This report not to be cited without prior reference to the author.

Analysis of stock size and yicld of Southern Gulf herring

by

G.H. Winters, D.S. Miller and J.A. Moores

Introduction

The rapid increase in landings of Southern GuJf herring in the mid 1960's was due to the large-scale introduction of purse-seining which transformed the fishery from one based mainly on fixed gear exploiting spring-spawing herring in the Southern Gulf to a mobile fishery exploiting both spring. and fallspawning herring at ail times of the year and outside the Gulf in Southwest Newfoundland where the stock complex over-wintered. Landings increased from $40,000 \mathrm{~m}$ tons in 1965 to $300,000 \mathrm{~m}$ tons in 1.970 subsequently declining to around $40,000 \mathrm{~m}$ tons since 1974. Research studies (Winters and Hodder, 1975 and references therein) revealed that the developing fisheries were based on an accumulation of bionass produced by two very large year-classes (1958 of autum and 1959 of spring) spained in the late 1950's shortly after a fungus desease (Tibbo and Grahamn, 1963) had decimated herrirg stocks in the Southern Gulf. These studies also showed that the precipitous decline in catches during the early 1970's was due to a combination of high fishing mortaljties and successively poor recruitment to both spawning components. Winters and Hodder (1975) concluded that the large 1958 and 1959 year-classes having been produced under exceptional circumstances were not a regular feature of the biology of this stock complex; more likely the much smaller year-classes whith prevailed in the 1960's represented the normal situation. More recent studies by Winters $(1975,1976)$ have indicated that the Southern Gulf herring biomass had exerted logistic control of its recruitment, growth and maturation and that competition and predation by an expanding mackerel population in the late 1960's prevented a resurgence of herring production as would have been expected from the rapid attrition in herring biomass during that period. Lett and Kohler (1976) arrive at a similar conclusion regarding the homeostatic effect of the pelagic (herring and mackerel) biomass on herring recruitment but with added logistic control exertcd by density-dependent 1_{1} growth. These documents summarize recent data and present additional hypotheses relating to present and historical production of Southern Gulf herring.

Stock Definition

Since 1972 (Table 1) the fishing pattern on this stock has changed from a predominantly winter fishery along southwest Newfoundland and a summer fishery in the Southern Gulf to a predominant spring purse-seine fishing along the western (so-called "edge" area) and eastern (southwest tip of Newfoundland extending into St. Georges Bay) edges of the Laurentian Channel and a fall fishery in the Southern Gulf. Historical tagging experiments (Winters 1975 and references therein) have confirmed the spring migration across the Laurentian Channel to the "edge" fishery but more recently purse-seiner fisheries have developed at the head of St. Georges Bay. An analysis of
spawning group composition (Moores and Ninters, MS 1977) indicatcs these to be comprised mainly of spring-spawners in 1975 and 1976 whereas in previous years (when the fishery was at the southem extreme of St. Georges Bay) the proportion of spring and fail spawers was similar to catches sampled from the "edge" fishery". The high proportion of maturity stages 5 and 6 in the St. Ceorges Bay samples in 1975 and 1076 together with results of tagging experiments conducted in St. Gcorges Bay in April 1976 suggest that local stocks rather than Southern Gulf heraing were exploited in St. Georges Bay in 1975 and 1976. These catches have therefore been excluded from this assessment of the Gulf herring stock complex; all previous catchos on St. Gcorges Bay are however included as part of the Southem Gulf stock.

Age Composition of 1976 Catches

Total catches in 1976 (Tablc 2) were $40,000 \mathrm{~m}$ tons a decrease of 4000 tons from 1975. Purse-seine catches remained at the 1975 lovel whereas inshore gears decreased from 13,500 tons in 1975 to 10000 tons in 1976. This decline was most evident in the Gaspé sunmer fishery which exploits mainly autumn spawners during their spawning season.

Age composition data of purse-seine fisheries along the "edge" and in the Gaspe area for the period 1974-76 are shown in Figure 1. Amongst spring spawners the "edge" fishing continued to exploit mainly the older age-groups whereas there was very little difference between the "edge" and Gaspe fisheries amongst fall spawners, reflecting perhaps the extremely poor production of this component since the 1970 year-class and the apparently high migration ratio (Winters and Hodder 1975) of that year-class in 1976. The 1974 year-class dominated purse-seine catches of spring spawners the Gaspe fishery in 1976 and appears to be at least as strong as the 1968 year-class.

Spauming Group Composition

Inshore fisheries in the Southern Gulf tend to exploit spawning populations and thus are largely discrete in their spawning group composition (Tabel 3). The Southern Gulf purse-seine fisheries have changed somewhat since spawing grounds were protected from encircling gears in 1975. The fishery is now concentrated in late fall when the schools of herring are mixed and the recent production of good year-classes of spring spawners has resulted in a predominance of that component in the fall fishery.

Commercial sa.iples from catches taken in the "edge" fishery suggest a mixture of spring and fall spawners with a trend towards increasing prepondance of fall spawners with time (Fig. 2). This agrees with observations by Hodder et al (1971) that spring spawners immigrate into the Gulf earlier and at a faster rate than fall spawners. This diminishing contribution of spring spawners to the "edge" fishery in May is also consistent with their inshore spawning migrations at this time both in the Magdalens and in the Chaleur Bay area.

Fig. 3 shows the contribution of fall spawners to the total catches since 1965. The increase from 30% in 1065 to 75% in 1970 was due to developing fisherics on over-wintering concentrations along southwest Newfoundland and on spawning concentrations of fall spawners in the Southern Gulf. The decline in the contribution of fall spawners since 1972 is partially due to the demise of the southwest Nowfoundland fishery and the seasonal shift in the Southern

Gulf fisheries but more so as a rcsult of continuing poor recruitment to that component relative to spring spamers.

Catch/liffort Nialyses
Log-book records of catch and effort data for the pursc-scinc fleet operating in the Southern Gulf (Gaspé - Chalcur Bay) and along the "cdac" have been analyzed for trends in scasonal and ammal abundonce changes (Tables 4 and 5). In the Southern Gulf fishery catch-per-unit-effort (CPE) has a scasonal trend, increasing from June to July then decreasing in August followed by a steady increase during the fall apparently as a result of a general concentration pattern of spring and fall spawners prior to their over-wintering emigrat: on from the Gulf. To avoid biases due to scasonal changes in CPE annual CPE indices were calculated as the unveighted mean CPE for the months August - October. 1973 was discarded being based on one boat only and estimates of CPE for August and Septomber 1976 were derived from the ratio of CPE in these months to the average Ocwber CPE during the period 1972-72, 1973-74. The data (Table 4) indicates that CPE declined substantially from 1971 to 1974 , stabilized in 1975 and showed a significant improvement in 1976. The "edge" fishing, on the other hand, has shown a continuous improvement since 1974 (Table 5).

CPE data are summarized in Table 6 including comparative data from the fishery on over-wintering herring in southwest Newfoundland (Winters and Hodder 1975). Since the southvest Newfoundland data have been shown to be well correlated with changes in biomass (Winters and llodder 1975) they have been used to obtain prorated estimates of CPE for the southern Gulf. Such estimates have then been used to estimate fishing effort in terms of operating days for the period 969-76. Fishing effort peaked at 4000 days in 1971 but has since declined to a level of 1000-1500 dajs.

Calculation of Assessment Parameters

(I) Partial recruitment rates. Trial estimates of terminal fishing mortalities (F) were utilized to assess the effect of F on fishing mortality estimates by Cohort Analyses T for the period 1969-74. No significant changes in fishing mortality estimates for 1969-74 were evident for the range of F employed; hence unveighted mean Fis were computed by age and plotted as a ratio of F for spring spawners and fall spawners separately. The results (Fig. 4) indicate that fishing mortality increases with age in both components and at a rate very similar to the migration ratios calculated by Winters and Hodder (1975). These migration ratios indicated that as a year-class grew older an increasing proportion of its numbers emigrated from the Gulf to over-linter. This situation is still evident in the exploitation of older age-groups in the "edge" fishing relative to that in the Southern Gulf.
(II) Terminal fishing mortality (F_{T}). Using the partial recruitment rates given in Fig. 4 trial values of FTwere used to obtain estimates of fishing mortality rates (spring and fall combined and weighted by population size) for ages 5 and older for the period 1969-74. These are plotted against fishing effort in Fig. 5 and regression analyses indicate a linear relationship described by the following equation:

$$
F=.00013 E-.022 \quad\left(r^{2}=.98\right)
$$

From the effort data given in Table 6 fishing mortality rates in 1975 and $19 ? 6$ were computed by the above cquation to be 0.17 and 0.10 respectively. $\mathrm{FT}_{\mathrm{T}}=0.16$ was then selected on the basis of the more conservative of the above estimates $\left(F_{5}+(1975)=0.17\right)$. The correspondence between cohort estimates of $F\left(F_{C}\right)$ and regression estimates from cifort data (F_{i}; is shown below.

Year	1964	1970	1971	1972	1973	1974	1975	1976
$\mathrm{~F}_{\mathrm{c}}$.28	.39	.51	.25	.21	.15	.17	.16
$\mathrm{~F}_{\mathrm{E}}$.28	.37	.51	.27	.21	.14	.17	.10

Results of Assessment

The $2+$ biomass of the Southern Gulf stock complex decreased from 1690 KT . in 1969 to 455 KT in 1973 (Table 7) and has stabilized at that level since then. Fall spawners however have shown a continuous decline in aburdance whereas the spring-spawning biomass has been increasing since 1973 and is now higher than in any year since 1970 . Whereas the fall spawners constituted nearly 75\% of the total biomass in 1969 the situation was the reverse in 1976 when spring spawners comprised nearly 70% of the total biomass.

The changes in the relative abundance of spring and fall spanners is mainly due to differing recruitment levels in the two components (Fig. 6). There has been a declining trend in the recruitment levels of fall spawnings and year-classes since 1970 appear to be particularly weak: In spring spaliners however, a trend of increasing recruitment levels is evident and the 1972 and 1974 year-classes seem particularly strong although of course much weaker than the 1959 year-classes. If these recruitment trends continue, the Southern Gulf stock complex of herring will have reverted to its status prior to the fungus disease in the mid-1950's i.e. a stock characterized by a predominance of spring spawners.

Calculation of $\mathrm{F}_{\mathrm{opt}}$.
Winters and Hodder (1975) have indicated there are no significant differences in yield-per-recruit of spring and fall spawners. Consequently yield-per-recruit analyses have been carried out using weighted averages of the various parameters. The results are shown in Fig. 7. The optimum fishing mortality rate ($F_{\text {opt }}$) is calculated to be 0.52 , a level which will gencrate 88\% of the maximum yield-per-recruit.

Catch Projection

Mean recruitment strengths (and standard deviations) of spring- and fall-spawning herring have been calculated for the year-classes 1961-74 and 1964-74 respectively. Using a random number generator a 20 ycar projection of stock size and yield (at $\mathrm{F}_{\text {opt }}$.) has been calculated and the results are shown in Fig. 8. Total catch Eluctuates between 55,000 and 90,000 tons with a mean of 70,000 tons. The average yield of fall spawners is 34,000 tons compared to 37,000 tons for spring spawners. The 1977 catch is projected to be $85 ; 000$ tons of which 50,000 tons are spring spawners. Total biomass fluctuates between 325,000 and 530,000 tons with an average of 420,000 tons.

The reality of these projections must be considered in relation to the adherence of future recruituent to the predicted pattern. As stated previousiy spring spawners appoar to be oscillating upwards whereas the reverse situation obtains for fall spawners. If this trend continues the projections in Fig. 8 will have undercstimated the spring component and overestimated the fall component.

General Biological Aspects

(I) Egg production, recruitment and larval abudance. Age-specific fecundities have been estimated from fecmadity-length relationships of springand faii-spawning herring given in Hodder (1972) utilizing age-length and age-maturity keys given in Hodder et al. (1972) and "inters (1975) i.e. incorporating changes in growth and maturation rate. From such data total egg production of each spawning group (population fecundity) has been calculated based on population estimates by age from cohort analyses, adjusted to May 1 for spring spawners and August 1 for fall spawners.

Survival rates per unit egg production (recruitment rate) calculated as the ratio of recruitment strength at age-group 2 to egg production 2 years earlier have been plotted against egg production in Fig. 9 (log-transformed). The significant aspect of this plot is that whereas the recruitment rate of spring spawners is following the same trend with population decline as with population increase, the recruitment rate of fall spawners is much lower in recent years for equivalent egg production levels observed in the mid-1960's. This aspect is to some degree consistent with the observation by Uinters (1976) that multiple regression analyses indicated that mackerel biomass is having a greater effect on autumn-spawner recruitment than on spring spawners. However both mackerel biomass and recruitment have show substancial declines during the 1970's and some amelioration of their effect should have been observed in recent year-classes of fall spamers. This suggests that other factors may now be regulating herring production in the Southern Gulf.

Larval abundance estimates (numbers/volume) interpolated from Lett and Kohler (1976) are plotted against egg production estimates (this document) in Fig: 10. If the 1967 data points are considgred representative for that year then larval abudance estimates in subsequent years are much lower than would have been expected from the calculated egg productions. This could be explained as a result of intensifying larval predation by mackerel subsequent to 1967 as their population increased. If one further assumes that larval predation is.linearly related to mackerel biomass then the larval abundance estimates can be adjusted by multiplying them by the ratio of mackerel biomass in 1968 onwards to the level in 1967. This adjustment is shown by the open circle in Fig. 10. The relationship is linear for both spawning groups thus supporting the predatory role of mackerel. If however the 1967 larval abundance estimates are anomalous (and there is some suggestion of this in lett $\&$ Kohler 1976) the graph suggests that mackerel have not had a significant effect on larval survival. (Lesson: What you gain on the roundabouts you lose on the swings.)
(II) I. Studics. Lett and Kohler (1976) have analyzed first-year growth (1_{1}) Southern Gulf herring, concluding that l_{1} values are inversely related to year-class size and act to control population fecundity throurh cffects on subsequent growth and maturation rates. Unfortunately the authors misinterpreted the conventions for conversion of age (given in their data source (Messich.1973)) to ycar-class resulting in the assignment of fril spawner year-classes tho years too recent and spring spawner one year too recont. The data are replotted in Fig. 11. There is little evidence to suggest a density-dependent relationship between year-class sizc and firstyear growth. Rather a general trend of increasing l_{1} 's from the 1957 yearclass onwards is suggested. The data points however are based on small sample sizes and have not been adjusted for potential biases due to Lee's phenomenon. We have therefore selected otolith samples from the Southern Gulf stock and have measured l_{1} values for year-classes 1958-68 at age S. The results are plotted against yoar-class size for spring spawners and fall spawners in Fig. 12. They support the conclusions derived above from Messich's (1973) data. They do not however provide conclusive evidence of the absence of density-dependent l_{1} growth since conditions in the Southem Gulf were exceptional during the late 1950 's and also there has been only one dominant year-class in each component. We have therefore measured annuli of otoliths from Fortune Bay, Newfoundland which has been heavily exploited since the mid-1960's and which has experienced 3 strong year-classcs since the late $1950^{\prime} \mathrm{s}$. The stock is predominantly spring spavmers ($90-95 \%$) and estimates of year-class strength have been derived by cohort analyses (data on file).

To obtain an adequate sample size for weak year-classes a range of age-groups (5-8) were measured. This necessitated an evaluation of change in I_{1} cstimates with age (Lee's phenomenon). The 1968 year-class was. selected and measured at age-groups $4-8$. The results (Fig. 12) indicate strong Lee's phenomenon from age-groups 8 to 6 , then a drop in i_{1} folloved by an apparent further increase. Other year-classes also demonstrated this drop in I_{1} values from age-groups 6 to 5 as did the Southern Gulf samples. No explanation can be given. Fig. 12. was then used to adjust 1_{l} values of the weak year-classes th age-group 6. L_{1} values thus obtained are plotted against year-class strength (1958-71) in Fig. 13. Correlation analyses indicate that 1_{1} is not significantly correlated with year-class strength.

A corollary of Lett and Kohler's (1976) hypothesis is that l_{1} size acts to control egg production through regulating effects on growth and maturation rates. This implies the absence of density-independent effects such as temperature, density-dependent effects exerted by the total biomass, and growth compensation. Fig. 14 illustrates a plot of l_{t} (age-group 6) against l_{1} for Fortune Bay herring. The correlation is not significant suggesting that other factors (named above) may be more important in determining subsequent growth than l_{1} size. Fig. 15 shows the instantaneous growth rate during the second year plotted against l_{1} size. Growth compensation is evident and undoubtedly acts to stabilize subsequent growth, a growth characteristic also present in capelin (Winters 1974) and a varicty of other specics.

Surface temperature data are available from Station 27 (off St. John's) for the period under consideration. Fortune Bay hydrography should not be greatly different in terms of temperature trends than Station 27 since both are under the influence of the Labrador Current. Consequently l_{1} values of

Fortune bab herring have been plotited against these sumer temperatures in lig. 16. A si.gnificant positive corrclation suggests that l_{1} trowth of Fortunc bay herring is being, affected by temperature. Sinjlar conclusions were rached by Day (1957) for Southern Gulf herring. In sumary both density-independent and intrinsic factors play an important role in herring growth, and year-class size as an homenstatic mechanism regulating firstyear growth does not appear to be of signifjeant importance.

The critical aspect of stock projection and yicld is the causitive factors determining jear-class size. Whereas correlation analyses (iinters 1976) suggest that herring biomass in conjunction with mackerel bionass acts in a logistic manner to regulate herring recruitment and growth, it does not explain the recent divergent recruitment trends in the two componiats nor does it adequately explain the predoninance of fall spawner recruitment in the latt 1950's and 1960's following a long-standing predominance of spring spawners (Tibbs, 1969). The recent trend suggests that perhaps the stock complex is now normalizing itself in terms of the spawning group composition, a phenomenon which is also evident in the Northern Gulf herring populations . (Moores and Winters, MS 1977). Indeed the timing and much larger size of the spring plankton bloom in the Gulf of St. Lawrence would normally favor the greater production and survival of spring-spawned larvae, an advantage somewhat compensated for by the greater fecundity of fall spawners.

In addition to exceptional conditions created by the fungus epidemic in the late 1950's there is other evidence to suggest that conditions were unusual during that period. Olsen (1961) reports that whereas spring spawners dominated all of the major herring fisheries in Newfoundland in the late 1940's, during the late 1950's herring sampled along western Newfoundland tended to exhibit ar extended spawning season from May to September. A similar situation was reported in herring sampled along the south coast area (Tibbo 1957). These populations of herring were substantially depleted in the late 1940's and early 1950's both by heavy fishing and by the fungus epidemic and it may be hypothesized that such an attrition in population size resulted in a substantial increase in growth rate. Olsen's (1961) data support such an hypotheses. This may have resulted in spring-sparned yearclasses to mature early enough to spawn (at least partially) in the summer and fall rather than the spring which would result in an extended spawning scason. A similar situation may have occurred in the Southern Gulf spring spawners which were also severely depleted by the fungus epidemic. In fact 1_{1} values of spring- and fall-spawning Gulf herring are very similar in the late 1950's and carly 1960's which would not b? expected if the sparming seasons were discrete and non-overlapping.

In summary a definitive evaluation of production mechanisms of Southern Gulf herring in the late 1950 's which resulted in abnormal recruitment patterns is not possible with present data; the probability exists that such recruitment patterns were abnormal and that the stock is now normalizing both its biomass and its spawning group composition.
(The data and their analyses presented in this report are by the nature of their development preliminary and should not be referenced or used without the written permission of the authors.)

Reforences

Day, L.R. 1957. Vertebral numbers and first-ycar growth of herring (Clupea harengus) in relation to water temperature. Bull. Fish. Res. Bd. Can. 111: 165-176.

Hodder, V.M. 1972. The fecundity of herring in some parts of the Newfoundland area. ICNM: Res. Bull. 9: 99-107.

Hodder, V.M., L.S. Parsons, R. Chaulk and C.I. Barbour. 1972. Length, age, weight of herring in the southwest Nowfoundland winter fishery from 1965-66 to 1970-71. FRBC Tech. Rep. 339: 113p.

Lett, P.F. and A.C. Kohler. 1976. Recruitment: a problem of multispecies interaction and enviromnental perturbations, with special reference to Gulf of St. Lawrence Atlantic hersing. J. Fish. Res. Bd. Can. 33: 1353-1371.

Messich, S. 1973. Biological characteristics of spring and autum herring populations in the Gulf of St. Lavrence and their interrelations. Ph.D Thesis. McGill Univ. Montreal 190p.

Moores; J.A. and G.H. Winters MS 1977. Production and yield of western Newfoundland herring stocks. CAFSAC Res. Doc. 1977.

0lsen, S. 1961. Contribution to the biology of herring (Clupea harengus L.) in Newfoundland waters. J. Fish. Res. Bd. Can. Vol. 18: 31-46.

Tibbo, S.N. 1957. Herring populations on the south and west coasts of Newfoundland. Bull. Fish. Res. Bd. Can. 111: 153-164.
1969. Catch statistics, length and age composition of Gulf of St. Lawrence herring. FRBC Tech. Rep. 139: 81p.

Tibbo, S.N. and T.R. Grahamn. 1963. Biological changes in herring stocks following an evizootic. J. Fish. Res. Bd. Can. 20: 435-439.

Winters, G.H. 1974. Back-calculation of the growth of herring in the Newfoundland area. ICNAF Res. Doc. 74/7, 16p.
1975. Population dynamics of the Southern Gulf of St. Lawrence herring stock complex. Ph.D. thesis Dalhousie Univ. Halifax, N.S. 142p.
1976. Recruitment mechnaisms of Southern Gulf of St. Lawrence Atlantic herring (Clupea harengus harengus). J. Fish. Res. Bd. Can. 33(8): 1751-1763.

Winters, G.H. and V.M. Hodder. 1975. Analyses of the Southern Gulf of St. Lawrence herring stock and implications concerning its future management. ICNAF Res. Bull. 11: 43-59.

Table 1 Catch statistics for the various fisheries exploiting the Gulf stock complex, 1969-76.

Year	Catch (KT) by Area			
	SIV Nfld.	St. Georges Bay	S. Gulf	Total
1969	128.1	0.3	152.5	280.9
1970	121.2	0.1	175.3	296.6
.	99.5	- 3.9	131.9	235.3
19\%	$\because 7.8$	6.3	53.9	88.0
1973	2.7	812.5	43.1	58.3
1974	0.5	2.6	34.1	37.2
1975	-	3.6	43.9	43.9*
1976	-	6.5	39.4	39.4*

* S. Gulf only.

Table 2 Catch statistics for $4 T$ herining in 1076

Month	Magdalens - Edge		Southem Gulf		Total
	Inshore	P. Seine	Inshore	Seine	
April	418	8052	222		8692
May	694	9637	4766		15097
June			669		669
July			191		191
Augus t			1073		1073
Septomber			1798		1798
October	56		250	3966	4273
November			2	8181	8183
December			-'		-
Total	1168	17689	8971	12147	39975

Table 3 Spawning-group composition of comnercial samples of herring caught by inshore and purse-seine fisheries in the Southern Gulf 1974-76.

Year	\% Autumn spawners							
	May	June	July	Aug	Sept	Oct	Nov	
A. intande								
1974	2	0	-	99	100	-	-	
1975	1	1	- 100	94	-	-	-	
1976	1	47	78	100	100	-	-	
B. P. Seine								
1974	-	-	68	74	79	98	44	
1975	-	-	38	-	75	3	3.	
1976	-	-	-	-	-	48	37	

Table 4 Monthy CPE data as evaluated from log records of purseseiners uperating in the Southern Gulf, 1971-76. Bracketed values in 1976 are estimates from regression analyses.

Year	Catch-per-wit effort (CP:)						Unweighted mean (Aug Oct
	June	July	August	Sept	Oct	Nov	
1971	25.2	70.1	47.0	54.4	77.4	-	56.6
1972	-	55.1	23.8	35.0	58.1	-	39.0
1973	-	-	-	83.3*	-	-	-
1974	-	36.0	25.2	31.2	37.2	66.7	31.2
1975	-	-	25.6	27.6	37.2	38.3	30.1
1976	-	-	(30.9)	(41.5)	55.7	79.6	42.7
Unweighted		53.7	30.3	37.1	53.1	61.5	

* One boat only

Table 5 Monthly CPE of purse-seincrs operating along the "Edge" 1973-76.

Year	CPE (m tons/op, day) April May Jume			Mean	
				Unweighted	Weighted
1973	57.5	54.6	50.5	54.2	55.3
1974	40.7	40.0	-	40.4	40.1
1975	48.7	57.4	-	53.0	55.1
1976	65.6	69.7	-	67.5	67.2

Table 6 CPE for the various fisherios exploiting the Southem . Guif stork complex. See text for explanation.

Table 7 Biomass levels (age-group \%+) of spring and fall spawning herring in the Southern Gulf as calculated by cohort analyses.

Spawning	Biomass (KT) at beginning of ycar							
	1969	1970	1971	1972	1973	1974	1975	1976
Spring	454	372	272	206	196	239	265	316
Autumn	1237	894	561	324	259	222	191	153
Total	1691	1266	833	530	455	461	456	469

Fig. 1. Age composition data of purse-seine catches along the "Edge" and in the Southern Gulf 1974-76.

Fig. 2. Percent autumn spawners in individual samples of herring taken along the "Edge" area 1973-76.

Fig. 3. Percent autumn spawners in total catches of the 4 T stock complex
1966-76.

Fig. 4. Change in fishing mortality $:$
F for age-group 11+. Cuives
ath age, calculated as a ratio of :d by cye.

Fig. 5. Regression of fishing mortality rate of $5+\left(\mathrm{F}_{\mathrm{S}+}\right)$ herring (auturm and spring combined) and fishing effort (E).

Fig. 6. Trends in recruitment levels (: lat age-group 2) of spring- and

Fig. 7. Calculation of optimun fishing mortality rate.

Fig. 9. Relationship between the rate of recruitment (survival rate per unit egg production) and egg production (E) of springand fall-spawning Southern Gulf herring.

Fig. 10. Effect of egg production on the abundance of larvae (larval abundance data from Lett \& Kohler (1976)). See text for explanation.

Fig. 11. Relationship between year-class size and length at the end of the first year (11). Replotted from Lett and Kohlcr (1976) with correction interpretation of year-class of Messich's (1973) data.

Fig. 12. Relationship between year-class size and l_{l} growth as measured from otolith annuli of Southern Gulf herring.

Fig. 13. Relationship between year-class size and l_{1} growth as measured from otolith annuli of Fortune Bay spring spawners.

- 28 -

Fig. 1h. Relationship between length at age-group 6 and 1_{1} growth of Fortune Bay herring.

Fig. 15. Relationship between instantaneous growth rate during the second year of growth and first year size of Fortune Bay herring.

Fig. 16. Relationship between first year growth and surface temperatures summed from May - December, Station 27.

