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Abstract—In this paper, optimal surveillance mission plans
are developed to cover disjoint areas of interest (AOIs) over
an extended time horizon using multiple aerial vehicles. AOIs
to be covered are divided into a number of cells. To promptly
update information collected from AOIs and to ensure persistent
surveillance, each cell is to be revisited within a time slot.
Joint path planning and temporal scheduling is formulated
as a combinatorial optimization with the proposal of novel
objective functions: 1) maximizing the minimum number of
non-repeatedly covered cells in a sliding-window fashion and 2)
maximizing the total number of covered cells in the mission plan.
A multi-objective evolutionary algorithm (MOEA) with a specific
chromosome representation and custom genetic operators, in
which the constraint that each cell be revisited within a time slot
is transformed into the third objective to handle infeasibility,
is developed. The initial single-period paths are generated by
solving a series of orienteering problems. The initial population is
obtained by connecting these single-period paths and selecting the
take-off time for each flight. Three mutation moves are proposed
to enable revisiting in a single-period path and rescheduling of
take-off time. The solutions converge in the MOEA and are
selected by a weighted-sum model according to user preferences
in decision making. Simulation results on different mission
scenarios and different criteria show the superiority of the
proposed algorithm. The algorithm is done offline ahead of the
missions and requires modest computational resources.

Index Terms—Disjoint area surveillance, Persistent surveil-
lance, Path planning, Temporal scheduling, Multi-objective opti-
mization.

ACRONYMS

AOI Area of interest

CPP Coverage path planning

EA Evolutionary algorithm

ISR Intelligence, surveillance and reconnaissance

MOEA Multi-objective evolutionary algorithm

MOO Multi-objective optimization

MTZ-SEC Miller-Tucker-Zemlin subtour elimination

constraint

NSGA Non-dominated sorting genetic algorithm

OP Orienteering problem

POI Point of interest

TSP Travelling salesman problem

UAV Unmanned aerial vehicle

Fig. 1: Mission planning scenario: two aircraft conduct

intelligence-gathering over five AOIs.

I. INTRODUCTION

In order to have the capabilities to observe, analyze, record

and report activities in disjoint areas of interest (AOIs), it is

often necessary to upgrade expensive airborne surveillance

systems to maximize effectiveness [19, 23]. Technological

advances in manned or unmanned vehicles and modernized

sensor sets have enabled patrolling frequency to be increased

and surveillance areas expanded. Efficient mission plans have

become critical for intelligence, surveillance and reconnais-

sance (ISR) operations [23].

The purpose of this study is to derive a mission plan for

multiple aircraft over an extended time horizon (e.g., 48 hours)

in order to maximize the information collected over a number

of disjoint AOIs (as shown in Fig. 1). It is required that

regions inside AOIs be revisited within a given time slot

(e.g., 8-hour slot). The spatio-temporal control of aircraft for

a given planning horizon is determined to provide prompt and

useful information as well as to achieve persistent and effective

surveillance.

Very few studies in coverage path planning (CPP) [4] or path

planning using coverage pattern templates [12, 18, 19] have

looked at multiple vehicles covering disjoint target regions,

which is a common question in surveillance missions. Similar

to [19], our problem includes disjoint AOIs, path planning

inside AOIs, and aircraft take off from and land at the same

base. However, in our study, an AOI can be of any shape

and the path inside an AOI does not necessarily follow the
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strips as in [19]. Instead of using coverage pattern templates,

paths for one flight are generated by a heuristic approach.

In addition, multiple flights for one aircraft in the mission

plan are considered because each aircraft may take off and

land multiple times within the mission time horizon, which is

referred to as multi-period path planning [2, 32].

The shortest path or the minimum-cost vehicle route is

always the objective in the travelling salesman problem (TSP),

vehicle routing problem (VRP) and their variants [1, 24, 31].

In contrast, in many surveillance mission planning scenarios,

the mission duration is given, and the main objective is to max-

imize the information collected within this fixed time [11, 23].

In this study, we concentrate on information maximization

given the mission time. The orienteering problem (OP, also

known as the selective TSP) maximizes the total collected

score on a path that visits some of the vertices in limited

length [34]. However, our problem cannot be solved by the

existing approaches in OPs or turning the cost minimization

to a reward maximization in VRPs. The main reasons are as

follows:

1) Due to the nature of dynamic surveillance environment,

new threats may emerge at any time and the objects of

suspicion may evade, which requires periodic or aperiodic

revisits of AOIs to update information [18]. Aircraft should

make full use of their capacity to survey and not be satisfied

with visiting AOIs only once. Therefore, revisit of an area

by the same or different aircraft should be allowed. However,

every vertex is visited at most once and the score of each

vertex can be collected by one vehicle at most in OP [32].

In multiple travelling salesman problems (mTSPs) or VRPs,

every vertex is visited exactly once [1, 24].

2) In the proposed problem, collecting information requires

searching inside AOIs by covering different areas (as shown

in Fig. 1), which not only takes time but also requires path

planning inside AOIs. Even though service time is needed

when the vehicle visits a customer in some variants of VRP

[10], path planning is not conducted within this service time.

3) The proposed problem cannot be solved by simultane-

ously maximizing travel time (the cost of paths) inside AOIs

and minimizing travel time outside AOIs, because each region

inside AOIs is required to be revisited within a given time slot.

The topology of mission scenario and the mission criteria lead

to new objectives and constraints (Sections II and III), which

further generate new solution techniques (Section IV).

Note that the information collected in this paper is evaluated

by the coverage of AOIs [11, 23] rather than by detecting and

tracking targets [25]. Paths are planned offline even if there is

no target in the AOIs. Online search and tracking is the topic

of a separate publication.

A path planning method for a single unmanned aerial vehi-

cle (UAV) is proposed to maximize the information collected

(based on images captured by a camera at the bottom of the

UAV) from desired regions while avoiding flying over forbid-

den regions in [11]. A multivehicle team planning approach

is described to maximize the target coverage (number of cells

scanned in the region of interest) for surveillance missions

[23]. In our paper, the sensing model is similar to what is

described in [11, 16, 23]. AOIs to be covered are divided into

a number of cells. However, we use two objectives to evaluate

the information collected: 1) the number of non-repeatedly

covered cells in a sliding-window fashion [5] and 2) the total

number of covered cells in the mission plan. Maximizing these

objectives not only makes full use of aircraft capacity to cover

AOIs but also conquers the problem described in [11] that,

once an aircraft enters an AOI, it remains inside instead of

flying to other AOIs. Moreover, the surveillance scenarios in

our study are more realistic and complicated than those in

[11, 23].

In this paper, a sequence of cells is selected to generate a

path for one flight (namely, a single-period path) that covers

these cells in turn. Since aircraft take off and land multiple

times in the mission, single-period paths are connected head

to tail with a given minimum downtime (corresponding to

aircraft maintenance and refueling time) and an adjustable

wait time between two flights, by which paths for multiple

flights (namely, multi-period paths) are generated. The mission

plan is a collection of multi-period paths for all aircraft, in

which paths are planned and the take-off time for each flight

is determined.

We formulate the proposed problem as a combinatorial op-

timization. A multi-objective evolutionary algorithm (MOEA)

with a specific chromosome representation and custom genetic

operators, which not only selects the paths but also determines

the take-off time schedule and enables revisiting in each flight,

is developed. The constraint that each cell be revisited within

a time slot is transformed into an objective in the evolutionary

algorithm (EA).

We believe that our path planning and scheduling yields

many original contributions.

1) The proposed objective functions provide new evaluation

metrics for coverage path planning in surveillance missions,

which promptly update information collected from different

areas and make full use of aircraft capacity to cover AOIs.

2) The optimization formulation of multi-period path plan-

ning and scheduling, which allows revisiting in a single-

period path, is first provided. Path selection and take-off time

determination are jointly considered. Revisit of cells in single-

period paths and scheduling of take-off time are incorporated

in the objectives and constraints, which makes the formulation

different from the existing ones in VRPs, OPs and CPPs

[12, 24, 34].

3) A new chromosome structure is given to represent the

mission plan, which integrates the path selection and the

take-off time decision so that multi-period path planning and

temporal scheduling can be effectively handled in the MOEA.

In the EA, the crossover is performed based on the unit (gene

segment) of single-period paths rather than the unit of cells.

Three custom moves in the mutation operator, namely Remove,
Insert and Reschedule, to enable revisit of cells and scheduling

of take-off times, are developed. Because of the chromosome

structure and the genetic operators, the proposed algorithm

differs from the existing ones in VRPs, OPs and CPPs.

4) The proposed algorithm is intelligent not only because

the chromosome structure and the custom genetic operators

are used, but also because the final solution can be selected

from a set of mission plans provided by the multi-objective
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Fig. 2: Illustration of AOIs, cells, POIs, and a flight path.

optimization (MOO) according to the user preferences [8].

The proposed solution framework can be used in a variety

of surveillance problems, even though most of the surveil-

lance mission planning problems are application-dependent or

environment-dependent [11].

The remainder of the paper is structured as follows. Section

II outlines the preliminary information needed to understand

the mission scenario and the objectives. Section III presents

the formulation of this optimization problem. The solution

technique is developed in Section IV. Simulation results are

given in Section V. The conclusions are discussed in Section

VI.

II. PROBLEM DESCRIPTION

A. Mission Scenario

The geographic AOI can be of any shape, but the geograph-

ical and dimensional information about AOIs are known a

priori. Each AOI to be searched is divided into a number of

cells as shown in Fig. 2. The shape of a cell is determined by

the sensor coverage in one scan: for example, the sensing area

of an airborne camera facing downward is designed to be a

circular region [16] or a rectangular region [11, 18]. Note that

a variety of coverage sweep patterns can be used for a cell

and that the shape of a cell is not constrained to be circular as

shown in Fig. 2 [18, 23]. However, AOI segmentation is not

the focus of this paper. The center of a cell is denoted as a

point of interest (POI). A cell is considered entirely covered

if its center (POI) is visited by an aircraft. In this surveillance

problem, we assume that any POI can be visited by at least

one aircraft.

The assets consist of a given number of patrolling aircraft.

Each aircraft is characterized by its speed of travel, a fixed al-

titude above ground level, a maximum flight time (constrained

by fuel), a minimum and a maximum downtime between two

successive flights. The above attributes are given for each

aircraft and need not be same for all aircraft. Aircraft with

the same speed and the same constraints on flight time and

downtime are of the same type. Aircraft are to take off and

land from/at the same base station, as shown in Fig. 1 and Fig.

2. It is assumed that flight paths are collision-free. For the sake

of simplicity, no atmospheric condition, such as wind [26], is

taken into consideration, but the inclusion of environmental

conditions does not change the overall problem formulation.

There is a camera at the bottom of the aircraft to capture

images from the AOIs. The coverage of the camera is studied

rather than the detections in images (the measurements). Sen-

sor capabilities (e.g., scan angle, scan direction and coverage

radius) are assumed to be constant during the mission time for

each aircraft and same for all aircraft. Therefore, the cells in

AOIs are of the same size.

Base stations are located out of AOIs (see Fig. 1) and their

locations are known a priori. An aircraft has already been

assigned to a base station. Each base station has one or more

aircraft. In the following, when we refer to an aircraft, the

corresponding base station is designated and specified.

A mission time is given and each aircraft should land at the

base by the end of the mission plan. An aircraft may take off

and land multiple times in the mission horizon.

The mission objective is to maximize information collected

via AOI coverage: aircraft should strive to cover as many

cells as possible and make full use of their flight time to

cover visited or unvisited cells. The persistent monitoring

of a particular AOI and the survey of different AOIs are

both desired. However, it is always difficult to achieve the

above two goals simultaneously when assets are limited. To

address this, a revisit requirement to ensure prompt update of

surveillance information is used: each cell inside AOIs is to be

covered within a given time interval, e.g., within each 8-hour

slot.

B. Mission Plan

A flight is one sortie of an aircraft, which consists of a

sequence of waypoints (bases and POIs) that starts from a

base, visits a group of POIs and turns back to the same base

from which the aircraft departs, as shown in Fig. 2. A flight is

also referred to as a single-period path (sp) in this paper. For

one aircraft, there are multiple flights in the mission plan. The

connection of multiple single-period paths with the take-off

time for each flight forms a multi-period path (mp). A mission

plan consists of the multi-period path for each aircraft. The

paths are to be planned and the take-off time schedule is to

be determined for each mission plan, in which aircraft survey

AOIs cooperatively in space and time.

The visit time point of each POI is recorded along with

the planned path, which forms a visiting time sequence. In

other words, the mission planner registers aircraft’s arrival time

at each POI. Once the mission plan is derived, the multiple

visits of one POI by all aircraft correspond to a set of visit

time, which can be sorted in a chronological order. Then the

revisit time interval of this POI can be calculated. Based on the

planned paths and the visit time of each POI, the performance

of the mission plan can be evaluated, which will be described

as follows.

C. Mission Objective Evaluation

Since the cells are of the same size, we use the number

of covered cells (visited POIs) to evaluate the coverage. The
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mission objective is evaluated by two metrics: 1) the number

of non-repeatedly visited POIs in a sliding-window fashion

(referred to as the revisit-unrepeated metric), and 2) the total

number of visited POIs in the mission plan (referred to as the

revisit-total metric). These two metrics are proposed based on

the following assumptions:

1) Even though the mission lasts for a very long time, the

user wants to know the overall situation in each AOI as soon

as possible. Therefore, covering different POIs/AOIs is more

important than continuously covering a particular POI/AOI.

2) The probability of new information gathered from a

particular POI increases with time. Revisiting a POI con-

tributes to the information collected. However, revisiting a POI

immediately contributes little to the collected information [11].

If an aircraft still has the capacity (e.g., fuel) to cover cells after

all POIs are visited, it should continue covering to achieve a

greater number of revisited POIs.

Given a mission plan, the revisit-unrepeated metric is

evaluated in a sliding window fashion [5]. The initial time

of the sliding window is the start time of the mission. The

size and the step length of the sliding window are fixed,

where the length is much smaller than the mission time. The

window is moved over the time horizon to evaluate the revisit-
unrepeated metric. In each time window, revisit to a POI does

not increase the revisit-unrepeated metric value. Therefore, an

aircraft should visit as many different POIs as possible and

avoid revisiting within the window if maximizing the revisit-
unrepeated metric is used as the only objective. However,

if an aircraft has enough fuel after all AOIs are covered, it

will return to the base instead of fully using its capacity to

cover when maximizing the revisit-unrepeated metric is its

only objective.

Since the revisit-unrepeated metric cannot direct aircraft to

revisit POIs and make full use of the surveillance capabilities

of aircraft, the revisit-total metric is developed as a comple-

ment to the revisit-unrepeated metric. All visited POIs in the

mission plan are counted in the revisit-total metric. However,

if maximizing the revisit-total metric is the only objective,

aircraft will keep surveying the nearest AOI without the need

to leave it [11]. The result is that no information is gathered

from other AOIs in the mission plan. Thus, both the revisit-
unrepeated metric and the revisit-total metric are needed.

III. PROBLEM FORMULATION

A. Notations and Definitions

The proposed problem is defined on a complete directed

graph comprising a set V of vertices or waypoints (that

represents the physical locations of POIs and bases) together

with a set of edges connecting each pair of vertices. The set V
is further partitioned into two subsets: V = S∪B, where S is

the set of POIs to be visited and B is the set of base stations.

The set of aircraft is denoted as A and the set of AOIs as E.

A list of symbols and notations used in this paper is given in

Tabel I.

The decision variables are the take-off time and the path

selection for each flight. Let tb1aw denote the take-off time of

aircraft a in its w-th flight from base ba, where w ∈ Wa

TABLE I: Symbols and Notations

Symbol Description

ba base for aircraft a (known a priori), a ∈ A,
ba ∈ B

Se set of POIs inside AOI e, e ∈ E, Se ⊆ S

va speed of aircraft a

dij travel distance (by the shortest path) from ver-

tex i to vertex j, {i, j} ∈ V

Cija travel time from vertex i to vertex j by aircraft

a. Cija = dij/va

T f
a the maximum flight time of aircraft a

T dmin
a the minimum downtime of aircraft a between

two successive flights

T dmax
a the maximum downtime of aircraft a between

two successive flights

Th a time slot aircraft landing at base

Tm mission time

Tr required revisit time interval: each POI should

be revisited within Tr

Tc sliding window size

δ step length of the sliding window

Wa set of flights of aircraft a

NW
a total number of flights of aircraft a (the cardi-

nality of Wa, |Wa| = NW
a )

Fiaw set of visit time indices of vertex i in the w-th
flight of aircraft a, i ∈ V , a ∈ A, w ∈ Wa

Ki set of visit time indices of POI i in the mission

plan by all aircraft, i ∈ S

and 0 ≤ tb1aw < Tm (the mission start time is used as

the zero time reference). Since once the aircraft is specified,

the corresponding base of this aircraft is also identified, the

subscript of ba is omitted in tb1aw. In the following, we will

omit the subscript of ba when a and ba are both in the notation.

Let xiκjμaw denote the path selection binary decision variable:

xiκjμaw =

⎧⎪⎪⎨
⎪⎪⎩
1 if the κ-th visit to vertex i is followed

by the μ-th visit to vertex j in the w-th
flight of aircraft a, i �= j

0 otherwise

(1)

When the path selection decision variables xiκjμaw are de-

termined, a path is formed [19, 28]. In the proposed problem,

a single-period path for the w-th flight of aircraft a at base ba
is defined as:

spaw ={ba,
POIs︷ ︸︸ ︷

k, · · · , l, ba | xiκjμaw,

∀κ ∈ Fiaw, μ ∈ Fjaw, {i, j} ∈ V },
(2)

where the starting vertex and the ending vertex are the same
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base station ba, κ and μ are the visit time indices of POIs in

a single flight.
In the proposed problem, one POI is allowed to be visited

more than once in a single-period path. Moreover, an aircraft

can fly from POI i to POI j more than once in a single flight

to revisit POIs. If xij = 1 is used to denote a visit to vertex

i is followed by a visit to vertex j [24, 34], the notation xij

cannot refer to the multiple path selections from vertex i to

vertex j caused by revisiting in a single-period path. Hence,

the classical notations in VRPs [24] will lead to ambiguity in

the formulation of our problem. To address this, {γ, η, κ, μ}
are used to denote the visit time indices of POIs. The visit of

a POI becomes unique in a single-period path, when the visit

time index is associated with the POI.
When the planned single-period path, take-off time, speed

of aircraft and the locations of vertices are given, the visit time

of POIs in this path and the landing time at the base can be

computed. The κ-th visit time of POI i by aircraft a’s w-th
flight is denoted as tiκaw, where κ ∈ Fiaw. When i = ba and

κ = 1, the notation tiκaw becomes tb1aw, which is the take-off

time. The landing time of aircraft a at base ba is defined as

tb2aw, which also conforms to the format of notation tiκaw
(when i = ba, κ = 2). The formulation of tiκaw will be

provided in Section III-B.
The multi-period path for aircraft a is defined as mpa =

{spaw, tb1aw, ∀w ∈ Wa}. The total number of flights NW
a

of aircraft a is determined when each flight is planned and

connected, and is not known a priori. The take-off time

schedule for every aircraft in the mission plan is denoted as

T0 = {tb1aw, ∀a ∈ A, ba ∈ B, w ∈ Wa}. The mission plan

is P = {mpa, ∀a ∈ A}. Therefore, a mission plan is formed

by determining the path selection and take-off time decision

variables for each flight. These decision variables enable the

spatio-temporal cooperation of aircraft to cover AOIs and

jointly affect the performance of the mission.

B. Problem Formulation
We first provide the calculation for the visit time and the

revisit time interval of a POI, and then derive the formula-

tions for the objective functions. Finally, the constraints are

discussed.
For the w-th flight of aircraft a, suppose the generated path

is spaw and the corresponding take-off time is tb1aw. Consider
this path only and ignore the cooperation across multiple

aircraft. The time point that POI k is visited by aircraft a
for the γ-th time in this path is:

tkγaw = tb1aw +
∑
i∈V

∑
j∈S

∑
κ∈Fiaw

∑
μ∈Fjaw

Cijaxiκjμaw

+
∑
l∈V

∑
η∈Flaw

Clkaxlηkγaw,
(3a)

{uiκaw, ujμaw, ulηaw} < ukγaw,

∀a ∈ A, ba ∈ B, w ∈ Wa, {i, l} ∈ V, {j, k} ∈ S,

κ ∈ Fiaw, μ ∈ Fjaw, η ∈ Flaw, γ ∈ Fkaw,

(3b)

where the additional real variables

{uiκaw, ujμaw, ulηaw, ukγaw} in (3b) are used to order all

vertices [27], which follow the Miller-Tucker-Zemlin subtour

elimination constraints (MTZ-SECs) [22]. The formulations

of MTZ-SECs using {uiκaw, ujμaw, ulηaw, ukγaw} will be

provided later in this section. The total number of visited

POIs (with repeat) in spaw can be expressed as

naw =
∑
i∈V

∑
j∈S

∑
κ∈Fiaw

∑
μ∈Fjaw

xiκjμaw. (4)

The variable uiκaw satisfies

ui1aw = 1, i = ba, (5a)

2 ≤ uiκaw ≤ naw + 1, i ∈ S, κ ∈ Fiaw, (5b)

and the variable uiκaw denotes the position of vertex i in path

spaw, while the visit time index of vertex i is κ [27].

The visit time point of each POI in a mission plan can be

calculated by (3) when flights for all aircraft are planned. The

visited POIs in the mission plan can be sorted by their visit

time in chronological order. For POI i, the chronological set

of visit times by all aircraft in the mission plan can be formed,

which is denoted as Ki.

Let UiεP denote the position of POI i in mission plan P ,

where the visit time index of POI i is ε (ε ∈ Ki). Let t(UiεP )
denote the time point at position UiεP , which can be obtained

after sorting tiκaw for all a ∈ A, ba ∈ B, w ∈ Wa, κ ∈ Fiaw.

The revisit time interval between the (ε− 1)-th visit and the

ε-th visit of POI i in the mission plan is expressed as:

rvt(i, ε) = t(UiεP )− t(Ui(ε−1)P ), ε > 1, ε ∈ Ki, (6)

where rvt(·) stands for the revisit time interval. The first visit

time of POI i is denoted as rvt(i, 1) = t(Ui1P ), ∀i ∈ S. It is
required that the first visit of each POI happen within Tr after

the mission starts.

In the following, we provide the evaluation of the revisit-
unrepeated metric in the sliding windows.

A sliding window with size Tc and step length δ moves

over the mission time horizon. The total number of windows

is Nτ = (Tm−Tc)/δ+1. The value of δ should guarantee that

the end time of the last evaluation window is the mission time.

Usually, δ is less than Tc so that all visited POIs in the mission

plan are included in the sliding windows. The τ -th evaluation

window starts from (τ −1)δ and ends at Tc+(τ −1)δ, where
τ = 1, 2, · · · , Nτ .

The visited POIs in mission P , whose visit time drops into

the τ -th evaluation window, is the set of POIs under test:

Q(τ) ={∀i ∈ S | (τ − 1)δ ≤ t(UiεP ) ≤ Tc + (τ − 1)δ,

∀ε ∈ Ki}.
(7)

For POIs in Q(τ), define a binary variable y(i, τ)

y(i, τ) =

{
1 if POI i ∈ Q(τ)

0 otherwise
(8)

The condition for y(i, τ) = 1 means that POI i is visited at

least once in the τ -th window. Therefore, repeated visit to a

POI in the evaluation window does not increase the value of
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y(·).
The revisit-unrepeated metric in the τ -th sliding window

is defined as the sum of y(i, τ) with respect to (w.r.t.) all

POIs:
∑

i∈S y(i, τ). To evaluate the revisit-unrepeated metric

in the mission plan, we present a maximin criteria [19]

that maximizes the minimum revisit-unrepeated metric in all

evaluation windows. The minimum revisit-unrepeated metric

is defined as:

f1 = min(
∑
i∈S

y(i, τ), ∀τ = 1, 2, · · · , Nτ ). (9)

The first objective is expressed as:

max
P

f1. (10)

There are other ways to evaluate the revisit-unrepeated
metric, e.g.,

∑Nτ

τ=1

∑
i∈S y(i, τ). Since there are overlap-

ping time slots between two evaluation windows, adding up∑
i∈S y(i, τ) in all windows is not used in our method but the

maximin criteria as shown in (9) and (10) are used.

The evaluation of the revisit-total metric is the sum of all

visited POIs in the mission plan, which is expressed as:

f2 =
∑
a∈A

∑
w∈Wa

∑
i∈V

∑
j∈S

∑
κ∈Fiaw

∑
μ∈Fjaw

xiκjμaw

=
∑
a∈A

∑
w∈Wa

naw.
(11)

The second objective, maximizing the total number of visited

POIs, is expressed as:

max
P

f2. (12)

Note that the decision variables in (10) and (12) are the

path selection and the take-off time for each flight. Here,

mission plan P is placed in (10) and (12) as the argument

for simplicity.

Formulations of constraints are listed as follows:

∑
i∈S

∑
κ∈Fiaw

xk1iκaw =
∑
j∈S

∑
μ∈Fjaw

xjμk2aw = 1,

∀a ∈ A, w ∈ Wa, k = ba

(13)

∑
i∈S

∑
κ∈Fiaw

xk1iκaw = 0,

∀a ∈ A, w ∈ Wa, k ∈ B \ {ba}
(14)

∑
i∈V

∑
κ∈Fiaw

xiκkγaw =
∑
j∈V

∑
μ∈Fjaw

xkγjμaw ≤ 1,

∀a ∈ A, w ∈ Wa, k ∈ S, γ ∈ Fkaw

(15)

∑
i∈V

∑
j∈V

∑
κ∈Fiaw

∑
μ∈Fjaw

Cijaxiκjμaw ≤ T f
a,

∀a ∈ A, w ∈ Wa

(16)

tb1a(w+1) ≥ tb1aw+∑
i∈V

∑
j∈V

∑
κ∈Fiaw

∑
μ∈Fjaw

Cijaxiκjμaw + T dmin
a ,

∀a ∈ A, ba ∈ B, w = 1, · · · , NW
a − 1

(17)

tb1a(w+1) ≤ tb1aw+∑
i∈V

∑
j∈V

∑
κ∈Fiaw

∑
μ∈Fjaw

Cijaxiκjμaw + T dmax
a ,

∀a ∈ A, ba ∈ B, w = 1, · · · , NW
a − 1,

(18)

tb1aw +
∑
i∈V

∑
j∈V

∑
κ∈Fiaw

∑
μ∈Fjaw

Cijaxiκjμaw ≤ Tm,

∀a ∈ A, ba ∈ B, w = NW
a

(19)

rvt(i, ε) ≤ Tr, ∀i ∈ S, ε ∈ Ki (20)

2 ≤ ukγaw ≤ naw + 1,

∀a ∈ A, w ∈ Wa, k ∈ S, γ ∈ Fkaw

(21)

ulηaw − ukγaw + 1 ≤ naw (1− xlηkγaw) ,

∀a ∈ A, w ∈ Wa, {l, k} ∈ S, η ∈ Flaw, γ ∈ Fkaw

(22)

xiκjμaw ∈ {0, 1}, tb1aw ≥ 0, ∀a ∈ A, ba ∈ B,

w ∈ Wa, {i, j} ∈ V, κ ∈ Fiaw, μ ∈ Fjaw

(23)

Constraint (13) guarantees that an aircraft starts from its

base station and ends at the same base station in each flight.

Constraints (13) and (14) guarantee that an aircraft only take

off from the base specified to this aircraft, where the backslash

symbol \ in (14) denotes a set difference.

Constraint (15) guarantees the connectivity of POIs in each

flight. When the γ-th visit to POI k in the w-th flight of aircraft
a is given,

∑
i∈V

∑
κ∈Fiaw

xiκkγaw equals 0 or 1.

When a path is planned, the continuity of time sequence is

guaranteed:

tiκaw + Cija − tjμaw ≤ M (1− xiκjμaw) ,

∀a ∈ A, w ∈ Wa, {i, j} ∈ V, κ ∈ Fiaw, μ ∈ Fjaw,
(24)

where M is a very large positive constant (M 	 Tm). If there

exists a path selection from the κ-th visit of vertex i to the

μ-th visit of vertex j in aircraft a’s w-th flight, xiκjμaw = 1,
and tiκaw + Cija − tjμaw = 0.

Constraint (16) ensures that the travel time of each flight is

no more than the maximum flight time.

Constraints (17) and (18) ensure that the downtime between

two successive flights is no less than the minimum downtime

and no greater than the maximum downtime, respectively. The

wait time in addition to the minimum downtime before the

(w + 1)-th flight of aircraft a is denoted as

haw =tb1a(w+1) − tb1aw−∑
i∈V

∑
j∈V

∑
κ∈Fiaw

∑
μ∈Fjaw

Cijaxiκjμaw − T dmin
a , (25)
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where haw ≤ T dmax
a − T dmin

a . It will be shown in Section IV

that the take-off time schedule is generated by determining

the take-off time of the first flight tb1a1 and the following

wait time haw

(
w = 1, · · · , NW

a − 1
)
.

Constraint (19) guarantees that the time point of aircraft

returning to base for the last flight is not greater than the

mission time.

Constraint (20) guarantees that each POI is visited for the

first time within Tr after the mission starts (for the case ε =
1), and that each POI is revisited within Tr for the following

visits (for the cases ε > 1). The revisit time interval rvt(·) is

calculated as (6).

Constraints (21) and (22) are used to prevent subtours in

each single-period path, which are derived from MTZ-SECs

[1, 22]. The total number of visited POIs in the w-th flight

of aircraft a is naw as in (4), where the repetition of POIs is

considered.

IV. SOLUTION TECHNIQUE

The proposed mission planning problem is more complex

than the existing VRPs and OPs because of the revisiting

in single-period paths and the spatio-temporal cooperation

of aircraft in multi-period paths. Furthermore, only small

instances of the VRP or OP can be solved exactly [6, 30]. It is

clear that one cannot solve this path planning and scheduling

with the above formulation. We have therefore opted for the

development of an MOEA. The choice is motivated by 1)

the success of EA in VRP and its variants [10, 35], and 2)

the ability of MOEA to find multiple Pareto-optimal solutions

or converge near the true Pareto-optimal set in one single

simulation run [8].

The flowchart of the path planning and scheduling algorithm

is illustrated in Fig. 3. The algorithm consists of four parts:

pre-processing, multi-objective evolution, decision making,

and waypoint transformation. This paper mainly describes

methods in the pre-processing and the multi-objective evo-

lution.

At the very beginning, parameters are initialized, AOIs are

divided into cells, and POIs are generated. Single-period paths

are generated by solving a series of OPs, in which revisit to

POIs and take-off time schedule are not considered. For one

aircraft, these single-period paths are connected to form the

multi-period path, where the take-off time of each flight is

randomly selected under constraints.

A set of mission plans is generated as the initial population

in the EA, where the paths for all aircraft are evaluated as

shown in (9) to (12). The revisit constraint (20) is transformed

into an objective function in the EA, which will be described

later in this section.

During the evolution of individuals, rescheduling of take-

off time and revisit to POIs are enabled by the mutation

operator; exchanging single-period paths between mission

plans is conducted by the crossover operator. These genetic

operators differ from standard mutation and crossover [15]

and are especially designed for the proposed problem. Ob-

jective functions are evaluated and sorted following the non-

dominated sorting genetic algorithm II (NSGA-II) procedure

[8].

Fig. 3: Flowchart of the coverage path planning and scheduling

algorithm.

The best mission plan is selected by a weighted-sum model

in decision making from the MOO solution set. The mission

plan generated by the steps described above is a sequence

of vertices, which correspond to ground locations/waypoints.

Finally, paths are transformed into aerial waypoints for each

aircraft based on the aircraft motion model (e.g., Dubins air-

plane) [13, 20] and sensor parameters [18]. However, waypoint

transformation is not the focus of this paper.

A. Mission Plan Structure

The mission plan structure is also the genetic representation

of an individual (chromosome), which is shown in Fig. 4. The

mission plan for one aircraft is made up of multiple single-

period paths connected by elements representing the state of

aircraft landing at the base. The wait time before the first

flight and the wait time in addition to the minimum downtime

are discretized into time slots with a fixed length of Th. The

genetic representation of the minimum downtime is D and

that of the discrete time slot is H . The genetic representation

of POI i is si and that of base for aircraft a is ba.
As shown in Fig. 4, the number of H affects the take-

off time: aircraft can take off immediately after the minimum

downtime or stay at the base for several time slots. When the

time left is not enough for the aircraft to visit the nearest POI

at the end of the mission, this remaining time is denoted as

several time slots as well. This is because taking off, in this

case, will not increase the objective values. The determination

of the number of time slots before each flight will be described

later in this section.

Given the mission plan structure, a time table for each

aircraft, which consists of the take-off time of each flight,

the visit time of POIs, the landing time of each flight, and
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Fig. 4: Mission plan structure.

minimum downtime and the wait time slots, can be computed.

Elements in the mission plan and time points in the time

tables have one-to-one correspondence. The mission plan

structure, along with the time tables, effectively handles the

path selection and the take-off time decision at the same time.

It also manipulates the variable-length chromosome, which

makes the EA easy to operate [14, 29].

B. Single-period Path Planning

Single-period paths are the construction blocks in the mis-

sion plan. By connecting the single-period paths and deter-

mining the take-off time for each flight, the initial population

to EA can be generated, which has the potential to achieve

the mission goal, as described in (9) to (12). Hence, single-

period path planning is preliminary to the construction of

initial population of EA.

The path planning for each aircraft is formulated as a series

of OPs. In OP, each POI is associated with a score, the goal

is to determine a path with a maximum sum of the collected

scores in limited length [34]. Each POI is visited at most once

in these paths.

Let T lmt
a denote a set of time limits for aircraft a: T lmt

a =
{tlmt

a (φ), φ = 1, 2, · · · }, which may range from a small value

(e.g., the time needed to fully cover the nearest AOI by aircraft

a) to the maximum flight time T f
a with a fixed step size. Within

the given time interval tlmt
a (φ), paths are designed to maximize

the collected scores associated with POIs. Initially, POIs are

assigned with the same scores to generate the first path by

solving the OP. When the path is generated, unvisited POIs

within this aircraft’s reach (limited by tlmt
a (φ)) are assigned

with higher scores than already visited POIs; an OP is solved

again to visit POIs with the updated scores. The score of a POI

depends on whether this POI is visited or not in the already

planned paths. This process continues until all POIs within the

aircraft’s reach are visited. Then, the time limit increases and

paths are planned by the above approach once again.

By assigning higher scores to unvisited POIs, single-period

paths are generated to cover unvisited POIs within the air-

craft’s reach. Paths with different POIs enrich the diversity

of single-period paths. Unvisited POIs in a flight can be

explored either by the same aircraft’s subsequent flights or

by other aircraft. Because of the different time limits, paths

of different time length are included in the mission plan. By

connecting these paths of different lengths, multi-period paths

with different flight number NW
a can be generated, which

enrich the diversity of multi-period paths. When the time limit

tlmt
a (φ) is less than the maximum flight time, it is possible to

use the remaining time (T f
a − tlmt

a (φ)) to revisit POIs by the

mutation operator. Therefore, solving the proposed series of

OPs ensures the diversity of the mission plan.

The path planning decision variable in OP is defined as:

xij =

⎧⎨
⎩
1 if a visit to vertex i is followed by a visit

to vertex j
0 otherwise

(26)

Given the scores for each POI, one OP for aircraft a at base

ba is formulated as:

max
xij

∑
i∈S

∑
j∈V

sc(i)xij (27)

s.t.
∑
j∈S

xkj =
∑
i∈S

xik = 1, k = ba (28)

∑
i∈V

xik =
∑
j∈V

xkj ≤ 1, ∀k ∈ S (29)

∑
i∈V

∑
j∈V

Cijaxij ≤ tlmt
a (φ), ∀tlmt

a (φ) ∈ T lmt
a (30)

2 ≤ uk ≤
∑
i∈V

∑
j∈V

xij , ∀k ∈ S (31)

ul − uk + 1 ≤
∑
i∈V

∑
j∈S

xij (1− xlk) ,

∀{l, k} ∈ S (32)

xij ∈ {0, 1}, ∀{i, j} ∈ V (33)

where sc(i) is the score assigned to POI i, ui is the position of

vertex i in the path [27, 34]. The purpose of objective function

(27) is to maximize the total collected score. Constraint (28)

guarantees that the paths start and end at the same base. Con-

straint (29) ensures the connectivity of the POIs in the path.

Constraint (30) ensures the limited time budget. Constraints

(31) and (32) are necessary to prevent subtours [34]. The

constraints (28), (29), (30), (31) and (32) correspond to (13),

(15), (16), (21) and (22), respectively. A five-step heuristic is

used to solve the OP [3].

For the series of OPs, the solution is described in Algo-

rithm 1, where the updating of scores and the traversing of

time limits are shown. In Algorithm 1, Cbia represents the
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travel time from base ba to POI i by aircraft a; Sab is a set

of POIs within the reach of aircraft a taking off from base ba;
S(unvisit) is a set of unvisited POIs in Sab; sp

φ
cnt denotes the

single-period path generated in the cnt-th iteration of the φ-th
time limit; ∅ denotes the empty set. Note that different values

of ρ (ρ > 1) lead to different paths: the greater the ρ, the more

unvisited POIs will be included in the path. All planned paths

are stored to ensure the population diversity in the EA.

Algorithm 1 Single-period path planning

Input:
Aircraft a. Base station ba. Set of POIs S.
Fixed score c. Factor ρ. Set of time limits T lmt

a .

Output:
Single-period paths spφcnt,
φ = 1, 2, · · · , |T lmt

a |, cnt = 1, 2, · · · .
1: for tlmt

a (φ) ∈ T lmt
a do

2: Sab =
{
i|2Cbia ≤ tlmt

a (φ), i ∈ S
}

3: S(unvisit) = Sab

4: Counter cnt = 1
5: Score sc(i) = c, ∀i ∈ Sab

6: while S(unvisit) �= ∅ do
7: Solve OP: (27)–(33), generate and save spφcnt

8: Update S(unvisit) =

{
i|i ∈ Sab & i /∈ ⋃

cnt
spφcnt

}
9: Update sc(i) = ρcntc, ∀i ∈ S(unvisit)

10: cnt = cnt + 1
11: end while
12: end for

Note that no-fly zones [9, 11] outside AOIs are not consid-

ered in the mission scenario, but no-fly zones can be handled

in our solution technique. A discussion on no-fly zones in

single-period path planning is provided in the Appendix.

C. Initial Population Construction

Instead of planning the path by randomly picking up POIs

and randomly setting the take-off time, well-designed single-

period paths are used as the construction blocks for the initial

population, and the take-off time for each flight is randomly

configured with constraints. For one aircraft, its single-period

paths are connected as shown in Fig. 4. The path for each

flight is randomly selected from the results of single-period

path planning except the path for the last flight: the selection

of a single-period path for the last flight is constrained by (19).

The number of additional wait time slots is determined such

that constraints (17) and (18) are satisfied.

As mentioned in Section IV-A, the number of wait time slots

affects the take-off time. There are many ways to determine

the number of wait time slots for the initial population. For

example, a random number la can be generated from a discrete

uniform distribution U{0, (T dmax
a −T dmin

a )/Th}, where tb1aw =
laTh is the wait time. Another way is to generate a random

number la from the rounding result of a truncated normal dis-

tribution with zero mean and (T dmax
a −T dmin

a )/(mTh) standard
deviation conditioned on 0 ≤ la ≤ (T dmax

a −T dmin
a )/Th, where

m is a positive constant.

The number of wait time slots la is scheduled in the

initial population construction and rescheduled in the mutation

operator. During our simulations, it was observed that mission

plans with less additional wait time achieve better objective

values. Therefore, generating la from the truncated normal

distribution is used in our approach, because the value of m
can be tuned so that more mission plans with small wait time

can be generated in the population.

Because of the single-period path planning and initial popu-

lation construction, the initial mission plans satisfy constraints

(13) to (19), (21) and (22). Individuals in the initial population

do not necessarily satisfy the revisit constraint (20). The

handling of (20) is described as follows.

D. Infeasibility Handling

In the EA, the feasibility w.r.t. constraints (15) to (19), (21)

and (22) is checked in the genetic operators and infeasible

paths or mission plans are discarded. The feasibility w.r.t.

constraints (13) and (14) is guaranteed in single-period path

planning and will not change by the genetic operators. The

revisit constraint (20) is transformed into an objective function

in the EA for the following reasons:

1) It is possible that the given assets cannot satisfy the revisit

constraint (20) for all POIs, i.e., there is no feasible solution.

2) The scale of the problem (i.e., the number of POIs, the

time horizon of the mission plan, etc.) is too large to verify

the existence of feasible solutions w.r.t. constraint (20).

If the actual revisit time interval rvt(i, ε) (see (6)) is greater
than the required revisit time Tr, the violated time is rvt(i, ε)−
Tr. The sum of violated revisit time is to be minimized by path

planning, take-off time scheduling and aircraft cooperation.

Let f3 denote the negative value of the sum of the violated

revisit time:

f3 = −
∑
i∈S

∑
ε∈Ki

max (rvt(i, ε)− Tr, 0) . (34)

The objective is expressed as:

max
P

f3. (35)

Therefore, constraint (20) is transformed into (35) in the

EA. The multi-objective function is maxP (f1, f2, f3).

E. Multi-objective Evolution

The MOEA is based on the NSGA-II framework [8].

As shown in Fig. 3, the following evolutionary process is

performed in each generation: 1) calculate the fitness functions

(9), (11) and (34), and select parents that are a fit for

reproduction, 2) perform crossover and mutation operators on

the selected parents to produce offspring, and calculate the

fitness of offspring, 3) form the intermediate chromosome,

which is a concatenation of the current population and the

offspring population, and 4) non-domination sort the interme-

diate chromosome, replacing the unfit individuals with the fit

individuals to maintain a constant population size.

Selection: Many selection techniques, such as tournament

selection [8] and roulette wheel selection [35], are available. A

binary tournament selection is used in this paper. Constrained
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Fig. 5: An example of single-period path. Visited POIs in AOI2

will be removed by Remove, and the remaining flight time after

Remove, especially the travel time between AOI1 and AOI2,

is used to revisit POIs in AOI1 when Insert is implemented.

NSGA-II (constraint-handling approach) is utilized to rank the

solutions [8].

Crossover: Crossover happens with a probability pc. If

crossover does not happen, mutation is conducted. From

the first flight to the last one, the crossover is performed

by exchanging parents’ single-period paths (same aircraft,

same base station) with a certain probability psc successively,

whereas the take-off time of each parent does not change.

The time tables of the offspring are updated as the crossover

carrying through. If an offspring’s actual mission time exceeds

Tm after a crossover of two single-period paths, this crossover

is undone and the single-period paths are reverted to their

original (last) positions in the chromosome.

Mutation: The custom mutation operator described in Algo-

rithm 2 is enforced. Three moves are designed for mutation,

namely Remove, Insert, and Reschedule.

1) Remove: The goal of Remove is, by giving up some

visited POIs in a single-period path, to make time for possible

revisits of POIs. For instance, the result of Remove is that the

POIs in AOI2 will not be visited in Fig. 5, and the remaining

flight time, especially the travel time between AOI1 and AOI2,

will be used to revisit POIs in AOI1 (enabled by Insert). Line 7
in Algorithm 2 indicates that POIs in the single-period path

of aircraft a’s w-th flight (denoted as spaw), which belong to

AOI e but do not constitute the whole POI set in AOI e, are
removed. Thus, the spared time can be used to revisit other

POIs in the path.

2) Insert: The revisit to POIs is enabled by Insert. Some

successive POIs within the same AOI in a single-period path

are selected as a path segment and inserted into this path, as

shown in lines 12 and 13 in Algorithm 2. The length of the

path segment can be randomly generated from 1 to |Se|. The
locus, where the gene segment is inserted to, should avoid the

repeat of the same POI in two successive loci.

3) Reschedule: The take-off time is changed, i.e., the

number of Th is generated again (see Section IV-C).

If an offspring violates the maximum flight time constraints

or mission time constraints after mutation, the mutation move

is undone and the paths are reverted to the original (last)

feasible ones, as shown in lines 18 to 20. These three moves

can be viewed as heuristic operators embedded in the EA,

which take full advantage of the peculiarities of the proposed

problem.

Algorithm 2 The custom mutation operator

Input:
A chromosome (i.e., mission plan) P contains

• multi-period paths mp,
• single-period paths sp, and
• take-off time schedule T0.

Remove probability prm
Insert probability pin
Reschedule probability prs

Output:
The mutated chromosome P ∗ contains

• the mutated multi-period paths mp∗,
• the mutated single-period paths sp∗, and
• the mutated take-off time schedule T0

∗.
1: for a ∈ A do
2: for w ∈ Wa do
3: Generate a random number r ∼ U (0, 1)
4: if r < prm then
5: for e ∈ E do
6: if ∃{∀i ∈ spaw} � Se then
7: Remove {∀i ∈ spaw} � Se

8: break
9: end if

10: end for
11: else if prm ≤ r < prm + pin then
12: Randomly choose an AOI e and a gene segment

(GS) within this AOI in a single-period path: GS

⊆ Se ⊆ spaw
13: Insert GS after a locus to spaw
14: else
15: Reschedule tb1aw
16: end if
17: Update sp∗aw, mp∗a and corresponding time tables

18: if (travel time of sp∗aw > T f
a ||

mission time of mp∗a > Tm) then
19: Undo this mutation move; revert to the original

paths and time tables

20: end if
21: end for
22: end for

F. Decision Making

When the evolution terminates, a set of solutions are gen-

erated and the objective values of these solutions are known.

Then, we can see if there exist feasible solutions (i.e., f3 = 0)
or not w.r.t. constraint (20). A weighted-sum model can be

used to integrate the objectives into a single index [33]:

max
P

ωT f̂ , (36)

where ω = [ω1, ω2, ω3]
T
, ω1+ω2+ω3 = 1, 0 ≤ ω1, ω2, ω3 ≤

1, and f̂ =
[
f̂1, f̂2, f̂3

]T
. The superscript T denotes matrix

transpose and f̂n denotes the normalized fn, where n = 1, 2, 3.
The selection of weights depends on the user’s preferences

and priorities. The highest-ranking solution with the greatest
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weighted-sum value will be selected as the mission plan.

If there is no feasible solution w.r.t. constraint (20) in the

final solution set, i.e., f3 < 0 for all solutions, the solution

with the minimum revisit violation can be selected (by setting

w3 	 w1+w2) if the user emphasizes the revisit constraint. If

feasible solutions exist, the mission plan will be selected from

these feasible solutions, where w1 ≥ w2, because promptly

updating information collected from different POIs is more

important than the total number of visited POIs.

The transportation cost (total travel distance) is evaluated

as:

f4 =
∑
a∈A

∑
w∈Wa

∑
i∈V

∑
j∈V

∑
κ∈Fiaw

∑
μ∈Fjaw

dijxiκjμaw. (37)

If multiple highest-ranking solutions with the same weighted-

sum value are found, the one with the minimum transportation

cost can be selected as the mission plan.

Note that by adding f4 to the objective functions

maxP (f1, f2, f3,−f4), minimizing transportation cost joins

the optimization as the fourth objective and the proposed

algorithm becomes more complex. As the number of objectives

increases, the NSGA-II framework may not work efficiently,

and the many-objective evolutionary algorithm NSGA-III can

be implemented [7, 17]. In this paper, maxP −f4 is not used

in the EA.

V. SIMULATIONS

A. Mission Scenario

There is no benchmark problem in the literature for the

comparison of path planning and scheduling algorithms [11,

23]. Two simulation environments are used in this section for

performance evaluation.

In the first simulation scenario, three rectangular regions

are simulated as AOIs (see Fig. 6), the sizes of which are

200×160 km2, 80×80 km2, and 160×240 km2. Two aircraft

are assigned to two base stations, which are located at (0, 80)
km and (600, 0) km, respectively. Aircraft are of the same

type. Aircraft fly at a constant speed of 612 km/h with 4-hour
maximum flight time. The minimum downtime is 1 hour and

the maximum downtime is 1.5 hours. Dots inside the AOIs in

the figure are POIs, which are the result of AOI segmentation.

The size of each cell is 40× 40 km2. Thus, there are 48 cells

in total. The mission lasts for 24 hours. Each POI in the AOIs

must be revisited within 8 hours.

The mission scenario of the second simulation is based on a

real-world case study, which will be shown later in this section.

B. Termination Condition

Since 1) it is not feasible to compute the global optimal

solution of the proposed problem [6, 30], and 2) the NSGA-II

framework has the ability to find a diverse set of solutions

and converge near the true Pareto-optimal set [8], we specify

a termination condition such that the solution at termination

is close to the optimal one. The weighted-sum model (36)

is implemented at the end of each generation. The best

weighted-sum value of objectives is used to determine the
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Fig. 6: The first simulation scenario: locations of AOIs, POIs,

and base stations.

termination of the evolution. If the maximum difference of

the best (largest) weighted-sum fitness among Nt successive

iterations/generations drops below a given threshold, the EA

is terminated.

In the following, different values of crossover and mutation

probabilities in two MOOs solution strategies are used to in-

vestigate the convergence of the path planning and scheduling

problem. The values of crossover probability pc are 0.3, 0.5,
and 0.7; the corresponding mutation probability is (1− pc).

The proposed algorithm based on NSGA-II can be viewed

as a non-dominated sorting MOO strategy. Except for the

proposed algorithm, a weighted-sum MOO strategy, which

integrates the objectives into one fitness value in each fitness

evaluation as shown in (36), is applied. The weighting vector

in these two MOOs is ω = [0.25, 0.15, 0.6]
T
.

The difference between the proposed non-dominated sorting

MOO and the weighted-sum MOO is where the weighted-

sum (36) is implemented. The non-dominated sorting MOO

finds multiple solutions in one single simulation run [8] and

implements (36) in decision making after the evolution of

solutions, whereas the weighted-sum MOO implements (36)

in fitness evaluation along with the evolution whenever a new

individual is generated.

The crossover probability of each single-period path is psc =
0.5. The probabilities of the moves in the mutation operator

are prm = 0.2, pin = 0.4 and prs = 0.4. In constructing

the chromosome, Th = 1/6 hours, which means that the

wait time after the minimum downtime is an integer multiple

of Th. The truncated normal distribution with m = 1.5
is used to determine the number of wait time slots. While

evaluating the revisit-unrepeated metric, the sliding window

size is Tc = 4 hours and the step length δ = 1 hour. Hence,

there are (Tm − Tc)/δ + 1 = 21 evaluation intervals. In this

simulation, the population size is set to be 1024. The number

of generations in each simulation is 150. The best weighted-

sum fitness in each generation is plotted in Fig. 7. The results

in the following simulations are based on 100 Monte Carlo
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Fig. 7: Best weighted-sum fitness: convergence of the proposed

algorithm.

runs.

It can be seen from Fig. 7 that the integrated fitness value

reaches a plateau in each simulation with different MOO

solution strategies and crossover/mutation probabilities, which

shows the convergence of the proposed algorithm. Based on

the convergence performance of the proposed algorithm, in the

following simulations, the termination condition threshold is

set to be 10−5, Nt is set to be 10, and the crossover probability

is 0.7.
The weighted-sum model for the objectives can be the

other solution strategy for the proposed MOO. Because of

avoiding the non-dominated sorting, the weighted-sum MOO

strategy requires slightly less computation time in each evolu-

tion/generation than the non-dominated sorting MOO strategy.

However, the weighted-sum model for MOO is deficient in

attaining a diverse set of solutions [21]. The final solution by

the weighted-sum MOO is greatly influenced by the selection

of the weights in (36). If the user’s preferences change, the EA

using the weighted-sum MOO strategy is to run again using

the new weighting vector.

Our proposed non-dominated sorting MOO strategy enables

the attainment of a diverse set of mission plans [8]. The final

mission plan can be determined by the weighting vector in

decision making, which saves computation time if the user’s

preferences change or multiple mission plans are needed.

C. Computation Time

The proposed solution procedure is done offline ahead of the

mission. Time is mainly spent on two parts: initial population

generation and multi-objective evolution. Single-period paths

are planned by solving a series of OPs in the initial population

generation. The OP is NP-hard (non-deterministic polynomial-

time hard) [30] and these OPs are solved by heuristic methods

[3], as described in Section IV-B. The number of OPs to solve

depends on the topology of mission scenario, the capacity

of aircraft and the selection of the time limits T lmt
a . The

NSGA-II framework is used to generate a diverse set of

TABLE II: Results for the Problem with Different Objective

Functions

Objective

function
f1 f2

maxP (f1, f2, f3) 41.4 463.3

maxP (f1, f3) 41.3 398.8

maxP (f2, f3) 32.8 465.7

mission plans. The computational complexity of NSGA-II is

O(MN2), where N is the population size and M is the

number of objectives [8].

This coverage path planning and scheduling problem is

solved using MATLAB on a CoreTM i7 2.5 GHz CPU with

16 GB RAM. In the above simulation, the population size is

1024, and the number of objectives is 3. The average com-

putation time of initial population generation is 44 seconds.

Using the non-dominated sorting MOO strategy, the average

computational time of convergence to the final solution by the

evolutionary process is 377 seconds. Using the weighted-sum

MOO strategy, the average computational time of convergence

to the final solution by the evolutionary process is 274 seconds.
Note that the proposed algorithm is for offline path planning

and scheduling, therefore the computation time is modest.

D. Objectives

In order to illustrate the advantage of using both revisit-
unrepeated and revisit-total as objectives, maxP (f1, f2, f3) is
compared with maxP (f1, f3) and maxP (f2, f3). The values

of f1, f2 and f3 are evaluated as (9), (11) and (34) respectively,

where the unit of f3 is hour.

Feasible solutions (f3 = 0) are generated in all cases,

because revisit of each POI within 8 hours is not a strong

constraint given the mission scenario. It can be seen from Ta-

ble II that large values of f1 and f2 are attained by the proposed
objectives maxP (f1, f2, f3). However, when maximization of

f2 is not used as an objective, the value of f2 is much smaller

than that of maxP (f1, f2, f3). Conversely, when maximization

of f1 is not specified as an objective, the largest f2 is achieved,

but f1 is much smaller than that of maxP (f1, f2, f3). Hence,
the multi-objective function used in this paper guarantees

prompt update of information from different POIs and a large

number of covered cells (visited POIs), which in turn makes

a persistent and effective surveillance mission plan.

E. Mutation Operator

The mutation operator is especially designed for this prob-

lem to enable area revisiting and take-off time scheduling. To

illustrate the advantage of the custom mutation operator, the

proposed EA is compared with the following two methods.

Method-1 is an EA based on the proposed framework but

without three custom mutation moves. In Method-2, which is

based on the path planning method in [19], a single-period path

is generated for each aircraft, and then this single-period path

is copied to generate the multi-period path with the minimum

downtime between two successive single-period paths. Note
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TABLE III: Results for the Problem using Different Methods

Method f1 f2

The propose EA 41.4 463.3
Method-1 36.9 365.5

Method-2 22 330

TABLE IV: Results for the Problem When the Required

Revisit Time is 4 Hours

Method f1 f2 −f3

The propose EA 42.5 445.3 26.3
Method-3 40 441.8 37.4

Method-4 41.4 472.7 107.8

that aircraft in the paths generated by Method-2 conducts a

search in strips [19]; revisiting and take-off time scheduling

are not enabled in Method-2.

Feasible solutions (f3 = 0) are generated in these experi-

ments. It can be seen from Table III that the proposed EA

with custom mutation operator achieves the largest values of

f1 and f2 comparing to the other two methods without problem-

specific designs for revisiting and scheduling.

F. Revisit Violation Handling

Feasible solutions are generated when the requirement of

revisit time is 8 hours. In this simulation, the mission scenario

and configuration remain consistent with the previous ones,

except the required revisit time changes to 4 hours. The pro-

posed algorithm is compared with the following two methods.

Method-3 is an EA based on the proposed framework but

without Reschedule and without additional wait time at bases

(aircraft land for the minimum downtime between successive

flights). Method-4 is an EA based on the proposed framework

but with the objectives maxP (f1, f2), in which the revisit

constraint (20) is removed.

The sum of revisit violation time (−f3) in the proposed EA

is smaller than that in Method-3 mainly because the scheduling

of take-off time by Reschedule enhances the temporal coopera-

tion of aircraft so that the take-off time is adjusted to minimize

−f3 in the proposed algorithm. The comparison between

the proposed EA and Method-3 illustrates the advantage of

Reschedule designed in the mutation operator. Although the

value of f2 in Method-4 is the greatest among these three

experiments, the revisit violation is much greater than that in

the proposed EA. The proposed algorithm minimizes the sum

of revisit violation time when there is no feasible solution w.r.t.

constraint (20).

G. A Real-world Case Study

A more complex surveillance scenario that emerges from a

real-world problem is set up, as shown in Fig. 8. Four water

areas (circular areas in Fig. 8) are the AOIs. The radiuses

of the AOIs are 55 km, 80 km, 110 km, and 55 km. Three

Fig. 8: The second simulation scenario: locations of AOIs and

base stations.

aircraft are scheduled to perform a 48-hour mission. There is

one type-1 aircraft and two type-2 aircraft. There is one base

station (B1) for type-1 aircraft and two base stations (B2 and

B3) for type-2 aircraft. Only one aircraft is assigned to one

base station.

For type-1 aircraft, the maximum flight time is 10 hours, the

minimum downtime is 2 hours and the maximum downtime

is 3 hours. For type-2 aircraft, the maximum flight time is

5 hours, the minimum downtime is 1 hour and the maxi-

mum downtime is 1.5 hours. The speed of type-1 aircraft is

749 km/h and that of type-2 aircraft is 666 km/h. Each POI

in an AOI must be revisited within 8 hours. Cells are circular

areas with diameter 44 km. AOIs are segmented into 47 cells.

The parameters used in the proposed algorithm are the same

as those in Section V-B. The population size is 1024. Feasible
solutions (f3 = 0) are generated for this mission scenario. The

values of f1 and f2 in the best mission plan are 29.7 and 899.2,
respectively. The path planning and scheduling takes 1242
seconds on average, based on the computer hardware described

in the first simulation scenario. Note that this computation is

done offline ahead of the missions.

VI. CONCLUSIONS

In this paper, a novel approach was described for the

offline mission planning for multiple aerial vehicles to perform

surveillance over disjoint areas. The formulation was presented

for this multi-period coverage path planning and temporal

scheduling problem, in which repeated visit of the same area

in a path was considered. This revisiting feature is common

in surveillance applications, but distinguishes the formulations

and solution techniques of those in the vehicle routing problem

and its variations. Objective functions were developed to

promptly update information collected by covering AOIs and

to ensure persistent surveillance. A multi-objective evolution-

ary algorithm with a novel chromosome representation and

custom genetic operators, which enables the revisiting of

areas and the scheduling of take-off time, was proposed. The

proposed algorithm was computationally efficient even in large

scale problems and can be ported to a variety of surveillance

coverage problems.
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APPENDIX

NO-FLY ZONE AVOIDANCE

If there exist no-fly zones [9, 11] outside AOIs, they can

be handled while generating single-period paths as follows.

Vertices are added on the border or outside but close to the

border of each no-fly zone. A penalty is defined for each edge

in addition to the travel distance:

qij =

⎧⎨
⎩
−M if the shortest path from vertex i to

vertex j across no-fly zones

0 otherwise

(38)

where M is a very large positive constant. The penalty for

each edge is pre-computed based on whether the edge across

no-fly zones or not. This penalty is included in the objective

function of the single-period path planning:

max
xij

∑
i∈S

∑
j∈V

sc(i)xij +
∑
i∈V

∑
j∈V

qijxij (39)

Thus, aircraft can bypass no-fly zones in the single-period

path. Once the single-period paths avoid no-fly zones, paths in

the mission plan will avoid no-fly zones, because the genetic

operators (Section IV-E) remove paths outside AOIs or add

path segments inside AOIs, which will not cross no-fly zones.
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