexical matters.

10 Strictly speaking, this is not accurate: in fact, it is possible to

describe any recursively enumerable class of DAGs which has the property

of being free beyond a finite set of labels, that is, such that

-25 —

By way of example, it is easy to "program" addition and multiplication

algorithms in RATP. A program of this type is shown in Appendix 2; this

program defines a single-argument predicate mult(D) which is verified by

a certain class of DAGs, those which represent, in a certain number

coding convention, "multiplications".

For example, DAG A, which follows, represents a multiplication (three by

two) and verifies the predicate mult(A).

the complement labels on a certain finite set of labels can have any

value in the class. We shall not go into the details here, however.

— 26 —

argl:
car:

one
cdr:

car:
one

cdr:
car:

one
cdr:

arg2:
car:

one
cdr:

car:
one

cdr:

result:
car:

one
cdr:

car:
one

cdr:
car:

one
cdr:

car:
one

cdr:
car:

one
cdr:

car:
one

cdr:

In the same way as in Prolog, evaluation of an RATP predicate leads to

either verification or enumeration of all DAGs 11 that verify the

predicate,depending on the degree of instantiation of the DAG initially

used as argument for the predicate. This evaluation is usually performed

when the predicate is called on by a grammar rule, but may also occur

independently of the grammar.

11 that is to say, of course, not enumeration of all ground DAGs, but

enumeration of a set of variable DAGs which collectively cover the set

of all solutions.

— 27 —

3 DAGS AND mum QUESTIONS OF IMPLEMENTATION

3.1 DAGs and Terms

As we have seen in the foregoing section, RATP is an intermediate

formalism between Unification Grammars (more specifically PATR II) and

Logical Grammars (in particular DCG).

In addition, we have seen that the "programming language" aspect of RATP

takes its chief theoretical inspiration from Prolog, the essential

difference being due to the fact that the structures manipulated are

DAGs and not terms.

The choice of Prolog as implementation language for RATP is therefore

entirely natural.

One problem which must be solved in such implementation is that of

representing DAGs in Prolog.

A priori, there are several possible choices -- for example, a DAG might

be represented as a set of three-argument relations

"arc(Nodel,Node2,ArcLabel)" and unification of two DAGs achieved by

manipulating these explicit graph representations --, but for reasons of

effectiveness, it is by far preferable to use -- if possible -- the

"built-in" term unification mechanisms of Prolog.

This assumes, however, that it is possible to encode DAGs as terms in

such away that the unification of two DAGs amounts to a unification of

terms 12 .

12 In this report, we do not describe the concept of unification of

terms, for which the reader, can consult Giannesini et al., 1986, for

— 28 —

1

MI

3.2 Implementation of DAGs as Terms

From this standpoint, certain simplistic methods of encoding DAGs will

not work; for example, one might want to encode a DAG as a list 13 of

ordered pairs of the form (label_i, dag_i), where each dag_i is in turn

a structure of the same type; one might then define the unification of

•two DAGs as a sort of "union" of two lists such that if a label appears

in only one of the two lists, then the associated pair is "added" to the

resulting list, and if the same label_il=label_j2 appears in both

lists 11 and 12, then the DAG associated with this label in the 	•

resulting list is the recursive unification of (lists representing) DAGs

dag_il and dag_i2.

Unfortunately, as can easily be demonstrated, this method fails to

satisfy a necessary condition for the unification of DAGs:

If at a given time (time tl) DAG A is unified with DAG B, and later

(time t2) with C, and (time tà) B with D, then this implies that C and D

are unifiable at time t4.

T*o different methods may be proposed for solving this problem.

3.2.1 Encoding DAGs as incomplete lists

To solve the foregoing problem, Eisele and Doerre (Eisele et al., 1986)

proposed an ingenious way of encoding DAGs.

example; nor do we treat the less well known concept of unification of

DAGs, for which readers are referred to Shieber, 1986.

13 that is, a term of a particular form.

Li:
L2:

.Cn1.X

.Cn2.X
C11. C21.
C12.C22.

—29 —

In their approach, a DAG is encoded as an incomplete Prolog list L in

the form:

L: Cl.C2. 	.Cn.X,

where •each Ci is a pair of the form c(Label,Value)

where, recursively, Value is an incomplete list (of the same form as L)

representing a DAG.

The unification of two DAGs represented by Li and L2 is then effected

using the Prolog predicate

dag_unify(L1,L2)which is defined as follows:

dag_unify(L,L): !.
dag_unify(c(Label,V1).R1,L2):

delete(c(Label,V2),L2,R2),
dag_unify(V1,V2),
dag_unify(R1,R2).

delete(C,C.L,L): ! .
delete(C,CC.L1,CC.L2): delete(C,L1,L2).

The predicate dag_unify has the remarkable property of possessing the

following invariant:

after dag_unify has been successfully applied to Li and L2, Li and

L2 have the form:

where C11.C21. 	.Cn1 and C12.C22. 	.Cn2 are a "permutation"

of one another, where by permutation is meant: (a) that the lists

of labels Etll Et21 	Etnl (resp. Et12 Et22 	Etn2), which are

the initial elements of the pairs Cil (resp. Ci2), are

permutations of one another, and (b) that the values Vil and Vj2

associated with the same label in Li and L2 have themselves been

—30 —

"dag-unified" and therefore recursively comply with the same

invariant.

From this it follows that Li and L2 represent the same DAG, AND that

THEY RETAIN THIS PROPERTY THROUGHOUT THEIR SUBSEQUENT Prolog HISTORY,

since X is common to both of them. Quite clearly, Ll and L2 are not

unifiable AS Prolog terms.

This property guarantees that the unification of DAGs really have the

requisite qualities. It does, however, have the following

inconveniences:

- costly in terms of computation time (list scanning)

- creates a multiplicity of different Prolog terms (none of them

unifiable as Prolog terms) all representing the same DAG.

This is why we have opted for the following method, which has the

advantage of reducing the unification of DAGs to a simple Prolog

unification of the terms which represent them.

3.2.2 Encoding DAGs as incomplete ternary trees

In order to be able to deal with DAG unification as a direct unification

of Prolog terms, we have associated with each label used in the grammar

a code in the form of a binary list (that is, a list of 0 or l's)

uniquely identifying this labe1 14 .

Let us suppose that we wanted to encode, for example, the DAG

14 The association of binary lists with labels is currently done "at

compile time", but there is nothing to stop it being done "at run time"

and adding new labels dynamically.

— 31 —

suj: Valuel
obj: Value2
cat: Value3

(where Valuel, Value2 and Value3 are themselves recursive encodings of

DAGs not explicitly stated here).

Suppose also that the labels suj, obj and cat respectively are encoded

as binary lists:

suj 	0.1.1.nil
obj 	1.nil
cat nil

'then the DAG shown above would be encoded as the term:

b(Value3,
b(Xl,

X2,
b(X3,

X4,
b(Valuel,

X5,
X6)))

b(Value2,X7,X8))

where X1.. .X8 are non-instantiated variables.

This structure can easily be understood by looking at the following

informal description:

arrived!, i.e. the binary list is nil.

the first element of the binary list is 0,
one "turns" left.

le premier élément de la liste binaire est 0,
one "turns" right.

This encoding guarantees that DAG unification will be reduced to direct

unification (as understood in Prolog) of the terms representing them.

b(Value,

Left,

Right,

— 32 —

APPENDIX 1

A more complex RATP grammar

(translation into RATP of Shieber's (1986) grammar 3)

APPENDIX 1.1

The Grammar

S -> NP VP,
cat s(S),
cat—np(NP),
cat—Vp(VP),
S.lie-ad=VP.head,
S.head.form=finite,
.VP.syncat.first=NP,
VP.syncat.rest=end;

VP -> V,
cat_vp(VP),
V.cat=v,
VP.head=V.head,
VP.syncat=V.syncat;

VP -> VP1 X,
cat vp(VP),
cat vp(VP1),
VP.ii-ead=VP1.head,
VP1.syncat.first=X,
VP1.syncat.rest=VP.syncat;

VP1 -> VP,
VPI=VP;

X -> VP,
X=VP;

X -> NP,
X=NP;

NP ->.uther,
cat np(NP),
ms(UP),
third(NP),
NP.head.trans=uther;

NP -> cornwall,
cat np(NP),
ms(lb),
third(NP),
NP.head.trans=cornwall;

NP -> knights,
cat np(NP),

(i5)
third(NP),
NP.head.trans=knights;

V -> sleeps,
finite_ps(V),

sc np(V),
V.Eead.trans.pred=sleep;

3 -> sleep,
finite sauf_3s(V),
sc np(V)
V.ead.trans.pred=sleep;

3 -> sleep,
cat v(V),
V.Ii-é-ad.form=nonfinite,
sc np(V),
V:Fead.trans.pred=sleep;

3 -> storms,
finite_3s (V) , .
sc_np_np (V) , •
V.head.trans.pred=storm;

3 -> stormed,
pastparticiple (V) ,
sc np_np(V),
V. Eead. trans . pred=storm;

3 -> storm,
nonfinite(V),
sc np_pp(V),
V.Tlead.trans.pred=storm;

3 -> has,
finite 3s(V),
have (V7;

3 -> have,
finite sauf_3s(V),
have (V);

3 -> persuades,
V.cat=v,
V.head.form=finite,
Allow type_control(V),
V.heAd.trans.pred=persuade;

3 -> persuaded,
V.cat=v,
V.head.form=pastparticiple,
allow type control(V),
V.heAd.traris.pred=persuade;

3 -> promises,
V.cat=v,
V.head.form=finite,
promise type_control(V),
V.head.Erans.pred=promise;

3 -> promised,
V.cat=v,
V.head.form=pastparticiple,

- 35 -

promise type control (V) ,
V.head. - rans7Pred=promise;

V -> to,
V.cat=v,
V.head.form=infinitival,
V.syncat.first.cat=vp,
V.syncat.first.head.form=nonfinite,
V.syncat.first.syncat.rest=end,
V.syncat.first.syncat.first=V.syncat.rest.first,
V.syncat.rest.first.cat=np,
V.syncat.rest.rest=end,
V.head.trans.pred=V.syncat.first.head.trans;

cat s(X):
X.cât=s;

cat vp(X):
X.cat=vp;

cat np(X):
X.cit=np;

cat v(X):
X.càt=v;

ms(NP):
NP.head.agreement.gender=masculine,
NP.head.agreement.number=singular;

mp(NP):
NP.head.agreement.gender=masculine,
NP.head.agreement.number=plural;

third(NP):
NP.head.agreement.person=third;

nonfinite(V):
V.cat=v,
V.head.form=nonfinite;

• finite 3s(V):
« cat vffi,
V.hâad.form=finite,
suj_of v(V,SUJ),
SUJ.heâd.agreement.person=third,
SUJ.head.agreement.number=singular;

finite sauf 3s (V):
cat y(V), -
V.hâad.form=finite,
sùj of v(V,SUJ),
notil3s.ibUJ):

not 3s(SUJ):
SUi7head.agreement.personfthird,
SUJ.head.agreement.number=singular;

I

— 36 —

not 3s(SUJ):
SUJthead.agreement.person=third,
SUJ.head.agreement.number#singular;

suj of v(V,SUJ):
V. syncat=L,
V.syncat.rest=X,
freezeiX,suj_of_y_aux(V,SUJ,L));

suj of v aux(V,SUJ,L):
L. rest=end,
L.first=SUJ;

suj of 	aux(V,SUJ,L):
L.r .stiferid,
L.rest=LL,
suj_of v_aux(V,SUJ,LL);

pastparticiple(V):
V.cat=v,
V.head.form=pastparticiple;

pastpart(V):
V.head.form=pastparticiple;

have (V):
V.syncat.first.cat=vp,
V.syncat.first.head.form=pastparticiple,
V.syncat.first.syncat.rest=end,
V.syncat.first.syncat.first=V.syncat.rest.first,
V.syncat.rest.first.cat=np,
V.syncat.rest.first.head.agreement.person=third,
V.syncat.rest.first.head.agreement.number=singular,
V.syncat.rest.rest=end,
V.head.trans.pre&-perfective,
V.head.trans.arg1=V.syncat.first.head.trans;

allow type_control(V):
cat2F(V),
scrip_np_tovp(V),
V.syncat.rest.first.syncat.first=V.syncat.first;

promise type_control (V) :
cat v (V) ,
sc np_np_tovp (V) ,
V.Îyncat.rest.first.syncat.first—V.syncat.rest.rest.first;

sq_np(V):
V.syncat.first.cat=np,
V.syncat.rest=end,
V.head.trans.arg1=V.syncat.first.head.trans;

sc_pprip(V):
V.syncat.first.cat=np,
V.syncat.rest.first.cat=np,
V.syncat.rest.rest=end,

— 37 —

V.head.trans.arg1=V.syncat.rest.first.head.trans,
V.head.trans.arg2=V.syncat.first.head.trans;

sc_np_np_tovp(V):
V.syncat.first.cat=np,
V.syncat.rest.first.cat=vp,
V.syncat.rest.first.head.form=infinitival,
V.syncat.rest.first.syncat.rest=end,
V.syncat.rest.rest.rest=end,
V.head.trans.arg1=V.syncat.rest.rest.first.head.trans,
V.head.trans.arg2=V.syncat.first.head.trans,
V.head.trans.arg3=V.syncat.rest.first:head.trans;

- 38 -

APPENDIX 1.2

Some sentences as analyzed by the grammar

52 /ul/dta/dymetman> ratpi

MPROLOG (2.1.0) LOGIC - LAB
(c) 1985 Logicware Inc.

PDSS.Program Development Support System

RATP INTERPRETER

Which grammar file ?
*s8

s8.ratp_output LOADED .

	 some analyses of the S "class"

: ?parse(s,uther.storms.cornwall.ni1).

[uther,storms,cornwall]

cat:

head:
form:

finite
trans:

argl:
uther

arg2:
cornwall

pred:
storm

Yes

: ?parse(s,uther.has.promised.knights.to.storm.cornwall.ni1).

[uther,has,promised,Inights,to,storm,cornwall]

cat:

head:
form:

finite
trans:

argl:
argl:

uther

— 39 —

arg2:
knights

arg3:
pied:

argl:
uther

arg2:
cornwall

pied:
storm

pred:
promise

pied:
perfective

Yes

	It will be noticed that there is a difference between the verbs

"promise" and "persuade"; whereas the action is performed by arg 1 of

"promise", it is performed by arg 2 of "persuade".

: ?parse(s,uther.has.persuaded.knights.to.storm.cornwall.[]).

[uther,has,persuaded,knights,to,storm,cornwall]

cat:

head:
. form:

finite
trans:

argl:
argl:

uther
• arg2:
• knights

arg3:
pred:

argl:
knights

arg2:
cornwall

pied:
storm

pied:
persuade

pred:
perfective

Yes

— 40 —

„„,Some "analyses” of the "class" NP. L is a variable here, so that

what really happens is a synthesis of all the np.

: ?parse(np,L).

[uther]

cat:
np

head:
agreement:

gender:
masculine

number:
singular

person:
third

trans:
uther

L = [uther]
Continue (yin) ?

[cornwall]

cat:
np

head:
agreement:

gender:
masculine

number
singular

person:
third

trans:
cornwall

L = [cornwall]
Continue (yin) ?

[knights]

cat:
np

head:
agreement:

person:
third

trans:
knights

• L = [knights]
Continue (yin) ?

— 41 —

NO

 Some "analyses" of the VP "class". L is a variable here, so that

what really happens is a synthesis o all the vp.

: ?parse(vp,L).

[sleeps]

cat:
vp

head:
form:

finite
trans:

pred:
sleep

syncat:
first:

cat:
np

head:
agreement:

number:
singular

person:
third

rest:
end

L = [sleeps]
Continue (yin) ?

[sleep]

cat:
vp

head:
form:

finite
trans:

pred:
sleep

syncat:
first:

cat:
np

head:
agreement:

number:
singular

rest:
end

L = [sleep]
Continue (yin) ?

[sleep]

cat:
vp

head:
form:

finite
trans:

pred:
sleep

syncat:
first:

cat:
np

head:
agreement:

person:
third

rest:
end

L = [sleep]
Continue (y/n) ?

[sleep]

cat:
vp

head:
form:

nonfinite
trans:

pred:
. sleep

syncat:
first:

cat:
np

head:
rest:

end

L = [sleep]
Continue (y/n) ?

[storms]

cat:
vp

head:
form:

finite
trans:

— 43 —

pred:
storm

syncat:
first:

cat:
np

head:
rest:

first:
cat:

np
head:

agreement:
number:

singular
person:

third
rest:

end

L = [storms]
Continue (yin) ? n
OK

	 An analysis of the VP "class".

: ?parse(vp,has.persuaded.knights.to.storm.cornwall.nil)

[has,persuaded,knights,to,storm,cornwall] .

cat:
»vp

head:
- form:

finite
trans:

argl:
arg2:

knights
arg3:

pred:
argl:

knights
arg2:

cornwall
pred:

storm
pred:

persuade
pred:

perfective
syncat:

first:
cat:

np
head:

agreement:

— 44 —

number:
singular

person:
third

rest:
end

Yes
: bye
*** The following module(s) have not been saved: ***

unnamed module
Do you want to exit (yin) ? y
Normal exit from MPROLOG PDSS
52 /ul/dta/dymetman> ^D
script done on Fri Mar 27 19:26:35 1987

APPENDIX 2

An RATP multiplier program

add(D):
D.argl=nil,
D.arg2=D.result;

add(D):
D.argl.car=one,
D.argl.cdr=D1.argl,
D.arg2=D1.arg2,
D.result.car=one,
D.result.cdr=Dl.result,
add(D1);

mult(D):
D.argl=nil,
D.result=nil;

mult(D):
D.arg1.car=one,
D.argl.cdr=X,
D.arg2=Y,
D.result=Z,
Dl.arg1=X,
Dl.arg2=Y,
Dl.result=Z1,
mult(D1),
D2.arg1=Y,
D2.arg2=Z1,
D2.result=Z,

— 45 —

add(D2);

mm(D):
D.arg2.car=one,
D.arg2.car=one,
D.arg2.cdr.car=one,
D.arg2.cdr.cdr=nil,
D.argl.car=one,
D.argl.cdr.car=one,
D.argl.cdr.cdr.car=one,
D.argl.cdr.cdr.cdr=nil,
mult(D);

— 46 —

BIBLIOGRAPHY

Bresnan, J. & Kaplan, R. 1983: "Lexical-Functional Grammar: a Formal

System for Grammatical Representation", in J. Bresnan (ed.), The mental

representation of grammatical relations, MIT Press.

Colmerauer, A. 1978: "Metamorphosis Grammars", in L. Bolo (ed.) Lecture

Notes in Computer Science, Springer Verlag, vol. 63.

Dahl, V. 1985: "Logic Based Metagrammars for Natural Language Analysis",

Technical Report, Computing Science, Simon Fraser University, Vancouver.

Eisele, A. & Dorre, J. 1986: "A Lexical-Functional System in Prolog",

Proceedings of Coling 86.

Giannesini, F. Kancui, H. Pasero, R. Van Caneghem, M. 1985, Prolog,

Interéditions, Paris.

Kay, M. 1983, "Unification Grammar", Xerox Palo Alto Research Unit, Palo

Alto.

Lloyd, J. 1984: Foundations of Logic Programming, Springer Verlag.

Pereira, F. 1981: "Extraposition Grammars", American Journal of

Computational Linguistics, vol. 9:3.

Pereira, F. & Warren, D. 1980: "Definite Clause Grammars of Language

Analysis", Artificial Intelligence, vol. 13.

Shieber, S. 1984: "The Design of a Computer Language for Linguistic

InfOrmation", Proceedings of the ACL 1984.

Shieber, S. 1986: An Introduction to Unification-Based Grammar

Formalisms, CSLI, Stanford.

DATE DUE
DATE DE RETOUR

CARR McLEAN
38-296

"Mr QUEEN QA 76.7 .D99 1987

Dymetman, Marc

RATP : a new formalism in th

•
• •

Pour plus de détails, 	 For more information,

veuillez communiquer avec : 	 please contact:

Le Centre canadien de recherche
sur l'informatisation du travail
1575, boulevard Chomedey
Laval (Québec)

H7V 2X2
(514) 682-3400

Canadian Workplace
Automation Research Centre
1575 Chomedey Blvd.
Laval, Quebec
H7V 2X2
(514) 682-3400

