
1Grammar Bidirectionality

through

Controlled Backward Deduction

Marc Dymetman

Pierre Isabelle

QUEEN

308
. D965

1990

c . 2

Gouvernement du Canada
Ministère des Communications

Government of Canada
Department of Communications

•
• • •

• • • • •
Le Centre canadien de recherche sur l'informatisation du travail

Canadian Workplace Automation Research Centre •

C

I ,/ 	Canada

1

JUIL
J Li L

,

COMIMT.

LIBRMU - 0.:113fiell

ateb,/

308

D96541,

1990
c.2

F
2 4 1998 	y

0

Grammar Bidirectionality

through

Controlled Backward Deduction

/Marc Dymetman

Pierre Isabelle

Canadian Workplace Automation Research

Centre

Department of Communications Canada

Laval

March 90

This report also appears as:

Dymetman, Marc and Pierre Isabelle. 1990. 	Grammar

Bidirectionality through Controlled Backward Deduction. In

Logic and Logic Grammars for Language Processing, eds.

Saint Dizier, P. and S. Szpakowicz. Chichester, England:

Ellis Horwood.

Cat. N° : 	Co 28-1/48-1990E

ISBN: 	0-662-17808-4

The views expressed in this report are those of the authors only.

Ce rapport est aussi disponible en français.

D 	t,DO'L'I

DI_ 1;14

Abstract

Grammars can be seen as logical theories, and parsers as

special purpose theorem provers for these theories.

Generators can and should be viewed in the same way. We

present an approach in which the same goal-oriented

theorem prover is used for parsing and generation.

Grammar rules (je axioms of the theory) are annotated

with control directives addressed to the parsing mode or

to the generation mode. This ensures a strict

declarative equivalence of the two modes, as well as

linguistic perspicuity, while allowing the linguist to

specify processing behaviour in both modes with some

flexibility. Such flexibility turns out to be highly

valuable, considering our practical aims: building a

bidirectional English-French translation system capable

of handling real texts in a limited domain.

• 1 . 	Introduction

Machine translation is a natural domain of application for

bidirectional grammars, on economic grounds — using one system to

translate from Languagel to Language2 or conversely — as well as on

theoretical grounds — maintaining a clear linguistic specification of

which parsing and generation are viewed as computational realizations.

Historically, one of the first attempts at reversible grammatical

description was the Q-Systems formalism (Colmerauer 71), Prolog's

forerunner, and the algorithmic backbone of the TAUM-METEO translation

system. Colmerauer's paper gives an example of reversible processing, but

the applicability of the approach was limited by the unavailability of

full unification and of a clear logical status for Q-Systems, both of

which were later achieved with the advent of Prolog.

The CRITTER project (Isabelle et al 	88) aims at bidirectional

English/French translation of agricultural market reports produced by the

Canadian Department of Agriculture.

CRITTER makes use of 2 bidirectional grammars — one for English, one for

French — , 2 bidirectional monolingual lexicons (in the sense of allowing

for efficient string access and also efficient semantic access), and a

bidirectional transfer lexicon — describing the correspondences between

language-dependent semantic units.

As an example of the current coverage of the system, consider the

following English sentence:

it is reported by the OHMB that the market remained strong in

Toronto ;

CRITTER will translate this sentence nondeterministically into any one of

the following French sentences:

1

((f1) l'ORME signale que le marché est resté soutenu à Toronto,

(f2) il est signalé par l'ORME qu'à Toronto le marché est resté

soutenu,...).

Retranslating (fi) (for instance) into English will result in the set of

following English sentences:

((e/) the ORME reports that in Toronto the market remained strong,

(e2) it is reported by the OHMB that the market remained strong in

Toronto, (e3) the market is reported by the ORME to have remained

strong in Toronto,...) ;

Of these, (e2) is identical with the original sentence, and (el) and (e3)

can be seen as its paraphrases .

Paraphrase and Translation. While CRITTER is primarily intended as a

translation system, it can also function, thanks to its bidirectional

components, as a paraphrasing system for English or for French.

Paraphrase and translation are closely related: whereas paraphrase

relates expressions of one language which share a semantic form,

translation relates expressions of two languages which either share a

semantic form (interlingua1 approach), or have directly relatable

semantic forms (transfer approach).

Paraphrase and Bidirectionality. Consider the following sentencesl:

(pi) Jack seems to be given a black cat by Mary

(p2) Mary seems to give a black cat to Jack

(p3) It seems that Jack is given a black cat by Mary

(p4) It seems that Mary gives a black cat to Jack

1 For purposes of exposition, we will use examples featuring lexical
material with little connection to agricultural market reports.

In the CRITTER systèm, these sentences are all mapped by the parsing

process onto the same "shallow" semantic representation (see Fig. 1). The

reader will find detailed explanations of these representations in

(Isabelle and al. 1988).

seem

$now 	give

-1 	 3

$now 	mary 	cat 	jack
det -1

a 	black

Fig. 1. 	In this semantic representation, the labels 1,2,3 denote

argument positions relative to a predicate: for instance 'mary' is

the first argument of 'give', etc... The labels -1, -2, -3 (only

the first of which appears in the example) have the same meaning,

except that they must be read "bottom-up": thus.'$now' is a one-

predicate argument (applying to an object of type event, and

meaning that this event has present time location). In the example,

one of the two instances of the '$now' predicate applies to the

giving event. This notational device permits us to keep a uniform

predicate-argument form for the semantic representation, while

retaining a tree structure. This tree structure has a well defined

root , unlike an oriented graph structure, for which such a root is

not defined (for More details, see [Isabelle et al. 1988]).

According to the definition given above, (P1), (132) , 	can be said to

be paraphrases of each other, relative to a certain specific mapping of

strings to semantic structures.

The bidirectionality of the system appears when the generation process is

fed the semantic structure (Fig. 1): each of the paraphrases (pi) (and

's]

only these) will then be produced nondeterministically by the generation

process.

2. 	The problem of computational reversibility

In abstract terms, a grammar is a specification of a recursively

enumerable set of (finitely encoded) linguistic structures A,, classified

according to their (terminal or non-terminal) syntactic category v.

These linguistic structures are assumed to encode information of various

types such as: syntax, semantics, string of characters, which can be

accessed through functions syn, sem, string. Thus one writes: syn(A)=Syn,

or alternatively in "dot" notation 2 : A.syn=Syn to express the fact that

the syntactic content of A is Syn.

We shall assume that the linguistic structures S of category s have

nonempty values for at least S.sem and S.string.

The problem of computational reversibility is to derive efficient 3

 programs Parsec and GenerateG (possibly identical) from the specification

of a grammar G, such that:

— If ParseG is given String as input, it enumerates all well-formed

S such that S.string=String,

— If GenerateG is given Sem as input, it enumerates all well-formed

S such that S.sem=Sem.

2 This notation is a variant of the functional notation used in LFG
(Kaplan and Bresnan 1982), or in PATR (see Shieber 1986). See also
(Dymetman 1989).

3 Obviously, finding any old program meeting the requirements is no
challenge: filtering a recursively enumerable set through a
recursive criterion will produce another r.e. set. On the other
hand, finding efficient programs can be a difficult task, and can
depend on the form of the initial specification: think of public
key cryptography, where public key and private key are functionally
equivalent specifications, but where only from private key is it
possible to derive both efficient encoding and decoding schemes.

4

4

3. 	Grammars as logical theories

It has become popular to consider grammars as special forms of axiomatic

theories, related to the subset of first-order logic known as Horn clause

(or definite clause) logic.

Glossing over the many differences of detail between formalisms, grammar

rules can be seen as logical axioms of the following general format:

(1) 	nt(NT) <= vi(V1), v2(V2), 	vn (V,), constraint(NT,V1 1 ...,Vn).

This says that if V1, 	Vn are well-formed linguistic structures of

categories v1,...,v n , and constraint constraint holds between

NT,V1,...,V,, then NT is a well-formed linguistic structure of category

nt.

Note that the literais on the right-hand side of (1) are unordered: it is

the responsibility of constraint to ensure, for example, that Nt.string

is the concatenation of Vi.string,...,Vn .string, as well as the syntactic

and semantic compositionality relations holding between NT and its

daughters. 4

Hereafter, we assume that (1) is of the standard Definite Clause type, ie

that: i) the intended interpretations are Herbrand interpretations

(Kowalski 79b), ii) equations of the form X.function=Y are abbreviations

for expressions of the form: X = t(... Y...), where t(... Y...) is a term

containing variable Y at some level of embedding.

Many specificities of the various formalisms are being ignored in this
account; most conspicuously: i) the formal nature of the objects
denoted by variables (DAGs in so-called "unification grammars",
terms in so-called "logic grammars"; ii) the nature of constraints:
can they be recursively defined as in DCG or must they be defined
with limited expressive means (eg, by means of equations, perhaps
with the exception of the string concatenation relation, viewed as
a primitive), allowing for stronger decidability results.

5

Backward deduction:

Forward deduction:

<-- B1...Bm , 	B'i 	C1.. .0

0(<- - Ci.. .0 Bi...Bi_i]

A :- Bi...Bn , 	<--, 	<--

Under this simplifying assumption, the set of well-formed linguistic

structures defined by the grammar is the set of ground terms NT such that

nt(NT) is a , valid consequence of the axioms.

Classes of deduction strategies. Most deduction strategies used for

grammatical processing fall into one of three classes, according to their

fundamental inference rule:

A <-- Bi.. .B, 	, B'i <--

0[A <-- B1...81-1]
Lemma deduction:

5

Remarks on notation:

i) In each case, 0 is the substitution which performs the most

general unification between Bi and

ii) The difference between the '<--' and the ':-' symbols is that

corresponds to a clause which has been added to the

"agenda", while ':-' corresponds to a program axiom.

Backward deduction and forward deduction have long been part of the logic

programming tradition, while what is here called "lemma deduction" was

introduced in (Pereira & Warren 83), under the name "Earley deduction" 5

with linguistic applications in mind, in analogy with the Earley parsing

algorithm (Earley 1970).

In both forward and lemma deduction, a serious control issue is to be

able to provide, from an a priori analysis of potential goals and the

properties of the theory, efficient filters which eliminate from further

What these authors call Earley deduction is the instance of our lemma
deduction (which corresponds to their reduction rule) using a
specific prediction rule, which we shall call the Earley-type
prediction ru/e (see note 3 below).

6

II
-

12-- 	;

111)

I,, I

1

t

Ii

111

consideration all but a few axiom instantiations, the rest being unable

to participate in successful proofs:

— Universal filters: thus forward and Earley deduction applied to

parsing must rely strongly on universal projection relations (such

as are imposed by a context free grammar) that hold between the

string associated with a node and the strings associated with its

daughters, in order to eliminate most instantiations of the lexical

axioms 6 or in order to express strong predictions 7 on the instances

of grammar rules which can be of potential use in a proof.

Similarly, applying Earley deduction to generation as in (Shieber

88) requires that certain strong hypotheses (semantic monotonicity)

be made on the relations between a node's semantics and its

daughters' semantics.

— Reachability relations: other kinds of filters that have been

applied involve the use of reachability tables (Kay 1980), or

links, which are precompiled constraints holding between the

linguistic structure associated with a node and the linguistic

structure associated with some descendant of this node in the

derivation tree (eg constraints on syntactic categories for parsing

or on semantic structures for generation). Such methods have been

used for parsing in BUP (Matsumoto & al. 1983) as well as for

generation in BUG (Van Noord 1989).

6 The lexicon being seen as the set of "unconditional" grammar axioms.
7 Such as the following instantiation rule of (Pereira & Warren 1983)

(called prediction rule in [Shieber 881):

A <-- B1.. .B 	, 	B'i 	Ci ...Cm
Earley-type prediction:

0[Bi <-- Ci ...Cm]
On the same basis, one can introduce a /c-type prediction rule inspired

from left-corner parsing (which can be considered as belonging
either to the forward deduction or to the lemma deduction family,
depending on versions):

B'i <-- , 	A :- B1 ...B„
1c-type prediction:

0[A <-- Bi ...B,]

(Remark on notation: As above, 0 is the substitution which performs the
most general unification between Bi and B'i).

By contrast, in backward deduction, the "relevance" of each inference

step to the goal theorem is a natural consequence of the approach; this

means that one can somewhat relax the requirements made on the relation

between the semantics of a given node and the semantics of its daughters

without impairing the generation process 8 . The main contror issue with

backward deduction is the question of how to select the goal literal Bi

which will be expanded at the next inference step. Among the parameters

of this choice are the potential non-determinism and the level of

instantiation of each literal compared to the others.

4. 	Backwand Deduction and Computational Reversibility

Ordering Problems. Definite Clause Grammars(DCG's) together with their

standard Prolog interpretation constitute the best-known instance of the

backward deduction scheme. Consider a DCG rule such as (2), and the

corresponding Prolog procedure (3):

(2) 	s(S) -->
np(NP),
vp(VP),

{combinel(NP, VP, S)).

(3) s(S, Li, L3) :-
np(NP, Li, L2),
vp(VP, L2, L3),

combinel(NP, VP, S).

Assume that combinel defines the relation between the structures of each

constituent, stipulating in particular how S.sem is built out of NP.sem

and VP.sem.

Notice that under interpretation (3), rule (2) conflates two different

types of ordering: a) the relative order of the strings associated with

the non-terminals (the np precedes the vp); and b) the order in which the

corresponding Prolog goals are evaluated (the np goal is evaluated before

the vp goal). While non-terminal ordering is an integral part of the

grammatical specification, goal ordering only has to do with control.

8 This can be useful for handling idioms (see section 7).

9

But see the discussion of left -recursion in section 5.

8

Procedure (3), interpreted in the standard way, is adequate for parsing

purposes, but may well give rise to a hopelessly inefficient generation

program. For example, consider a grammar based on a "lexicalist" modeln.

In such a grammar, the mapping between the semantic structures and the

syntactic configurations is determined in the lexicon. In particular, the

relation between the sentence semantic structure S.sem and the subject

semantic structure S.subj.sem can be determined only through the lexical

entry of the main verb. Given the existence of phenomena like raising,

S.subj.sem may be embedded arbitrarily deeply within S.sem:

(4) 	a) Max seemed to begin to be tougher to convince.

b) past i (seem i (begin t (tougher'(convince 1 (one',Max'))))

The same linguistic models postulate a much more straightforward

relationship between S.sem and VP.sem (or more generally between X.sem

and X.head.sem).

Procedure (3) thus turns out to embody a very poor strategy for

generation, in which case it is called with only S.sem known.

Control annotations and task -specific compilation. In order to

use the same grammar for both parsing and generation tasks, a task-

specific control of the deduction process is needed. For that purpose,

grammatical rules are separated into two components: 1) a description of

the (declarative) grammatical content; and 2) a description of how

deduction is to be controlled relative to each particular processing

task. These two components thus correspond to the logic/control

separation advocated in (Kowalski 1979a).

DCG rules are augmented in the following way: a) goals are prefixed with

unique identifiers; and b) rules include control annotations which

10 For an introduction to the linguistic notions used in the sequel see
(Sells 1985). For a linguistic theory to which our approach is
related, see (Pollard and Sag 1987).

9

(6)

1 < 2 < 4 < 3 < 5;

5 < 4 < 2 < 1
freeze: 	3 	until:

(5) 	a (A) -->
b (B) ,

c(C).

d(D)r
{y(A,B,C,D)),
(z(A,B,C,D)).

a(A) -->

1: b(B),

2: c(C),

3: d(D).
4: {y(A,B,C,D)1,
5: {z(A,B,C,D)},
<<

parse:

order:
gen:

order:

stipulate how the -ealà are to be processed for each task. For example,

the DCG rule (5) can be augmented as in (6):

cond(A,B,C,D) >>

In the control annotation "<< 	>>", parse and gen refer to two

different processing tasks. For task parse, goals 1, 2 and 3 are to be

fired in that order (the order of the remaining goals is considered

irrelevant). For task gen, goal 2 is to be fired before goal 1; moreover

goal 3 will be delayed through goal freezing (Colmerauer 82) until the

precondition cond is satisfied.

The annotated rules are precompiled into task-specific Prolog programsn.

Given the nature of the control annotations, these programs are

guaranteed to be declaratively equivalent, but each one is tuned for

optimal performance with respect to its target task (see Fig. 2).

11 These programs are interpreted through an extended Prolog interpreter,
which supports goal-freezing (see Cochard and Dymetman (to
appear)).

10

synthesis

target

analysis

clauses

a(A,LO,L3) :-
b(B,LO,L1),
c(C,L1,L2),
y(A,B,C,D),
d(D,L2,L3),
z(A,B,C,D).

Fig. 2

	

a(A,LO,L3) :- 	target

	

z(A,B,C,D), 	synthesis

	

y(A,B,C,D), 	clauses
• c(C,L1,L2),
b(B,LO,L1), •
freeze(cond(A,B,C,D),d(D,L2,L3)).

11

1

a(A)
1:b(B),
2:c(C),
3:d(D),
4: fy(A,B,C,D)},
5: {z(A,B,C,D)},
« 	•
parse:

order:1<2 <4<3<5;
gen:

order:5 <4<2<1
freeze: 3 until: cond(A,B,C,D), »

original rule

Rule (2) can be reformulated as:

(7) 	s(S) -->
1: np(NP),
2: vp(VP),

3: {combinel(NP, VP, S) }„
<<
parse:

order: 1 < 2 < 3 ;
gen:

order: 3 < 2 < 1 >>

.This rule will be compiled into the parsing Prolog procedure (3), but

into the generation procedure (8):

(8) 	s(S, Li, L2) :-
combinel(NP, VP, S),
vp(VP, L3, L2),

hp(NP, L1, L3)..

Thus, goals are reordered for generation: combinel is applied first,

resulting in the instantiation icif VP.sem; then vp is fired and

eventually, lexical access will cause NP.sem to become instantiated.

Finally np is called with known semantics.

Surprisingly enough, this simple static reordering of goals, local to

rules, will in many cases be sufficient to ensure that the grammar

performs reasonably well in both directions.

Asynchronous evaluation. However, because conflicting demands may

arise as to the optimal ordering, it is sometimes necessary to take

advantage of the dynamic nonlocal reordering of goals made possible by

the use of goal freezing. For example, given the order just suggested for

the generation of s, a blind hypothesis is made on the verb inflection,

since the agreement information is available only once the subject np was

generated. Goal freezing provides a solution to this problem:

12

(9) 	v(V)

1: rad(RAD),

2: suff(SUFF),

3: (combine3(RAD, SUFF, V)),
<<

parse:

order: 1 < 2 < 3 ;
gen:

order: 3 < 1
freeze: 2 until: nonvar(SUFF.agr) >>

In the generation mode, combine3 is applied first. Among other things,

this operation instantiates RAD.sem and unifies V.agr with SUFF.agr.

The verb radical can then be generated (call to rad) through an access

to the lexicon . The generation of the inflectional suffix (goal

suff),-however, is postponed until SUFF.agr is instantiated. This

condition will be met only after enough of the subject noun phrase has

been generated for NP.agr to become instantiated. SUFF.agr will at the

same time become instantiated, by the play of agreement rules (built

into combinel in the s rule) and the transmission of head features

from VP to V.

Static ordering, Dynamic ordering and Backward deduction. Let us

now reexamine how i) static goal ordering and ii) dynamic goal ordering

through asynchronous evaluation mesh with the backward deduction rule of

section 3, which is reproduced here:

<-- Bi...Bm , 	POi 	Cl...Cn

oc <--]

We now assume that the goal list appearing on the right-hand side of a

clause is ordered, and vve need to describe how the selection of Bi is

done, and how the goal list resulting from the deduction step is ordered..

The connection between static ordering, dynamic ordering and the previous

deduction rule is given by the following specifications:

— selection of Bi: among the B1.. .B, there may be a Bf which is a

"frozen" goal whose firing precondition is now met; in this case

take Bi = Bf, otherwise take Bi = 131.

13

- ordering of resulting goal list:

i) divide the body Ci... C, of the program axiom into two

lists: Ls = [Si...Sk] and Lf = ,-k+1rr 	-.-Fnir where the Fi's are

the frozen goals in the body of the axiom, and where the Si's

are the remaining goals, ordered according to 'their order

annotations (for the processing task considered). In contrast

to that of Ls, the order of Lf is not considered significant;

ii) output then as the resulting goal list:

0[<-- Sl...Sk 	Fk+1-.-Fn]-

5. 	Handling left-recursion

A well-known problem with parsers using the backward deduction approach

is that of handling left-recursive constructions in the grammar.

Consider the following rules:

(10) np(NP) -->

1: np(NP'),
2: pp(PP),

3: (combine2(PP, NP', NP)),
<<

parse:

order: 1 < 2 < 3 ;
gen:

order: 3 < 2 < 1 >>.
np(NP) -->

nl(NP').

The intent of the np rule given above is to incorporate within a np an

unspecified number of prepositional modifiers (the hotel in Vancouver

with a Chinese roof). ni is the "bare" np (the hotel), and combine2

builds the syntactic and semantic structures of NP from those of PP and

NP'.

The obvious problem with this rule, however, is that it is "left-

recursive": although its declarative reading is perfectly natural and

directly represents the intended meaning of the rule, the standard DCG

translation results in a loop when used in analysis. For this reason, no

DCG programmer ever writes such rules in the way shown in (10). Rather,

14

he transforms them into some equivalent rules, which although more

complex, will display the desired computational behavior (see infra Fig.

3).

On the other hand, it is interesting to observe that rule (10), when used

in synthesis, will work perfectly well if only one takes care - as in the

previous vp example - to order the combine2 goal before the pp and np

goals. 12

Fortunately, there is a way out of this difficulty: the grammarian should

be allowed to write the np rule in the natural way, and the compiler

should be made to perform the transformations needed for parsing and

generation.

HI

12 This is not to say that a problem analogous to that of left-recursion
cannot in principle appear in the case of generation, but rather
that it does not appear if grammars respect the conditions of
section 6 below. The problem of eliminating left-recursion in
generation for grammars which do not respect such conditions is
beyond the scope of this paper.

15

np(NP)
n1(NP).

analysis synthesis

This is precisely what is done in the CRITTER system, as illustrated in

Fig. 3:

target

synthesis

clauses

original

rules
np(NP)
1: np(NP'),
2: pp(PP),
3: {combine2(PP, NP', NP)},
<< parse: order: 1< 2 <3

gen: order: 3 < 2 < 1

np(NPn,L1,L3) :-
n1(NPO,L1,L2),
new_symbol(NPO,NPn,L2,L3).

target

analysis

clauses

np(NP,L1,L3)
combine2(PP,NP',NP),
pp(PP,L2,L3),
np(NP',L1,L2).

new_symbol(NPn,NPn,L1,L1).
np(NP,L1,L2) :-

n1(NP,L1,L2). new_symbol(NP1,NPn,L1 ,L3) :-
pp(PPI+1,L1,L2),
new_symbol(NPi+1,NPn,L2,L3),
combine2(PP1+1,NP1,NP1+1).

r3

Fig.

In the current implementation, it is necessary to flag left-recursive

procedures 13 for the compiler. The analysis-specific compilation will then

introduce an auxiliary nonterminal new_symbol, and perform a

transformation leading to the target analysis clauses shown in the

figure. Space is lacking here to explain the details of the

transformation, but it can be formally demonstrated that the resulting

clauses keep the intended meaning of the rule unchanged14 .

As usual in Prolog jargon, a procedure is the set of clauses defining
a predicate.

14 The process is akin to techniques for putting a context-free grammar
into some normal form. The delicate part, however, is the way in
which the constraints between variables are to be transferred.

16

As for the synthesis clauses, they are similar to the original rules,

apart from the fact that the order annotations in these have been used to

order subgoals, as in the case of Fig. 2.

6. 	Conditions for reversibility

Our experience has shown that the techniques presented above are

sufficient to ensure the practical bidirectionality of English and French

grammars applied to real texts of moderate complexity. It is therefore

interesting to step back and consider what are the general grammar

properties that make this possible.

Semantic normal forms. As has been noted by several researchers , the

problem of reversibility is sensitive to certain basic assumptions that

are made concerning the level of semantic representation. Thus, if a

semantic representation is taken to be an abstract FOL proposition (ie an

equivalence class of (logically equivalent) FOL statements), one cannot

(bijectively and effectively) encode this proposition into a finite

representation. As shown in (Appelt 87), this results in insuperable

difficulties for the . generation process.

The approach presented here is only applicable to cases where semantic•

objects do possess finitely encoded normal forms. These semantic objects

are not as abstract as logical propositions: roughly speaking, they are

just as abstract as needed to "disregard" the grammatical idiosyncrasies

of two (or more) different languages. 15

Grammar properties sufficient for reversibility. We now turn to

the problem of generation, and assume, without loss of generality, that

derivation trees are binary branching at most.

The notion of paraphràse'that we want to characterize is of course
much more restrictive than that implied by FOL equivalence: in this
context "paul drinks" and "paul drinks and ideas sleep or ideas do
not s/eep" cannot be considered, valid paraphrases, no more than
"pau/ drinks" and "paul boit et les idées dorment ou les idées ne
dorment pas" can be considered valid translations.

15

17

The following four grammar properties are then sufficient to ensure that

a local ordering of goals (internal to a grammar rule) will result in a

complete generation procedure (in the sense of enumerating all sentential

structures S having a given semantic structure):

(Prop.1) 	All linguistic structures A have semantic content Sem as

well as syntactic content Syn.

(Prop.2) 	In a derivation tree, if linguistic structure A has

daughters B and C, then the semantics of one of the daughters — say

C — (the head) is identical to that of A (case of argument

incorporation: B is an argument) or is "contained" in it

1

a

I .

according to some partial order on semantic structures admitting of

no infinite descending chains — (case of modifier incorporation: B

is a modifier).

(Prop.3) 	With the same notation as above, if the semantics of A

is known, and if the semantics and syntax of C are known, then the

semantics of B is uniquely determined. (see example (8) above,

where the semantics of the subject NP (B) will be determined only

once the VP (C) will have "taken a decision", recorded conjointly

in its syntax and semantics, concerning the mapping of arguments

onto syntactic positions.)

(Prop.4) 	There exists some device in the grammar to denote the

bar level of a phrase 16 — either through the names of nonterminals

or through some index internal to the linguistic structures, this

bar level being strictly ihcremented for each argument

incorporation.

Sketch of completeness proof: Props. 2 and 4 guarantee that it is

possible to transmit semantic information from a mother to its head

16 See (Sells 1985, p. 28).

18

daughter and that repeating this operation from head to head will

eventually reach a lexical structure C, that is a structure which will be

completely known (syntax and semantics) by simple lookup. Prop. 3 will

then ensure that the semantics of at least the non-head sister B of C

will be known; by induction, B will eventually be completely known, and

the mother A of B and C will be completely known from B and C; thus the

complete determination of all nodes of the derivation tree will propagate

upwards until finally S becomes completely known.

7. 	Further research

Idioms. It is possible to relax the requirement that the semantics of

daughters and mother be related through inclusion (which is essentially

the semantic monotonicity condition of [Shieber 88]). For instance, one

could introduce an "idiom-reduction" predicate idiom red(Sem mit,

Sem fin). Starting from the "initial semantics" of A, obtained in the

standard compositional way from the "final semantics" of its daughters B

and C, idiom red would produce the "final semantics" of A, by looking up

a table •of "idiomatic formations". Such a device would permit various

normalization operations, such as reducing kick(bucket) to die, or

normalizing "dormir volontiers" 17 (the French equivalent of the

notorious Dutch "graag slapen") into "aimer dormir"- 8 .

Such a mechanism will not impede reversibility, provided idiom-red, used

in reverse to go from final semantics to initial semantics, has a limited

non-determinism. On the other hand, a similar device would be difficult

to implement in a forward or Earley deduction scheme, for the sentence

semantics would hold no obvious relation to the semantics of the lexemes

used to build it, a seemingly necessary property of these approaches.

(But see (Van Noord 1989) for an approach to idiomaticity in the forward

deduction paradigm).

17 Literally: "sleep willingly".

18 Literally: "like to sleep".

19

Computational reversibility and linguistic reversibility. This

paper addresses the problem of computational reversibility: deriving

efficient analysis and synthesis programs from the same declarative

grammar.

Assuming the computational reversibility problem has been solved, there

remains the problem of linguistic reversibility. This is the problem of

defining a bidirectional grammar in a way linguistically adequate for

both parsing and generation. As the following remarks will indicate, this

is far from being a trivial question.

A grammar BG which is bidirectional has to be much closer to

observational adequacy than would have to be two different grammars, one

for analysis (AG), the other for synthesis (SG). This is because AG can

be overly permissive on the strings it accepts, since it can rely to a

large degree on the well-formedness of the input text 19 . On the other

hand, SG can be overly stingy on the strings it generates, for it has to

guarantee only the well-formedness of its output, not that it will output

all possible variations that express the same content. In contrast,

working with a bidirectional grammar BG does put some pressure on the

linguist, who is obliged to fine-tune his descriptions to match

linguistic reality: if a text can be analysed by BG, it can also be

generated by BG and conversely.

The requirement that a bidirectional grammar be observationally adequate

is theoretically well motivated, but the constraints it imposes on

linguistic descriptions may be too demanding in practice.

This is especially true in the case of some semi-productive phenomena, be

it in syntax, or in derivational or compositional morphology, for which

it is infeasible in practice to provide a complete description. Consider

such phenomena as:

19 Of course, this doesn't come for free: underspecification of AG will
eventually lead to spurious syntactic ambiguities, even when the
input text can be relied on to be well-formed!

20

(al) Reagan supporter 	(a'1) Roosevelt supporter

(bi) reaganite 	 (b 1 1) *rooseveltite

(a2) .africain de l'ouest 	(al2) américain de l'ouest

(b2) ouest-africain 	(b'2) *ouest-américain

(a3) portrait by Goya of the 	(a'3) portrait of Saskia by

duchess of Alba 	 the greatest Dutch painter

(b3) portrait of the duchess 	(b' 3) 	*Portrait 	by 	the

of Alba by Goya 	 greatest Dutch painter of

Saskia

In each of the examples 1,2 and 3 we have assumed that:

— ai and bi share the same semantics (idem for a'i and b'i);

— the a-type rendering of the semantics is fully productive, but

the b-type rendering is semi-productive: thus ai and a'i are both

possible, but bi and b'i have different acceptability status 20 ;

— a complete description of the conditions under which the b-type

rendering is acceptable is difficult to obtain in practice.

Under thèse conditions, a good strategy would be:

— in analysis, to admit both a-type and b-type renderings; this

would result in an overgenerating analysis component, but this

would be compensated by the fact that ill-formed input would be

rare;

In example (3), it is assumed that the a-type rule for a np having two
argumentai complements is: order the complements according to their
length with shorter first, while the b-type rule does not impose
such an order constraint. For the sake of the argument, an
assumption is made here that a more complete description of these
phenomena eludes current linguistic knowledge; this is probably not
really the case here.

20

21

— in generation, to discard b-type renderings; this would result in

an undergenerating generation component, a reasonable price to pay

in order to guarantee a higher level of grammaticality.

Such an approach would thus require a relaxation of the condition that

the parsing grammar and the generation grammar . (and the corresponding

lexical components) be declaratively equivalent. Instead, one would

require that the generation grammar "imply" the analysis grammar, in the

sense that the set of linguistic structures described by the synthesis

grammar would be a subset of those described by the analysis grammar. One

way , to achieve this might be to use one and the same bidirectional

grammar, as done here, while allowing to flag a chosen goal gc in the

body of a rule with a new annotation generation_constraint: this would'

have the effect of imposing the verification of this goal only in

generation mode21 .

Extraposition. For expository reasons, the previous discussion has been

limited to the case of DCG's, although in fact we use an extension of

DCG's known as Extraposition Grammars (XG), which permit the handling of

an interesting class of unbounded dependency phenomena (Pereira 1981).

XGs pose a serious efficiency problem when used in generation: the order

of calls in generation need not respect the left to right order , of

constituents; this has as a consequence that at the time of calling a

nonterminal nt, the input and output extrapositions lists of this non

constituent are both unbound, and that generation has no way of "knowing"

whether the constituent should be generated as a string or extraposed to

the left. The consequences for processing can be disastrous.

An extreme case of the use of such constraints would be to call the
goal 'fail' only in generation mode, thus resulting in the
invalidation of the grammar rule containing it. A generalization of
the idea of generation_constraint annotation would be to impose
acceptability /eve/ annotations on the different goals of a program
clause.

22

We have developed some techniques to make XG's resonably efficient in

generation. They involve "marking" the semantics of extraposed phrases in

such a way that in generation, the decision to produce the phrase in the

string or to extrapose it to the left can be made univocally by looking

at the semantics of the phrase for the presence of this mark. In this

may, we have been able to handle several types of relative clauses,

including cases of pied piping ("the owner of which");

Although we suspect that these techniques could be made general, we have

not as yet come up with a satisfying theoretical rationalization of these

practices. This is an area where more research is needed.

8. 	Related work

Approaches to grammar reversibility can be classified roughly according

to two dimensions":

full vs. partial reversibility: are the parsing and generation

modes two computational realizations of the same abstract relation

or not?

automatic vs. manual reversibility: are the parsing and generation

program derived automatically (either by mode-sensitive compilation

22 A remark: In the abstract, any linguistic theory postulating some sort
of semantic level should be a choice prey for a full and at least
manual reversible implementation. In practice, however, this would
suppose: 1) that a stable "reference grammar" exist for the theory,
that it be completely specific on admitted constructions (ie that
it be a formal grammar) and that it be neutral between its parsing
'and generation modes; 2) that a reasonably efficient full parsing
implementation of the grammar be attainable; 3) that a reasonably
efficient full generation implementation of the grammar be
attainable.

In practice, the history of the subject bears witness that these three
conditions rarely obtain; Most often, computational linguists seem
to aim at partial implementations of the formal grammar, using the
freedom afforded by this partialness to make the implementation
efficient in the chosen mode — either parsing or generation; or
(which is worse) they bias the formal grammar specification towards
one of thè modes, obliterating the distinction between formal
specification and program, and making the implementation of the
other mode that much more difficult.

23

or by mode-sensitive interpretation) from a common specification,

or are they derived manually from this specification? .

Without any claim to completeness, the following are some of the

approaches that have been discussed in the literature:

PHRED (Jacobs 1985), Ariane (Vauquois & Chappuy 1985), and Rosetta

(Landsbergen 1987) can all be considered - in different degrees - as

instances of the "non -automatic" 'approach to reversibility.

PHRED. PHRED and PHRAN (Wilensky & Arens 1980) are respectively the

generation and the analysis components of a natural language interface to

the Unix system: PHRAN analyzes the user's questions about system

operation, and PHRED generates the answers.

PHRED was developped after PHRAN, and while they implement a form of

reversibility, by sharing a "common linguistic knowledge base", they do

not seem to implement full reversibility in the above sense.

Ariane and Rosetta are machine translation systems which incorporate some

degree of reversibility.

Ariane. In the Ariane approach, the first phase in the implementation of

analysis and generation programs for a language (or sublanguage) consists

in the writing of a declarative linguistic specification, a so-called

"static grammar" using a special-purpose formalism. This static grammar

then provides the basis for the manual derivation of two so-called

"dynamic grammars" for analysis and generation, which are both

implemented in the NL programming language ROBRA (GETA'sn tree transducer

formalism) (Boitet & Nedobejkine 1981). Although the two dynamic grammars

are supposed to closely reflect the static grammar specification, it is

not completely clear to what extent this can be strictly guaranteed.

23 GETA: Groupe d'Etudes pour la Traduction Automatique, Grenoble.

24

Rosetta. In the Rosetta approach, a semantic structure takes the form of

a "semantic derivation tree", with nodes labeled by "semantic rules". The

semantic derivation tree is used as the basis for building surface

syntactic structures (called S-trees), which is done by means of a

"compositional function" 24 . It is the responsibility of the linguist to

make sure that this compositional function respects the "reversibility

condition", ie the condition that there exists an "analytical function",

which is the reverse of the compositional function, and which has to be

defined "in tandem" with the compositional function.

Under these conditions, it is then possible either to start from a

semantic structure and obtain an S-tree for the sentence (generation

mode), or conversely to start with an S-tree and obtain a semantic

structure (analysis mode), in a guaranteed reversible way.

One possible problem with the approach, however, may be the fact that it

is somewhat asymetrical between generation and analysis. Generation is

straightforward: starting from the semantic structure, a S-tree is

obtained, and from this S-tree, the sentence string is produced from a

simple enumeration of this S-tree's leaves. On the other hand, in the

analysis mode, it would be hopelessly inefficient, starting with a

sentence string, to blindly hypothesize an S-tree without any way to

check its syntactic well-formedness, and then try and see if the

analytical functions can apply to it to produce some semantic structure.

This is why one has to supplement the system with a "surface syntax

component", which strongly constrains the S-trees which can be

hypothesized from a sentence string. This component is therefore

redundant with the other components of the system, and this fact may mean

that it will be difficult in practice to make sure that the surface

syntax component does not add constraints to the analysis mode which are

not in effect in the generation mode, thereby undermining full system

reversibility.

24 This "compositional syntax" approach can be considered as a kind of
dual to the more usual "compositional semantics" approach.

25

Instances of the automatic approach to reversibility are CRITTER

(discussed in the present paper), the approach discussed in (Shieber

1988) and the BUG model of (Van Noord 1989) 25 .

These three approaches have in common: i) that they aim at full

reversibility — either logic grammars or unification grammars — and ii)

that they use formalisms relying on unification.

Shieber 1988. The approach of (Shieber 1988) differs from our own by

using Earley deduction both for parsing and generation. In generation

mode, a "semantic filter" is used to constrain lemmas which can be added

.to the agenda. For this semantic filter to work, the grammar is

presuppoàed to respect a "semantic monotonicity criterion", namely •that

the semantics of a subphrase SP of the phrase P be "subsumed by a portion

of the semantics of P". Under this condition, a lemma ' A <-- Bi...B,

can only be part of a successful proof of the main S goal when the

(partially instantiated) semantics of A subsumes a part of the semantics

of S (which of course is assumed to be given as the input to the

generation process). This is the property which is checked by the

semantic filter, allowing only "promising" lemmas to be added to the

agenda.

As the author acknowledges, semantic monotonicity may be too strong a

condition on realistic grammars and "finding a weaker constraint is an

important research objective". By contrast, in a backward deduction

approach, such a constraint is not necessary for generation to work (see

section 7). On the other hand, parsing with a backward deduction approach

has inconveniencies not displayed by a lemma (or forward) approach, most

conspicuously the problem of handling left-recursion in a general way

(compare with section 5).

BUG. The BUG model (Van Noord 1989) takes a forward deduction approach

(comparable to the left-corner parsing algorithm of [Pereira & Shieber

1987]) to the problem of generation (the paper is not concerned with

25 Since the writing of this chapter, a paper by Shieber and al. (1989)
has appeared, which elaborates on both these approaches.

26

parsing). It makes use of a semantic filter using a precompiled semantic

reachability relation 'link', relating the semantics of a node to the

semantics of its "semantic head" (and transitively of the semantic head

of this semantic head, etc...). This relation allows deduced facts whose

semantics is not "linked" to the (previously known) semantics of their

maximal projection to be filtered out, thereby permitting strong

predictions to be made on the lexical head of a phrase. The grammar is

supposed to obey the "semantic head condition", which is somewhat similar

to conditions 2) and 3) of section 6, and which does not imply semantic

monotonicity, thus allowing certain cases of idiom to be handled.

9. 	Conclusions

We have described a practical solution to the computational problem of

grammar bidirectionality. Grammars are formalized as logical theories,

and both parsing and generation are seen as special cases of backward

theorem proving. The deductive process is made efficient in both modes

through the use of task-specific control annotations.

Grammar bidirectionality provides some important theoretical and

practical benefits:

— On the theoretical side, it seems reasonable to assume that a common

grammatical competence underlies both . parsing and generation.

Bidirectionality tends to impose virtue upon the linguist whose job is to

specify this common compétence. Unidirectional parsers are usually based

on grammars that, in the abstract sense, grossly overgenerate. This is

because the grammar writer assumes, sometimes detrimentally, that the

input will not contain ill-formed sentences. Conversely, unidirectional

generators are usually based on grammars that grossly undergenerate. The

grammar writer arbitrarily selects a restricted NL subset. Now, there is

no way for one and the same grammar to both overgenerate and

undergenerate: a bidirectional grammar has to generate the right set of

sentences.

27

market reports

The system is

in a fully reversible manner between English and French.

still incomplete, but the coverage of the grammars is

— On the practical side, bidirectionality helps make the grammar more

accurate. Without it, it is extremely difficult to figure out in what

ways a unidirectional parser is overly permissive: one has to test a

great many ungrammatical sentences for failure, an extremely unnatural

endeavor. It is equally difficult to test a unidirectional generator by

itself: one has to type in complicated semantic structures. But when from

the result of a parse one can generate all the paraphrases admitted by

the grammar, the flaws immediately become obvious. Thus a bidirectional

grammar is in a sense self-debugging.

We emphasize that the techniques presented in this paper are of practical

significance. They have been extensively tested, with positive results:

Specifically, our control annotation scheme has permitted the development

of fairly large-scale reversible grammars for French and English. These

grammars are used in the CRITTER system (Isabelle et al. 1988), an

experimental machine translation system that translates agricultural

already broad: control and raising verbs, passivization, dative movement,

"there" insertion, some types of relatives (reduced and unreduced) 26 , some

types of coordination, various types of Modification, etc. The

dictionaries contain about 1000 lexical entries each. CRITTER is

implemented in Quintus Prolog. Typical translation times are well below

1 second per word on a SUN 3/60. And, for typical sentences, parsing and

generation times are about the same.

Acknowledgments.

Thanks to Guy Lapalme, Elliot Macklovitch and Stan Szpakowicz for

suggestions and comments and to Jean-Luc Cochard, François Perreault and

Michel Simard for their contribution to the work reported here.

26 See the discussion of extraposition in section

28

References.
Appelt, Douglas E. 1987. Bidirectional Grammars and the Design of Natural Language Generation Systems.

In Theoretical Issues in Natural Language Processing 3 (TINLAP-3), 206-12. Las Cruces, NM:
Association for Computational Linguistics, January.

Beaven, John L. and Whitelock, Peter. 1988. Machine Translation using Isomorphic UCGs. In Proceedings of
the 12th International Confererence on Computational Linguistics, 32-35. Budapest, August.

Boitet, Christian, and Nedobejkine, Nicolas. 1981. Recent developments in Russian-French machine
translation at Grenoble. Linguistics 19 (3/4): 199-271.

Colmerauer, Main. 1971. Les systèmes-Q ou un formalisme pour analyser et synthétiser des phrases sur
ordinateur . Montreal: Université de Montréal, Projet TAUM, Rapport de Recherche.

Colmerauer, Main. 1982. PROLOG II : Manuel de référence et modèle théorique . Marseilles, France: Faculté
des Sciences de Luminy, Groupe d'Intelligence Artificielle.

Dymetman, Marc and Isabelle, Pierre. 1988. Reversible Logic Grammars for Machine Translation. In
Proceedings of the Second International Conference on Theoretical and Methodological Issues in
Machine Translation of Natural Languages. Pittsburgh: Carnegie Mellon University, June.

Earley, J. 1970. An Efficient Context-Free Parsing Algorithm. Communications of the ACM 13:2
(February): 94-102.

Hasida, K. and Isizaki, S.. 1987. Dependency propagation : a unified theory of sentence comprehension and
generation. In Proceedings of AAAI, 664-670. Seattle, WA, July.

Isabelle, Pierre, Dymetman, Marc and Macklovitch, Elliott. 1988. CRITTER: a Translation System for
Agricultural Market Reports. In Proceedings of the 12th International Confererence on
Computational Linguistics, 261-266. Budapest, August.

Jacobs, P. 1985. PHRED: a generator for natural language interfaces. Computational Linguistics 11:4
(October-December): 219-42.

Kay, Martin. 1975. Syntactic Processing and Functional Sentence Perspective. In Theoretical Issues in
Natural Language Processing (TINLAP), Supplement to the Proceedings, 12-15. Cambridge, MA:
Association for Computational Linguistics, June.

Kay, Martin. 1980. Algorithm Schemata and Data Structures in Syntactic Processing. In Readings in
Natural Language Processing, eds. Grosz B., K. Sparck Jones and B. Lynn Webber (1986). Los
Altos, CA: Morgan Kaufmann.

Kowalski, R.A. 1979a. Algorithm = Logic + Control. Communications of the ACM 22 (July): 424-436.
Kowalski, R.A. 1979b. Logic for Problem Solving. Reading, New York, NY: North-Holland.
Landsbergen, J. 1987. Montague Grammar and Machine Translation. Eindhoven, Holland: Philips Research

M.S. 14.026.
Matsumoto Y., Tanaka, H., Hirikawa, H., Miyoshi, H. and Yasukawa, H. 1983. BUP: a bottom-up parser

embedded in Prolog. New Generation Computing 1:2, 145-158.
Pereira, Fernando C. N. 1981. Extraposition Grammars. Computational Linguistics 7:4, 243-56.
Pereira, Fernando C. N. and Warren, David H. D. 1980. Definite Clause Grammars for Language Analysis.

Artificial Intelligence: 13, 231-78.
Pereira, Fernando C. N. and David Warren, David H. D. 1983. Parsing as Deduction. In Proceedings of the

21th Annual Meeting of the Association for Computational Linguistics, 137-44. Cambridge, MA,
June.

Pereira, Fernando C. N. and Shieber, Stuart M. 1987. Prolog and Natural Language Analysis. CSLI lecture
note No. 10. Stanford, CA: Center for the Study of Language and Information.

Pollard, Carl and Ivan A. Sag. 1987. Information-Based Syntax and Semantics, vol. 1. CSLI lecture note No.
13. Stanford, CA: Center for the Study of Language and Information.

Sells, Peter. 1985. Lectures on Contemporary Linguistic Theories. CSLI lecture note No. 3. Stanford, CA:
Center for the Study of Language and Information.

Shieber, Stuart M. 1986. A Uniform Architecture for Parsing and Generation. In Proceedings of the 12th
International Confererence on Computational Linguistics, 614-19. Budapest, August.

Shieber, Stuart M. 1986. An Introduction to Unification-Based Approaches to Grammar. CSLI lecture note
No. 4. Stanford, CA: Center for the Study of Language and Information.

Shieber, Stuart, M., van Noord, Gertjan, Moore, Robert and Pereira, Fernando. 1989. A Semantic-Head-
Driven Generation Algorithm for Unification-Based Formalisms. In Proceedings of the 27th Annual
Meeting of the Association for Computational Linguistics, 7-17. Vancouver, BC, Canada, June.

Strzalkowski, Tomek. 1989. Automated Inversion of a Unification Parser into a Unification Generator. New
York: Courant Institute of Mathematical Sciences, Department of Computer Science, Technical
Report 465.

29

Van Noord, Jan. 1989. BUG: A Directed Bottom-up Generator for Unification Based Formalisms. Working
Papers in Natural Language Processing No. 4. Utrecht, Holland: RUU, Department of Linguistics.

Vauquois, Bernard and Chappuy, Sylviane. 1985. Static Grammars. A Formalism for the Description of
Linguistic Models. In Proceedings of the International Conference on Theoretical and Methodological
Issues in Machine Translation of Natural Languages, 298-322. Hamilton, NY: Colgate University,
August.

Wilensky, R. and Arens, Y.1980. PHRAN: a Knowledge-Based Approach to Natural Language Analysis.
Berkeley, CA: University of California, Electronics Research Laboratory Memorandum #UCB/ERL
M80/34.

30

\\\\\\\e\p\ QUEEN P 308 .D965 1990 c.2

Dymetman, Marc
Grammar bidirectionality thr

DYMETMAN, MARC

--Grammar bidrtrE!pt£0naUty through
contPelge leckNerd deducti.on

308

D965e

1990

c.2

•
• •

Pour plus de détails, 	 For more information,

veuillez communiquer avec : 	 please contact:

Le Centre canadien de recherche
sur l'informatisation du travail
1575, boulevard Chomedey
Laval (Québec)
H7V 2X2
(514) 682-3400

Canadian Workplace
Automation Research Centre
1575 Chomedey Blvd.
Laval, Quebec
H7V 2X2
(514) 682-3400

