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3.3 Conceptual Model Architecture and Services 
Many modeling paradigms exist for most kinds of domain problems, applied to knowledge from 
many engineering disciplines. Understanding complex systems requires integrating these into a 
common composable reasoning scheme (NATO Research and Technology Organization 2014). 
The software and the system engineering communities have overcome similar challenges using 
architecture frameworks (e.g. OMG’s Unified Architecture Framework (OMG 2016)), but 
modeling and simulation does not have a similarly mature integration framework.  The first 
subsection below concerns architectures for conceptual modeling, while the second outlines 
infrastructure services needed to support those architectures. 
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Model Architecture 
At the foundation of a modeling architecture should be a fundamental theory of models, to enable 
reusability, composability, and extensibility. What theory of models could support the 
implementation of a model architecture? An epistemic study of existing modeling and integration 
paradigms is necessary to develop a theory of models. This should include a taxonomy of modeling 
paradigms, semantics, syntaxes and their decomposition into primitives that operate under 
common rules across paradigms, to integrate them as required by complex systems.  
Model architecture is needed to unify different classes of models developed using different 
paradigms. An architecture is the glue specifying interfaces, rules of operation, and properties 
common across modeling paradigms, enabling models to be interconnected at multiple levels of 
conceptual abstraction. What is meaningful to connect? What is not? An architecture goes far 
beyond conventional model transformations and gateways, though these are also essential to 
comprehension of multi-paradigm modeling processes. An architecture is about persistent co-
existence and co-evolution in multiple domains at multiple levels of abstraction. How can a model 
architecture framework connect models that operate according to different sets of laws? For 
example, critical infrastructure protection requires connecting country, power grid, internet, 
economy, command and control, etc. Combat vehicle survivability requires connecting humans, 
materials, optics, electromagnetics, acoustics, cyber, etc. What mechanisms are required to 
efficiently interact between different sets of laws (e.g. layered architecture)? What level of detail 
is required to observe emerging behaviors between different sets of laws when integrated? How 
should a model architecture be implemented, in which format, using which tools? As a model 
architecture matures, successful design patterns should emerge for the most common reusable 
interconnections between disciplines. What are these design patterns in each community of 
interest? 

Model architecture sets the rules to meaningfully interconnect models from different domains. 
Generalizing and publishing rules for widespread modeling paradigms would allow composing 
and reusing models that comply with the architecture and complex system simulations will become 
achievable. As an example of interconnected models across domains, start with a Computer Aided 
Design (CAD) model representing a physical 3D object in terms of nodes and facets. In the CAD 
paradigm, objects can be merged to interconnect. A related Finite Element Model (FEM) 
represents continuous differential equations for physical laws between boundary layers. It can be 
used to compute the fluid dynamics during combustion. FEM models can interconnect at the level 
of physical laws to compute the temperature distribution from the combustion products distribution 
for instance. They also interconnect with a CAD model at the mesh level. A computer graphics 
model enables display of objects as seen from particular viewpoints. It interconnects with CAD 
and FEM models to map materials and temperature to facets for the purpose of generating an 
infrared scene image in the field of view of a sensor. A functional model of a surveillance system 
can represent discrete events involved in changing a sensor mode as a function of the mission. The 
functional model interconnects with the computer graphics model at the sensor parameter level. 
Finally, a business process model can represent a commander’s mission planning. It can 
interconnect with a functional model by changing the mission. 
Figures of merit must be developed to demonstrate how well a model architecture facilitates 
composition of multi-paradigm, multi-physics, multi-resolution models. The performance of a 
model architecture must be checked against interdisciplinary requirements using metrics for 
meaningfulness and consistency. How can we test a particular integration for validity? How can it 
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be done efficiently over large-scale complex simulations? How can it be done by a non-expert? 
What mechanisms should a model architecture framework include to support checking for 
conceptual consistency? 
Integration complexity and coupling between the degrees of freedom of individual components 
and the degrees of freedom of the integration are yet to be understood. When integrating a model 
in a complex simulation, what details can be ignored and still ensure a valid use of that model? 
What details cannot be ignored? 
Reliable model integration depends on sufficient formality in the languages used, as described in 
section 3.1. In particular, formal conceptual models of both the system of interest (referent) and 
analysis provide a basis for automating much of analysis model creation through model-to-model 
transformation.  As an example, consider the design of a mechanical part or an integrated circuit.  
The CAD tools for specifying these referents use a standard representation, with a formal 
semantics and syntax.  For particular kinds of analyses—such as response in an integrated circuit—
simulations are essentially available at the push of a button.  Formalism in the specification of the 
referent enables automation of certain analyses. This pattern is well-demonstrated, e.g., in the use 
of BPMN (Business Process Modeling Notation) to define a business process, and then automating 
the translation of this model into a hardware/software implementation specification.  The Object 
Management Group has developed standard languages for model-to-model transformations. At 
present, there are only limited demonstrations of applying this approach to systems modeling. 
Automating this kind of model-to-model transformation captures knowledge about how to create 
analysis models from referent models, so perhaps the most fundamental question is:  where should 
this knowledge reside—should it be captured in the referent modeling language, in the analysis 
modeling language, in the transformation, or perhaps spread throughout? Formalization of 
mappings between conceptual models of a referent and its analysis models is critical to building 
reliable bridges between descriptions of the referent and specifications of a simulation model and 
its computational implementation. 

Services 
The success of large-scale integration of knowledge required by complex systems fundamentally 
depends on modeling and simulation infrastructure services aggregated into platforms. These 
enable affordable solutions based on reusing domain-specific models and simulators, as well as 
integrating them into a multi-model co-simulation.  For example, understanding vulnerabilities 
and resilience of complex engineered systems such as vehicles, manufacturing plants, or electric 
distribution networks requires the modeling and simulation-based analysis of not only the 
abstracted dynamics, but also some of the implementation details of networked embedded control 
systems.  Systems of such complexity are too expensive to model and analyze without reuse and 
synergies between projects. 

Services need to enable open model architecture development and sharing of model elements at 
all levels. How can a common conceptual modeling enterprise be launched involving many 
stakeholders? How can a conceptual model be augmented with knowledge from different 
contributors (e.g., wiki)? How does it need to be managed? What structure should the conceptual 
model have? What base ontologies are required (e.g. ontology of physics)? How can conceptual 
model components be implemented in executable model repositories and how can components 
plug and play into simulation architectures? Guiding principles must also be defined and 
advertised. What guidance should modelers follow to be ready for a collaborative conceptual 
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modeling enterprise in the future? Standard theory of models, architecture, design patterns, 
consistency tests, modeling processes and tools will arise naturally as the modeling science 
matures. 
Services can be aggregated into three horizontal integration platforms: 

• In Model Integration Platforms, the key challenge is to understand and model interactions
among a wide range of heterogeneous domain models in a semantically sound manner. One
of the major challenges is semantic heterogeneity of the constituent systems and the
specification of integration models. Model integration languages have become an
important tool for integrating complex, multi-modeling design automation and simulation
environments. The key idea is to derive opportunistically an integration language that
captures only the cross-domain interactions among (possibly highly complex) domain
models (Cheng, et al. 2015).

• Simulation Integration Platforms for co-simulation have several well-established
architectures. The High Level Architecture (HLA) (IEEE Standards Association 2016) is
a standardized architecture for distributed computer simulation systems. The Functional
Mockup Interface (Modelica Association 2014a) for co-simulation is a relatively new
standard targeting the integration of different simulators. In spite of the maturity and
acceptance of these standards, there are many open research issues related to scaling,
composition, large range of required time resolution, hardware-in-the-loop simulators and
increasing automation in simulation integration.

• Execution Integration Platforms for distributed co-simulations are shifting toward cloud-
based deployment, developing simulation-as-a-service use model via web interfaces and
increasing automation in dynamic provisioning of resources as required. More will be said
about this in the next chapter.
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