Assessment of yield potential of easicrn Newfoundland herring stocks by

G.Il. Winters and J. A . Moores<br>Fisheries and Narjne Service<br>Fisheries and Environnent Canada<br>3 Water Strect<br>St. John'ṣ, Newfoundland

## Introduction

Herring fisheries along eastern Newfoundland have never until recently contributed signifjcantly to comnercial fish landings in Newfoundland, not even during the late 1940's when total landings of herring from Newfoundland waters soared to $85,000 \mathrm{~m}$ tons in response to requests from UNRA for herring as food for war-torn Europe. East coast herring landings peaked at 7000 m tons during this period, a level substantially below potential yields; landings dropped to between 1000-2000 m tons in the 1950's and '60's with most of the landings being utilized as lobster bait and dog food.

During the early 1970's, however, cast coast herring stocks began to attract interest due to three main factors (a) increasing demand for food herring due mainly to a decline in Northeast Atlantic herring stocks (b) diminishing stocks of herring along the Atlantic Scaboard and Gulf of - St. Lawrence (c) and quota regulations, both national and international, leaving only eastern Nowfoundland and northwest Newfoundland as relatively unexploited, unregulated areas. Concurrent with and in part resulting from this increased interest in east coast herring was the introduction and development of new fishing techniques by the Industrial Development Branch of the Fisherjes and Marine Scrvice. These new fishing techniques (ring-nets, pair trawling) were designed to transform a relatively inflexible fleet of traditional groundfish long-liners into flexible multi-species fishing units capable of off-setting reductions in abundance of commercial groundfish species, particularly cod and flounder. In 1975 a further development of cast coast herring fisheries occurred when 3 commercial purse-seiners fishing under special (exploratory-rescarch) permits provided catch data suggesting substantial quantities of herring in nearly all the eastern Newfoundland bays.

As a result of the above developments and to provide for rational exploitation of the stocks, catch quotas totalling $27,000 \mathrm{~m}$ tons were imposed in 1976 on the basis of preliminary analyses of data accumulated by the St. John's Biological Station since the late 1960's. This document summarizes those analyses as well as interprets new data derived from the 1976 fishery.

## Recent catch statistics

Catel statistics are reported by statistical areas (defined in alphabetical manner in fig. 1) which essentially correspond with the 5 east coast bays. Landings (sec table below) increased from less than 700 mm tons
in 1969 to over 9000 m tons $\mathrm{j} \| 1974$ and to nearly $25,00 \mathrm{~m}$ m tons in 1976. Such increases in dandinp:; have occurrod jn all bays but hilye been particulady evident since 1972 in Trinity and Conception Bays due to the introduction of ring-netting which has since spread to all areas. Traditional inshore gears (gill-nets, bar-sicines, trap) accounted for alout 61,000 m tons in 1976 , an increase from $52,000 \mathrm{~m}$. tons in 1975 (Table 1, and ring-nct:s increased from 4200 m tons in 1975 to nearly 9800 m -tons in 1976. Catch (m.tons)

| Year | W. Bay <br> (A) | N.D. Bay <br> (B) | B. Bay <br> (C) | T. Bay $\text { ( } \mathrm{D})$ | $\begin{gathered} \text { Con. Biy } \\ (1:+F) \end{gathered}$ | Total |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1969 | 25 | 341 | 109 | 176 | 30 | 681 |
| 1970 | 49 | 475 | 147 | 484 | 151 | 1306 |
| 1971 | 204 | 3454 | 213 | 892 | 185 | 4948 |
| 1972 | 828 | 996 | 247 | 342 | 582 | 2995 |
| 1973 | 785 | 1657 | 497 | 739 | 1308 | 4986 |
| 1974 | 1442 | . 2592 | 642 | 1651 | 2716 | 9043 |
| 1975 | 2412 | 3143 | 2009 | 3903 | 3539 | 15,006 |
| 1976 | 2984 | 9504 | 6355 | 3582 | 2485 | 24,910 |

Biological characteristics
(a) Age compositions

Age compositions of commercial catches of herring in the various east coast bays are shown in Fig. 2. The 1963 year-class was dominant in all areas up to 1971 but has been replaced by the very strong 1968 jear-class since then. East coast fisheries have typically exploited mature herring and thus young fish ( $\leq 4$ years old) do not show very strongly in catches. The 1969 year-class has also been dominant in the northern bays but tends to become progressively weaker in relation to the 1958 year-class in the southern bays. Also of particular interest is that the 2 northern bays still have significant numbers of old fish remaining in the population and thus have a more stable population age-structure than for example in Trinity and Conception Bay herring which are largely ( $60 \%$ ) supported by one year-class (1968).
(b) Growth rates

Mean weights-at-age (quarters $1-3$ combined, 1973-75) and stable population biomass ( 1000 recruits at age 2 ) of cast coast herring are compared with southeastern Newfoundland herring stocks in the table below.

Wejght-at-age (kg) hy Area

| Agc | White Bay | $\begin{aligned} & \text { N.D. } \\ & \text { Bity } \end{aligned}$ | Bon. Bay | $\begin{aligned} & \text { Trinity } \\ & \text { Bily } \end{aligned}$ | $\begin{aligned} & \text { Con. } \\ & \text { Bay } \end{aligned}$ | St. Mary's Bay | Fort:unc Bay |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 2 | . 070 | . 070 | . 080 | . 080 | . 080 | . 080 | . Oso |
| 3 | . 122 | . 126 | . 125 | . 111 | . 139 | . 161 | . 151 |
| 4 | . 182 | . 188 | . 187 | . 211 | . 207 | . 203 | . 207 |
| 5 | . 208 | . 198 | . 212 | . 218 | . 220 | . 234 | . 232 |
| 6 | . 222 | . 220 | . 236 | . 240 | . 211 | . 211 | . 276 |
| 7 | . 248 | . 230 | . 254 | . 255 | . 255 | . 272 | . 296 |
| 8 | . 267 | . 248 | . 273 | . 272 | . 271 | . 285 | . 310 |
| 9 | . 280 | . 262 | . 298 | . 291 | . 278 | . 305 | . 331 |
| 10 | . 288 | . 271 | . 299 | . 313 | . 291 | . 320 | . 350 |
| 11+ | . 343 | . 300 | . 343 | . 343 | . 325 | . 353 | . 375 |
| Biomass prod. per 1000 <br> recruits (Kg) | 862 | 837 | 896 | 934 | 921 | 971 | 1015 |

There is a general increase in weight-at-age from White Bay south to Fortune Bay and this is particularly so in the younger age-groups ( $\leq 5$ years). This increase in growth is of course reflected in the biomass production; White Bay for example being only $85 \%$ of the level of Fortunc Bay herring for the same number of recruits. Such changes in growth are also evident in other fish stocks such as cod, capelin etc., and probably reflect the increasing effect of the cold inshore component of the Labrador current in the northern bays of eastern Nowfoundland.
(c) Spawning-group composition

Since 1966 yearly reports of herring spawning in eastern Newfoundland have been obtained from Fisheries and Marine ficld personncl and this information conbined with data from biological sampling reveal that eastern Newfoundland herring are primarily spring-spawners which spawn in shallow water in May and Junc. There is, however, a small component of large Labrador-type herring in all of the eastern bays and these spawn in fairly deep water ( $30-40$ fath) in August-September. The relative proportion of spring versus fall-spawners in comnercial herring catches since 1969 is shown in the table below.
\% Spring-spawners by area

| Ycar | A | B | C | D | E + F | Averagc (\%) |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 1969 | 73 | 93 | 62 | 98 | 91 | 83 |
| 1970 | 82 | 84 | 69 | 65 | 73 | 75 |
| 1971 | 73 | 99 | 90 | 92 | 91 | 89 |
| 1972 | 93 | 78 | 99 | 99 | 100 | 94 |
| 1973 | 97 | 96 | 96 | 99 | 98 | 97 |
| 1974 | 98 | 96 | $(31)$ | 99 | 99 | 98 |
| 1975 | 96 | 99 | 96 | 99 | 97 | 97 |
| 1976 | 96 | 99 | 97 | 99 | 99 | 98 |

There has been a dececase in the relative contribution of fall-spawners to herring catches along eastern Newfound and since sampling began in 1969; since 1973 over $95 \%$ of the catches are comprised of spring-spawners. This decrease is probilhly due mostly to an increase in abundance of springspianners as a re:iult of the recuident of the strong 1968 year-ciass but it maly also reflect a decline in abundance of fall-spawners which are predominintly very old (11 years old and older) fish.
(d) Siock migrations and interyclationships

Differences in growth rates, age compositions and the regular appearance of herring in traditional spawning areas in cach bay suggest that to a large extent each bay along castern Newfoundland has its ok:l resident population of herring. Tagging studies however, have shown some degree of movement between bays, mainly as a northward feeding migration in sumer and a southward wintering migration in the fall (Table 2). This pattern of migration results in substantial intermix between White Bay and Notre Dame Bay herring and also between herring from Conception Bay and the southern Avalon. For the purpose of stock assessment therefore these areas are combined as unit stocks and it is assumed that the other bays (Trinity and Bonavista) have resident populations which intermingle with adjacent bays but only to an incidential degrec.

## Estimation of stock size and yicld

## Method A

Catch-per-unit-effort (CPUE) and effort data (in units of purse-seiner operating days) are available for 1975 and 1976 for areas A, B, C and D. No such data arc available for areas $E$ and $F$. A smmary of the catch/ effort data is given in Table 3. The data indicate very little change in abundance indices from 1975 to 1976 although biomass must have declined since the same year-classes (mainly 1968, 1969) were exploited in both years. This suggests that learning factors are involved as indeed might be expected since 1975 was the first year that purse-seiners fished along eastern Newfoundland and little was known of the distribution of herring in the various bays in late fall. In 1976 bowever the purseseine fleet moved directly to the areas previously fished in 1975 resulting in immediate catching success. A similar situation occurred in Fortune Bay in 1967 when purse-seiners began exploiting herring in that area. Regression analyses (CPUE versus biomass) indicated that the CPUE when adjusted for learning was 1.53 times greater than the observed CPUF for 1967 (data on file). It is assumed that a similar learning factor applied to the pursc-scine cffort along castern Newfoundland in $19{ }^{\circ}$. and the adjusted effort data have been used to compute total instantal. us mortalitics ( $Z$ ) ( $5^{+}$) by the Paloheimo method. The results are sumbiarized below:

| Arca | Iffort (dias ${ }^{\text {( }}$ |  | $\bar{z} \cdot(1975-76)$ | ${ }^{1} 1976$ |
| :---: | :---: | :---: | :---: | :---: |
|  | 1975 | 1976 |  |  |
| $A+B$ | 40.7 | 131.7 | 0.43 | . 25 |
| C | 11.8 | 55.4 | 0.37 | . 20 |
| D | 29.4 | 38.8 | 0.48 | . 30 |

Since tine above data is an estimate of change in abundance indices from late fall 1975 to late fall 1976 the $Z$ values thus obtajned may therefore be considered as approximate estimates of $Z$ in 1976. Assuming $M=0.2$ his suggests value of $F$ for 1976 as indicated in the above table. Gencral observations of the fishery in Conception Bay in 1976 suggest effort levels equivalent to those in 1975 which, from general observations, were probably equivalent to those in Trinity Bay. A level of $\mathrm{F}=0.25$ has therefore been selected for Conception Bay in 1976; cohort analyses for all stocks are shown in Appendix I.

Adult ( $5^{+}$) biomass levels (as estimated from cohort analyses) of east coast herring stocks increased from $73,000 \mathrm{~m}$ tons in 1969 to $171,000 \mathrm{~m}$ tons in 1974, declining to $112,000 \mathrm{~m}$ tons in 1976, mainly due to poor recruitment resulting from the 1970-73 year-classes. The 1974 yearclass has been showing up in significant numbers in the 1977 fisheries along southeastern Newfoundland and also appear to be fairly strong in the Gulf of St. Lawrence spring-spawners. Recruitment strengths of the 1963-73 year-classes are summarized below:

| Year-Class | Strength at age 2 (millions of fish) |  |  |  | Total |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  | A+B | C | D | $\mathrm{E}+\mathrm{F}$ |  |
| 1963 | 230 | 85 | 55 | 44 | 414 |
| 1964 | 83 | 7 | 4 | 3 | 97 |
| 1965 | 56 | 22 | 21 | 7 | 106 |
| 1966 | 90 | 21 | 8 | 10 | 129 |
| 1967 | 37 | 18 | 8 | 3 | 66 |
| 1968 | 315 | 274 | 163 | 141 | 893 |
| 1969 | 161 | 59 | 22 | 37 | 279 |
| 1970 | 11 | 2 | 1 | 1 | 15 |
| 1971 | 4 | 2 | 1 | 1 | 8 |
| 1972 | 17 | 11 | 5 | 3 | 36 |
| 1973 | 3 | 9 | 1 | 2 | 15 |

## Mothod B

'lice St. Nary's-placentia and fortume Bays herring stocks-are fully exploited and reliable estimates of biomasis levels are available for the period 1967-75. These stocks peaked jn the late 1960's at a level of biomass around $120,000 \mathrm{~m}$ tons. Since herring are planktonic feeders thejr biomass production is likely to be closely related to primary (planktonic) production which occurs majnly in depths shallower than 100 fath. The surface area inside 100 fath in St. Mary's, Placentia and Fortunc Bays is comprated to be 2260 sq. miles; this inylies a maximum biomass of 53 m tons per sq. mile ( $120,000 / 2260$ ). Since cast coast herring have slower growth rates their relative productivjty should be correspondingly less; however no adjustments have been made to account for these differences since the woutheast Newfoundiand stocks were already exploited in the late 1960 's and hence biomass levels would have been higher in the unexploited state.

| Parameters | Defined Stock |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
|  | A+B | C | D | E+F |
| 1. Surface area (sq. mi.) inside |  |  |  |  |
| 100 fath contour ( $\Lambda$ ) | 2175 | 690 | 462 | 400 |
| 2. Max. Biomas (m tons) per unit arca (B) | 53 | 53 | 53 | 53 |
| 3. Estimated maximum biomass ( $\mathrm{A} \times \mathrm{B}$ ) ( m tons) | 115,000 | 36,600 | 24,500 | 21,200 |
| 4. Year of maximum biomass (from VPA) | 1971 | 1972 | 1971 | 1971 |
| 5. Corresponding 1976 biomass (from VPA) | 73,600 | 26,500 | 13,100 | 8000 |
| 6. Corresponding 1976 F (5 ${ }^{+}$) | . 20 | 0.27 | . 35 | . 45 |

Estimates of biomass by this method are fairly close to estimates by Method $\AA$ with the exception of Conception Bay for which Method $\Lambda$ gives substantially higher values.

## Calculation of optimum exploitation level

Yield-per-recruitment curves have been calculated for two options of partial recruitment relating to that observed recently (option $\Lambda$ ) and that which inight be expected to occur with a strong year-class entering the fishery (option B). The results (Fig. 3 ) indicate $F_{0.1}=0.55$ under option $A$ and $F_{0.1}=0.42$ under
option B. These are relatively high levels of fishing mortality and would substantially reduce average biomass levels thereby maximizing fluctuations in catch. Accordingly a level of $\mathrm{F}_{0.1}=0.30$ has been selected as an appropriate
exploitation level which would gencrate $800^{\circ}$ of the maximum $Y / K$ at at level of fishing affort less than $1 / 3$ of that required for fimax.

## Catch projections

Mean recruituent strengths and standard deviations have been calculated for the year-classes 1963-73 for each defined stock and (using a-random number gencrator) a 20 -ycar projection of catch at $F_{0.1}=0.30$ has been
computer, assuming that the 1974 year-class is equal to $1 / 2$ the strength of the 1968 ycar-class. The results are shown in lig. 4 and are given in detail for 1976-77 in Appendix II. A long-term average yield of $20,000 \mathrm{~m}$ tons is indicated for east coast herring with the major catches being derived from the threc northern bays (Bonavista, Notre Dame and White Bay).
^ sumnary of the 1977 projected catches at $\left(F_{0.1}=0.30\right)$ by methods $\Lambda$ and $B$ is given below:

1977 Projected catch by area (m tons)

| Method | A+B | C | D | E+F | Total. |
| :--- | ---: | :--- | :--- | :--- | :--- |
| A |  |  |  |  |  |
| B | 10,500 | 6,900 | 2,500 | 2,100 | 22,000 |
| Av. long-term yield | 8,500 | 5,500 | 2,100 | 1,500 | 17,000 |

Fisheries in areas $A+B$ undoubtedly exploit a mixture of resident and migrating populations of herring and a partitioning of the TAC is recommended to prevent potential over-exploitation of local stocks of herring. Suggested areas are Cape Norinan - Cape St. John, Cape St. John - North Head, North Head - Cape Freels.

## Acknowledgements

Most of the technical staff of the Pelagic Scction, Newfoundland Biological Station have been involved in the collection and preparation of data used in this report and their contributions are gratefully acknowledged. Dr.'W.D. MeKone kindly provided the tagging data described in this report.

Table 1. East coast horring catches (metric tons) by arca and gear 1973-76.


Table 2. Sumary of recapture data (excluding retums from month of taging) from tagging experiments along eastern Newfoundland, 1975-76.

| Tagging locality | No. tagged | Tag recoverics by area |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | A | B | C | D | E | F | G | 11 |  |
| 1975 |  |  |  |  |  |  |  |  |  |  |
| White Bay (A) | 250 | - | 1 | - | - | - | - | - | - |  |
| Notre Dame Bay (B) | 6150 | 5 | 62 | - | 1 | - | - | - | - |  |
| Bonavista Bay (C) | 3750 | - | 1 | 19 | 2 | - | - | - | - |  |
| Trinity Bay (D) | 4025 | - | - | 5 | 82 | 1 | - | - | 1 |  |
| Conception Bay (E) | 5450 | - | - | 3 | 3 | 70 | 4 | 13 | 2 |  |
| Southern Shore (F) | 2000 | - | - | 1 | - | 17 | 27 | 24 | - |  |
| 1976 | 1 |  |  |  |  |  |  |  |  |  |
| White Bay | 10,650 | 105 | 172 | 7 | - | - | - | - | - |  |
| Notre Dame Bay | 4911 | 5 | 50 | 1 | - | - | - | - | - |  |
| Bonavista Bay | 4125 | - | 1 | 181 | 1 | - | - | - | 1 |  |
| Trinity Bay | 5000 | - | 1 | 22 | 89 | $\overline{-}$ | - | - | - |  |
| Conception Bay | 4000 | - | - | 1 | 3 | 37 | - | $\overline{1}$ | - |  |
| Southern Shore | 4225 | - | - | - | 3 | 20 | 10 | 1 | - |  |
| St. Mary's Bay | 3825 | - | - | 1 | 1 | 3 | 3 |  | 2 |  |

Table 3. Purse seine catch-per-unit-effort data for various cast coast bays 1975-76.

| Arca | Clue (tons/day) |  |
| :---: | :---: | :---: |
|  | 1975 | 1976 |
| $\wedge$ ¢ ${ }^{\text {B }}$ | 89.2 | 92.7 |
| C | 114.2 | 114.8 |
| D | 86.9 | 92.3 |

APP. I - Tabk 1



DREDETERMINED FISHING MORTALITY USED FOR LAST YEAR
O. 25000
0.25000
0.25000
0.25000
0.25000
0.25000
0.25000
0.25000
0.25000
0.25000
0.25000
0.25000
0.25000
0.25000
0.25000
0.25000
0.25000
0.15000
0.05250
0.06250
0.01250
0.00250


APP. I - Table_ 2



APP. I - Tabk 4
HERRING AREA E+F 1969-76 SSIODO AGES 2-11


STOCK PROJECTION AREA ALG SPRING SDANNFWS 10000
APP. II -..Table. .. I $\qquad$


$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$

STUCK PROJECTIUP! AHEAㄷ SPRING SHANNERS 10000 -.... APP. II - Table... 2


| AGE | $\begin{aligned} & \text { POP NO. } \\ & \times \times 10-3< \end{aligned}$ | $\begin{gathered} \text { CATCH NO. } \\ \times \times 10-3< \end{gathered}$ | $\begin{aligned} & \text { FISHING } \\ & \text { MORT. } \end{aligned}$ | $\begin{aligned} & \text { MEAN WT. } \\ & K G \text {. } \end{aligned}$ | DOP. WT. <br> KNETRIC TONSS | CATCH WT. XMETRIC TONSC | RESIDUAL POP. NOS. |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 2 | 610. | 2. | 0.003 | 0.080 | 48.8 | 0.1 | 498.0 |
| 3 | 11195. | 151. | 0.015 | 0.119 | 1332.2 | 18.0 | 9029.0 |
| 4 | 602. 527 | 39 $70^{\circ}$ | 0.075 | $0 \cdot 150$ | 90.2 97 | 5.9 10.9 | 457.0 |
| 6 | 73 . | 17. | 0.300 | 0.232 | 16.9 | 4.0 | 44.2 |
| 7 | 40. | 9. | 0.300 | 0.248 | 9.9 | 2.3 | 24.3 |
| 8 | 1387 . | 327. | $0 \cdot 300$ | 0.255 | 353.7 | 83.5 | 241.2 |
| -9 | 5247 . | 1239. | 0.300 | -0.277 | 1453.5 | 343.2 | 3162.7 |
| 10 | 261. | 62. | 0.300 | 0.291 | 75.1 | 18.1 | 258.5 |
| 11 | 254. | 60. | 0.300 | 0.334 | 84.9 | 20.1 | 154.2 |
| 12 | 1031. | 243. | 0.300 | 0.334 | 344.2 | 81.3 | 625.1 |
| 13 | $10^{0}$ | - 0. | 0.300 | -0.334 | $-0.0$ | $0.0$ | $-0.0$ |
| 14 | 0. | 0 。 | 0.300 | 0.334 | 0.0 | 0.0 | 0.0 |
| 15 | 0. | 0 。 | 0.300 | 0.334 | 0.0 | 0.0 | 0.0 |
| TOIAL | 21228 | 2229 |  |  | $39.08 \cdot 1$ | 590.9 | 15375.1 |

$\qquad$
$\qquad$
$\qquad$

$$
\text { -STOCK DRUJECTION AREA D SPRING SUAWNI:RS .ONOO - APP... II -...Tab/e... } 3
$$

$\qquad$

NATURAL_MORTALITY\# - 0.2000 .. .. ____ YEAR 1976


NAIURAL MORIALITY:_0_0.0.0.0 $\qquad$ YEAR .. . 1977 $\qquad$

$\qquad$
$\qquad$
$\qquad$
$\qquad$

$\qquad$
$\because$


$\qquad$
$\qquad$
$\qquad$
$\qquad$

lig. 1. Area map of Newfoundland


Fig. 2. Age composition data (spring-spawners) of castern Newfoundland herring stocks.


Fig. 3. Yield-per-recruit curves of eastern Newfoundland herring stocks under two assumptions of partial recruitment;
(A) $1 \%, 5 \%, 25 \%, 60 \%, 100 \%$ for ages $2-6$ respectively
(B) $1 \%, 30 \%, 50 \%, 100 \%$ for ages 2 - 5 respectively.


Fig. 4. Catch projections, 1976-95, at $F_{0.1}=0.30$ for the various stock complexes of herring along eastern Newfoundland.

CAFSAC
STATISTICS, SAMPLTNG AND SURVEY SUB-CCMMITTEE
REPORT OF MEETING
QUEBEC CITY
NOVEMBER 8, 1977

Attendance: W. Douioleday - Chairman
J. Boulva - Rapporteur
D. Barret-
R. Boudreault:
G. Carpentier
P.L. Ellis
L. Felthen
D.N. Fitzgerald -
J. Fréchette
P. Hart
J.P. Lיssiaà-Berdou
W. Marshall.
T.K. Pitt
D. Tilley
D. Waldron.
R. Wells

The meeting was convered at the F.M.S. Quebec regicnal office. Locuments distributed for discussion are listed in Appendix $A$ and have been included in the CAFSAC working paper series, with the exception of one ICNIAF Sumiary Document.

STRATIFICATICN OF THE GUF OF ST. LA:NRENCE (GROUNDFISH AND SARTIMP)

## 1. Groundfish

a) Maritimes. A stratification scheme in fathoms for the Southern Gulf was introduced in 1970, and is based on depth zones and has been used since for about 10 groundfish cruises mainly in September.
b) Quebec. The province of Québec developed a groundfish stratification scheme in 1976 for the northern Gulf of St. Lawrence, using the depth contours of 100,200 and 400 meters. Computer programs are available to produce charts with isobaths. Three cruises have been completed using this system. The addition of a 300 meter contour is under consideration.
c) Newfoundland. St. John's Laboratory has completed in 1977 a scheme for the northern Gulf and one cruise was done this September. The scheme is based on depth contours of $50-10$, 100-150, 150-200 and greater than 200 fathoms and defines 33 strata which are broken down in rectangles of $32-33$ square nautical miles. Random selection of stations is done by computer.
2. Shrimp

The province of Quebec introduced a stratification scheme for the northwest Gulf in 1974. Two cruises, one in April and the other in October had been made frem 1974 to 1976 using this scheme, another one in April 1977. There are 13 strata based on fathoms depths over a 1500 sq. mi. $\therefore$ rea in the N.W. Gulf scheme. Another scheme was introduced in 1977 for the Anticosti Channel over an area of 2603 sq. mi. One cruise used that scheme in November 1977.

In the absence of E.J. Sandeman from Newfoundland, it was not possible to have a full discussion on a stratification scheme for shrimps in the northern Gulf. It was agreed that the matter should be discussed either at a future SSSS meeting or directly between S. Sandeman and J. Fréchette.
3. Discussion

A discussion followed in which the points below were raised:

- Direct comparisons of abundance estimates from one survey to another are hazardous.
- To compare overall abundance estimates, it does not matter if one scheme is in metric and has different strata boundaries than the other schene. Both Quebe: and Newfoundland sciemes allow aggregation by ICNAF division.
- The division line of 4 T is not clearly indicated in the scheme of St. Andrews.
- Quebec needs to add part of $4 T$ to its scheme to cover redfish completely.
- No conflict is seen between the Maritimes and the Quebec or Newfoundland schemes.
- Stratification schemes, in some instances, do not cover depths less than 50 fathoms because of the presence of fixed gear or rough bottoms.
- If station latitudes and longitudes are given, it is simple then to transfer from one scheme to another, at least within an ICNAF division.
- Adopting the Quebec scheme would mean a lot of expensive hand work for Newfoundland; adopting the Newfoundland scheme would mean a lot of expensive computer work for Quebec (digitization of fathoms isobaths and quadrangles boundaries).
- Quebec is willing to discuss the possibility of access, by St. John's to its computer programs and data base for the Gulf stratification, and to supply upon request a copy of its master chart.
- St. John's is willing to provide similar information to Quebec.
- The objectives for Quebec in selecting depth zones is to improve precision of abundance estimates and also to allow comparisons of species biometric data between various depth ranges mainly for cod and redfish.
- The Newfoundland stratification scheme is aimed at cod and redfish abundance estimation.
- Even though a metric scheme has long-term advantages due to the switchover to metric by the Hydrographic Service, it will be simple to continue using stratification charts prepared in fathoms.

The Sub-cormittee recognizes that a single stratification scheme for the Gulf of St. Lawrence would be preferable and that it would facilitate coordination of research between the various laboratories involved; discussions compared the long-term advantages of shifting to a compuierized scheme in metrics to the high cost of changing over but no definite conclusion was reaci-3c.

## 4. Numbering of strata

The numbering of stratification schemes is a cormon problem to 4 T , as well as to the Gulf and the whole of the N-W.Atlantic, mainly due to overlap in numbers..

The Sub-committee recommends:
a) that St. John's examine the possibility of adopting St. Andreus: numbering system in 4 T and numbers l to L 4 in the deep water of the Laurentian channel in 4 T ;
b) that St. Aridrews adopt St. John's strata boundaries in 4 T ;
c) that various laboratories consider using number series which do not overlap.

PROGRESS TCWARDS 1977 FOREIGN LOG RECCRD PROCESSING

## 1. Staffing Action for Processing of Log Records

Processing of $l o g$ records has not been initiated due to lack of availability of those man years requested; processing of logs had been scheduled to start by late September 1977. Further, few
logs for 1977 are now available. The Sub-Cormittee feels temporary man years would be of little use due to the long time required to train personnel for such a task.

The Sub-comittee requests the Chairman to examine the possibility of obtaining permanent man ycars for processing log books.
2. Proposed format

The draft of the international fishing 10 g to be used in the Canadian management zone is tu be revised by Mr. Tilley and re-submitted to the Sub-committee, taking into account the following recommendations:
a) create a numbering scheme for the various entries
b) include enough boxes for writing digits of the Canadian licence number (6 digits recormended rather than 8 )
c) indicate precision wanted for latitudes and longitudes
d) depth of each set should be added to the form
e) total kept and discarded for each set to be added on the right side of the form
f) a box to indicate main species sought to be adided to the upper right comer of the form
g) position at start rather than end of set is needed
h) should be less lines for sets so the form will fit on a sheet $81 / 2 \times 14$ inches
i) if a loose leaf format is adopted, each form should be pre-numbered
j) the names of the five more important species by volume should be printed on top of the first five columns in the "Catch by species" table
k) replace, on lower left side, "Quantity of round fish used for . . ." by "Roundweight equivalent processed for human consuription today" and "Roundweight equivalent processed for reduction (meal)".

1) MAKE TRANSFER FORM SEPARATE FROM LOG BOOK. Rewriting of pertinent information on the transfer forms will be necessary
m) replace "Products transferred to $\square$ from $\square$ other vessels" by "Products landed $\square$ or transferred to $\square$ from $\square$ other vessels".
n) in list of products landed or transferred, delete "Fresh fillets" and write "Salt fish"
o) a species list should be included in the transfer form
p) names of "other vessels" should include Canadian licence number and side number

The Sub-cormittee further requests that Mr. Tilley forwand for comments to surveillance in Newfoundland and Maritines the draft titled

- "Valid status codes" and that on the basis of suggestions received, a new draft of recommended codes be prepared.

The Sub-committee concluded that 6 digits rather than 8 would be sufficient for the Canadian licence number, as one digit rather than two is sufficient for country identification and no digit is needed for check as this is provided by the vessel's side number.

## 3. Processing of the Forms

The Sub-committee is not prepared to discuss key entry and coding procedures, and therefore requests Messrs. G. Collins and L. Feltham to prepare a working paper on the subject for the next SSSS meeting.

## 4. Edit Program Specifications

As a consequence of the discussions of the Sub-cormittee, a major revision of the document is needed. The following points have been raised:
a) P.l, flow chart should run on a monthly cycle "Log records" need

- clarification and a box should be aded for "rejected transactions".
b) Appendix II; Edit rules:
(3) and (4) - add check to verify that position reported here is in ICNAF division indicated in (5)
(8) - discussion on vessel status "searching" was postponed to the next meeting
(11) - add check to flag discard rate if it exceeds a given percent (to be decided upon) of the total catch
(13) - add check to see if a species reported from a given area can actually occur there according to Appendix IX.
"(14)" - to be added, to extrapolate latitude and longitude of end of set, knowing the coordinates of the start.
"(15)" - add "depth; :
c). Appendix III - Record format description. Discussions are positponed due to major revision of the draft form.
d) Appendjx V - List of ICNAF division codes. Ac̃d ICNAF area 0 and delete ICNAF area 6; add Canadian fishing zone 6 which covers the Arctic waters.
e) Appendix VI - Valid status codes - to be revised by Mr. Tilley as indicated above.
f) Appendix VII - Gear codes. It was suggested to remove those gears which do not apply to the NW Atlantic, but after some discussions, it was agreed to retain the list as it stands. The codes will be adjusted by the data base administrator; this matter to be referred to D. Waldron and D. Tilley.
g) Appendix VIII - Species code. See below.
h) Appendix X - Record format description. Previous year's Canadian licence number is needed to allow following individual vessels. Add also: number of crew horsepower and age of vessel.
i) Appendices I, IV and IX were not discussed.

5. Possible Role of FLASH in processing Foreign Fishing Logs

The Sub-comritee agreed that FLASH should supply:
a) to each region $a$ list of vessels licenced by that region whose log books are cue this month.
b) a sampling report on a regular basis, indicating total catch and effort and gear used, if possible by vessel tabled by country
c) the regions with a list of vessels which reported being in each simple area the previous month if the computer system for lag records is not functioning.

Further, the $S:$ b-committee agrees to allow access of FLASH to the master file.

Further discussions raised the suggestion that "sightings" noted by FLASH should specify "sighted fishing" or "sighted sailing".
6. Importance of Log Records for Surveillance

The usefulness of log record data to audit surveillance and quota managsment reporting of the foreign fleet was noted.

CONVERSION FACTORS FOR FOREIGN WET AND PROCESSED WEIGHTS (Preliminary Considerations)

The Sub-committee discussed the availability of conversion factors and observed that stock, seasonal and other variations in corversion
factors are to be anticipated. Conversion factors are available for most species and products but often are out of date..

The Sub-committee agrees that available conversion factors should be revised and recommends thot the necessory field program for such a revision be initiated.

## SPECIES CODES

The Sub-committee examined the advantages and disadvantages of three species codes: ICNAF numeric, FAO taxonomic and ICES alpha. No clear conclusion was reached but it was tentatively proposed that the three alpha code be adopted.

A national data dicticnary is to be prepared for the Fisheries and Marine Service, and is to include a species code, the nature of which is still unknown; it is possible that all Canadian government organizations may have to use this latter code.

## NEXI MEETING

It was tentatively proposed that the next meeting take place in St. John's, Newfoundland during the seconc week of January, 1978.

## APPETDIX I

Documents Submitted:

CAFSAC
TITLE
AUTHOR
WORKING
PAPER

77-41

77-42

77-43

77-44 : List of Northwest Atlantic species arranged according to the ICNAF groups
anonymous
77-A5
77-46

ICNAF Surm.
Dec 77/XI/36
Stratification scheme for groundfish used i.n the Southern Gulf by the Naritime Region

Stratification scheme for groundfish used in the Northern Gulf by the Direction générale des pêches maritimes Ministère de - l'industrie et du commerce du Québec.

Draft form for international fishing log
D. Tilley $\varepsilon$
P. Hart
L. Feltham.

Notes or. possible role of FLASH in processing foreign fishing logs

Three-alpha code for use in logbooks to identify North Atlantic species names.
D.N. Fitzgerald
J.P.Lussià̀-Berdou
P.L. Ellis

Assistant Executive Secretary ICNAF


