
THE TULIP PROJECT

by

Ron Ferguson

/Canadâ

QUEEN

QA

76.9

.N38

F476

1989

+ Gouvernement du Canada

Ministère des Communications

Government of Canada

Department of Communications

•
• • •

• • • • •
Le Centre canadien de recherche sur l'informatisation du travail

Canadian Workplace Automation Research Centre

QA

76.9

N38

F476e1
1989

).__---
(THE TULIP PROJECT j

November 1989

by

YRon Ferguson,!

This report is the result of research done at Canadian Workplace

Automation Research Centre under the direction of

Joel Muzard, Experts Systems Group

Department of Communications

Laval

OMMLIN!UATUi i CHAFA

.,JiL ;i7.1. leg'

lelei - BV:31.101iiltIE

(7-
6)(- 1

("?
/

/ 7-2

 ((,'
(")

/
() (1 7' 	 ' 	 -

Node cat. 	Co 28-1/40-1989F

ISBN 	0-662-95734-2

Les opinions émises dans ce rapport n'engagent que l'auteur.

* This report is also available in English

Table of contents

Introduction 	
2

Tulip Implementation 	
2

Building Tulip 	
4

The Tulip Source Files 	
6

Heuristics for Business Card Parsing 	 12

The Architecture of Tulip 	
12

Tulip's Knowledge Representation 	 14

Skolem Functions 	
14

Binary Predicates 	
16

Know and Inferred Facts 	
18

Representation of Verbs 	
19

REFERENCES 	 21

- contains the main source code for

parsing sentences.

- contains code for parsing business •

cards and names.

- contains code for 'built-in'knowledge

of dates and times, arithmetic

operations, and answering questions.

main

business-card

expert-system

HI

Introduction

This report discusses the implementation of Tulip on Sun workstations.

The capabilities and limitations of Tulip are described in the Sun Tulip

User Manual [Ferguson 89b].

Tulip Implementation

The Sun version of Tulip is written in Quintus Prolog plus a few C

routines. It runs under the UNIX operating system. The source code is

maintained using UNIX SCCS (Source Code Control System). The source

code for Tulip is contained underneath the directory

Vhome/condor/ferguson/tulip'. 	All (sub)directories mentioned in this

report will be sub-directories mentioned in this report will be sub-

directories of '/home/condor/ferguson/tulip'. 	The 'tulip' directory

contains the following subdirectories :

extraposition - grammar 	- code for translating extraposition

grammars to Prolog clauses.

foreign - files 	 - code for interfacing with C routines.

help 	 - Tulip's help facility.

knowledge 	 - knowledge files which can be read by

Tulip.

lexicon 	 - Tulip's dictionary.

- 4 -

transform 	 - shell for writing Prolog

preprocessors.

tulip 	 - executable images.

documentation 	 - documentation of Tulip.

il

I

Building Tulip

In subdirectory 'main', the files parse.pl and date-time-parse.pl contain

extraposition grammars [Pereira 83] which must be translated into Prolog.

The corresponding Prolog files are translation-of-parse.pl and translation-

' 	

of-date-time-parse.pl , respectively. 	If one of the files containing an

extraposition grammar is changed, it must be retranslated. To retranslate

a file, load Tulip from 'main' and compile xg-fix.pl :

compile('../extraposition-grammar/xg-fix').

Then run 'gxg' (defined in xg-fix.p1) :

• 	 gxg.

gxg will prompt for an input file and an output file. Enter parse.pl (or date-

time-parse.p1) as the input file and translation-of-parse.pl (or translation-

of-date-time-parse.p1) as the output file.

In subdirectory .'business-card', the file address.pl contains an extended

Definite Clause Grammar for parsing business card [Ferguson 89]. This

file must be preprocessed if it is changed. To run the preprocessor, load

Tulip from 'main'and run 'gopt':

gopt.

gopt will prompt for an input file and an output file. Enter ../business-

card/address.pl as the input file and ../business-card/tr-address.pl as the

output file.

The file 'tulip-system.pl'in 'main'contains commands to compile the Tulip

system. If one compiles itulip-system.p1', Tulip is recompiled and an

image file is saved in the 'tulip'sub-directory. 	The Imain'sub-directory

contains an executable file called 'tulip'which loads this image.

Tulip uses a large lexicon. The lexicon is expressed as Prolog facats in a

series of files. When Tulip was first ported to the Sun, these lexicon files

were loaded as part of Tulip. However, the response time Tulip on Sun

6

3/50 machines was found to be poor. It seemed likely that the poor

response time was partly due to the memory paging that was required

because of the size of the Tulip program. In an attempt to increase the

speed of Tulip, the lexicon was stored in dbm files and only the lexicon

entries for words which actually appear in an input sentence were read

into memory. Off-loading the lexicon in this manner reduced the amount

of virtual memory required by the Tulip program, and as a result Tulip now

runs 3.4 times faster.

The database lexicon consits of records. Each record has a key field which

is an English word and a content field which is an integer. The integer is a

bit vector representation of a set. The set is a subset of lex_set which is

defined in lexical-dictionary-interface.pl . 	The elements of this set are

the names of Prolog lexicon predicates which take an English word as

their only argument. For example, if 'noun(dog)'is a fact in the Prolog

lexicon, then 'noun'will be a member of the set associated with the word

'dog'.

The databàse lexicon is contained in the files lexicon.pagiand

lexicon.dir'in the directory lexicon/dbm/ 1 . 	If these files have to be

recreated, the following procedure can be followed :

Delete the files lexicon.pagland

Create empty lexicon.pag'and

Go to the 'main'sub-directory.

Compile 'lexicon-system.pl'(this is a compile file for the Prolog

lexicon).

Load but do not enter Tulip (remain in Quintus Prolog).

Enter 'create_lexicon.'

Note that it takes several hours to make the database lexicon from

scratch. If one only wants to make minor changes to the database lexicon,

it may be more convenient to modify the existing database lexicon using

the predicates in 'dbm.pl'and 'fixed-set.pl'which are located in the

lexicon/dbm'and 'main'directories, respectively. Of course, if one does

modify the database lexicon directly, one should make corresponding

changes to the Prolog lexicon files. See the file 'main/lexicon-

system.prfor a list of the Prolog lexicon files.

1

- 7 -

A description of the lexicon files is given in [Robb 88].

Some of the lexicon files contain predicates with an arity greater than

one. These predicates are not contained int he database lexicon. In order

to reduce the paging load, the 'tulip-system.pl'file will include these files

in Tulip only if the fact, lots_of_memory'ocurs in the Prolog database.

Otherwise, these files are not included when Tulip is compiled.

The Tulip Source Files

The following table gives the names of the non-lexicon source files in the

Tulip system and a description of the contents of each file. The

pathnames given for the files are with respect to the 'main'sub-directory.

Each of these files has '.pl'as a file extension. The file extension is not

shown in the table.

HI

8

parse

Main English Grammar

•1

J.

Ii

date-time-parse

Date and Time Parsing

../business-card/address

Parser for Business Card

utilities

Generally Useful Predicates

collections

Operations on Sets

../help/help

Help Menu System

tulip-date -

Tulip date-includes day of the week

accept-sentence

Read a sentence.

../transform/transform

Shell for transforming Prolog Clauses (Preprocessors)

tokenize

Tokenizer : string = list of tokens (reversible)

lexical-structure

Lexical Structure Data Type Definition

guess-lexical-type

Guess the lexical categories of words which are not in the

lexicon

../extraposition-grammar/xg-fix-aux

Basic Nonterminald for Extraposition Grammars/Record of parsed

words

f 13'

Operations on arrays (lists of lists)

Abb,reviations

Synonymous Words

french-english

English Translation of French Words

new-lexicon

Basic Lexicon

attachment-control

Masks which control modifier attachment.

Ref. pg. 64, "Logic for Natural Language Analysis", F. Pereira

top

Top Level Prolog routines for Tulip.

execute command

Process Tulip's built-in commanda

chat-lexicon-interface

Lookup words in the lexicon

morphology
Morphological Analysis

slot-filler

Replace words int he parse tree with their 'meanings'.

abbrev abbrev

synonym synonym

- 10 -

simplify

Simplify 'quant'trees by removing itrueleaves

anaphora

Handle anaphoric references

scope-determination

Determine the scope of English quantifiers.

template

Interface to templates which define the 'meaning'of words.

predicate-calculus

Convert Predicate Calculus formulae to clausal form.

modify-determiner

Change the determiners in the parse trees of assertions so that

the quantification is more explicitly represented.

knowledge-file-access

Read from and write to knowledge files.

transform-answer

' 	Add facts to or query the knowledgebase

parse-names

Parse a name, address or other non-grammatical entity.

triggers

Trigger actions based on assertions being made to the

knowledgebase.

parse-mods

Modification to grammar to handle conjunction of verb phrases

special-nps

Special parsers for identifying 'named'objects (eg. person and

company names, addresses, phone numbers).

- 11 -

../business-card/gr-transform

Translate an extended DCG grammar (for business cards) to

Prolog clauses.

../business-card/address-util

Token analysis for business cards

../business-card heuristics

Heuristics to label those parts of a business card which the

business card grammar was unable to parse.

../business-card/semantics

Process the specification of relationships between business card

objects

infer

Basic inferences

loop-checking

Check rules for recursive loops.

database-access

Removable clause assertion

significant-words

Assertion retrieval via word matching

date-time-facts

Facts about dates and times

mrl_temp

Interface to Meaning Representation templates for verbs

type-hierarchy

Specification of built-in type hierarchy for template matching.

../expert-system/date-time-expert

This is the Date-Time Expert System Engine i.e. calculator

- 12 -

../expert-system/talkr

Query evaluation

../expert-system/aggreg

Execute arithmetic operations

quintus-kludges

Predicates which can not (or have nt) been properly defined in

the Quintus version of Tulip.

The preceding table was created by a Prolog program in

'documentation/file-comments.pl'which gets the header comment from

each file. 	The 'main/tulip-system.pl'file contains (commented out)

commands to execute the header comment program. The file 'main/header-

comment.pl'contains a template for header comments.

- 13 -

Heuristics for Business Card Parsing

As described in [Ferguson 89], heuristics were used to classify those

parts of a business card grammar. However, Tulip's business card

grammar may be applied to the parsing of information for which the

.business card heuristics are not appropriate (le. organizations which are

engated in Al). Therefore, Tulip has been modified so that the heuristics

are only applied if the fact 'apply_heuristics'is defined. The

'apply_heuristics' flag is checked in 'business-card/address.p1'.

The Architecture of Tulip

The architecture of Tulip is based on that of Chat-80 [Pereira 83].

Differences between Tulip and Chat-80 are discussed in [Ferguson 88a].

Tulip uses a phased architecture to process sentences. The entire

sentence is analysed by one phase before it is passed to the next phase.

The phases involved in the parsing of an English sentence are :

Process 	 Predicate

read input

tokenization

syntactic lexicon lookup

finding significant words

syntactic parsing

semantic lexicon lookup

quantifier scope determination

quant tree simplification

identify maned objects

find anaphoric referents

read_lines/6

tokenize_parse/3

lexical_lookup/2

significant_words/4

sentence/6 	 -

i_sentence/2

clausify/2

simplify/2

transform_special_nps/2

anaphoric_references/3

- 14 -

IF query

query evaluation

answer generation

answer display

ELSE % assertion or rule

convert to Horn clauses

update knowledgebase

END

answer/2

surf ace_descriptions/2

respond/1

translate_to_clausal_form/4

update_knowledgebase/2

A phased approach is avantageous from a software engineering pont of

view because it divides the overall task into several smaller, largely

independent, tasks. Each of these smaller tasks is easier to comprehend

and debug than it would be if the tasks were merged into one large task.

If there is little backtracking between the different phases, one can do

more accurate error detection and correction than would be possible in an

integrated approach. If there is no backtracking between phases and a

particular phase fails, one knows that the error occurred in that phase.

One the other hand, if backtracking is allowed between the phases, then

'failure of a particular phase does not necessarily mean that an error has

been found. By backtracking to a choice point in a previous phase, one may

obtain a new alternative which is able to pass all the phases. Thus if

backtracking is allowed between phases, it is difficult to determine

whether failure of a particular phase id due to an input error, or due to a

preceding phase not having yet generated the correct alternative.

These are disadvantages to using a phased approach. If one does not allow

backtracking between phases, one must ensure that each pahse generates a

composite structure which represents all possible alternatives of that

phase. Related to this is the fact that an integrated approach may be able

to eliminated possibilities faster than a phased approach. In an integrated

approach, the constraints of each phase can be applied as soon as they

become relevant. However, in a phased approach, the constraints imposed

by later phases can not be applied until the analysis has reached those

phases.

- 15 -

For example, in an integrated approach, semantic information could be

used to avoid building syntactic parse trees for parses which are

suntactically valid, but semantically anomalous.

An integrated approach is also more psychologically plausible than a

phased approach. It does not seem likely that humans wait until they have

heard all the words in a sentence, before they begin to analyse the first

few words. Also, response time could be improved if analysis of the first

words in a sentence began before the entire sentence had been entered.

Tulip's Knowledge Representation

Tulip uses Prolog as its knowledge representation (KR) language. In fact,

with the exception of skolem functions, Tulip's knowledge representation

is limited to the Datalog subset of Prolog (Datalog is Prolog without

function symbols).

Using Prolog as the knowledge representation has efficiency advantages

over susing full first order logic (FOL). Prolog uses the Unique Names

Assumption. This means that in Prolog different atoms are assumed to

denote different objects. In FOL one must introduce explicit formulae to

speficy . that different atoms refer to different objects, eg :

tom = jack

Prolog also uses a Closed World Assumption. If a fact is not known to be

true, it is assumed to be false.

Prolog is not as expressive as FIL but it implements a subset of FOL which

can be efficiently processed.

Skolem Functions

Tulip introduces skolem functions and skolem constants in order to

eliminate existential quantifiers. 	For example, one logical interpretation

of the sentence :

every man loves some woman.

J '

- 16 -

is :

for every man, X, there exists a woman, Y, such that X loves Y.

Existential variables can not be represented directly in Prolog. Therefore,

a skolem function, eg. skol(45,X), is introduced to take the place of the

existential variable Y. The first argument of 'skol'is a number which is

used to uniquely identify this particular skolem function. Thus the above

statement can be represented in Prolog by:

loves(X,skol(45,X)) :-man(X).

woman(skoll(45,X)).

Note that the fact that the skolem function depends on X means that each

man loves a different woman. The woman that Tom loves is different

from the woman Jack loves since skol(45,'Tom') can not be unified with

skol(45,'Jack').

Another possible interpretation of:

every man loves a woman.

is :

there exists a woman Y, such that for every man X, X loves Y. ie.

every man loves the same woman.

In this case the existential variable would be replaced by a skolem

constant, and the Prolog representation would be :

loves(X,skol(46)) :-man(X).

woman(skol(46)).

Note that in this case the skolem 'function'does not depend on X and is, in

fact, a constant.

1

- 17 -

Binary Predicates

Most facts in Tulip, with the exception of events, are conceptually

represented as binary predicates - that is Prolog predicates which take

two arguments. [Ferguson 88b] has examples of the binary predicates used

by Tulip. In general, the predicate name is the name of a relationship: and

the two arguments represente the two objects that have the relationship.

It is convenient to express facts in terms of binary relationships because

a more complex n-ary relationship can always be expressed as n-1 binary

relationships. In a dynamic knowledge base in which the number of

attributes associated with a class of object can increase at any time, a

binary representation offers more flexibility than an n-ary relationship.

In a binary representation, to define a new attribute for an object one just

adds a new binary predicate. On the other hand, if an object is represented

by an n-tuple, where each argument of the n-tuple represents a particular

attribute value, one must replace the n-tuple with an (n+1)-tuple when

one adds a new attribute.

• A disadvantage of a binary representation with respect to an n-tuple

representation is that the binary representation will generally take up

more space. .

Using binary predicates is essentially equivalent to a semantic net

representation. The two arguments of the predicate correspond to two

nodes in a semantic net and the binary relationship corresponds to a

directed arc between the two nodes. The marc is labelled with the name

of the relationship.

Binary predicates can also be conceptualized as an Object-Attribute-

Value representation, where the predicate name is the Attribute, the first

argument is the Object, and the third argument is the Value.

The actual representation in Tulip is a bit more complex than described

above. A binary relationship is represented by a Prolog predicate which

takes three arguments - the first argument is the name of the binary

relationship and the remaining two arguments are the objects which have

that relationship. The predicate name specifies the type of relationship

which is being ,expressed.

- 18 -

For example, the binary relationship expressed in the sentence :

Joe is the father of Tom

would be represented by :

prop0(father,Torn,Joe)

Here, 'father' is the relationship and 'Tom' and 'Jàe' are the objects

involved in the relationship. The predicate name 'prop0' indicates that

this is a 'property'relationship. A property relationship is one which can

be expressed as a possessive relationship, eg. Tom's father is Joe. Tulip

needs to know the relationship types so that it can generate appropriate

responses to queries. For examples, Tulip knows that any property

relationship of the form :

propO(Rel,X,Y)

can be expressed as : X's Rel is Y.

Encoding relationship type information also allowS Tulip to answer

'metalevel' queries. For example, the query :

What does Hank have?

is translated into :

answer([X]) :-prop(Rel,'Hank', X).

where Rer represents a variable relationship. This finds the values of all

property relationship which Hank has. If the binary relationships were

expressed directly, this query would have the form :

answer([X]) :-Rel('Hanki, X).

which would be illegal in most versions of Prolog because variable

predicate names are not allowed.

- 19 -

Know and Inferred Facts

Tulip distinguishes between explicitly know and inferred facts. 	Explicit

facts are expressed by predicates which have a 'O'appended to their names.

Inferred facts, ie. rules, are represented by predicates which do NOT have

a 'O'appended to their names. To link up these two predicates a linking

clause is used, eg. :

prop(Rel,X,Y) :-propO(Rel,X,Y).

Besides these linking clauses, there may also be Prolog rules which

establish relationships using inferencing. For example, when generating a

description of an object, Tulip only displays the object's direct

relationships.

- 20 -

Representation of Verbs

In Tulip, verbs are generally represented by an 'event'predicate. For

example, the sentence :

Jack married Jill on Thursday.

is translated (in part) into :

event0(marry,skol(53),Mack',Millladjunct0(on,skol(53),date(89,3,30))

The first argument of event() is the citation form of the verb, the second

argument is a skolem constant which represents this particular event, the

third argument is the subject of the verb, and the fourth argument is the

object of the verb. The event skolem constant, skol(53), (the second

argument of event0) is used by predicates which express extra

information about the event, such as when and where the event occured.

In this case :

adjunct0(on,skol(53),date(89,3,30))

indicates that the event occured on Thursday.

- 21 -

REFERENCES

[Ferguson 88a] Ferguson, Ronald, Enhancements to TULIP from Jan. 1/88 to

Mar. 4/88, 1988.

[Ferguson 88b] Ferguson, Ronald, Translating Words to Their 'Meanings'in

Tulip, 1988.

[Ferguson 89] Ferguson, Ronald, Parsing Business Cards with an Extended

Logic Grammar, 1989.

[Ferguson 89b] Ferguson, Ronald, Sun TULIP Users Manual, 1989.

[Pereira 83] Pereira, Fernado, Logic for Natural Language Analysis,

Technical Note 275, SRI International, 1983.

[Robb 88] Robb, Madeleine, Index of Work Completed by Madeleine Robb on

Tulip Lexicons, Aug. 1988.

I

I

I

1
I

I

I

I
I

I

I

I
I

I

I

I

ump

I

1
1

QUEEN
QA 76.9 .N38 F476 1989

-Ferguson, Ronald
John, 1951- The Tulip project

QA

76.9

N38

F4 76e
1989

c.3

I

•
• •

Pour plus de détails,

veuillez communiquer avec :

Le Centre canadien de recherche
sur l'informatisation du travail
1575, boulevard Chomedey
Laval (Québec)
H7V 2X2
(514) 682-3400

For more information,

please contact:

Canadian Workplace
Automation Research Centre
1575 Chomedey Blvd.
Laval, Quebec
H7V 2X2
(514) 682-3400

