Not to be cited without permission of the author. 1

Canadian Atlantic Fisheries Scientific Advisory Committee

CAFSAC Research Document 84/73

Ne pas citer sans autorisation des auteurl

Comité scientifique consultatif des pêches canadiennes dans l'Atlantique

CSCPCA Document de recherche $84 / 73$

An Analysis of the Scallop Meat Count Regulation

> by
K. S. Naidu

Fisheries Research Branch
Department of Fisheries and Oceans
P.O. Box 5667

St. John's, Newfoundland A1C 5X1

1 This series documents the scientific basis for fisheries management advice in Atlantic Canada. As such, it addresses the issues of the day in the time frames required and the Research Documents it contains are not intended as definitive statements on the subjects addressed but rather as progress reports on ongoing investigations.

Research Documents are produced in the official language in which they are provided to the Secretariat by the author.

1 Cette série documente les bases scientifiques des conseils de gestion des pêches sur la côte atlantique du Canada. Conme telle, elle couvre les problèmes actuels selon les échéanciers voulus et les Documents de recherche qu'elle contient ne doivent pas être considérès comme des énoncës finals sur les sujets traitēs mais plutôt conme des rapports d'étape sur les études en cours.

Les Documents de recherche sont publiēs dans la langue officielle utilisée par les auteurs dans le manuscrit envoyé au secrétariat.

Abstract

Examination of individual commercial meat-weight frequencies from St. Pierre Bank points to little, if any, culling of sea scallops. Here, as elsewhere on the Atlantic seaboard, most sea scallops caught appear to be retained for shucking. Compliance with the meat-count Regulation in force is readily achieved through blending large meats with smaller ones, the latter frequently being predominant in the landed catch. This strategy facilitates the harvesting of considerable numbers of small scallops.

In a bracketed array including past, present and recommended levels of imposed meat counts for St. Pierre Bank it was found that small scallops invariably made greater contributions (by numbers and weights) to total catch than did meats whose individual weights exceeded minimum critical weights at those counts. At a 45 meat count per lb., for example, individual scallops under 10.1 g would be defined as failing to meet the minimum critical weight. As the Regulation was intended primarily for the protection of young scallops and delaying capture of those only recently recruited to improve yield per recruit, the meat count in its present form has not had the intended regulatory effect. Instead, it has resulted in a pattern of fishing, sometimes uneconomical, which allows considerable blending of meats, effectively bypassing the intent of the Regulation.

This paper proposes a revision to the Regulation to limit the small meat content in the catch. It does not eliminate the count, but rather strengthens the means of achieving its intent.

RESUME

Un examen des frëquences de poids de chairs individuelles de pétoncles géants capturēs commercialement sur le banc de Saint-Pierre indique qu'il y a peu, si tant est qu'il y en ait, de triage des prises par taille. Ici comme ailleurs le long de la côte atlantique, la plupart des pētoncles gēants capturēs semblent ètre conservès pour ècaillage. Il est facile de se conformer au règlement actuel: on n'a qu'à mélanger les grosses chairs avec les petites, ces derniēres étant très souvent prēdominantes dans les prises dēbarquēes. Cette stratégie permet de rēcolter un nombre considérable de petits pētoncles.

En étudiant les comptages de chairs passēs et prēsents imposēs par règlement sur le banc de Saint-Pierre, on constate qu'invariablement, les pétoncles de petite taille contribuaient davantage aux dēbarquements (en nombre comme en poids) que les chairs de poids individuels supérieurs aux poids critiques minimaux correspondant à ces comptages. Par exemple, à un comptage de 45 chairs à la livre, les pētoncles individuels de moins de $10,1 \mathrm{~g}$ seraient considērēs de taille inférieure au poids critique minimal. Comme le règlement a pour but principal de protēger les jeunes pētoncles et de retarder la capture des nouvelles recrues pour amēliorer le rendement par recrue, le comptage, dans sa forme actuelle, n'a pas l'effet escomptē. Il a plutôt donné naissance à un comportement, parfois non économique, de mēlange des chairs qui, effectivement, contourne le règlement.

Nous proposons, dans le prēsent document, de limiter la teneur de chaque dēbarquement en petites chairs. Il n'est pas question d'ēliminer les comptages mais plutôt de permettre au rēglement de mieux rēaliser son objectif.

INTRODUCTION

Recruitment variations, expended effort and yield-per-recruit (assuming steady state) orchestrate to establish catch and landing trends in any given fishery. Fishing regulations affecting fleet size, meat counts (number of meats to the pound), catch limits (per trip and per three-month period) affect temporal patterns in the fishery. While offshore scallop Regulations have been in place for some ten years, and variously implemented during that period, no attempt has been made to examine their impact, individually or collectively, on the total management of the resource. This document examines critically the intent, relative efficacy and overall success of one of these (meat counts) in the Atlantic offshore fishery with specific reference to St. Pierre Bank - a westward extension of the vast apron of shelf off Newfoundland, commonly called the Grand Banks of Newfoundland. The scallop fishery here is prosecuted exclusively by Maritimes-based vessels which traditionally fish the rich Georges Bank but make opportunistic excursions into other areas, including St. Pierre Bank.

MATERIALS AND METHODS

Scallop catches from St. Pierre Bank are generally discharged at Maritime ports. Sampling technicians are dispatched to perform individual meat-weight determinations. On one occassion meats were procured from boardings at sea by the Resource Management Division (Newfoundland Region) to check for possible meat-count violations. The meats were brought back to the laboratory for analysis. To date the fishery has been directed primarily at the larger sea or giant scallop, Placopecten magellanicus. Every effort was made to ensure purity of samples with respect to species composition. At-sea samples were shucked onboard in the presence of Fishery Officers. Port samples were furnished by the Master of the vessel who in each instance was forewarned of our requirements.

Three types of meat components (Fig. 1) occur in every bag of scallop meats landed, viz.

1. Muscle-on (posterior adductor muscle with both the large "quick" and small "slow" or "catch" fractions still attached).
2. Muscle-off (large "quick" fraction of the posterior adductor muscle only).
3. Bits and pieces (consisting primarily of separated or detached "slow" fractions from (2) as well as small torn bits and pieces).

Weights to the nearest tenth of a gram were determined separately for muscle-on and muscle-off. Subsamples were used to obtain data on the relative contributions to total weight by the two fractions to facilitate transformations from muscle-off to muscle-on. Individual meat-weight data allow the determination of proportions below and above minimum critical weights at varying meat-count levels.

At a 45 meat count per 1b., for example, individual scallops under 10.1 g would theoretically fail to meet the critical weight requirement and would contribute to the number of small scallops in any given catch. Meats in excess of 10.2 g , however, would clearly meet the meat-count stipulation and would be considered acceptable. Average meat weight (g) for a given meat count is given by the formula:

$$
\bar{x}=454 \quad(1 \mathrm{lb}=454 \mathrm{~g})
$$

RESULTS
A total of nine offshore vessels fishing St. Pierre Bank was sampled over the two-year period. Proportions of "muscle-on" to "muscle-off" in the landed catch were highly variable (Table 1). In 1982, 54.5% of adductor muscles sampled were in the "muscle-on" condition, the remainder (45.5\%) in the "off" condition. In 1983, this was reversed in favour of "muscle-off" (57.3\% versus 42.7%). Combined overall distribution for the two years approached equinumerical representation of the two types of meat ($48 \% \mathrm{vs}$. 52%).

Individual meat-weight distributions in 1982 and 1983 were tabulated separately for four levels of meat count (Tables 2 and 3). Percent contributions bracketed by critical weights at each level, were tabulated for muscle-on, muscle-off, adjusted muscle-on and for untransformed as-landed data. Percent frequency of small scallops and corresponding weight contributions to the landed catch in 1982 and 1983 are summarized in Table 4 . For comparisons of theoretical yields, muscle-off weights were adjusted upwards to muscle-on by a factor in the range of 1.074 to 1.089 , depending on the computed relationship between the two for any given boat at the time of landing. Regressions between muscle-on and muscle-off were linear (Fig. 2, Table 5), with no discernable correlation ($r^{2}=0.01$) of the ratio of the weights of quick to catch fractions with scallop size for both sea and Iceland scallops (Fig. 3). Mean as-landed adductor muscle weights were also examined by boat and year (Table 6) to determine the relative proportions of the two types of meat. It is clear that small scallop meats make significant contributions to the catch both numerically and in terms of total weight (Table 4, Fig. 4).

Relevant enforcement data for 1983 were also examined (Table 7). These were assembled by Resource Management personnel throughout the fishing season to determine if counts were violative. The data were made available to the author courtesy of the District Protection Office, Bridgewater, Nova Scotia. Not one of the 38 meat-count determinations from this source exceeded the $45 / 500 \mathrm{~g}$ stipulation (Table 7). It is difficult to reconcile average counts with the known presence in the catch of a large number (66% in 1983) of meats each weighing less than 11.1 g . This corresponds to the minimum critical weight below which a given meat would fail to meet the $45 / 500$ g meat count requirement. A full 50% of the landed weight in 1983 is estimated to have come from small scallops, down from 63% in 1982 (Table 4).

DISCUSSION

Regulations affecting the Canadian offshore scallop fishery were developed primarily for the Georges Bank sea scallop fishery and date back to 1973 (Caddy and Jamieson 1977). In chronological order of introduction they may be summarized as follows:

Date of Introduction
Specifics
June 1973
Meat-count regulation first introduced. Maximum of 60 meats/1b in the landed catch.

May 1974
June 1975
May 1976

15 March 1977

May 1981

July 1982

March 1983

June 1983
Meat count reduced to $50 / 1 \mathrm{~b}$.
Meat count revised downward to 45/1b.
Meat count further reduced to $40 / 1 \mathrm{~b}$. Remained at that level until May 1981.

Trip quota of $30,000 \mathrm{lbs}$ imposed. Maximum trip duration of 12 days, dock to dock. Maximum landed weight per boat per 4 -month period set at 180,000 1b shucked meats.

Modification of the meat count to 55 by allowing a temporary tolerance.

Effective mid-July 1982 industry returned to the 40 meat count.

35 meat count for sea scallops and 50 for Iceland scallops proposed for St. Pierre Bank. Resource managers subsequently modified this to a 45 count for both species ($45 / 500 \mathrm{~g}$).

35 meat count ($39 / 500 \mathrm{~g}$) implemented for 4 X and 5Ze. 45 meat count for areas east of 4 X (i.e. $4 \mathrm{~V}, 4 \mathrm{~W}, 3 \mathrm{P}$ and 30). Count to apply for both sea and Iceland scallops. Under Regulation, all scallops are to meet the $39 / 500 \mathrm{~g} .45 / 500 \mathrm{~g}$ (in eastern areas) is by policy.

Most important in terms of addressing total fishery yield and maximizing yield/recruit is the meat count, which specifies the number of meats allowed per unit weight. This is normally monitored by a Fishery Officer at the port of landing. By law, the meat count must be based on at least eight representative samples of scallops, each sample weighing not less than 500 g (1.10 lb). It is an average count with attendant difficulties. Normally a 10% tolerance is allowed over the maximum allowable count. Apparently this is an acknowledgement of the semi-quantitative nature of approximations to weights at sea (Barnes, pers. comm. 1982).

Until 28 October 1982 the meat-count Regulation was applicable to sea scallops only. The incidental presence of Iceland scallops on St. Pierre Bank (Naidu et al. 1983) made implementation of Regulations for that fishery almost impossible. Relevant portions of the Atlantic Fishery Regulations were therefore amended to make the Regulations applicable to Iceland scallops as well as sea scallops. Considerable culling of Iceland scallops occurs by those boats that retain them for shucking (Naidu et al. 1983; Naidu and Cahill 1984). Only the large ones ($>80 \mathrm{~mm}$) are shucked.

In 1983 CAFSAC Steering Committee recommended a sea scallop meat count of 30/1b. for St. Pierre Bank (CAFSAC Advisory Document 83/14, as for the Georges Bank fishery). However, DFO managers allowed removals at $45 / 500 \mathrm{~g}$ by permitting a tolerance greater than 10% for directed fisheries east of 4 X (i.e. $4 \mathrm{~V}, 4 \mathrm{~W}, 3 \mathrm{P}$, and 30) because of the presence in the catch of Iceland scallops particularly on St. Pierre Bank.

Examination of frequency distributions of individual meat weights from St. Pierre Bank over the last two fishing seasons showed that the meat count was by and large ineffective in meeting the regulatory intent. In particular, it is difficult to reconcile biological sampling data with those obtained to determine if counts met regulatory requirements. At the 45 count in 1982, for example, only 32% of the total landed catch sampled ($N=4487$) was made up of animals with meats in excess of 10.2 g (the critical weight required to meet. the count if all scallops weighed exactly the same). In 1983, contributions from small scallops had dropped somewhat through growth increments in weight (Table 4). With the exception of one boat, frequency distributions of large versus small scallops for the five boats sampled were much the same for any given meat count. A large proportion of small scallops (91\%, $N=2173$) was recorded for one boat. For both recommended and implemented meat counts for the directed fishery on St. Pierre Bank, (30/1b and 45/500 g respectively) it is apparent that there are large numbers of small scallops in the landed catch. Average meat counts, however, meet the stipulated requirements and boats catching and landing such scallops are not in violation (Table 7).

This above analysis is not compromised by the accidental presence of Iceland scallops in the sampled meats. For comparable shell heights beyond 65 mm , Iceland scallops provide greater meat yield than do sea scallops (Naidu and Cahill 1984). In any case the Regulation applies for both species and the presence of Iceland scallops would only improve observed counts. Selective shucking of Iceland scallops, has already been mentioned.

It is clear that the offshore fleet has developed the necessary skill to "blend" meats with the result that the efficacy of the regulation must be questioned. In addition to maintaining minimal CPUEs, vessels also ensure that sufficient numbers of large meats are mixed in with smaller ones to conform to the stipulated meat count. Sampling methodology clearly favors the potential violator. In addition to the built-in tolerance there are elements to weight contributions that are not enumerated (scallop bits and pieces contribute to weight but not to counts). This invariably results in underestimating the meat-count. This has helped the systematic harvesting of small scallops which the Regulation was specifically intended to protect.

It is apparent that if the Regulations are to have the intended effect, critical re-examination of current practices is needed. Imposition of revised Regulations, particularly with regard to that affecting meat counts, to more effectively control growth overfishing could be applied. The meat-count stipulation may still be retained with the proviso that no more than a certain percentage of meats in the landed catch be made up of meats averaging less than the critical weight allowed by that meat count. Critical weights for 30,35 , 40 and 45 meat counts/lb would correspond to individual meat weights of 15.1 , $12.9,11.4$ and 10.1 g respectively. The stipulation of an acceptable level of "small meat" content in the landed catch would better address the regulatory intent of the meat- count stipulation. Initially, a tolerance could be entertained, eg. no more than a fixed percentage of meats may be made up of meats whose average weight is less than 13.0 g (35 meat count). This modification to the current Regulation would better address the problem of growth overfishing as well as minimize recruitment overfishing in areas which may be dependent on recruitment pulses from without, as may be the case on St. Pierre Bank (Naidu and Anderson, 1984). Indirect fishing mortality of prerecruits may also be expected to be reduced (Naidu et al. 1982).

ACKNOWLEDGEMENTS

I wish to thank Mr. Robert Barnes, Field Protection Officer, Bridgewater, Nova Scotia for assistance with logistics of port sampling in Nova Scotia, for numerous discussions on the subject of meat counts, for providing the information on prosecutions, and for reading the original manuscript of this paper. Principal research support was provided by Messers F. M. Cahill and D. B. Lewis.

REFERENCES

Caddy. J. F., and G. S. Jamieson. 1977. Assessment of Georges Bank (ICNAF Subdivision 5Ze) scallop stock, 1972-76 incorporated. CAFSAC Res. Doc. $77 / 32,23$ p.

Naidu, K. S., and F. M. Cahill. 1984. Status and assessment of St. Pierre Bank scallop stocks 1982-83. CAFSAC Res. Doc. 84/69, 56p.

Naidu, K. S., F. M. Cahil1, and D. B. Lewis. 1982. Status and assessment of the Iceland scallop, Chlamys islandica in the northeastern Gulf of St. Lawrence. CAFSAC Res. Doc. 82/02, 66 p.

Naidu, K. S., D. B. Lewis, and F. M. Cahill. 1983. St. Pierre Bank: An offshore scallop buffer zone. CAFSAC Res. Doc. 83/16, 48 p.

Naidu, K. S., and J. T. Anderson. 1984. Aspects of scallop recruitment on St. Pierre Bank in relation to oceanography and implications for resource management. CAFSAC Res. Doc. 84/29, 15 p.

Table 1. Distribution of scallop adductor muscles landed as muscle-on versus muscle-off from St. Pierre Bank (see text for details).

Year	Vesse1	N	Numbers		Percent	
			On	Off	On	Off
1982	1	1864	1026	838	55	45
	2	1779	959	820	54	46
Totals		3643	1985	1658	54.5	45.5
1983	3	613	287	326	47	53
	4	722	193	529	27	73
	5	488	310	178	64	36
	6	403	253	150	63	37
	7	2173	834	1339	38	62
Totals		4399	1877	2522	42.7	57.3
Overall totals		8042	3862	4180	48	52

Table 2. Individual scallop neat-weight frequency distribution at four meat count levels frain the St. Pherre Bark fishery in 1982. Figires in parentheses are percentages.

Date	Vessel	Meat condition	Conmersion factor	N	Mest Count/lb								Meat count/500 g		Notes
					7519	75.29	42.99	>1309	91.49	त्रा59	9019	주0.29	वा. ${ }^{\text {g }}$	त्रा. 9	
22 Sept. 1982	1	Muscle on	1000	261	259 (99)	2 (1)	221 (87)	34 (13)	174 (67)	87 (33)	135 (52)	125 (48)	166 (64)	95 (36)	Samples for meat-count volations.
1 Oct. 1998	2	Miscle on		1026	979 (95)	47 (5)	842 (82)	184 (18)	345 (73)	281 (27)	654 (65)	362 (35)	730 (71)	296 (29)	Giants only, port sample.
		Muscle off		839	820 (98)	18 (2)	77 (92)	67 (8)	700 (84)	136 (16)	649 (77)	190 (23)	690 (82)	148 (18)	
		Adusted cormined	1088	1864	1,776 (95)	88 (5)	1.565 (84).	298 (16)	1.412 (76)	452 (24)	1269 (68)	595 (32)	1,380 (74)	484 (26)	
		As-landed		1,864	1,799 (97)	65 (3)	1,613 (87)	251 (13)	1,447 (78)	417 (22)	1,312 (70)	552 (30)	1,420 (76)	444 (24)	
$20 c t .1982$	3	Muscle on		14	- ${ }^{\circ}$	- ${ }^{-}$		(09 ${ }^{-}$	- ${ }^{-}$	133-	- ${ }^{-}$		(27) ${ }^{-}$		Mxed, mostly glarts, port sample.
		Muscle off		574	474 (83)	100 (17)	465 (81)	109 (19)	443 (77)	131 (23)	362 (63)	212 (37)	427 (74)	147 (26)	
		Adjusted corbined	1088	588	486 (83)	102 (17)	465 (79)	123 (21)	403 (69)	185 (31)	305 (52)	283 (48)	389 (65)	206 (35)	
Aug. 1982	4	Muscle on		999	991 (93)		843 (88)	116 (12)	703 (73)	256 (27)	594 (61)	375 (39)	671 (70)	288 (30)	Uknown, at-sea procumenent of bag
		Muscle off		820	799 (97)	21 (3)	773 (94)	47 (6)	705 (86)	115 (14)	599 (73)	221 (27)	688 (84)	132 (16)	of meats.
		Adfusted coribined	1.076	1,779	1,686 (95)	93 (5)	1,582 (89)	197 (11)	1.354 (76)	425 (24)	1,135 (64)	644 (36)	1291 (73)	488 (27)	
		As-landed		1.779	1,690 (95)	89 (5)	1,616 (91)	163 (9)	1.408 (79)	371 (21)	1,183 (66)	596 (34)	1,359 (76)	420 (24)	
1982 Totals		Muscle on		2,246	2,129 (95)	117 (5)	1,912 (85)	334 (15)	1622 (72)	624 (28)	1,383 (62)	863 (38)	$1.567(70)$		1902 totals as-landed based on two
		Mascle off		2,232	2,093 (94)	${ }^{139}$ (6)	2,009 (90)	223 (10)	1,850 ${ }^{\text {183) }}$	382 (17)	1,609 (72)	${ }^{623}$ (28)	1,805 (91)	427 (19)	vessels only.
		Adfusted carbin ned		4,231	3,948 (93)	283 (7)	3,613 (85)	618 (15)	3,169 (75)	1.062 (25)	2,709 (64)	1,522 (36)	3,054 (72)	1,171 (28)	
		As-landed		3,643	3,489 (96)	154 (4)	3,229 (89)	414 (11)	2,855 (78)	788 (22)	2,495 (68)	1,148 (32)	2,779 (76)	864 (24)	

Table 3. Individual scallop meat-weight frequency dilstritution at four meat count levels from the St. Meerre Bark fishery in 1983. Figires in parentheses are percentages.

Date	Vessel	Meat condition	Conversion factor	N	Heat Count/b								Meat count/500 g		Notes
					25.19	315.29	\$2.99	313.09	प1.49	께59	10.19	त्र0.29	9119	$\pi \times 1.29$	
3 Mey 1980	5	Muscle on	d 1.076	287	225 (78)	52 (22)	166 (58)	121 (42)	104 (36)	183 (64)	44 (15)	243 (85)	88 (31)	199 (69)	Glants only, port sarple.
		Tuscle off		326	274 (84)	52 (16)	232 (71)	94 (29)	179 (55)	147 (45)	110 (34)	216 (66)	164 (50)	162 (50)	
		Adjusted combined		613	475 (77)	138 (23)	365 (60)	248 (40)	244 (40)	369 (60)	110 (18)	503 (82)	210 (34)	403 (66)	
		As-landed		613	499 (81)	114 (19)	398 (65)	215 (35)	289 (46)	330 (54)	154 (25)	459 (75)	252 (41)	361 (59)	
3 May 1983	6	Muscle on	1.074	193	144 (75)	49 (25)	109 (56)	84 (44)	62 (32)	131 (68)	$29(15)$	164 (85)			Glants only, port sample.
		Muscle off		529	420 (79)	109 (21)	320 (60)	209 (40)	228 (39)	321 (61)	113 (21)	416 (79)	184 (35)	345 (65)	
		Adjusted contined		122	532 (74)	190 (26)	364 (50)	358 (150)	213 (30)	509 (70)	96 (13)	626 (87)	181 (25)	541 (75)	
		As-landed		72	564 (78)	158 (22)	429 (59)	293 (41)	270 (37)	452 (63)	142 (20)	580 (80)	237 (33)	485 (67)	
21 May 1983	7	Muscleon	1070	310	267 (86)	43 (14)	222 (72)	89 (28)	185 (60)	125 (40)	134 (43)	176 (57)	167 (54)	143 (46)	mixed, port sample.
		Muscle off		178	159 (89)	19 (11)	137 (77)	41 (23)	103 (58)	75 (42)	74 (42)	104 (58)	97 (54)	81 (46)	
		Allusted combined		488	417 (85)	$71(15)$	342 (70)	146 (30)	274 (56)	214 (44)	190 (39)	298 (61)	${ }^{248}$ (51)	240 (49)	
		As-landed		488	426 (87)	62 (13)	359 (74)	129 (26)	288 (59)	200 (41)	208 (43)	280 (57)	264 (54)	224 (46)	
21 19y 1983	8	Muscle on	1.074	253	163 (64)	90 (36)	107 (42)	146 (58)	61 (24)	192 (76)	27 (11)	226 (89)	49 (19)	204818	Mexed, port sample.
		Muscle off		150	110 (73)	40 (27)	75 (51)	74 (49)	50 (33)	100 (67)	33 (22)	117 (78)	45 (30)	105 (70)	
		Adjusted corbined		403	259 (64)	144 (36)	171 (42)	232 (58)	97 (24)	306 (76)	45 (11)	358 (89)	$82(20)$	321 (80)	
		As-landed		403	273 (68)	130 (32)	183 (45)	220 (55)	111 (28)	292 (72)	60 (15)	343 (85)	94 (23)	309 (77)	
2 Dec. 1993	9	Muscle on	1.089	834	813 (97)	21 (3)	792 (95)		768 (92)	6^{66} (8)	719 (86)	115 (14)	761 (91)	73 (9)	Glants only, port sample.
		Muscle off		1,339	1,327 (99)	12 (1)	1.315 (98)	24 (2)	1,300 (97)	39 (3)	1,267 (95)	72 (5)	1,296 (97)	43 (3)	
		Adjusted contined		2,173	2,135 (98)	38 (2)	2,098 (97)	75 (3)	2,057 (95)	116 (5)	1,911 (88)	262 (12)	2,038 (94)	135 (6)	
		As-landed		2,173	2,140 (98)	33 (2)	2,107 (97)	66 (3)	2,068 (95)	105 (5)	1,986 (91)	187 (9)	2,057 (95)	116 (5)	
1983 totals		Muscle on		1877	1,512 (86)	265 (14)	13950874	481 (26)	1,180 (63)	697 (37)	953 (51)	924 (49)	1,128 (60).	759 (40)	
		Muscle off		2.522	2,290 (91)	232 (9)	2,000 (82)	442 (18)	1,840 (73)	682 (27)	1,597 (63)	925 (37)	1,786 (71)	736 (29)	
		Adjusted coubined		4,399	3,818 (87)	501 (13)	3,340 (76)	1059 (24)	2,885 (66)	1,514 (34)	2,352 (53)	2,047 (47)	2,759 (63)	1,640 (37)	
		As-landed		4,399	3,902 (89)	497 (11)	3,476 (79)	923 (21)	3,020 (69)	1,379 (31)	2,550 (58)	1,849 (42)	2,904 (66)	1,495 (34)	

Table 4. Percent frequency of small scallops and corresponding weight contributions to the landed catch from St. Pjerre Bank at four meat-count levels.

Table 5. Muscle-on/muscle-off regressions for scallops from St. Pierre Bank.

Date	Vesse1	N	r^{2}	a	b
27 August 1982	F	524	1.00	0.10	1.06
22 September 1982	0	261	1.00	0.29	1.05
1 October 1982	P	78	0.99	0.23	1.06
--					
4 May 1983	Q	60	1.00		1.07
21 May 1983	D	60	0.99	0.26	1.05
21 May 1983	R	60	1.00	0.09	1.08
2 December 1983	C	120	1.00	0.10	1.08

Table 6. Mean as-landed adductor muscle weights from the St. Pierre Bank fishery.

Date	Vessel	N	$\overline{\mathrm{x}} \pm$ S.D.
27 August 1982	F	1779	9.17 ± 5.17
1 October 1982	P	1864	9.15 ± 2.88
1982 Totals		3643	9.16
3 May 1983	D	614	12.39 ± 3.20
3 May 1983	Q	720	12.88 ± 3.35
21 May 1983	K	488	11.14 ± 3.67
21 May 1983	R	403	16.30 ± 9.63
2 December 1983	C	2173	7.42 ± 2.68
1983 Totals		4398	10.23

Table 7. Meat counts/500 g for 1983 St. Pierre Bank fishery (based on samples to determine if counts were violative). Data provided by Mr. R. Barnes, District Protection Office, DFO, Bridgewater, Nova Scotia.

Boat	Date sampled	Total catch (1b)	$$	No. Samples	$\begin{aligned} & \text { Mean } \\ & (/ 500 \mathrm{~g}) \end{aligned}$
A	-May 10/83	27,000	$\begin{array}{llllllllllll}37 & 41 & 39 & 39 & 39 & 43 & 37 & 40 & 24 & 40\end{array}$.
			31394340443838373936		38.19
			38	21	
${ }^{\text {B }}$	May 10/83	12,000	$\begin{array}{llllllllllllllllll}18 & 11 & 39 & 16 & 40 & 44 & 39 & 45 & 44 & -\end{array}$	9	32.8
	May 17/83	-	21252328292632223531		
			3339	12	28.6
D	May 18/83	-	$\begin{array}{llllllllll}36 & 29 & 36 & 40 & 35 & 35 & 39 & 30 & 36\end{array}$	9	35.1
E	May 21/83	13,600	21323637333635413832	10	34.1
F	May 25/83	18,200	24262542241412131640		
			1826	12	23.3
D	June 2/83	8,600	$\begin{array}{llllllllllll}36 & 31 & 30 & 34 & 31 & 33 & 31 & 17 & 26 & -\end{array}$	9	29.8
G	June 5/83	10,300	$4236383611113527-$	8	29.5
H	June 6/83	10,900		8	31.4
D	July 5/83	18,253		9	39.6
D	July 23/83	-		9	35.2
I	July 26/83	12,320		9	36.1
J	July 30/83	-		9	29.6
K	July 30/83	-	3943384239333235	8	37.6
L	Aug. 3/83	9,576		8	36.1
F	Aug. 3/83	10,330	3941393337333641.40 -	9	37.7
D	Aug. 9/83	12,764	421946454944262931	9	36.7
I	Aug. 11/83	10,187	211744261312494742 -	9	30.1
E	Aug. 12/83	10,678		9	24.6
M	Aug. 13/83	11,668		9	26.9
F	Aug. 20/83	13,689		9	35.1
N	Sept. 2/83	7,233		9	22.8
F	Sept. 7/83	12,640		9	39.0
C	Sept. 19/83	-	$354139384240394138-$	9	39.2
K	Sept. 21/83	17,388		9	40.9
F	Sept. 24/83	,		9	39.2
M	Oct. 4/83	10,980	363938384546384041 -	9	40.1
C	Oct. 5/83	14,494	354044384443444443 -	9	41.7
D	Oct. 8/83	7,600		. 10	37.9
I	Oct. 19/83	9,790	373939384145463539	9	39.8
C	Oct. 22/83	15,291		9	39.4
M	Oct. 22/83	10,266		9	37.4
E	Oct. 26/83	6,187		9	40.6
K	Oct. 26/83	6,025	343238544952384041	9	42.0
F	Oct. 26/83	4,887		8	39.8
M	Nov. 12/83	7,942		10	17.7
K	Dec. 2/83	9,200		8	30.6
C	Dec. 2/83	10,300	$3737373542363537-$	8	37.0
Overall mean					34.5

Fig. 1. The posterior adductor muscle of the sea scallop and its components.

Fig. 2. Regression of adductor muscle weight (g, muscle-on) on adductor muscle weight (g, muscle-off) for St. Pierre Bank sea scallops.

Fig. 3. Scatter diagram: Ratio of quick to catch fractions with shell height for sea and Iceland scallops from St. Pierre Bank.

MEAT COUNT/Ib

30
35
40
45
45

1982

MEAT COUNT/500G

1983

