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ABSTRACT 
 
Ryan, S.A., Wohlgeschaffen, G., Jahan, N., Niu, H., Ortmann, A.C., Brown, T.N., King, 
T.L., and Clyburne, J. 2019. State of Knowledge on Fate and Behaviour of Ship-Source 
Petroleum Product Spills: Volume 4, St. Lawrence Seaway, Montreal to Anticosti, 
Québec. Can. Manuscr. Rep. Fish. Aquat. Sci. 3176: viii + 42 p. 
 
Increasing Canadian oil production and tanker traffic elevates the risk of accidental oil 
spills in Canadian waters. In response, the Government of Canada announced the 
World Class Tanker Safety System and created the independent Tanker Safety Expert 
Panel to review Canada’s ship-source oil spill preparedness and response. Using the 
panel’s recommendations, the Government of Canada is establishing response plans 
for four pilot areas which have the highest tanker traffic in Canada: Saint John, NB, Port 
Hawkesbury and Canso Strait, NS, St. Lawrence Seaway, Qc, and the southern portion 
of British Columbia. 
 
This is the fourth volume of a five volume report and contains information relevant to 
developing an area response plan for the St. Lawrence Seaway, Québec. The first 
volume of this report contains introductory information on oil products and spills and 
should accompany subsequent volumes. 
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RÉSUMÉ 
 
Ryan, S.A., Wohlgeschaffen, G., Jahan, N., Niu, H., Ortmann, A.C., Brown, T.N., King, 
T.L., and Clyburne, J. 2019. State of Knowledge on Fate and Behaviour of Ship-Source 
Petroleum Product Spills: Volume 4, St. Lawrence Seaway, Montreal to Anticosti, 
Québec. Can. Manuscr. Rep. Fish. Aquat. Sci. 3176: viii + 42 p. 
 
L’augmentation de la production de pétrole et du trafic de navires-citernes au Canada 
accroît le risque de déversements accidentels de produits pétroliers dans les eaux 
canadiennes. En réaction à ces changements, le gouvernement du Canada a annoncé 
le système de sécurité de classe mondiale pour les navires-citernes et créé le Comité 
d’experts indépendant sur la sécurité des navires-citernes afin d’examiner la 
préparation et l’intervention du Canada en cas de déversement de produits pétroliers 
provenant de navires. Suivant les recommandations du Comité, le gouvernement du 
Canada établit des plans d’intervention pour quatre zones pilotes où le trafic de navires-
citernes est le plus élevé au Canada: Saint-Jean (Nouveau-Brunswick), Port 
Hawkesbury et le détroit de Canso (Nouvelle-Écosse), la Voie maritime du Saint-
Laurent (Québec) et la partie sud de la Colombie-Britannique. 
 
Le présent rapport est le quatrième volume de cinq et contient de l’information 
pertinente relativement à l’élaboration d’un plan d’intervention régional pour la Voie 
maritime du Saint-Laurent, au Québec. Le premier volume du présent rapport contient 
des renseignements introductifs sur les produits pétroliers et les déversements et 
devrait accompagner les volumes suivants. 
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1 INTRODUCTION 
 
In November 2013, the Expert Panel of the World Class Tanker Safety System 
(WCTSS) produced its first report (Houston et al. 2013). In response to the Panel's 
recommendations, the Government of Canada aims to develop and implement fitted oil 
spill response plans in the following four pilot areas: 

 Saint John and Bay of Fundy, New Brunswick 

 Port Hawkesbury-Canso Strait, Nova Scotia 

 St. Lawrence Seaway, Montreal to Anticosti, Québec 

 Strait of Georgia and the Juan de Fuca Strait, British Columbia 
 
As part of this initiative, a five-volume report has been produced in order to provide a 
general review of factors that may influence oil spills and response in the four pilot 
areas. This report is intended to be practical in nature and not a detailed examination of 
the science of oil spills or specific scenarios that may be encountered. 
 
Volume 1 of this report provides information that is common to the study as a whole, 
including oil products handled by the ports, oil spill fate and transport, fate and 
behaviour modelling of spilled oil, a synopsis of the methods currently employed in 
operational response, techniques used to monitor and track spills, and a glimpse of 
technologies under development. Four additional volumes provide information on the 
hydrography, oceanography, climate, case studies of spills, and, when available, spill 
modelling for each of the four selected pilot ports in the order listed above. 
 
This volume focuses on the area surrounding the St. Lawrence Seaway, Quebec 
(Figure 1). The St. Lawrence is among the world’s most important commercial 
waterways and is a significant socio-economic asset to Canada and the industrial 
heartland of the United States, linking the Atlantic Ocean with the Great Lakes 
(Government of Canada 2017). One of the three largest rivers on the North American 
continent, the St. Lawrence extends from the Laurentian Great Lakes to the Gulf of St. 
Lawrence, and is fed by two major watersheds: the Great Lakes regulated at Cornwall 
station, and the Ottawa River regulated at the Carillon generating station west of 
Montreal. Encompassing 1,610,000 km2, it is the thirteenth largest drainage basin in the 
world. At any given time the St. Lawrence River contains up to 25% of the earth's 
freshwater, and influences environmental processes of the entire North American 
continent. Total freshwater runoff from the St. Lawrence River, the Saguenay River, 
rivers along the north shore, and smaller contributions from the south shore govern the 
estuarine circulation in the Gulf of St. Lawrence (Dufour and Ouellet 2007). 
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Figure 1. Saint Lawrence River study area 
 
 
From Lake Ontario seaward, the river and estuary can be viewed in sections on the 
basis of its physical properties, with boundaries that vary according to quoted authority 
or intended use (Dunbar et al. 1980), but we will use the boundaries illustrated in Figure 
2 (St. Lawrence Centre 1993): 1. Mille-Isles, 2. International Rapids, 3. river (fluvial 
section), 4. Fluvial estuary, 5. Upper estuary, 6. Lower estuary, and 7. Gulf. The study 
area does not include sections 1 or 2 and only extends to the western tip of Anticosti 
Island in the Gulf.  
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Figure 2. Sections of the St. Lawrence (St. Lawrence Centre 1993) 
 
 
The estuary and Gulf are joined to the Atlantic Ocean by the Laurentian Channel. The 
northern end of the Channel splits into two secondary troughs diverting water to the 
north and south of Anticosti Island. Some of this water travels further northeast to Belle 
Isle Strait. Near Cabot Strait, depths can exceed 500 m (Figure 3), while elsewhere in 
the Gulf, they range from 100 to 400 m. 
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Figure 3. Bathymetry of the Gulf of St. Lawrence (Dunbar et al. 1980) 
 
 
A recent report (Houston et al. 2013) considers the Gulf of St. Lawrence and the 
southern coast of British Columbia to be the most vulnerable regions of Canada to an oil 
spill. There would be severe environmental and socioeconomic impacts, taking into 
account the coastal characteristics (e.g. tides and sand bars), the fauna (mollusks, fish, 
birds, etc.) and human activities based on these resources. 
 
In addition, the Great Lakes-St. Lawrence Seaway is a deep draft waterway of 
geographic, hydrologic, and economic importance that stretches 4,000 km from the 
Cabot Strait to the head of the Great Lakes as far as North River, Minnesota. The St. 
Lawrence Seaway portion extends from Montreal through Quebec and Ontario to Lake 
Erie, contiguous with a section of the Canada-US border. It supports 15 major ports and 
50 regional ones, all connected to 40 provincial and interstate highways and about 30 
rail lines – a vital, international, transportation route (New World Encyclopedia 2015). 
 
The Port of Montreal is an international transshipment point, a hub for major petroleum 
pipelines, and the only container port on the St. Lawrence River. More than 100 berths 
handle cargo from over 200 international ports, including grain and other dry bulk 
goods, petroleum products, other bulk liquid consumer goods, machinery and sugar. 
The port handled 28,422,003 tons of cargo in 2012, and has moved an annual average 
of 20 million tons in the past 10 years. 
 

http://www.newworldencyclopedia.org/entry/Hydrology
http://www.newworldencyclopedia.org/entry/Minnesota
http://www.newworldencyclopedia.org/entry/Quebec
http://www.newworldencyclopedia.org/entry/Ontario
http://www.newworldencyclopedia.org/entry/Canada
http://www.newworldencyclopedia.org/entry/United_States
https://en.wikipedia.org/wiki/Transshipment
https://en.wikipedia.org/wiki/St._Lawrence_River
https://en.wikipedia.org/wiki/Consumer_goods
https://en.wikipedia.org/wiki/Machinery
https://en.wikipedia.org/wiki/Sugar
https://en.wikipedia.org/wiki/Tonne
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The capacity to respond to an oil spill in the St. Lawrence is limited to 15,000 tons of oil 
(about 105,000 barrels). Under ideal conditions, maximum physical recovery of spilled 
oil can be expected to be 30% (Environment Canada et al. 2013), and this likely would 
be much lower in cold water and icy environments (Engelhardt 1994; Lee et al. 2011). 
The major risks would be spills from tanker and pipeline accidents. 
 
For the study area (Figure 1), which extends from the St. Lawrence River to the western 
tip of Anticosti Island in the Gulf of St. Lawrence, environmental sensitivity indices  
(Figure 4) indicated that the zones of highest potential impact are in the estuary and the 
Gulf of St. Lawrence, especially near the shore (WSP Canada 2014). 
 

 
Figure 4. Environmental sensitivity indices in regions of the St. Lawrence River 
(Houston et al. 2013) 
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2 HYDROGRAPHY 
 
2.1 BATHYMETRY 
 
2.1.1 St. Lawrence River 
 
The river section is 240 km long, passing through a highly industrialized region between 
Cornwall, Ontario, to Pointe du Lac on Lac Saint-Pierre (in Trois-Rivières), Quebec, and 
contains wetlands, rapids, lakes and over 100 islands (St. Lawrence Centre 1991, 1993, 
1996b). There is no tidal influence in this section. Water entering the fluvial section from 
tributaries sometimes does not mix, but brown, humic-stained water from the Ottawa 
River flows alongside green, relatively clear water from the Great Lakes (Vincent and 
Dodson 1999), creating striking ecological contrasts (St. Lawrence Centre 1996b).  
 
The fluvial estuary from Trois-Rivières to the eastern tip of Île d'Orléans is about 160 km 
long, 2 to 5 km wide (Figure 5; but only 870 m wide at the Quebec City bridges), and 
has fewer wetlands and more rock flats subject to tidal action (St. Lawrence Centre 
1991, 1996b). The river and fluvial estuary support the highest biodiversity in terms of 
plant and animal life (St. Lawrence Centre 1996b). The mean tidal amplitude near the 
end of this reach at Quebec City is 4.1 m, rising to 5.8 m during spring tides. Current 
reversal and strong mixing occur on the flood tide, so this part of the river lacks the 
distinct cross-channel gradients in water masses which are characteristic of the fluvial 
section; the combined ebb plus river currents can generate an instantaneous flow of 
75,000 m3/s (Vincent and Dodson 1999). 
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Figure 5. The fluvial estuary (St. Lawrence Centre 1996b) 
 
 
2.1.2 Upper St. Lawrence Estuary 
 
The upper estuary (Figure 6) extends 180 km from the landward limit of salt intrusion at 
the eastern tip of Île d'Orléans (Neu 1970), down to the head of the deep glacial valley 
called the Laurentian Channel, near Tadoussac. It is about 2 km wide in the river 
section and widens to about 25 km near Tadoussac (average = 17 km wide), and 
covers some 3277 km2 (St. Lawrence Centre 1991). High-intensity currents and tides 
mix this transition zone of fresh and saltwater, and turbidity tends to be high between Île 
d’Orléans and Île aux Coudres (St. Lawrence Centre 1991). The average depth is less 
than 10 m, and turbulence decreases from Île -aux-Coudres to Tadoussac, so the water 
column becomes partially stratified (Bourgault 2001; Neu 1970), with salinity ranging 
from 0.5 to 25 ppt (Vincent and Dodson 1999). 
 
In the upper estuary, more than 90% of the total kinetic energy of flow is due to the 
action of tides alone (Muir 1982). As the estuary becomes narrower and shallower, the 
tidal range increases. The maximum tidal range, near 5 m, is observed at Saint-
François-de-l’île-d’Orléans (Godin 1979). The tidal range and currents then rapidly 
decrease in the river section landward from Quebec City owing to increased bottom 
friction. At Trois-Rivières, the tidal range is reduced to less than 0.2 m (Bourgault 2001; 
Godin 1979). 
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Figure 6. Upper estuary and Saguenay River (St. Lawrence Centre 1996a) 
 
 
The bathymetry of the upper estuary is complicated by three flow channels of more than 
10 m deep, one of which crosses the river north-south between l'Isle-aux-Coudres and 
the Isle-aux-Grues Archipelago (Figure 7). At Saint-Siméon depths of more than 100 m 
have been recorded in a trough about 50 km long. There are many islands, deep 
troughs, shallow banks and sills, of which the most dramatic is the Saguenay sill near 
Tadoussac that drops 250 m over a stretch of 20 km eastward. Included as part of the 
upper estuary, the Saguenay fjord (maximum depth = 320 m) is over 100 km long, and 
the sill at its mouth restricts flow between its water masses from the St. Lawrence, 
although some exchange does still occur (Belzile et al. 2016; St. Lawrence Centre 
1991, 1996b). The Saguenay sill marks the start of the lower estuary (Figure 8). 
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Figure 7. Bathymetry of the upper estuary (St. Lawrence Centre 1991) 
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Figure 8. Upper and lower estuaries (Bourgault 2001) 
 
 
2.1.3 Lower St. Lawrence Estuary 
 
The last 300 km stretch of the river is the 12,600 km2 lower estuary (Figure 9), 
beginning with the head of the Laurentian Channel and averaging 37 km across 
between Tadoussac and Pointe-des-Monts, with a maximum width of about 60 km at 
Baie-Comeau (St. Lawrence Centre 1991) and the sudden enlargement near Pointe-
des-Monts where the Gulf of St. Lawrence begins (Bourgault 2001). Geometry and 
physics differ markedly between upper and lower estuaries (El-Sabh 1988). 
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Figure 9. The lower estuary and Gulf (St. Lawrence Centre 1996b) 
 
   
Circulation and mixing within the lower estuary are heavily influenced by tides, 
barometric pressure, air temperature, wind, local freshwater inputs, coastal relief, 
bathymetry, and the earth’s rotation. The lower St. Lawrence estuary receives on 
average 12,000 m3/s of freshwater annually with 40% higher discharge during spring 
freshets, creating buoyancy-driven circulation (Neu 1970), in addition to tidal mixing. 
The estuary shows a variable density structure, from well-mixed near the head to 
stratified near the mouth (Bourgault 2001; El-Sabh 1988; Neu 1970). The freshwater-
saltwater transition is a dynamic front characterized by salinities in the range of 0.2-5 
psu, with sharp gradients in biological properties and food-web structure (Vincent and 
Dodson 1999). In summer, three water masses of different temperatures and salinities 
are superposed, while in the winter, only two such water masses are superposed 
(Devine 2015; Dunbar et al. 1980; St. Lawrence Centre 1996b). 
 
Numerical modelling has shown that mixing in the estuary is most intense near the 
Saguenay sill (Tadoussac) at the head of the Laurentian Channel, near English Bank, 
and near Ile-aux-Coudres (Bourgault 2001), especially during the spring freshet, which 
pushes salt intrusion seaward about 12 km and increases residual circulation and 
turbulent vertical mass flux. High volumes of fresh water increased water column 
stability in the upper estuary, but decreased it in the lower estuary. 
 
The lower estuary empties into the Gulf (Figure 3), a semi-enclosed, 195,000 km2 sea 
(St. Lawrence Centre 1996b) containing about 3,553 km3 of water, almost seven times 
smaller than the Gulf of Mexico, and bordered by Quebec, New Brunswick, Prince 
Edward Island, Nova Scotia and Newfoundland-Labrador. de Vernal et al. (2011) briefly 
describe the oceanographic features of the Estuary and Gulf of St. Lawrence as an 
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epicontinental sea, characterized by a vast watershed supplying a mean freshwater 
discharge of 10,900 m3/s (Bourgault and Koutitonsky 1999). 
 
 
2.2 CIRCULATION 
 
2.2.1 Saint Laurence Estuary and River 
 
In addition to vertical fluctuation, astronomic tides generate horizontal currents up to 
0.50 m/s in channels and straits and up to 3 m/s in the region around Quebec City (St. 
Lawrence Centre 1996b). Mathematical simulations yielded values of 0.25 m/s or less 
for the lower estuary, and 1.0 m/s around Tadoussac (El-Sabh and Murty 1990; St. 
Lawrence Centre 1996b). In the winter, these tides move the ice back and forth, 
especially in the upper estuary, which limits the formation of fast ice (Environment and 
Climate Change Canada 2017). 
 
The density difference between the freshwater input (about 104 m3/s) to the estuary 
near Quebec City, and oceanic water, combined with strong tidal currents and turbulent 
mixing drive an estuarine like circulation. On average, the surface brackish layer (from 
the surface to about 30 m depth) flows seaward while a cold and salty compensating 
bottom flow takes place at depth to renew the waters in the deeper channels of the 
upper estuary (Neu 1970). This dense water comes mainly from the cold (-1 to 1 0C) 
intermediate layer (50-150 m depth) found throughout the lower estuary and the Gulf of 
St. Lawrence (Dickie and Trites 1983; El-Sabh 1988; Galbraith 2017; Koutitonsky et al. 
1991). This layer is continuously advected landward into the estuary by the persistent 
residual circulation described above by Bourgault (2001). 
 
Measurements of current velocity in the north channel of the upper estuary (Figure 10) 
near Île aux Lièvres (about 20 km upstream of Tadoussac and 125 km downstream of 
Île d’Orléans) during tidal phases, suggest the existence of a bi-layer current in all tidal 
phases except for 1 hour before high water and 2 hours before low water (Bourgault et 
al. 2001). 
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Figure 10. Current profiles in the Northern Passage at Ile-aux-Lièvres (1) 1 h 
before high water, (2) 2 h after high water, (3) 3 h after high water, (4) 2 h before 
low water, (5) 3 h after lower water (Bourgault et al. 2001) 
 
Depending on the phase of the moon and the amount of fresh water outflow, deep, cold 
water from the Gulf can fill up the estuary (Koutitonsky 1979). The net transport 
(averaged over the tidal cycle) was found to be upriver; however, the residual flow of the 
Gaspé current was always directed toward the Gulf. 
 
 
2.2.2 Lower Estuary 
 
Much of the water entering the Gulf from the Saint Lawrence estuary through Honguedo 
Strait (between Gaspésie and Anticosti Island) moves along the southern coast 
(Dolgopolova and Isupova 2011) due to the Gaspé current (Figure 11). It originates at 
the head of the Lower Estuary, runs along the south coast to Cape Gaspé, where it is 
15-20 km wide in the top 40-50 m of the water column, and dissipating on the shelf off 
the Magdalen Islands (Tang and Bennett 1981). Eighty percent of the water transported 
in the upper 50 m of the Gaspé current is upwelled from the 50-100 m layer, 71% from 
the northwestern Gulf and 9% from the Lower Estuary (Bugden 1981). Of the remaining 
20%, 17% is due to surface recirculation from adjacent regions of the Gulf and 3% to 
fresh water discharged by the St. Lawrence. 
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Figure 11. Currents in the lower estuary and Gulf (St. Lawrence Centre 1991) 
 
 
2.3 TIDES 
 
Mixed, semi-diurnal, barotropic tides from the Atlantic Ocean propagate through the 
Gulf of St. Lawrence and estuary, over the sill at the head of the Laurentian Channel, 
producing turbulent tidal currents and renewing the cold water basins of the north and 
south channels, and the Saguenay Fjord (Belzile et al. 2016; Bourgault et al. 2001; 
Dolgopolova and Isupova 2011; Drapeau et al. 2003; Dufour and Ouellet 2007; El-Sabh 
and Murty 1990; Farquharson 1962; Saucier and Chasse 2000; Saucier et al. 2003). A 
tide wave generated near Cabot Strait takes close to one day to reach Lake Saint- 
Pierre, upstream of Trois-Rivières (St. Lawrence Centre 1996b). The semidiurnal wave 
from tidal action amplifies (Figure 12) as it moves up the estuary (Godin 1979). 
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Figure 12. Variations in the tide range in the St. Lawrence (St. Lawrence Centre 
1996b) 
 
 
At Anticosti Island, neap tide magnitude is 1 m and spring tide is 2 m.  Mean ranges are 
2.3 m at Sept-Îles, 2.5 m in the Pointe-des-Monts to Mont-Joli area, 3.0 m at Pointe-au-
Pére, and 4.1 m near Quebec City (Fisheries and Oceans Canada 1992). A maximum 
height of 4.9 m during spring tide and 2.8 m during neap tide was observed at the 
estuary head near Quebec City (de Borne de Grandpré and El‐Sabh 1980), and a range 
of 5.0-7.5 m was recorded at Saint-François gauging station on the southeastern 
extremity of Île d’Orléan, where tidal range is known to be greatest (Godin 1979). 
 
The mean tidal range at Quebec City is 4.1 m (St. Lawrence Centre 1993), increasing to 
5.8 m for spring tides (Robitaille 1998). At Quebec City, tidal flow is 65,000 m3/s 
(Robitaille 1998), which is 4.5 times the mean river flow of 12,100 m3/s (St. Lawrence 
Centre 1993). At ebb tide, the sum of tidal and river flow can be up to 75,000 m3/s off Île 
d’Orléans (Robitaille 1998). At Montmagny (Upper Estuary), total mean flow (river and 
tidal) is estimated at 90,000 m3/s (St. Lawrence Centre 1991, 1996b). Flow velocity in 
the Richelieu Rapids can reach 10 m/s at ebb tide, compared with 4.6-7.4 m/s between 
the rapids and Quebec City (Robitaille 1998).  
 
Upstream of Quebec City, the semidiurnal tides rise quickly and ebb slowly (El-Sabh 
and Murty 1990), and their influence extends as far upstream as Lake Saint-Pierre 
(Godin 1979). Beyond Lake Saint-Pierre, daily fluctuations in water level give way to 
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biweekly fluctuations of about 0.20 m (Figure 13). Near Trois-Rivières, the tidal 
maximum never exceeds 0.2 m (Dolgopolova and Isupova 2011). The fluctuating river 
levels at Montreal (0.05 to 0.15 m) are superimposed on the 0.20 m biweekly 
astronomic tides from the estuary (Godin 1979). 
 

  
Figure 13. Modification of the tide wave between Sainte-Anne des-Monts and 
Montreal (Godin 1979) 
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2.4 WATERSHED 
 
2.4.1 River Discharge 
  
Freshwater inputs to the St. Lawrence River, estuary and Gulf come from the numerous 
tributaries within the watershed which includes the Great Lakes (Dufour and Ouellet 
2007). Near the Cornwall gauging station, mean water flow is 7,350 m3/s (232 
km3/year), maximum flow averages 10,000 m3/s, and the minimum averages 4,500 m3/s 
(Dolgopolova and Isupova 2011). Mean annual flow at Sorel is 9,868 m3/s. For Québec 
City at the head of the estuary, the mean is 11,300-12,000 m3/s or 357-379 km3/year  
(Bourgault and Koutitonsky 1999; Couillard 1987; Koutitonsky 1979). Toward the mouth 
of the estuary, it increases to 14,400-16,800 m3/s (454-530 km3/year) (El-Sabh 1988). 
The mean long-term water flow (Table 1) at Quebec City from 1955 to 1999 was 12,000 
m3/s or 379 km3/year (Bourgault and Koutitonsky 1999). 
 
Table 1. Monthly average flow for the Saint Lawrence River near Québec City, 
1955–1999 (Bourgault and Koutitonsky 1999) 

 River Flow (m3/s) % of yearly total 

January 10700 7.4 

February 10700 7.4 

March 12000 8.3 

April 16800 11.7 

May 15800 11.0 

June 12400 8.6 

July 11300 7.8 

August 10600 7.4 

September 10400 7.2 

October 10900 7.6 

November 11400 7.9 

December 11100 7.7 

Average for the year 12000 8.3 

 
 
The monthly flow is relatively uniform (Table 1). An increase up to about 17,000 m3/s 
with a maximum of 23,700 m3/s (1976) from April to May was due to snowmelt, and 
variations in river water flow within each month can be even wider, depending on 
synoptic conditions and level variations in the Great Lakes (Dolgopolova and Isupova 
2011). 
 
The annual mean contribution, from 1964 to 2017, by the Ottawa River, the largest 
tributary of the St. Lawrence, is 1,942 m3/s, with a mean daily minimum of 744 and 
maximum of 5,356 at Carillon generating station, west of Montreal (Ottawa River 
Regulation Planning Board 2018). 
 
Freshwater runoff data for the St. Lawrence River updated monthly (Figure 14) are 
available from the St. Lawrence Global Observatory. Galbraith et al. (2015) used 
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RIVSUM (river sum) II, a hydrological watershed model, to estimate monthly runoff for 
other major rivers flowing into the estuary, and found that they contribute about 5,000 
m3/s, the equivalent of 40% of the St. Lawrence River (Figure 15). River regulation was 
found to exert a significant influence on runoff. 
 

 
 
Figure 14. Mean monthly flow of the St. Lawrence at Québec City in black, and 
1981-2010 monthly climatologies plus and minus one-half standard deviation in 
blue (Galbraith et al. 2014a) 
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Figure 15. Annual mean flow of the St. Lawrence River at Québec City and of the 
sum of all rivers flowing into the estuary with the 1981-2010 climatological means 
as horizontal lines and on the right side of the scorecards. Scorecards are 
normalized anomalies with red, blue and white representing positive, negative, 
and not significant, respectively, and intensity represented with shading 
(Galbraith et al. 2015) 
 
 
2.4.2 Industrial Wastewater 
 
There are numerous petroleum product depots in addition to three oil refineries on the 
St. Lawrence (Figure 16). Suncor and Shell are in east-end Montreal, and Valero is in 
Saint-Romuald. Wastewater discharge in 1992 from these refineries contributed 74.5 kg 
of ammonia nitrogen, 160 kg of oil and grease, 743 kg of suspended solids, 4.4 kg of 
phenols and 1.3 kg of sulfides to the river daily (St. Lawrence Centre 1996b). More 
detailed information on refinery discharge in 2011 and 2012 can be found Table 2 
(Pineault 2014). 
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Figure 16. Oil industry along the Saint Lawrence (St. Lawrence Centre 1996b) 
 
 
 
Table 2. Discharge from oil refineries along the Saint Lawrence River in 2011 and 
2012 (Pineault 2014) 

 
 
 
2.4.3 Sediments and Dissolved Solids 
 
Compared with other rivers of the world, the St. Lawrence River has a low sediment 
load (Dolgopolova and Isupova 2011). The amount of sediment entering the estuary 
from the river is 1.1-6.5 million t/year (Couillard 1987; Environment and Climate Change 
Canada 2016; Kranck 1979). Lake Ontario contributes <3% of the suspended 
sediments, tributaries contribute 32% and erosion of the bed and banks of the St. 
Lawrence River contributes about 65% (Rondeau et al. 2000). The spring contribution is 
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60-70% of the total annual load, summer is 15%, fall is 15-25%, and winter is 5% 
(Frenette et al. 1989). Total runoff of dissolved solids into the Gulf of St. Lawrence is 
92.5 thousand t/km2 per year (Dolgopolova and Isupova 2011). 
 
Upstream of Lake Saint-Pierre (between Montreal and Trois-Rivières) the suspended 
sediment concentration ranges from 4 to 10 mg/L, increasing to 30–50 mg/L 
downstream to Québec City, and 50-200 mg/L immediately upstream of Île d’Orléans 
(Couillard 1987). Downstream from Île d’Orléans, suspended sediment concentration 
decreases to 40-80 mg/L, dropping to < 5 mg/L at Rivière-du-Loup and < 2 mg/L at the 
Saguenay River. 
 
Turbidity in the upper estuary is controlled by exchange of sediments from mudflats and 
marshes, due to circulation, ice, wind-induced turbulence and tide, and shows a 
maximum between Île d’Orléans and Île aux Coudres of 50-200 mg/L (Table 3), and 
peaks have exceeded 400 mg/L (d'Anglejan 1990). This region constitutes a zone of 
maximum turbidity from floc formation (d'Anglejan 1990; Kranck 1979), which would be 
important in the formation of oil-mineral aggregates during an oil spill. The zone 
migrates 30-40 km up and down the estuary depending on tide and river flow. Ebb tide 
discharges 15‰ (50% mixed with sea water) turbid water along the southern shore 
through the Southern Passage and forms a front, separating estuarine waters by their 
salinity, temperature, and turbidity, which also migrates according to changes in river 
flow (Dolgopolova and Isupova 2011). 
 
 
Table 3. Suspended solid concentration from Kingston, Ontario to Île d’Orléans 

Location Concentration (mg/L) 

Kingston 1-2 

Lake Saint-Francois 4-5 

Lake Saint-Louis 7-8 

Lake Saint-Pierre 9-13 

Quebec City 16-20 

East end of Île d'Orléans  25-70 

Maximum turbidity zone 200-400 

 
 
Sediment dynamics are dominated by tidal action at the head of the upper estuary 
around Île d'Orléans where tidal marshes abound, but moving downstream to Pointe-
des-Monts, this changes to wave-dominated, especially at the mouth of the lower 
estuary, where sandy beaches are common (Drapeau 1990; Drapeau 1992; St. 
Lawrence Centre 1996b). The main tributaries downstream of Quebec City (Saguenay, 
Betsiamites, aux Outardes and Manicouagan rivers) are responsible for sediment 
loading in the lower estuary (St. Lawrence Centre 1996b). Sediment accumulation 
occurs during winter in the marshes and tidal flats of three main inner lakes beyond the 
navigation canal, where flow velocity is less than 0.3 m/s and depth does not exceed 
4.5 m (Dolgopolova and Isupova 2011). Erosion of these occurring during the spring 
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freshet adds sediment to the river (d'Anglejan 1990) along with major erosion zones in 
canals of the middle reach of the river (Couillard 1987). 
 
Bottom sediments of the upper estuary consist mostly of coarse sand (0.06–2 mm) and 
gravel (2-80 mm) with some fine silty-clays ≤60 μm (Dolgopolova and Isupova 2011), 
whereas the deep, lower estuary is a region of settling for these fine sediments, at a 
rate of 1.5-4 mm/year (d'Anglejan 1990). The silt/clay ratio averages 2.3:1, being 20-
30% clay less than 0.002 mm diameter, and 5-70% fine sand of 0.063-0.125 mm 
diameter (d'Anglejan 1990). The organic content of suspended particulate matter in the 
upper estuary appears to originate from land erosion, while that of the lower estuary 
appears to come from marine production (d'Anglejan 1990). 
 
 
2.5 SALINITY, WATER TEMPERATURE, AND DISSOLVED OXYGEN 
 
The St. Lawrence has a classical estuary: water runoff and precipitation exceed 
evaporation, fresh and salt water mix, and salinity steadily decreases going upstream. 
The upper boundary of saline water intrusion shifts depending on river flow, tidal 
magnitude and phase, and spring-neap cycle (Bourgault et al. 2001; Dolgopolova and 
Isupova 2011). In the warm season, the boundary lies near the eastern extremity of Île 
d’Orléans and shifts within 20 km (Dolgopolova and Isupova 2011; Gagnon 1998). 
Mean surface water salinity increases from 0.1 at the head of the estuary to 18–26 at 
the Saguenay river mouth (Gagnon 1998), while salinity at the bed can reach 20–30‰ 
(Neu 1976). In the middle and lower estuary, surface salinity varies from 28 to 32‰, 
depending on season, and increases with depth to 33–35‰, equivalent to the Gulf 
(Dolgopolova and Isupova 2011; Neu 1976). 
 
Surface and bottom waters form a salinity gradient between Île d’Orléans and Île aux 
Coudres (Figure 17). Between Île d’Orléans and Montmagny Archipelago, salinity in 
summer does not exceed 2-3‰ on the surface and 4-6‰ at the bottom. Decreased river 
flow in winter allows the salinity in the bottom layer to rise to 6-10‰. Seaward from Île 
aux Coudres changes in salinity from fresh water input is only noticeable near tributaries 
(Couillard 1987; Dolgopolova and Isupova 2011). 
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Figure 17. Geographic Locations in the upper Saint Lawrence Estuary 
 
 
Near the inflow of the Saguenay River, vertical migration of the 32.5‰ isohaline with the 
tide has been described (de Borne de Grandpré and El‐Sabh 1980). At high water, this 
32.5‰ isohaline is at a depth of 20-25 m. During ebb tide, the depth of the isohaline 
decreases to its maximum of 75 m, and vertical flow velocities, directed toward the bed 
(positive) gradually increase and reach their maxima at 2.2 mm/s 4 h after high water. 
The reverse occurs during flood tide as the isohaline moves upward with a mean 
velocity of 2.3 mm/s, 2-3 h before high water. The vertical velocity gradient on a spring 
tide is twice that of a neap tide (de Borne de Grandpré and El‐Sabh 1980; Dolgopolova 
and Isupova 2011). 
 
The mean monthly water temperature on the Gulf surface ranges from 0 (January– 
April) to +13°C (August). From May to October, air temperature averages 2°C higher 
than water temperature in the Gulf surface layer. Fresh water from the St. Lawrence 
River tends to flow along the south shore of the lower estuary, while cold Atlantic water 
moves upstream at depth through the Strait of Belle Isle and the Laurentian Channel 
(Figure 18) resulting in three layers (Dickie and Trites 1983): (1) a seaward, mixed, 27-
32 ppt, surface layer from river discharge that extends down 25 to 75 m, (2) a landward, 
intermediate, −1 to 2°C layer of saline (31.5–33 ppt) water from winter cooling of the 
Gulf surface (Banks 1966; Galbraith 2017; Gilbert and Pettigrew 1997), and (3) a slow, 
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landward (Bourgault et al. 2001), deep, 34-34.6 ppt, warmer (4 to 6°C) layer from the 
Atlantic (Koutitonsky 1979). 
 
The surface layer displays large seasonal variations in temperature and salinity due to 
atmospheric and buoyancy forcing. It is relatively thin (Craig and Gilbert, 2008), freezes 
in winter for 3 to 4 months, and warms to 18°C in summer. Seasonal gradients of 
temperature and productivity are extremely high (Le Fouest et al. 2006). Maximum 
surface temperatures occur between mid-July and mid-August, with a climatological 
mean (1985–2010) that ranges from about 7°C at the head of the lower estuary at 
Tadoussac, to over 17°C on the Magdalena Shallows. Summer surface waters are 
getting warmer because of rising air temperatures by 0.9°C every 100 years since 1873, 
and faster in recent years (Galbraith et al. 2014b).  From autumn into winter, surface 
cooling, wind-driven mixing, decreased tributary flow and ice formation cause the 
surface and intermediate layer to merge down to a depth of 75 m (Galbraith 2006; 
Gilbert and Pettigrew 1997; Saucier et al. 2003). In spring, the cold layer that was 
formed in the northern Gulf of St. Lawrence and in the Laurentian Channel becomes a 
subsurface water mass that flows into the Estuary (Dufour and Ouellet 2007). During 
spring, surface warming, sea-ice melt waters, and continental runoff produce a lower-
salinity and higher-temperature surface layer, beneath which the cold waters from the 
previous winter are partly isolated and form the summer cold intermediate layer which 
gradually warms, deepens, and persists until the following winter (Cyr et al. 2011; 
Galbraith et al. 2015; Gilbert and Pettigrew 1997). The extent of ice formation, volume 
of sea ice and duration of the ice season have declined since 1990. The years 1969, 
2010 and 2011 were practically ice-free winters with air temperatures 2-3°C higher than 
normal (Galbraith et al. 2014b; Galbraith et al. 2015). 

 
Figure 18. Water stratification in the St. Lawrence system (St. Lawrence Centre 
1991) 
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The characteristics of the cold intermediate layer (<1°C, Figure 20) are closely related 
to climatic conditions: winter cooling (to -1°C down to 75 m depth, Galbraith et al. 
2014a), increased density, and brine release during sea-ice formation (Craig and Gilbert 
2008; Gilbert and Pettigrew 1997). Mean summer temperature in the cold intermediate 
layer fluctuates yearly. It was very cold for the period 1986-1998 (Figure 19), but since 
then, temperatures have generally been on the rise and summer 2012 was the warmest 
since 1980 (Galbraith et al. 2014b). 
 

 
 
 
Figure 19. Mean annual mid-July cold intermediate layer (CIL) temperature 
(Galbraith et al. 2014b) 
 
 
Currents in the cold intermediate layer are predominantly landward on the northern side 
of the Laurentian Channel and seaward, but weaker, on the southern side of the 
Channel, so that the net transport in the layer is landward (Mucci et al. 2011). 
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Figure 20. Summer salinity, temperature, and density profile in the Lower St. 
Lawrence Estuary (de Vernal et al. 2011) 
 
 
The deep bottom waters are a mixture of Labrador Current and North Atlantic central 
waters whose proportions vary over a very long term (Bugden 1991; Gilbert et al. 2005). 
This water flows landward, to Tadoussac at the mouth of the Saguenay Fjord and is 
characterized by upwelling, which results in extremely high productivity that maintains 
large whale populations (de Vernal et al. 2011). Vertical mixing (Neu 1970) or the 
interaction of stratified, intense, tidal currents with rapid shoaling near Tadoussac 
(Bourgault 2001; Reid 1977) appears to be responsible for the upwelling of  large 
amounts of nutrients from below 50 m into the photic zone. Around Tadoussac the 
surface water tends to be always cold due to variable, but strong, tidal mixing of the 
upwelled water with water from the St. Lawrence and Saguenay Rivers (Koutitonsky 
and Bugden 1991; St. Lawrence Centre 1996b). 
 
Giant cyclonic and anticyclonic eddies generated by regional winds are common 
between Les Escoumins and the western tip of Anticosti Island (Figure 11), producing 
cross-currents running north at île du Bic and south at Pointe-des-Monts (St. Lawrence 
Centre 1991, 1996b). 
 
Water that forms the deep layer below 150 m moves upstream from Cabot Strait and 
the Strait of Belle Isle, mixes little with shallower water, and takes three to four years to 
reach the head of the lower estuary (Gilbert 2004). Respiration of organisms and 
oxidation of organic material reduce the dissolved oxygen concentration (Figure 21), 
such that the deep waters of the lower estuary became briefly hypoxic in the early 
1960s, and have been consistently hypoxic at 19 to 22% saturation since 1984 
(Galbraith et al. 2014b). 
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Figure 21. Temperature (blue) and dissolved oxygen (green) at 300 m in the lower 
estuary (Galbraith et al. 2014b) 
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3 CLIMATE 
 
For the Atlantic region, it is anticipated that in the next 50 years there will be an increase 
in air temperature by 2-3.5ºC, >10% increase in precipitation, increased run-off, reduced 
sea ice (including icebergs), a rise in ocean temperature, a decrease in salinity, a 
decrease in the thickness of the surface mixed layer, decreased nutrient exchange from 
deep water to the photic zone (due to stronger stratification), decreased dissolved 
oxygen, and increased acidification by pH >0.1 (Fisheries and Oceans Canada 2013). 
The warm Gulf Stream and the cold Labrador Current are the two major ocean currents 
that have the greatest effect on weather in the region (Robichaud and Mullock 2001a). 
Circulation from the northwest causes strong southwest winds on the south shore of the 
lower St. Lawrence up to Île Bîcquette, near Rimouski, and fog is common over the 
water in the summer. Low ceilings and decreased visibility frequently occur along the 
coast during east and northeast winds (Robichaud and Mullock 2001b). 
 
 
3.1 TEMPERATURE AND PRECIPITATION 
 
The St. Lawrence River has a temperate climate with cold winters. Monthly average 
temperatures for Mont-Joli, which is centrally located along the southern shore of the St. 
Lawrence Estuary, shows average temperatures between -12.3°C (January) and 17.5°C 
(July) (Figure 22) (The Weather Network 2019). Precipitation statistics for Mont-Joli 
show an average annual rainfall of 606 mm and average annual snowfall of 350 cm with 
relatively consistent levels of precipitation throughout the year.  
 
The St. Lawrence River is typically covered with ice from mid-December to mid-April 
and ice floes are also common in the greater estuary during this time (Dolgopolova and 
Isupova 2011). 
 

 
Figure 22. Monthly Average Temperature at Mont-Joli, QC (The Weather Network 
2019) 
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Figure 23. Monthly Average Precipitation at Mont-Joli, QC (The Weather Network 
2019) 
 
 
3.2 WIND AND WAVES 
 
From June to November winds blow from the southwest and west (Figure 24), whereas 
in the winter they are northwesterly (Dufour and Ouellet 2007; Koutitonsky and Bugden 
1991), but storm tracks can force wind direction (Dolgopolova and Isupova 2011). Wind 
speed is generally under 20 km/h, and the recurrence of winter winds >57 km/h is 
always less than 10% (Dolgopolova and Isupova 2011). 
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Figure 24. Wind direction in the St. Lawrence Estuary and Gulf; arrow size is 
proportional to wind speed (Koutitonsky and Bugden 1991) 
 
 
At Mont-Joli on the southern shore of the lower estuary, the winter winds are 
predominantly westerly or southwesterly. Wind direction is a direct result of channeling 
in the St. Lawrence River Valley. Summer winds show a similar pattern, but tend to be 
lighter. The main wind axes are southwest and northeast, although southwesterlies in 
summer are almost twice as frequent as in winter (Robichaud and Mullock 2001a). 
 
A model to evaluate the effect of ice cover on wave climate has been developed for the 
Gulf of St. Lawrence (Ruest et al. 2015). The study area was limited to deep water 
areas (>50 m), which excludes the western tip of Anticosti Island, but still encompasses 
the lower estuary. Average cumulative ice concentration determined by the regional 
ocean model with wind forcing from the Canadian Regional Climate Model (CRCM-1 
and CRCM-2) generally increased from east to west for the 1981–2010 period, and 
extreme wave height was reduced by ice cover. In the estuary, 99% Significant wave 
height (Hs) was 1–2 m and the 50-yr Hs was 2.5–4 m, compared to 2–4 m and 4.5–8 m 
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in the rest of the Gulf. The presence of ice reduced the wave height. The impact of sea 
ice was statistically significant within the whole study area. The ice-free condition 
increased the 99% Hs by 8–16% and the 50-yr Hs by 10% (Ruest et al. 2015). 
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4 PAST OIL SPILLS 
 
The Transportation Safety Board of Canada (TSBC) maintains a database of air, 
marine, rail, and pipeline incidents and accidents, collectively called occurrences, and 
publishes annual reports with statistics (Transportation Safety Board of Canada 2018). 
The marine occurrences database contains information on the vessels involved, cargo, 
location, reported pollution and more. As reporting requirements have changed over 
time the number of marine occurrences entered into the database per year has 
increased. The most recent update of TSBC reporting requirements was 2014 
(Transportation Safety Board of Canada 2014), and data for many more occurrences 
are available from that time onward. Statistics have been compiled here for occurrences 
of interest for the entire span of the database (1975-2018) and on an annual average 
basis for full years since the new reporting requirements (2015-2017). 
 
Statistics for four different types of marine occurrences have been compiled: 1) 
occurrences involving cargo vessels, either tankers or barges, that transport petroleum 
products; 2) occurrences in which pollution was reported or any type of cargo was lost 
overboard; 3) occurrences in which petroleum products were reported spilled on board 
or into the water; and 4) occurrences in which vessels were sunk, capsized or otherwise 
seriously damaged beyond repair, and expected to release fuel into the environment. 
 
Statistics for the Port of Montreal were compiled by filtering for occurrences in the 
province of Quebec or international waters, within the latitudinal range of 45.3°N to 
50.3°N, and within the longitudinal range of 64.0°W to 74.6°W. Chaleur Bay and 
surrounding areas of the Gulf of St. Lawrence, and parts of the Bay of Fundy located in 
this box are excluded. The area encompasses the St. Lawrence Seaway. See Table 4 
for statistics. 
 
Table 4. Transportation Safety Board incident and accident occurrences in the 
Port of Montreal and Saint Lawrence Seaway 

Occurrences involving… 
All years  

(1975-2018) 
Annual Average  

(2015-2017) 

All occurrences 2105 116.7 

Petroleum cargo vessels 128 6.0 

Pollution or cargo lost overboard 100 1.3 

Petroleum spills onboard or overboard 3 0.7 

Vessels sunk, capsized or destroyed 17 1.0 

 
Eight occurrences involving cargo vessels carrying petroleum products were also 
flagged as occurrences involving pollution or lost cargo. In most cases the nature of the 
pollution was not stated in the occurrence summary and the occurrences were not 
flagged as petroleum spills in the database. One of these cases is the tanker Irving 
Nordic in 1991. The Marine Investigation Report (Transportation Safety Board of 
Canada 1991) states that the Irving Nordic, carrying 11,000 tons of crude oil, left the 
navigation channel of the St. Lawrence River downstream from Trois-Rivières due to a 
navigational error and struck bottom causing considerable damage to the ship and 
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puncturing one cargo tank.  The report indicates minor pollution and estimates one 
barrel of oil was lost, but this is not recorded in the TSBC database. Traces of oil were 
found in a nearby marina but could not be conclusively linked to the Irving Nordic. 
 
The Irving Nordic was one of seven reported occurrences where a cargo vessel carrying 
petroleum product was seriously damaged. Another relevant occurrence is the collision 
between the oil tanker Hyde Park and the container vessel Cast Prosperity in 2005. The 
Hyde Park was carrying 30,000 tons of gasoline. Both vessels were travelling upstream 
in the dredged channel of Lac Saint-Pierre Southwest of Trois-Rivières when the Cast 
Prosperity attempted to overtake the Hyde Park. Due to the shape of the narrow and 
shallow channel strong hydrodynamic forces drew the vessels together into a collision. 
Both vessels suffered considerable damage, including damage to hull plating on the 
Hyde Park adjacent to three cargo tanks. Gasoline was smelled on deck but the tanks 
were not reported to be breached. The Marine Investigation Report (Transportation 
Safety Board of Canada 2005) goes into considerable detail about the difficulties of 
navigating in narrow channels such as some sections of the St. Lawrence Seaway. 
 
Most of the vessels reported sunk or otherwise lost in the St. Lawrence Seaway are 
fishing vessels (10 out of 17) which are typically small vessels with median length of 
12.85m. The rest are pleasure craft or small work boats. 
 
The following are a collection of some of the more noteworthy spills that have occurred 
in this area for which documentation was obtained during our review of the literature. 
 
 
4.1 IRVING WHALE 
 
The Irving Whale oil barge was carrying a cargo of 4500 tons of Bunker C crude oil 
when it sank in 67 meters of water in the Gulf of St. Lawrence, between Prince Edward 
Island and the Magdalen Islands on September 7, 1970 (Gagnon et al. 2010; 
Latremouille 1974), causing a large initial oil spill and subsequent leaks for the next 26 
years. Approximately 80 km of shoreline were affected by the spill. During beach clean-
up operations under the auspices of Transport Canada, oil residues and PCB-
contaminated sediment were gathered in plastic bags. The bags were buried in holes, 
trenches or natural cavities at the base of the fore dune or behind the first row of dunes, 
and no record of the burial sites for the bags of contaminated sediment is available 
(Gagnon et al. 2010). Major changes that the dunes have undergone since 1970 are 
such, that it is impossible to determine the current locations of the bags within the beach 
profile (between the foreshore and back dune). The sunken barge was finally salvaged 
by the federal government on July 30, 1996. 
 
 
4.2 NEPCO 140 
 
On June 23, 1976, the Eileen C. was moving the NEPCO 140 barge up the St. 
Lawrence River, from Montreal to the Niagara Mohawk Power Plant at Oswego, New 
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York (Foley and Tresidder 1977). The barge went aground on a shoal northeast of 
Wellesley Island, spilling oil in the American Narrows, a restricted channel in the 
Thousand Islands region surrounded by ledges and low cliffs, where the depth is 
greater than 46 m, and the current exceeds 6.5 km/h. The tug and barge proceeded 8 
km upstream through the Narrows to Mason Point. Over 4 days 1,140,000 L of spilled 
No. 6 oil were pushed 137 km downstream by 3.5-13 km/h currents and westerly winds 
in spite of the deployment of booms and skimmers, impacting more than 483 km of 
island and mainland shore, including almost all the American side of the river (Foley and 
Tresidder 1977). 
 
About 1,000 wildfowl and an unknown number of mammals and reptiles suffered 
impacts (Foley and Tresidder 1977). Shorelines were power-washed by hand, and 
contaminated aquatic and marsh vegetation was manually cut and hauled. Cleanup 
lasted 122 days, but many areas were left to recover naturally. The cost exceeded $8 
million (Foley and Tresidder 1977). 
 
 
4.3 RICHELIEU 
 
On July 13, 2010 near the Côte Ste-Catherine lock, Quebec (south shore of Montreal), 
50-200 tons of diesel fuel from the punctured fuel tank of the Canada Steamship Lines 
(CSL) freighter, Richelieu, washed on shore after it ran aground, covering 11 birds with 
oil (five of which subsequently died), affecting about 3 km of shoreline, and delaying 17 
ships (CTV News 2010a, 2010b; Hamilton Spectator 2010; The Toronto Star 2010). All 
CSL ships keep emergency booms onboard, and these were immediately deployed and 
contained the slick (CBC News 2010). Cleanup of the 500 m2 area took about 3 days 
and required thirty to fifty people. 
 
 
4.4 TANKER TRUCK 
 
On Tuesday, 2 September 2014, a tanker truck travelling on Route 132 near Saint-
Lambert on Montreal’s south Shore swerved to avoid an earlier accident involving a 
motorhome and car, between the Victoria and Champlain bridges (Global News 2014). 
The truck driver lost control, crashed into the two vehicles, and rolled into the St. 
Lawrence River. An estimated 400 L of diesel fuel spilled into the river from the truck’s 
punctured tank. An environmental team was sent to the site to clean up the spill. The 
truck was also carrying around 40 tons of dry cement.  
 
 
4.5 TUGBOAT  
 
On Dec.18, 2014, a tugboat sank near Trois-Rivières, Quebec, spilling diesel fuel into 
the St. Lawrence River, of which 10,000 L were recovered. It remains unknown how 
much of the 22,000 L of diesel that were on the ship went into the water (CBC News 
2008). 
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4.6 LONGUEUIL DIESEL SPILL 
 
A fuel reservoir of a water filtration plant in Longueuil, Quebec, leaked 28,000 L of 
diesel into the St. Lawrence River, which led to a municipal drinking water non-
consumption advisory lasting several days (CBC News 2015). 
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5 CONCLUSIONS 
 
The Montreal and Gulf of St. Lawrence region experiences a mid-temperate climate with 
warm, humid summers, and snow and ice during the winter months. In summer, strong 
southwest winds on the south shore of the lower St. Lawrence up to Île Bîcquette, fog 
on the water, low ceilings and decreased visibility along the coast during east and 
northeast winds. 
 
Montreal is an international transshipment port, a hub for major petroleum pipelines, 
and the only container port on the St. Lawrence River. It has moved an annual average 
of 20 million tons in the past 10 years. There are numerous petroleum product depots in 
addition to three oil refineries along the St. Lawrence River. 
 
The Great Lakes-St. Lawrence Seaway is a deep draft, vital international transportation 
route of geographic, hydrologic, and economic significance. The study region extends 
from Montreal to the western tip of Anticosti Island in the Gulf of St. Lawrence, and can 
be viewed in sections: the river or fluvial section, the fluvial estuary, the upper estuary, 
and the lower estuary. The major factors affecting estuarine circulation in the region are 
freshwater runoff from the St. Lawrence River, Saguenay River, rivers along the north 
shore, and smaller contributions from the south shore, and tides from the Gulf of St. 
Lawrence. 
 
The upper estuary, from the limit of salt intrusion at the eastern tip of Île d'Orléans to the 
head of the Laurentian Channel at Tadoussac, expands from 2 to 25 km wide, and is 
dominated by high intensity currents, tides, strong mixing and high turbidity. In winter, 
tides move ice back and forth, preventing fast ice formation. 
 
The last 300 km is termed the lower estuary, averaging 37 km across between 
Tadoussac and Pointe-des-Monts, with a maximum width of 60 km at Baie-Comeau. 
Higher freshwater discharge during spring freshets creates buoyancy-driven circulation 
in addition to tidal mixing. In summer, three water masses of different temperatures and 
salinities are superposed, but only two occur in winter. Mixing is most intense near the 
Saguenay sill (Tadoussac), near English Bank, and near Ile-aux-Coudres, especially 
when the spring freshet pushes salt intrusion seaward about 12 km and increases 
turbulent vertical mixing. Giant cyclonic and anticyclonic eddies generated by regional 
winds are common between Les Escoumins and the western tip of Anticosti Island. 
From mid-December to mid-April, ice cover is prevalent in the river and fast ice and ice 
floes in the estuary. 
 

https://en.wikipedia.org/wiki/Transshipment
https://en.wikipedia.org/wiki/St._Lawrence_River
http://www.newworldencyclopedia.org/entry/Hydrology
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