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Abstract—Assembly execution trace analysis is an effective
approach for discovering potential software vulnerabilities. How-
ever, the size of the execution traces and the lack of source code
makes this a manual, labor-intensive process. Instead of browsing
billions of instructions one by one, software security analysts
need higher-level information that can provide an overview of
the execution of a program to assist in the identification of
patterns of interest. The tool we present in this paper, Atlantis,
is our trace analysis environment for multi-gigabyte assembly
traces, and it contains a number of new features that make it
particularly successful in meeting this goal. The contributions
of this continuous work fall into three main categories: a) the
ability to efficiently reconstruct and navigate the memory state
of a program at any point in a trace; b) the ability to reconstruct
and navigate functions and processes; and c¢) a powerful search
facility to query and navigate traces. These contributions are
not only novel for Atlantis but also for the field of assembly
trace analysis. Software is becoming increasingly complex and
many applications are designed as collaborative systems or
modules interacting with each other, which makes the discovery
of vulnerabilities extremely difficult. With the novel features we
describe in this paper, our tool extends the security analyst’s
ability to investigate vulnerabilities of real-world large execution
traces and can lay the groundwork for supporting trace analysis
of interacting programs in the future.

Screencast link: https://youtu.be/1s4gNnFf-o04

I. INTRODUCTION AND BACKGROUND

Software vulnerabilities can compromise a computer or even
an entire internal network, exposing data and control systems
to attackers [1]. While software companies are expected to pri-
oritize the creation of secure software and invest a significant
amount of resources in the process as a first line of defense, it
is often the case that software is shipped with vulnerabilities
that can expose it to attacks [2].

A second line of defense is to perform software auditing
where one attempts to find vulnerabilities in systems by testing
and studying them. However, these auditors often lack access
to source code, creating additional technical challenges for an
already difficult activity [3].

Dynamic analysis [4], which analyzes the execution a
running program, is one of the main methods used in vul-
nerability detection. A subset of dynamic analysis is called
assembly tracing, which records all the executed processor
instructions, often with additional information such as memory
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and disk accesses. The traces we are examining in this paper
contain every micro instruction executed by the program—
often billions of them—resulting in large and opaque traces.
Without access to the more readable and concise source code,
analyzing these traces is a labor-intensive task.

The typical usage scenario in such semi-automated vulner-
ability research goes like this [5]: fuzz the program, finding
thousands of crashes; rerun those crashes through heuristics
to find the most promising ones; trace the promising ones;
run various automated analysis on those traces (e.g. taint
analysis [6]) to figure out if the crash can lead to an exploit;
analyze the remaining traces manually for confirmation of
exploitability. Obviously, we want those final traces to be as
small as possible, to reduce the load both on computing and
human resources—and the execution time of the program is
usually very short, just long enough to load a file or parse
some communications—but, chances are, there will still be
very large traces to look at. Enter Atlantis.

Atlantis is an assembly trace analysis environment. It was
initially designed to provide security engineers with the ability
to inspect and navigate large traces. Users are able to browse
a trace, add comments, and mark regions of interest: a first
version of Atlantis was demonstrated at WCRE 2012 [7].

This paper showcases our more recent contributions to
assembly execution trace analysis implementing several new
powerful and novel features in Atlantis. As far as we know,
these newly-implemented features make Atlantis the only tool
that can reconstruct the memory state of a trace as well as
visualize function call patterns and process and executable
interaction patterns. All of these unique and novel features
allow software security analysts to gain new insights in very
large traces.

In software security analysis, there is an assumption that
all memory corruption vulnerabilities should be treated as
exploitable until you can prove otherwise [3]. To determine a
program’s potential exploitability from a trace, it is important
to know the state of the memory used by the program at any
point in the trace; what memory has the program accessed,
and what are its current contents. This feature allows analysts
to observe how a program accesses and changes its memory
to discover potential vulnerabilities.

However, implementing this feature is not trivial. Cleary
et al. [8] proposed several methods to solve this problem,
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Fig. 1. Before Atlantis can inspsect a trace, it must be preprocessed by Gibraltar offline. Gibraltar reads the trace and creates an SQLite database that contains
the data structures to speed up access to the trace, the memory state delta tree (used for memory reconstruction), and the reconstructed functions and processes.

including the Memory State Delta Tree Algorithm, which
precomputes and stores the memory state at different points
in the trace and dynamically recreates memory from the last
checkpoint up to the desired instruction. Using this algorithm,
Atlantis is the first trace analysis environment that can provide
efficient memory reconstruction of gigabyte assembly traces in
an interactive manner.

Reconstructing functions and processes of a trace creates
higher-level entities that help analysts cope with the com-
plexity of the trace. This information allows them to observe
potential patterns in a program. Atlantis examines a trace
to automatically identify both functions and processes and
provides specialized views for inspection and navigation.

II. ToOL DESCRIPTION

Atlantis is an interactive environment for analyzing assem-
bly level traces. It can assist security analysts performing
dynamic analysis of software in search of security vulnera-
bilities. Atlantis can currently inspect traces that are dozens
of gigabytes long, limited only by computer memory. It has
four main features, the last three features of which are the main
contributions of this paper, while the first one was presented
in our WCRE2012 [7] paper:

1) It allows analysts to navigate and inspect each instruc-
tion in a trace.

It reconstructs a program’s memory at any point in
a trace (i.e., a byte-level snapshot of memory at that
particular moment in time), and provides features to
query and navigate the memory state of the program.
It provides function and thread views to help analysts
cope with the size and complexity of a trace.

It provides a powerful search mechanism for querying
and navigating a trace.

2)

3)

4)

The following subsections describe Atlantis in further detail
and discuss certain technical requirements.

A. Preprocessing Traces

One of the major challenges of analyzing traces at the
assembly level is that they tend to be huge. This makes
reconstructing the entire memory state at any point of the
trace very costly. Cleary et al [8] described several strategies
to address the memory state reconstruction problem. Some
of these strategies consume more storage for the created data
while others require more computation at the time when the
user wants to inspect memory at a given point. One of these
strategies is the Memory State Delta Tree algorithm, which we

have implemented in Atlantis. This algorithm strikes a balance
between storage and time that makes live interaction possible.

In a nutshell, it creates a memory state delta tree, which
is a B-tree [9]. Each node contains a start instruction line
number (startline) and end instruction line number (endline),
along with a snapshot delta of the memory change for the
section of the trace from startline to endline. The startline of
a node is the next lien number of the endline of its previous
node at the same tree level. The parent node’s startline is equal
to its first child node’s startline, while its endline is equal to
its last child node’s endline.

The memory reconstruction of a certain instruction line is
based on that line number search in the B-tree on the endline
numbers. The memory snapshot of the nodes in the traverse
path will be retrieved and combined into the memory state of
that instruction line. This process reduces the computational
complexity of computing the trace at any given point from lin-
ear to logarithmic (with respect to the number of instructions
in the trace).

However, this algorithm has two main drawbacks: comput-
ing the memory state delta tree is very expensive (a gigabyte
trace might require hours of processing) and it requires a lot
of disk space to store it. Fortunately, the memory state delta
tree needs to be computed only once per trace, so it can be
preprocessed in the fuzzing chain.

Another challenge for trace analysis tool is that, when
user navigating around the trace, the tool has to be able to
respond with the analysis information immediately. As the
traces became larger, this process slowed down and became
too long to be done interactively. It was decided to also
preprocess this to reconstruct functions and processes, and to
create several indices to speed up navigation.

All of this preprocessing is performed by a new module
called Gibraltar that reads the original trace and generates
an SQLite database that contains all the information Atlantis
requires (Fig. 1). Gibraltar converts a trace file into an SQLite
database that is fed into Atlantis. Gibraltar is responsible for
three main tasks: a) creation of the memory state delta tree;
b) identification of higher-level entities, such as functions and
processes; and c) creation of data structures (such as indices to
the instructions) to improve the performance of Atlantis. The
database contains all the information from the original trace.

Gibraltar needs to be run only once per trace and does not
require any interaction from the user. Ideally, it is run offline as
part of the fuzzing chain, right after a trace has been generated.
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Fig. 2. Screenshot of Atlantis with default view

B. Atlantis: Trace Viewer

The Atlantis trace viewer connects to the SQLite database
file generated by Gibraltar. The main views of Atlantis (Fig. 2)
present the state of the program at a particular instruction line.
For this instruction line, Atlantis retrieves the tree node data
from the database and reconstructs the memory state. Atlantis’
unique and novel views provide various types of information
to the analyst. Due to space constraints, we only elaborate on
the most novel views.

1) Memory views: The reconstructed memory state is up-
dated immediately after selecting an instruction and can be
inspected in the Register and Memory views. Memory changes
caused by the current instruction are highlighted in red.

2) Search views: Three search views provide an easier way
to access information. The Search Assembly view allows users
to search for specific instructions. The Memory Search view
provides different search expressions, text or hexadecimal, to
search memory changes in the memory state of the current
instruction line. When a user searches for a specific value, all
matching results will be listed in the result window and are
navigable to the Memory view. The Memory List view allows
the user to browse specific memory addresses and to identify
instructions that modify these addresses.

3) Function views: There are two views in this group,
Function and Function Recomposition (Fig. 3). The Function
view lists all the executable modules, such as .dll and .exe, in
the trace. Expanding an executable entry shows the functions
in this executable that are called in the trace. Atlantis inspects
the executable binary or any DLLs it uses in search of
symbolic names to label the identified functions found in the
trace. This higher-level information provides a more structured
method for trace analysis.

Users can get the function recomposition information by
right clicking a specific function entry and selecting “Perform
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jmp querd ptr [rip+0xEbb11]

ea 9, ptr [rsp+0x98]
xor rBd, 18d

maov rdy, qword ptr [rbi+0:30]
lea ecy, pir [B+0x3]

call 077542210

mov rbx, qword ptr [rbx]
mov quord ptr [rsp+ 030, rbx
jmp Ox774fc5e2

mov quiord ptr [rsp+0xd], rbx
mov quord ptr [rsp+0x10], rdx
push rsi

push rdi

push r12

push r13

push r1d

sub rsp, D50

mov 13, rd

movrdi, rex

xor esi, esi

mov r12d, esi

mov dword ptr [rsp+0:00], esi
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Fig. 3. Screenshot of Function view
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Fig. 4. Screenshot of Visualization views

Static Code Recomposition” (Fig. 3).

4) Trace Visualization views: There are three views in this
group, Assembly Visualization, Thread Trace Visualization and
Thread Functions. Fig. 4 shows a screenshot of these three
views—the last two are new. The Thread Trace Visualization
view shows the temporal relationships of the threads. The
Assembly Trace Visualization view shows the time segments
in which each executable module is being executed. Jumping
among executable modules indicates calls across each module.
The Thread Functions view shows the function calls of the
selected thread. Meaningful patterns can be discovered by
experienced reverse engineers using these views.

III. PRELIMINARY EVALUATION

Our research partners at Defence Research and Devel-
opment Canada (DRDC) have been testing Atlantis. They
generated several assembly level trace files with an in-house
tracer and provided them to measure the performance of
Gibraltar and Atlantis. The measurements were conducted on
a machine running Windows 7, with a 3.60GHz Intel 17-4790
CPU and 16GB of RAM.

A. Gibraltar

Running the sample traces, we demonstrated that Gibraltar
can successfully reconstruct the memory delta tree and other



TABLE I
MEASUREMENTS FOR TRACES PROCESSED BY GIBRALTAR

Traced Input T_race Input Trace Proc_essin g D(Z?;tl: ;:e

Application File Size Numbe.r of Time File Size
pp (GB) Instructions (hours) (GB)
AdobeReader 4.81 82,778,317 12.44 29.5
Cmd 23.3 2,772,154 63 150
Chrome 38.8 671,168,459 212 245

needed Atlantis data from large trace files. With regard to
precise measurement of Gibraltar, two measures are of interest.
First, the time to process a trace, and second, the size of the
SQLite database. We conducted the measurement tests on three
trace files. Table I shows the results. As mentioned, Gibraltar
takes a long time to process a trace. Fortunately, it only needs
to run once per trace and it can be preprocessed as part of the
fuzzing chain. It is theoretically possible to make the traces
much smaller by only tracing interesting points of the program
instead of tracing everything, but this is not the job of Atlantis.
Atlantis must scale to very large traces in case they are needed
and this is the research challenge we address.

The size of the output file is much larger than the input
due to the additional information and indices created. The
processing time and output size depend on the characteristics
of the specific trace and do not directly correlate with the
trace file size. For example, the total memory footprint of
the traced program will affect all three metrics (regardless of
the actual size of the trace), and the amount of memory the
traced program allocates and releases will greatly affect size
and processing time.

B. Atlantis

As we claimed before, Atlantis can deal with large traces
in a responsive manner. Since Atlantis’ biggest response time
bottleneck is located in the reconstruction of memory state, we
only evaluate Atlantis responsiveness by measuring the time
it takes to update its Memory view when a user jumps to a
given instruction in a very large trace. This is by far the most
time-consuming view, as all other views are updated almost
instantaneously. This measurement will be an indicator of how
interactive Atlantis is. For this test, we used the trace file of
Cmd (one of the three shown in Table I). We instrumented At-
lantis to measure the time it takes from selecting an instruction
to the time the Memory view has been completely updated. To
perform a measurement, we placed the current and destination
instruction pairs in the Instruction view. We navigated from the
current to the destination instructions using the “Go To Line”
shortcut. This minimized any interaction with other Atlantis
features that might skew the results.

We divided the test into three groups, each with different
distances between the source and destination instructions. Each
group has a constant gap (in terms of number of instructions)
between the current and destination instructions; these are
13,861, 138,607, and 831,646, corresponding to 0.5%, 5%,and
30% of the length of the trace file respectively.

TABLE II
ATLANTIS INTERACTION TIMES, IN SECONDS, FOR MEMORY
RECONSTRUCTION.

line gap | 13,861 (0.5%) | 138,607 (5%) | 831,646 (30%)
Direction | FW! [ BW 2| FW BW FW BW
Max(s) | 0.159 | 0.204 | 0.217 | 0.272 | 0.151 | 0.168
Min(s) | 0.031 | 0.094 | 0.056 | 0.081 | 0.132 | 0.063
Avg(s) | 0.098 | 0.14 | 0.14 | 0.152 | 0.139 | 0.119
I Forward. 2 Backward.

We performed the test going forward and backward: for-
ward means the current instruction number is less than the
destination instruction number; backward is the opposite. We
performed 10 tests in each group per direction and recorded the
time it took to reconstruct the memory and update the memory
view for each test. Table II shows the minimum, maximum and
average time of each test group in each direction. Miller [10]
described that a response time of 100 ms is perceived as
instantaneous while 1 second or less is fast enough for users
to feel they are freely interacting with the computer. From
the results of our test, we can see that the maximum response
times are far less than 1 second. These results support the view
that Atlantis provides a responsive user experience.

Due to space limitations, we cannot elaborate on other
features of Atlantis. For further information, please see the
demonstration videos that complement this paper!.

IV. CONCLUSION AND FUTURE WORK

This paper presents the improvements we have made to
Atlantis to allow one to derive and visualize various types of
information. Knowing the memory state at any point in a trace,
the function reconstruction, and the call flow help analysts
understand a program’s behaviour and reduce the cognitive
overload of dealing with these very large traces.

We have also shown that by preprocessing traces—a step
that can be performed right after the trace is created, as part of
the fuzzing chain and without any interaction from the user—
Atlantis is capable of providing real-time views of the memory
state of the program at any point in a huge trace.

In the future, we aim to extend our tool in two directions.
First, we would like our preprocessor to read traces from
other trace generators (and to be ever faster, of course!) This
will allow users of other trace generators to use Atlantis,
which we are in the process of releasing under an open
source license. Second, we want to assist in the analysis
and visualization of dual traces, defined as traces generated
from two applications that are communicating in some way.
Applications (and malware!) nowadays rarely work in iso-
lation, and many are designed as collaborative systems or
modules in a network [11], which makes the discovery of
vulnerabilities even harder as these communications greatly
affect their behaviour.

Thttps://youtu.be/wTTENxgwEvc
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