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ARTICLE INFO ABSTRACT
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For a soft body projectile striking a target or the shock loading of a soft body material, the determination of the
interface shock pressure, shock speed and applied steady state pressures is important but has been hindered by
technical challenges even with the use of sophisticated embedded pressure sensors in the target surface.
Difficulties interpreting the results render the accuracies sometimes questionable or impossible to reproduce.
Here we propose a simple impact experiment using a force sensor and an analysis procedure to derive the
interface pressure from the force/time history. The results are compared to those obtained from shock Hugoniot

and penetration equations. We came upon the presence of a dynamic pressure that is significantly higher than
the expected stagnation pressure. This method could be used to determine and characterise the shock and steady
state pressures of a wider range of materials under impact and shock loading conditions.

1. Introduction

Low strength materials such as water, gelatine, rubber, wax or even
emulsions are used for a broad range of applications involving impact
and shock loading conditions. Apart from being used as shock absorbers
or in energy dissipating systems, these materials, such as gelatine and
rubber, are used as surrogates for human body tissues, organs, biolo-
gical liquids, animals and birds to examine the effects that may occur
due to impact or shock. Examples range from the use of extra-corporeal
shock wave lithotripsy [1] in the non-invasive disintegration of urinary
tract stones or ultrasounds for the denaturing of deep seated cancerous
cells [2] to the studying of trauma [3] caused to the human body due to
impact or shock loading or the damage to aircraft structures due to bird
impact [4-12]. In all these examples, the shock and steady state pres-
sures are important loading parameters that are needed to understand
the response of the materials and these parameters are normally mea-
sured at the impactor/target interface. In an impact problem, especially
in the case involving a soft body material, the simultaneous deforma-
tion of the projectile and target makes uncoupling the response of each
material very difficult so to decouple and understand the responses,
studying cylinders made out of a particular material striking rigid tar-
gets provides researchers with a very useful means to characterise a
material under shock loading condition whether it is used as an im-
pactor as in the case of a bird strike problem or a target as in the case of
a human surrogate struck by a projectile. Studies [13-19] on the
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deformation of solids by liquid impact at supersonic speeds examined
flat-ended cylinders striking a rigid target and described the interface
pressure as the water hammer pressure, P = pcouo where p is the den-
sity, co is the wave speed and u, is the impact velocity. Further studies
[24-28] on the issue have shown that the water hammer equation
pressure works well only for low velocity impact but for higher velo-
cities, co must be replaced by the shock velocity, Uy, to get what is called
the shock or Hugoniot pressure, P, = pUsug. These studies have all
shown that when a projectile strikes a target (Fig. 1) a shock is gener-
ated at the center of the projectile and propagates towards the outside
surface and on reflection, forms release waves that propagate towards
the center at a lower pressure which causes the material to flow. The
pressure at the interface begins to decrease and after several reflections
the projectile flow will approach a steady state condition where the
pressure becomes the stagnation pressure, Pyggnation = %pu(f. Many stu-
dies [4,7-9,13-24] have validated this theory of the shock and steady
state regimes govern, respectively, by the shock Hugoniot and the
steady state pressure and from the literature cited there is general
agreement on this. Many researchers [4-12] in measuring these pres-
sures use pressure transducers embedded in the surface of the target
where the projectile first strikes. However, in all the work cited for soft
body impact, although good shock and steady state pressure results are
obtained, there are many difficulties, such as the limitation of the
pressure gauges that rendered the accuracies of the data sometimes
being questionable or difficult to reproduce.
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Fig. 1. Illustration of the four stages of a soft body projectile striking a rigid target.

Studies [4-6,10,11] spanning the last three decades have high-
lighted these limitations and this led us to re-look at the issues of the
impact problem and examine whether reliable shock and steady state
pressures could be obtained from a simple more repeatable experiment
that could be used to examine a broad range of soft body materials.

2. Experiments

Here we propose using a force ring transducer, instead of a pressure
gauge, sandwiched between a rigid target disc and a clamped support
plate to determine the interface pressure using the force-time history.
An air gun impact facility (Fig. 2(a)) was used to conduct the experi-
ments. The air gun itself consisted of a 1.8-m long, 40-mm diameter
launch tube that is coupled to a compressed air reservoir. The pressure
of the air in the reservoir determines the exit velocity of the projectile.
A phototron high speed camera recording at 20,000 frames/s, was used
to record the projectile release from the launch package, its flight to and
interaction with the target. The data acquisition system integrated with
the gun firing mechanism, was used to trigger the camera and acquire
the force history. To launch projectiles with the air gun, a sabot
(Fig. 2(b), Appendix A.2 - Sabot development and Appendix B - Fig. B.
1) was required to hold the penetrator in place during its travel in the
launch tube and then stripped away before striking the target. The basic
projectile (Fig. 2(b)) was a 28-mm cylindrical 10% gelatine rod with a
hemispherical tip and a nominal length of 102 mm and was prepared
using a standard 10% gelatine recipe [1,9] (Appendix A.1 - Gelatine
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preparation). The target was a 120-mm diameter, 19-mm thick steel
disc with a solid 28-mm diameter cylindrical support at the center that
was attached to the center of a 330-mm, 35-mm thick square steel plate
sandwiching a force ring sensor (Fig. 2(c)). The force transducer used
was a PCB Piezotronics Quartz Force Ring Sensor Model 207C
(Fig. 2(d)) with a force measurement of up to 445kN and a sensitivity
of + 1.5%.

3. Results - experimental data reduction and discussion

Of the many tests conducted, four at different impact velocities, 74,
105, 115 and 119m/s, were chosen to conduct the analysis. Fig. 3
shows a sequence of the projectile/target interaction in time for the
119 m/s impact velocity case, starting with the projectile striking the
target until it was completely eroded. A closer look at the sequence of
pictures reveals that as the material goes from the initial shock phase
and into deformation due to the large compressive forces, the front of
the projectile mushrooms and then there appears to be considerable
shearing and fissuring of the material into fragments and subsequently
entering into the radial flow which remains parallel to the target. This
tearing or shearing of the material into fragments are also very evident
from the pieces of the gelatine (Appendix B - Fig. B. 2) gathered after
the test. This appears to be different than the flow of water or a liquid
striking the target. The solid line of the force histories shown in Fig. 4
are the raw force data as acquired from the tests and significant oscil-
lations were observed in the results. A Fourier transform [21] on the
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PCB Piezotronics Quartz Force Ring Sensor Model 207C
Measurement Range: 100000 1b (444.8 KN)

Sensitivity: (£15%) 0.05 mV/h (11.24 mV/KN)

Low Frequency Response: (-5%) 0.0003 Hz

Upper Frequency Limit: 35000 Hz

Temperature Range: -65 to +250 °F (-54 to +121 °C)
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Fig. 2. Air gun, gelatine projectile, target and force transducer setup.

force time data (Appendix B - Fig. B. 3) revealed the presence of two
frequencies one at 2000 Hz and the other at 15,000 Hz and whose
amplitudes changed significantly with the impact velocity. A manual
roving hammer test was conducted, striking different parts of the target
and its supporting structure and the two frequencies were generated
only when either the target disc or supporting plate was struck. To
confirm the source of these frequencies, the natural frequencies of the
two plates were calculated using the Bessel function solution [22-24] to

2
the wave equation for the vibrations of plates, f= i% pﬂh where
3
= ﬁaz) is the flexural rigidity. p is the density, E is the Young’s

modulus, h is the plate thickness, and v is the Poisson’s ratio. a is either
the diameter of the disc or the length of plate. A2, the non dimensional
Bessel coefficient [26-28] for the first mode, equals 36 for a clamped
square plate and 6.25 for an annular disc clamped at the center. The
target disc was treated as an annulus [29], free on the outside and
clamped on the inside over a 28-mm diameter area where it is attached
to the square plate sandwiching the Force ring sensor. The frequencies
calculated were very close to the frequencies found in the Fourier

24

transform of the force time data confirming that these two super-
imposed frequencies were from the free vibrations of the target plates
(Appendix B - Fig. B. 3). The Savitsky—Golay [30,31] filter that tends to
preserve key data features such as peak height, width and zero phase
shift so that the signals are not shifted, was used to remove the
15,000 Hz frequency whereas a Butterworth band-stop filter was used
to remove the lower 2000 Hz frequency. The dashed curves in Fig. 4
show the filtered data. The force caused by the shock pressure is taken
to be the maximum force arrived at just after the steep rise which is
essentially the highest peak in the raw data history. The remainder of
the force-time curve would indicate the steady state loading of the
target until the projectile has completely eroded or rebounded. In the
74 m/s impact velocity case, two peaks in the force-time curve could be
observed. The video showed that the projectile broke into two pieces
before impact and essentially there were two impacts one after the
other occurring at the target. The impact velocity of the second part
may have been be a little lower than 74 m/s given that it seemed to
have struck the back end of the first part of the projectile before coming
into contact with the target. The results, therefore, appears to be
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Fig. 3. Time sequence snapshots of the projectile/target interaction for the 119 m/s impact velocity test case.

consistent with those of the other tests. In an impact problem, when a
pressure is applied, based on the difference in the impedances of the
two materials, part of the pressure is transmitted and the part is re-
flected [1,32,33]. It is known [1] that the fraction that is transmitted is
given by the transmission coefficient, T,, as

27,

T=—222_
7+ 2,

(€8]

whereas, for the reflected fraction, the reflection coefficient T,, is given
by

25

Za—

Ty 2, @

where Z; = p, Uy, Z, = p, Uy, are the shock impedances for medium 1
and 2, respectively, and Us; and Us, are the corresponding shock speeds
which are obtained from the U; — u, shock Hugoniot (Appendix A.3 -

Shock pressure solution and Appendix B - Fig. B. 4)
Us = ¢o + su,

3

where cy is the acoustic velocity and s is the slope. T; + T, = 1 and be-
cause of this condition, medium 2 would be assigned to the steel target
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Table 1

Properties/parameters required to determine shock and particle velocities in gelatine [3]
and steel [32].

Property/parameter Gelatine Steel
Density, p (kg/m®) 1030 7800
Acoustic velocity, co (m/s) 1445 5800
Shock parameter, s 1.9 1.434

which is the higher impedance material of the two materials that are in
contact and medium 1 would be assigned to the gelatine. Thus, the
amplitude of the force measured would be caused by the transmission
fraction, T, of the original pressure applied at the projectile/target

26

interface. The shock properties [3,32] required to calculate the shock
speeds in the gelatine and steel are given in Table 1.

Table 2 shows a summary of the important results for the four tests
conducted. For each impact velocity, ug, or v;, the corresponding in-
terface particle velocity, u, was calculated (Appendix A.3 - Shock
pressure solution, Eq. (A.6)). This was then used to calculate the shock
speeds, Usteer and Ugeiqrine Using Eq. (3). The shock speeds were then used
to calculate T, and T, using Egs. (1) and (2). Knowing the force, F,
(Table 2), the transmission coefficient is used to determine the interface
shock pressure, Py, (Table 2). For example, for the case where v; = 119
m/s, T; = 0.073. Thus, 7.3% of the of the interface shock pressure was
transmitted. Scaling this to 100% and dividing by the cross sectional
area of the projectile, 616 mm?, an interface pressure, Pj,, of 191 MPa
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Table 2
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A summary of results giving the impact velocity, v;, the interface particle velocity, u,, shock speed in steel target and gelatine projectile, Ustee; and Ugeiarine, the transmission and reflective
coefficients, T, and T,, the filtered experimental shock force, F;, the experimentally derived shock pressure Py, and the theoretical shock pressure, Pp. t.q, and t, are, respectively, the

experimental and predicted projectile/target interaction time.

Vi up, Usteel Ugelatine texp or T, T, Fp Pre Ppe
(m/s) (m/s) (m/s) (m/s) (ms) (ms) (kN) (MPa) (MPa)
119 3.8 5806 1663 0.87 0.88 0.927 0.073 8.59 191 196
115 3.8 5806 1655 0.90 0.89 0.927 0.073 7.73 174 189
105 3.8 5805 1637 1.00 0.98 0.923 0.072 6.80 154 171
74 2.7 5804 1581 1.40 1.38 0.931 0.069 4.05 95 116
700 ' ' ' ! ! ! dependent. We know that this could not be due alone to the strength of
the projectile as is often used in the case of other solid penetrators
600 1 materials because studies [40,41] have shown that the fracture strength
of gelatine at reasonably high strain rates is between 1 and 2 MPa so
500 1 there must other phenomena occurring. A close observation of the
3 projectile/target interface provides one explanation. It appears that the
i} 400 - | gelatine material in the mushrooming region of the projectile is un-
— . . . Pyl . .
2 dergoing severe compression enough to cause a significant increase in
£ a0 | ] the bulk modulus which in turn manifests itself in a localised increase in
kS the bulk density enough to cause a significant rise in the pressure ap-
= s . A .
% —+—Theoretical interface pressure plied to the target. This continues for about half way through the length
= F 4
T 4 ) of the projectile interaction with the target after which the interface
™ ® Raw experimental data . . . R
pressure dropped linearly to zero as the projectile erodes away. This
100 1 " ® Experimental data corrected by | argument of the compression in the impact region resulting in presence
the impedance mismatch of this dynamic high pressure could be substantiated by similar ob-
.
0 — 2 - ! ! ! servations made by Field et al. [16,17] and other studies [13-24] that
0 50 100 150 200 250 300 35¢

Impact velocity, v, (m/s)

Fig. 5. Comparison of the calculated experimental shock pressure with the theoretical
value as a function of impact velocity.

was obtained. Fig. 5 shows a comparison of the theoretical, P, = pUsv;
(Appendix A.3 - Shock pressure solution, Eq. (A.7)) and the derived
experimental interface shock pressures Pp,, as a function of impact
velocity and good agreement is obtained.

For the duration of the projectile/target interaction (Table 2) there
is very good agreement between the measured time, t.,, and the pre-
dicted value t,, =vi; obtained from the Alekseevskii-Tate equations
[25,26,34,37,38] (Appendix A.4- Steady state solution, Eq. (A.13)).
This is an indication that the erosion rate and the application of the
pressure on the target are consistent with the measured force. With
respect to the steady state interface pressure, in accordance with the
penetration equations (Appendix A.4 - Steady state solution, Egs. (A.9)
and (A.14), it was established that if Y, the projectile dynamic
strength, is assumed to be negligible then the steady state pressure at
the interface would be Pyagnasion = %pv,-z. However, interpretation of the
experimental results does not appear to indicate this. Consider the ex-
perimental results shown in Fig. 6, Psqgnarion i plotted on the same axes
as the experimentally derived pressure-time curves.

Examination of the two curves reveals that the Pygenacion is much
lower than the experimentally derived pressure by an amount, AP. This
indicates the presence of a dynamic pressure that the projectile material
is applying to the target and is of the order of the shock pressure. This
observation could be explained in accordance with the penetration
equations (Appendix A.4 - Steady state solution, Eq. (A.14)). If Y, is
taken into consideration [35], then setting Y, = AP, Y}, could be termed
as a dynamic pressure applied by the gelatine and it is impact velocity

27

examined the impact of liquid and water-gelatine mixtures on solid
structures only in this case we do have a quantitative measure of this
dynamic high pressure present at the interface. Fig. 7 shows the max-
imum AP as a function of impact velocity and a quadratic fit to the data
indicates that the peak dynamic strength pressure at the interface ra-
pidly increases with impact velocity.

4. Conclusion

A simple cylinder impact test was used to examine the impact
process of a soft body material projectile made of 10% gelatine, striking
a rigid target attached to a quartz force ring sensor instead of a usually
used pressure sensor. The shock and steady state pressures were de-
termined from the force-time histories. In an effort to obtain accurate
and reproducible results, the force time curves were examined to
identify frequencies that were present in the results and may be coming
from the natural vibrations of the various parts that make up the target.
The Bessel function solutions for the wave equation applied to the free
vibration of plates were used to examine the vibrations of the various
plates in the target assembly and once identified and determined were
removed using the Savitsky-Golay filter. Using the shock Hugoniot
relations and the conservations equations, the theoretical shock pres-
sure relation was developed for the shock pressure at the projectile/
target interface. The shock pressures derived from the experimental
force/time histories were in very good agreement with the theoretical
values predicted by the shock Hugoniot. The Alekseevskii-Tate pene-
tration equations were used to determine the steady state pressure at
the projectile/target interface and the duration of the interaction be-
tween the projectile and target. The equations predicted very well the
duration of the interaction. However, the measured value of the steady
state pressure was in discordance with the expected stagnation
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pressure, Puggnarion = %pviz. We came upon the presence of a dynamic
pressure which when interpreted in accordance with the
Alekseevskii-Tate equations, suggests that the material dynamic
strength manifested from the compression of the gelatine material
caused a change in the bulk modulus or density and, thus, the increased
pressure. A quantitative measure of this dynamic strength as a function

28

of time was obtained and it is dependent on the impact velocity. Given
the significant value of this dynamic pressure, it may be necessary to
take this into account when these materials are used in shock loading
and impact scenarios.
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Appendix A. Methods
Al. 10% gelatine preparation

The gelatine projectiles were prepared using a standard recipe [4,10,11]. The ingredients were 1000 g cold water, 100 g ballistic gelatine powder,
25 g sodium carboxy methyl cellulose(CMC), 6 g aluminum acetate basic (AAB), 4 drops of cinnamomum zeylanioum (cinnamon). The procedure
was to mix the cold water and the gelatine, wait 5 min and then heat up the mixture to 45°C. 1050 g of the gelatine mixture was then poured into a
blender and the mixture of CMC and AAB was added. The drops of cinnamon were added and the mixture was blended at the lowest speed for 3-5s.
It was then poured into pre-warmed molds and refrigerate for 36 h. Compressed air was used to remove the gelatine projectiles from the molds.
Random samples across the length of two projectiles from every batch of gelatine made were used to verify the density and it was found consistently
to be 1030 kg/m°>.

A2. Sabot development

A special sabot (Appendix B, Fig. B. 1) was designed and provides a unique efficient and inexpensive method to launch a soft body projectile. It
was made of thermoplastic resin Acrylonitrile-Butadiene-Styrene (ABS) using additive manufacturing. This particular design allowed for the pe-
netrator back end to be forward displaced in the sabot. If the projectile back end sits at the back of the sabot as it leaves the launch tube the
compressive forces of the gelatine push the back end of the sabot apart causing the front ends to approach each other forming a pivot in front of the
projectile. This provides an opportunity for the sabot to pass through the sabot trap and to strike the target. Displacing the projectile towards the
front allows the compressive forces to start pushing the sabot apart while the back end is still in the launch tube and as it exits the aerodynamic forces
continue to push the sabot sections apart and are subsequently stopped by the sabot trap while allowing the projectile to pass (Appendix B, Fig. B.
1(d)). The ribs around the circumference stiffen the sabot to avoid buckling in the launch tube.

A3. Shock pressure solution

When a shock is generated, the shock front in the material moves with a velocity Us which is material dependent. The material behind a shock
front moves with a particle velocity, u,. The U; — u, Hugoniot shown in Eq. (3) is normally derived experimentally [3,32] and have shown that for
most materials it is a linear relationship (Appendix B, Fig. B. 4). If the U; — u,, data are available, as it is for most materials, the interface particle
velocity and shock pressure could be obtained by using Eq. (3) in conjunction with the conservation equations for mass, momentum and energy
given, respectively, by
Pr_ v _ U —ug

o M U -y (A1)
Py — Py = py(Pithy — Pouo)(Us — ug) (A.2)

_ (Pu — Ryuy) + 1

e — ey = (uf — ug)

Po(Us — ug) 2 (a.3)

where the subscripts 0 and 1 are used to indicate conditions ahead and behind the shock front. Consider the impact problem described in Fig. 1 with
the projectile moving from left to right for convenience. Combining Eq. (3) with the momentum Eq. (A.2), the P — u Hugoniots [32,33], Egs. (A.4)
and (A.5), are obtained, respectively, for the right hand shock moving in the target, u, > u,, and the left hand shock moving in the projectile, u, < uq.

Pry = P, Cor (Une — Uor) + oSt (U — Uor)? (A.4)
Pyp = pOpCOP(MOP —wp) + PopSp (uop — up)’ (A.5)

where the subscripts t and p relate, respectively, to the projectile and target materials. The pressure and the particle velocity across the interface of
both materials must be consistent to satisfy the conservations equations. Thus, equating these two equations (shown graphically in Appendix B,
Fig. B. 5) and eliminating the pressure terms results in a quadratic equation for the interface particle velocity, u, given by
(pOPSP - Pozst)”;_
(,oopcop + 200, Splop + PoCor — 200, St Uor) Up+
(popcOPMOp + popspuozp + Por Cot Uot Uor — PmS:“ozz) =0 (A.6)
Knowing the particle velocity provides three options to obtain the interface shock pressure either by Eq. (A.4) or (A.5) or by solving for the shock

speed in Eq. (3) and then using the momentum equation(A.2) in which after the initial conditions are substituted, reduces to

P, = P()Usvi (A.7)

A4. Steady state solution

The steady state solution is obtained from the Alekseevskii-Tate [34-39] penetration equations

dv _ Y

g (A.8)

L —w)? = Lo
ZP,(VL W))+ Y, = 2PtW +Rt (A.9)
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vew_ &

' dt (A.10)
b _

a (A.11)

where v; is the rod velocity, w is the penetration velocity, P, is the penetration, [ is the penetrator length, t is the time after impact, R, is the target
strength and Y, is the penetrator strength. p, and p, are, respectively, the penetrator and target densities. Given that the penetration velocity, w = 0,
Eq. (A.10) could be solved explicitly for the projectile erosion

d

= =y
dt

(A.12)
which implies essentially that the projectile erosion rate, % is simply equal to impact velocity, v; and the flow of the material at the target/projectile
interface is considered to be steady state. Performing this simple integration and rearranging the equation making t the subject of the formula gives

t=1/vy (A.13)
which is the time the projectile spends interacting with the target before being completely eroded. In Eq. (A.9), setting the penetration velocity and
taking the usual strength terms [36-39] as the pressures, an equation of the form

1
Pim‘erface = Eprviz + Yp (A.14)

For the case where the projectile strength is negligible, then Y, = 0 and

1
Pinterface = Eppviz (A15)

is obtained where Pjyerface is referred to as the stagnation pressure that is often found in literature [4-20].
Appendix B. Supplementary material

The supplementary material consists of five additional figures. Although the paper as it is could be read well without compromising the basic
understanding of the work, the supplementary figures could be most helpful if the reader would like to use the test method, reproduce the results,
follow in more detail the data reduction and analysis or the development of the interface shock pressure using the shock Hugoniot. Fig. B.1 shows
various views of a unique sabot design that was used to launch the gelatine projectile and could be useful for reproducing or manufacturing the
sabot. Fig. B. 2 shows the gelatine fragments recuperated and could shed some light on the failure of the material especially if one is considering of
numerically simulating the impact problem using a hydrodynamic finite element code. Fig. B.3 shows the Force history in the frequency domain
obtained using the Fourier transform in Matlab®® and it does show the influence of natural vibrations of the target plates on the Force-time curves as

Time : 10:51

Fig. B.1. Various configuration views of the sabot: (a) the inside view. (b) a view of the outside (c) a view with the projectile placed in the sabot and (d) the separation of the projectile
from the sabot just before passing through the sabot trap.
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Fig. B.2. A collection of shredded gelatine fragments from the 119 m/s impact velocity test case.

a function of impact velocity. Fig. B. 4 shows a graphical representation of the U; — u, shock Hugoniot, Eq. (3), that is used to obtain the shock speed
for gelatine as a function of the particle velocity. Fig. B. 5 shows, for a particular impact velocity, a graphical solution for interface particle velocity
by plotting the left hand and the right hand shock Hugoniots on the same axes. The intersection point of the two shock Hugoniots gives the interface
particle velocity and shock pressure.

o 1 z 3 4 3 €
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Fig. B.3. The force history in the frequency domain identifying frequencies present in the data.
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Fig. B.4. The Us — up shock Hugoniot for gelatine®, ¢y = 1445m/s, s = 1.9.
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Fig. B.5. A graphical solution of simultaneously solving the left and right hand shock equations to obtain the interface shock pressure (point X) for a particular impact velocity, v;.

Appendix C. Supplemetary material

Supplementary material associated with this article can be found, in the online version, at 10.1016/j.ijimpeng.2018.02.001.
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