1978 4WX HERRING ASSESSMENT
by
M. Sinclair, K. Metuzals and W. Stobo

Marine Fish Division
Fisheries and Oceans Canada
Dartmouth, Nova Scotia

INTRODUCTION

Principally as a result of tagging studies, it has been concluded that there is overwintering migration of herring from S. W. Nova Scotia to the Chedabucto Bay area. For management purposes, the catches in the two areas are considered to belong to a unit stock. Thus, herring caught by all gear types in ICNAF statistical areas 465 and 466 within $4 X a$, and by the purse seine fleet only in area 45l of $4 W a$, have been included in the $4 W X$ assessment (fig. 1). Catches by fixed gears in statistical districts 8 to 30 in $4 W X$ are considered to belong to "local" stocks and are not included. Catches by both the purse-seine fleet and weirs, predominantly of juvenile herring, in 4 Xb have also not been included in the assessment of this stock although a significant portion of this catch may well belong to the $4 W X$ stock. Approximately 30% of the long distance returns of the juveniles tagged in the N. B. weirs are from $4 W a X a$, the larger proportion being found in ICNAF area 5. The winter purse seine fishery in $4 \times b$ is directed on one (before January) and just-turned two-yearold fish (after January). It is probable that these fish come from the S. W. Nova Scotia spawning stock since there is no evidence of one-year-old fish moving up the coast of Maine from the areas of high larval abundance in area 5. In this document, only the traditional stock definition (i.e., exclusion of 4 Xb catch) is considered in the analytical assessment.

CATCH DESCRIPTION

The seasonal catch distribution by gear type is shown in table 1 and fig. 2. Except for two situations, the seasonal distribution in the catch during 1978 was similar to previous years. There was an unusual purse seine fishery off Liverpool in February, almost uniquely on two-year olds and the drift gillnet fishery on spawning fish off S. W. Nova Scotia was anomalous. The very low catch in this area and gear type associated with the lack of a normal distribution in catch around the time of peak spawning suggests poor 1978 spawning (fig. 3).

The annual catch trends for the various gears are shown in figures 4 and 5. The major components of the fishery, the mobile gears, are in decline. The N. S. weir catches have been declining gradually to 1977, but there was a sharp increase in 1978 due to a large catch of two-year olds especially in the autumn. The N. B. weir catch trend shows a different distribution with high levels for the past several gears. The dramatic 1977 increase in catch by the N. S. gill nets due to increased effort was not maintained even though the effort was again high. The total annual catch distribution ($4 \times b$ excluded) is shown in fig. 6. The TAC of $109,000 t$ in 1978 was undercaught by $20,000 t$.

The overall age composition of the catch of the various components of the fishery are shown in table 2. In 1976 and 1977 an ageing problem had been noted in distinguishing between the 1970 and 1971 year-classes. The size of these two year-classes are apparently well defined with the 1970 year-class being about six times the size of the 1971 (Stobo et al. 1978). This convention has been followed again in this assessment. Two observations support the adjustment. The 4Wa winter purse-seine fishery 1970/71 age class ratio approximates the $6 / 1$ assumption. Perhaps the annulus is more clearly defined by the end of the growing season. Secondly, the mean weight-at-age estimates from uncorrected ages suggest an anomously high weight for age seven fish in 1978 (fig. 7). This could be due to a proportion of the 1970 year-class being incorrectly aged as seven-year-olds. The low weight for eight-year-old fish may be a density dependent effect associated with the extremely large 1970 year-class. The overall \% age composition of the various components of the 1978 catch, after correction of the $1970 / 71$ age classes, are shown in fig. 8.

The adult fisheries are dominated by the 1970 and 1973 year-classes; the juvenile fisheries, of course, by two-year-olds. The age composition by month within each gear type was very similar except for the N. S. weirs. The summer catches are composed of a full range of ages, whereas the autumn catch is predominantly one and two-year-olds. In figure 9, the age composition for the total catch is shown.

EFFORT

Catch per unit effort indices in pelagic schooling species have been shown to be subject to bias because of changes in catchability (q), due to both learning by the fleet and reduced distributional range during stock depletion (Pope, 1978). Several additional problems associated with effort and CPUE measures are perhaps specific to the $4 W X$ purse seine fishery. Since many fishermen do not report number of sets, "skunk" sets, or nights searched without sets, the CPUE index for purse seine components in previous assessments has been catch per successful night. The small range in values (30 to 50 t/night) over a 12 year period in $4 \times a$ is disturbing, given the strong population biomass fluctuations. All the biases are in the direction of masking a decrease in CPUE. When the stock is low, more sets per night may be made and more nights searching may be done, which would not necessarily be reflected in CPUE (catch per successful night). A further complication with an opposite bias has been the implementation in 1977 of individual nightly boat quotas in the summer $4 \times a$ purse seine fishery. This effectively reduces the power of a night's fishing. To investigate possible changes in efficiency of individual boats, as well as the fleet, a questionnaire concerning fishing effort was mailed to each member of the Atlantic Herring Fishermen's Co-op. In addition, the log records of several fishermen who have consistently reported detailed information (searching time, individual set information) were re-analyzed.

The responses to the questionnaire were quantified in Table 3. Several points suggest increasing efficiency of the fleet as a whole: more searching over a broader geographical area with some increase in fleet co-operation, and improved technological searching aids. Nightly boat quotas are reported
by half the captains to decrease the fishing power of a night. Analysis of individual captain's log records permitted the searching time and number of sets to be included in the CPUE indices. The results are summarized in fig. 10. There is some concurrence between the captains, which is marginally improved when catch per set is the index, and good agreement between $4 W a$ and $4 X a$. The results parallel the regular CPUE analysis of previous assessments but tend to accentuate the trends caused by the strong 1970 yearclass. The questionnaire suggests that learning should be superimposed on the CPUE trends. Changes in fishing mortality per unit of effort (q) on the $4 X a$ purse seine fleet were estimated by using the catch equation. Population numbers (1969 to 1976) were taken from cohort analysis, purse seine catch at age numbers were extracted from the overall catch matrix and, subsequently, fishing mortality (F) calculated. Weighted F estimates were then divided by purse seine effort (1969 to 1976) to give trends in q (fig. 11). The trend supports use of a learning coefficient on a year-to-year basis.

Taking into consideration the questionnaire responses and the q trend, two CPUE series - an unadjusted index and an index with a year-to-year learning factor - were calculated. The effective value of a night's effort was increased by 10% from 1967 to 1976 and by 7.5% in 1977 and 1978. The reduction in efficiency increase for the last two years was included to compensate for the opposite trend - reduction on the power of a night's fishing - imposed by nightly boat quotas. The overall result is that a 1978 night is equal to two 1967 nights (a not unreasonable increase). The definition of the index and the source data are shown in table 4. The fixed gear catch per unit effort indices were not included in the overall index since market demand rather than population abundance is thought to influence the catch per weir. The CPUE trends for the adult purse seine fishery are shown in Figure 12. The 1977 4Wa CPUE is interpolated since the calculated value (117 t/night) appears spurious (no evidence of an increase by captains A - D in fig. 10). The adjusted $4 X a$ purse seine CPUE distribution is similar to the trend in catch per Nova Scotia weir, which should be an accurate reflection of population size if the abovementioned market demand influence is minimal. The observed increase in the 1978 CPUE for the N. S. weirs should precede the purse seine CPUE by a year or two (due to the different partial requirements for the gears) if the 1976 year-class is strong. The two weir CPUE trends are shown in table 5 and figure 13 . The N. B. weir CPUE recent trend (steep rise
since 1974 in N. B. weirs while the N. S. catch/weir and the purse seine CPUE's declined) suggests that the 4 Xb weir fishery involves, at least partially, a separate stock. The effort series, both adjusted and unadjusted, are shown in tabel 6.

POPULATION SIZE

Partial recruitment was calculated from the average fishing mortality at age from 1970 to 1976, as generated by cohort analysis using a starting F estimated from the ratio of CPUE values of individual cohorts (age 5 and older) between 1978 and 1977. The results are:

AGE	2	3	4	5	6	7	8	9	10	$11+$
PR	0.33	0.49	1	1	1	1	1	1	1	1

This partial recruitment vector was used in calculating weighted F, but was not used in projections or in estimating two-year-old population numbers in 1978 since there is some evidence that young fish were avoided by the purse seine fleet. F's for older ages in years 1965 to 1976 were the average values for the fully recruited ages (ages 5 to 8). Several iterations were made to adjust the F's for older ages. Starting F's for 1978 were set by optimizing the regression of F, weighted by the fishable populations, on effort. Two analyses were carried out, with the effort adjusted and unadjusted by "learning". The population and F matrices for the best runs and the corresponding G.M. regressions are shown in table 7 and figures 14 and 15 . A marginally better relationship between weighted F and effort was found using the adjusted series.

The fishable biomass generated using the adjusted effort series is a somewhat better fit with the CPUE index trend than is that derived using unadjusted effort series (fig. 16). Total larval abundance during the autumn survey agrees well with cohort analysis derived recruited biomass. The good fit suggests that larval abundance estimates may provide useful estimates of spawning stock size. Both VPA analyses
indicate that the stock is at a low point in the history of the fishery. The fishable biomass estimates made with the effort adjusted indicate that the 1978 level is considerably lower than the previous minimum in 1972, whereas the estimates made with unadjusted effort put the 1972 and 1978 recruited biomasses at about the same level. The range in possible weighted fishing mortality (0.35 to 0.47), depending on which effort series is the most realistic, is considerable.

Total population biomass (2+) estimates for 1978 are dependent on the selection of an appropriate partial recruitment for two-year-olds in 1978 (recall that the purse seine fleet avoided to a large degree small fish). The total biomass trends are shown in fig. 17. Using a 1978 partial recruitment for age two fish of 0.1 (rather than 0.33), a minimum age $2+$ biomass of $340,000 \mathrm{t}$ is estimated. The estimate using the unadjusted effort series would be about $80,000 \mathrm{t}$ higher.

RECRUI TMENT

Several methods of predicting age two year-class size were considered. This is particularly important during 1978 since the partial recruitment changed. By all accounts, the 1976 year-class is a large one [high 1978 catches in gears directed at two-year-olds; expansion of range of two-year-olds (Liverpool fishery) in 1978, and three-year-olds in 1979; purse seine fleet reports from sonar observation]. There has been a fair relationship between VPA (age two) and age two in purse seine catch/total P.S. catch (fig. 18). Because of the avoidance of two-year-olds during 1978, the predicated 1976 year-class is only of moderate size using this regression. The relationship between VPA (age two) and N. B. weir age one catch, N. B. weir age two catch, and N. S. weir age two all indicate that the 1976 year-class is large (fig. 19-21). An environmental regression developed with Dr. W. Sutcliffe also predicts an exceptional 1976 year-class. The regressions are summarized in table 8. Using a range of 1976 year-class at age two from 3 - 4 billion, estimates of 1978 P.R. at age two were made using the catch equation (table 9).

YIELD PER RECRUIT

Using the following mean weights-at-age (kg) (estimated from the 1978 catch) and partial recruitment vector, a,
$\begin{array}{llllllllllll}\text { AGE } & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11+\end{array}$ WT $0.0090 .0300 .93 \quad 0.1590 .2050 .250 \quad 0.2850 .3150 .3410 .3820 .329$ PR - $0.10 \quad 0.49 \quad 1.0001 .0001 .0001 .0001 .0001 .0001 .0001 .000$
yield per recruit curve was derived (fig. 22). Fo.1 was 0.282. The 1978 fishing mortality was considerably higher than $\mathrm{F}_{0} .1$ if adjusted effort is used in "fixing" the cohort analysis.

PROJECTIONS

Using the partial recruitments corresponding to the yield-perrecruit options, a 1976 year-class of 3×10^{9} at age two, and future recruitment equal to the geometric mean of 1965 to 1976 age two population numbers, several ten-year projections were run:

1. $F_{0.1}$ in 1979 and onwards (both options)
2. Catch of 99,000 mt in 1979 and subsequently fishing at $F_{0.1}$.
3. Catch of $110,000 \mathrm{mt}$ in 1979 and subsequently fishing at $\mathrm{F}_{0.1}$.

In addition, two projections were made with changes in the recruitment input:

1. G.M. recruitment with log normal variability
2. Conventional year-class of 750×10^{6} at age two (Stobo et al, 1978).

The projections at $F_{0.1}$ and geometric mean recruitment are shown in fig. 23.

Depending upon the initial population numbers at age, the 1979 catch should be a high of 75,000 or a low of $60,000 \mathrm{mt}$. Subsequently, the $\mathrm{F}_{0.1}$ catch would increase sharply as the 1976 year-class progressed through the fishery. The sustained catch under geometric mean recruitment (93,000 t) is low considering the catch history of this stock. If variable recruitment around the same mean is an input, the sustained catch at $F_{0.1}$ fluctuates around $140,000 \mathrm{mt}$. If the conventional year-class of 750×10^{6} at age two (Stobo et al, 1978) is the recruitment input, the sustained $F_{0.1}$ yield is around $60,000 \mathrm{mt}$ which is unreasonable.

A higher TAC in 1979, such as the previously established quota of $99,000 \mathrm{mt}$ or an increase to $110,000 \mathrm{mt}$, would give a long-term cumulative yield higher than steady $\mathrm{F}_{0} .1$ management (fig. 24 and table 10). The danger of optimizing yield of the large year-class is the possible error in predicting its magnitude. If the 1976 year-class is over estimated in this assessment, then taking a 1979 quota of $110,000 \mathrm{mt}$ could significantly alter subsequent yields at $\mathrm{F}_{0} .1$. In addition, the effect of maximizing the yield of the 1976 year-class (by taking a large portion of them at three and four years old) on subsequent recruitment is not known.

SUMMARY

Several factors indicate that the adult stock in 1978 is at a seriously depleted level. The quota was not taken in spite of high demand for the product. All CPUE indices of adult stock are at an historical low. Fishing effort may have been greater than $\mathrm{F}_{0} .1$ for several years, if the adjusted effort series is accurate. Mature biomass may be lower than 40% of the maximum recorded biomass. The frequency of very poor year-classes has increased. Fortunately, there is strong evidence of a good year-class entering the fishery. Depending on the accuracy in predicting the size of this year-class, a range of short-term options have been presented.

ACKNOWLEDGEMENTS

We acknowledge the considerable work in the preparation of this assessment by J. Simon and A. Sinclair. Most of the catch statistics were provided by Dr. D. Iles' group, and the numbers at age were generated with the help of Mr. Fitzgerald at St. Andrews.

REFERENCES

Pope, J. G. (1978). Effects of Variations in Stock Size of Pelagic Species on Distribution and Availability and Vulnerability to Fishing. ICES Symposium on the Biological Basis of Pelagic Fish Stock Management.

Stobo, W. T., Gray, D. F., and Metuzals, K. (1978). Herring Assessment in 4WX, CAFSAC Res. Doc. 78/25.

Table 1 Provisional Catch (mt) during 1978 Fishery

* Total as of Märch, . 1979 from St. Andrews Statistics
${ }^{1}$ Catch reported with location and time caught information
2 1977/78 winter only
3 including shut-offs

	1	2	3	4	5	6	7	8	9	10	11+	TOTAL	M. Tons
$\frac{\text { 4Wa Chedabucto Bay }}{\text { Purse Scine }}$	0	0	2952	4452	41385	14193	4178	18436	2741	477	455	89269	17274
4Xa Southwest Nova Scotia													
Purse Seine	0	13394.	14318	5307	55057	39001	45860	38023	5555	1228	693	218436	57973
Gill net	0	0	69	267	4483	3578	4636	5909	1069	294	132	20437	6059
Weir	35381	100775	4706	615	6605	3659	4074	2911	473	170	219	159588	8057
4Xb New Brunswick													
Purse Seine ${ }^{1}$	0	232550	14132	697	97							247476	6519
Weir	213778	894372	52125	3665	810	1064	280	132					
Total (traditional stock) ${ }^{2}$ (adjusted 1970/71 age classes)	35381	114169	22045	10641	107530	60431	$\begin{gathered} 58748 \\ (27286) \end{gathered}$	$\begin{gathered} 65279 \\ (96741) \end{gathered}$	9839	2169	1499	487730	89363

1 Includes both St. John area "brit" and Grand Manan, respectively winter and autumn, juvenile fisheries.

2
4Xb excluded

Table 3. Surmary of responses (in 1) by purse seine captains to a questionnaire concerning fishing effort.

Subject	$\underline{\text { increase }}$	decrease	no change	COMENTS
Individual searching time trend	64	14	21	
Fleet cooperation in searching trend	. 33	-	67	abrupt change due to co-op (1) gradual change (3)
Effect of boat quotas on number of hours fished per night	substantial	$\begin{array}{r} 53 \\ \text { not substantial } \\ \hline \end{array}$	47	
Initial fast learming upon entry into fishery	75	25		
Yearly Learning factor	87 .	13		
	1inked	not linked		
technological acquisitions	80 expansion	20 . no expansion		
Expansion of nearshore area fished	20	80		
Expansion of offshore area fished	$\begin{gathered} 70 \\ \text { inportant } \end{gathered}$	$\begin{gathered} 30 \\ \text { not important } \end{gathered}$	-	
Effect of market on effort expended	$\begin{gathered} 69 \\ \text { increase } \\ \hline \end{gathered}$	$\begin{gathered} 31 \\ \text { decrease } \\ \hline \end{gathered}$	no change	
Adult school size trends	-	83	17	

Table 4. Derivation of catch per unit effort index using catch and effort data from $4 W X$ Purse seine, Nova Scotia, weirs and gill nets, and New Brunswick weirs.

1. from \log records (metric tons per night)
2. 10% learning per year up to $1973,7.5 \%$ subsequently (see text for justification)
3. 10% learning per year
4. extrapolated (See Fig.)
5. CPUE INDEX $=$ CPUE/AVE (4N Purse-seine) x catch + CPUE/AVE (4 X purse-seine) \times Catch Catch ($4 W+4 X$ purse seine)

Tab1e 5. 4X nearshore effort and CPUE

${ }^{1}$ Estimate of \# of nets fished by field workers
2 Catch (mt) per net
${ }^{3}$ Estimate of \# of weirs actively fished.

Table 6. Derivation of standardized effort units using catch and CPUE indices from Tables 2 and 5 respectively.

	CATCH Year Traditional Stock Total Catch	EFFORT UNITS ${ }^{1}$ Traditional Stock	
1967	135853	106135	(with 1earning)
1968	154139	126343	74644
1969	137260	142979	98178
1970	175633	195148	120404
1971	124233	165644	179217
1972	153428	158809	163464
1973	120093	112472	154234
1974	139170	122458	120819
1975	142745	112499	132940
1976	114006	107434	129522
1977	110798	137266	126975
1978	89363	118658	177590

1
Total catch divided by appropriate CPUE index from Table 5.

Table 7. Catch, population and fisling mortaiity matricos.

CATal CT NGE

	1965	1066	1967	1968	1369	1970	1971	1972.	1973	1974	1075	1976	1977	1978
					70536	106916	144167		29656	118301	235590	19722	55634	114169
2	210796	43630 270068	47948 68430	751706 79933	70536 384467	106916 58166	174168	$\begin{array}{r}649294 \\ \hline 1884\end{array}$	562616	45600	158941	161637	19468 192823	22045
3	26450 232147	270068 58591	68430 238394	79933 65107	384467 118960	285361	106170	148516	109530	616206	92356	130597	192823	10641 107530
4	232147 49752	58591 308775	109814	274518	160723	201097	11.3561	77207	34422	53199	383646	72334	106061	107530
6	10592	45479	159203	72827	110852	120223	75593	75384	25562	15254	50599	219788	150589	27286
7	1693	13970	57948	90617	62506	111911	93620	49065	17361	5120	3238	4967	12466	96741
8	561	7722	4497	31977	22595 6345	41257	36618	26055	19836	10964	3481	356	2873	9838
9	54	1690	409	15441	6345	21271 7034	36618 7536	13792	9861	-5787	2842	1835	1253	2169
10	$--37$	- - 215	- 296	5668 1175	2693 722	2674	5695	11679	11120	7359	4599	3071	3448	1497
11+	1	1	148	1.175	720	267								

FOFULATTON NUMBERG
$16 / 9 / 79$
$70 \quad 71$
$72 \quad 73$
74 75
$76 \quad 77 \quad 78$

Table 7 cont'd

Table 8 Recruitment (VPA, age 2) prediction summary.

1. NB weir, age 2 catch -

VPA (age 2×10^{-6}) $=-589+5.94 \mathrm{NB}$ weir (age 2×10^{-6}) $\quad \mathrm{R}^{2}=0.47$
2. S.W. NS Purse Seine, age 2 catch
$\operatorname{VPA}\left(\right.$ age 2×10^{-6}) $=261+816$ RATIO (age 2 catch/total catch t) $R^{2}=0.68$
3. Environmental regression

AGE $2\left(x 10^{-8}\right)=-8.51-83.1 \mathrm{LEVHF}+0.906$ WIN $230^{\circ} \quad \mathrm{R}^{2}=0.86$
where LEVHF is residual sea level at Halifax during May in feet and WIN 230°
is the average of May, June and July wind vector in 230° direction at
Sable Island.

Numbers at age 2

Table 9. Calculation of PR (1978) for projections
$F_{1978}=0.47$ (effort adjusted)
$N_{(2 y r)}$ estimate from recruitment regressions 3 to 4×10^{9}
Case $1 \quad N_{(2 y r)}=3$ billion
Case $2=3.5$ billion
Case $3=4.0$ billion
$C_{(2 y r)}$ if 2 year olds were fully recruited
$=N_{2}$ yr. $\quad \frac{F 1-e^{-(F+M)}}{F+M}$

Case $1=1.03 \times 10^{9}$
Case $2=1.20 \times 10^{9}$
Case $3=1.37 \times 10^{9}$
Actual catch was 1.14×10^{8}
PR Case $1=0.11$
Case $2=0.10$
Case $3=0.083$
$\begin{array}{lllll}\text { For projections } & \begin{array}{lll}\text { Age }= & 2, & 3,\end{array} & 4, & 5 \ldots \ldots .\end{array}$

Table 10. Catch Projections

Fig. 1. Herring stock structure in Subareas 4 and 5 and Statistical Area 6. (Double lines indicate stock management areas; solid black areas indicate the general spawning grounds.)

Figure 2. 1978 Seasonal catch distribution by gear

Figure 3. Daily drift gill-net catch, 1977-1978.

Figure 4. 4WX offshore herring catches, 1964-79.

Figure 5. 4X Fixed gear catch (1964-1979).

Figure 6. 4WX herring "stock" annual catch (1965-1978)

Figure 7. 1978 Weight at Age

Figure 8. Percent age composition by gear of 1978 herring catch

Figure 9. Percent age camposition of 1978 removals from the 4WX stock.

Figure 10. CPUE trends for individual purse seine captains (A, B, C and D are individual captains).

Figure 11. Catchability trend in the 4 X purse seine fishery.

Figure 12. Catch per unit effort for $4 W X$ purse-seine and N.S. weirs

Figure 13. Normalized caich per unit effort for N.B. and N.S. weirs

Figure 14. Fishing mortality versus fishing effort (adjusted by learning).

Figure 15. Fishing mortality versus fishing effort (unadjusted for learning).

Figure 16. Recruited biomass from cohort analysis (solid line) and CPUE index versus time.

Figure 17. Population biomass estimated from cohort analysis.

Figure 18. Relationship between cohort analysis estimate of two year olds and the proportion of 2 year olds in the purse seine catch (fishing year shown).

Figure 19. Relationship between cohort analysis estimate of two year olds and N. B. weir catch of two year olds (fishing year indicated).

Figure 20. Relationship between cohort analysis estimates of two year olds and N. B. weir catch of two year olds (fishing year indicated).

Figure 21. Relationship between cohort analysis estimates of two year olds and N. B. weir catch of one year olds (fishing year indicated).

Figure 22. Yield per recruit curve.

Figure 23. Catch projections at $\mathrm{F}_{0.1}$ and mean recruitment (1965-1976).

Figure 24. Catch projections (see text for explanation of options).

