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Distributed Connectivity Optimization in Asymmetric Networks

Mohammad Mehdi Asadi, Stephane Blouin, and Amir G. Aghdam

Abstract— The problem of distributed connectivity opti-
mization of an asymmetric sensor network represented by
a weighted directed graph (digraph) is investigated in this
paper. The notion of generalized algebraic connectivity is
used to measure the connectivity of a time-varying weighted
digraph. The generalized algebraic connectivity is regarded as
a nonconcave and nondifferentiable continuous cost function,
and a distributed approach, based on the subspace consensus
algorithm, is developed to compute the supergradient vector of
the network connectivity. By considering the above-mentioned
network connectivity as a function of the transmission power
vector of the network, a discrete-time update procedure is
proposed to compute a stationary transmission power vector of
the network which locally maximizes the network connectivity.
The effectiveness of the developed algorithm is subsequently
demonstrated by simulations.

I. INTRODUCTION

Ad-hoc networks are composed of a collection of fixed or
mobile sensors capable of exchanging data without the sup-
port of a pre-existing infrastructure [1]. The convergence rate
of cooperative algorithms used for various objectives such as
consensus, target localization and parameter estimation over
ad-hoc networks highly depends on the connectivity degree
of the network [2]. Normally, a network with a higher degree
of connectivity is able to diffuse information more effectively
throughout the network [3]. The algebraic connectivity has
been used as a measure of connectivity for symmetric
networks. It is defined as the second smallest eigenvalue of
the Laplacian matrix of the undirected graph, representing
the network [4]. A distributed procedure is developed in
[5] to estimate and control the algebraic connectivity of
symmetric networks. The notion of generalized algebraic
connectivity (GAC) is introduced in [6], which captures the
expected asymptotic convergence rate of the continuous-time
consensus algorithms running on an asymmetric network.

The problem of distributed optimization has been in-
vestigated in different practical contexts including parallel
computation [7] and statistical estimation [8]. The consensus-
based approaches have been proven effective in addressing
the distributed optimization problem in a sensor network
[9], [10]. A subgradient-based distributed method is used in
[9] to optimize the sum of some convex objective functions
corresponding to multiple agents. A distributed subgradient
method for solving a constrained multi-agent optimization
problem is developed in [10] which uses consensus as
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a mechanism for distributing the computations throughout
the network. A supergradient algorithm is used in [11] to
reconfigure a symmetric network such that the algebraic
connectivity of the undirected graph representing the network
is maximized in a distributed manner.

Motivated by applications in underwater acoustic sensor
networks with asymmetric communication links [12], [13],
[14], the problem of connectivity optimization of asymmetric
sensor networks is investigated in this paper. The notion of
GAC is considered in this work as an effective measure of the
connectivity of weighted digraphs. This notion represents the
expected convergence rate of the distributed algorithms run-
ning on the network [6]. The elements of the weight matrix of
the network are characterized as continuous functions of the
transmission power of the nodes as well as some parameters
of the corresponding communication channels [13], [15]. The
transmission power vector of the network is then updated in
a distributed manner such that the GAC of the network is
maximized. Since the GAC is described as a nonconcave and
nondifferentiable function of the transmission power vector
of the network, a distributed supergradient-based optimiza-
tion approach is proposed which is guaranteed to converge
to an optimal transmission power vector corresponding to a
local maximum of the GAC. An estimation of the GAC of
the time-varying asymmetric network is also computed based
on a modified subspace consensus approach [6]. The efficacy
of the proposed algorithm is verified by simulations.

The remainder of the paper is organized as follows. The
problem of connectivity maximization in asymmetric net-
works is formulated in Section II by computing the optimal
transmission power vector of the network in a centralized
fashion. Section III introduces an iterative distributed al-
gorithm to solve the connectivity optimization problem in
a discrete-time scenario. The simulation results are subse-
quently presented in Section IV, and finally the concluding
remarks are given in Section V.

II. CONNECTIVITY OPTIMIZATION PROBLEM

A. Notations

Throughout this paper, the set of positive real numbers
is denoted by R>0. Moreover, Nn is the finite set of
natural numbers {1, 2, . . . , n}. The transpose and conjugate
transpose of a complex vector v ∈ Cn are denoted by vT

and vH, respectively. The inner product of two real vectors
v,w ∈ Rn is represented by 〈v,w〉. The real part, imaginary
part, and magnitude of a complex number c are respectively
denoted by �(c), �(c), and |c|. The all-one column vector of
length n and n× n identity matrix are represented by 1n and
In, respectively. The matrix Diag(v) ∈ Rn×n is defined as a
diagonal matrix with the elements of the vector v ∈ Rn on
its main diagonal. Let Bε(w) denote a closed ball of radius
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ε > 0 centered at w ∈ R
n, which is defined as Bε(w) =

{v ∈ R
n | ‖v − w‖ ≤ ε}. Given a real vector v ∈ R

n,
the function Ω(·) : R

n → R is defined as Ω(v) = vi∗ ,
where v = [v1 · · · vn]T and i∗ = argmaxi∈Nn

|vi|. Moreover,
ei ∈ Rn denotes a column vector whose elements are all
zero except for its ith element which is one. The trace and
determinant of a square matrix A are represented by tr(A)
and det(A), respectively.

B. Problem Formulation

Consider a time-varying network composed of n sta-
tionary sensors whose information exchange topology is
represented by a weighted directed graph (digraph) G (k) =
(V , E (k),W(k)) in the time interval [tk, tk+1) for any
k ∈ N, with t1 = 0. The digraph G (k) is assumed to
be strongly connected for any k ∈ N. Let V = Nn, and
assume that (i, j) ∈ E (k) if node j receives information
from node i in the time interval [tk, tk+1) for any pair
of distinct nodes i, j ∈ Nn and any k ∈ N. Note that
W(k) = [wij(k)] ∈ Rn×n represents the weight matrix of
the network in the time interval [tk, tk+1), where the positive
scalar wji(k) is the weight assigned to the link (i, j) ∈ E (k)
for any k ∈ N. Define N in

i (k) and N out
i (k) as the in-

neighbor and out-neighbor sets associated with the ith node
of the network in the time interval [tk, tk+1), i.e.

N in
i (k) ={j ∈ V \{i} | (j, i) ∈ E (k)}, (1a)

N out
i (k) ={j ∈ V \{i} | (i, j) ∈ E (k)}. (1b)

The Laplacian of the weighted digraph G (k) is defined as
a real matrix L(k) = [lij(k)] ∈ R

n×n such that L(k) =
Diag(W(k)1n)−W(k) for any k ∈ N. Define λi(L(k))∈C,
vi(L(k)) ∈ Cn, and wi(L(k)) ∈ Cn as the ith eigenvalue of
matrix L(k), and the right and left eigenvectors associated
with it, respectively, for any i ∈ Nn and k ∈ N. The spectrum
of the Laplacian matrix L(k) is then denoted by Λ(L(k)) =
{λi(L(k)) | i ∈ Nn} for any k ∈ N.

The transmission power vector of a network, represented
by a time-varying weighted digraph G (k), is denoted by
P(k) = [P1(k) · · · Pn(k)]

T ∈ Rn which is composed of
the transmission powers of all nodes and Pmin

i ≤ Pi(k) ≤
Pmax
i for any i ∈ Nn and k ∈ N. Moreover, P(k) ∈ K

for any k ∈ N, where K = Πn
i=1[P

min
i , Pmax

i ] ⊂ R
n is a

compact and convex set. A higher weight wji(k), in general,
represents a stronger and more reliable communication link
(i, j) at the cost of a higher transmission power consumed
by the ith node in the time interval [tk, tk+1). Thus, one can
describe the link weight wji(k) as an increasing continuous
function of the transmission power Pi(k) in the following
form [13]

wji(k) = h(Pi(k); ξji), (2)

for any i ∈ Nn, j ∈ N out
i (k), and k ∈ N, where ξji

represents a set of constant parameters which characterize
the communication channel (i, j). As a result, the ith node
directly impacts the weights of its outgoing links by adopting
its transmission power within the interval [Pmin

i , Pmax
i ] for

any i ∈ Nn. For the simplicity of analysis, it is assumed in
this paper that the weighted digraph G (k) remains struc-
turally static as its transmission power vector P(k) vary

within K for any k ∈ N. In other words, neither an existing
link is removed nor an additional link is created while the
elements of the transmission power vector change; thus,
the edge set E is static. This implies that if the digraph
is strongly connected initially, it is guaranteed that it will
remain so in any future time instant.

The generalized algebraic connectivity (GAC) of a
weighted digraph G (k) with Laplacian matrix L(k), denoted
by λ̃(L(k)), is defined as the smallest real part of the nonzero
eigenvalues of L(k), i.e.

λ̃(L(k)) = min
λi(L(k)) �=0, λi(L(k))∈Λ(L(k))

�(λi(L(k))), (3)

for any k ∈ N [6]. A distributed optimization algorithm is
proposed in this paper to choose the elements of the transmis-
sion power vector of the network such that the GAC measure
of the underlying asymmetric network is maximized. In other
words, by considering the GAC of the network as an implicit
function of the transmission power vector P, the objective is
to find a local maximum P∗ ∈ int(K) such that there exists
a positive constant ε where

P∗ = argmax
P∈Bε(P∗)∩K

λ̃(P). (4)

It is worth noting that (4) is a nonconcave optimization
problem, and the performance index λ̃(P) is a C0 func-
tion. The optimization complexity of λ̃(P) stems from the
fact that unlike the algebraic connectivity, increasing (or
decreasing) the elements of the transmission power vector P
(which results in the increase (or decrease) of the elements
of the weight matrix W) does not necessarily lead to a
higher (or lower) GAC of the network [6]. In order to
compute the desired transmission power vector P∗ which (i)
represents a stationary point of the function λ̃(P), and (ii)
locally maximizes the GAC of the network, the following
continuous-time differential equation is to be solved

Ṗ(t) = ∇Pλ̃(P(t)), (5)

where P(t) ∈ K, and ∇Pλ̃(P(t)) ∈ ∂λ̃(P(t)) denotes the
supergradient vector of λ̃(P) w.r.t. P at time t. Moreover,

∇Pλ̃(P(t))=[∇P1
λ̃(P(t)) · · · ∇Pn

λ̃(P(t))]T, (6)

and ∂λ̃(P(t)) represents the superdifferential set of λ̃(P)
w.r.t. P at time t. By definition, there exists a positive
constant ε for any P̂ ∈ int(K) such that the supergradient
vector of λ̃(P) at P̂ meets the following inequality

(∇Pλ̃(P̂))T(P− P̂) ≥ λ̃(P) − λ̃(P̂), (7)

for any P ∈ Bε(P̂) ∩ K. A discrete-time version of the
differential equation (5) is derived in the sequel, which
is used to develop a discrete update procedure for the
transmission power vector. To this end, the following two
assumptions are made throughout this work.

Assumption 1: The weighted digraph of the network is
structurally static and strongly connected at all times.

Assumption 2: The step-size sequences {α(k)}k∈N and
{β(k)}k∈N (which are used in the discretization process) are
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chosen to satisfy the following set of conditions:

lim
k→∞

α(k) = 0, lim
k→∞

β(k) = 0, lim
k→∞

α(k)
β(k) = 0, (8a)

lim
k→∞

k∑
j=1

α(j) = ∞, lim
k→∞

k∑
j=1

α(j)
β(j) = ∞, (8b)

lim
k→∞

k∑
j=1

α(j)β(j) < ∞, lim
k→∞

k∑
j=1

α2(j)
β2(j) < ∞. (8c)

Example 1: As an example of sequences which satisfies
the conditions of Assumption 2, one can consider α(k) =
α0

kα and β(k) = β0

kβ with positive real constants α ∈
[αmin, αmax], β ∈ [βmin, βmax], α0 ∈ R>0, β0 ∈ R>0,
and k ∈ N such that

0.5 < αmin − βmax, (9a)

αmax ≤ 1, (9b)

αmax − βmin ≤ 1, (9c)

1 < αmin + βmin. (9d)
Note that the ith element of the continuous-time derivative

vector Ṗ(t) w.r.t. time can be represented in discrete-time as

Ṗi(tk) = lim
α(k)→0

1

α(k)
[Pi(tk + α(k)) − Pi(tk)], (10)

where t1 = 0 and tk+1 =
∑k

j=1 α(j) for any k ∈ N.
By defining Pi(k) = Pi(tk) for any i ∈ Nn and k ∈ N,
equation (10) can be rewritten as

Ṗi(k) = lim
k→∞

1

α(k)
[Pi(k + 1)− Pi(k)], (11)

on noting that {α(k)}k∈N is a diminishing step-size sequence
(the first condition of (8a)). Moreover, the ith element of the
supergradient vector (6) can be discretized using the forward
and backward finite difference method at the kth iteration of
the algorithm such that

∇Pi
λ̃(P(k))= lim

k→∞

1

β(k)
Ω([∂+

Pi
λ̃(P(k)), ∂−

Pi
λ̃(P(k))]),

(12)

where

∂+
Pi
λ̃(P(k)) = λ̃(P(k)+β(k) ei)− λ̃(P(k)), (13a)

∂−
Pi
λ̃(P(k)) = λ̃(P(k)) − λ̃(P(k)−β(k) ei), (13b)

for any i ∈ Nn and k ∈ N, with the diminishing step-size
sequence {β(k)}k∈N satisfying Assumption 2 (the second
condition of (8a)). By employing equations (11) and (12) to
approximate the ith element of the left-hand and right-hand
sides of the differential equation (5) at time tk, a discrete-
time update law for the transmission power of the ith node
at the kth iteration of the optimization algorithm is obtained
as follows

P̂i(k+1)=Pi(k)+
α(k)
β(k)Ω([∂

+
Pi
λ̃(P(k)), ∂−

Pi
λ̃(P(k))]), (14)

for any i ∈ Nn and k ∈ N. The updated transmission power
Pi(k + 1) is then obtained as Pi(k + 1) = Π(P̂i(k+1)),
where

Π(P̂i(k+1))=

⎧⎪⎨
⎪⎩
Pmin
i , if P̂i(k + 1)<Pmin

i ,

P̂i(k+1), if Pmin
i ≤ P̂i(k+1)≤Pmax

i ,

Pmax
i , if Pmax

i <P̂i(k + 1).

Note that the projection map Π(·) ensures that Pi(k + 1)
always remains inside the interval [Pmin

i , Pmax
i ] for any

i ∈ Nn. In order to implement the discrete-time update
procedure (14) in a distributed manner based on the subspace
consensus algorithm [6], a number of challenges should be
dealt with, the most important of which are as follows:

1) By changing the transmission power of the nodes at
each iteration the elements of the weight matrix W(k)
change with time, resulting in a network with a time-
varying weighted digraph G (k) for any k ∈ N, even
though the network topology is assumed to remain
structurally static.

2) The exact value of the time-varying GAC of the network
is not available to any node at each iteration. Instead, an
estimate of the exact GAC, denoted by λ̃r

i (k) or λ̃c
i (k)

corresponding to the cases where the GAC is associated
with a real or complex eigenvalue of L(k) respectively,
is available to every node i ∈ Nn at the kth iteration
based on the subspace consensus algorithm.

3) Since the weight matrix of the digraph is time-varying,
the left eigenvector w1(k), associated with the zero
eigenvalue of the Laplacian matrix L(k) at the kth

iteration, is time-varying and has to be updated when
the transmission power vector of the network is updated.

Note that the values of λ̃(P(k)) and λ̃(P(k)±β(k)ei) in
equation (13) are respectively estimated by λ̃r

i (k) (or λ̃c
i (k))

and λ̃
r,±
i (k) (or λ̃c,±

i (k)) from the viewpoint of node i at the
kth iteration of the optimization algorithm after applying the
subspace consensus procedure to matrices L(k) and L±

i (k),
respectively. The elements of the Laplacian matrix L(k) are
determined based on the transmission power vector P(k)
at the kth iteration according to equation (2). Moreover, all
elements of the Laplacian matrix L+

i (k) (or L−
i (k)) are

similar to those of L(k) except for its ith column whose
elements are determined based on the perturbed transmission
power Pi(k)+β(k) (or Pi(k)−β(k)) of the ith node for any
i ∈ Nn and k ∈ N. Hence, the difference between L(k) and
L±
i (k) stems from the discrepancy between the ith element

of their corresponding transmission power vectors.

III. A DISTRIBUTED CONNECTIVITY MAXIMIZATION

ALGORITHM

A modified version of the subspace consensus algorithm
[6] is introduced now to update the transmission power vector
of the network in a distributed manner from the viewpoint
of each node such that an optimal transmission power vector
P∗ (which satisfies equation (4)) is obtained asymptotically.
This algorithm is elaborated in four steps:

(1) Let xik ∈ Rn denote the state vector of the ith node at
the kth iteration of the algorithm. Analogously, let {x±,i

k,j ∈
Rn | j ∈ Nn} be the set of perturbed state vectors from
the viewpoint of the ith node at the kth iteration where the
perturbation occurs in the j th element of the transmission
power vector of the network. Consider yik(0) = 〈xik, ei〉
and y

±,i
k,j (0) = 〈x±,i

k,j , ei〉 as the ith elements of the state
vectors xik and x±,i

k,j , respectively, which are obtained by the
ith node at the kth iteration of the algorithm for every j ∈ Nn.
Define ŷk = L̃(k)yk(0) and ŷ±k,j = L̃±

j (k)y
±
k,j(0), where
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yk(0) = [y1k(0) y2k(0) · · · ynk (0)]
T ∈ R

n and y±k,j(0) =

[y±,1
k,j (0) y

±,2
k,j (0) · · · y

±,n
k,j (0)]T ∈ Rn for any j ∈ Nn

and k ∈ N. Moreover, the approximate modified Laplacian
matrices L̃(k) and L̃±

j (k) are defined, respectively, as

L̃(k)=

k∑
p=0

1

p!
(In−δL(k))p−exp(1)w1(k)w

T

1 (k),

L̃±
j (k)=

k∑
p=0

1

p!
(In−δL±

j (k))
p−exp(1)w±

1,j(k)w
±,T
1,j (k),

for any j ∈ Nn and k ∈ N [6]. Note that the left eigenvectors
associated with the zero eigenvalue of matrices L(k) and
L±
j (k) are denoted by w1(k) and w±

1,j(k), respectively, for
any j ∈ Nn, which can be obtained using the distributed
procedure of [16] in finite-time at every iteration k ∈ N when
the transmission power vector of the network is updated. In
order to compute the vectors ŷk and ŷ±k,j in a distributed
manner at the kth iteration, define yik(l) and y

±,i
k,j (l) as the

ith element of the vectors yk(l) ∈ Rn and y±k,j(l) ∈ Rn,
respectively, where

yk(l) = (In − δL(k))l yk(0), (15a)

y±k,j(l) = (In − δL±
j (k))

l y±k,j(0), (15b)

for any j ∈ Nn, k ∈ N, and l ∈ Nk. Then, the following
update laws are used to compute yik(l) and y

±,i
k,j (l) from the

viewpoint of the ith node

yik(l)= yik(l−1)− δ
∑

p∈N in
i

wip(k)(y
i
k(l−1)−y

p
k(l−1)),

y
±,i
k,j (l)= y

±,i
k,j (l−1) (16)

− δ
∑

p∈N in
i

\{j}

wip(k)(y
±,i
k,j (l−1)−y

±,p
k,j (l−1))

− δ w
±,j
ij (k)(y±,i

k,j (l−1)−y
±,j
k,j (l−1)),

where W(k) = [wst(k)] and W±
j (k) = [w±,j

st (k)] for any
s, t ∈ Nn, i, j ∈ Nn, k ∈ N, and l ∈ Nk. After repeating the
above procedure k times, the ith elements of the vectors ŷk
and ŷ±k,j from the viewpoint of node i are given by

ŷik =

k∑
l=0

1

l!
yik(l)−exp(1)〈w1(k), ei〉〈w1(k), x

i
k〉,

ŷ
±,i
k,j =

k∑
l=0

1

l!
y
±,i
k,j (l)−exp(1)〈w±

1,j(k), ei〉〈w
±
1,j(k), x

±,i
k,j 〉,

for any i, j ∈ Nn and k ∈ N.
(2) The concept of consensus observer is now used at the

kth iteration to propagate the elements of the vectors ŷk and
ŷ±k,j , j ∈ Nn, throughout the network. Note that the left
eigenvectors w1(k) and w±

1,j(k) for any j ∈ Nn are available
to every node from the previous step of the algorithm. The
consensus observer is updated in a distributed manner at the
kth iteration of the algorithm from the viewpoint of node i

according to the following update laws

zik(m)= zik(m−1)−δ
∑

p∈N in
i

wip(k)(z
i
k(m−1)−zpk(m−1)),

z±,i
k,j (m)= z±,i

k,j (m−1) (17)

− δ
∑

p∈N in
i

\{j}

wip(k)(z
±,i
k,j (m−1)−z±,p

k,j (m−1))

− δ w
±,j
ij (k)(z±,i

k,j (m−1)− z±,j
k,j (m−1)),

where W(k) = [wst(k)] and W±
j (k) = [w±,j

st (k)] for any
s, t ∈ Nn, i, j ∈ Nn, k ∈ N, and m ∈ Nk. It is to be
noted that the state vectors of the consensus observer are
initialized by setting zik(0) = ŷikei and z±,i

k,j (0) = ŷ
±,i
k,j ei

for any i, j ∈ Nn and k ∈ N. After repeating the update
procedure (17) k times, the updated state vectors xik+1 and
x±,i
k+1,j of the main optimization procedure, computed by the

ith node at the kth iteration, are given by

xik+1 =
(Ξ(k))−1zik(k)

‖(Ξ(k))−1zik(k)‖
, (18a)

x±,i
k+1,j =

(Ξ±
j (k))

−1z±,i
k,j (k)

‖(Ξ±
j (k))

−1z±,i
k,j (k)‖

, (18b)

where

Ξ(k) = 1
〈w1(k),1n〉

Diag(w1(k)), (19a)

Ξ±
j (k) =

1
〈w±

1,j
(k),1n〉

Diag(w±
1,j(k)), (19b)

for any i, j ∈ Nn and k ∈ N.
(3) Define Wk,i = span{xik} and Vk,i = span{xik−1, x

i
k}

as the one-dimensional and two-dimensional subspaces
formed to estimate, respectively, the real and complex dom-
inant eigenvalues of the matrix L̃(k) at the kth iteration of
the distributed optimization algorithm by the ith node. The
one-dimensional and two-dimensional subspaces W±

k,i =

span{x±,i
k,i } and V±

k,i = span{x±,i
k−1,i, x

±,i
k,i } are defined in

a similar manner to compute, respectively, the real and
complex dominant eigenvalues of L̃±

i (k) at the kth iteration
by the ith node. After identifying the subspaces Wk,i and Vk,i,
the projection of L̃(k) onto subspaces Wk,i and Vk,i, denoted
respectively by Rr

k,i and Rc
k,i, are computed as follows

Rr
k,i =(Qr,T

k,iQ
r
k,i)

−1Q
r,T
k,i L̃(k)Q

r
k,i, (20a)

Rc
k,i =(Qc,T

k,iQ
c
k,i)

−1Q
c,T
k,i L̃(k)Q

c
k,i, (20b)

where Qr
k,i = xik and Qc

k,i = [xik−1 xik] for any node i ∈ Nn

and any k ∈ N. Moreover, the matrices R
r,±
k,i and R

c,±
k,i are

defined as the projection of the Laplacian matrix L̃±
i (k) onto

subspaces W±
k,i and V±

k,i, respectively, such that

R
r,±
k,i =(Qr,±,T

k,i Q
r,±
k,i )

−1Q
r,±,T
k,i L̃±

i (k)Q
r,±
k,i , (21a)

R
c,±
k,i =(Qc,±,T

k,i Q
c,±
k,i )

−1Q
c,±,T
k,i L̃±

i (k)Q
c,±
k,i , (21b)

where Q
r,±
k,i = x±,i

k,i and Q
c,±
k,i = [x±,i

k−1,i x±,i
k,i ] for any

node i ∈ Nn and any k ∈ N. Then, the estimated GAC
of the networks represented by Laplacian matrix L(k) and
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perturbed Laplacian matrix L±
i (k) from the viewpoint of the

ith node, are given by

λ̃r
i (k)=Γ

(
Rr

k,i

)
, (22a)

λ̃c
i (k)=Γ

(
1
2 tr(Rc

k,i)+j
√

det(Rc
k,i)−(12 tr(Rc

k,i))
2
)
, (22b)

λ̃
r,±
i (k)=Γ

(
R

r,±
k,i

)
, (22c)

λ̃
c,±
i (k)=Γ

(
1
2 tr(Rc,±

k,i )+j
√

det(Rc,±
k,i )−(12 tr(Rc,±

k,i ))
2
)
,

(22d)

where function Γ:C → R is defined as Γ(·) = 1
δ

[
1−log(|·|)

]
for any i ∈ Nn and k ∈ N. Note that (22a) and (22c) denote
the estimates of the GAC of their corresponding networks
assuming that the exact GACs are associated with real
eigenvalues while (22b) and (22d) represent the estimated
GACs of the networks corresponding to the case where the
exact GACs are specified by complex eigenvalues. In order
to determine whether the estimated GACs are associated
with the real or complex eigenvalues of their corresponding
Laplacian matrices, the global index k̂ ∈ {0, 1} at the kth

iteration of the optimization algorithm is defined as

k̂ =

{
0, if mod(k, k∗ + Diam(G )) �= 0 and k ≥ 2,

1, if mod(k, k∗ + Diam(G )) = 0 and k ≥ 2,
(23)

where Diam(G ) denotes the diameter of the digraph G and
k∗ is equal to �| log ε̄

log κ̄
|� for a sufficiently small positive

constant ε̄. Moreover,

κ̄ = max
P(k)∈K

∣∣∣∣e1−δ
˜̃
λ(k)

e1−δλ̃(k)

∣∣∣∣, (24)

such that

λ̃(k) = min
λi(L(k)) �=0, λi(L(k))∈Λ(L(k))

�(λi(L(k))), (25a)

˜̃
λ(k) = min
λi(L(k)) �=0,
(λi(L(k))) �=λ̃(k), λi(L(k))∈Λ(L(k))

�(λi(L(k))), (25b)

for any k ∈ N. Then, the distributed version of the update
procedure (14) for the transmission power of the ith node at
the kth iteration of the optimization algorithm is performed
as

Pi(k+1)=Π
(
Pi(k)+

k̂
α(k)
β(k)Ω([λ̃

+
i (k)−λ̃i(k), λ̃i(k)−λ̃−

i (k)])
)
,

where

λ̃i(k)=

{
λ̃r
i (k), if |1− μi

k| < ε̄,

λ̃c
i (k), if |1− μi

k| ≥ ε̄,
(26a)

λ̃±
i (k)=

{
λ̃
r,±
i (k), if |1− μ

±,i
k | < ε̄,

λ̃
c,±
i (k), if |1− μ

±,i
k | ≥ ε̄,

(26b)

for any i ∈ Nn and k ∈ N. Note that the values of μi
k and

μ
±,i
k for the case when k̂ = 0 are obtained as

μi
k = min

j∈N in
i

∪{i}

{
μ
j
k−1,

|〈xi
k+1,x

i
k〉|

‖xi
k+1

‖‖xi
k
‖

}
, (27a)

μ
±,i
k = min

j∈N in
i

∪{i}

{
μ
±,j
k−1,

|〈x±,i

k+1,i
,x±,i

k,i
〉|

‖x±,i

k+1,i
‖‖x±,i

k,i
‖

}
, (27b)

for any i ∈ Nn and k ∈ N. However, if k̂ = 1, the values of
μi
k and μ

±,i
k are computed as

μi
k = max

{
μi
k−1,

|〈xi
k+1,x

i
k〉|

‖xi
k+1

‖‖xi
k
‖

}
, (28a)

μ
±,i
k = max

{
μ
±,i
k−1,

|〈x±,i

k+1,i
,x±,i

k,i
〉|

‖x±,i

k+1,i
‖‖x±,i

k,i
‖

}
, (28b)

for any i ∈ Nn and k ∈ N. Moreover, the values of μi
k and

μ
±,i
k are initialized by setting μi

0 = μ
±,i
0 = 1 for any i ∈ Nn.

(4) To examine the convergence of the algorithm, the
values of Dr,i

k+1 and Dc,i
k+1 for the case when k̂ = 0 are

updated as follows

Dr,i
k+1 = max

j∈N in
i

∪{i}

{
Dr,j

k , |λ̃r
i (k)−λ̃r

i (k−1)|
}
, (29a)

Dc,i
k+1 = max

j∈N in
i

∪{i}

{
Dc,j

k , |λ̃c
i (k)−λ̃c

i(k−1)|
}
, (29b)

for any i ∈ Nn and k ≥ 2. Note that |λ̃r
i (k)−λ̃r

i (k−1)| and
|λ̃c

i (k)−λ̃c
i (k−1)| measure the distance between the last two

consecutive estimated GAC of the network corresponding
to the cases where the GAC is associated with a real and
complex eigenvalue of L(k), respectively, from the viewpoint
of node i for any k ≥ 2. As long as k̂ is equal to 0, the
termination condition of the algorithm will not be satisfied
for any node, and the values of Dr,i

k+1 and Dc,i
k+1 of every

node i ∈ Nn will be diffused throughout the network during
the iteration cycles of length k∗+Diam(G ) according to (29).
For the case when k̂ = 1, the values of Dr,i

k+1 and Dc,i
k+1 are

initialized for the next iteration cycle using the following
update procedure

Dr,i
k+1 = min {Dr,i

k , |λ̃r
i (k)−λ̃r

i (k−1)|}, (30a)

Dc,i
k+1 = min {Dc,i

k , |λ̃c
i (k)−λ̃c

i(k−1)|}, (30b)

for any i ∈ Nn and k ≥ 2. By setting k = k+1, the algorithm
is said to have converged at the kth iteration if k̂ = 1 and
min{Dr,i

k ,Dc,i
k } becomes sufficiently small (as defined by a

prescribed threshold ε̂); otherwise, the iteration continues.

IV. SIMULATION RESULTS

Consider an asymmetric network composed of four nodes
represented by a strongly connected weighted digraph G =
(V , E ,W) whose initial weight matrix is given by

W =

⎡
⎢⎣

0 0.431 0 0.900
0.473 0 0 0
0 0.400 0 0.467
0 0 0.638 0

⎤
⎥⎦ . (31)

Consider P = [3.2 3.5 3.25 3]T as the initial transmission
power vector of the network, which is constrained to the
compact set K = [1 4]4 in this example. Let Assumption 1
hold, and choose α(k) = α0

kα and β(k) = β0

kβ for any k ∈ N,
with positive constants α = α0 = 0.85 and β = β0 = 0.3
such that the conditions of the inequality (9) (in relation to
Assumption 2) hold. For this example, λ̃(L) = 0.6694 is the
initial value of the GAC of the network, which corresponds
to a real eigenvalue of the Laplacian matrix of the digraph
G . The performance of the proposed optimization algorithm
in a distributed implementation is evaluated by choosing
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ε̄ = 10−4 and ε̂ = 10−3 in the termination condition and
considering δ = 1

4 . The value of the GAC of the network
as the iteration index k increases is shown in Fig. 1. This
figure demonstrates that the GAC of the network converges
to the same local maximum from the viewpoint of all nodes
in an asymptotical manner. Note that the optimal value of
the GAC is given by λ̃∗ = 0.8182, which corresponds to the
pair of complex conjugate eigenvalues 0.8182± j0.0298 of
the Laplacian matrix associated with the following weight
matrix

W∗ =

⎡
⎢⎣

0 0.426 0 0.900
0.489 0 0 0
0 0.400 0 0.456
0 0 0.639 0

⎤
⎥⎦ . (32)

The transmission power of every node versus the iteration
index of the optimization algorithm is depicted in Fig. 2. It
can be verified that P∗ = [3.6696 2.8848 3.3168 2.6790]T is
a vector in the set K which corresponds to a local maximum
of the GAC of the network. It is worth mentioning that
the transmission powers of nodes 1 and 3 increase in order
to reach the optimal value, but unlike similar scenarios in
symmetric networks, the transmission powers of nodes 2 and
4 decrease while converging to the optimal configuration.
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Fig. 1: Evolution of the GAC of the network.
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Fig. 2: Evolution of the transmission power of every node
of the network.

V. CONCLUSIONS

A distributed optimization algorithm for maximizing the
generalized algebraic connectivity of a weighted asymmetric
network is introduced in this work. The generalized algebraic
connectivity is formulated as an implicit function of the
transmission power of the network. Since the generalized
algebraic connectivity is a nonconcave and continuous (but
not necessarily differentiable) function of the transmission
power of the nodes, a distributed algorithm based on the
subspace consensus approach is developed to compute the
supergradient vector of the network connectivity w.r.t. the
elements of the transmission power vector from the view-
point of each node. It is guaranteed that the transmission
power of every node converges to a local maximizer of the
network connectivity in an asymptotic manner. The efficacy
of the proposed algorithm is verified by simulations.
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