

Pêches et Océans Canada Fisheries and Oceans Canada

Sciences des écosystèmes et des océans

Ecosystems and Oceans Science

Secrétariat canadien de consultation scientifique (SCCS)

Document de recherche 2018/057

Région du Québec

Évaluation des stocks de crevette nordique de l'estuaire et du golfe du Saint-Laurent en 2017 : données du relevé de recherche

Hugo Bourdages, Marie-Claude Marquis, Claude Nozères et Jordan Ouellette-Plante

Pêches et Océans Canada Institut Maurice-Lamontagne 850 route de la Mer Mont-Joli, Québec G5H 3Z4

Avant-propos

La présente série documente les fondements scientifiques des évaluations des ressources et des écosystèmes aquatiques du Canada. Elle traite des problèmes courants selon les échéanciers dictés. Les documents qu'elle contient ne doivent pas être considérés comme des énoncés définitifs sur les sujets traités, mais plutôt comme des rapports d'étape sur les études en cours.

Publié par :

Pêches et Océans Canada Secrétariat canadien de consultation scientifique 200, rue Kent Ottawa (Ontario) K1A 0E6

> http://www.dfo-mpo.gc.ca/csas-sccs/ csas-sccs@dfo-mpo.gc.ca

© Sa Majesté la Reine du chef du Canada, 2018 ISSN 2292-4272

La présente publication doit être citée comme suit :

Bourdages, H., Marquis, M.C., Nozères, C. et Ouellette-Plante, J. 2018. Évaluation des stocks de crevette nordique de l'estuaire et du golfe du Saint-Laurent en 2017 : données du relevé de recherche. Secr. can. de consult. sci. du MPO. Doc. de rech. 2018/057. iv + 68 p.

Also available in English :

Bourdages, H., Marquis, M.C., Nozères, C. and Ouellette-Plante, J. 2018. Assessment of northern shrimp stocks in the Estuary and Gulf of St. Lawrence in 2017: data from the research survey. DFO Can. Sci. Advis. Sec. Res. Doc. 2018/057. iv + 67 p.

TABLE DES MATIÈRES

RÉSUMÉIV
INTRODUCTION1
BIOLOGIE1
CYCLE VITAL 1
MÉTHODE2
DESCRIPTION DU RELEVÉ2
TRAITEMENT DES CAPTURES DE CREVETTE 2
DISTRIBUTION
Répartition géographique des captures 3
Répartition des captures par profondeur et température
ESTIMATION DE BIOMASSE PAR GEUSTATISTIQUE
ESTIMATION D'ABONDANCE
DIETES DES PREDATEURS
RÉSULTATS6
DISTRIBUTION SPATIALE 6
INDICE D'ABONDANCE
ÉCOSYSTÈME8
DIÈTE DES PRÉDATEURS8
CONCLUSION
REMERCIEMENTS
RÉFÉRENCES10
TABLEAUX
FIGURES
ANNEXE

RÉSUMÉ

L'état des stocks de crevette nordique (*Pandalus borealis*) de l'estuaire et du golfe du Saint-Laurent est déterminé chaque année par l'examen d'un indicateur principal provenant de la pêche commerciale et du relevé de recherche. Ce document présente les données et méthodes utilisées pour produire les indicateurs du relevé de 2017. Les estimations de biomasse et d'abondance de la crevette nordique sont présentées pour chacune des quatre zones de pêche et pour chacun des sexes. De plus, le document présente quelques caractéristiques environnementale et écosystémique qui sont observées dans le golfe du Saint-Laurent et qui peuvent avoir un impact sur la dynamique des stocks de crevette nordique, par l'entremise entre autres d'effets sur la distribution spatiale, la croissance, la reproduction et les relations trophiques.

INTRODUCTION

Un relevé de recherche par chalutage est réalisé chaque année depuis 1990 dans l'estuaire et le nord du golfe du Saint-Laurent à partir d'un navire du Ministère des Pêches et des Océans (MPO) et vise à évaluer l'abondance de plusieurs espèces dont les crevettes. Ce relevé est multidisciplinaire et vise à décrire la biodiversité des espèces présentes dans le golfe et les conditions océanographiques physiques et biologiques.

Ce relevé est la principale source de données indépendantes de la pêche lors de l'évaluation des stocks de crevette nordique (*Pandalus borealis*) de l'estuaire et du golfe du Saint-Laurent. Il permet de décrire la distribution de la crevette nordique, d'estimer l'abondance et la biomasse des stocks et de connaître la dynamique de la population de ceux-ci. On considère que le relevé couvre bien toute l'aire de distribution de *P. borealis* dans l'estuaire et le nord du golfe du Saint-Laurent. La crevette nordique est généralement restreinte aux fonds situés sous la couche intermédiaire froide à des profondeurs supérieures à 150 m.

L'état de la ressource est évalué par l'examen de divers indicateurs provenant de la pêche commerciale et du relevé de recherche du MPO pour chacune des quatre zones de pêche à la crevette (ZPC) : Estuaire (ZPC 12), Sept-Îles (ZPC 10), Anticosti (ZPC 9) et Esquiman (ZPC 8) (Figure 1). Ce document présente une mise à jour des données et des méthodes utilisées pour produire les indicateurs du relevé qui ont déjà été décrites dans Bourdages et Marquis (2014). Les estimations d'abondance des crevettes mâles et femelles servent à calculer l'indicateur principal de l'état des stocks et sont utilisées pour projeter des prélèvements en fonction des lignes directrices de l'approche de précaution (Savard 2012). De plus, ce document présente quelques caractéristiques environnementales et écosystémiques observées dans le golfe du Saint-Laurent et qui peuvent avoir un impact sur la dynamique des stocks de crevette nordique, par l'entremise entre autres, d'effets sur la distribution spatiale, la croissance, la reproduction et les relations trophiques.

BIOLOGIE

Il y a 27 espèces de crevettes répertoriées dans l'estuaire et le nord du golfe du Saint-Laurent et la crevette nordique est de loin la plus abondante de toutes (Savard et Nozères 2012).

CYCLE VITAL

La crevette nordique, *Pandalus borealis*, est une espèce hermaphrodite protérandrique, c'est-àdire que les individus atteignent d'abord la maturité sexuelle mâle puis changent de sexe et deviennent femelles (Figure 2). Cette caractéristique du cycle vital est très importante pour le développement des stratégies de récolte et de gestion puisque les individus de grande taille qui sont ciblés par la pêche sont presque exclusivement des femelles.

Dans l'estuaire et le golfe du Saint-Laurent, les larves de crevette éclosent au printemps, en avril ou mai et demeurent pélagiques pour quelques mois. À la fin de l'été, les larves ressemblent de plus en plus à des adultes et adoptent un comportement supra-benthique (associé au fond). Ce sont alors des post-larves ou juvéniles qui sont trop petits pour être retenus par les chaluts utilisés en pêche commerciale. Les juvéniles atteignent la maturité sexuelle mâle pendant leur deuxième année. La reproduction a lieu à l'automne et les mâles peuvent se reproduire pour deux ou trois ans avant de changer de sexe. Le changement de sexe survient en hiver à l'âge de 4 ou 5 ans à une taille d'environ 21 mm (longueur de la carapace). Les femelles nouvellement transformées sont facilement reconnaissables dans les prises commerciales du printemps et de l'été puisqu'elles ont conservé certains caractères

sexuels mâles. Ces femelles sont appelées femelles primipares et se reproduisent dès l'automne (en septembre ou octobre) suivant le changement de sexe. Les femelles portent leurs œufs fécondés sous l'abdomen pendant la période d'incubation qui dure environ 8 mois. Les larves éclosent au printemps suivant. Les femelles reproductrices qui survivent à la reproduction sont reconnaissables de celles qui ne se sont jamais reproduites et sont appelées femelles multipares. En effet, les femelles primipares et multipares peuvent être distinguées par des caractéristiques morphologiques (épines sternales) qui disparaissent lorsque les femelles effectuent la mue prénuptiale juste avant l'accouplement. Les femelles peuvent se reproduire au moins deux fois et on estime la longévité des crevettes dans l'estuaire et le golfe à environ sept ans.

MÉTHODE

DESCRIPTION DU RELEVÉ

Un relevé de recherche multidisciplinaire est réalisé annuellement au mois d'août dans l'estuaire et le nord du golfe du Saint-Laurent depuis 1990 pour estimer l'abondance des crevettes nordiques et des espèces de poissons de fond. Le relevé est réalisé à l'aide d'un chalut à crevette en suivant un plan d'échantillonnage aléatoire stratifié. Les opérations de pêche se déroulent 24 heures par jour. Une description du protocole de pêche et d'échantillonnage du relevé de 2017 est présentée dans Bourdages *et al.* (2018).

La stratification utilisée pour l'allocation des stations de pêche est présentée à la figure 3. Dans le golfe, les fonds situés à plus de 37 m (20 brasses) de profondeur sont couverts par le relevé. Dans l'estuaire, le relevé a couvert les fonds de plus de 183 m (100 brasses) de profondeur de 1990 à 2007. En 2008, il a été décidé d'ajouter des strates pour couvrir les profondeurs allant de 37 à 183 m dans ce secteur afin d'obtenir une meilleure couverture de la distribution spatiale de la crevette nordique. La surface de la zone d'étude est alors passée de 116 115 km² à 118 391 km².

En 2017, 170 stations de pêche ont été exécutées avec succès, soit 47 dans 4R, 83 dans 4S et 40 dans 4T (Figure 4). La couverture de la zone d'étude a été très bonne, seulement deux strates n'ont pas été échantillonnées avec un minimum de deux stations. En moyenne, 187 stations de pêche sont échantillonnées par année (Tableau 1).

TRAITEMENT DES CAPTURES DE CREVETTE

Pour chaque trait de pêche, la capture du chalut a été triée par espèce ou par taxon. Toute la capture de crevette a été pesée et un échantillon d'environ 2 kg a été prélevé pour déterminer la proportion de *Pandalus borealis* par rapport aux autres espèces de crevette et pour décrire ses caractéristiques biologiques. Les stades de maturité (mâle, femelle primipare ou multipare avec ou sans gonades en maturation et femelle œuvée) ont été identifiés pour chaque crevette. La longueur du céphalothorax a été mesurée à l'aide d'un vernier électronique avec une précision de 0,1 mm. Le poids individuel a été mesuré avec une précision de 0,1 g selon un échantillonnage stratifié (environ dix individus par sexe par classe de longueur de 1 mm) pour chacune des zones de pêche.

La surface échantillonnée par le chalut a été estimée à partir de la durée du trait, la vitesse du navire et l'ouverture horizontale entre les ailes du chalut. La capture de *P. borealis* de chaque trait a été estimée à partir de sa proportion dans l'échantillon et a été standardisée pour une surface de 1 km² en tenant compte de la surface balayée (Tableau 2 et Figure 5).

DISTRIBUTION

Répartition géographique des captures

La répartition géographique des captures en poids par trait (kg/trait de 15 minutes) a été faite pour des périodes de quatre ou cinq ans. L'interpolation des captures a été réalisée sur une grille couvrant la zone d'étude en utilisant une pondération inversement proportionnelle à la distance (R version 2.13.0, librairie Rgeos ; R Development Core Team 2011). Les isolignes ont ensuite été tracées pour quatre niveaux de biomasse, qui correspondent approximativement aux 20^e, 40^e, 60^e et 80^e centiles des valeurs non-nulles. La distribution des taux de capture des mâles et femelles pour les relevés de 2014 à 2017 est également présentée dans une carte de type « bulle ».

Répartition des captures par profondeur et température

La fréquence relative cumulée des captures (en poids) a été compilée en fonction de la profondeur et de la température, toutes années confondues. Cette relation a été représentée graphiquement en combinaison avec la fréquence relative cumulée du nombre de stations échantillonnées par profondeur dans la zone d'étude. Cette figure illustre les fenêtres de profondeur où la crevette est susceptible d'être capturée au mois d'août dans l'aire d'étude. Les 5^e, 10^e, 25^e, 50^e, 75^e, 90^e et 95^e centiles de cette distribution sont aussi présentés dans un tableau adjacent.

Les répartitions de la biomasse en fonction de la profondeur et de la température sont présentées par année et zone de pêche pour les mâles et les femelles avec un tracé en rectangle et moustaches des captures (box-plot).

Aire d'occupation

Trois descripteurs de la répartition spatiale ont été choisis : l'aire d'occupation pondérée, le D95 et l'indice de Gini.

Aire d'occupation pondérée

L'aire d'occupation pondérée (design-weighted area of occupancy, DWAO; Smedbol *et al.* 2002) représente la superficie de la zone d'étude où la crevette est présente.

D95

L'indice D95 décrit la concentration géographique. Ce descripteur correspond à la superficie minimale où se concentrent 95 % de la biomasse de crevette. Les détails du calcul sont décrits dans Swain et Sinclair (1994).

Indice de Gini

L'indice de Gini quantifie le niveau d'homogénéité de la répartition de la crevette. Cet indice est calculé en utilisant la courbe de Lorenz (Myers et Cadigan 1995). Cet indice s'échelonne donc de 0 à 1 où 0 correspond à une répartition homogène parfaite et 1 à une répartition très concentrée.

ESTIMATION DE BIOMASSE PAR GÉOSTATISTIQUE

La biomasse (kg/km²) mesurée à toutes les stations de l'aire d'étude a été krigée séparément pour les mâles et les femelles et pour la capture totale. En premier lieu, les positions des stations d'échantillonnage, exprimées en latitude et longitude, ont été transformées dans un système de coordonnées cartésiennes selon la projection conique conforme de Lambert en utilisant les parallèles 48°N et 50°N comme référence et 46,5°N et -70°O comme point d'origine. Cette conversion a été réalisée à l'aide des librairies "sp" et "rgdal" (Pebesma 2013a, Bivand 2013) de R (R Development Core Team 2011).

Dans une première étape, un variogramme a été construit pour chaque relevé. Afin de mieux décrire la structure spatiale des données, il a été parfois nécessaire d'enlever des valeurs extrêmes. Les valeurs de coupures sont présentées dans le tableau qui suit. De même, les valeurs inférieures à 5 kg/km² n'ont pas été utilisées lors de l'estimation du variogramme. De 1990 à 2012, les variogrammes annuels ont été construits avec la procédure "VARIO" du logiciel SAS (SAS 1996). À partir de 2013, les variogrammes ont été réalisés avec la librairie "gstat" de R (Pebesma 2013b). Les semivariances ont été calculées entre toutes les paires de stations. La distance (h) qui les sépare a été discrétisée et les semivariances ont été moyennées pour différentes classes de distances ayant des intervalles de 15 km pour une distance maximale de 225 km.

Captures (kg/km ²) au-dessus desquelles les données ont été
retirées de l'estimation du variogramme.

	2015	2016	2017
Mâle	4 000	2 500	8 000
Femelle	4 000	3 000	5 000
Totale	8 000	5 000	-

Dans une deuxième étape, le variogramme annuel a été normalisé, c'est-à-dire que les semivariances ont été divisées par la variance des données utilisées pour construire le variogramme. Par la suite, un variogramme pluriannuel a été construit à partir des valeurs moyennes des trois derniers variogrammes, soit celui de l'année courante et des deux années précédentes. Le variogramme pluriannuel correspond à la moyenne des semivariances pour chacune des distances *h* des variogrammes annuels, pondérée par le nombre de paires associés à ces mêmes distances. L'utilisation d'un variogramme pluriannuel réduit la variabilité de la structure spatiale qui est observée certaines années et permet ainsi un meilleur ajustement du modèle.

De 1990 à 2012, les différents paramètres des variogrammes pluriannuels (la pépite, le plateau et la portée) ont été fixés manuellement de façon à obtenir le meilleur ajustement possible (Tableau 3). Bien que d'autres modèles de variogramme aient été examinés, le modèle exponentiel a été sélectionné parce qu'il a produit le meilleur ajustement. À partir de 2013, les paramètres du modèle exponentiel du variogramme ont été ajustés avec la fonction "fit.variogram" de la librairie "gstat" de R (Pebesma 2013a). Afin de minimiser les moindres carrés, l'ajustement a été réalisé en pondérant les données par N_j/h_j² de façon à donner plus de poids à l'ajustement des premiers points du variogramme (Figure 6).

Par la suite, les valeurs de captures ont été interpolées spatialement dans la zone d'étude à l'aide du krigeage. Pour ce faire, toutes les observations du relevé ont été utilisées en incluant les valeurs faibles et extrêmes. Le variogramme pluriannuel a été réajusté afin de représenter la variance des observations de la zone d'étude. Les paramètres pépite (C_0) et plateau (C) ont été multipliés par la variance de toutes les observations de la zone d'étude. L'interpolation a été réalisée sur une grille régulière dont les nœuds sont séparés par des distances de 5 km dans les deux axes (Figure 7). Les estimations ponctuelles ont été réalisées en utilisant les captures des huit stations les plus proches qui sont présentes dans un rayon de recherche maximal de 200 km.

De 1990 à 2012, le krigeage, l'estimation de la moyenne et de la variance d'estimation ont été réalisés à l'aide de la boîte à outils "Kriging" de MATLAB (Lafleur et Gratton 1998). À partir de

2013, le krigeage a été réalisé avec la fonction "krige" de la librairie "gstat" de R (Pebesma 2013a) et les estimations de la moyenne de krigeage et la variance d'estimation ont été calculées à l'aide d'une fonction développée par Sébastien Durand (MPO, Mont-Joli, comm. pers.).

La biomasse moyenne (kg/km²) de chaque zone de pêche a ensuite été calculée à partir de la moyenne des estimations ponctuelles de la zone. La biomasse totale d'une zone de pêche donnée a été obtenue en multipliant la biomasse moyenne par la surface de la zone. Les surfaces des zones de pêche sont les suivantes : Estuaire, 4 000 km² de 1990 à 2007 et 6 325 km² de 2008 à 2017; Sept-Îles, 29 775 km² de 1990 à 2007 et 29 975 km² de 2008 à 2017; Anticosti, 46 400 km²; Esquiman, 32 350 km².

ESTIMATION D'ABONDANCE

Les biomasses estimées par krigeage ont été converties en abondance à partir des relations poids-longueur et des distributions des fréquences de longueur. Les fréquences de longueur de chaque échantillon ont d'abord été ramenées à la capture totale de la station puis normalisées pour une surface balayée de 1 km². Les fréquences (n/km²) ont été regroupées en classe de longueur de 0,5 mm.

La distribution moyenne des fréquences (en n/km²) par classe de taille a été estimée pour chaque zone de pêche, pour les mâles et les femelles. La distribution moyenne a été estimée à partir de toutes les stations échantillonnées dans une zone. La distribution moyenne a été ensuite convertie en poids en appliquant la relation poids-longueur estimée pour chaque zone (Tableau 4 et Figure 8). La relation poids-longueur estimée en 1993 est appliquée pour la période 1990-2004. À partir de 2005, la relation estimée annuellement est utilisée pour l'année courante. La même relation est utilisée pour les deux sexes.

La biomasse du stock estimée par krigeage a été répartie pour chaque classe de taille selon les proportions en poids de la distribution moyenne du stock. L'abondance pour chaque classe de taille a été obtenue en divisant la biomasse par le poids moyen de la classe. L'abondance totale du stock a ensuite été obtenue en sommant l'abondance de toutes les classes de taille. L'exercice a été réalisé séparément pour les mâles et les femelles. Étant donné que les nombres ne sont pas krigés, aucune estimation de la variance n'est possible. Le coefficient de variation de la biomasse a donc été utilisé pour estimer l'intervalle de confiance à 95 % de l'abondance.

L'abondance des femelles a été séparée par stade de maturité pour les années où l'identification du stade a été réalisée pour chaque individu. Par conséquent, l'abondance des femelles primipares et multipares a été calculée de 1990 à 2000 puis de 2009 à 2017.

Il est possible d'obtenir un indice du recrutement en estimant l'abondance des juvéniles dont la longueur du céphalothorax est inférieur à 12,5 mm. Les individus de ces tailles sont âgés d'une quinzaine de mois (Daoud *et al.* 2010). L'estimation d'abondance des juvéniles a été obtenue par la sommation de l'abondance des classes de taille du premier mode.

DIÈTES DES PRÉDATEURS

Dépendant des années, des ressources allouées et des objectifs de recherche, des estomacs de sébaste et de flétan du Groenland ont été prélevés au cours de différentes missions à bord des navires du MPO. À chacune de celles-ci, les estomacs ont été ramenés au laboratoire où ils ont ensuite été disséqués selon un protocole exhaustif. En résumé, chaque proie détectée dans un estomac a été identifiée au niveau taxonomique le plus élevé possible et sa masse enregistrée selon son état de digestion. Compte tenu des protocoles de dissection qui ont

grandement évolués depuis le début des années 90 de même que les procédures de validation/importation des nouvelles données, une standardisation initiale des données a dû être effectuée. Par la suite, les proies considérées comme trop digérées (ex : poisson digéré, crustacé, etc.) ont été éliminées de l'analyse afin de ne conserver que celles permettant une meilleure interprétation du régime alimentaire des prédateurs. Cette décision n'a pas affecté le nombre d'estomacs retenu, cependant elle a modifié le statut de certains estomacs selon s'ils étaient vides ou non-vides. Par exemple, un estomac uniquement rempli de poisson digéré a par la suite été considéré comme étant vide puisque son contenu ne permettait pas d'inférer quant au régime alimentaire détaillé du sébaste. Une démarche similaire a également été faite pour éliminer les proies correspondant à des déchets (ex : roche, sable, liquide) ou à des parasites. Les estomacs non-examinés, évaginés, sans valeur de longueur ou récoltés en dehors des mois d'août et septembre ont ensuite été éliminés de l'analyse.

Les proies restantes ont par la suite été classifiées selon leurs rang d'importance par rapport au pourcentage de masse et à l'indice partiel de remplissage (pfi) qu'elles représentent dans l'alimentation des prédateurs. L'utilisation du pfi comme variable de standardisation dans le classement des groupes de proies est primordiale, car cette dernière réduit l'effet de la longueur du prédateur et permet de mieux représenter les proies d'importance comparativement aux simples masses des proies. Ainsi, les proies des petits sébastes ne sont pas sous-représentées par rapport à celles des gros sébastes qui, proportionnellement à la capacité de leur prédateur, pourraient être plus grosses. Suivant la création de ces différents groupes taxonomiques, diverses comparaisons du régime alimentaire du sébaste ont été effectuées.

Les données sur le régime alimentaire du sébaste ont ensuite été attribuées, soit à une zone où la crevette nordique est activement pêchée, soit au reste de l'estuaire et du nord du golfe du Saint-Laurent (eNGSL). Les zones où la crevette est commercialement pêchée ont été définies à l'aide du Système de Suivi des Navires (SSN). Une comparaison spatiale du régime alimentaire du sébaste a ainsi pu être réalisée.

Ces comparaisons diverses ont également permis de quantifier la proportion (P) qu'occupe la crevette nordique dans différentes situations (ex : classe de longueur du sébaste, distributions spatiale et temporelle, etc.). Ces proportions ont été utilisées avec les biomasses (B) estimées de sébastes pour fournir une estimation de la consommation (Q) annuelle de crevette nordique par le sébaste. La consommation a été calculée d'après l'équation suivante :

$$Q = B * P * \frac{Q}{B}$$

où le ratio Q/B représente une valeur théorique. Les valeurs du ratio Q/B proviennent de modèles écosystémiques disponibles pour le nord du golfe du Saint-Laurent pour différentes périodes (Savenkoff *et al.* 2004, Savenkoff et Rioual (MPO, données non-publiées)). Les estimations de la biomasse de sébastes sont basées sur les résultats des relevés multidisciplinaires de poissons de fond et de crevette effectués en août à chaque année. Enfin, les estimations de la consommation ont été séparées selon les différentes classes de longueur de sébaste et regroupées pour les périodes 1995-97 et 2015-17 en utilisant respectivement tous les estomacs récoltés durant les années 90 et la période 2015-17.

RÉSULTATS

DISTRIBUTION SPATIALE

On considère que le relevé couvre bien toute l'aire de distribution de la crevette nordique dans l'estuaire et le golfe du Saint-Laurent. La distribution spatiale de la crevette nordique montre

que les meilleurs taux de capture sont observés dans les chenaux Esquiman, Anticosti et Laurentien, de même qu'à l'ouest de l'île d'Anticosti jusque dans l'estuaire (Figure 9). En général, les jeunes crevettes sont retrouvées dans les secteurs moins profonds, souvent à la tête des chenaux, alors que les plus vieux individus, les femelles, se retrouvent en eaux plus profondes (Figure 10). La crevette nordique est peu ou pas présente dans le sud du golfe.

En 2017, la crevette nordique est distribuée sur plus de 98 000 km² dans l'estuaire et le nord du golfe du Saint-Laurent, la zone d'étude est de 116 115 km² (Figure 11). Alors que l'on observe une légère tendance à l'augmentation de l'aire d'occupation, on observe une diminution de la superficie où l'on observe les plus fortes concentrations de crevettes, soit l'aire où plus de 95 % de la biomasse se distribue. Depuis l'année 2000, la superficie minimale est passée de 54 000 km² à 33 000 km².

Les données du relevé de recherche indiquent que plus de 80 % de la biomasse cumulée de crevette nordique est retrouvée entre 193 et 331 m (Figure 12) à des températures du fond variant entre 3,7 et 5,8 °C (Figure 13). La profondeur médiane de la distribution de la crevette nordique est de 259 m et la température médiane est de 5,3 °C. D'une façon générale, la crevette nordique est associée à la masse d'eau profonde et l'espèce est retrouvée principalement dans les chenaux à des profondeurs variant de 200 à 300 m où les sédiments sont fins et consolidés.

Galbraith *et al.* (2017) ont observé une tendance à l'augmentation des températures des eaux profondes, soit à 150, 200 et 300 m dans le golfe depuis le début des années 1990. Ces intrusions d'eaux chaudes proviennent de l'océan Atlantique et remontent tranquillement dans les chenaux profonds du golfe du Saint-Laurent à partir du détroit de Cabot. En 2017, les crevettes mâles et femelles se retrouvaient dans des températures plus chaudes de 1 °C comparativement à la moyenne historique (Figure 14). Le changement le plus marqué de la température d'eau de fond, où l'on observe la crevette, a été observé il y a cinq ans dans Esquiman et Anticosti et il y a trois ans dans Sept-Îles et Estuaire. Malgré cette augmentation de température de l'eau dans l'habitat de la crevette, on n'observe pas de déplacement de la crevette en fonction de la profondeur (Figure 15).

INDICE D'ABONDANCE

La taille des crevettes varient en suivant un gradient est-ouest, les plus petites étant observées dans le chenal Esquiman et les plus grandes dans l'estuaire. La taille moyenne des crevettes mâles en 2017 se compare à la moyenne historique pour les quatre zones de pêche alors que la taille des femelles a diminué sous la moyenne dans Estuaire, Sept-Îles et Anticosti et est demeurée stable et comparable à la moyenne dans Esquiman (Figure 16). Depuis 2006, des données de poids individuel sont collectées lors du relevé. Les poids estimés pour des crevettes mâles de 14 et 20 mm et femelles de 22 et 26 mm semblent augmenter avec les années (Figure 17). Les crevettes sont plus lourdes que la moyenne depuis 2010 dans Esquiman et Anticosti, depuis 2012 dans Sept-Îles et depuis 2015 dans Estuaire, selon un gradient qui a débuté plus tôt dans l'est.

La biomasse moyenne ainsi que la variance d'estimation sont présentées pour les mâles et les femelles et pour chaque zone de pêche aux tableaux 5 et 6. En général, le coefficient de variation est de l'ordre de 20 à 25 % pour les mâles et de 10 à 20 % pour les femelles dans les zones de pêche Sept-Îles, Anticosti et Esquiman (Tableau 7). Le coefficient de variation est plus élevé dans la zone Estuaire.

La distribution de la biomasse totale est présentée par année (Figure 18) et pour les mâles et les femelles (Figures 19 et 20). L'estimation de la biomasse totale pour chaque zone de pêche est présentée à la figure 21, de même que pour les mâles et les femelles au tableau 8 et à la

figure 22. L'indice de biomasse du relevé du MPO montre une tendance baissière depuis plusieurs années dans toutes les zones. Les biomasses observées en 2017 se rapprochent des valeurs du début des années 90.

Les indices d'abondance des mâles et femelles montrent une tendance à la baisse depuis plus de 10 ans dans les quatre zones de pêche (Tableau 9 et Figure 23). La diminution depuis 2015 a été très marquée dans Estuaire et Sept-Îles où l'on observe des diminutions de plus de 55 % en deux ans. Les indices dans Estuaire et Sept-Îles se rapprochent des valeurs observées au début des années 90. Dans Anticosti, les abondances des dernières années présentent une faible tendance à la baisse, malgré que les abondances depuis 2011 soient plus faibles que les valeurs observées au début des années 2000. La diminution depuis 2015 est de 25 %. La tendance à la baisse dans Esquiman se poursuit depuis 2003 et la diminution des deux dernières années est de 29 % pour les mâles et de 8 % pour les femelles.

Les structures démographiques par zone obtenues en 2017 à partir du relevé du MPO montrent que l'abondance des mâles et des femelles est en diminution et est inférieure à la moyenne de la série (1990-2016) (Figures 24 et 25). De plus, l'abondance des juvéniles (longueur de carapace entre 8 et 12 mm) a été faible en 2016 et 2017 (Tableau 10).

L'allocation de stations supplémentaires dans la partie peu profonde de l'estuaire du Saint-Laurent depuis 2008 a eu un impact très important sur le nombre de mâles et de femelles recensés notamment dans la zone de pêche Estuaire et dans une moindre mesure dans la zone Sept-Îles. Après huit relevés réalisés avec cette couverture agrandie, la cohérence interannuelle entre l'abondance de la crevette mesurée à l'échelle de la zone originale et de la zone élargie du relevé indique que la biomasse était largement sous-estimée et l'indice du taux d'exploitation largement sur-estimé pour Estuaire. L'intégration des strates peu profondes à l'estimation de l'indicateur principal de l'état du stock devra se faire à court terme.

ÉCOSYSTÈME

L'écosystème, dominé par les poissons de fond au début des années 1990, a transité vers un écosystème dominé par les espèces fourragères. La population de crevette a augmenté suite à la période où l'abondance des espèces de poissons de fond de grande taille déclinait. On observe présentement une augmentation de l'abondance de sébastes, du flétan atlantique et de la morue dans le nord du golfe alors que l'on observe une diminution récente du flétan du Groenland (Figure 26). Des changements d'ordre trophique pourraient être observés dans les prochaines années, les crevettes constituant une partie de l'alimentation de nombreuses espèces.

DIÈTE DES PRÉDATEURS

Des 5 563 estomacs de sébaste disponibles dans la base de données, 4 640 ont été retenus pour les analyses. Une soixantaine de proies peu ou pas digérées y ont été détectées, lesquelles ont été classifiées en 13 groupes taxonomiques. La proportion d'estomacs vides était plus élevée pour les données des années 90 par rapport à 2015-2017, mais tout de même importante pour les 2 périodes comparées (Figure 27). Les gros sébastes (>35 cm) ont un indice de remplissage plus élevé en 2015-2017 que pour les années 90. La proportion invertébrés/poissons est comparable pour les 2 périodes.

L'arrivée de poissons comme proies s'observe lorsque le sébaste atteint environ 25 cm de longueur – le sébaste et le capelan étant les espèces principales (Figure 28). Avant cette taille, la quasi-totalité des proies retrouvées est du zooplancton. Les crevettes nordique et blanche sont des proies retrouvées dans toute la gamme de longueur du sébaste à laquelle des estomacs ont été prélevés.

Une analyse globale (i.e. tous stades de digestion et classes de longueur confondus) des contenus stomacaux prélevés lors des relevés multidisciplinaires d'août 2015-17 montre que la crevette nordique est présente dans 5,05 % des estomacs de flétan du Groenland, comparativement à 2,59 % pour le sébaste. La contribution en masse de la crevette nordique dans les estomacs de flétan du Groenland de \geq 20 et <20 cm était respectivement de 11,46 et 0,08 %, alors qu'elle était de 13,51 et 2,18 % pour ces mêmes gammes de longueur de sébaste (Annexe 1).

La délimitation des six zones commercialement pêchées pour la crevette nordique (Figure 29) a permis d'attribuer les estomacs de sébaste collectés de 1993 à 2017 (Figure 30) à l'une de ces zones ou au reste de l'eNGSL. Ainsi, la crevette nordique représente plus de 50 % de la masse des contenus stomacaux des sébastes de 25 à 35 cm provenant des zones de pêche, alors qu'elle représente moins de 25 % pour le reste de l'eNGSL, et ce peu importe la période considérée. Dans le reste de l'eNGSL, la crevette nordique est la proie de moins de classes de taille de sébaste et occupe de moins grands pourcentage de la masse des contenus stomacaux en 2015-2017 comparativement aux années 90. La crevette blanche, qui n'était pas très importante dans son régime alimentaire au cours des années 90, voit maintenant sa présence confirmée dans la quasi-totalité des classes de longueur des sébastes capturés au cours des années 2015-17. De plus, elle est en encore plus importante dans le régime alimentaire du sébaste dans les zones de pêche que dans le reste de l'eNGSL. On remarque aussi la disparition du capelan dans le régime alimentaire des sébastes de >30 cm en 2015-2017 et l'apparition de sébaste comme proie de ce dernier pour les années récentes hors des zones pêchées pour la crevette (Figure 31).

En séparant les contenus stomacaux de la période 2015-2017 par zone commercialement pêchée pour la crevette nordique et par classe de taille de sébaste (Figure 32), on remarque que la tranche de longueur 25-35 cm montre une proportion accrue de crevette nordique dans la majorité des zones commercialement pêchées pour la crevette, ce qui n'est pas observé pour le reste de l'eNGSL. Il faut toutefois rester prudent quant à cette interprétation puisque le nombre de contenus stomacaux par zone et classe de longueur est faible.

Selon les très fortes biomasses de sébaste qu'on observe au cours des dernières années (Figure 33), les valeurs estimées de consommation de crevette nordique commencent à s'accroître fortement à mesure que les juvéniles croissent en longueur (Figure 34). En effet, d'après les valeurs calculées de biomasse et la proportion que représente la crevette nordique dans la consommation annuelle du sébaste, il a été estimé qu'environ 28 000 t de crevette nordique ont été consommées annuellement au cours de la période 1995-97, comparativement à 86 000 t pour la période 2015-17 – soit trois fois plus au cours des années récentes. En regardant les dernières années, on constate que cette consommation double à chaque année pour la période 2015-17, ce qui semble refléter la croissance en longueur des fortes cohortes de sébaste et l'augmentation de l'utilisation de la crevette nordique comme proie d'importance.

L'estimation de l'abondance et de la biomasse de sébaste à l'intérieur des zones commercialement pêchées pour la crevette nordique montre une présence accrue du sébaste dans le relevé multidisciplinaire du MPO depuis 2013 (Figures 35 et 36). Les zones Anticosti, Esquiman et Sept-Îles sont celles où l'abondance semble être la plus élevée. Cependant, la biomasse estimée pour la zone de Sept-Îles est plus faible, mais pourrait s'accroître au cours des prochaines années à mesure que le stock de sébaste croît, ce qui laisse présager une consommation future de crevette beaucoup plus grande qu'actuellement dans cette zone (Figure 37).

CONCLUSION

D'une façon générale, la crevette nordique est largement répandue dans l'estuaire et dans le nord du golfe du Saint-Laurent à des profondeurs variant de 150 à 350 mètres. Malgré cela, on observe, depuis le début des années 2000, une diminution de l'aire de distribution où l'on retrouve les plus fortes abondances de crevettes.

L'indice de biomasse du relevé du MPO montre une tendance baissière depuis plusieurs années dans toutes les zones. Les biomasses observées en 2017 se rapprochent des valeurs du début des années 90.

Les structures démographiques par zone obtenues en 2017 à partir du relevé du MPO montrent que l'abondance des mâles et des femelles est en diminution et est inférieure à la moyenne de la série (1990-2016). De plus, l'abondance des juvéniles a été faible en 2016 et 2017.

Des changements dans les conditions environnementales et écosystémiques sont observés dans le golfe du Saint-Laurent. La température au fond des chenaux se réchauffe et l'abondance des sébastes est en augmentation. La température de l'eau où vivent les crevettes a augmenté de 1°C au cours des dernières années. La prédation des sébastes sur la crevette nordique a augmenté significativement au cours des trois dernières années et contribuerait à la diminution de l'abondance de celle-ci. Ces changements peuvent avoir un impact sur la dynamique de la population de crevette, par l'entremise entre autres d'effets sur la distribution spatiale, la croissance, la reproduction et les relations trophiques.

REMERCIEMENTS

Sincères remerciements aux nombreux biologistes et techniciens qui ont récolté les données de ce relevé. De même qu'à Claude Brassard et Jean-Martin Chamberland pour la révision de ce document.

RÉFÉRENCES

- Bivand, R. 2013. <u>Rgdal: Bindings for the Geospatial Data Abstraction Library. R package</u> version 0.8-14. 48 p. [Consulté le 2 décembre 2013].
- Bourdages, H., et Marquis, M.-C. 2014. <u>Évaluation des stocks de crevette nordique de l'estuaire</u> <u>et du golfe du Saint-Laurent en 2013 : données du relevé de recherche</u>. Secr. can. de consult. sci. du MPO. Doc. de rech. 2014/050. iv + 39 p.
- Bourdages, H., Brassard, C., Desgagnés, M., Galbraith, P., Gauthier, J., Nozères, C., Senay, C., Scallon-Chouinard, P.-M. et Smith, A. 2018. <u>Résultats préliminaires du relevé</u> <u>multidisciplinaire de poissons de fond et de crevette d'août 2017 dans l'estuaire et le nord</u> <u>du golfe du Saint-Laurent</u>. Secr. can. de consult. sci. du MPO. Doc. de rech. 2018/036. iv + 90 p.
- Daoud, D., Lambert, Y., Chabot, D., et Audet, C. 2010. Size and temperature-dependent variations in intermolt duration and size increment at molt of northern shrimp, *Pandalus borealis*. Mar. Biol. 157:2655-2666
- Galbraith, P.S., Chassé, J., Caverhill, C., Nicot, P., Gilbert, D., Pettigrew, B., Lefaivre, D., Brickman, D., Devine, L., and Lafleur, C. 2017. <u>Physical Oceanographic Conditions in the</u> <u>Gulf of St. Lawrence in 2016</u>. DFO Can. Sci. Advis. Sec. Res. Doc. 2017/044. v + 91 p.

Lafleur, C., et Gratton, Y. 1998. MATLAB Kriging Toolbox.

- Myers, R.A., et Cadigan, N.G. 1995. Was an increase in natural mortality responsible for the collapse of northern cod? Can. J. Fish. Aquat. Sci. 52: 1274–1285.
- Pebesma, E. 2013a. <u>Sp: classes and methods for spatial data. R package version 1.0-14.</u> 104 p. [consulté le 2 décembre 2013]
- Pebesma, E. 2013b. <u>Gstat: spatial and spatio-temporal geostatistical modelling, prediction and simulation. R package version 1.0-18</u>. 75 p. [consulté le 2 décembre 2013].
- R Development Core Team. 2011. <u>R: A language and environment for statistical computing</u>. R Foundation for Statistical Computing. Vienna, Austria. (Accédé le 18 novembre 2015).
- SAS. 1996. Spatial Prediction Using the SAS System. SAS/STAT Technical Report, SAS Institute Inc., Cary, NC, 80 pp.
- Savard, L. 2012. <u>Indicateurs de l'état des stocks et points de référence conformes à une</u> <u>approche de précaution pour la crevette nordique du golfe du Saint-Laurent</u>. Secr. can. de consult. sci. du MPO. Doc. de rech. 2012/006. ii + 29 p.
- Savard, L. et Nozères, C. 2012. Atlas des espèces de crevettes de l'estuaire et du nord du golfe du Saint-Laurent. Rapp. tech. can. sci. halieut. aquat. 3007 : vi+ 67 p.
- Savenkoff, C., H. Bourdages, M. Castonguay, L. Morissette, D. Chabot, and M. O. Hammill. 2004. Input data and parameter estimates for ecosystem models of the northern Gulf of St. Lawrence (mid-1990s). Can. Tech. Rep. Fish. Aquat. Sci. No. 2531.
- Smedbol, R.K., Shelton, P.A., Swain, D.P., Fréchet, A., et Chouinard G.A. 2002. <u>Review of population structure, distribution and abundance of cod (*Gadus morhua*) in Atlantic Canada in a species-at-risk context. DFO Can. Sci. Advis. Sec. Res. Doc. 2002/082.</u>
- Swain, D.P., et Sinclair, A.F. 1994. Fish distribution and catchability: what is the appropriate measure of distribution? Can. J. Fish. Aquat. Sci. 51: 1046–1054.

TABLEAUX

Aprés	~	Má	âles	Femelles		
Annee	[]	Moyenne	Erreur type	Moyenne	Erreur type	
1990	219	349,17	54,36	482,36	52,28	
1991	250	265,82	50,53	412,06	50,09	
1992	239	155,81	26,40	243,78	29,20	
1993	214	203,54	32,87	184,91	22,54	
1994	176	201,97	33,29	302,52	38,02	
1995	182	339,35	47,62	408,28	44,58	
1996	217	439,20	61,95	680,02	57,96	
1997	185	602,86	92,43	715,33	82,08	
1998	206	352,77	40,84	722,97	73,51	
1999	224	472,82	64,43	659,18	62,95	
2000	209	527,95	64,46	971,07	82,90	
2001	183	572,65	100,28	631,87	67,30	
2002	171	470,10	88,08	797,65	88,41	
2003	164	1429,82	303,30	1339,34	135,13	
2004	133	726,31	726,31 136,25 1177,82		144,64	
2005	354	536,26	72,52	931,05	68,46	
2006	192	477,51	73,83	942,67	111,71	
2007	183	610,36	101,27	1141,59	158,19	
2008	189	489,42	84,41	762,88	82,69	
2009	164	586,99	89,54	686,90	78,53	
2010	154	484,47	70,62	750,55	88,77	
2011	156	357,29	54,43	637,67	74,19	
2012	178	506,20	114,22	533,69	75,38	
2013	141	390,40	80,87	661,56	99,84	
2014	177	475,57	86,94	688,79	88,40	
2015	182	415,61	66,81	611,87	77,04	
2016	159	305,16	65,30	456,09	75,91	
2017	163	198,28	36,84	297,75	51,08	
2008+	201	488,34	80,51	842,41	90,62	
2009+	177	594,42	83,94	758,18	83,23	
2010+	166	518,46	79,86	778,54	89,04	
2011+	166	408,66	59,41	669,28	77,29	
2012+	188	517,62	109,33	550,83	74,19	
2013+	152	384,16	75,31	722,18	103,66	
2014+	185	490,24	84,08	706,65	87,51	
2015+	190	414,4	65,07	604,02	74,68	
2016+	167	351,33	68,84	517,99	82,87	
2017+	170	203,19	35,72	301,18	49,65	

Tableau 1. Capture moyenne (kg/km²) et erreur type par année pour les mâles et les femelles pour toute l'aire d'étude (n: nombre de stations).

Annéa		Má	âles	Femelles		
Annee	n	Moyenne	Erreur type	Moyenne	Erreur type	
1990	12	156,25	77,65	233,61	82,82	
1991	11	31,24	15,15	308,55	140,68	
1992	11	83,54	64,96	187,46	120,92	
1993	12	102,41	77,20	229,50	142,70	
1994	8	119,91	83,71	398,97	271,60	
1995	18	33,17	15,68	44,57	18,74	
1996	17	134,76	53,69	663,28	244,99	
1997	16	31,88	13,05	146,68	94,02	
1998	16	34,63	18,54	158,71	62,10	
1999	21	124,25	90,37	595,89	201,85	
2000	17	54,87	20,71	440,12	129,51	
2001	19	13,15	3,83	271,47	99,18	
2002	12	10,37	6,37	125,36	81,22	
2003	11	30,04	12,65	346,47	251,44	
2004	9	140,28	109,56	722,38	367,21	
2005	24	35,03	17,05	466,44	138,59	
2006	12	5,88	2,02	208,70	76,78	
2007	12	18,39	14,15	144,45	62,56	
2008	10	17,15	17,15 6,47 379,2		159,29	
2009	10	43,51	24,17	405,86	193,34	
2010	12	77,14	42,62	240,66	137,05	
2011	12	200,40	89,92	459,64	168,07	
2012	11	168,99	104,58	541,06	296,08	
2013	10	85,86	56,47	236,72	121,54	
2014	8	119,40	54,11	890,30	385,24	
2015	7	125,22	87,82	384,42	216,65	
2016	8	36,36	15,19	172,74	70,07	
2017	7	12,08	8,71	76,32	36,47	
2008+	21	276,83	141,95	1377,73	446,43	
2009+	23	407,83	121,58	1113,27	320,00	
2010+	24	515,89	328,56	689,18	259,33	
2011+	22	659,27	231,84	779,10	272,71	
2012+	20	439,15	174,31	715,64	248,12	
2013+	20	209,10	63,28	939,43	368,62	
2014+	15	497,78	171,42	1057,50	334,67	
2015+	14	283,77	174,33	435,04	185,95	
2016+	15	696,15	329,79	1024,49	447,92	
2017+	14	164.73	75.91	228.77	111.45	

Tableau 2a. Capture moyenne (kg/km²) et erreur type par année pour les mâles et les femelles de la zone de pêche Estuaire (n: nombre de stations).

Annéo		Ma	âles	Fem	Femelles		
Annee	n	Moyenne	Erreur type	Moyenne	Erreur type		
1990	73	368,74	93,59	651,33	98,58		
1991	71	556,17	556,17 162,63 828,80		150,54		
1992	60	205,76	56,56	366,15	78,75		
1993	47	376,53	94,10	378,57	73,66		
1994	49	360,66	97,71	605,40	103,66		
1995	56	466,30	96,10	576,97	95,30		
1996	74	580,37	108,36	998,29	93,68		
1997	53	827,35	159,76	1096,30	125,72		
1998	48	533,44	86,71	1478,68	219,66		
1999	62	715,15	119,52	989,22	102,19		
2000	51	1011,01	164,56	1854,23	159,49		
2001	58	1148,13	272,57	1132,31	155,61		
2002	56	871,07	228,82	1693,13	194,24		
2003	48	3127,78	919,28	2586,03	228,81		
2004	43	1248,81	289,40	2115,14	274,29		
2005	65	1216,63	286,98	1907,67	135,04		
2006	50	655,37	157,80	1878,57	259,06		
2007	50	1063,62	313,79	2293,54	339,10		
2008	44	1015,41	15,41 288,14 2035,73		203,68		
2009	44	823,43	240,35	1186,57	194,23		
2010	40	644,76	150,85	1410,73	191,62		
2011	40	416,78	86,94	1003,53	145,39		
2012	42	1156,22	382,07	936,69	113,12		
2013	41	548,73	212,81	995,85	251,10		
2014	40	815,56	259,68	1549,82	245,80		
2015	41	780,17	175,09	1327,24	166,93		
2016	45	502,34	163,93	884,77	207,47		
2017	45	235,67	58,65	386,31	96,26		
2008+	45	993,14	282,54	1990,49	204,18		
2009+	44	823,43	240,35	1186,57	194,23		
2010+	40	644,76	150,85	1410,73	191,62		
2011+	40	416,78	86,94	1003,53	145,39		
2012+	43	1135,94	373,63	919,52	111,79		
2013+	42	536,20	208,06	973,82	246,03		
2014+	41	795,84	254,03	1513,84	242,41		
2015+	42	761,60	171,87	1295,72	165,93		
2016+	46	491,44	160,70	865,56	203,82		
2017+	45	235.67	58.65	386.31	96.26		

Tableau 2b. Capture moyenne (kg/km²) et erreur type par année pour les mâles et les femelles de la zone de pêche Sept-Îles (n: nombre de stations).

Annéa	_	Má	âles	Ferr	Femelles		
Aimee	n	Moyenne	Erreur type	Moyenne	Erreur type		
1990	85	418,56	105,94	390,75	86,97		
1991	82	185,46	37,18	257,11	41,09		
1992	82	211,64	59,86	232,16	43,47		
1993	76	207,97	64,32	141,47	25,94		
1994	64	161,65	36,65	184,99	33,22		
1995	57	378,61	87,89	470,25	71,13		
1996	63	494,88	135,38	729,94	125,45		
1997	60	489,24	105,34	608,32	86,48		
1998	78	338,21	56,43	608,26	76,82		
1999	78	381,33	67,30	566,39	68,19		
2000	77	394,01	73,62	850,58	104,51		
2001	36	203,38	60,44	373,76	59,71		
2002	49	473,84	119,72	630,48	110,74		
2003	46	802,28	297,96	852,30	205,04		
2004	32	603,73	293,42	754,31	230,89		
2005	134	515,13	96,85	972,22	112,60		
2006	64	390,93	113,07	665,50	135,86		
2007	66	581,38	106,72	1072,18	308,50		
2008	66	287,94	59,28	392,16	72,02		
2009	60	560,53	125,19	496,13	91,53		
2010	54	522,60	121,99	564,85	114,99		
2011	52	202,74	59,32	338,23	84,79		
2012	59	190,57	45,90	338,13	62,69		
2013	49	229,97	58,75	464,64	112,20		
2014	62	341,98	101,97	398,96	94,07		
2015	74	339,59	106,39	435,86	116,17		
2016	56	139,59	57,20	253,35	71,04		
2017	62	204,87	72,09	289,98	94,90		

Tableau 2c. Capture moyenne (kg/km²) et erreur type par année pour les mâles et les femelles de la zone de pêche Anticosti (n: nombre de stations).

Annéo	-	Má	âles	Fen	Femelles		
Annee	n	Moyenne	Erreur type	Moyenne	Erreur type		
1990	49	246,89	73,44	450,48	94,34		
1991	86	132,72	36,35	229,00	41,98		
1992	86	76,95	20,47	176,71	38,87		
1993	79	111,73	23,94	104,72	20,01		
1994	55	119,45	37,17	155,42	36,81		
1995	51	264,14	85,29	282,15	79,76		
1996	63	299,84	100,71	260,78	58,81		
1997	56	675,28	236,46	631,91	215,63		
1998	64	314,53	87,65	437,06	104,71		
1999	63	463,80	172,20	470,35	162,91		
2000	64	429,80	124,03	553,29	164,08		
2001	70	437,61	105,14	447,79	92,32		
2002	54	153,06	68,92	170,08	53,91		
2003	59	798,67	221,02	889,93	221,41		
2004	49	455,49	171,87	715,51	219,18		
2005	131	312,11	78,31	489,47	102,90		
2006	66	512,48	138,68	635,87	191,06		
2007	55	362,25	106,21	395,21	106,46		
2008	69	415,18	116,38	361,40	100,03		
2009	50	519,38	133,70	532,32	135,96		
2010	48	409,84	126,00	536,80	167,72		
2011	52	502,29	132,68	696,77	158,63		
2012	66	430,91	171,38	450,81	170,26		
2013	41	498,07	161,40	666,24	181,72		
2014	67	438,73	137,78	418,88	123,42		
2015	60	294,12	88,82	366,66	116,09		
2016	50	356,13	127,48	342,68	114,00		
2017	49	182,21	62,05	257,86	81,58		

Tableau 2d. Capture moyenne (kg/km²) et erreur type par année pour les mâles et les femelles de la zone de pêche Esquiman (n: nombre de stations).

Année	Période	Pépite (c₀)	Plateau (c ₀ + c)	Portée (a₀)
1990	1990-1991-1992	0,50	1,05	35
1991	1990-1991-1992	0,50	1,05	35
1992	1990-1991-1992	0,50	1,05	35
1993	1991-1992-1993	0,20	1,05	30
1994	1992-1993-1994	0,20	1,05	30
1995	1993-1994-1995	0,20	1,00	20
1996	1994-1995-1996	0,20	1,00	20
1997	1995-1996-1997	0,20	0,95	18
1998	1996-1997-1998	0,20	0,90	20
1999	1997-1998-1999	0,40	0,90	20
2000	1998-1999-2000	0,40	0,90	20
2001	1999-2000-2001	0,40	0,90	17
2002	2000-2001-2002	0,30	1,00	25
2003	2001-2002-2003	0,20	1,00	25
2004	2002-2003-2004	0,20	1,00	25
2005	2003-2004-2005	0,30	1,00	30
2006	2004-2005-2006	0,30	1,00	25
2007	2005-2006-2007	0,30	1,00	25
2008	2006-2007-2008	0,30	1,00	20
2009	2007-2008-2009	0,25	1,00	25
2010	2008-2009-2010	0,30	1,00	25
2011	2009-2010-2011	0,40	1,00	30
2012	2010-2011-2012	0,30	1,00	22
2013	2011-2012-2013	0,00	0,96	15,68
2014	2012-2013-2014	0,00	0,96	15,65
2015	2013-2014-2015	0,00	0,92	15,09
2016	2014-2015-2016	0,00	0,92	12,25
2017	2015-2016-2017	0,00	0,92	11,21

Tableau 3a. Paramètres des variogrammes utilisés pour le krigeage de la biomasse des mâles. Un modèle exponentiel* a été utilisé chaque année.

*Modèle exponentiel : (où h = distance) $\gamma(h) = c_0 + c \left[1 - exp\left(-\frac{h}{a_0}\right)\right]$

			Paramètres				
Année	Période	Pépite (c ₀)	Plateau (c ₀ + c)	Portée (a₀)			
1990	1990-1991-1992	0,45	0,95	30			
1991	1990-1991-1992	0,45	0,95	30			
1992	1990-1991-1992	0,45	0,95	30			
1993	1991-1992-1993	0,25	0,85	20			
1994	1992-1993-1994	0,30	0,85	25			
1995	1993-1994-1995	0,30	0,80	20			
1996	1994-1995-1996	0,15	0,95	17			
1997	1995-1996-1997	0,15	0,95	17			
1998	1996-1997-1998	0,20	0,95	20			
1999	1997-1998-1999	0,35	0,90	25			
2000	1998-1999-2000	0,35	0,90	30			
2001	1999-2000-2001	0,40	0,90	35			
2002	2000-2001-2002	0,30	0,90	30			
2003	2001-2002-2003	0,20	0,85	35			
2004	2002-2003-2004	0,15	0,95	35			
2005	2003-2004-2005	0,20	1,05	60			
2006	2004-2005-2006	0,20	1,05	50			
2007	2005-2006-2007	0,20	1,05	60			
2008	2006-2007-2008	0,20	1,00	60			
2009	2007-2008-2009	0,20	0,90	40			
2010	2008-2009-2010	0,25	0,90	45			
2011	2009-2010-2011	0,15	0,90	28			
2012	2010-2011-2012	0,15	0,90	27			
2013	2011-2012-2013	0,60	1,52	441,11			
2014	2012-2013-2014	0,51	0,80	53,25			
2015	2013-2014-2015	0,48	1,10	175,07			
2016	2014-2015-2016	0,41	0,82	42,47			
2017	2015-2016-2017	0,58	26,57	13249			

Tableau 3b. Paramètres des variogrammes utilisés pour le krigeage de la biomasse des femelles. Un modèle exponentiel* a été utilisé chaque année.

*Modèle exponentiel : (où h = distance) $\gamma(h) = c_0 + c \left[1 - exp\left(-\frac{h}{a_0}\right)\right]$

			Paramètres	
Année	Période	Pépite (c ₀)	Plateau (c ₀ + c)	Portée (a₀)
1990	1990-1991-1992	0,40	1,00	35
1991	1990-1991-1992	0,40	1,00	35
1992	1990-1991-1992	0,40	1,00	35
1993	1991-1992-1993	0,30	0,95	40
1994	1992-1993-1994	0,30	0,95	32
1995	1993-1994-1995	0,30	0,95	25
1996	1994-1995-1996	0,20	1,05	20
1997	1995-1996-1997	0,20	1,00	20
1998	1996-1997-1998	0,20	1,00	25
1999	1997-1998-1999	0,30	0,90	25
2000	1998-1999-2000	0,35	0,90	30
2001	1999-2000-2001	0,50	1,00	80
2002	2000-2001-2002	0,45	1,00	70
2003	2001-2002-2003	0,40	1,00	70
2004	2002-2003-2004	0,20	1,00	40
2005	2003-2004-2005	0,25	1,05	60
2006	2004-2005-2006	0,30	1,05	60
2007	2005-2006-2007	0,30	1,05	60
2008	2006-2007-2008	0,30	1,05	55
2009	2007-2008-2009	0,30	1,05	55
2010	2008-2009-2010	0,35	1,00	40
2011	2009-2010-2011	0,25	1,00	30
2012	2010-2011-2012	0,20	0,95	20
2013	2011-2012-2013	0,00	0,87	11,49
2014	2012-2013-2014	0,00	0,86	11,46
2015	2013-2014-2015	0,00	0,82	12,13
2016	2014-2015-2016	0,00	0,84	12,07
2017	2015-2016-2017	0,61	1,24	153,34

Tableau 3c. Paramètres des variogrammes utilisés pour le krigeage de la biomasse totale de crevette. Un modèle exponentiel* a été utilisé chaque année.

*Modèle exponentiel : (où h = distance) $\gamma(h) = c_0 + c \left[1 - exp\left(-\frac{h}{a_0}\right)\right]$

Annéo	Estua	Estuaire		Sept-Îles		Anticosti			Esquiman	
Annee	а	b	а	b		а	b		а	b
1993	0,000713	2,945	0,000658	2,978	0,0	000593	3,018	0	,000939	2,864
2005	0,001175	2,777	0,000654	2,960	0,0	000659	2,957	0	,000754	2,904
2006	0,000682	2,945	0,000694	2,934	0,0	00527	3,040	0	,000933	2,849
2007	0,001071	2,800	0,000724	2,930	0,0	000735	2,918	0	,000767	2,904
2008	0,000561	3,016	0,000704	2,934	0,0	00769	2,908	0	,000820	2,887
2009	0,000628	2,977	0,000897	2,864	0,0	00800	2,893	0	,000767	2,911
2010	0,000759	2,920	0,000716	2,931	0,0	00585	3,011	0	,000706	2,953
2011	0,000760	2,911	0,000685	2,942	0,0	00616	3,001	0	,000544	3,036
2012	0,000733	2,931	0,000725	2,936	0,0	00771	2,923	0	,000814	2,908
2013	0,000624	2,979	0,000643	2,976	0,0	000561	3,028	0	,000672	2,967
2014	0,000657	2,962	0,000854	2,880	0,0	00741	2,933	0	,000663	2,969
2015	0,000804	2,914	0,000894	2,870	0,0	000651	2,975	0	,000763	2,924
2016	0,000699	2,963	0,001016	2,831	0,0	00750	2,945	0	,000991	2,832
2017	0,000897	2,884	0,000951	2,862	0,0	00687	2,986	0	,000614	2,985

Tableau 4. Paramètres des relations poids-longueur* par zone de pêche et par année. Longueur en mm et poids en g.

* Modèle : Poids = a Longueur ^b

Annéo	Estu	aire	Sept	-Îles	Antic	costi	Esquiman		
Annee	М	F	М	F	М	F	М	F	
1990	188,6	310,4	390,5	652,2	402,4	404,3	234,2	402,2	
1991	44,3	514,4	566,7	774,9	207,0	300,6	185,5	285,3	
1992	100,1	365,0	219,6	358,7	264,7	276,9	92,4	202,5	
1993	88,9	274,7	336,2	442,0	207,7	150,0	114,3	107,1	
1994	102,6	426,1	376,1	598,4	165,3	179,5	175,6	196,0	
1995	33,1	52,9	426,2	559,7	392,7	509,3	334,5	327,7	
1996	116,6	598,7	467,0	880,3	659,8	931,3	329,5	299,2	
1997	69,7	375,4	777,1	999,6	456,7	552,9	747,2	693,7	
1998	28,5	159,8	551,5	1547,1	269,5	566,0	366,8	481,2	
1999	136,2	575,2	788,0	1098,1	345,9	551,8	455,2	457,9	
2000	141,1	702,3	1005,3	1777,0	403,7	832,1	439,2	536,7	
2001	22,2	439,9	1273,0	1141,8	331,2	508,2	452,4	452,5	
2002	22,0	312,8	980,1	1713,4	594,6	739,3	197,3	217,5	
2003	105,8	691,4	2952,5	2767,2	966,3	1232,6	873,0	998,5	
2004	92,5	626,6	1444,4	2312,4	2312,4 564,3 9		434,7	767,7	
2005	44,5	554,1	925,6	1978,1	655,3	1141,8	596,3	853,3	
2006	45,8	419,7	631,4	1872,6	385,9	685,5	713,6	847,1	
2007	221,4	592,0	945,0	2363,8	623,5	1223,2	517,6	462,7	
2008	23,6	617,7	835,7	2112,6	361,7	481,1	492,9	426,4	
2009	49,0	356,0	1031,0	1336,2	593,7	532,2	547,0	536,9	
2010	98,7	341,0	715,6	1527,8	534,5	570,9	447,7	568,0	
2011	185,9	496,6	488,8	1024,7	218,0	432,3	624,7	831,8	
2012	160,7	658,3	1223,6	1015,0	268,4	473,3	452,8	507,7	
2013	110,2	367,9	669,0	1037,5	236,1	508,9	435,1	659,9	
2014	149,8	1139,1	942,1	1709,5	380,6	478,7	482,0	479,9	
2015	169,3	711,5	848,9	1382,2	333,2	483,5	298,7	395,5	
2016	65,4	276,9	532,3	914,9	172,0	298,7	397,6	382,2	
2017	15,2	89,3	267,8	444,3	239,9	347,2	247,4	349,7	
2008+	284,6	1405,4	833,4	2103,8	-	-	-	-	
2009+	421,3	1157,2	1028,8	1334,6	-	-	-	-	
2010+	540,0	709,0	714,2	1526,1	-	-	-	-	
2011+	557,9	588,7	490,2	1014,4	-	-	-	-	
2012+	490,8	779,4	1220,6	1007,8	-	-	-	-	
2013+	226,7	795,7	666,2	1029,1	-	-	-	-	
2014+	534,4	1098,0	937,3	1693,6	-	-	-	-	
2015+	261,6	589,7	843,7	1369,0	-	-	-	-	
2016+	449,0	708,4	529,4	908,4	-	-	-	-	
2017+	159,6	223,4	267,1	443,2	-	-	-	-	

Tableau 5. Biomasse moyenne (kg/km²) estimée par krigeage, par zone de pêche et par année, pour les mâles (M) et les femelles (F).

	Est	uaire	Sept	-Îles	Anti	costi	Esquiman		
Annee	М	F	М	F	М	F	М	F	
1990	4593	4834	8401	8656	10171	6348	4803	7277	
1991	190	15114	22197	17747	1265	1436	1228	1519	
1992	3381	10859	2757	4974	3327	1636	343	1145	
1993	3482	12624	5229	3335	3118	497	367	267	
1994	4252	44887	6502	7158	1106	856	1031	987	
1995	135	191	6029	5480	6483	3642	6979	5122	
1996	1724	35077	9532	6893	17463	14585	7608	2547	
1997	91	4508	18807	11438	12013	8093	44216	36384	
1998	218	1728	5003	33605	2811	5478	4864	7254	
1999	6043	27056	13218	9064	4150	4019	24527	20394	
2000	292	9848	21632	17931	4676	8496	11177	16974	
2001	11	6582	58555	16209	3886	4715	8744	5870	
2002	28	4021	36174	22907	13616	10274	4047	2162	
2003	126	39123	671578	32617	77033	28572	41275	32368	
2004	7524	65553	72132	50945	93148	55313	21248	27467	
2005	207	8972	84841	13234	11480	11319	6845	8114	
2006	3	2762	16012	29251	12705	14893	15130	20125	
2007	186	2686	72080	54547	8341	45769	9290	6329	
2008	33	12784	69789	21424	2994	2624	12120	5643	
2009	372	17218	42898	21100	15001	6168	14323	10689	
2010	1352	10110	17455	20606	13020	8386	11540	14446	
2011	5748	14016	6343	14156	2980	4768	14629	16123	
2012	9148	55186	110879	7274	2112	3311	24943	18554	
2013	2024	10692	34933	46665	3019	9645	20207	24445	
2014	2597	103695	41220	37862	6935	6131	11651	10530	
2015	4503	27811	18633	16393	6844	8083	4709	8565	
2016	198	3195	17970	26068	2219	2993	11044	8236	
2017	40	846	2180	6049	3598	6012	2818	4846	
2008+	16392	102556	67828	21841	-	-	-	-	
2009+	8170	40838	42864	21071	-	-	-	-	
2010+	70574	31642	17444	20582	-	-	-	-	
2011+	39732	39001	6354	14200	-	-	-	-	
2012+	24374	36177	106422	7136	-	-	-	-	
2013+	2488	103622	33892	45328	-	-	-	-	
2014+	18242	72156	39639	37108	-	-	-	-	
2015+	14305	19969	18156	16386	-	-	-	-	
2016+	100643	153438	17312	25310	-	-	-	-	
2017+	2915	7895	2182	6045	-	-	-	-	

Tableau 6. Variance d'estimation de la biomasse krigée, par zone de pêche et par année, pour les mâles *(M)* et les femelles *(F)*.

Annéo	Estua	aire	Sept-	Îles	Antic	osti	Esquiman		
Annee	М	F	М	F	М	F	М	F	
1990	35,9	22,4	23,5	14,3	25,1	19,7	29,6	21,2	
1991	31,1	23,9	26,3	17,2	17,2	12,6	18,9	13,7	
1992	58,1	28,5	23,9	19,7	21,8	14,6	20,1	16,7	
1993	66,4	40,9	21,5	13,1	26,9	14,9	16,8	15,2	
1994	63,5	49,7	21,4	14,1	20,1	16,3	18,3	16,0	
1995	35,1	26,1	18,2	13,2	20,5	11,9	25,0	21,8	
1996	35,6	31,3	20,9	9,4	20,0	13,0	26,5	16,9	
1997	13,7	17,9	17,6	10,7	24,0	16,3	28,1	27,5	
1998	51,8	26,0	12,8	11,8	19,7	13,1	19,0	17,7	
1999	57,1	28,6	14,6	8,7	18,6	11,5	34,4	31,2	
2000	12,1	14,1	14,6	7,5	16,9	11,1	24,1	24,3	
2001	15,1	18,4	19,0	11,2	18,8	13,5	20,7	16,9	
2002	24,0	20,3	19,4	8,8	19,6	13,7	32,2	21,4	
2003	10,6 28,6		27,8	6,5	28,7	13,7	23,3	18,0	
2004	93,7	40,9	18,6	9,8	54,1	26,0	33,5	21,6	
2005	32,3	17,1	31,5	5,8	16,4	9,3	13,9	10,6	
2006	3,6	12,5	20,0	9,1	29,2	17,8	17,2	16,7	
2007	6,2	8,8	28,4	9,9	14,6	17,5	18,6	17,2	
2008	24,4	18,3	31,6	6,9	15,1	10,6	22,3	17,6	
2009	39,4	36,9	20,1	10,9	20,6	14,8	21,9	19,3	
2010	37,3	29,5	18,5	9,4	21,3	16,0	24,0	21,2	
2011	40,8	23,8	16,3	11,6	25,0	16,0	19,4	15,3	
2012	59,5	35,7	27,2	8,4	17,1	12,2	34,9	26,8	
2013	40,8	28,1	27,9	20,8	23,3	19,3	32,7	23,7	
2014	34,0	28,3	21,6	11,4	21,9	16,4	22,4	21,4	
2015	39,6	23,4	16,1	9,3	24,8	18,6	23,0	23,4	
2016	21,5	20,4	25,2	17,6	27,4	18,3	26,4	23,7	
2017	41,7	32,6	17,4	17,5	25,0	22,3	21,5	19,9	
2008+	45,0	22,8	31,2	7,0	-	-	-	-	
2009+	21,5	17,5	20,1	10,9	-	-	-	-	
2010+	49,2	25,1	18,5	9,4	-	-	-	-	
2011+	35,7	33,5	16,3	11,7	-	-	-	-	
2012+	31,8	24,4	26,7	8,4	-	-	-	-	
2013+	22,0	40,5	27,6	20,7	-	-	-	-	
2014+	25,3	24,5	21,2	11,4	-	-	-	-	
2015+	45,7	24,0	16,0	9,4	-	-	-	-	
2016+	70,7	55,3	24,9	17,5	-	-	-	-	
2017+	33,8	39,8	17,5	17,5	-	-	-	-	

Tableau 7. Coefficient de variation de la biomasse krigée, par zone de pêche et par année, pour les mâles (*M*) et les femelles (*F*).

Annéo	Estu	Estuaire		-Îles	Anti	costi	Esquiman		
Annee	М	F	М	F	М	F	М	F	
1990	755	1241	11627	19418	18670	18758	7577	13011	
1991	177	2057	16874	23073	9606	13948	6000	9228	
1992	400	1460	6538	10681	12284	12850	2989	6551	
1993	356	1099	10011	13161	9636	6962	3698	3465	
1994	410	1704	11198	17818	7670	8331	5681	6340	
1995	133	212	12689	16667	18222	23630	10822	10602	
1996	466	2395	13906	26212	30616	43214	10658	9680	
1997	279	1501	23139	29763	21191	25653	24171	22443	
1998	114	639	16421	46063	12503	26263	11867	15566	
1999	545	2301	23464	32695	16051	25605	14724	14812	
2000	564	2809	29934	52910	18732	38608	14207	17364	
2001	89	1760	37905	33996	15366	23580	14635	14640	
2002	88	1251	29184	51016	27590	34304	6382	7036	
2003	423	2766	87909	82392	44836	57195	28242	32301	
2004	370	2506	43008	68852	26182	42000	14062	24836	
2005	178	2216	27558	58899	30406	52977	19292	27603	
2006	183	1679	18800	55756	17905	31806	23086	27404	
2007	885	2368	28137	70382	28931 56758		16745	14969	
2008	94	2471	24883	62904	16781	22321	15944	13794	
2009	196	1424	30697	39786	27549	24693	17697	17369	
2010	395	1364	21308	45490	24802	26489	14483	18374	
2011	744	1987	14555	30511	10115	20060	20209	26907	
2012	643	2633	36433	30222	12456	21963	14648	16425	
2013	441	1471	19919	30891	10956	23614	14077	21349	
2014	599	4556	28050	50902	17662	22212	15592	15526	
2015	677	2846	25277	41155	15461	22435	9662	12794	
2016	262	1107	15849	27242	7981	13857	12863	12365	
2017	61	357	7974	13230	11131	16108	8005	11313	
2008+	1800	8889	24898	62852	-	-	-	-	
2009+	2665	7319	30734	39873	-	-	-	-	
2010+	3415	4484	21337	45591	-	-	-	-	
2011+	3529	3724	14644	30305	-	-	-	-	
2012+	3104	4930	36466	30108	-	-	-	-	
2013+	1434	5033	19902	30745	-	-	-	-	
2014+	3380	6945	28002	50595	-	-	-	-	
2015+	1654	3730	25206	40899	-	-	-	-	
2016+	2840	4481	15817	27137	-	-	-	-	
2017+	1010	1413	7980	13239	-	-	-	-	

Tableau 8. Biomasse du stock (tonne) estimée par krigeage par zone de pêche et par année, pour les mâles (*M*) et les femelles (*F*).

Année	Estua	Estuaire		Sept-Îles		osti	Esquiman		
Annee	М	F	М	F	М	F	М	F	
1990	156	115	2266	1822	4686	2077	1661	1394	
1991	26	196	3871	2278	1948	1458	1210	972	
1992	87	128	2113	961	2928	1252	630	660	
1993	85	92	2894	1264	2648	671	866	358	
1994	87	163	3292	1918	1888	919	1471	716	
1995	40	20	2920	1707	4854	2682	2681	1368	
1996	86	226	3017	2667	7387	4769	3197	1207	
1997	48	132	4939	2830	5852	2603	6497	2791	
1998	30	54	3447	4212	2605	2563	3099	1808	
1999	118	205	5797	3112	3910	2560	4112	1846	
2000	114	257	6531	5329	4957	4008	4020	2137	
2001	18	162	8559	3503	3604	2424	4610	1921	
2002	20	125	6661	5543	7995	3898	1741	907	
2003	219	271	17561	8982	12628	6741	8046	4298	
2004	62	238	8521	7715	7715 7070		3740	3421	
2005	29	222	6280	6498	6319	6441	4885	3913	
2006	28	164	3806	6132	4322	3781	7165	3669	
2007	141	226	6171	7251	8128	7224	5890	2243	
2008	19	222	5613	6530	4809	2839	4938	2199	
2009	43	133	7937	4311	9970	3258	5374	2529	
2010	79	129	5942	5273	6481	3254	3634	2470	
2011	178	231	3753	3639	2629	2421	5916	3404	
2012	131	306	8345	3632	2961	2558	4310	2083	
2013	143	158	4251	3513	2556	2787	3670	2741	
2014	109	456	6422	5444	4907	2474	4067	1892	
2015	138	274	5644	4362	4548	2799	2831	1619	
2016	55	116	3698	3347	2277	1866	3245	1729	
2017	12	40	1917	1650	3402	2074	1999	1488	
2008+	456	831	5626	6525	-	-			
2009+	1253	732	7946	4321	-	-	-	-	
2010+	1073	467	5950	5284	-	-	-	-	
2011+	1070	433	3776	3614	-	-	-	-	
2012+	822	586	8355	3619	-	-	-	-	
2013+	455	611	4249	3497	-	-	-	-	
2014+	992	744	6413	5412	-	-	-	-	
2015+	658	378	5628	4335	-	-	-	-	
2016+	631	486	3690	3334	-	-	-	-	
2017+	303	167	1918	1651	-	-	-	-	

Tableau 9. Abondance du stock (en million) par zone de pêche et par année, pour les mâles (M) et les femelles (F).

Annéo	E	Estuaire			Sept-Îles			Anticosti		Esquiman		
Annee -	J	Fp	Fm	J	Fp	Fm	J	Fp	Fm	J	Fp	Fm
1990	11	48	67	123	965	858	73	1486	590	4	1157	237
1991	0	57	138	349	773	1505	87	837	621	70	535	437
1992	0	43	85	342	556	404	394	843	408	50	554	106
1993	1	78	14	113	1031	234	29	580	92	23	234	124
1994	0	130	33	172	1600	318	19	802	118	98	627	90
1995	12	14	5	188	1496	211	493	2408	273	30	1182	185
1996	1	132	94	166	2011	656	1249	4048	721	637	881	327
1997	0	110	22	45	2294	535	609	2377	226	76	2063	728
1998	8	32	22	705	3498	714	204	2171	392	553	1567	241
1999	1	158	47	14	2707	405	26	2067	492	128	1284	563
2000	1	181	76	234	4544	785	688	3457	551	654	1612	525
2001	0	-	-	82	-	-	20	-	-	268	-	-
2002	0	-	-	77	-	-	444	-	-	25	-	-
2003	114	-	-	222	-	-	553	-	-	193	-	
2004	0	-	-	84	-	-	64	-	-	17	-	-
2005	0	-	-	85	-	-	103	-	-	366	-	-
2006	0	-	-	54	-	-	248	-	-	101	-	-
2007	2	-	-	505	-	-	478	-	-	443	-	-
2008	2	-	-	127	-	-	349	-	-	58	-	-
2009	2	27	105	125	2022	2289	1258	2115	1144	127	1811	717
2010	0	60	69	64	3392	1880	83	1836	1418	146	1077	1393
2011	1	118	113	22	2058	1581	126	1709	712	533	2516	887
2012	2	258	48	203	2611	1022	35	1997	561	87	1591	492
2013	39	119	39	392	2735	779	138	2331	456	123	2331	410
2014	0	417	39	507	5141	303	444	2131	343	302	1613	279
2015	1	235	39	102	3996	366	172	2566	233	236	1172	447
2016	6	72	44	74	2274	1073	42	1463	403	11	1259	469
2017	0	26	13	39	1255	395	271	1550	524	65	922	566
2008+	136	-	-	136	-	-	-	-	-	-	-	-
2009+	519	347	385	125	2026	2294	-	-	-	-	-	-
2010+	17	321	146	64	3400	1884	-	-	-	-	-	-
2011+	82	237	196	22	2044	1571	-	-	-	-	-	-
2012+	78	442	144	206	2600	1019	-	-	-	-	-	-
2013+	94	504	107	392	2722	775	-	-	-	-	-	-
2014+	20	708	36	508	5109	303	-	-	-	-	-	-
2015+	39	345	33	102	3972	363	-	-	-	-	-	-
2016+	13	366	120	74	2265	1069	-	-	-	-	-	-
2017+	30	115	51	39	1256	395	-	-	-	-	-	-

Tableau 10. Abondance (en million) des juvéniles (J), femelles primipares (Fp) et multipares (Fm), par zone de pêche et par année.

FIGURES

Figure 1. Zones de pêche à la crevette (ZPC) dans le nord du golfe du Saint-Laurent : Estuaire (ZPC 12); Sept-Îles (ZPC 10); Anticosti (ZPC 9); Esquiman (ZPC 8).

	PRINTEMPS / SPRING ÉTÉ / SUMMER			A	UTOMNE / FAI	LL	HIVER / WINTER				
	A M	J	J	Α	s	о	N	D	J	F	м
Age											
0	ÉCLOSION / HATCHING	Post-larves / Post-larvae									
1	Juvéniles / Juveniles										
2		REPRO	DUCTION	Mâles / Males							
3		Mâles / Males					Mâles / Males				
4		Mâles / Males					CHANGEMENT DE SEXE / SEX CHANGE				
5	Femelles prim	PONTE / S	PAWNING	Femelles oeuvées / Berried females							
6	ÉCLOSION / HATCHING	PONTE / S	PAWNING	Femelles oeuvées / Berried females							
7	ÉCLOSION / HATCHING										

Figure 2. Cycle vital de la crevette nordique dans le golfe du Saint-Laurent.

Figure 3. Stratification utilisée pour l'allocation des stations de pêche du relevé du nord du golfe du Saint-Laurent. Les strates 851, 852, 854 et 855 ont été ajoutées en 2008.

Figure 4. Position des stations d'échantillonnage réussies (chalutage et océanographie) et des stations océanographiques additionnelles pour le relevé de 2017.

Figure 5. Tracés en rectangle et moustaches des captures de crevette mâle et femelle des relevés de 1990 à 2017.

Figure 6. Variogrammes isotropiques des biomasses (kg/km²) pour les années 2014 à 2017. Cercles fermés : année courante. Cercles ouverts : moyenne sur 3 ans. Courbe : variogramme ajusté sur la moyenne des 3 années.

Figure 7. Aire d'étude pour le krigeage de la biomasse de crevette dans le nord du golfe du Saint-Laurent. Les limites des zones de pêche sont également indiquées.

Figure 8. Relations poids-longueur par zone de pêche. Les panneaux de gauche représentent les données pour 2017 et dans les panneaux de droite, la ligne rouge représente l'année 2017 et les lignes grises les années 1993 et 2005 à 2016.

Figure 9. Distribution des taux de capture (kg/trait de 15 minutes) de crevette nordique.

Figure 10. Distribution des captures (kg/km²) de crevette mâle et femelle de 2014 à 2017.

Figure 11. Indices de répartition spatiale : 1) DWAO, aire d'occupation pondérée, 2) D_{95} , surface minimale où se concentrent 95 % de la biomasse et 3) indice Gini. La surface totale de l'aire d'étude est de 116 115 km².

Figure 12. Fréquence cumulée des captures (poids par trait de chalut) et du nombre de stations échantillonnées en fonction de la profondeur dans le relevé du MPO de 1990 à 2017.

Figure 13. Fréquence cumulée des captures (poids par trait de chalut) et du nombre de stations échantillonnées en fonction de la température de fond dans le relevé du MPO de 1990 à 2017.

Figure 14. Distribution de la biomasse des crevettes mâles et femelles en fonction de la température de l'eau au fond par zone de pêche observées lors du relevé du MPO.

Figure 15. Distribution de la biomasse des crevettes mâles et femelles en fonction de la profondeur par zone de pêche observées lors du relevé du MPO.

Figure 16. Longueur moyenne de la carapace des crevettes mâles et femelles par zone de pêche lors du relevé du MPO.

Estuaire															
Mâle	14 mm		1.57	1.67	1.66	1.60	1.70	1.60	1.68	1.65	1.62	1.81	1.75	1.80	1.677 ± 0.077
Mâle	20 mm		4.61	4.64	4.75	4.73	4.84	4.56	4.72	4.63	4.70	5.00	5.03	5.09	4.776 ± 0.177
Femelle	22 mm		6.15	6.18	6.55	6.69	6.67	6.37	6.56	6.60	6.67	6.86	6.96	6.84	6.592 ± 0.255
Femelle	26 mm		10.11	10.02	10.46	10.17	10.15	10.08	10.16	10.24	10.21	10.45	10.37	10.51	10.244 ± 0.163
	i	005					010			i		015			i
Sept-Îles		5					5(5(
Mâle	14 mm	1.71	1.62	1.66	1.64	1.68	1.59	1.62	1.71	1.70	1.70	1.78	1.79	1.83	1.695 ± 0.071
Mâle	20 mm	4.71	4.57	4.70	4.67	4.79	4.71	4.49	4.73	4.83	4.88	4.87	4.94	5.13	4.770 ± 0.164
Femelle	22 mm	6.28	6.12	6.40	6.25	6.50	6.44	6.46	6.47	6.52	6.43	6.53	6.50	6.59	6.423 ± 0.131
Femelle	26 mm	10.00	9.87	10.19	9.71	9.98	9.80	9.92	10.11	10.25	9.94	10.06	10.06	10.05	9.997 ± 0.150
	i	005					010			1		015			i
Anticosti		5					5(5(
Mâle	14 mm	1.59	1.65	1.63	1.64	1.64	1.69	1.74	1.76	1.67	1.67	1.64	1.77	1.81	1.685 ± 0.065
Mâle	20 mm	4.43	4.81	4.62	4.71	4.71	4.90	4.96	4.94	4.83	4.85	4.81	5.09	5.26	4.839 ± 0.207
Femelle	22 mm	6.12	6.55	6.16	6.17	6.28	6.42	6.55	6.55	6.66	6.70	6.55	6.86	7.14	6.516 ± 0.295
Femelle	26 mm	9.87	10.15	9.54	9.71	9.62	10.32	10.51	10.28	10.64	10.26	10.37	10.74	11.00	10.232 ± 0.445
	i	005					010			i		015			i
Esquiman		5					5(5(
Mâle	14 mm	1.56	1.71	1.65	1.68	1.66	1.73	1.69	1.75	1.71	1.67	1.72	1.74	1.61	1.683 ± 0.053
Mâle	20 mm	4.52	4.78	4.64	4.66	4.65	4.84	4.89	5.00	4.88	4.92	4.92	4.68	4.73	4.778 ± 0.143
Femelle	22 mm	6.10	6.19	5.97	6.13	6.29	6.52	6.50	6.60	6.52	6.50	6.54	6.39	6.32	6.352 ± 0.200
Femelle	26 mm	9.63	9.80	9.48	9.79	9.80	10.14	10.31	10.20	10.37	10.21	9.99	9.95	9.91	9.968 ± 0.268
	i	005					010					015			i
		2					0					2			
						,	1		1	2					
	Anomalie														

Figure 17. Poids de crevette mâle (14 et 22 mm) et femelle (22 et 26 mm) observées lors du relevé du MPO en août. Le code de couleur représente la valeur de l'anomalie qui correspond à la différence entre le poids d'une crevette et la moyenne de la série chronologique divisée par l'écart-type de cette moyenne pour chaque catégorie.

Figure 18. Distribution de la biomasse (kg/km²) obtenue par krigeage pour les années 1990, 1995, 2000, 2005, 2010 et de 2015 à 2017.

Figure 19. Distribution de la biomasse (kg/km²) obtenue par krigeage de 2014 à 2017 pour les mâles et les femelles.

Figure 20. Distribution de la biomasse (kg/km²) obtenue par krigeage en 2017 pour les mâles et les femelles. Les points représentent les stations échantillonnées.

Figure 21. Biomasse de crevette (en tonne) par zone de pêche et par année. Les cercles ouverts de 2008 à 2017 montrent les résultats obtenus en tenant compte des strates de la partie peu profonde (37-183 m) de l'estuaire. Les barres d'erreur indiquent les intervalles de confiance à 95 %.

Figure 22. Biomasse (en tonne) par zone de pêche et par année, pour les mâles et les femelles. Les cercles ouverts de 2008 à 2017 montrent les résultats obtenus en tenant compte des strates de la partie peu profonde (37-183 m) de l'estuaire. Les barres d'erreur indiquent les intervalles de confiance à 95 %.

Figure 23. Abondance (en million) par zone de pêche et par année, pour les mâles et les femelles. Les cercles ouverts de 2008 à 2017 montrent les résultats obtenus en tenant compte des strates de la partie peu profonde (37-183 m) de l'estuaire.

Figure 24. Abondance (en million) par classe de longueur de la carapace (classes de 0,5 mm) par zone de pêche de 2012 à 2017 pour les mâles (en bleu) et les femelles (en rouge). Le + accolé à la zone indique que les résultats obtenus tiennent compte des nouvelles strates de la partie peu profonde (37-183 m) de l'estuaire.

Figure 25. Abondance (en million) par classe de longueur de la carapace (classes de 0,5 mm) par zone de pêche pour les mâles (en bleu), les femelles primipares (en rouge), les femelles multipares (en vert) et les femelles (en rose, période 2001 à 2008). La ligne pleine indique la moyenne des années 1990-2016 ou 2008-2016 lorsque qu'un + est accolé à la zone. Le + accolé à la zone indique que les résultats obtenus comprennent les nouvelles strates dans la partie peu profonde (37-183 m) de l'estuaire.

Figure 25. Suite.

Figure 25. Suite.

Figure 25. Suite.

Figure 25. Suite.

Figure 26. Biomasse (kg par trait de chalut) des principaux prédateurs de la crevette nordique dans le nord du golfe du Saint-Laurent. Le code de couleur représente la valeur de l'anomalie qui correspond à la différence entre la PUE et la moyenne de la série chronologique divisée par l'écart-type de cette moyenne pour espèce.

Figure 27. Indice de remplissage partiel selon la classe de longueur et le type de proies, pour la période des années 90 et celles 2015-17. La hauteur des colonnes correspond à l'indice de remplissage total. Les chiffres au-dessus des colonnes correspondent au nombre d'estomacs retenu pour l'analyse, ainsi que le pourcentage de ceux étant vides.

Figure 28. Pourcentage moyen que divers groupes taxonomiques occupent dans la diète du sébaste par rapport à la masse du contenu stomacal total, par période et par classe de longueur.

Figure 29. Délimitation des six zones commercialement pêchées pour la crevette nordique à l'aide des données fournies par le Système de surveillance des navires national (SSN). La terminologie des zones utilisées dans les figures suivantes y est présentée.

Figure 30. Traits de pêche où des estomacs de sébaste ont été collectés pour la période 1993-2017. Au total, 4 640 estomacs ont été utilisés pour l'analyse. La localisation géographique de chacun d'eux – sauf quatre – a permis l'analyse spatiale des tendances du sébaste en termes d'alimentation. Les polygones rouges représentent les contours des aires de pêches commercialement pêchées pour la crevette nordique calculés d'après les données SSN (voir Figure 29).

Figure 31. Pourcentage moyen que divers groupes taxonomiques occupent dans la diète du sébaste par rapport à la masse du contenu stomacal total, par période, type de zone (zones pêchées pour la crevette nordique versus le reste de l'estuaire et le nord du golfe Saint-Laurent (eNGSL)) et classe de longueur.

Figure 32. Pourcentage moyen que divers groupes taxonomiques occupent dans la diète du sébaste par rapport à la masse du contenu stomacal total pour la période 2015-17, par zone (zones pêchées pour la crevette nordique versus le reste de eNGSL) et classe de longueur.

Figure 33. Estimation de la biomasse annuelle du sébaste pour les années 1995-1997 et 2015-2017, par classe de longueur et pour l'ensemble de l'eNGSL. Les valeurs fournies dans la partie supérieure des panneaux sont la biomasse estimée totale pour une année donnée.

Figure 34. Estimation de la consommation annuelle de crevette nordique par le sébaste pour les années 1995-1997 et 2015-2017, par classe de longueur et pour l'ensemble de l'eNGSL. Les valeurs fournies dans la partie supérieure des panneaux sont la consommation estimée totale pour une année donnée. Un symbole en « x » dénote l'absence d'estomacs récoltés pour une classe de longueur donnée ou un effectif inférieur à 20 estomacs. L'estimation d'une consommation annuelle pour ces classes de longueur est donc soit impossible, soit jugée non-représentative.

Figure 35. Nombre estimé des sébastes retrouvés dans chacune des six zones activement pêchées pour la crevette nordique pour la période 2010-17. Les valeurs n représentent le nombre de traits effectués à l'intérieur d'une zone, pour une année donnée. Ces estimations sont basées sur les résultats des relevés multidisciplinaires de poissons de fond et de crevette effectués en août à chaque année.

Figure 36. Biomasse estimée des sébastes retrouvés dans chacune des six zones activement pêchées pour la crevette nordique pour la période 2010-17. Les valeurs n représentent le nombre de traits effectués à l'intérieur d'une zone, pour une année donnée. Ces estimations sont basées sur les résultats des relevés multidisciplinaires de poissons de fond et de crevette effectués en août à chaque année.

Figure 37. Estimation de la consommation annuelle de crevette nordique par le sébaste pour les années 2015-2017, par classe de longueur et zone activement pêchée pour la crevette. Les valeurs n représentent le nombre de traits effectués à l'intérieur d'une zone, pour une année donnée. Un symbole en « x » dénote l'absence d'estomacs récoltés pour une classe de longueur donnée ou un effectif inférieur à 20 estomacs. L'estimation d'une consommation annuelle pour ces classes de longueur est donc soit impossible, soit jugée non-représentative. Les données d'estomacs des trois années ont été combinées pour obtenir la proportion de la diète qui est attribuée à la crevette nordique, par classe de longueur.

ANNEXE

Annexe 1. Régime alimentaire du flétan du Groenland et du sébaste de l'estuaire et du golfe du Saint-Laurent provenant des missions d'août du Teleost pour la période 2015-2017. Pour chaque proie, la fréquence d'occurrence (F_{occ}), la contribution en masse (C_M en % de la masse de toutes les proies) et le rang de l'indice de remplissage (pfi) sont fournis. Les proies étaient identifiées à l'espèce si le niveau de digestion pouvait le permettre.

Proies du flétan du Groenland (longueur ≥ 20 cm)

Nom latin	Nom français	F _{occ} (%)	Pct masse (%)	Rang pfi
Sebastes sp.	sébaste	8,84	55,32	1
Pandalus borealis	crevette nordique	6,01	11,46	2
Mallotus villosus	capelan	2	6,93	3
-	poisson digéré (sauf poisson plat)	2,67	5,6	4
Pasiphaea multidentata	crevette blanche (sivade rose)	2,92	2,67	5
-	matériel digéré non-identifié	4,09	1,74	6
Enchelyopus cimbrius	motelle à quatre barbillons	0,75	4,33	7
Thysanoessa sp.	euphauside	0,33	0,35	8
poisson digéré	poisson digéré	3,25	1,88	9
Pandalus sp.	crevette	1,08	0,95	10
Clupea harengus	hareng atlantique	0,08	1,54	11
Arctozenus risso	lussion blanc	0,42	1,63	12
Dendrobranchiata / Caridea	crevettes (générique)	2,42	0,99	13
Melanostigma atlanticum	molasse atlantique	2,09	1,02	14
Crustacea	crustacés	1,75	0,31	15
Themisto sp.	hypéride	1,08	0,1	16
Euphausiidae	euphauside	0,67	0,12	17
Myxine glutinosa	myxine du nord	0,08	1	18
Ammodytes sp.	lançon	0,17	0,23	19
Pandalus montagui	crevette ésope	0,25	0,16	20
Amblyraja radiata	raie épineuse	0,08	0,38	21
Gasterosteus aculeatus	épinoche à trois épines	0,08	0,03	22
Sergia robusta	crevette	0,08	0,11	23
Rajidae	raies	0,08	0,18	24
Brisaster fragilis	oursin	0,08	0,37	25
Themisto libellula	hypéride	0,33	0,04	26
Nezumia bairdii	grenadier du Grand Banc	0,08	0,26	27
Boreomysis sp.	mysidacé	1,17	0,06	28
Meganyctiphanes norvegica	krill nordique	0,42	0,04	29
Chionoecetes opilio	crabe des neiges	0,08	0,06	30
Pontophilus norvegicus	crevette	0,25	0,09	31
Spirontocaris lilljeborgii	bouc épineux	0,08	0,01	32
Wimvadocus torelli	gammaride	0,08	0,01	33
Stegocephalus inflatus	gammaride	0,08	0	34
Themisto compressa	hypéride	0,08	0	35
Tmetonyx cicada	gammaride	0,08	0,01	36
Boreomysis arctica	mysidacé	0,08	0	37
-	Oeufs non-identifiés	0,17	0	38
Paraeuchaeta norvegica	copépode calanoide	0,08	0	39
Scina borealis	hypéride	0,08	0	40
Decapoda	crustacés décapodes	0,08	0	41
Hyperiidae	hypéride	0,08	0	42
Pourcentage des estomacs vides		65,30		
Nombre d'estomacs		1199	-	-

Annexe 1. Suite.

Proies du flétan du Groenland (longueur < 20 cm)

Nom latin	Nom français	F _{occ} (%)	Pct masse (%)	Rang pfi
Euphausiidae	euphauside	22,45	19,2	1
Mallotus villosus	capelan	3,27	29,41	2
Thysanoessa sp.	euphauside	5,71	11,87	3
Pasiphaea multidentata	crevette blanche (sivade rose)	3,27	8,76	4
Themisto sp.	hypéride	16,73	4,85	5
Crustacea	crustacés	7,76	4,9	6
Themisto compressa	hypéride	7,35	3,26	7
Meganyctiphanes norvegica	krill nordique	6,94	3,29	8
-	matériel digéré non-identifié	6,12	3,7	9
poisson digéré	poisson digéré	3,67	4,44	10
-	Poisson digéré (sauf poisson plat)	1,22	1,46	11
Themisto libellula	hypéride	2,04	1,47	12
Dendrobranchiata / Caridea	crevettes (générique)	0,82	1,18	13
Reinhardtius hippoglossoides	flétan du Groenland	0,41	0,66	14
Gammaridea	gammaride	0,41	0,37	15
Brachyura	crabes	1,22	0,28	16
Melanostigma atlanticum	molasse atlantique	0,41	0,63	17
Pandalus borealis	crevette nordique	0,41	0,08	18
Hyperiidae	hypéride	0,82	0,09	19
Boreomysis sp.	mysidacé	0,41	0,1	20
Themisto abyssorum	hypéride	0,82	0,01	21
Pourcentage des estomacs vides	35,92	-	-	
Nombre d'estomacs	245	-	-	

Annexe 1. Suite.

Proies du sébaste (longueur ≥ 20 cm)

Nom latin	Nom français	F _{occ} (%)	Pct masse (%)	Rang pfi
Pasiphaea multidentata	crevette blanche (sivade rose)	26,58	45,18	1
Pandalus borealis	crevette nordique	5,84	13,51	2
Sebastes sp.	sébaste	2,06	12,77	3
Arctozenus risso	lussion blanc	1,15	7,3	4
-	Poisson digéré (sauf poisson plat)	1,83	3,22	5
-	poisson digéré	2,75	3,3	6
Meganyctiphanes norvegica	krill nordique	6,3	1,09	7
Dendrobranchiata / Caridea	crevettes (générique)	6,19	1,97	8
Pandalus sp.	crevette	1,49	1,03	9
Crustacea	crustacés	11,91	0,85	10
Boreomysis sp.	mysidacé	9,97	1,1	11
Notoscopelus elongatus kroyeri	lanterne-voilière nordique	0,23	2,3	12
-	matériel digéré non-identifié	2,52	1,39	13
Euphausiidae	euphauside	4,12	0,46	14
Calanus sp.	copépode calanoide	6,3	0,3	15
Themisto sp.	hypéride	8,48	0,32	16
Myctophidae	lanternes	0,11	0,92	17
Melanostigma atlanticum	molasse atlantique	1,49	0,43	18
Calanoida	copépodes calanoides	6,3	0,18	19
Calanus hyperboreus	copépode calanoide	4,47	0,23	20
Themisto compressa	hypéride	3,09	0,37	21
Pandalus montagui	crevette ésope	0,46	0,19	22
Thysanoessa sp.	euphauside	0,57	0,3	23
Boreomysis arctica	mysidacé	1,15	0,26	24
Themisto libellula	hypéride	0,23	0,15	25
-	oeufs de poissons	0,11	0,29	26
Paraeuchaeta norvegica	copépode calanoide	2,06	0,09	27
Pleuronectiformes	poissons-plats	0,23	0,23	28
Mallotus villosus	capelan	0,11	0,09	29
Rossia sp.	sépiole	0,11	0,04	30
Copepoda	copépodes	1,03	0,03	31
Themisto abyssorum	hypéride	1,83	0,02	32
-	invertébrés digérés	0,69	0,05	33
Pasiphaea sp.	sivade	0,23	0,02	34
Mysidae	mysidacé	0,23	0,01	35
Gammaridea	gammaride	0,23	0	36
Hyperia galba	hypéride	0,23	0	37
Polychaeta	polychètes	0,11	0	38
Metridia sp.	copépode calanoide	0,34	0	39
Cumacea	cumacé	0,23	0	40
Scina borealis	hypéride	0,23	0	41
Hyperiidae	hypéride	0,11	0	42
Amphipoda	amphipodes	0,11	0	43
Erythrops erythrophthalma	mysidacé	0,11	0	44
Pourcentage des estomacs vides		39,86	-	-
Nombre d'estomacs		873	-	-

Annexe 1. Suite.

Proies du sébaste (longueur < 20 cm)

Crustaces 21.88 12.75 1 Calenoide copépodes calancides 21.79 11.74 2 Themisto compresse hypénide 13.95 12.84 4 Pasiphaes multidentata crevette blanche (sivade rose) 1.46 1.92 5 Meganychphanes norvegica hypénide 1.176 5.25 8 Thremisto sp. euphauside 5.29 5.25 8 Boreomysis sp. euphauside 1.19 3.97 9 Boreomysis sp. mysidacé 1.46 0.95 10 Boreomysis sp. mysidacé 1.41 0.12 5.64 12 Pandalus borealis crevette nordique 0.18 2.18 13 Dendobranchiata / Cardea crevette 0.46 0.52 16 Calenos hyperboreus copépodes 1.82 0.83 17 Pandalus sp. copépodes 1.82 0.42 24 Aprinditais p. copépodes 1.82 0.42 24 <th>Nom latin</th> <th>Nom français</th> <th>F_{occ} (%)</th> <th>Pct masse (%)</th> <th>Rang pfi</th>	Nom latin	Nom français	F _{occ} (%)	Pct masse (%)	Rang pfi
Calanoida copépodes calanoides 21,79 11,74 2 Calanus sp. copépode calanoide 13,95 12,84 4 Pasiphaea multidentata creveitte blanche (sivade rose) 1,46 12,92 5 Megaryutphanes norvegica knill nordique 4,01 6,43 6 Themisto sp. euphauside 5,29 8,25 8 Thysancessa sp. euphauside 1,19 3,97 9 Boreomysis arcica mysidacé 1,46 2,33 11 Calanoide 1,41 2,54 8 73 11 Pandalus barealis creveitte nordique 0,18 2,18 13 - matériel digéré non-identifié 4,19 1,27 14 Pandalus barealis creveittes (générique) 1,64 1,94 15 Pandalus barealis capépodes 1,82 0,83 17 Pandalus barealis capépodes 1,82 0,83 17 Pandalus barealis phyépéride 0,64 <td>Crustacea</td> <td>crustacés</td> <td>21,88</td> <td>12,75</td> <td>1</td>	Crustacea	crustacés	21,88	12,75	1
Themisto compressa hypéride 5,2 8,1 3 Calanus sp. copépode calanoide 13,95 12,84 4 Pasiphaea multidentala crevette blanche (sivade rose) 1,46 1,8,3 6 Meganycthphanes norvegica kill inordique 1,176 5,56 7 Exphausidae euphauside 5,29 5,25 8 Boreomyss scrica mysidacé 1,46 0,95 10 Boreomyss scrica mysidacé 4,47 2,33 11 Calanus hyperboreus copépode calanoide 10,12 5,64 12 Pandalis borealis crevette nordique 0,18 2,18 13 Copepode crevette on-identifié 4,19 1,27 14 Dendotoranchiata / Caridea crevettes 0,46 0,52 16 Calanus hyperboreus copépode calanoide 1,64 0,73 20 Pandalis sp. copépode calanoide 4,1 0,62 16 Calanus finontagui crevette ésope	Calanoida	copépodes calanoides	21,79	11,74	2
Calanus sp. copépode calanoide 13,85 12,84 4 Meganytlphanes norvegice krill nordique 4,01 6,43 6 Meganytlphanes norvegice krill nordique 4,01 6,43 6 Themisto sp. euphauside 5,25 8 8 Boreomysis arctica mysidacé 1,46 0,97 9 Boreomysis arctica mysidacé 1,47 2,33 11 Calanus hyperboreus copépode calanoide 0,18 2,18 13 - matériel digéré non-identifié 4,19 1,27 14 Pandalus borealis crevette nordique) 1,84 1,94 1,55 Pandalus sp. copépode salanoide 1,46 1,94 1,55 Pandalus sp. copépode salanoide 1,46 0,94 1,85 Copepoda covervettes (générique) 1,46 0,94 1,82 0,63 17 Pandalus borealis hypéride 0,46 0,52 19 17 14 1,55	Themisto compressa	hypéride	5,2	8,1	3
Pasiphaes multidentata crevette blanche (sivade rose) 1.46 12.92 5 Meganyctiphanes norvegica hnypéride 11.76 5.66 7 Themisto sp. euphauside 5.29 5.25 8 Thysanoessa sp. euphauside 1.46 0.95 10 Boreomysis sp. mysidacé 1.46 0.95 10 Calanus hyperboreus copépode calanoide 10.12 5.64 12 Pandalus borealis crevette norrideut 0.18 2.18 13 Dendrobranchita / Caridee crevette (générique) 1.64 1.94 1.57 Pandalus sp. crevette (générique) 1.64 1.94 1.55 Pandalus sp. copépode calanoide 4.1 0.52 16 Copepoda copépode calanoide 4.1 0.52 16 Abroditella hastata polychète 0.09 0.99 21 Abroditella hastata copépode calanoide 2.70 0.22 24 Pareauchast norvegica copépode c	Calanus sp.	copépode calanoide	13,95	12,84	4
Meganyciphanes norvegica kill nordique 4,01 6,43 6 Themisto sp. hypéride 11,76 5,66 7 Euphauside 5,29 5,25 8 Boreomysis arctica mysidacé 1,40 9,97 9 Boreomysis arctica mysidacé 1,44 9,37 19 Calanus hyperboreus copépode calanoide 10,12 5,64 12 Pandalus borealis crevette nordique 0,18 2,18 13 - matériel digéré non-identifié 4,19 1,27 14 Pandalus sortagui crevettes (générique) 0,46 0,52 16 Dendrobranchinta / Caridea crevettes (générique) 0,46 0,52 19 Pandalus sp. copépode calanoide 0,10 0,29 20 Apriordiela hastata polychéte 0,64 0,79 20 Aptrodiela hastata polychéte 1,28 0,42 24 Paraeucheat norvegica copépode calanoide 2,77 0,25	Pasiphaea multidentata	crevette blanche (sivade rose)	1,46	12,92	5
Themisto sp. hypéride 11,76 5,66 7 Euphauside 5,29 5,25 8 Thysanoessa sp. euphauside 1,40 0,95 10 Boreomysis sp. mysidacé 1,46 0,95 10 Boreomysis sp. mysidacé 4,47 2,33 11 Calanus hyperboreus copépode calanoide 0,12 5,64 12 Pandalus borealis crevette non-identifié 4,19 1,27 14 Dendrobranchitat / Caridea crevette ésope 0,46 0,52 16 Capepoda copépodes 1,82 0,63 17 Pandalus sp. copépode calanoide 4,1 0,52 16 Capepoda copépode calanoide 0,64 0,79 20 Abroditella hastata polychéte 0,09 0,99 18 Metridia sp. copépode calanoide 2,70 0,25 25 Paraeuchest norvegica copépode calanoide 0,73 0,65 29	Meganyctiphanes norvegica	krill nordigue	4,01	6,43	6
Euphauside 5,29 5,25 8 Boreomysis arctica mysidacé 1,19 3,97 9 Boreomysis arctica mysidacé 1,46 0,95 10 Calanus hyperboreus copépode calanoide 10,12 5,64 12 Pandalus borealis crevette nordique 1,82 18 13 - matériel digéré non-identifié 1,91 1,27 14 Dendrobranchitat / Caridea crevettes (générique) 1,64 1,94 15 Pandalus son crevette sope 0,09 0,99 18 Metridia so, crevette ésope 0,09 0,99 18 Metridia so, crevette ésope 0,09 0,29 21 Aphroditella hastata polychète 0,09 0,77 23 Aptroditella hastata polychète 0,29 21 24 Paraeuchaet norvegica copépodes 0,46 0,17 23 Aptroditella hastata polychète 1,28 0,42 24 <td>Themisto sp.</td> <td>hypéride</td> <td>11,76</td> <td>5,66</td> <td>7</td>	Themisto sp.	hypéride	11,76	5,66	7
Thysencessa sp. euphauside 1,19 3,97 9 Boreomysis sortica mysidacé 1,46 0,95 10 Boreomysis sortica copépode calanoide 10,12 5,64 12 Pandalus borealis crevette nordique 0,18 2,18 13 - matériel digéré non-identifié 4,19 1,27 14 Dendrobranchiata / Caridea crevette nordique 0,46 0,52 16 Pandalus sp. crevette ésope 0,09 0,99 18 Pandalus montagui crevette ésope 0,09 0,99 18 Aphroditelia hasta polychéte 0,46 0,79 20 Aphroditelia hasta polychéte 0,99 0,99 18 Aphroditelia hasta polychéte 0,99 0,99 18 Aphroditelia hasta polychéte 0,99 0,99 18 Cumace cumacé 1,28 0,42 24 Actideia polychète 0,99 0,77 23 Carbo pole calanoide 2,73 0,25 25 5	Euphausiidae	euphauside	5,29	5,25	8
Boreomysis ardica mysidacé 1 46 0.95 10 Calanus hyperboreus copépode calanoide 10,12 5.64 12 Pandalus borealis crevette nordique 0,18 2,18 13 Dendrobranchiata / Caridea crevettes (générique) 1,64 1,94 15 Pandalus sp. crevettes (générique) 1,64 1,94 15 Pandalus sp. crevettes (générique) 1,64 1,94 15 Pandalus montagui crevette ésope 0,09 0,99 18 Metridia sp. copépode calanoide 4,1 0,52 19 Aphroditella hastata polychète 0,09 0,29 21 Aetideidae copépode calanoide 0,27 0,25 25 Calmacea cumacea cumacea 0,27 0,25 25 Calmacea cumacea 0,27 0,12 26 26 Calmaus ifun. + glacialis copépodes 0,73 0,66 30 Pareauchate norvegica c	Thysanoessa sp.	euphauside	1.19	3.97	9
Boreomýsis sp. mýsidacé 4/47 2/33 11 Pandalus borealis crevette nordique 0,18 2,18 13 Dendrobranchiata / Caridea crevettes (générique) 1,64 1,94 1,55 Pandalus sp. crevettes (générique) 1,64 1,94 1,55 Capepoda crevette 0,46 0,52 16 Capepoda crevette sope 0,09 0,99 18 Matridis sp. crevette sope 0,09 0,99 18 Aphroditelin hasta polychète 0,09 0,99 18 Aphroditelin hasta polychète 0,09 0,99 18 Aproditelin hasta polychète 0,09 0,99 18 Aproditelin hasta polychète 0,09 0,99 18 Cumace cumacé 1,55 0,31 22 Cumace copépode calanoide 2,73 0,25 25 Pareuchada norvegica copépode calanoide 2,73 0,66 20 </td <td>Boreomvsis arctica</td> <td>mysidacé</td> <td>1.46</td> <td>0.95</td> <td>10</td>	Boreomvsis arctica	mysidacé	1.46	0.95	10
Calanuš hyperboreus copépode calanoide 10.12 5.64 12 Pandalus borealis crevettes (générique) 1.18 1.127 14 Dendrobranchiata / Caridea crevettes (générique) 1.164 1.94 15 Pandalus p. crevettes (générique) 1.164 1.94 15 Pandalus p. copepodes 1.82 0.63 17 Pandalus montagui crevette ésope 0.09 0.99 18 Metridia sp. copépode calanoide 4,1 0.52 19 Themisto libellula hypéride 1.55 0.31 22 Aphroditella hastata polychète 0.09 0.29 21 Scina borealis hypéride 1.28 0.42 24 Pareuchate norvegica copépode calanoide 0.73 0.25 25 Pareudus finn. + glacialis copépodes 0.46 0.14 28 Calanus. finn. + glacialis copépodes 0.46 0.05 29 Aphroditpoda amphipodes	Boreomvsis sp.	mysidacé	4.47	2.33	11
Pandalus borealis créwitte nordique 0.18 2.18 13 - matériel digéré non-identifié 4,19 1.27 14 Pandalus sp. crevettes (générique) 1.64 1.94 15 Copepoda crevettes (générique) 1.64 1.94 15 Pandalus montagui crevette ésope 0.09 0.99 18 Metrida s.p. copépode calanoide 4,1 0.52 19 Thernisto libellula hypéride 0.64 0.79 20 Aphroditella hastata polychète 0.09 0.29 21 Scina borealis hypéride 1.55 0.31 22 Actificida copépode calanoide 0.73 0.25 25 Pseudomma moseum mysidacé 0.27 0.12 26 Cumacea cumacé 0.46 0.14 28 Calaus. finn. + glacialis copépodes 0.73 0.06 30 - poisson digéré 0.18 0.14 38	Calanus hyperboreus	copépode calanoide	10 12	5 64	12
matériel digéré non-identifié 4,10 1,27 14 Dendrobranchiata / Caridea crevettes (générique) 1,64 1,94 15 Pandalus sp. corevette 0,46 0,52 16 Copepoda copépodes 1,82 0,63 17 Pandalus montagui crevette ésope 0,09 0,99 18 Metridia sp. copépode calanoide 4,1 0,52 19 Themisto libellula hypéride 1,55 0,31 22 Aptroditella hastata polychète 0,09 0,29 21 Scina borealis hypéride 1,55 0,31 22 Actideidae 0,09 0,07 23 7 1,25 2,5 25 Comeace cumacé 1,46 0,66 27 0,25 25 25 Cumacee cumacé 1,46 0,66 27 0,12 26 Cumacea invertbrés digérés 0,46 0,14 38 30 30	Pandalus borealis	crevette nordique	0.18	2 18	13
Dendrobranchiata / Caridea Crevettes (générique) 1,64 1,84 1,85 Pandalus sp. crevettes (générique) 1,64 1,84 1,85 Copepoda crevettes (générique) 0,46 0,52 16 Copepoda crevettes (générique) 0,46 0,52 16 Pandalus montagui crevette ésope 0,09 0,99 18 Metrida sp. crevettes (générique) 0,64 0,79 20 Aphroditella hastata polychète 0,06 0,02 21 Scina borealis hypéride 1,28 0,42 24 Paraeuchaeta norvegica copépode calanoide 2,73 0,25 25 Paraeuchaeta norvegica copépode calanoide 2,73 0,25 25 Calanus. finn. + glacialis copépodes 0,46 0,14 28 Amphipoda amphipodes 0,73 0,06 30 - poisson digéré 0,18 0,14 38 Mapbris sp. hypéride 0,09	-	matériel digéré non-identifié	4 10	1 27	14
Danibularity 1,04 1,05 1,04 1,05 1,05 1,13 1,054 1,057 1,31 1,22 1,04 1,055 0,31 1,22 24	Dendrohranchiata / Caridea	crevettes (générique)	1.64	1,27	15
Andanus Sp. Covertis 0.40 0.42 10 Copepoda covertis 1,82 0.63 17 Pandalus montagui crevette ésope 0,09 0,99 18 Matridia s.p. covépode calanoide 4,1 0,52 19 Themisto libellula hypéride 0,64 0,79 20 Apricotileil hastata polychéte 0,09 0,29 21 Actideidae copépode calanoide 1,28 0,42 24 Paraeuchaeta norvegica copépode calanoide 2,73 0,25 25 Pseudomm roseum mysidacé 0,27 0,12 266 Cumacea cumacé 0,46 0,14 28 Calanus. finn. + glacialis copépodes 0,46 0,14 31 Hyperia sp. hypéride 0,18 0,14 31 Hyperia sp. gammaride 0,09 0,17 33 Gamanzdea gammaride 0,09 0,14 36 Maliotus	Pandalus sn	crevette	0.46	0.52	15
Copepode 0,09 0,99 1,82 0,03 1/1 Pandalus montagui corevette ésope 0,09 0,99 18 Metridia sp. copépode calanoide 4,1 0,52 19 Aphroditella hastata polychète 0,64 0,79 20 Aphroditella hastata polychète 1,55 0,31 22 Actideidae copépode calanoide 0,09 0,07 23 Themisto abyssorum hypéride 1,28 0,42 24 Paraeuchaeta norvegica copépode calanoide 2,73 0,25 25 Reudomma roseum mysidacé 0,27 0,12 26 Cumacea cumacé 1,46 0,06 27 Calanus. finn. + glacialis copépodes 0,73 0,06 30 Amphipoda amphipodes 0,73 0,06 30 Apportage ap hypéride 0,09 0,03 32 Neohela monstrosa gammaride 0,18 0,01 39	Cononada		0,40	0,52	10
Parladius Intrilegui Circlette estiple 0,09 0,99 16 Metridia sp. copépode calanoide 4,1 0,52 19 Themisto libellula hypéride 0,64 0,79 20 Aphroditella hastata polychète 0,09 0,29 21 Scina borealis hypéride 1,55 0,31 22 Attideidae copépode calanoide 0,09 0,07 23 Themisto abyssorum hypéride 1,28 0,42 24 Paraeuchaeta norvegica copépode calanoide 2,73 0,25 25 Pseudomma rossum mysidacé 0,27 0,12 26 Cumacea cumacé 1,46 0,06 27 Calanus, finn. + glacialis copépodes 0,46 0,14 31 Hyperia sp. hypéride 0,18 0,14 31 Hyperia sp. hypéride 0,09 0,13 32 Gammaridea gammaride 0,09 0,14 36	Copepoua Bondoluo montogui	copepodes aroustta ásana	1,02	0,03	10
International Sp. Copepode Calanoide 4,1 0.52 19 Aphroditella hastata polychète 0,09 0,29 21 Scina borealis hypéride 1,55 0,31 22 Aetideidae 0,09 0,07 23 Themisto abyssorum hypéride 1,28 0,42 24 Paraeuchaeta norvegica copépode calanoide 2,73 0,25 25 Scudomma rossum mysidacé 0,27 0,12 26 Cumacea cumacé 1,46 0,06 27 - invertébrés digérés 0,46 0,14 28 Calanus, finn. + glacialis copépodes 0,73 0,06 30 - poisson digéré 0,18 0,14 31 Hyperia sp. gammaride 0,36 0,02 34 Byblis sp. gammaride 0,36 0,02 34 Bybride 0,46 0,09 0,17 33 Reamadridus villosus capelan	Pandalus montagui		0,09	0,99	10
Internisto intention Inspective 0.64 0.79 20 Scina borealis polychète 0.09 0.29 21 Scina borealis hypéride 1.55 0.31 22 Actideidae copépode calanoide 0.09 0.07 23 Themisto abyssorum hypéride 1.28 0.42 24 Paraeuchaeta norvegica copépode calanoide 2.73 0.25 25 Pseudomma roseum mysidacé 0.27 0.12 26 Cumacea cumacé 1.46 0.06 27 Calanus, finn. + glacialis copépodes 0.73 0.06 30 - poisson digéré 0.18 0.14 31 Hyperida sp. hypéride 0.09 0.13 32 Neohela monstrosa gammaride 0.36 0.02 34 Byblis sp. gammaride 0.46 0.03 37 Hyperidae hypéride 0.09 0.01 38 Bradyidius similis<	Metridia sp. Thermiete libellule	copepode calanoide	4,1	0,52	19
Aprioraliella fiastata polychete 0.09 0.29 21 Scina borealis hypéride 1.55 0.31 22 Aetideidae 0.09 0.07 23 Themisto abyssorum hypéride 1.28 0.42 24 Paraeuchaeta norvegica copépode calanoide 2.73 0.25 25 Paraeuchaeta norvegica copépode calanoide 2.73 0.25 25 Cumacea cumacé 1.46 0.06 27 - invertébrés digérés 0.46 0.14 28 Calanus, finn. + glacialis copépodes 0.73 0.06 30 - poisson digéré 0.18 0.14 31 Hyperide 0.09 0.17 33 Gammaridea 0.36 0.02 34 Byblis sp. gammaride 0.36 0.02 34 Byblis sp. gammaride 0.69 0.17 38 Bradyidius similis copépode calanoide 0.65 0.00 34 <td></td> <td>nypende</td> <td>0,64</td> <td>0,79</td> <td>20</td>		nypende	0,64	0,79	20
Scina Doreairs hyperide 1,55 0,31 22 Actideidae copépode calanoide 0,09 0,07 23 Themisto abyssorum hypéride 1,28 0,42 24 Paraeuchaeta norvegica copépode calanoide 2,73 0,25 25 Seudomma roseum mysidacé 0,27 0,12 26 Cumacea cumacé 1,46 0,06 27 - invertêbrés digérés 0,46 0,14 28 Calanus, finn. + glacialis copépodes 0,46 0,15 29 Amphipoda amphipodes 0,73 0,06 30 Proisson digéré 0,18 0,14 31 Hyperia sp. hypéride 0,09 0,13 32 Rammaridea gammaride 0,18 0,06 35 Mallotus villosus capelan 0,09 0,13 37 Hyperide 0,46 0,03 37 Hyperide 0,64 0,01 39	Approditella hastata	polycnete	0,09	0,29	21
Aetidada copépode calanoide 0,09 0,07 23 Themisto abyssorum hypéride 1,28 0,42 24 Paraeuchaeta norvegica copépode calanoide 2,73 0,25 25 Paraeuchaeta norvegica cumacé 1,46 0,06 27 - invertébrés digérés 0,46 0,14 28 Calanus, finn. + glacialis copépodes 0,46 0,05 29 Arnphipoda amphipodes 0,73 0,06 30 - poisson digéré 0,18 0,14 31 Neohela monstrosa gammaride 0,09 0,13 32 Neohela monstrosa gammaride 0,18 0,14 36 Ayblis sp. gammaride 0,09 0,17 33 Gartace hypéride 0,46 0,03 32 Neohela monstrosa gammaride 0,18 0,01 39 Strascode ostracodes 0,55 0,01 40 Matidus villosus	Scina borealis	nyperide	1,55	0,31	22
Themisto abyssorum hypéride 1,28 0,42 24 Paraeuchaeta norvegica copépode calanoide 2,73 0,25 25 Pseudomma roseum mysidacé 0,27 0,12 26 Cumacea cumacé 1,46 0,06 27 - invertébrés digérés 0,46 0,05 29 Arnphipoda amphipodes 0,73 0,06 30 - poisson digéré 0,18 0,14 31 Hyperia sp. hypéride 0,09 0,13 32 Neohela monstrosa gammaride 0,36 0,02 34 Byblis sp. gammaride 0,18 0,06 35 Mallotus villosus capelan 0,09 0,14 36 Hyperida 0,46 0,03 37 Hyperida 38 Bradyidius similis copépode calanoide 0,55 0,01 40 Metridia longa copépode calanoide 0,55 0,01 40 Metridia longa copépode calanoide 0,18 0,01 43	Aetideidae	copépode calanoide	0,09	0,07	23
Paraeuchaeta norvegica copépode calanoide 2,73 0,25 25 Pseudomma roseum mysidacé 0,27 0,12 26 Cumace . invertébrés digérés 0,46 0,14 28 Calanus. finn. + glacialis copépodes 0,46 0,14 28 Amphipoda amphipodes 0,73 0,06 30 - poisson digéré 0,18 0,14 31 Hyperia sp. hypéride 0,09 0,03 32 Neohela monstrosa gammaride 0,18 0,02 34 Byblis sp. gammaride 0,18 0,06 35 Maliotus villosus capelan 0,09 0,14 36 Hyperia galba hypéride 0,46 0,03 37 Hyperia galba hypéride 0,64 0,01 38 Distracode ostracodes 0,55 0,01 40 Metridia longa copépode calanoide 0,18 0,01 43 <t< td=""><td>Themisto abyssorum</td><td>hypéride</td><td>1,28</td><td>0,42</td><td>24</td></t<>	Themisto abyssorum	hypéride	1,28	0,42	24
Pseudomma roseum mysidacé 0.27 0.12 26 Cumacea cumacé 1,46 0,06 27 - invertébrés digérés 0,46 0,14 28 Calanus. finn. + glacialis copépodes 0,46 0,05 29 Amphipoda amphipodes 0,73 0,06 30 - poisson digéré 0,18 0,14 31 Hyperia sp. hypéride 0,09 0,17 33 Gammaridea gammaride 0,36 0,02 34 Byblis sp. gammaride 0,18 0,06 35 Mallotus villosus capelan 0,09 0,14 36 Hyperiiga alba hypéride 0,46 0,03 37 Bradyidius similis copépode calanoide 0,55 0,01 40 Curacoda ostracodes 0,55 0,01 40 - Oeufs non-identifiés 0,09 0,03 42 Monoculodes sp. gammaride	Paraeuchaeta norvegica	copépode calanoide	2,73	0,25	25
Cumacea cumacé 1,46 0,06 27 - invertébrés digérés 0,46 0,14 28 Calanus. finn. + glacialis copépodes 0,46 0,05 29 Amphipoda amphipodes 0,73 0,06 30 - poisson digéré 0,18 0,14 31 Hyperia sp. hypéride 0,09 0,17 33 Rochela monstrosa gammaride 0,36 0,02 34 Byblis sp. gammaride 0,18 0,06 35 Malduts villosus capelan 0,09 0,11 36 Hyperia gaba hypéride 0,46 0,03 37 Hyperia galba hypéride 0,46 0,01 39 Ostracoda ostracodes 0,55 0,01 40 Metridia longa copépode calanoide 0,55 0,01 41 - Oeufs non-identifiés 0,09 0,01 43 Pseudomma sp. mysidacé <t< td=""><td>Pseudomma roseum</td><td>mysidacé</td><td>0,27</td><td>0,12</td><td>26</td></t<>	Pseudomma roseum	mysidacé	0,27	0,12	26
- invertébrés digérés 0,46 0,14 28 Calanus. finn. + glacialis copépodes 0,46 0,05 29 Amphipoda amphipodes 0,73 0,06 30 - poisson digéré 0,18 0,14 31 Hyperia sp. hypéride 0,09 0,03 32 Neohela monstrosa gammaride 0,09 0,17 33 Gammaridea gammaride 0,36 0,02 34 Byblis sp. gammaride 0,18 0,06 35 Malotus villosus capelan 0,09 0,14 36 Hyperia galba hypéride 0,46 0,03 37 Hyperia galba hypéride 0,64 0,01 39 Ostracoda ostracodes 0,55 0,04 41 Calanus finmarchicus copépode calanoide 0,55 0,04 41 Calanoide 0,55 0,01 43 29 Pseudomma sp. mysidacé	Cumacea	cumacé	1,46	0,06	27
Calanus. finn. + glacialis copépodes 0,46 0,05 29 Amphipoda amphipodes 0,73 0,06 30 Amphipoda 0,18 0,14 31 Hyperia sp. hypéride 0,09 0,03 32 Neohela monstrosa gammaride 0,09 0,17 33 Gammaridea gammaride 0,18 0,06 35 Malotus villosus capelan 0,09 0,14 36 Majotius villosus capelan 0,09 0,14 36 Hyperiidae hypéride 0,46 0,03 37 Hyperia galba hypéride 0,64 0,01 39 Destracoda costracodes 0,55 0,01 40 Metridia longa copépode calanoide 0,55 0,01 40 Vertidia longa copépode calanoide 0,55 0,01 41 - Oeufs non-identifiés 0,09 0,01 43 Pseudomma sp. mysidacé <td< td=""><td>-</td><td>invertébrés digérés</td><td>0,46</td><td>0,14</td><td>28</td></td<>	-	invertébrés digérés	0,46	0,14	28
Amphipoda amphipodes 0,73 0,06 30 - poisson digéré 0,18 0,14 31 Myperia sp. hypéride 0,09 0,17 33 Neohela monstrosa gammaride 0,09 0,17 33 Gammaridea gammaride 0,18 0,06 35 Malotus villosus capelan 0,09 0,14 36 Hyperia galba hypéride 0,46 0,03 37 Hyperia galba hypéride 0,64 0,01 39 Ostracoda ostracodes 0,55 0,01 40 Metridia longa copépode calanoide 0,55 0,04 41 Cuefts non-identifiés 0,09 0,01 43 Pseudomma sp. mysidacé 0,09 0,01 44 Calanus finmarchicus copépode calanoide 0,18 0,01 45 Limacina sp. mysidacé 0,09 0,01 44 Calanus finmarchicus copépode calanoide	Calanus. finn. + glacialis	copépodes	0,46	0,05	29
-poisson digéré0,180,1431Hyperide0,090,0332Beohela monstrosagammaride0,090,1733Gammarideagammaride0,360,0234Byblis sp.gammaride0,180,0635Mallotus villosuscapelan0,090,1436Hyperiidaehypéride0,460,0337Hyperia galbahypéride0,640,0139Ostracodaostracodes0,550,0140Metridia longacopépode calanoide0,550,0441-Oeufs non-identifiés0,090,0143Pseudomma sp.mysidacé0,090,0144Calaus finmarchicuscopépode calanoide0,180,0146Mysidamysidacé0,090,0147Brachyuracrabes0,090,0147Brachyuracrabes0,090,0147Brachyuracrabes0,09048Metridia lucenscopépode calanoide0,18050Invertébrés0,090515250Invertébrés0,090525050Invertébrés0,090535350Invertébrés0,090525350Invertébrés0,090535350Invertébrés0,090535550Invertébrés	Amphipoda	amphipodes	0,73	0,06	30
Hyperia sp.hypéride0,090,0332Nechela monstrosagammaride0,090,1733Gammarideagammaride0,360,0234Byblis sp.gammaride0,180,0635Mallotus villosuscapelan0,090,1436Hyperia galbahypéride0,460,0337Hyperia galbahypéride0,640,0139Ostracodaostracodes0,550,0140Metridia longacopépode calanoide0,550,0441-Oeufs non-identifiés0,090,0143Pseudomma sp.gammaride0,090,0144Calanus finmarchicuscopépode calanoide0,180,0145Limacina sp.papillons de mer0,180,0146Mysidamysidacés0,090,0147Brachyuracrabes0,090,0147Brachyuracrabes0,090,0147Brachyuracrabes0,09048Metridia lucenscopépode calanoide0,18050Invertébrés0,0905153Molluscamollusques0,09051Nolluscamollusques0,09053Mysidaemysidacé0,09053Mysidaemysidacé0,09053Mysidaemysidacé0,09053Molluscamollu	-	poisson digéré	0,18	0,14	31
Neohela monstrosagammaride0,090,1733Gammarideagammaride0,360,0234Byblis sp.gammaride0,180,0635Mallotus villosuscapelan0,090,1436Hyperiidaehypéride0,460,0337Hyperia galbahypéride0,640,0139Ostracodaostracodes0,550,0441-Oeufs non-identifiés0,090,0143Pseudomma sp.gammaride0,180,0143Pseudomma sp.mysidacé0,090,0144Calanus finmarchicuscopépode calanoide0,180,0144Calanus finmarchicuscopépode calanoide0,180,0145Limacina sp.mysidacé0,090,014747Brachyuracrabes0,090,014747Brachyuracrabes0,090480145Linacina sp.copépode calanoide0,180500Mysidamysidacés0,090515050Invertébratainvertébrés0,0905150Gastropodagastéropodes0,0905350Mysidaemysidacé0,0905350Pourcentage des estomacs vides32,73Nombre d'estomacs1097	Hyperia sp.	hypéride	0,09	0,03	32
Gammarideagammaride0,360,0234Byblis sp.gammaride0,180,0635Mallotus villosuscapelan0,090,1436Hyperiidaehypériide0,460,0337Hyperia galbahypéride0,640,0139Bradyidius similiscopépode calanoide0,550,0140Ostracodaostracodes0,550,0441-Oeufs non-identifiés0,090,0342Monoculodes sp.gammaride0,090,0143Pseudomma sp.mysidacé0,090,0144Calanus finmarchicuscopépode calanoide0,180,0145Limacina sp.mysidacés0,090,0144Mysidamysidacés0,090,0147Mysidacrabes0,09049Chirdiu lucenscopépode calanoide0,180,0146Mysidamysidacés0,09049Chirdius graciliscopépode calanoide0,18050Invertebratainvertébrés0,09051Molluscamollusques0,09052Molluscamollusques0,09053Mysidaemysidacé0,09053Moretberatainvertébrés0,09053Moretberatamollusques0,09053Moluscamollusques0,09053 <td< td=""><td>Neohela monstrosa</td><td>gammaride</td><td>0.09</td><td>0.17</td><td>33</td></td<>	Neohela monstrosa	gammaride	0.09	0.17	33
Byblis sp.gammaride0,180,0635Mallotus villosuscapelan0,090,1436Hyperidaehypéride0,460,0337Hyperia galbahypéride0,090,0738Bradyidius similiscopépode calanoide0,640,0139Ostracodaostracodes0,550,0140Metridia longacopépode calanoide0,550,0441Oeufs non-identifiés0,090,0143Pseudomma sp.gammaride0,090,0143Pseudomma sp.mysidacé0,180,0145Limacina sp.papillons de mer0,180,0145Mysidamysidacés0,09049Chiridius graciliscopépode calanoide0,18049Chiridius graciliscopépode calanoide0,09049Chiridius graciliscopépode calanoide0,09051Gastropodagastéropodes0,09052Moluscamollusques0,09052Moluscamollusques0,09053Mysidaemysidacé0,09053Mysidaemysidacé0,09053Mortebratainvertébrés0,09053Mysidaemysidacé0,09054Pourcentage des estomacs vides32,73Nombre d'estomacs1097	Gammaridea	gammaride	0.36	0.02	34
Mallotus villosuscapelan0,090,1436Hyperiidaehypéride0,090,0738Hyperia galbahypéride0,090,0738Bradyidius similiscopépode calanoide0,640,0139Ostracodaostracodes0,550,0140Metridia longacopépode calanoide0,550,0140-Oeufs non-identifiés0,090,0342Monoculodes sp.gammaride0,090,0143Pseudomma sp.mysidacé0,090,0144Calanus finmarchicuscopépode calanoide0,180,0145Limacina sp.papillons de mer0,180,0146Mysidamysidacés0,09048Chiridius graciliscopépode calanoide0,18040Metridia lucenscopépode calanoide0,18040Mysidamysidacés0,09048Chiridius graciliscopépode calanoide0,18050Invertébrés0,0905151Gastropodagastéropodes0,09052Molluscamollusques0,09053Mysidaemysidacé0,09054Pourcentage des estomacs vides32,73Nombre d'estomacs1097	Byblis sp.	gammaride	0.18	0.06	35
Hyperilaebypérile0,460,0337Hyperila galbahypéride0,090,0738Bradyldius similiscopépode calanoide0,640,0139Ostracodaostracodes0,550,0140Metridia longacopépode calanoide0,550,0441-Oeufs non-identifiés0,090,0143Pseudomma sp.gammaride0,090,0144Calanus finmarchicuscopépode calanoide0,180,0145Limacina sp.papillons de mer0,180,0145Mysidamysidacés0,090,0147Brachyuracrabes0,09048Metridia lucenscopépode calanoide0,18050Invertébrátainvertébrés0,09051Gastropodagastéropodes0,09051Gastropodagastéropodes0,09052Molluscamollusques0,09053Mysidaemysidacés0,09053Moncentébrás0,09053Moluscamollusques0,09053Monse de estomacs vides32,73Nombre d'estomacs1097	Mallotus villosus	capelan	0,09	0 14	36
hyperiadhyperia	Hyperiidae	hypéride	0.46	0.03	37
Inybende0,090,0139Bradyidius similiscopépode calanoide0,640,0139Ostracodaostracodes0,550,0140Metridia longacopépode calanoide0,550,0441-Oeufs non-identifiés0,090,0342Monoculodes sp.gammaride0,090,0143Pseudomma sp.mysidacé0,090,0144Calanus finmarchicuscopépode calanoide0,180,0145Limacina sp.papillons de mer0,180,0146Mysidamysidacés0,09048Metridia lucenscopépode calanoide0,09048Metridia lucenscopépode calanoide0,09051Invertebratainvertébrés0,09051Molluscamollusques0,09052Molluscamysidacé0,09052Monbre d'estomacs1097	Hyperia galba	hypéride	0,40	0,00	38
Dradylulus sininsCopepode calanoide0,040,0135Ostracodaostracodes0,550,0140Metridia longacopépode calanoide0,550,0441-Oeufs non-identifiés0,090,0342Monoculodes sp.gammaride0,090,0143Pseudomma sp.mysidacé0,090,0144Calanus finmarchicuscopépode calanoide0,180,0145Limacina sp.papillons de mer0,180,0146Mysidamysidacés0,09048Metridia lucenscopépode calanoide0,09048Metridia lucenscopépode calanoide0,09049Chiridius graciliscopépode calanoide0,09051Invertebratainvertébrés0,09052Molluscamollusques0,09053Mysidaemysidacé0,09053Molluscamollusques0,09053Mysidaemysidacé0,09053Mysidaemysidacé0,09053Mysidaemysidacé0,09053Monte d'estomacs32,73Nombre d'estomacs1097	Bradvidius similis		0,03	0,07	30
OstractularOstractules0,030,0140Metridia longacopépode calanoide0,550,0441Oeufs non-identifiés0,090,0342Monoculodes sp.gammaride0,090,0143Pseudomma sp.mysidacé0,090,0144Calanus finmarchicuscopépode calanoide0,180,0145Limacina sp.papillons de mer0,180,0146Mysidamysidacés0,090,0147Brachyuracrabes0,09048Metridia lucenscopépode calanoide0,18050Invertebratacopépode calanoide0,09049Chiridius graciliscopépodes0,09051Invertebratainvertébrés0,09052Molluscamollusques0,09053Mysidaemysidacé0,09053Monote d'estomacs32,73	Ostracoda	ostracodos	0,04	0,01	40
Methola IongaCopepode calanoide0,050,0441Oeufs non-identifiés0,090,0342Monoculodes sp.gammaride0,090,0143Pseudomma sp.mysidacé0,090,0144Calanus finmarchicuscopépode calanoide0,180,0145Limacina sp.papillons de mer0,180,0146Mysidamysidacés0,090,0147Brachyuracrabes0,09048Metridia lucenscopépode calanoide0,09049Chiridius graciliscopépode calanoide0,09051Invertebratainvertébrés0,09051Gastropodagastéropodes0,09053Mysidaemysidacé0,09054Pourcentage des estomacs vides32,73Nombre d'estomacs1097	Metridia longa	conónada calanaida	0,55	0,01	40
-Odeus non-identifies0,090,0342Monoculodes sp.gammaride0,090,0143Pseudomma sp.mysidacé0,090,0144Calanus finmarchicuscopépode calanoide0,180,0145Limacina sp.papillons de mer0,180,0146Mysidamysidacés0,090,0147Brachyuracrabes0,09048Metridia lucenscopépode calanoide0,09049Chiridius graciliscopépode calanoide0,18050Invertebratainvertébrés0,09051Gastropodagastéropodes0,09053Mysidaemysidacé0,09054Pourcentage des estomacs vides32,73Nombre d'estomacs1097	Metricia loriga		0,55	0,04	41
Monoculades sp.gammande0,090,0143Pseudomma sp.mysidacé0,090,0144Calanus finmarchicuscopépode calanoide0,180,0145Limacina sp.papillons de mer0,180,0146Mysidamysidacés0,090,0147Brachyuracrabes0,09048Metridia lucenscopépode calanoide0,09049Chiridius graciliscopépode calanoide0,09050Invertebratainvertébrés0,09051Gastropodagastéropodes0,09052Molluscamollusques0,09053Mysidaemysidacé0,09054Pourcentage des estomacs vides32,73Nombre d'estomacs1097	-	Oeurs non-identifies	0,09	0,03	42
Pseudomma sp.mysidace0,090,0144Calanus finmarchicuscopépode calanoide0,180,0145Limacina sp.papillons de mer0,180,0146Mysidamysidacés0,090,0147Brachyuracrabes0,09048Metridia lucenscopépode calanoide0,09049Chiridius graciliscopépode calanoide0,18050Invertebratainvertébrés0,09051Gastropodagastéropodes0,09053Mysidaemysidacé0,09053Pourcentage des estomacs vides32,73Nombre d'estomacs1097	Monoculoaes sp.	gammaride	0,09	0,01	43
Calanus tinmarchicuscopepode calanoide0,180,0145Limacina sp.papillons de mer0,180,0146Mysidamysidacés0,090,0147Brachyuracrabes0,09048Metridia lucenscopépode calanoide0,09049Chiridius graciliscopépode calanoide0,18050Invertébrés0,0905152Gastropodagastéropodes0,09053Mysidaemysidacé0,09053Mysidaemysidacé0,09054Pourcentage des estomacs vides32,73Nombre d'estomacs1097	Pseudomma sp.	mysidace	0,09	0,01	44
Limacina sp.papillons de mer0,180,0146Mysidamysidacés0,090,0147Brachyuracrabes0,09048Metridia lucenscopépode calanoide0,09049Chiridius graciliscopépode calanoide0,18050Invertebratainvertébrés0,09051Gastropodagastéropodes0,09053Mysidaemysidacé0,09053Pourcentage des estomacs vides32,73Nombre d'estomacs1097	Calanus finmarchicus	copépode calanoide	0,18	0,01	45
Mysidamysidacés0,090,0147Brachyuracrabes0,09048Metridia lucenscopépode calanoide0,09049Chiridius graciliscopépode calanoide0,18050Invertebratainvertébrés0,09051Gastropodagastéropodes0,09053Mysidaemysidacé0,09054Pourcentage des estomacs vides32,73Nombre d'estomacs1097	Limacina sp.	papillons de mer	0,18	0,01	46
Brachyuracrabes0,09048Metridia lucenscopépode calanoide0,09049Chiridius graciliscopépode calanoide0,18050Invertebratainvertébrés0,09051Gastropodagastéropodes0,09053Molluscamollusques0,09054Pourcentage des estomacs vides32,73Nombre d'estomacs1097	Mysida	mysidacés	0,09	0,01	47
Metridia lucenscopépode calanoide0,09049Chiridius graciliscopépode calanoide0,18050Invertebratainvertébrés0,09051Gastropodagastéropodes0,09052Molluscamollusques0,09053Mysidaemysidacé0,09054Pourcentage des estomacs vides32,73Nombre d'estomacs1097	Brachyura	crabes	0,09	0	48
Chiridius graciliscopépode calanoide0,18050Invertebratainvertébrés0,09051Gastropodagastéropodes0,09052Molluscamollusques0,09053Mysidaemysidacé0,09054Pourcentage des estomacs vides32,73Nombre d'estomacs1097	Metridia lucens	copépode calanoide	0,09	0	49
Invertebratainvertébrés0,09051Gastropodagastéropodes0,09052Molluscamollusques0,09053Mysidaemysidacé0,09054Pourcentage des estomacs vides32,73Nombre d'estomacs1097	Chiridius gracilis	copépode calanoide	0,18	0	50
Gastropodagastéropodes0,09052Molluscamollusques0,09053Mysidae0,09054Pourcentage des estomacs vides32,73Nombre d'estomacs1097	Invertebrata	invertébrés	0,09	0	51
Molluscamollusques0,09053Mysidae0,09054Pourcentage des estomacs vides32,73Nombre d'estomacs1097	Gastropoda	gastéropodes	0,09	0	52
Mysidae0,09054Pourcentage des estomacs vides32,73Nombre d'estomacs1097	Mollusca	mollusques	0,09	0	53
Pourcentage des estomacs vides32,73Nombre d'estomacs1097	Mysidae	mysidacé	0,09	0	54
Nombre d'estomacs 1097	Pourcentage des estomacs vides		32,73	-	-
	Nombre d'estomacs		1097	-	-