
Canacr3 I

Finite-state Morphology:
Overview of Existing Models and
Applications in Continuous-text

Environments.

Michel Simard

VAP%

QUEEN

98
.S56
1990
c.2

40, Gouvernement du Canada Government of Canada
Ministère des Communications Department of Communications

•
• • •

• • • • •
Le Centre canadien de recherche sur l'informatisation du travail

Canadian Workplace Automation Research Centre •

(j ujew)

98
S56p
199D
c .2

rn 	r

.7Lt: 2 3 1998

a.

rÉinite-state Morphology:
Overview of Existing Models and
Applications in Continuous-text

Environments.

Michel Simard /

Assisted Translation Group

may 1990

Canadian Workplace Automation
Research Centre

Communications Canada

Laval

• cat. N° 	Co 28-1/51-1990 E
ISBN 	0-662-17911-0

-

c r
4,) D

1 910
c

The author is solely responsible for the opinions expressed in this report.

* Ce rapport est aussi disponible en français.

iù

DL MOW(

Finite-state Morphology:
Overview of Existing Models and Applications in

Continuous-text Environments.

Michel Sirnard l

Centre canadien de recherche sur
l'informatisation du travail
Communications Canada

1575, boul. Chomedey
Laval (Québec)

CANADA H7V 2X2

Abstract

Finite-state morphological models are formalisms for describing the set of valid word-
forms of a natural language. Being well-suited for computer implementations, they have
typically been used for creating systems that efficiently recognize and generate isolated
word-forms. In this paper, we give a presentation of Koskenniemi's two-level
morphological model, followed by a comparison with alternative approaches. Integrating
such models to natural-language processing systems that. deal with NL sentences typically
implies modifying the morphological component so that it works in a continuous-text
envù.onment. Wei discuss how this transition from isolated-words to continuous-text may
be done, and show that, in addition to the orthographical phenomena normally described by
morphological models, the resulting system displays interesting properties for describing
"inter-word" phenomena such as elisions and contractions.

Topics: two-level morphology; finite-state morphology; computational linguistics.

Introduction

The interest in computational models of the morphology of natural languages is quite
recent. It may be traced to the *appearance of Kimmo Koskenniemi's `two-lever model
([Kos83]), a linguistic model for morphological analysis and synthesis that is suitable for a
computer implementation. It consists in a formalism for describing how words of a
language are constructed from a set of morphemes. This description may then be used to
generate a program that analyzes or synthesizes words of that language. It has been
implemented in Pascal ([Kos83]), in Lisp ([Kar83],[DICK87]) and in Prolog ({Boi88b1),
among other languages. A number of computational systems have since emerged which,
given the 'surface form' (physical appea_rance) of a w_ord, return a description of that word

1. Email : m_simard@ccrit.doc.cdn

2 	 Finite-state Morphology: Overview of Existing Models
and Applications in Continuous-text Environments.

derived from its decomposition into molphemes, and vice-versa. These systems are usually
referred to as "finite-state models" because they use finite-state devices as parsers. Such
formalisms are well suited for designing computer applications requiring lexical
descriptions of highly inflected languages, such as Finnish or Turkish, as well as for
<simpler' languages such as English or French

Many of these finite-state models were originally designed to h andle isolated words.
When examining the possibility of integrating such models to larger natural-l anguage pro-
cessing environments (e.g. an automatic translation system, or a natural-language database
interface), the following question naturally arises: what happens when finite-state morpho-
logical models are modified to deal with continuous-text, as is the case if they are to be used
within a system that works with natural language sentences? Interestingly, it seems that the
resulting systems are capable of handling things that most syntactic models are not very
good at, and that morphological models were not primarily designed for. There are a num-
ber of phenomena that seem to be conditioned by the relative position of a word within a
sentence, rather than by its syntactic role. Examples of this are elisions and contractions,
liaisons in speech, or simply the appearance of 'spaces' in written text. While these phe-
nomena are usually difficult to describe syntactically, they fall within the field of compe-
tence of one of the components of the two-level model — the one that deals with phonology

or orthography.

In the first part of this paper, we examine Koskenniemi's two-level model in detail:
in section 1, we present some basic concepts, then discuss the formalism in section 2, and
finally consider its implementation in section 3. In section 4, we review a number of other
approaches that have emerged since Koskenniemi's. The second part of the paper deals
with the continuous-text question: in section 5, we give a brief sketch of how Koskenni-

emi' s two-level rules may be used to describe inter-word phenomena.

1 Some Background

In general, a lexicon may be seen as defining the relation between the surface forms of the
words of a language (their physical appearance in written text or speech) and their lexical
descriptions (or definitions). In a computational perspective, if both sets of possible surface
forms and of possible lexical descriptions are finite, then one way of implementing this re-
lation is to create an exhaustive list of surface-formllexical-description pairs that satisfy the
relation, and to use some searching algorithm. If one or both sets turn out to be infinite, or
simply of relatively large size, this solution becomes unacceptable for obvious reasons.

The key idea behind Koskenniemi's system is that this 'lexical relation' may be de-
composed and described entirely through the descriptions of the morphology and
phonology of the language, and that from these, efficient recognition/generation programs
may be obtained. The point here is that in the general case, the description of these individ-
ual relations is considerably more compact than the exhaustive list suggested above, and,
needless to say, finite.

Informally, morphemes are the objects words are constructed from: it is generally
agreed upon that all words of a language are made up of smaller pieces, put together ac-

The Formalism 	 3

cording to rules that define the morphology of the language. For example, a word such as
transported can be seen as formed of three morphemes: prefix trans- , root port, and suffix

-ed. A distinction is usually drawn between derivational and inflectional morphologies:
'derivation' refers to the morphological processes by which new words are obtained from
older ones (e.g. transport from port), and 'inflections' refer to the various shapes that a

same and unique word may take (e.g. transport, transported, transporting , etc.)2.

This is further complicated by the fact that the same morpheme may 'realize' in se-
veral ways (appear under various shapes on the surface) depending on its environment, i.e.
on the shape of the morphemes next to which it appears. These variations are controlled by
the phonology of the language. In general, 'phonology' refers to these phenomena, as ob-
served in spoken language. While it is generally aécepted that phonological phenomena in
speech obey fairly strict principles, their counterpart in written text (sometimes called 'or-
thography' in the computational linguistics literature) is seldom studied by linguists becau-
se in most languages, spelling conventions seem rather arbitrary. In spite of this, in order
to simplify all that follows, we will focus our attention on orthography rather than phono-
logy. As well, we will try as much as possible to stick to English in the examples.

2 The Formalism

Koskenniemi's idea is to "split the work in two", i.e. to introduce an intermediate represen-
tation, called the lexical form, between the surface form and the lexical description. This
representation is actually the result of a concatenation of objects representing morphemes
of the language. When verifying if some surface-form/lexical-description pair is in the
'lexical relation', we check that there exists a lexical form that satisfies a first relation with
the surface form (the orthographical relation) and a second relation with the lexical descrip-
tion (the morphological relation)

The first underlying hypothesis here is that the lexical description of a word may be

easily computed as a function of the descriptions of its composing morphemes3 . To obtain
these, it must be possible to decompose a word into morphemes: the second hypothesis is
that this decomposition is easy to do if we have access to a representation of the word dis-
playing it as it would appear if the orthographical process did not occur, i.e. as if orthogra-
phical rules did not affect the surface realization of this word: this is what Koskenniemi's
intermediate representation corresponds to. The third hypothesis is that these orthographi-
cal rules are easy to apply and un-apply, so that the correspondence between the lexical and
surface form is also easy to compute. The morphological relation is defined by means of a
morphological lexicon, i.e. a lexicon of all morphemes of the language, along with morpho-
logical rules (which morphemes may combine with one another, and in what way), and the

2. Actually, things are not all that simple, mainly because it is not clear what exactly is meant by 'two different
words' and 'the same word under two different forms', but these problems need not concern us here.

3. When using the expression "easy to compute", we refer to the intuitive notion of 'practical efficiency' rather
than to that of 'tractability': while the general problem of parsing the languages defined by Koskenniemi's
model has proven to be NP-complete (see [Bar86]), in most real-life cases, efficient parsers may be con-
structed.

4 	 Finite-state Morphology: Overview of Existing Models
and Applications in Continuous-text Environments.

orthographical relation with a set of two-level orthographical rules. These two components
are described in more details below.

2.1 The Lexicon

In the two-level model, the lexicon formalism is used to define the morphemes and the mor-
phological rules of the language. It appears as a list of entries, each of which corresponds
to a morpheme, and is partitioned into sublexi cons on the basis of the a set of principles
called the morphotactics of the language (this partitioning of morphemes is akin to the cat-

egorization of words in the syntax). To each morpheme is associated a lexical form (its
appearance in the intermediate lexical representation), a continuation class, and some at-
tached information.

The lexical form of a morpheme is somehow meant to denote its underlying canon-
ical form, i.e. the unique representation from which all its surface realizations are derived,
according to the orthographical rules of the language. It is up to whoever is producing a lex-
icon to decide what these lexical forms should actually look like, but in most cases, we can
expect them to differ only in minor ways from their surface counterparts: a lexical form
should be something like a generalization of all the surface realizations of the morpheme
to which it is attached. Therefore, the lexical alphabet of a language, i.e. the alphabet in
which these forms are written, although it may be anything, will probably contain all char-
acters of the surface alphabet, plus maybe a small set of additional characters (diacritics,
etc.). For example, the lexical form of the English verb to carry could be something like
carry, where character 9 is meant to denote a generalization of surface realizations y (as in
carry) and i (as in carried). Yet another possibility is simply to use one of the surface real-
izations: in this case, carry would also be an acceptable lexical form for the verb to carry,
insofar as both y and i were considered as possible surface realizations of lexical character
y.

Each continuation class refers to the set of sublexicons that contain morphemes
which may concatenate to the right of the current one: they are the means by which the mor-
phological rules of a language are defined in this model. Some sublexicons are labeled as
root: those contain morphemes that may 'begin' words of the language. There is also a spe-
cialfina/ continuation class, which refers to an empty set of sublexicons, and which is given
to morphemes that may 'end' a word. Lexical forms of words of the language may then be
obtained by concatenating morphemes of the lexicon in ways prescribed by the continua-
tion classes, starting with a 'root' morpheme, and ending with a 'final' continuation class
morpheme.

Such a lexicon for a (very) small subset of English appears in figure 1. Boxes denote
sublexicons, ellipses denote continuation classes, morphemes are in italics (actually, the
lexical forms of these morphemes), and Vroot and Nroot are the root sublexicons. Mor-
phemes that do not point to a specific continuation class are considered to be 'final'. From
this lexicon could be obtained such 'words' as

mice 	eatO 	cry+ed walk+ er+s+' s

Notice that in practice, the word 'morpheme' may be taken in a very loose sense when
building a lexicon. For example, if it turns out to be convenient in a given context to

Vpast 	+ed

VO 	 0

V3pers —> +s

Vprespart -› +ing

Vdeverb 	3 +er

Vpastpart -> +ed

eat

ate

eaten.

cry -

walk

Vroot

The Formalism 5

figure 1 Sample English lexicon.

consider the expression transporter room as a 'morpheme', then so be it. From a purely
linguistic point of view, this may be a bit shocking, but as it happens, it is common practice.

Here, the information attached to the morphemes has been omitted for clarity, but in
the original model, it appears as a string of text. The lexical description of a word is the
result of the concatenation of the individual descriptions of its morphemes in their order of
appearance. For example, if morpheme cry has attached information "verb 'to cry" and
suffix +ed has "past-tense", then lexical forrn cry+ed has lexical description "verb 'to cry'
past-tense". This rather primitive way of 'collecting' lexical information is a theoretical ex-
pedient whose sole purpose is to simplify the demonstration of the correctness of Kosken-
niemP s analyses. In later implementations of the model, the format of lexical descriptions
as well as the manner in which the description of a morpheme affects that of the words it
appears in are left for the user to define.

2.2 Two-level Rules

Two-level. rules define the relations that exist between the lexical and surface forms by
specifying character-to-character correspondences between the two representations. In
this way, they define the orthographical rules of the language. They have the following for-

6 	 Finite-state Morphology: Overview of Existing Models
and Applications in Continuous-text Environments.

mat:

<cp> <operator> <lc> — <rc

where <operator> is one of 	or <=>, <cp> is a concrete pair set (or CPS), and </c> and
<rc> are regular pair expressions (or RPEs), i.e regular expressions over an alphabet of
CPS s. These CPSs are pairs (x,y), where x and y are elements of the lexical and surface al-
phabets respectively, and that describe possible realizations of lexical characters on the
surface. Thus (x,y) may be read as "lexical character x, and its surface realization y".

Some characters have a special meaning within CPSs: the = stands for 'anything' as
in (=,$) , to be read "any lexical character and its surface realization s". Conversely (s,.)
stands for "lexical character s and whatever its surface realization is". Character E stands
for the 'null' character: (s,E) reads "lexical character s, which realizes as the null string
(nothing) on the surface". We also sometimes make use of variables: capital letters will nor-
mally be used for those, as in (V,x), V E a,e,i,o,u } . Finally, when no confusion is possi-
ble, a single character x is used to denote a pair (x,x) where the lexical character is realized
as itself on the surface (other notational shortcuts exist, but we will restrict ourselves to
these for now).

The <cp> is the correspondence part of the two-level rule, i.e. the part that specifies
the particular pair that the rule is concerned with, and </c> and <rc> are the left and right
contexts respectively, i.e. the parts that specify the context within which the rule applies.
The <operator> specifies the type of the rule, as described below.

Context restriction rules, which take the form

<cp> = <1c> — <rc>

specify a context </c> — <rc> within which correspondence <cp> is allowed to take place.
In other words, if <cp> is (x,y) and x appears in a lexical form surrounded by </c> on the
left and <rc> on the right, then it may realize as y on the surface (we say that some pair (x,y)
is surrounded by </c> and <rc> if whatever appears immediately to the left and right of
(x,y) is matched by regular expressions </c> and <rc> respectively). In general, for a pair
of lexical and surface forms to be orthographically correct, every one of its individual lex-

Left context Right context

Surface realization to be validated by a context
restriction rule

Rule allowing correspondence (y,i) before
a morpheme beginning with an e

Note: : an empty rule context
matches anything

figure 2 Pairofcorrespondinglexicalandsurfaceforms,andmatching
context restriction rule.

Y + e
E =

• Rule forcing lexical y to realize as i
in this given context

Y

Y

The Formalism

ical/surface character pairs must be validated by a context restriction rule. This is illustrated
in figure 2. Notice how CPSs are written vertically, with the lexical character on top: this
is the standard notation (but it doesn't fit that well in written text, so we alternate between
the two notations).

Surface coercion rules take the form

<cp> 	</c> — <rc>

and specify the context within which a correspondence <cp> is forced to take place: if <cp>
is (x,y), and x appears within a lexical string surrounded by </c> and <rc>, then it must
realize as y on the surface. For a particular lexical/surface forms pair to be orthographically
correct, none of its individual character pairs must contradict any of the surface coercion
rules. What is understood by a 'contradiction' is illustrated in figure 3. Note that the
existence of a surface coercion rule to force some correspondence (x,y) does not imply that
this correspondence is allowed. 'What such rules say is something like "No matter what x is
normally allowed to realize as, in this context, it must not realize as anything other than y".

As a result, this type of rule turns out to be useful mostly to specify disallowed
correspondences, as in the rule:

a c —d
-b

which reads "Surrounded by c and d, lexical character a must realize as a character that is
not equal to b (a may not realize as b)". Therefore, such a rule forces a given
correspondence not to take place. It is then a matter of checking matching context
restriction rules to find what a may realize as in the context.

Composite rules are used to specify correspondences that are both allowed and
forced. They are obtained by combining a context restriction rule and a surface coercion
rule that share the same correspondence part and left and right contexts:

<cp> <=> <lc> — <rc>

is equivalent to

<cp> = <lc> — <rc> an

<cp> <= <lc> — <rc>.

Full descriptions of the orthography of a language are, in principle, collections of

Surface realization of y conflicting with
a surface coercion rule

figure 3 Example of lexical/surface pair ruled out by a surface
coercion rule

8 	 Finite-state Morphology: Overview of Existing Models
and Applications in Continuous-text Environments.

01, (eat,verb 'to eat')

O

O
(cry, verb 'to cry')

Mr (walk, verb 'to walk')

(cat, name 'cat')
(dog, name `dog')

O (mouse, name 'mouse')
(mice, name 'mouse')

O (+s, plural)

(at,e, verb `to eat')
•ir (eaten, verb 'to eat')

(0,null)

O (+s, 3pers_sing)
(+ing, pres_part)

(0,nul)
(+s, 3pers_sing)

O (+ing, pres_part)
(+ed, past)
(+ed, past_part)

(0, null)
(+'s, gen)

(+er, de-verb)

o
o

01
0)

figure 4 Transducer corresponding to lexicon of figure 1.

two-level rules. For a given character pair, all context restriction rules are taken disjuncti-
vely (one of them must be satisfied, i.e. match the current character and context), and this
disjunction is then taken conjunctively with all surface coercion rules (all of them must be
satisfied, i.e. not be contradicted if they match the current context and lexical character).
For a pair of surface and lexical forms to be accepted by the set of rules, this logical state-
ment must be satisfied at every position in the string. Since the rules simply state relations
between the two levels of representation, the formalism is not biased towards analysis or
synthesis, and may be used for both.

3 The Implementation

The key idea behind the implementation of Koskenniemi's model is that both its formal-
isms (lexicon and two-level mles) define regular languages, for which efficient parsers are
relatively easy to construct: individual finite-state devices corresponding to the lexicon and
two-level rules may be produced and then used in parallel to analyze or generate surface
forms. How this is done is discussed below.

A finite-state transducer is a special type of finite-state automaton that recognizes a

The Implementation 	 9

New intermediate states

Character e denotes the 'null' character

figure 5 Expansion of a transition of the lexical transducer.

language over an alphabet of pairs of characters. In tbrmal terms, if A and B are alphabets,
then an automaton that recognizes some language over (A x B)* is a transducer. This type
of computational device is interesting for us because it allows to describe relations between
strings over different alphabets, insofar as the computation of these relations only requires
a finite amount of memory. As it turns out, this appears to be the case for the relations that
exist between lexical descriptions and lexical forms, and between lexical and surface forms.

If we take a particular lexicon under Koskenniemi's formalism, and consider the set
of all morphemes as an alphabet (i.e. every morpheme of the lexicon is a 'symbol' in the
alphabet), then it is obvious that the morphological rules, as encoded with continuation
classes, define a regular language over this alphabet. Similarly, if lexical descriptions of
words are obtained by concatenating descriptions of individual morphemes, then the mor-
phological rules also define a regular language over the alphabet of descriptions attached to
morphemes. From thereon, it is easy to see how a transducer that recognizes precisely all
lexically well-formed morpheme/description pairs may be constructed. Such a device cor-
responding to the lexicon of figure 1 appears in figure 4 (drawing conventions of [HU79]
for finite-state devices are used throughout this text). It is then a trivial matter to transform
this transducer into one that operates on lexical forms instead of morphemes (see figure 5),

so that we obtain an efficient computational device to recognize well-formed pairs of lexi-
cal descriptions and lexical forrns.

Of course, we are interested in doing more than simply recognize well-formed pairs:
we also want to perform analysis and synthesis operations. In formal terrns, if we have a
transducer M recognizing some language L(M) over (A x B)* , then an analysis of some
string s of A* is some other string t of B* such that there is a string x of L(M) with projection
on A HA(X) = s, and projection on B IIB (x) = t (synthesis is defined in a symmetrical fash-

ion). Efficient graph-searching methods exist to compute such functions with transducers,
and we will not discuss these here.

Two-level orthographical rules define a language over the alphabet of pairs of lexical
and surface characters, which may also be recognized by transducers, although their con-
struction is not as obvious as that of the lexicon's. As a matter of fact, the method by which
these devices are produced from sets of two-level rules is a complex one for which, to our
knowledge, no clear and formal description exists. Essentially, a set of two-level rules may
be partitioned into subsets of rules sharing the same correspondence part (<cp> part), and

10 	 Finite-state Morphology: Overview of Existing Models
and Applications in Continuous-text Environments.

(+4

figure 6 Two-level composite rule, and corresponding transducer.

for each of these subsets, a transducer may be constructed such that a string over lexical and
surface pairs of characters is accepted as orthographically correct if and only if it is recog-
nized by all Transducers.

Such a transducer corresponding to the composite rule responsible for the (y,i) cor-
respondence in English appears in figure 6 (accepting states are doubly circled). Here,
symbol = within a pair of characters stands for "anything" (as before), and symbol — stands
for a 'negation'. For example, the pair (y,—i) refers to lexical character y realized as any-
thing but i on the surface, —(y,i) refers to all pairs not equal to (y,i), and —(y,.) will match
any character pair whose lexical character is not y, no matter what its surface character is.
The transducer is constructed in such a way that starting from state 0, any string will be ac-
cepted, except those containing an occurrence of (y,i) that is not immediately followed by
(+4 and (e,=), and those containing a lexical y not realized as i that is immediately fol-
lowed by (+,E) and (e,=). This reflects the intention of the rule, which says that y must
realize as i in the given context, and that as it is the only rule conce rning correspondence
(y,i), it is also the only context within which it may appear. If there was another rule con-
cerning this correspondence, then both rules would have to be implemented within the same
unique transducer.

Actually, sine regular sets are closed under intersection, it is possible to combine all
transducers obtained from a set of two-level rules into a single one. In theory, this produces
a finite-state device whose number of states is a multiplicative factor of the number of states
of the individual components from which it was obtained. However, the nature of the 'or-
thographical problem' is such that the resulting transducer may usually be optimized into
one with a number of states closer to the sum than to the product, which makes the opera-
tion interesting if efficiency is a concern.

So ultimately, if we combine transducers as described above, we end up with just two
transducers: one defining a language over pairs of lexical and surface characters (the 'or-
thographical language'), and one over pairs of lexical descriptions and lexical forms (the
'morphological language'). How these devices interact with one another varies with impie-

y 	e
E =

lexical transducer
(consumer)

orthographical transducer
(producer)

lexical .
descriptions analysis mode

word ()

-ÉC)-

lexical forms

. . .]

surface forms

synthesis mode

word (. • •)

lexical transducer
(producer)

[• . •

orthographical transducer
(consumer)

. . .]

Other Approaches 	 11

figure 7 Producer-consumer relationships between orthographical and
lexical transducers.

mentations, but we can imagine some sort of 'consumer-producer' relationship to exist
between the two (figure 7), so that one 'consumes' the lexical string as it is 'produced' by
the other (which one is 'producer' and which one is 'consumer' is determined by whether
the system is working in analysis or synthesis mode). The resulting system is a left-to-right
parser which, depending of course on the exact nature of the lexicon and morphological and
orthographical rules, can turn out to be quite efficient, both in analysis and synthesis.

4 Other Approaches

Being one of the few computational models for morphology and orthography to be of some
interest from a linguist's point of view, and also the best known, Koskenniemi's two-level
model has been the object of various criticisms. Let us have a look at what the major sub-
jects of disagreement are, and at some of the alternative solutions proposed.

• 	Encoding of Morphological Rules: The two-level model is often criticized for the
'weakness' of its encoding of morphological rules: although not proven insufficient, it
appears to be all too often inadequate to describe morphological phenomena other than
suffixations and prefixations. Dolan aDo188]) lists such things as reduplications (repetition
of a morpheme within a word), infixations (insertion of a morpheme 'within' another one)
and circumfixations ('surrounding' of a morpheme by another one), while Anderson
([And8 8]) and B oisen ([B oi8 8 a]) mention 'non-affixal' phenomena (e.g. ablaut' relations
in some English verbs: sing, sang, sung) as other sources of problems. Typically, encoding
these within the two-level formalism will require a lot of lexicalization (e.g. entering all

12 	 Finite-state Morphology: Overview of Existing Models
and Applications in Continuous-text Environments.

foinis of the verb to sing as distinct morphemes in the lexicon) and reduplication of
information (e.g. denoting the optional combination of elements of some sublexicon with
a `circumfix' requires the duplication of that whole sublexicon).

This has been improved in later presentations and implementations of the model, no-
tably by providing more sophisticated methods of encoding and constructing lexical des-
criptions (feature structures, etc.; see [DKK87]), but many suggest that the problem comes
mainly from the fact that continuation classes form a regular 'skeleton', and opt for a 'phra-
se structure' rule formalism, an idea first suggested by Karttunen & Wittenburg [KW83].
For example, Bear describes morphological rules using a PATR-type of formalism
([Bea86]), and Boisen's formalism is based on DCGs ([Boi88a]).

• Parallel Application of Orthographical Rules: Traditional models of generative
phonology describe phonological phenomena using rewrite rules, meant to be applied 'in
cascade', i.e. each rule applying on the output of the preceding one, and feeding its output
to the next. Correspondences between the surface form and the underlying lexical form are
then obtained by passing through several layers of intermediate representations,
corresponding to the state of affairs between applications of rules. One hypothesis at the
basis of Koskenniemi's model is that all intermediate levels between the surface and lexical
forms may be bypassed, and correspondenCes between the two levels described directly
with rules that apply simultaneously.

This view is not shared by all, and some models still favor the older method. Hanka-
mer for example, suggests a parsing method for Turkish which, while being very close to
that of Koskenniemi in its encoding of morphological rules, advocates a cascade applica-
tion of orthographical rules (see [Han86]).

• Separation between Orthography and Moiphology: One of the most important
principles underlying Koskenniemi's model is the assumed separation between
orthographical and morphological affairs: all that orthographical rules should know about
higher levels (morphology, syntax, etc.) is communicated through the intermediate lexical
representation, and vice-versa. This view is often challenged, as can be seen from the
following examples.

In a model that is otherwise very close to Koskenniemi's, Bear ([Bea881) suggests
attaching what he calls 'negative rule features' to morphemes of the lexicon. What these
features actually do is 'locally disable' certain orthographical rules so as to prevent them
from being applied when 'exceptions' occur. This means that the morphological compo-
nent has direct control on the behavior of the orthographical component. Note that this does
not produce a formalism more powerful than Koskenniemi's: using negative rule features
is absolutely equivalent to putting annotations in the lexical string. However, it does pro-
vide the advantage of not having to consider exceptions when writing orthographical rules,
but only when writing the lexical entries to which these exceptions apply.

In a similar vein, Hankamer ([Han 86]) uses different sets of rules for roots and for
suffixes, thus assuming that orthographical rules 'know' what type of morpheme they are
dealing with. This is actually just another way of locally disabling selected rules, only more

Using Koskenniemi's Formalism in a Continuous-text Environment. 	 13

restricted than Bear's.

Cornell's IceParse model of inflectional parsing ([Cor88]) is a clearer departure from
Koskenniemi's approach: in his view, morphology may be seen as some sort of `ortho-
graphical phenomena' (as in e.g. 'umlaut' and 'ablaut' relations). Therefore, suffixes do not
have corresponding lexical entries in his model, morphological rules are denoted the same
way orthographical rules are, and define relations between the same two levels of represen-
tation, i.e. the surface form and some underlying representation aldn to Koskenniemi's lex-
ical form. The difference between the two types of rules is that morphological rules have
the ability to affect the lexical descriptions of the lexemes to which they are applied. At the
implementation level, both types of rules are translated into finite-state transducers.

At the other end of the spectrum lies Boisen's DCM formalism, where orthographical
rules, encoded as transformational rules, are applied 'within' morphological rules. In other
words, the application of a particular orthographical rule, in Boisen's view, is always a con-
sequence of the application of ,a specific morphological rule.

5 Using Koskenniemi's Formalism in a
Continuous-text Environment.

As mentioned earlier, when considering the integration of a formalism such as
Koskenniemi's to a natural-language processing system, we are faced with the following
situation: while the two-level model was originally designed to deal with single isolated
words, we want it to work in a environment of continuous-text, i.e. one where borderlines
between words are not always clearly marked. For example, while in most written
languages the normal boundary character between words is the 'space', it is likely that
things like British Columbia and Department of Agriculture will be viewed as words of
their own, not to be decomposed in any way. This means that in addition to recognizing
words, we have to deal with the problem of isolating them in the text.

In a single word context, a program implementing the two-level model is normally
asked questions of the type "Give a lexical description of the following word if one exists"
(the 'analysis question') or "If possible, produce a word having this lexical description"
(the `synthesis question'). It seems quite obvious to us that a program capable of answering
these questions, provided with just a little extra information, may be used to answer ques-
tions about sentences, such as "Find all words of the language that match the left-hand side
of this sentence, along with their corresponding lexical descriptions", or "Produce a word
with this lexical description at that position of the sentence". Here, the word 'sentence'
should be taken to mean simply 'list of words', and what the 'little extra information' re-
quired actually corresponds to is a description of how words appear within sentences (what
the word boundaries look like, etc.).

Our claim is that this information about sentences may be encoded as morphological
and orthographical information. This may be done by forcing the appearance of an explicit
'word-boundary character' at the end of each word of the language — a trivial matter under
the two-level formalism's encoding of morphological rules if this character is seen as a
morpheme — and by controlling its surface realization 'orthographically' with two-level

(a) 	A

(b) 	A

<=> - P

P a punctuation character

(C) 	A

<=> A

A the apostrophe'

14 	 Finite-state Morphology: Overview of Existing Models
and Applications in Continuous-text Environments.

figure 8 Two-level rules sanctioning the realizations of word-
boundary character w.

rules. Without going into too much detail, we can see how this may be done: let us talce

character 'A' to be the word-boundary symbol. In general, it will realize on the surface as
a space (that we will denote by J). However, there is a certain number of situations where
such space must not appear, for example before a punctuation character, or after an apos-
trophe. This may be taken care of by a set of two-level rules, as shown in figure 8. Rule (a)
says that may always realize as a space on the surface. However, other rules specify
situations where it may and must realize as the null character e: before a punctuation (rule
b) and after an apostrophe (rule c).

One thing that should be noted is that this will work only if orthographical rules are
applied to whole sentences, rather than to individual words: in general, the realization of a
word boundary will be conditioned by the appearance of both what precedes it and what
follows it. When integrating the two-level formalism to a natural-language processing sys-
tem, one of our major concerns will be to allow for this 'global' application of rules.

Interestingly, it seems that besides standard 'intra-word' orthography, the surface ap-
pearance of word-boundaries is not the only thing that may be treated orthographically if
two-level rules are applied in this way. For example such things as elisions and contrac-
tions could also be labeled as 'inter-word orthographic phenomena'. Let us have a quick
look at this: in French, a good number of words take a different form whether they appear
in front of a vowel (or mute h) or a consonant. For example, the e of word le (definite article
or pronoun) disappears and is replaced by an apostrophe (') before a vowel, as in l'avion (a
similar thing occurs in English with indefinite article a). This phenomenon is hard to de-
scribe syntactically, because it does not seem to depend in any way on the syntactic relation
between the elided word (in this case, le) and the word which caused the elision.

The two-level rules of figure 9 solve the problem, not only for le but also for a bunch
of others such as ne, se, me, te, etc., which behave similarly. Rule (a) says that lexical e may
and must realize as an apostrophe only within words such as these appearing in front of a
vowel or an h. Otherwise, it may always realize as itself (rule b).

A contraction occurs when the juxtaposition of two distinct words results in their re-
alization as a single surface form. There are exarnples of both compulsory contractions (in
French, preposition à and article le always contract to au) and of optional contractions (in

(b) 	e
-

A 	A à 	1 e A
<=>

= au 	e =

(g)

(a) à 	A 	DAle^
<=> 	—

a 	= 	u E E e=

(b) A à 	"le" <=;..
=a 	E E E =

(f)

(e) à 	̂ à.1)^1
((=>

a 	=auee

A

(cl). 	<=> AaJA 	e

a 	=aue 	E =

Using Koskenniemi's Formalism in a Continuous-text Environment. 	 15

(a) e 	A 	A
<=> C — V

e 	e

C E c, d, j, m, n, s,

V E {a, e, h, 1, o, u,y}

figure 9 Two-level rules controlling elisions in such French words as
ce, de, je, etc.

English, do and not may contract to don' t). Once again, this type of phenomena does not
seem to lend itself very well to syntactic description. The set of rules in figure 10 describes
the compulsory contraction of à le into au: rules (a) through (e) sanction one by one the
appearance of the characters within the contraction of à le into au. Notice that in order for
this to work, preposition à must be given a lexical form ch.), where is a lexical character
which realizes as u within the contraction , but as e otherwise (rule f).

Of course, the rules discussed above should always be considered as part of a larger
set, which together constitutes the orthographical component. We can probably imagine
starting with a set of rules describing intra-word orthography, modifying these so as to pre-
vent them from leaping across word-boundaries (intra- and inter-word phenomena are usu-
ally distinct), and then adding on the inter-word rules (within which word-boundary mark-
ers should appear explicitly, for similar reasons). It should also be pointed out that the ap-
pearance of the lexical representation we have seen so far reflects more our desire to keep
the discussion at an intuitive level than true linguistic accuracy.

It is interesting to note that while two-level rules are able to handle all three of these
phenomena (word-boundary realizations, elisions and contactions), they appear to be rath-
er ill-suited for the description of the last type (contractions). What this suggests is that al-
though intra-word orthography is regular (it may be described adequately by finite-state de-
vices), there may exist formalisms better fit to describe it than two-level rules. This idea is
further supported by the fact that the set of rules required to describe the contraction of à le

figure 10 Two-level rules in charge of the contraction of à le into au.

16 	 Finite-state Morphology: Overview of Ddsting Models
and Applications in Continuous-text Environments.

into au, it seems, could be combined in a unique and fairly simple transducer. We leave
open the question of what such an alternative formalism could look like.

Another problem that appears in the course of designing orthographical rules for a
language stems from the fact that some of these rules appear to be inherently ambiguous,
and to generate multiple hypotheses both in analysis and in synthesis. For example, in
French, surface form des may be analyzed either as plural form of indefinite article un, or
as the contraction of preposition de and plural definite article les. On the other hand, the
latter lexical string (juxtaposition de+les of the lexical forms of de and les) may produce
either the contraction des if les is an article, or simply de les if les is a pronoun.

In a system such as the one we want to build, surface forms yielding multiple lexical
foims are not considered a problem, because higher levels (the lexicon, morphological
rules, syntactic rules, etc.) should be able to rule out unacceptable lexical forms. However,
ambiguities in the other direction are problematic: for example, if the orthographical com-
ponent (i.e. the component in charge of applying orthographical rules in an implementation
of the model) does not 'know' if a particular instance of lexical form les corresponds to the
article or to the pronoun, then it has no way of deciding whether a contraction with de must
talce place or not. Obviously, orthographical rules cannot work properly without this
knowledge of "which rule applies in what situation". The problem, it seems, is that not all
of it may reside within the orthographical component itself. If a parallel may be drawn be-
tween orthography in written text and phonology in spoken language, then the following
example should be sufficient to illustrate our point. In the French phrase "un marchand de
draps anglais", the presence of a liaison between draps and anglais depends on the scoping
of adjective anglais (whether it applies to marchand or to draps. Well, yes, this is a bit far-
fetched...). In this example, the application of a specific phonological rule is conditioned
not by the immediate phonological environment, but by the underlying syntactic structure,
and may even have deeper 'roots'.

So it seems reasonable to assume that not all of the knowledge relevant to orthogra-
phy resides in the orthographical component itself, and that we may talk of lexically, mor-
phologically or even syntactically conditioned orthography. Therefore, when orthographi-
cal ambiguities arise, the orthographical component 'knows' how to resolve it only if it is
actually 'told' by some higher level component. It seems that the simplest way of modeling
this transfer of knowledge in our system is through direct annotations on the lexical string.
In other words, we can imagine that the lexical representation actually contains much more
information than the appearance of the surface would suggest. We have already mentioned
morpheme-boundary and word-boundary characters, but we could probably think of many
other objects appearing in the lexical string that do have surface realizations, although not
always obvious. For example, we could have the syntax (or the lexicon) to insert explicit
pauses at certain selected positions of a sentence (or of a word) to locally inhibit some or
all orthographical rules. A comma could be the surface realization of such a 'strong' pause,
but 'weaker' pauses could also exist that have more subtle orthographical effects, such as
inhibit the 'elision rules' in front of some words beginning with an h, or the 'contraction
rule' of de les when les is a pronoun, etc. Other types of markers could be imagined to exist.
The important thing is to see these as a way of communicating higher-level information to

Conclusion 	 17

the orthographical component.

Of course, lexical entries, morphological rules and even grammar mies must be writ-
ten with orthography in mind, and orthographical rules must take into account the additio-
nal information, but this seems manageable. In any case, we leave open the question of how
exactly this may be done.

Conclusion

The first part of this paper was a presentation of existing computational models of
morphology. Many current approaches are derived from Koskenniemi's "two-level"
model, so this was examined in detail first, followed by a quick survey of some of the
alternative solutions proposed. The second part discussed how Koskenniemi's model could
be used in a continuous-text environment to deal with "inter-word" phenomena, such as
elisions and contractions.

This last topic was only briefly touched, and several questions were left open, in par-
ticular on whether the two-level model was actually the most appropriate to describe some
of these phenomena. Finding a formalism better fit to this task, as well as exploring com-
munication schemes between the orthographical component and higher levels of linguistic
processing both seem to us interesring topics for future research.

In spite of all its deficiencies, we favour using Koskenniemi's model as a starting
point for such research work, this for .a number of practical reasons: first, there are many
natural languages for the description of which the two-level formalism turns out to be quite
sufficient, and to produce efficient parsers. More importantly, the model is not biased to-
ward analysis or synthesis, and may be used for both. In our view, this is a major advantage
over approaches such as those of Hankamer, Boisen, Cornell and Dolan to name but a few,
which are all designed primarily to perform analyses. This is not just a convenient compu-
tational property: it is also a strong criterion of linguistic accuracy. Finally, Koskenniemi's
model is, in some way, representative of current approaches in computational morphology.
This property is important to us, because it confers a certain level of generality to our re-
sults: we believe that the ideas presented in section 5 may be applied to most finite-state
morphological models.

References

[And88] Anderson, Stephen R. (1988), Morphology as a Parsing Problem, in Morpholo-
gy as a Computational Problem, UCLA Occasional Papers #7: Working Papers
in Morphology, Dept. of Linguistics, UCLA.

[Bar861 Barton, Jr., G. Edward (1986), The Computational Complexity of 2-level Mor-
phology, AI Memo 856, MIT AI Laboratory.

[Bea86] Bear, John (1986), A Morphological Recognizer with Syntactic and Phonolog-
ical Rules, COLING 86 (Proceedings of the 1 th International Conference on
Com •putational Linguistics), pp. 272-276.

18 	 Finite-state Morphology: Overview of Existing Models
and Applications in Continuous-text Environments.

[Bea88] Bear, John (1988), Morphology with Two-level Rules and Negative Rule Fea-
tures, COLING 88, pp. 28-31.

[Boi88a] Boisen, Sean (1988), Parsing Morphology using Definite Clauses, in Morphol-
ogy as a Computational Problem, UCLA Occasional Papers #7: Working Papers
in Morphology, Dept. of Linguistics, UCLA.

[Boi88b] Boisen, Sean (1988), Pro-KIMMO: a Prolog Implementation of Two-level Mor-
phology, in Morphology as a Computational Problem, UCLA Occasional Papers
#7: Worldng Papers in Morphology, Dept. of Linguistics, UCLA.

[Cor88] Cornell, Thomas L. (1988), IceParse: A Model of Inflectional Parsing and Word
Recognition for Icelandic Ablauting Verbs, in Morphology as a Computational
Problem, UCLA Occasional Papers #7: Working Papers in Morphology, Dept.
of Linguistics, UCLA.

[DKK87] Dalrymple, Mary, Ronald M. Kaplan, Lauri. Karttunen, Kimmo Koskenniemi,
Sami Shaio and Michael Wescoat (1987), Tools for Morphological Analysis,
Report No. CSLI-87- 108, Stanford University CSLI.

[Do188] Dolan, William B. (1988), A Syllable-based Parallel Processing Model for Pars-
ing Indonesian Morphology, in Morphology as a Computational Problem,
UCLA Occasional Papers #7: Working Papers in Morphology, Dept. of Linguis-
tics, UCLA.

[Han86] Hankamer, Jorge (1986), Finite-state Morphology and Left-to-right Phonology,
West Coast Conference on Formal Linguistics, 5, pp. 41-52.

[HU79] Hoperoft, John E. and Jeffrey D. Ullman (1979), Introduction to Automata The-
ory, Languages, and Computation, Addison-Wesley.

[Kar83] Karttunen, Lauri (1983) KIMMO: A General Morphological Processor, Texas
Linguistic Forum #22, pp. 165-186.

[Kos83] Koskenniemi, Kimmo (1983), Two-level Morphology: a General Computation-
al Model for Word-form Recognition and Production, Publication 11, Dept. of
General Linguistics, University of Helsinki.

[KW83] Karttunen, Lauri and Kent Wittenberg (1983), Two-level Morphological Anal-
ysis of English, Texas Linguistic Forum #22, pp. 217-228.

tqlliim

I

1

1

1

QUEEN P 98 .S56 1990 c.2
Simard, Michel (Michel Jean)

Finite-state morphology : ov

SIMARD, MICHEL
--Finite-etete m(Rolngy : overview
of elg.Agng ligodel And APP1i2cAti-Pns

in continuoua'next environme.ntes

98

S56e

1990

c.2

DATE DUE

•
• •

Pour plus de détails,

veuillez communiquer avec :

For more information,

please contact:

Le Centre canadien de recherche
sur l'informatisation du travail
1575, boulevard Chomedey
Laval (Québec)
H7V 2X2
(514) 682-3400

Canadian Workplace
Automation Research Centre
1575 Chomedey Blvd.
Laval, Quebec
H7V 2X2
(514) 682-3400

