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A Multisensor Multi-Bernoulli Filter
Augustin-Alexandru Saucan, Student Member, IEEE, Mark J. Coates, Senior Member, IEEE,

and Michael Rabbat, Senior Member, IEEE

Abstract— In this paper, we derive a multisensor multi-Bernoulli
(MS-MeMBer) filter for multitarget tracking. Measurements from
multiple sensors are employed by the proposed filter to update a
set of tracks modeled as a multi-Bernoulli random finite set. An
exact implementation of the MS-MeMBer update procedure is
computationally intractable. We propose an efficient approximate
implementation by using a greedy measurement partitioning
mechanism. The proposed filter allows for Gaussian mixture or
particle filter implementations. Numerical simulations conducted
for both linear-Gaussian and nonlinear models highlight the
improved accuracy of the MS-MeMBer filter and its reduced
computational load with respect to the multisensor cardinalized
probability hypothesis density filter and the iterated-corrector
cardinality-balanced multi-Bernoulli filter especially for low
probabilities of detection.

Index Terms—Random finite sets, multi-sensor multi-Bernoulli
filter, multi-sensor and multi-target tracking.

I. INTRODUCTION

S INGLE sensor multi-target tracking has received a great
amount of attention in the scientific literature. Whenever

the number of targets is unknown and time varying, a popular
solution builds on the Random Finite Set (RFS) theory [1].
In this category, the most well known filter is the Probability
Hypothesis Density (PHD) filter of [2]. The PHD filter models
the multiple targets as a Poisson RFS, where the number of
targets is Poisson distributed and the target distributions are
independent and identically distributed (iid). The PHD filter
adaptively estimates a function defined over the single-target
space which is referred to as the PHD function. The number of
targets and their states are inferred from the PHD function.

A different choice involves modeling each target as a
Bernoulli RFS, characterized by a probability of existence and
a target probability density. Accordingly, a set of independent
targets is modeled by a multi-Bernoulli RFS, i.e., a union of
independent Bernoulli RFSs. The multi-Bernoulli (MeMBer)
filter was proposed in [1, Ch. 17] with subsequent improvements
in [3] and [4].

The multi-sensor scenario involves processing observations
made by several sensors which are usually assumed to be
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conditionally independent given the target states. A generalized
PHD filter for the special case of two sensors was first proposed
in [5] and [6], and extended in [7] and [8] to an arbitrary number
of sensors. Approximate multi-sensor filters were developed in
order to reduce the combinatorial complexity of the generalized
PHD filter. Subsequently, in [6] the iterated-corrector PHD filter
was proposed and the approximate product multi-sensor PHD
and CPHD filters were introduced in [9] and implemented in
[10]. A comprehensive review of several of the aforementioned
multi-sensor solutions is presented in [11, Ch. 10]. Other filters,
such as [12] and [13], rely on the δ-Generalized Labeled multi-
Bernoulli RFS in order to achieve approximate multi-sensor
multi-target tracking. A generalized multi-sensor CPHD (MS-
CPHD) filter was proposed in [14] along with computationally-
tractable implementations. In a different setting, in [15], [16]
distributed multi-target filtering is achieved using an unlabeled
version of the Generalized Labeled multi-Bernoulli RFS and the
Generalized Covariance Intersection method [17], [18] for the
fusion of posterior densities.

The update process of the MS-PHD and MS-CPHD filters
is achieved via Bayes’ theorem and involves partitioning all of
the sensor measurements into disjoint subsets. Each subset in-
cludes at most one measurement per sensor and corresponds
to the measurements made by a potential target across all sen-
sors. The subsets of a partition are disjoint and comprise all
the sensor measurements. Exploring all partitions and subsets is
impractical, and tractable implementations of the MS-PHD and
MS-CPHD filters consider only the subsets (and subsequently
the partitions) that make a significant contribution to the pre-
dicted PHD function. Hence, a greedy partitioning mechanism is
employed which associates likely measurement subsets with in-
dividual target densities from the predicted PHD function. The
MS-PHD and MS-CPHD filter implementations of [14] con-
strain the PHD function to be a Gaussian mixture and assume
that each Gaussian component represents a potential target.

In this paper we propose and derive a multi-Bernoulli filter
for the multi-sensor case. The multi-Bernoulli RFS models
each target as a separate Bernoulli RFS with its own probability
density function and existence probability. Effectively, the
multi-Bernoulli prior shifts the combinatorial problem to that
of associating observation subsets to Bernoulli components.
Therefore no clustering operations are required for measure-
ment partitioning, and the probability density of each target
(i.e., each Bernoulli component) can take whatever form is best
suited for the target state model. Furthermore, the proposed
implementation of the MS-MeMBer filter has a simplified
update procedure that reduces the computational complexity
of the filter. More precisely, each Bernoulli component is
only updated with its associated observation subsets; that is,
subsets that have a significant contribution to the probability of
existence of that component.



This paper is organized as follows. Section II reviews back-
ground information on RFS theory and introduces notation em-
ployed throughout the paper. Section III presents an overview
of single sensor multi-Bernoulli filtering. The proposed filter
is derived in Section IV with numerical implementations be-
ing discussed in Section V. Then simulation results are pre-
sented for both linear-Gaussian (Section VI-B) and non-linear
(Section VI-C) state systems. We conclude in Section VII.

II. RANDOM FINITE SET STATISTICS

Throughout this paper, an RFS is employed to model a random
number of targets with random state vectors. The realization of
an RFS is a set X = {x1 , . . . ,xn}, where n ≥ 0 is the random
number of targets and xi is the state vector of the i-th target.
The cardinality of a finite set X , i.e., the number of elements is
denoted with |X|. State vectors take values in the single-target
space, x ∈ X, which is usually a subspace of Rd . The random
nature of an RFS is captured by its probability density π(X).
The set of all finite subsets of X is denoted with F(X) and for
a function f : F(X) → R, the set integral is defined as [1, Ch.
11.3.3.1]∫

f(X)δX �
∞∑

n=0

1
n!

∫
· · ·

∫
Xn

f({x1 , . . . ,xn})dx1 · · · dxn .

(1)
Additionally, we employ the exponential notation uX =∏

x∈X u(x), with u∅ = 1 by convention. By introducing the test
function u : X → [0, 1], the Probability Generating Functional
(PGFl) [1, Sec. 11.3.5] is defined as

G[u] =
∫

uX π(X)δX. (2)

The Bernoulli RFS is either an empty set with probability
1 − r or a singleton set with probability r. In the latter case, the
singleton is distributed according to a pdf p(x), which represents
the density of a single target. The PGFl of a Bernoulli RFS is
given by (see [1, pp. 374])

G[u] = 1 − r + r〈p, u〉, (3)

where 〈p, u〉 �
∫

p(x)u(x)dx is the inner product. A multi-
Bernoulli RFS is obtained by taking the union of M independent
Bernoulli RFSs, and its PGFl is

G[u] =
M∏
i=1

(
1 − r(i) + r(i)〈p(i) , u〉

)
, (4)

where (r(i) , p(i)) are the parameters of the i-th Bernoulli com-
ponent.

The functional derivative of a functional F [u] in the direction
of the Dirac delta density δx is defined as δF

δx [u] � ∂F
∂δx

[u] =

limε↘0
F [u+εδx ]−F [u ]

ε (see [1, Eq. 11.186]). The first-order mo-
ment D(·) associated with π(·), also called the probability
hypothesis density function, is given by

D(x) =
δG

δx
[u]

∣∣∣∣
u(x)=1,∀x

(5)

=
M∑

i=1

r(i) p(i)(x). (6)

III. SINGLE SENSOR MULTI-BERNOULLI FILTERS

Several single sensor multi-Bernoulli filters have been pro-
posed in the literature. In this section, we present an overview
of several multi-Bernoulli filters with an emphasis on the Car-
dinality Balanced MeMBer (CBMeMBer) filter [3]. The set of
targets is modeled by a multi-Bernoulli RFS Xk , indexed by the
sample time k. The targets are observed by a single sensor that
generates a set of measurements Zk = {zl

k |l = 1, . . . , mk} that
contains at most one measurement per target and clutter mea-
surements. The aim of all single sensor multi-Bernoulli filters
is to provide an estimate of the posterior density πk+1|k+1(·)
of the RFS Xk+1 given the set of all measurements Z1:k+1 =
{Z1 , . . . , Zk+1} up to and including time k + 1.

We consider at time k a multi-Bernoulli RFS with parameters

{(r(i)
k |k , p

(i)
k |k )}Mk |k

i=1 and with posterior distribution πk |k (·). The
target kinematic model, birth, and death of targets are incorpo-
rated into the prediction stage of the filter. The correction of the
predicted distribution, via the current sensor measurement set
Zk , is achieved in the update stage. We give the details of each
stage next.

A. Single Sensor MeMBer Prediction

Target death/disappearance is incorporated via the target
probability of survival pS,k (x), and births are accounted for
by appending a birth multi-Bernoulli RFS with components
{(r(i)

B,k+1 , p
(i)
B,k+1)}MB, k + 1

i=1 to the surviving targets. The birth
Bernoulli RFSs are mutually independent and independent from
the surviving targets. Additionally, the target kinematic model
is incorporated via the transition kernel fk+1|k (xk+1 |xk ). The
resulting RFS density πk+1|k (X) is multi-Bernoulli (see [3])
and is comprised of the components

{
(r(i)

k+1|k , p
(i)
k+1|k )

}Mk +1 |k
i=1 =

{
(r(i)

P,k+1|k , p
(i)
P,k+1|k )

}Mk |k
i=1

∪ {
(r(i)

B,k+1 , p
(i)
B,k+1)

}MB, k + 1

i=1 , (7)

where the surviving Bernoulli components have parameters

r
(i)
P,k+1|k = r

(i)
k |k 〈p(i)

k |k , pS,k+1〉, (8a)

p
(i)
P,k+1|k (x) =

〈fk+1|k (x|·), p(i)
k |kpS,k+1〉

〈p(i)
k |k , pS,k+1〉

. (8b)

Since the predicted RFS is a multi-Bernoulli RFS, it admits a
PGFl of the form (4).

B. Single Sensor MeMBer Update

Let πk+1|k (X) be the density of the predicted RFS with
PGFl given by (4). Denoting with Lk+1(Z|X) the multi-target
likelihood function of the measurement set Z given the target
set X , we define the functional F [g, u] [1, Eq. 14.281] as

F [g, u] =
∫

uX

[∫
gZ Lk+1(Z|X)δZ

]
πk+1|k (X)δX. (9)

The PGFl corresponding to the updated density πk+1|k+1(·)
(i.e., corrected with the measurement set Zk+1) is [1,



Sec. 14.8.2]

Gk+1|k+1[u] =
δF

δZk+1
[0, u]

δF
δZk+1

[0, 1]
, (10)

where δF
δZk+1

[g, u] is the functional derivative of F in g with
respect to the set Zk+1[1, Eq. 11.191]1.

As shown in [1, Sec. 17.4.2], the PGFl Gk+1|k+1[u] does
not have the form of (4), i.e., the updated posterior density
πk+1|k+1(·) does not correspond to a multi-Bernoulli RFS.
Therefore, in [1, Sec. 17.4.2] several approximations are ap-
plied to (10) in order to obtain a multi-Bernoulli approximation
to Gk+1|k+1[u]. The resulting filter is referred to as the MeMBer
filter. However, in [3] it is shown that the MeMBer filter has a
positive cardinality bias, and an unbiased filter called the Cardi-
nality Balanced MeMBer (CBMeMBer) filter is proposed. The
CBMeMBer filter also employs several approximations. First,
in the PGFl of (10) it is assumed that the clutter density is not
too large. Second, a first-order moment (PHD approximation)
is employed in order to obtain a multi-Bernoulli PGFl that cap-
tures the intensity function (and hence mean cardinality) of the
original PGFl. Finally, the approximation of high probability of
detection pD,k ≈ 1 is required in order to correct a negative term
appearing in the probabilities of existence of the resulting multi-
Bernoulli components. More details regarding the derivation of
the CBMeMBer filter are given in [3]. In [4], the cardinality
bias of the MeMBer filter is alleviated by modeling spurious
targets arising from the legacy track set. However, the result-
ing unbiased MeMBer filter also employs a low density clutter
approximation.

A straightforward extension of any of the single sensor MeM-
Ber filters to the case of multiple sensors can be achieved by
iterating the filter update stage for each sensor measurement
set. For example, the filter obtained by sequentially process-
ing the measurement set of each sensor with the CBMeM-
Ber filter corrector leads to the Iterated-Corrector CBMeMBer
(IC-CBMeMBer) filter.

IV. MULTI-SENSOR MULTI-BERNOULLI

(MS-MEMBER) FILTER

We consider a set of targets at time k modeled as a multi-
Bernoulli RFS and characterized by a posterior distribution

with parameters {(r(i)
k |k , p

(i)
k |k )}Mk |k

i=1 . The targets are observed
by s sensors which, conditional on the target states, generate in-
dependent measurements. Let Zj,k = {z1

j,k , . . . , zmj , k

j,k } be the
set of all measurements zj,k ∈ Zj of the j-th sensor, with Zj

being the measurement space of sensor j. Let us also denote the
collection of measurements collected by all sensors at time k by
Z1:s,k = (Z1,k , . . . , Zs,k ). Again, we assume that each sensor
can collect at most one measurement per target and that clutter
measurements may be present. Multi-sensor multi-target filters
provide an estimate of the distribution πk+1|k+1(·) of Xk+1
given Z1:s,1:k+1 , which is obtained in a Bayesian framework
via prediction and update.

Similar to the single sensor case, the updated PGFl
Gk+1|k+1[u], and subsequently the identification of updated

1For a general functional H , the functional derivative δH
δY [h] = H [h] for

Y = ∅ and δH
δY [h] = δ n H

δy1 ···δyn
when Y = {y1 · · ·yn }.

multi-Bernoulli components, can be achieved via the differentia-
tion of the multivariate functional F [g1:s , u] � F [g1 , . . . , gs , u],
where the variable gi corresponds to the sensor i. We denote with
Li,k+1(Zi |X) the multi-target likelihood function for sensor i
at time k + 1. Considering the sensor measurements as condi-
tionally independent given the multi-target state, and analogous
to (9), F [g1:s , u] is defined as

F [g1:s , u] �∫
uX

(
s∏

i=1

∫
gZi

i Li,k+1(Zi |X)δZi

)
πk+1|k (X)δX. (11)

The parameters of the measurement model for sensor i are
the probability of detection pi,D ,k+1(·), likelihood function
hi,k+1(·), clutter probability density function (pdf) ci,k+1(·),
clutter cardinality distribution pc,i,k+1(n) and probability gen-
erating function (pgf) Ci,k+1(u) �

∑∞
n=0 unpc,i,k+1(n).

From [1, Sec. 12.3.7], the measurement PGFl can be written
as∫

gZi
i Li,k+1(Zi |X)δZi = Ci,k+1(〈ci,k+1 , gi〉)×

∏
x∈X

[
1 − pi,D ,k+1(x) + pi,D ,k+1(x)

∫
gi(z)hi,k+1(z|x)dz

]
.

(12)

In the following, for conciseness we omit the time index k + 1
when it is clear from the context.

We denote by G
(j )
k+1|k [·] the PGFl of the j-th Bernoulli com-

ponent of the predicted density πk+1|k (·). Note that G
(j )
k+1|k [·]

has the form of equation (3). Additionally we define the function

φgi
(x) � 1 − pi,D (x) + pi,D (x)

∫
gi(z)hi(z|x)dz. (13)

Based on the specific form of (12), the functional F [g1:s , u] can
be written as

F [g1:s , u]

=

(
s∏

i=1

Ci(〈ci, gi〉)
)∫

(u
∏s

i=1φgi
)X

πk+1|k (X)δX,

=

(
s∏

i=1

Ci(〈ci, gi〉)
) Mk + 1 |k∏

j=1

G
(j )
k+1|k [u

∏s
i=1φgi

]. (14)

Analogous to (10), the multi-sensor updated PGFl is given by

Gk+1|k+1[u] =
δs F

δZ1 , k + 1 ···δZs , k + 1
[0, 0, . . . , 0, u]

δs F
δZ1 , k + 1 ···δZs , k + 1

[0, 0, . . . , 0, 1]
, (15)

where the functional F [g1:s , u] is differentiated in g1 with re-
spect to Z1,k+1 , in g2 with respect to Z2,k+1 and so on.

The result of the differentiation in (15) requires the parti-
tioning of the measurements Z1:s,k+1 . Therefore, we introduce
notation similar to [14]. Let Wi ⊂ Zi,k+1 be a measurement
subset that contains at most one measurement from sensor i,
i.e., |Wi | ≤ 1. Additionally, we construct the ordered collection
of measurement subsets as W1:s � (W1 , . . . , Ws), which con-
tains at most one measurement from each sensor. We denote the



special case when Wi = ∅ ∀ i = 1, . . . , s by ∅1:s . We refer to
W1:s as a multi-sensor measurement subset. Each multi-sensor
subset W1:s can also be specified via the set of indices TW 1 :s =
{(i, l)|zl

i ∈ Wi, ∀i = 1, . . . , s} that specify the sensor index i
as well as the measurement index l. We say that two multi-sensor
subsets Wj

1:s = (Wj
1 , . . . , W j

s ) and Wp
1:s = (Wp

1 , . . . ,Wp
s ) are

disjoint if Wj
i ∩ Wp

i = ∅ ∀ i = 1, . . . , s.
Given a set of disjoint multi-sensor subsets W 1

1:s , . . . , W
n
1:s ,

we define the collection of clutter measurements as W 0
1:s =(

W 0
1 , . . . , W 0

s

)
with W 0

i = Zi,k+1\(∪n
j=1W

j
i ). Each Wj

1:s for
j �= 0 can be interpreted as the collection of measurements of
a specific target across all sensors and W 0

1:s as the collection
of clutter points. For a given M , we define a quasi-partition
P of the measurements Z1:s,k+1 as P = (W 0

1:s , . . . , W
M
1:s , ).

Note that W 1
1:s , . . . , W

M
1:s and W 0

1:s are disjoint. We refer to P
as a measurement quasi-partition since its elements W1:s are
allowed to be empty, i.e., W1:s = ∅1:s . For a number M of tar-
gets, the quasi-partition P can be interpreted as a partitioning of
the measurements Z1:s,k+1 into target-originated multi-sensor
subsets Wj

1:s (one for each target) and the clutter subset W 0
1:s .

Additionally, let P denote the set of all quasi-partitions P .
The result of the differentiation of (14) is summarized in the

next lemma, and the proof is presented in Appendix A.
Lemma IV.1: We define γ(x) �

∏s
i=1 [1 − pi,D (x)] and for

any multi-sensor subset Wj
1:s we introduce the multi-sensor

likelihood for a single target with state x as

f(Wj
1:s |x) �

∏
(i,l)∈T

W
j
1 :s

pi,D (x)hi(zl
i |x)

ci(zl
i)

×
∏

(i,∗)/∈T
W

j
1 :s

(1 − pi,D (x)). (16)

For each j = 1, . . . , Mk+1|k , we define the functionals

ϕj

W j
1 :s

[u] �⎧⎨
⎩

1 − r
(j )
k+1|k + r

(j )
k+1|k 〈p(j )

k+1|k , uγ〉, if Wj
1:s = ∅1:s

r
(j )
k+1|k

∫
u(x)p(j )

k+1|k (x)f(Wj
1:s |x)dx, otherwise.

(17)

Additionally, let Γi �
∏

z∈Zi , k + 1
ci(z) and KP �

∏s
i=1

C
(|W 0

i |)
i (0) with C

(n)
i (·) denoting the n-th derivative of the

clutter probability generating function Ci(·). Then the differ-
entiation of the functional (14) with respect to all the sensors
evaluated at (0, . . . , 0) is

δsF

δZ1,k+1 · · · δZs,k+1
[0, . . . , 0, u] =

[
s∏

i=1

Γi

] ∑
P ∈P

KP

⎡
⎣Mk + 1 |k∏

j=1

ϕj

W j
1 :s

[u]

⎤
⎦ . (18)

Lemma IV.1 gives the numerator of (15), while the denom-
inator of (15) is obtained by evaluating δF

δZ1 :s , 1 :k
[0, . . . , 0, u] at

u(x) = 1. Because of the additional sum in (18), the PGFl of
the updated posterior is not a multi-Bernoulli PGFl, i.e., a prod-

uct of Bernoulli PGFls as in (4). Note that in order to achieve
a multi-Bernoulli posterior, the derivation of the single sensor
MeMBer filters involves approximating the derivative of F [g, u]
with respect to g at the measurement set Z1,k+1 . In contrast, the
result in (18) and Gk+1|k+1[u] are exact, and in the following
we apply a single first-order multi-target moment approximation
(similar to the PHD filter of [2]) after all sensor measurements
have been taken into account in the PGFl Gk+1|k+1[u].

We approximate the updated posterior with a multi-Bernoulli
distribution of equal first-order moment (i.e. PHD function). We
aim to construct a multi-Bernoulli RFS π̂k+1|k+1(·) with identi-
cal PHD function to that of πk+1|k+1(·). Implicitly, π̂k+1|k+1(·)
and πk+1|k+1(·) have the same mean cardinality. The PHD func-
tion is summarized in the following theorem, and its proof is
presented in Appendix B.

Theorem IV.2: By defining the coefficients

αP �
KP

∏Mk + 1 |k
j=1 ϕj

W j
1 :s

[1]∑
Q∈P KQ

∏Mk + 1 |k

j=1
ϕj

W j
1 :s

[1]
(19)

and the function

ρj

W j
1 :s

(x) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

r
(j )
k+1|kγ(x)

1 − r
(j )
k+1|k +r

(j )
k+1|k 〈p(j )

k+1|k , γ〉
, if Wj

1:s = ∅1:s

f(Wj
1:s |x)∫

p
(j )
k+1|k (x)f(Wj

1:s |x)dx
, otherwise,

(20)
the PHD function obtained via (5) from the PGFl Gk+1|k+1[u]
is

Dk+1|k+1(x) =
∑
P ∈P

P =(W 0
1 :s ,...,W M

1 :s )

αP

Mk + 1 |k∑
j=1

ρj

W j
1 :s

(x)p(j )
k+1|k (x).

(21)
The inner summation of (21) comprises the Mk+1|k pre-

dicted Bernoulli terms and effectively involves the update of
each of the predicted Bernoulli components. For each quasi-
partition P =

(
W 0

1:s , . . . , W
M
1:s

)
, the update process assigns the

multi-sensor subset Wi
1:s to one of the Mk+1|k predicted

Bernoulli components.
Theorem IV.2 shows that even though the PGFl Gk+1|k+1[u]

is not multi-Bernoulli, its PHD function has a similar structure
(i.e., a sum of weighted densities) as that of a multi-Bernoulli
PHD [see eq. (6)]. Therefore, the Bernoulli components of
π̂k+1|k+1(·) are identifiable from the expression in (21). A
proposition for the Bernoulli components of π̂k+1|k+1(·) is:
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r̂

(j )
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where
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1:s |x)dx
, otherwise.

(24)
Note that the PHD function (21) is a mixture of densities,

and the choice of updated Bernoulli RFSs is not unique. The
choice made to arrive at (22) involves creating a Bernoulli
RFS for each association between a predicted Bernoulli RFS
and a multi-sensor subset. Other choices could be obtained by
clustering several updated densities into a single Bernoulli com-
ponent. A different proposal involves matching the cardinality
distribution in addition to the intensity function of the approx-
imate multi-Bernoulli RFS to the exact updated RFS. Alter-
natively, an approximating multi-Bernoulli density could be
obtained by minimizing the Kullback-Leibler divergence from
the exact RFS density. In [19], this problem is solved via the
expectation-maximization algorithm where the correspondence
between the Bernoulli components in the best-fitting distribu-
tion and the components of the exact distribution are treated
as missing data. However, this additional minimization step in-
creases the computational complexity of the resulting algorithm
and the development of efficient algorithms for the multi-sensor
case are left for future investigation.

V. MS-MEMBER PRACTICAL IMPLEMENTATION

The update process involves associating various measurement
subsets W1:s with the predicted Bernoulli components without
imposing any restrictions on the shape of the probability density
of the Bernoulli components. Indeed, both Gaussian mixture

p
(j )
k+1|k (x) =

J
( j )
k + 1∑

n=1

w
(j )
n,k+1 N (x;μ(j )

n,k+1 ,Σ
(j )
n,k+1) (25a)

and particle based

p
(j )
k+1|k (x) =

J
( j )
k + 1∑

n=1

w
(j )
n,k+1 δx( j )

n , k + 1
(x) (25b)

representations are possible.
The challenge posed by the multi-Bernoulli density

π̂k+1|k+1(·) is given by the large number of Bernoulli com-
ponents resulting after the update step (22). More precisely,
starting with a number Mk+1|k of predicted Bernoulli com-
ponents, defined in (7), the total number of updated Bernoulli
components is

∑
P ∈P Mk+1|k , the majority of which contribute

very little to the updated PHD function. Therefore, a greedy
mechanism for selecting the best associations and subsequently
the best quasi-partitions is necessary. In the following, we show

Fig. 1. Trellis diagram formed from the measurements of the s sensors. For
the j-th predicted Bernoulli component, a partial collection of measurements
W j

1:3 is formed by greedily appending high-scoring measurements from sensor

3 to the previous partial collection W j
1:2 . The candidate measurements from

sensor 3 are evaluated through the score βj
1:3 (W j

1:3 ).

that ϕj

W j
1 :s

[1] (defined in (17)) effectively scores the association

of the measurement collection Wj
1:s with the j-th Bernoulli

component while αP (defined in (19)) represents a score of
the quasi-partition P . Thus, similar to [14] the scores ϕj

W j
1 :s

[1]
and αP can be employed to select high-scoring measurement
subsets Wj

1:s , followed by high-scoring quasi-partitions P . The
formation of measurement subsets W1:s and the formation of
quasi-partitions are described in the following two sections.

A. Formation of Multi-Sensor Subsets W1:s

We employ ϕj

W j
1 :s

[1] as a measure of the likelihood that Wj
1:s

was generated by the j-th Bernoulli component. As we can
see from (16) and (17), for non-empty multi-sensor subsets,
ϕj

W j
1 :s

[1] can be interpreted as a ratio of the likelihood that Wj
1:s

was generated by the j-th Bernoulli component to the likeli-
hood that Wj

1:s is clutter. For the particular case of Wj
1:s = ∅1:s ,

ϕj

W j
1 :s

[1] quantifies the probability that either all s sensors have

failed to detect the j-th Bernoulli component or the component
no longer exists. We propose a greedy algorithm for select-
ing high-scoring measurement subsets W1:s for each predicted
Bernoulli component by sequentially processing each sensor.
The formation of Wj

1:p for p = 1, . . . , s is depicted in Fig. 1 as
the formation of paths through the trellis formed with all sen-
sor measurements and the empty measurement set (correspond-
ing to the missed-detection case). A new measurement zn

p+1 is

appended to an existing path Wj
1:p if it maximizes the score

βj
1:p+1(W

j
1:p+1) = ϕj

W j
1 :p + 1

[1]. For the two representations of

the pdf p
(j )
k+1|k (·) in (25a) and (25b), the score βj

1:p+1(W
j
1:p+1)

takes one of the forms
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(26a)



or

r
(j )
k+1|k

J
( j )
k + 1∑

n=1

w
(j )
n,k+1f(Wj

1:p+1 |x(j )
n,k+1). (26b)

In the Gaussian mixture case, the sensor detection probabili-
ties are constant and the observation model is linear Gaussian,
i.e. hi(z|x) = N (z;Hix,Ri) for some matrices Hi and Ri

of appropriate dimensions. In the aforementioned conditions,
(26a) admits an analytic form due to the properties of quadratic
combinations [20, App. 3.8].

In order to obtain the nj
s ≥ 1 best-scoring multi-sensor sub-

sets for the j-th Bernoulli component, at each sensor we keep at
most the highest Wmax scoring subsets. More precisely, start-

ing with the set {Wj,i
1:p}nj

p

i=1 of subsets up to and including

sensor p, we evaluate all possible extensions (Wj,i
1:p , {zl

p+1})
with zl

p+1 ∈ Zp+1 . A number nj
p+1 ≤ Wmax of subsets with

highest βj
1:p+1(W

j,i
1:p+1) are selected in addition to the empty

multi-sensor subset ∅1:p+1 = (∅, . . . , ∅). In this manner and
after processing all s sensors, we obtain nj

s ≤ Wmax high-
scoring multi-sensor subsets in addition to ∅1:s . Note that
the maximum number of non-empty subsets Wmax is treated
as a user-defined parameter in this work. A pseudo-code de-
scription of the greedy subset selection algorithm is given in
Appendix C. The computational complexity of the algorithm
is O(Mk+1|kWmax

∑s
i=1 mi), signifying a linear complexity

with respect to the number of predicted Bernoulli components
Mk+1|k and with the number of sensors s. Otherwise, note
that an exhaustive enumeration of all

∏s
i=1(1 + mi) multi-

sensor subsets and their associated scores for all predicted
Bernoulli components involves a computational complexity of
O(Mk+1|k

∏s
i=1 mi), which is exponential in the number of

sensors s. In the following section, the greedily selected sub-
sets are employed by the partition selection algorithm to form a
number of high-scoring partitions.

B. Formation of Quasi-Partitions P

Quasi-partitions are formed as paths through a trellis
constructed from the nj

s measurement subsets of the j =
1, . . . , Mk+1|k predicted Bernoulli components, as seen in
Fig. 2. Paths are formed sequentially across the Mk+1|k
Bernoulli components in a similar manner to the for-
mation of multi-sensor subsets described in Section V-A.
Note from (19) that αP serves to score a quasi-partition
P . Hence, we define the score of a partial path P1:p �
(W 1

1:s , . . . , W
p
1:s) as α1:p(P1:p) =

∏p
j=1 βj

1:s(W
j
1:s). Based on

the scores α1:p+1(·) = α1:p(·)βp+1
1:s (Wp+1

1:s ), a specific collec-
tion Wp+1

1:s from the p + 1 Bernoulli component is appended
to the path P1:p in order to form P1:p+1 = (W 1

1:s , . . . ,W
p+1
1:s ).

Thus, a complete path P1:Mk + 1 |k is selected with the goal of max-
imizing α1:Mk + 1 |k (P1:Mk + 1 |k ), which is proportional to (19).

Note that an additional operation needs to be performed in
order to ensure that all multi-sensor subsets of a quasi-partition
are pairwise disjoint. In other words, we need to ensure that
the same measurement does not appear in two different multi-
sensor subsets of the same quasi-partition. As noted in [14,
Sec. V.C], in the formation of a quasi-partition it is necessary

Fig. 2. Trellis diagram formed with the multi-sensor subsets W j
1:s from the

j = 1, . . . , M predicted Bernoulli components. Quasi-partitions are formed by
sequentially processing the Bernoulli components and greedily appending the
highest-scoring valid multi-sensor subsets.

to pre-select only valid multi-sensor subsets, i.e., those which
are pairwise disjoint with the multi-sensor subsets in the cur-
rent path. More specifically, considering the partial path P1:p ,
we select the highest-scoring valid multi-sensor subsets from

{∅1:s ,W
p+1,1
1:s , . . . , Wp+1,np + 1

s

1:s }. Note that the empty multi-
sensor subset ∅1:s ensures that there will always exist a valid path
through the trellis of Fig. 2. In Algorithm 2 of Appendix D, we
present the pseudo-code for the greedy quasi-partition forma-
tion algorithm. The computational complexity of Algorithm 2 is
of O(Pmax Wmax sM 2

k+1|k ), involving a linear complexity with
respect to the number of sensors but quadratic with respect to
the number of predicted Bernoulli components.

A maximal number of Pmax quasi-partitions, with the largest
scores, are formed using a procedure similar to that employed
to identify the Wmax subsets during the multi-sensor subset
selection procedure. The updated Multi-Bernoulli RFS will
contain at most PmaxMk+1|k distinct Bernoulli components.
In practice, different quasi-partitions might contain the same
subset-to-Bernoulli assignment and thus create updated
Bernoulli components with identical pdfs in (22) but with differ-
ent probabilities of existence. Such components can be collapsed
into a single Bernoulli component by adding together their exis-
tence probabilities. Thus, we obtain a density π̂k+1|k+1(·) with

a number of components M̂k+1|k+1 ≤ PmaxMk+1|k that has a
PHD function approximately equal to (21).

In contrast with the partition selection procedure of the
MS-CPHD filter [14], here, quasi-partitions are defined as

ordered, i.e., P = (W 0
1:s , . . . , W

Mk+1 |k
1:s ) and this implicitly

ensures the association of the multi-sensor subset Wj
1:s with

the j-th Bernoulli component. In [14], each multi-sensor subset
W1:s of a partition is employed to update all mixture components
of the predicted PHD function. Following an approach similar
to the quasi-partition selection mechanism presented above, a
truncated MS-CPHD (MS-TCPHD) filter algorithm can be de-
veloped [21]. In the case of the MS-TCPHD filter, a multi-sensor
subset W1:s from a partition is used to update only the j-th com-
ponent of the PHD function, i.e., the component that maximizes
the association score β(j )(W1:s) (see equation (35) of [14]).
This truncated update mechanism of the MS-TCPHD filter is in



contrast with the MS-CPHD filter, where each predicted PHD
component is updated using all subsets of a partition.

VI. NUMERICAL SIMULATIONS

In this section we evaluate the performance of the proposed
Multi-Sensor MeMBer (MS-MeMBer) filter with respect to the
Multi-Sensor CPHD (MS-CPHD), the Multi-Sensor Truncated
CPHD (MS-TCPHD) and the Iterated-Corrector Cardinality
Balanced MeMBer (IC-CBMeMBer) filters. For simplicity the
kinematic target model is linear and Gaussian. More specifi-
cally, we employ a white noise acceleration model described in
[22, Ch. 6.2.2]. Regarding the measurement model, we consider
two scenarios. The first involves a linear and Gaussian measure-
ment equation so that the target state system becomes linear and
Gaussian. In this case, we use Gaussian mixture implementa-
tions for all filters. The second scenario supposes a non-linear
measurement equation (specifically, Doppler-bearing measure-
ments) and consequently we rely on the unscented transform
and SMC methods to implement the different filters. The sce-
narios aim to compare the performance of the filters and their
computational times. Regarding the performance of filters, we
employ the Optimal Sub-Pattern Assignment (OSPA) distance
[23] as the error metric. The OSPA metric measures both er-
rors in the estimated number of targets as well as errors in state
estimates of individual targets. The two parameters employed
by OSPA are the cardinality penalty factor c = 100 and order
p = 1. The simulations were performed using MATLAB.2

A. Target Kinematic Model

Targets are assumed to evolve in a two dimensional Cartesian
system. Target state vectors are taken to be x = [x, y, ẋ, ẏ]T ,
where x and y represent the target coordinates and ẋ and ẏ are
its velocities along the two axes. The kinematic model for the
i-th target is a white noise acceleration model:

xk+1,i = Fk+1xk,i + vk+1,i . (27)

The state transition matrix is defined as Fk =
[ I2

02

TS I2
I2

] where
Ts = 1 s is the sampling period; 0n and In are the zero and
identity matrices of size n. The process noise is taken to be

vk ∼ N (0,Qk ) with Qk = σ2
v [

T 3
S
3 I2

T 2
S
2 I2

T 2
S
2 I2

TS I2
]. The target tracks

are depicted in Fig. 3, where a single simulation run is composed
of 100 scans sampled with TS = 1 s. Targets are born at loca-
tions (±400 m,±400 m) with time of birth and death indicated
alongside their respective tracks in Fig. 3. The tracking domain
is restricted to the 2000 m × 2000 m square. The probability
of survival of targets is pS (x) = 0.99 and is constant through-
out the surveillance region. All filters employ a process noise
of σv = 1. In the following experiments the target tracks are
kept identical throughout all Monte Carlo simulations, and the
measurement noise is randomly generated at each run.

B. Linear Gaussian Measurement Model

In this section, targets are observed through a linear-Gaussian
measurement equation and we evaluate the performance of 4

2The code is available online at http://networks.ece.mcgill.ca/Augustin-
Alexandru.Saucan.

Fig. 3. The true number of targets and their tracks. Targets are born at locations
marked with ×. Sensor placements (only relevant in the non-linear case) are
marked with ©.

filters: a Gaussian mixture implementation of the IC-
CBMeMBer filter, a Gaussian mixture implementation of the
MS-MeMBer filter as described in Section V, the Gaussian
mixture implementation of the MS-CPHD filter given in [14]
and of the MS-TCPHD filter.

In this scenario, the target measurement model for the i-th
target is

zk,i = Hkxk,i + wk,i , (28)

where the observation matrix is Hk = [1
0

0
1

0
0

0
0 ]. The measure-

ment noise is independent from the target states and is modeled
as wk,i ∼ N (0,R) with R = σ2

wI2 . In our simulations, the
measurement noise has σw = 10 m. Furthermore, the proba-
bility of detection of the sensors is constant throughout the
surveillance region and takes the value of pD = 0.3, 0.5, 0.7, or
0.9. In addition to target measurements, each sensor has clutter
measurements. We consider a Poisson clutter process with an
average number of clutter points equal to λc = 5 and uniformly
spread throughout the surveillance region. The clutter process
is identical for all sensors.

Gaussian mixture implementations are considered for the
multi-sensor CPHD (MS-CPHD) and multi-sensor TCPHD
(MS-TCPHD) filters. The MS-CPHD filter represents an ex-
act implementation of [14] with the PHD function represented
as a Gaussian mixture. The MS-TCPHD filter also employs a
Gaussian mixture PHD function. In both filters the Gaussian
components are thresholded at a value of 10−3 and merging is
performed subsequently.

For a fair comparison, in the Gaussian mixture IC-
CBMeMBer and MS-MeMBer filters, we suppose that each
Bernoulli component is represented by a single Gaussian den-
sity. For the IC-CBMeMBer filter, the Bernoulli components
are pruned at a threshold of 10−3 while their number is limited
at 10 components per estimated target. For MS-MeMBer
filter, the Bernoulli components are pruned at the threshold
of 0.05 and their number is limited to 4 per estimated target.



Fig. 4. Linear-Gaussian case: mean estimated cardinality for the IC-
CBMeMBer, MS-CPHD, MS-TCPHD, and MS-MeMBer filters with s = 3
sensors each having pD = 0.5.

The multi-sensor subset and partition formation mechanism
described in Section V is employed for the MS-MeMBer filter.

For the MS-CPHD, MS-TCPHD and MS-MeMBer filter im-
plementations, the maximum number of multi-sensor subsets
Wmax and quasi-partitions Pmax are set to 4, as these values were
observed in [14] and in our case to yield the best results. The
birth density has 4 components with Gaussian probability densi-
ties located at (±400 m,±400 m) and with identical covariance
matrices P = diag(60, 60, 25, 25). In the MS-CPHD and MS-
TCPHD filters, the birth PHD is modeled as a mixture of the
aforementioned Gaussian densities each weighted with 0.1, re-
sulting in an average number of birthed targets of 0.4 while the
birth cardinality is Poisson distributed. In the MS-MeMBer fil-
ter, we achieve a similar birth process by supposing 4 Bernoulli
components having the same Gaussian probability density and
probability of existence of 0.1.

In Fig. 4, we present the mean estimated cardinality for all al-
gorithms coupled with their respective standard deviations. For
this case, we employed s = 3 sensors all with the same proba-
bility of detection pD = 0.5 while the mean values are reported
over 100 Monte Carlo runs. Observe that the MS-CPHD has
a slightly higher cardinality variance than the MS-TCPHD and
MS-MeMBer filters. Additionally, the cardinality standard devi-
ation of the IC-CBMeMBer filter is significantly higher than the
other filters. We noticed a faster detection of target deaths for the
IC-CBMeMBer filter in comparison with the MS-CPHD, MS-
TCPHD and MS-MeMBer filters. A track is terminated when
the corresponding probability of existence decreases below a
pre-set threshold. Besides the decrease due to survival thin-
ning, the probability of the track is further decreased due to the
update with the empty subset W1:s = ∅1:s . Survival thinning is
identical in all filters, however the update with ∅1:s is handled
differently. In addition to a decrease in component weight due to
the update with ∅1:s , the MS-MeMBer track probability of (23)

Fig. 5. Linear-Gaussian case: box plot of OSPA errors for different values of
pD and s. The horizontal bar reflects the median value while the box width
reflects the first and third quartiles.

is also weighted with the partition score αP . Similarly, the PHD
mixture weights of the MS-CPHD and MS-TCPHD filters are
decreased due to ∅1:s but also weighted with the partition scores
(see coefficient α0 in eq. (23) of [14]). Note that partition scores
can be high even if one subset score is low. This results in a
slower track termination for the partitioning-based algorithms:
MS-CPHD, MS-TCPHD and MS-MeMBer filters.

A comparison of time-averaged OSPA errors (that is, av-
eraged over the 100 scans of a single run) reported over the
same 100 runs for all filter implementations is given in Fig. 5.
These results are summarized in three box plots with pD = 0.5,
pD = 0.7 and pD = 0.9 and where each box plot showcases the
OSPA errors as a function of the number of sensors s. Observe
that OSPA errors decrease for an increased number of sensors
and/or increased pD . As pD and s increase, the MS-CPHD,
MS-TCPHD and MS-MeMBer methods converge in terms of
OSPA performance. The performance of the IC-CBMeMBer fil-
ter is shown for the pD = 0.9 case where it is outperformed by
the MS-CPHD, MS-TCPHD and MS-MeMBer methods. Addi-
tionally, the performance of IC-CBMeMBer filter was observed



to decrease significantly for pD = 0.5 and pD = 0.7 since the
filter derivation is based on the assumption of high pD . In
the pD = 0.9 case, note the relative slowly increase in per-
formance of the IC-CBMeMBer filter with increasing number
of sensors s. The IC-CBMeMBer filter sequentially applies the
CBMeMBer update step for each sensor which leads to the ac-
cumulation of approximation errors due to the assumptions of
high pD , low density clutter and first-order moment approxima-
tions applied at each update step. In contrast, the MS-CPHD,
MS-TCPHD and MS-MeMBer methods simultaneously use the
measurements from all sensors (under the form of multi-sensor
subsets) to obtain the exact updated posterior which is subse-
quently approximated as an iid cluster or a multi-Bernoulli RFS
respectively. The MS-CPHD and MS-TCPHD filters are sim-
ilar with the difference being in the associations between the
predicted PHD components and multi-sensor subsets. Although
the MS-MeMBer filter propagates the full posterior density and
employs a different RFS model than the CPHD filters, it also re-
sorts to a first-order approximation (i.e., a PHD approximation)
in the derivation of its updated posterior. Additionally, notice
the increased outliers in the box plots of Fig. 5 for lower pD ,
which are generated when the filters exhibit a high number of
cardinality errors. Such errors occur more often for smaller pD

values and/or smaller number of sensors.
Furthermore, observe the improved performance of the MS-

MeMBer filter algorithm at low pD and/or reduced number
of sensors. Reducing pD and/or s leads to an increase of the
weights of the miss-detected (i.e., legacy) components of the
updated PHD function of the MS-CPHD and MS-TCPHD fil-
ters. On subsequent times, the update step of the MS-CPHD
filter forms all associations between the PHD mixture com-
ponents (including the previous-time legacy components) and
the measurement subsets within a partition. In the case of
the MS-CPHD filter, this translates to higher weights for the
previous-time legacy components as compared to the MS-
TCPHD filter. As a result, the MS-CPHD filter has a more
dispersed cardinality distribution estimate and hence a higher
OSPA error. The MS-TCPHD and MS-MeMBer filters correct
this by updating each component with its best-scoring multi-
sensor subset as given by the greedy method for subsets of
Section V-A. The difference between the MS-MeMBer filter
and MS-TCPHD filter resides in the specific form of the proba-
bilities of existence and component weights which are intrinsic
to their prior distributions, i.e., multi-Bernoulli and iid cluster
respectively. Numerically, at lower values of s and pD the mix-
ture weights of the MS-CPHD filter were found to be dispersed
between [0, 1] whereas the probabilities of existence of the MS-
MeMBer filter were found to be more concentrated around the
limits 0 and 1, which explains the improved cardinality estimates
of the MS-MeMBer filter in Fig. 4.

Table I summarizes the average computation time of the fil-
ters for pD = {0.5, 0.9} and a varying number of sensors. The
average computational time for a given filter is defined as the du-
ration the filter takes to process all scans divided by the number
of scans while the values reported in Table I were also averaged
over 100 Monte Carlo runs. Observe that the MS-CPHD, MS-
TCPHD and MS-MeMBer filters exhibit a linear complexity
with respect to the number of sensors. This fact is supported by
the linear complexity of the greedy subset and quasi-partition
formation algorithms V. Additionally, observe the increased

TABLE I
LINEAR GAUSSIAN CASE WITH pD = {0.5, 0.9}:

AVERAGE COMPUTATIONAL TIME

computational load of the MS-CPHD filter, which is caused by
the more involved update stage, which updates each mixture
component of the PHD function with all of the multi-sensor
subsets from a given partition. The computational requirements
of the MS-MeMBer and MS-TCPHD filters are similar. Note
also the high computational requirements of the IC-CBMeMBer
filter due to the high number of Bernoulli components needed
to produce satisfactory results.

C. Non-Linear Measurement Model

A Doppler-bearing measurement model is considered in this
section, with the measurement vector consisting of a noisy bear-
ing and Doppler shift. The sensor coordinates are denoted by
{(xj , yj )|j = 1, . . . , s}. The measurement of the i-th target with
state vector xi,k = [x y ẋ ẏ]T and collected at the j-th sensor is

zj
k ,i =

⎡
⎢⎣

atan2( y−y j

x−xj )

2fc

c

(x − xj )ẋ + (y − yj )ẏ√
(x − xj )2 + (y − yj )2

⎤
⎥⎦ + wj

k ,i , (29)

where atan2(·) is the four-quadrant inverse tangent function;
fc is the carrier frequency of the received signal; and c is
the wave velocity. In our simulations fc = 300 Hz and c =
1450 m/s, corresponding to an underwater scenario. The mea-
surement noise is independent of the target states and is taken
to be wk,i ∼ N (0,R) with R = diag(σ2

θ , σ2
f ). The bearing

standard deviation is σθ = 1 degree while the Doppler stan-
dard deviation is σf = 0.7 Hz. Poisson distributed clutter is
appended to the measurement set of each sensor. Unless other-
wise stated, the average clutter rate is fixed to 5 points per scan
and the clutter density is uniform over the observation domain
of 2π × [−100,+100]. The target tracks and kinematics are as
shown in Fig. 3.

In this non-linear scenario, both UKF (Unscented Kalman
Filter) and SMC implementations are considered for the MS-
MeMBer, MS-TCPHD, MS-CPHD and IC-CBMeMBer filters.
The UKF filters are implemented using Gaussian mixtures in
conjunction with the unscented transform [24] to achieve the
non-linear measurement updates. The resulting implementa-
tions are referred to as the UKF MS-CPHD, UKF MS-TCPHD,
UKF MS-MeMBer and UKF IC-CBMeMBer filters. In order to
reduce the computational load of the greedy subset and partition



selection algorithms for the SMC implementations of the MS-
CPHD and MS-TCPHD filters, clustering of the predicted PHD
function could be performed. In our simulation, we employ a
particle PHD function as a mixture of target densities, each hav-
ing a separate particle representation. To achieve this, the birth
PHD function is represented as a mixture of separate particle
sets. This leads to an implicitly clustered PHD function, i.e.,
we avoid the use of clustering methods such as k-means. The
birth PHD function is approximated by 4 distinct particle sets
centered around the birth locations (±400, ±400) and sampled
from Gaussian probability densities with covariance matrices
P = diag(40, 40, 25, 25). The subsequent predicted and up-
dated PHD functions are represented as a mixture of separate
particle sets, each representing a potential target. The greedy
multi-sensor subset mechanism of [14] is applied to each parti-
cle set of the predicted PHD function. Subsequently, partitions
are formed from the resulting subsets.

In the case of the SMC MS-MeMBer and SMC IC-
CBMeMBer filters, each Bernoulli component has a probabil-
ity density represented as a set of discrete points (25b). The
scoring of measurement collections W1:s in the SMC MS-
MeMBer filter is done via (26b). For both filters, the birth
process is composed of 4 Bernoulli components placed at
the locations (±400, ±400) and having covariances equal to
P = diag(40, 40, 25, 25).

In all SMC filter implementations, 700 particles per target are
used, and sampling is done directly from their respective birth
densities or the prediction kernel.

In this difficult non-linear tracking scenario we employ a
threshold of 10−10 for the pruning of Bernoulli and Gaus-
sian mixture components in the aforementioned filter imple-
mentations. Additionally, the number of Bernoulli components
in the MS-MeMBer filter implementations is capped at 4 per
estimated target, while this value is increased to 20 for the
IC-CBMeMBer filter implementations; with fewer Bernoulli
components per target, the performance of the IC-CBMeMBer
filter is not comparable to the other filters, even at high pD .
The MS-CPHD and MS-TCPHD filter implementations cap the
number of PHD mixture components per target at 4. These
values are selected on the basis of balancing tracking perfor-
mance with computational overhead. We consider the following
sensor configuration with s = 5 sensors placed at coordinates
(x, y) ∈ {(−350, 0), (350, 0), (0, 0), (0,−350), (0, 350)} as
seen in Fig. 3. Throughout the following simulations, the sen-
sors have equal probabilities of detection that are constant over
the surveillance region. Note that the SMC implementations are
capable of handling non-constant pD (x), as opposed to the UKF
implementations.

For 100 Monte Carlo simulations, the mean and standard
deviation of the cardinality estimates of the various filters are
shown in Fig. 6 for the case of pD = 0.3. Notice the overall
improved cardinality estimate of the MS-MeMBer filter and es-
pecially of the SMC MS-MeMBer. Furthermore, notice the poor
performance of both implementations of the IC-CBMeMBer
filter. We observed that the performance of the IC-CBMeMBer
filter only becomes comparable to the performance of the MS-
MeMBer filter when all sensors have very high probabilities
of detection, e.g, 0.98. Indeed, the IC-CBMeMBer filter relies
on the application of the CBMeMBer measurement correction
step (and the ensuing update approximations) sequentially for

Fig. 6. Non-linear case: estimated cardinality of various filters for pD = 0.3.

Fig. 7. Non-linear case: box plot of OSPA errors for diferent values of pD

and clutter rate λc . The horizontal bar reflects the median value while the box
width reflects the first and third quartiles.



TABLE II
NON-LINEAR CASE: MEDIAN TIME-AVERAGED OSPA VALUES, LOWER Q1
AND UPPER Q3 QUARTILES ARE GIVEN IN BRACKETS [Q1 , Q3 ]. CLUTTER

RATE IS FIXED TO λc = 5 PER SENSOR

each sensor. Hence, the IC-CBMeMBer filter requires a high
detection probability at each sensor, whereas the generalized
multi-sensor variants of the CPHD and MeMBer filters perform
a simultaneous update step with all sensor measurements before
resorting to any additional approximations. The time-averaged
OSPA errors (i.e., averaged over the 100 scans of a single run)
from the 100 Monte Carlo simulations, are displayed in Fig. 7.
The figure shows how the errors change as we vary the proba-
bility of detection or the average number of clutter points per
sensor. Notice the improved performance of the MS-MeMBer
filter for lower pD . In the case of the MS-CPHD filters at lower
pD , the update step of a specific predicted component includes
significant contributions from subsets that correlate highly with
other components and which degrade its performance. The UKF
and SMC MS-MeMBer filters both provide better cardinality
estimates as compared with their CPHD counterparts. This is
attributed to the different RFS models, i.e., the iid cluster and
the multi-Bernoulli RFS, employed by the two filters in this
simulation scenario. As in the linear case, for low pD the nor-
malized mixture weights of the MS-CPHD filter were found to
be dispersed between [0, 1] whereas the probabilities of exis-
tence of the MS-MeMBer filter were found to be more concen-
trated around the limits 0 and 1. This difference between the
concentration of weights and probabilities of existence leads to
a difference in their estimated cardinality distributions. How-
ever, at very high clutter rates (λc = 40 per sensor), the SMC
MS-TCPHD filter and the SMC MS-MeMBer filter have com-
parable performance. As in the linear-Gaussian case, for high
pD all methods converge in terms of OSPA performance.

In Table II we present several filtering results for pD ∈
{0.3, 0.5, 0.9}. Time-averaged OSPA errors are recorded for
each of the 100 Monte Carlo simulations, while the median,
the lower and the upper quartile are shown in Table II. Notice
again the convergence of filters in terms of OSPA error as pD

increases and a significant advantage of the MS-MeMBer filters
at lower pD values. Both implementation of the MS-CPHD and
MS-TCPHD filters struggle at pD = 0.3 due to increased cardi-
nality errors. Notice also the poor performance of the UKF and
SMC IC-CBMeMBer filters for all values of pD .

Fig. 8. Non-linear case: average computation times for various filter imple-
mentations at different probabilities of detection. The horizontal bar reflects the
median value while the box width reflects the first and third quartiles.

Computation times are shown in the box plot of Fig. 8 for
different pD values. The average computational time for a given
filter represents the duration the filter takes to process all scans
divided by the number of scans.

Compared to the MS-TCPHD and MS-MeMBer filters, the
MS-CPHD filter is the most computationally expensive because
each multi-sensor subset identified by the greedy subset identi-
fication algorithm is used to update all predicted Gaussians or
particle groups. In contrast, the MS-TCPHD and MS-MeMBer
filters only update the single predicted component that best
matches each multi-sensor subset (as measured by the score
function). In this simulation, the UKF updates are more expen-
sive than the SMC updates because they involve multiple matrix
inversions. Additionally, observe an increase of computational
requirements as pD increases. An increase of pD leads to an
increased average number of measurements per sensor which in
turn increases the computational cost of the greedy multi-sensor
subset selection method.

VII. CONCLUSION

In this paper a multi-sensor multi-Bernoulli filter is derived
for multi-target tracking. The proposed filter partitions the multi-
sensor observations into multi-sensor subsets which are asso-
ciated with the Bernoulli components. We describe computa-
tionally tractable approximate Gaussian mixture and particle
filter implementations. The filter is shown to have a reduced
computational load compared to the current implementations of
the multi-sensor CPHD filter and improved performance at low
probability of detection.

APPENDIX A
PROOF OF LEMMA IV.1

In this appendix, the time index is dropped to simplify no-
tation. Subscripts refer to sensors and superscripts refer to
Bernoulli components. For example, Wj

i denotes the subset of
measurements from sensor i associated with the PGFl of the j-th
Bernoulli component while W 0

i denotes the clutter subset from
sensor i. Note that W 0

i ,W 1
i , . . . ,WM

i form a quasi-partition of



the set of measurements Zi , i.e., the subsets are allowed to be
empty and �M

j=0W
j
i = Zi with � indicating the disjoint union

operator. The condition of at most one measurement per target

per sensor translates to having
∣∣∣Wj

i

∣∣∣ ≤ 1 for j = 1, . . . , M and

i = 1, . . . , s. Furthermore, whenever Wj
i = ∅, the correspond-

ing differential becomes δGj

δW j
i

[g] � Gj [g] [1, Eq. (11.191)].

For an arbitrary number of sensors k, we denote the ordered
collections Wj

1:k = (Wj
1 , . . . , W j

k ) for j = 0, . . . , M and by a

slight abuse of notation we introduce δGj

δW j
1 :k

� δk Gj

δW j
1 ···δW j

k

, where

each differential δ

δW j
i

is taken in gi(z) with respect to the mea-

surement set Wj
i . Let P1:k = (W 0

1:k ,W 1
1:k , . . . , WM

1:k ) and P1:k

be the set of all collections P1:k that respect �M
j=0W

j
i = Zi for

each sensor i = 1, . . . , k and |Wj
i | ≤ 1 for j = 1, . . . , M and

i = 1, . . . , s.
The proof of Lemma IV.1 involves differentiating the func-

tional (14) s times (i.e., with respect to sensors 1, . . . , s) and is
carried out in two different stages. Note that (14) is a product
of Bernoulli PGFls and clutter pgfs. In a first step, we em-
ploy mathematical induction and the general product rule [1,
Eq. (11.274)] in order to write the differentiation of (14) for an
arbitrary s as an expression involving the Bernoulli and clut-
ter derivatives. The differentiation of the individual Bernoulli
PGFls and clutter pgfs is carried out in a second step.

Induction base k = 1: The differentiation of the functional
(14), via the general product rule [1, Eq. (11.274)], for the first
sensor is given by

δF

δZ1
[g1:s , u] =

[
s∏

i=2

Ci(〈ci , gi〉)
]

×
∑

W 0
1 �W 1

1 � ··· �W M
1 =Z1

δC1

δW 0
1

δG1

δW 1
1
· · · δGM

δWM
1

. (30)

Note that the sum of (30) comprises additional terms corre-
sponding to partitions of the set Z1 that do not respect the at most
one measurement per target condition. However, these terms
vanish since the functionals Gj [u

∏s
i=1 φgi

] for j = 1, . . . , M
are linear with respect to the function g1(·). Employing the P1:k
and P1:k notation for k = 1, we can rewrite (30) as

δF

δZ1
[g1:s , u] =

[
s∏

i=2

Ci(〈ci , gi〉)
]

×
∑

P1 ∈P1
P1 =(W 0

1 ,W 1
1 ,...,W M

1 )

δC1

δW 0
1

δG1

δW 1
1
· · · δGM

δWM
1

. (31)

Induction step for k with k < s − 1: Consider that the differen-
tiation of the functional (14) with respect to the first k sensors

has the form

δkF

δZk · · · δZ1
=

[
s∏

i=k+1

Ci(〈ci , gi〉)
]

×
∑

P1 :k ∈P1 :k
P1 :k =(W 0

1 :k ,W 1
1 :k ,...,W M

1 :k )

[
k∏

i=1

δCi

δW 0
i

]
δG1

δW 1
1:k

· · · δGM

δWM
1:k

.

(32)

We are interested in the differentiation of (32) in gk+1(z) with
respect to the measurements of sensor Zk+1 , i.e.,

δ

δZk+1

{
δkF

δZk · · · δZ1

}
=

[
s∏

i=k+2

Ci(〈ci , gi〉)
]

×
∑

W 0
k + 1 �W 1

k + 1 � ··· �W M
k + 1 =Zk + 1

∑
P1 :k ∈P1 :k

[(
k+1∏
i=1

δCi

δW 0
i

)

δG1

δW 1
k+1δW

1
1:k

· · · δGM

δWM
k+1δW

M
1:k

]
, (33)

where the partitioning of the measurement set Zk+1 =
W 0

k+1 � W 1
k+1 � · · · � WM

k+1 is given by the general product

rule. Introducing Wj
1:k+1 = (Wj

1:k , W j
k+1) for j = 0, . . . , M

and extending the definition of quasi-partitions to P1:k+1 =((
W 0

1:k , W 0
k+1

)
, . . . ,

(
WM

1:k , WM
k+1

))
we can relabel the sums

in (33) to yield

δk+1F

δZk+1δZk · · · δZ1
=

[
s∏

i=k+2

Ci(〈ci, gi〉)
]

×
∑

P1 :k + 1 ∈P1 :k + 1

[
k+1∏
i=1

δCi

δW 0
i

]
δG1

δW 1
1:k+1

· · · δGM

δWM
1:k+1

. (34)

With the general form (34) for the k + 1 order differential, the
differentiation of F [g1:s , u] for s sensors is compactly written
as

δsF

δZsδZs−1 · · · δZ1
=

∑
P1 :s ∈P1 :s

[
s∏

i=1

δCi

δW 0
i

]
δG1

δW 1
1:s

· · · δGM

δWM
1:s

.

(35)
Next, we focus on the clutter and Bernoulli PGFl differentials.
Recall that Γi =

∏
z∈Zi

ci(z) and Ci(·)(n) is the n-th differen-
tial of the pgf of the cardinality of the clutter process and ci(·)
denotes the clutter pdf of sensor i. Additionally, we employ
the convention that whenever |W 0

i | = 0,
∏

z∈W 0
i
(·) = 1. From

[14], the derivative of the clutter pgf is given by

δ

δW 0
i

Ci(〈ci, gi〉) = C
(|W 0

i |)
i (〈ci, gi〉)

∏
z ∈W 0

i

ci(z)

= C
(|W 0

i |)
i (〈ci, gi〉) Γi∏

z∈Zi \W 0
i

ci(z)
. (36)

For a given measurement zi from the i-th sensor, by differen-
tiating Gj [u

∏s
i=1 φgi

] in gi with respect to the set Wj
i = {zi}



we obtain

δ

δWj
i

Gj [u
∏s

l=1 φgl
]

=
δ

δWj
i

[
1 − r(j ) + r(j )〈p(j ) , u

∏s
l=1φgl

〉
]

= r(j )
∫

u(x)p(j )(x)pi,D (x)hi(zi |x)
s∏

l=1
l �=i

φgl
(x)dx,

where we employed the differentiation rule for a linear func-
tional [1, Eq. (11.197)]. Let TW 1 :s = {(i, l)|zl

i ∈ Wi ∀ i =
1, . . . , s} denote the set of sensor and measurement indices
for all measurements in W1:s . Whenever Wj

1:s �= ∅1:s , the dif-
ferentiation of the Bernoulli PGFl leads to

δ

δWj
1:s

Gj [u
∏s

i=1φgi
] =

r(j )
∫

u(x)p(j )(x)
∏

(i,l) ∈T
W

j
1 :s

pi,D (x)hi(zl
i |x)

×
∏

(i,∗) /∈T
W

j
1 :s

φgi
(x)dx. (37)

In addition, note the following equality:∏s
i=1

∏
z∈Zi \W 0

i
ci(z) =

∏M
j=1

∏
(i,l)∈T

W
j
1 :s

ci(zl
i).

Introducing ϕj

W j
1 :s

[g1:s , u] as

ϕj

W j
1 :s

[g1:s , u] �
δ

δW j
1 :s

Gj [u
∏s

i=1φgi
]∏

(i,l) ∈T
W

j
1 :s

ci(z
l
i)

(38)

and with the result of (36) we can write (35) as

δsF

δZsδZs−1 · · · δZ1
[g1:s , u] =

[
s∏

i=1

Γi

]

×
∑

P1 :s ∈P1 :s

[
s∏

i=1

C
(|W 0

i |)
i (〈ci, gi〉)

]⎡
⎣ M∏

j=1

ϕj

W j
1 :s

[g1:s , u]

⎤
⎦ .

(39)

Additionally, let KP1 :s �
∏s

i=1 C
(|W 0

i |)
i (0) and ϕj

W j
1 :s

[u] �
ϕj

W j
1 :s

[0, . . . , 0, u]. Then evaluating (39) in g1 = 0, . . . , gs = 0
yields

δF

δZ1:s
[0, . . . , 0, u] =

[
s∏

i=1

Γi

] ∑
P1 :s ∈P1 :s

KP1 :s

⎡
⎣ M∏

j=1

ϕj

W j
1 :s

[u]

⎤
⎦ ,

which represents the main result (18) of Lemma IV.1. �

APPENDIX B
PROOF OF THEOREM IV.2

The PHD function corresponding to the updated posterior, as
given by (5) and (15), is

Dk+1|k+1(x) =
δs + 1 F

δxδZ1 , k + 1 ···δZs , k + 1
[0, 0, . . . , 0, u]

δs F
δZ1 , k + 1 ···δZs , k + 1

[0, 0, . . . , 0, 1]

∣∣∣∣∣∣
u=1

.

The derivative of the functional F [·] with respect to the test
function u(·) yields

δ2F

δxδZ1:s,k+1
[0, . . . , 0, u]

∣∣∣∣
u=1

=

[
s∏

i=1

Γi

] ∑
P1 :s ∈P1 :s

KP1 :s

δ

δx

⎧⎨
⎩

M∏
j=1

ϕj

W j
1 :s

[u]

⎫⎬
⎭

∣∣∣∣∣∣
u=1

=

[
s∏

i=1

Γi

] ∑
P1 :s ∈P1 :s

KP1 :s

⎡
⎣ M∏

j=1

ϕj

W j
1 :s

[1]

⎤
⎦

×
M∑

j=1

ρj

W j
1 :s

(x)p(j )(x), (40)

where ρj

W j
1 :s

(x) is defined in (20) and ϕj
W 1 :s

[1] is assumed non-

zero for ∀ j and ∀ W1:s . �

APPENDIX C
GREEDY SUBSET SELECTION ALGORITHM

In Algorithm 1, we present the pseudo-code for the greedy
selection algorithm employed to select at most Wmax + 1 best-
scoring subsets for each of the Mk+1|k predicted Bernoulli
components. The inputs of the algorithm are given by the param-
eters of the predicted set of Bernoulli components, the sensor
measurements and the maximum number of subsets Wmax. The
algorithm outputs the multi-sensor subsets Wj,l

1:s with scores
βj,l

1:s for l = 1, . . . , nj
s and each j = 1, . . . , Mk+1|k . Note the

independent processing of the predicted Bernoulli components.
For each Bernoulli component, the sensors are processed se-
quentially (line 4). The mi measurements of the i-th sensor are
used to branch the existing L partial subsets into L × (mi + 1)
candidate subsets U (lines 6 − 15) and evaluated via βj

1:i (line
13). The path corresponding to the all empty subset U(1) is
always retained (line 17). The non-empty subsets are sorted
(line 18) in decreasing order of their scores w, while the sort-
ing function sort returns the sorting indices. Finally, at most
Wmax subsets are retained from the non-empty candidate sub-
sets U(2), . . . , U((mi + 1)L) on lines 19 − 20. The complexity
of Algorithm 1 is O(Mk+1|kWmax

∑s
i=1 mi), where the com-

plexity of the sorting operation was considered negligible with
respect to the complexity of L × (mi + 1) scoring operations,
i.e, computation of ϕ

(j )
U [1] which depends on the implementa-

tion type (Kalman, EKF, UKF or particle filter).



Algorithm 1: Greedy subset selection.
1: function Greedy_subset_selection

({r(j )
k+1|k , p

(j )
k+1|k (x)}Mk + 1 |k

j=1 , {Zi,k+1}s
i=1 ,Wmax)

2: for j ← 1 to Mk+1|k do
3: Initialize path: L ← 1, Wj,1

0 ← [ ]
4: for i ← 1 to s do
5: U ← [ ], w ← [ ]
6: for n ← 0 to mi do
7: for l ← 1 to L do
8: if n = 0 then
9: U(l + nL) ←

(
Wj,l

1:i−1 , ∅
)

10: else
11: U(l + nL) ←

(
Wj,l

1:i−1 , {zn
i }

)
12: end if
13: w(l + nL) ← ϕ

(j )
U (l+nL) [1]

14: end for
15: end for
16: L ← min(Wmax, (mi + 1)L − 1)
17: βj,1

1:i ← w(1), Wj,1
1:i ← U(1)

18: sort idx ← sort(w(2), . . . , w(end))
19: Wj,l+1

1:i ← U(sort idx(l) + 1) for
∀l = 1, . . . , L

20: βj,l+1
1:i ← w(sort idx(l) + 1) for

∀l = 1, . . . , L
21: end for
22: nj

s ← L + 1
23: end for
24: return {(βj,l

1:s ,W
j,l
1:s)|l = 1, . . . , nj

s} for
∀j = 1, . . . , Mk+1|k

25: end function

APPENDIX D
GREEDY PARTITION SELECTION ALGORITHM

In Algorithm 2, we present the pseudo-code for the greedy se-
lection algorithm employed to select at most Pmax best-scoring
partitions. The inputs of the algorithm are the multi-sensor sub-
sets and their associated scores for each predicted Bernoulli
component and the maximum number of desired partitions
Pmax. The algorithm returns the set of selected partitions with
their scores α1:Mk + 1 |k . The predicted Bernoulli components are
sequentially processed (line 3) while existing selected paths
P1:j−1 are branched into candidate paths P1:j by appending
multi-sensor subsets from the j-th Bernoulli component (lines
5 − 13). Note that only a non-overlapping multi-sensor subset
is added to given partition, i.e., that does not have any mea-
surements in common with the subsets already contained in
the respective partition (line 7). In Algorithm 3, we present the
pseudo-code for the algorithm that verifies the overlap condi-
tion. The candidate partitions are scored at line 9 and a sorting
operation is employed to retain at most Pmax high-scoring parti-
tions (lines 16 − 17). In Algorithm 3 on line 6, we verify if the
i-th sensor measurement zi contained in W1:s is also contained
in the multi-sensor subset Q

(n)
1:s . The worst case computational

complexity of Algorithm 3 is O(sMk+1|k ), which leads to a

Algorithm 2: Greedy partition selection algorithm.
1: function Greedy_partition_selection
({(βj,l

1:s ,W
j,l
1:s)|l = 1, . . . , nj

s}Mk + 1 |k
j=1 , Pmax)

2: Initialize partitions: nP ← 1, P 1
0 ← [ ], α1

0 ← 1
3: for j ← 1 to Mk+1|k do
4: Initialize path: w ← [ ], Q ← [ ], n ← 1
5: for i ← 1 to nP do
6: for l ← 1 to nj

s do

7: if ¬overlap
(
P i

1:j−1 ,W
j,l
1:s

)
then

8: Q(n) ←
(
P i

1:j−1 ,W
j,l
1:s

)
9: w(n) ← αi

1:j−1β
j,l
1:s

10: n ← n + 1
11: end if
12: end for
13: end for
14: nP ← min(Pmax, n − 1)
15: sort idx ← sort(w(1), . . . , w(n − 1))
16: P i

1:j ← Q(sort idx(i)) for i = 1, . . . , nP

17: αi
1:j ← w(sort idx(i)) for i = 1, . . . , nP

18: end for
19: return {(αi

1:Mk + 1 |k , P i
1:Mk + 1 |k )}nP

i=1
20: end function

Algorithm 3: Pseudo-code of function evaluating the pos-
sible overlap between a partition and a subset.

1: function overlap
(
P1:j−1 =

(
Q

(1)
1:s , . . . , Q

(j−1)
1:s

)
,

W
(j )
1:s = (W1 , . . . , Ws)

)
2: flag ← 0, n = 0
3: while (¬flag) ∧ (n < j − 1) do
4: n ← n + 1
5: for i ← 1 to s do
6: if (Wi �= ∅) ∧ (Wi = Q

(n)
i ) then

7: flag ← 1
8: end if
9: end for

10: end while
11: return flag
12: end function

complexity of O(Pmax Wmax sM 2
k+1|k ) for Algorithm 2. Note

that the computational complexity of the sorting operation is
negligible with respect to the complexity of PmaxWmax repeated
calls to the function overlap.

REFERENCES

[1] R. Mahler, Statistical Multisource-Multitarget Information Fusion.
Norwood, MA, USA: Artech House, 2007.

[2] R. P. S. Mahler, “Multitarget Bayes filtering via first-order multitarget
moments,” IEEE Trans. Aerosp. Electron. Syst., vol. 39, no. 4, pp. 1152–
1178, Oct. 2003.

[3] B.-T. Vo, B.-N. Vo, and A. Cantoni, “The cardinality balanced multi-
target multi-Bernoulli filter and its implementations,” IEEE Trans. Signal
Process., vol. 57, no. 2, pp. 409–423, Feb. 2009.



[4] E. Baser, T. Kirubarajan, M. Efe, and B. Balaji, “Improved multi-target
multi-Bernoulli filter with modelling of spurious targets,” IET Radar,
Sonar Navig., vol. 10, no. 2, pp. 285–298, 2016.

[5] R. P. S. Mahler, “The multisensor PHD filter: I. General solution via
multitarget calculus,” Proc. SPIE, vol. 7336, Apr. 2009, Art. no. 73360E.

[6] R. P. S. Mahler, “The multisensor PHD filter: II. Erroneous solution via
Poisson magic,” Proc. SPIE, vol. 7336, Apr. 2009, Art. no. 73360D.

[7] E. Delande, E. Duflos, D. Heurguier, and P. Vanheeghe, “Multi-target
PHD filtering: Proposition of extensions to the multi-sensor case,” Res.
Rep. RR-7337, INRIA, Jul. 2010.

[8] E. Delande, E. Duflos, P. Vanheeghe, and D. Heurguier, “Multi-sensor
PHD: Construction and implementation by space partitioning,” in Proc.
IEEE Int. Conf. Acoust., Speech, Signal Process., Dallas, TX, USA, Mar.
2011, pp. 3632–3635.

[9] R. Mahler, “Approximate multisensor CPHD and PHD filters,” in Proc.
Int. Conf. Inf. Fusion, Edinburgh, U.K., Jul. 2010, pp. 1–8.

[10] S. Nagappa, D. E. Clark, and R. Mahler, “Incorporating track uncertainty
into the OSPA metric,” in Proc. Int. Conf. Inf. Fusion, Chicago, IL, USA,
Jul. 2011, pp. 1–8.

[11] R. P. S. Mahler, Advances in Statistical Mutisource-Multitarget Informa-
tion Fusion. Norwood, MA, USA: Artech House, 2014.

[12] C. Fantacci and F. Papi, “Scalable multisensor multitarget tracking using
the marginalized δ-GLMB density,” IEEE Signal Process. Lett., vol. 23,
no. 6, pp. 863–867, Jun. 2016.

[13] W. Liu, B. Wei, and S. Zhu, “A multi-sensor generalized labeled multi-
Bernoulli filter via extended association map,” in Proc. Int. Conf. Control,
Autom. Inf. Sci., Changshu, China, Oct. 2015, pp. 225–230.

[14] S. Nannuru, S. Blouin, M. Coates, and M. Rabbat, “Multisensor CPHD
filter,” IEEE Trans. Aerosp. Electron. Syst., vol. 52, no. 4, pp. 1834–1854,
Aug. 2016.

[15] M. Jiang, W. Yi, R. Hoseinnezhad, and L. Kong, “Distributed multi-sensor
fusion using generalized multi-Bernoulli densities,” in Proc. Int. Conf. Inf.
Fusion, Berlin, Germany, Jul. 2016, pp. 1332–1339.

[16] B. Wang, W. Yi, R. Hoseinnezhad, S. Li, L. Kong, and X. Yang, “Dis-
tributed fusion with multi-Bernoulli filter based on generalized covariance
intersection,” IEEE Trans. Signal Process., vol. 65, no. 1, pp. 242–255,
Jan. 2017.

[17] R. Mahler, “Optimal/robust distributed data fusion: A unified approach,”
in Proc. SPIE, vol. 4052, Apr. 2000, Art. no. 128.

[18] D. Clark, S. Julier, R. Mahler, and B. Ristić, “Robust multi-object sen-
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2002, where he is currently an Associate Professor
in the Department of Electrical and Computer Engi-
neering. He was a research associate and a Lecturer
at Rice University, TX, USA, from 1999 to 2001.
From 2012 to 2013, he worked as a Senior Scientist

at Winton Capital Management, Oxford, U.K. He was an Associate Editor of
IEEE TRANSACTIONS ON SIGNAL PROCESSING from 2007 to 2011 and a Senior
Area Editor for IEEE SIGNAL PROCESSING LETTERS from 2012 to 2015. In
2006, his research team received the NSERC Synergy Award in recognition of
their successful collaboration with Canadian industry, which has resulted in the
licensing of software for anomaly detection and Video-on-Demand network op-
timization. His research interests include communication and sensor networks,
statistical signal processing, and Bayesian and Monte Carlo inference. His most
influential and widely cited contributions have been on the topics of network to-
mography and distributed particle filtering. His contributions on the latter topic
received awards at the International Conference on Information Fusion in 2008
and 2010.

Michael Rabbat (S’02–M’07–SM’15) received the
B.Sc. degree from the University of Illinois, Urbana-
Champaign, IL, USA, in 2001, the M.Sc. de-
gree from Rice University, Houston, TX, USA, in
2003, and the Ph.D. degree from the University of
Wisconsin, Madison, WI, USA, in 2006, all in
electrical engineering. He joined McGill University,
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