Analysis of the Status of the Newfoundland West Coast Herring Stock

by
J.A. Moores
Fisheries and Marine Service, Nfld. Region
Newfoundland Environment Center
St. John's, Newfoundland
AIC 5 XI

INTRODUCTION

Both the inshore and mobile components of the herring fishery in the Newfoundland west coast stock area experienced an increase in catch in 1978 despite a declining trend in stock abundance (Moores and Winters 1978). Total catch in 1978 was 15,922 metric tons, an increase of 30% above the 1977 catch of $12,286 \mathrm{~m}$ tons (Table 1). The large increase in catch is primarily attributable to the inshore components (gillnet, bar seine, trap) which landed 5596 m tons in 1978, double the 1977 catch (2822 m tons). While the largest total increase occurred north of Cape Gregory inshore catches are showing marked increases throughout the area (Table 2).

The purse-seine fleet catch of $10,326 \mathrm{~m}$ tons, an increase of 9% over the 1977 landings of 9464 mt , represented an over-run of 3% of the quota. While the total quota was not seriously exceeded, a major over-run occurred in the subarea of St. George's Bay. Due to low availability of herring along the 'edge', 25 vessels participated in the fishery in St. George's Bay. The 5000 mt quota lasted less than 7 days and resulted in a 25% over-run in the quota (6252 mt). This over-run was compensated for by a reduction in the quota in the area north of St. George's Bay.

Tagging Results and Stock Area:

Since 1975, the Newfoundland Biological Station has conducted 7 tagging experiments in the Gulf of St. Lawrence with a total of 38,550 tagged herring being released. At the end of December 1978, 1053 recoveries had been reported. The results of these studies indicate only minimal interchange between the two recognized Gulf stock units and between adjacent stocks (Table 3).

From a single Southern Gulf stock tagging 98 percent of the returns have occurred in the Southern Gulf stock area with the remaining 2% being accounted for by 1 recapture in the area of Port-au-Port and 3 from ICNAF area $4 W$.

Six tagging experiments have been conducted in sites within the Newfoundland west coast stock area. Of 874 returns received, 99% (868) were recaptured within the area with the remaining returns coming from the Quebec North Shore (1), ICNAF area 4 W (1), St. Anthony area (3) and Notre Dame Bay (1).

Three recoveries from Newfoundland east coast taggings have been reported from the Gulf of St. Lawrence. Of two recaptures from St. Goerge's Bay, one was tagged in Hare Bay and the second in White Bay. The third recapture was from a Notre Dame Bay tagging recaptured in Labrador.

From the results of these experiments, it would appear that the boundaries for the Newfoundland west coast stock are reasonable. While the southern boundary of this stock (Cape Anguille to Anticosti) has been well defined the Northern and western boundaries have not. Fig. 1 indicates the area presently under consideration in this assessment; it should, however, be noted that catches from the Labrador side of the straits have not been included in this cohort analysis. These catches have historically been small (Table 2).

Compilation of Assessment Data:

Age Data and Numbers-at-age: Samples are collected from the commercial fisheries in each of the three quota areas (Cape Anguille-Cape St. George, Cape St. George-Cape Gregory, Cape Gregory-Cape Norman). Numbers-at-age in the catch were generated separately for each quota area then combined for a unit assessment.

The 1968 year-class remained dominant (46%) among the spring spawning component of the stock followed closely by the 1969 year-class (29\%). The 1974 year-class appeared weakly in the St. George's Bay area (2%) but contributed significantly to the winter fishery in St. John Bay (12\%) (Fig. 2).

The fall spawners continued to be dominated by age groups 10 and 01 der, but amongst younger age groups the 1970 year-class was the major contributer (17\%) to the fishery.

Partial Recruitment Rates: The partial recruitment rates were re-examined but did not display any significant change from those reported in 1978 (Table 4).

Catch-Per-Unit-Effort and Fishing Effort: The effort data available for this area (Table 5) present several problems in interpretation due to changes in the pattern of exploitation on this stock. This historical effort data (1966-73) are consistent both in fleet composition and mode of operation. During this period the fishery occurred primarily during the late fall in the Cape Gregory to Cape Norman area and exploited post feeding concentrations. In addition, carriers were extensively used to reduce time spent by seiners in transporting fish to the plants. Since 1975, the fishery has undergone several changes: in St. George's Bay the fleet has been expanded and exploits primarily pre-spawning concentrations of herring while in the northern area improved handling facilities have eliminated the use of carriers and reduced steaming time to and from off-loading ports. While both recent data sets are inconsistent with the historical data set, they are also inconsistent with each other. The St. George's Bay data show a steady decline in catch per operating day while the St. John Bay data show an increase from 1977 to 1978. The differences between these two areas may in part be due to differences in fleet composition. Up to 25 vessels take part in the spring fishery but generally not more than 6 operate in the fall fishery. In order to generate a consistent
effort series a correction factor was produced to bring the recent St. George's Bay effort data ($K+L$) into line with the historical time series for the fall fishery. This was done by using the ratio of 5^{+}biomass in 1973 (last year of historical fall fishery) to the 5^{+}biomass in 1975 (the first year of the spring fishery). This ratio was applied to the 1973 calculated effort to generate an exploited effort in 1975. The effort data from the spring fishery in subsequent years were adjusted on a proportional basis:

$$
\frac{\text { Effort year } n+1}{\text { Effort year } n}=\frac{\text { adj. effort year } n+1}{\text { adj. effort year } n}
$$

Calculation of Terminal F: Cohort analysis was performed individually for both spring and autumn spawners at a range of F_{T} values from 0.15 to 0.40 with a natural mortality rate of 0.20 for spring spawners and 0.15 for autumn spawners. The lower M value for autumn spawners is consistent with the age structure observed in the population. The autumn spawning component is composed of large numbers of very old fish suggesting an M lower than 0.2 for autumn spawners. An $\mathrm{F}_{5}{ }^{+}$for the total population was calculated by proportioning the $\mathrm{F}_{5}+$ for both spring and autumn spawners on the number of individuals aged $5+$ of each in the population.

The population $F_{5}+$ values were plotted against two measures of effort: (1) St. George's Bay effort non-adjusted (1975-77) and (2) adjusted effort series (fall fishery and adjusted St. George's spring) (1971-77). Under option 1, an increasing trend of R values with increasing F_{T} was observed (Table 6) however, projecting to 1978 produced closest agreement with $\mathrm{FT}_{\mathrm{T}}=$ 0.35 (Fig. 3).

The best correlation of $\mathrm{F}_{5}+$ and effort under option 2 was at $\mathrm{F}_{\mathrm{T}}=0.25$ (Fig. 4). Predicting a 1978 value from the regression line also achieved closest agreement at $\mathrm{F}_{\mathrm{T}}=0.25$ (Table 6).

The results of these two analyses indicate FT_{T} should lie between $\mathrm{F}_{\mathrm{T}}=0.25$ and $\mathrm{F}_{\mathrm{T}}=0.35$. In both cases $\mathrm{F}_{\mathrm{T}}=0.25$, the predicted F for 1978 was greater than 0.25 and was below 0.35 at $\mathrm{F}_{\mathrm{T}}=0.35$.

Paloheimo Z values were calculated (Table 6) but did not show any trend which was useful in refining the evaluation of terminal F. Based on the results of the regression analysis, it was concluded that a terminal $\mathrm{F}=0.30$ (average level as $0.25>\mathrm{F}_{\mathrm{T}}<0.35$) would most accurately reflect the situation in 1978.

Results of Assessment:

Trends in Biomass and F: This stock is presently in a state of decline. The decline has been most precipitous among the autumn spawning component in which the 5^{+}biomass has declined to 16% ($13,365 \mathrm{mt}$) of the 1966 level ($85,976 \mathrm{mt}$). The highest observed 5^{+}biomass among spring spawners was $111,500 \mathrm{mt}$ in 1974 which was primarily composed of the 1 arge 1968 year-class. The 19785^{+}biomass of $46,300 \mathrm{mt}$ represents 42% of the 1974 level but is equal to or greater than that observed in the period from 1967-72 (Fig. 5, Table 7).

The trend towards an increase in the proportion of the spring spawning component of the population (Moores and Winters 1978) has appeared to stabilize with autumn spawners representing slightly in excess of 20% of the population since 1974.

The trend of $\mathrm{F}_{5}+$ for both components is similar with low values in the early years of the analysis and increasing during the recent years under conditions of an expanding fishery.

Trends in Recruitment: In recent years recruitment to both components of this stock has been poor. The last significant year-class among autumn spawners was the 1970 year-class which at age 2 was only 25% of the 1958 year-class at age 8 in 1966.

Among spring spawners the 1974 year-class is the strongest observed in recent years, however, it represents only about 10% of the strong 1968 year-class.
Estimation of $F_{0.1}$: The yield per recruit curve remained unchanged from 1978 (Moores and Winters) for spring spawners and yielded an $F_{0.1}$ level of 0.45 . A new yield per recruit curve was calculated for autumn spawners using $M=0.15$ and gave an $\mathrm{F}_{0.1}$ value of 0.35 (Fig. 6).
Catch Projection: Using the population structure produced under two options of terminal F in 1978 ($\mathrm{F}_{\mathrm{T}}=0.30$ and 0.35) and a variable recruitment generation, catch projections were performed at the $\mathrm{F}_{0.1}$ level. The projected catch in 1979 is $14,938 \mathrm{mt}$ using a terminal $\mathrm{F}=0.30 \mathrm{in} 1978$ and $12,487 \mathrm{mt}$ at the level of $\mathrm{F}_{\mathrm{T}}=0.35$ (Table 8).

Both options, despite the declining stock abundance, result in TACs equal to or above those established in previous years. This is a consequence of being overly conservative in previous assessments in the estimation of the terminal F used to establish population size. A comparison of terminal F used in previous assessments and $\mathrm{F}_{5}{ }^{+}$generated from cohort analysis indicates that terminal F was overestimated resulting in an underestimate of population size (Table 9). The error was greatest in the 1976 assessment and while partially corrected for 1978 the recommended TAC (Moores and Winters 1978) was reduced due to considerations of the input data and concern for the spawning stock. While the actual 1978 catch was well above the recommended TAC, it was only slightly in excess of the catch projection at $\mathrm{F}_{0.1}$ presented in 1978. The 1979 projections, therefore, rather than being in opposition to the earlier assessments, reflect the declining status of the stock.

DISCUSSION

The pattern of exploitation of this stock has varied greatly and is continuing to do so. There are two aspects of particular concern: the rapid expansion of effort by the mobile fleet in St. George's Bay, with its potential for exceeding the quotas, and the marked expansion of insnore effort. While mobile gear can be monitored reasonably well and its effort distributed over the stock by sub-area allocation, no such controls are available for inshore gears. Past attempts to estimate inshore catch have been highly variable and are a source of concern if management strategy is to attempt to maintain fisheries at the $\mathrm{F}_{0.1}$ level.

REFERENCES

Moores, J.A. and G.H. Winters. 1978. The Newfoundland West Coast Herring Stocks. CAFSAC Res. Doc. 78/2.

Table 1. Newfoundland west coast herring catches (m. tons) 1966-78.

	AREA				K^{1}
$\mathrm{~K}^{1}$	$\mathrm{~L}^{1}$	M^{1}	Total Catch		
1966		103	5529	18	5650
1967		66	5540	13	5619
1968		59	3978	11	4048
1969		46	2549	40	2635
1970		27	3473	301	3801
1971		2424	1076	1963	5463
1972		862	1544	3628	6034
1973		2862	2067	9222	14,151
1974		856	942	2842	4640
1975	3613	113	242	1027	4995
1976	6565	2067	226	1251	10,109
1977	5569	2203	156	4358	12,286
1978	$(6833)^{2}$	(1956)	(290)	(6843)	$(15,922)$

${ }^{1}$ see Figure 1.
${ }^{2}$ provisional data

Table 2. Herring catches (mt.) from the Newfoundland west coast herring stock.

Year	K^{1}		L^{1}		M^{1}		N^{1}		Total			0^{1}
	P. Seine	Inshore	Combined	Inshore								
1966				103	5490	39		18	5490	160	5650	
1967				66	5464	76		13	5464	155	5619	
1968				59	3776	202		11	3776	272	4048	
1969				46	2344	205		40	2344	291	2635	
1970			12	15	2939	534		301	2951	850	3801	
1971			2239	185	725	351	356	1607	3320	2143	5463	
1972			727	135	1330	214	-	3628	2057	3977	6034	
1973			2740	122	1763	304	3453	5769	7956	6195	14,151	335
1974			756	100	439	503	1071	1771	2266	2374	4640	156
1975	3495	118	-	113	-	242	-	1027	3495	1500	4995	66
1976	6067	498	1955	112	-	226	184	1067	8206	1903	10,109	528
1977	5289	280	2008	195	-	156	2167	2191	9464	2822	12,286	401
1978	$(6252)^{2}$	(581)	(1039)	(917)	-	(290)	(3035)	(3808)	(10326)	(5596)	(15922)	237

${ }^{1}$ see Figure 1.
2 provisional data

Table 3. Results of herring tagging experiments conducted in the Gulf of St. Lawrence (see Fig. 1 for area locations). A. West Coast

Location Tagged	Date Tagged	No. Released	No. Recapture	Nfld. Areas							ICNAF Areas		
				K	L	M	N	A	B	0	S	W	T
Reef Ht. (N)	July ' 75	2350	10	1			8		1				
Bay St. George (K)	April ' 76	6400	151	148	2		1						
St. John Bay (N)	Dec. ' 76	10,000	169	127	11	1	25	3			1	1	
Sandy Pt. (K)	April ${ }^{\text {' } 77}$	7500	417	402	11	1	3						
Port-au-Port (L)	May ' 77	2000	18	5	6		7						
St. Paul's Inlet (M)	May ' 78	6500	109			104	5						
TOTAL		34,750	874	683	30	106	49	3	1	-	1	1	-

B. Southern Gulf

Edge (T)	May ${ }^{\prime} 76$	3800	179	1	3	175

C. Nfld. East Coast

Sops Arm (A)	June ' 76	5600	402	1
Hare Bay (A)	0ct. ' 76	5000	221	1
Lawrenceton (B)	June ' 77	5000	86	

Table 4. Partial recruitment rates and average weights used in the cohort analysis.

		2	3	4	5	6	7	8	9	10	>10
Autumn	\% Recruit	5	15	40	65	90	100	100	100	100	100
Spawners	Ave. Wgt.	. 112	. 162	. 205	. 249	. 253	. 291	. 299	. 302	. 313	. 383
Spring	\% Recruit	5	15	25	50	75	90	100	100	100	100
Spawners	Ave. Wgt.	. 121	. 161	. 219	. 234	. 265	. 270	. 286	. 310	. 315	. 364

Table 5. Effort data for the Nfld. West Coast Fishery.

Year	Total Catch (mt.)	Catch/op. day		Effort		Adj. $K+L^{1}$ c/op. day	adj. Effort
		K +		$\overline{K+L}$	$M+N$		
1966	5650	-	63.2	-	89.4	-	-
1967	5619	-	67.5	-	86.5	-	-
1968	4048	-	65.4	-	61.9	-	-
1969	2635	-	47.8	-	55.1	-	-
1970	3801	-	38.3	-	99.2	-	-
1971	5463	-	38.6	-	141.5	-	-
1972	6034	-	31.7	-	190.4	-	-
1973	14151	-	53.0	-	267.0	-	-
1974	4640	-	-	-	-	-	-
1975	4995	92.6	-	53.9	-	44.1	113.4
1976	10109	89.5	-	113.0	-	42.6	237.4
1977	12286	79.8	$70.2{ }^{2}$	154.0	175.0	38.0	323.6
1978	15922	68.5	89.0^{2}	232.4	178.9	32.6	488.6

${ }^{1}$ see text for explanation

2
from landing slips

Table 6. Population F values by year at various levels of terminal F and the resultant R^{2} values and predicted 1978 F from effort data.

	Terminal F				
Year	F .20	F .25	F .30	F .35	F .40
1971	.046	.052	.057	.062	.065
1972	.042	.049	.054	.058	.062
1973	.080	.093	.104	.112	.121
1974	.021	.024	.028	.031	.033
1975	.034	.039	.044	.048	.051
1976	.087	.100	.109	.122	.132
1977	.162	.185	.206	.225	.244
1978					
(adj. effort data) $R^{2} 71-77$.8231	.8225	.8315	.8267	.8296
Predicted 78	.2262	.2597	.2885	.3154	.3435
(non-adj. effort data) $R^{2} 75-77$.9594	.9611	.9534	.9612	.9619
Predicted 78	.2514	.2872	.3181	.3489	.3793

Table 7. Biomass and $\mathrm{F}_{5}+$ values from cohort analysis $\mathrm{F}_{\mathrm{T}}=0.30$.

		1966	1967	1968	1969	1970	1971	1972	1973	1974	1975	1976	1977	1978
Biomass 5+	AS	86.0	78.1	78.7	75.1	67.3	58.9	48.0	39.9	31.3	29.7	26.0	20.6	13.4
$(10-3$	mt.)	SS	52.8	46.4	42.8	37.5	36.0	45.0	42.7	108.5	111.5	96.9	80.4	64.2
	Total	138.8	124.5	121.5	112.6	103.3	103.9	90.7	148.7	142.8	126.6	106.4	84.8	59.7
	AS	.025	.029	.026	.015	.020	.086	.071	.173	.037	.062	.116	.327	

Table 8. Catch projection Nfld. west coast herring stock 1979-80, AS: $M=.15, F=0.35 ; S S: M=.2, F=0.45$) under two options of terminal F in 1978.

Year	$F_{T}=0.30$				$F_{T}=0.35$	
	$\overline{A S}$	SS	TotaT		AS	SS
1978	3499	12423	15922	3499	12423	15922
1979	2633	12275	14938	2224	10263	12487
1980	1733	8040	9773	1453	6794	8247

Table 9. A comparison of (A) terminal F selected in previous assessments (Moores and Winters 1977, 1978) with corresponding $F_{5}+$ for spring spawners from present analysis and (B) 5^{+}biomass from previous assessments and present analysis.

A.	Last year assessed	Terminal F selected	Corresponding $\mathrm{F}_{5}{ }^{+}$from 1978 analysis $\mathrm{F}_{\mathrm{T}} 1978=0.30 \quad \mathrm{~F}_{\mathrm{T}} 1978=0.35$
	1976	0.25	.110 .122
	1977	0.20	. 168 . 188
B.	Last year assessed	Biomass	Corresponding biomass from 1978 analysis $F_{T} 1978=0.30 \quad F_{T} 1978=0.35$
	1976	50.7	106.4
	1977	75.0	84.4 75.9

Fig. 1. Statistical areas and place names for Newfoundland region.
Inset: ICNAF areas and Nfld. West Coast stock area (hatched region).

Fig. 2. Age frequencies (adjusted to landings) for sub-areas of the Nfid. west coast herring stock 1977 and 1978.

Fig. 3. Effort vs $F_{5}+$ using non-adjust St. George's Bay effort data 1975-77.

Fig: 4. Effort vs $\mathrm{F}_{5}+$ using northern Gulf adjusted effort data 1971-77.

Fig. 5. 5+ biomass of autumn, spring spawning components and total $5+$ biomass by year.

Fig. 6. Yield per recruit at various levels of F and $F_{0.1}$ point for autumn spawners ($M=0.15$).

