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OPTIMIZING MILITARY COURSE SCHEDULING WITH 
HETEROGENOUS RESOURCE CONSTRAINTS AND UNCERTAIN 

STUDENT DEMAND  

ABSTRACT 
Planning and scheduling training courses across multiple occupations within the context of a small 
military is a complex task due to uncertain levels of demand and rapidly shifting requirements over 
time. Offering too many course sessions is resource intensive and may be unjustified or unaffordable 
from the resource perspective. On the other hand, if an insufficient number of sessions is offered, 
either some personnel will be not be trained or additional costs may be incurred to initiate additional 
last-minute sessions. Under the assumption that the historical attendance in courses is a valid predictor 
of demand at least in the near future, one can derive demand estimates. The objective can then be 
formulated as a minimization of the number of offered sessions while meeting the demand.  

Keywords: Course Loading, Scheduling Optimization, Forecasting, Sub-Problem Independence. 

INTRODUCTION 
The problem of class scheduling optimization has been studied in detail throughout the literature 
(Nakasuwan et al, 1999; Wasfy et al, 2007; Winch, 2013 to name but a few), with variations that 
factor in resource assignment (Badri, 1996; Gunawan, 2011), timetabling (Schaerf, 1999; Hossain et 
al, 2007), and various degrees of preferential heuristics (Schniederjans, 1987; Dahiya, 2015). 
However, the bulk of the research problems are predicated on the knowledge of the student demand. 
Such an assumption about the incoming training requirement may be valid in settings where deadlines 
are set well in advance for course session registration and the population levels are sufficiently large. 
In contrast, in the military training setting – especially for small militaries [with less than 120,000 
total personnel and less than 4,000 major war fighting vehicles (GlobalFirepower.com, 2018)]  – the 
problem is more complex. Because of the specialized nature of military occupations, many courses 
are offered on a regular basis with mandated content (similar to undergraduate level studies in 
university); while the attendance is generally low (similar to graduate level classes). Predicting 
student demand can be difficult, as there are many variables that need to be considered, such as 
operational requirements, deployments, major equipment procurements or maintenance issues, or 
changes in policy at the organizational level, as well as health, fitness, personal and family 
commitments, and career changes at the individual level. Within a limited time-frame, past attendance 
can be used to derive probabilistic distributions for the future demand, eliminating the need to factor 
in all individual variables that affect the attendance. Once the student demand is estimated, the 
number of required sessions for each course can be calculated.  

This study proposed a means of modeling the supply-demand relationship as it strove to answer two 
questions: 1) Considering uncertain student demand, how many sessions of each specific course 
should be offered in order to minimize late cancellations or additions, while also maintaining a low 
risk of not meeting the demand? 2) How should the session schedule be organized in order to 
maximize the effectiveness of the resource usage? The objective for answering these two questions 
was to ensure that resources would be allocated in an efficient manner, meeting but not significantly 
exceeding demands (i.e., avoiding the need to add or cancel sessions). By extension, this would 
simplify resource management, including enabling more efficient longer-term acquisition and 
maintenance planning. 

Gurvich et al (2010), Zambelli et al (2009), and Eliashberg et al (2009) propose similar variations on 
the problem, except only one type of resource is required to handle any given demand. In the military 
context, the resource considerations are significantly more complex and include unique availability 
restrictions on multiple distinct types of required resources (such as warships, aircraft, ground 
vehicles or other major platforms, qualified trainers, classrooms, virtual or mock training 
environments, and the supporting logistics chain). Hence, the military training problem is highly 
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constrained with heterogeneous resources, each with varying schedule limitations. The level of 
constraints limits the most common methodologies developed for civilian applications from being 
directly applicable to the small military training system problem.  

PROBLEM DEFINITION 
The analyzed problem (Eisler et al, 2015) can be described as taking a list of offered courses with the 
required resources and constraints, and optimizing the session schedule with respect to a predefined 
scoring function. This problem was separated into two parts: 1) Estimate the required session demand 
(the number of students vary from year to year, from session to session); and 2) Develop a session 
schedule and resource assignment plan based on the identified interdependencies and constraints. The 
first part utilized historical data for student demand with Monte Carlo Simulation Optimization 
(MCSO).  The second part was solved as a modification to the classical Job Shop Scheduling Problem 
(JSSP) (Graham, 1966). The problem at hand differed from the original JSSP due to the 
heterogeneous resource requirements. Furthermore, the model had to accommodate the possibility of 
insufficient resources. 

COURSE LOADING OPTIMIZATION 
Session Quantity Estimation 
Historical course session attendance over a five-year period was used to forecast student demand on a 
course-by-course basis. The distribution functions for the demand were then applied in a MCSO to 
deliver maximum course capacity. The historical attendance was taken to be the number of students 
that completed each military training course in the past five years. Ordinarily, the cancelled sessions 
would count as having zero students; since the objective was to reduce or eliminate cancelled 
sessions, it was assumed that only the non-zero student loading was valid. Demand probability 
distribution functions with following rules were obtained for each course: 

1 data point (i.e., course offered only once in the last five years): No distribution, the single 
data point was treated as a constant and used directly. 

2 data points: An integer uniform distribution between the two sample values was used. 

3 or 4 data points: A triangular distribution was used due to its simplicity to compute as a 
rough approximation for a random variable with an unknown distribution. The minimum 
(min), maximum (max), and most likely value (M) from the probability distribution 
(calculated as 3*mean – min – max, with M < min set as M = min and M > max set as M = 
max) were used as the parameters. Resulting student demand was rounded to the nearest 
integer value, which also eliminated the issue of a non-zero probability occurrence for the min 
and max values.  

5 data points: A Poisson distribution was used, where the mean value of the samples is taken 
as the event rate ( ). Similarly, resulting student demand was rounded to the nearest integer 
value. 

While bootstrapping techniques or other non-linear functions could have been used to represent the 
probability distribution functions, there was insufficient data from the sample database in order to 
determine better fits while maintaining realistic bounds on the sample problem size. The obtained 
historical distributions were then used to calculate the expected session demand using MCSO as 
follows.  Let N be the total number of considered courses, x be the total number of scheduled sessions, 
y be the minimum number of sessions required to enroll all students, z be the maximum number of 
sessions that could be offered without cancellations due to insufficient student load, and p be the total 
number of students requiring courses for each course i. 
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Then y (the minimum number of sessions required to enroll all students) is calculated based on 
dividing the total number of students for a course i by  (the maximum number of students per 
session) and z (the maximum number of sessions that could be offered without cancellations due to 
insufficient student load) is calculated based on dividing the total number of students for a course i by 

 (the minimum required number of students per session). Eq. (2) does make the simplifying 
assumption that the initial sessions have maximum attendance, and the final session contains the 
remainder. 
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A soft constraint or scalar penalty function (c), as a function of x, y and z, can then be introduced. 
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In that penalty function, h represents the number of extra sessions that must be scheduled and k
represents cancelled sessions for each course: 
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Since y and z depend on the student demand p, the selection of a single set of values for x for all 
simulated values of y and z becomes a penalty function minimization problem.  Then, the objective 
function C, over t trials is:  

t N

i izixikiyixih
t

t
c

t
cC

1 1 ,,,,,,
1min   

1
,,1minmin zyx

 (5)

with  ,  and  being the values of hi, ki, yi, and zi in μth (μ = 1,2,…,t) iteration.  

Denote the fractional capacity of the ith course, )max/( ixnipif , as the total number of 

students scheduled for that course divided by the product of the maximum allowable number of 
students per session and the total number of sessions to be held for course i. A second objective 
function G can then be defined as:  
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where G is the maximum overall fractional capacity, obtained by averaging the fractional capacity of 
all courses. Assuming for simplicity that  the demand for a course i is independent of all other 
courses, G and C can be decomposed into a set of sub-problems for each course as 
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The value of ci increases when xi < min(y ) or xi > max(z ), where y  is the vector of minimum and z  of 
maximum acceptable number of sessions. Hence, only the solutions x  [min(y ), max(z )] can 
minimize the penalty functions. Thus, the optimal solution that satisfies the scalar penalty function 
must lie between the extrema for all samples. Since x must be integer, it is simpler to enumerate 
through the set of possible values that could theoretically satisfy all of the samples generated. The 
algorithm for estimating the session quantities for the ith course is: 

Step 1: Generate t samples of expected student demand using the probability distribution function 
associated with the ith course.  

Step 2: For each sample (x) of expected student demand, compute corresponding y, z, and p.  

Step 3: Compute [min(y ), max(z )] for all t samples. For each integer x  [min(y ), max(z )] 
calculate c’i.  

The final solution is then c = {min(c’i), for all t}.  

Resource Optimization and Session Scheduling  
Once a required number of sessions is determined, and given their durations and resource availability, 
the optimization problem can be summarized as finding the best choice of start dates with respect to 
some objective function within resource constraints. In order to reduce required computational time, 
resource selection was separated from the main scheduling problem. Given a start date proposed by an 
iteration of the scheduling algorithm, resources for each session are selected based on how full their 
overall schedules are. The loop is recursive; the schedule for each resource is updated and used as 
input to schedule resources for the next session.  

The schedule optimization loop used the Frontline Systems’ evolutionary algorithm (Frontline 
Systems Inc., n.d.) until predefined termination conditions were met. The primary decision variables 
were the session start dates; the initial value was set to 1 January for all. The start dates were subject 
to minimum and maximum value constraints (must fall within the modeled year), and had to be 

fG max  
 

(6)
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integer. In order to define the objective function,  the schedule capacity fraction cf was defined for one 
day of the schedule for all courses and sessions as: 
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where the session capacity fraction, cfs = Ts/TTotal is the fraction of schedule slots T, that are currently 
assigned to a particular session. The capacity fraction cf is symmetric, with global minimum at cf = 1. 
Hence an empty schedule slot (cf = 0) is scored as equally undesirable as a schedule conflict. The 
schedule capacity fraction is then summed over an entire schedule A to obtain the aggregate objective 
function Fcf. 
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Where l and m represent time units; in this case, days per week and week number. The objective 
function (10) incorporated schedule conflicts (if any) and could, in the future, be expanded to include 
resource costs in the form of a weighted sum objective (Kim et al, 2005).  

Sample Performance 
A test simulation considering N = 39 military training courses over l = 50 week time span (m = 7 
days), with 113 resources separated into 9 different pools, was conducted. The provided resource pool 
was very limited; this led to a non-feasible solution due to non-zero resource conflict. However, the 
conflicts could be resolved by relaxing the resource requirements (e.g., considering some resources as 
optional), or by providing additional resources. Table 1 shows a summary of the results of the 
generated schedule from the simulation. These results suggest a course schedule leading to significant 
savings in additional and cancelled sessions when compared to a past schedule (Eisler et al., 2015) 
could be developed. 

Table 1. Case study results of the generated schedule. 

Output Value 

Constraint Metric (C) 1,464 

Additional Sessions Required ( ) 1,004 

Sessions Cancelled ( ) 460 

Aggregate Objective Function (Fcf) 0.498 

Total Sessions ( )  99 

CONCLUSIONS 
A proposed model has been used to analyze the small military course training supply and demand 
relationship, and identify the optimal number of sessions that should be offered in order to meet 
expected student demand and minimize course cancellations and surplus. Due to the likely reasonable 
bound on minimum and maximum session sizes (for example, it is highly unlikely that a single 
session will have between 10 and 1,000 students – constraints on classroom size and/or teaching 
resource ratios would not permit), the enumerated approach does not become overly costly to 
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compute. This would extrapolate to potential annual cost savings in a large training program. In 
addition, tailoring the program delivery structure in a way that reduces the number of cancelled 
sessions, while offering sessions specifically at the times when limited assets (such as ships or major 
training simulators) are available to support them, would enable more efficient demand and supply 
forecasting, possibly leading to further savings. Due to the possibility of postings, assignments, and 
deployments in military careers – in addition to the usual family- or job-related responsibilities, health 
concerns, or other commitments that may interrupt training – the drop-out rate may be quite high, and 
should be a major consideration for future work. 
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