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ABSTRACT: 

We define the Bidirectional Reflectivity Distribution 
Function (BRDF) in terms of Wigner functions so 
as to make its radiometric aspect compatible with 
the wave aspect of coherent propagation through 
atmospheric turbulence. We then adapt this 
definition in order to make it compatible with the 
DRDC turbulent imaging simulator for active 
imaging on weakly specular surfaces. This is done 
by defining a coherence length associated with the 
surface which expresses how specular it is. We 
demonstrate our model on a few targets and 
comment on its range of applicability. 
 
1. INTRODUCTION 

The Bidirectional Reflectivity Distribution Function 
(BRDF) describes how the surface of an object 
absorbs radiance coming from a given direction 
and radiates it into another [1]. As such, it plays an 
important role in the simulation of active imaging 
systems. However, it was defined in the context of 
radiometry, where objects emit radiation 
incoherently and which radiates in straight lines. 
This picture is incompatible with electromagnetic 
waves propagating through atmospheric 
turbulence from a coherent source such as a laser.  
 
We attempt to make turbulent coherent 
propagation and the BRDF compatible by using 
Wigner transforms [2], which turns the Mutual 
Coherence Function (MCF) of the electromagnetic 
field into a quasi-probability distribution in phase 
space (position and momentum). This Wigner 
function is real, has the correct marginal 
distributions and the momentum coordinate can be 
interpreted as the direction of a ray. However, the 
Wigner function can also be negative in places, or 
be non-zero in places where we know there 
shouldn’t be any electromagnetic energy [3]. 
Nevertheless, the Wigner function can be very 
useful in optics and imaging systems [4-7]. 
 
In this work, we will briefly review the Wigner 
function and its propagation through turbulence in 
Sec. 2. We then define the BRDF in terms of 
Wigner functions and show how the BRDF 
changes an incident Wigner function on a surface 

into a scattered Wigner function in Sec. 3. We 
apply this theory to our turbulent imaging simulator 
[8, 9] for active imaging by using the paraxial 
approximation in Sec. 4. This leads us to define a 
coherence length for the surface which quantifies 
how specular it is. We show how to model weakly 
specular surfaces seen through turbulence in Sec. 
5. We also show some outputs of our model on a 
few simple targets in Sec. 5 and comment on its 
range of applicability in the conclusion in Sec. 6. 
 
2. THEORETICAL PRELIMINARIES 

In this section, we will define the Wigner function 
and show how it propagates through the 
atmosphere. 
 
2.1. The Wigner function 

For Electro-Optic (EO) propagation through the 
atmosphere in the visible and IR bands, the electric 
field can be treated as a complex scalar without 
loss of generality: 𝐸(𝑥⃑, 𝑡). We can define a quasi-
probability function in phase space as: 
 

𝑊(𝑅⃑⃑, 𝑇, 𝑃⃑⃑, 𝔼) = (
1

2𝜋ℏ
)
4

∫d3 Δ∫d 𝜏  

× exp[𝑖(𝔼𝜏 − 𝑃⃑⃑ ∙ Δ⃑⃑⃑) ℏ⁄ ] Γ(𝑅⃑⃑, Δ⃑⃑⃑, 𝑇, 𝜏), 
(1) 

 
where 𝑅⃑⃑ and 𝑇 are a central position and time 
respectively, and where 𝑃⃑⃑ and 𝔼 are the 
corresponding momentum and energy. Also, the 
MCF in Eq. 1 is: 
 

Γ(𝑅⃑⃑, Δ⃑⃑⃑, 𝑇, 𝜏) = 〈𝐸(𝑅⃑⃑ + Δ⃑⃑⃑ 2⁄ , 𝑇 + 𝜏 2⁄ )

× 𝐸∗(𝑅⃑⃑ − Δ⃑⃑⃑ 2⁄ , 𝑇 − 𝜏 2⁄ )〉, 
(2) 

 
where the angle brackets represent the average 
over a suitable ensemble. This could be the 
ensemble of turbulent fluctuations, the random 
microscopic fluctuations of a reflecting surface or 
no ensemble at all. The inverse of Eq 1 is: 
 

Γ(𝑅⃑⃑, Δ⃑⃑⃑, 𝑇, 𝜏) = ∫d3 𝑃∫d𝔼 

× exp[𝑖(𝑃⃑⃑ ∙ Δ⃑⃑⃑ − 𝔼𝜏) ℏ⁄ ]  𝑊(𝑅⃑⃑, 𝑇, 𝑃⃑⃑, 𝔼) . 
(3) 

 
 
2.2. Atmospheric propagation 

For EO propagation, the wave equation for the 
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electric field is: 
 

∇2𝐸 −
𝑛2

𝑐2
𝜕2𝐸

𝜕𝑡2
≈ 0 , (4) 

 
where 𝑛 is the turbulent refractive index of the 
atmosphere. If we assume that the refractive index 
changes over a timescale much longer than the 
period of the electric field, then we can 
approximate it as: 𝐸 ≈ 𝑢 exp[−𝑖ℏ𝜔], where 𝜔 is the 
angular frequency of the radiation and 𝑢 changes 
very slowly with respect to the period. 
 
Under these conditions, the Wigner function 
defined in Eq. 1 will very sharply peaked about the 
energy, 𝔼 = ℏ𝜔. We can define a new Wigner 
function by integrating Eq. 1 with respect to 
energy, giving us the expression: 
 

𝑊(𝑅⃑⃑, 𝑇, 𝑃⃑⃑) = (
1

2𝜋ℏ
)
3

∫d3 Δ exp [−𝑖𝑃⃑⃑ ∙
Δ⃑⃑⃑

ℏ
] 

× 𝑢(𝑅⃑⃑ + Δ⃑⃑⃑ 2⁄ , 𝑇)𝑢∗(𝑅⃑⃑ − Δ⃑⃑⃑ 2⁄ , 𝑇). 
(5) 

 
From Eq. 4, it is possible to show that the Wigner 
function from Eq. 5 approximately obeys the 
phase-space conservation equation: 
 
𝜕

𝜕𝑇
(
ℏ𝜔𝑛2

𝑐2
𝑊) + ∇⃑⃑⃑𝑅 ∙ (𝑊𝑃⃑⃑)  

+
∇⃑⃑⃑𝑅𝑛

𝑛
∙ ∇⃑⃑⃑𝑃 ((

ℏ𝜔𝑛

𝑐
)
2

𝑊) ≈ 0, 
(6) 

 
where ∇⃑⃑⃑𝑅 and ∇⃑⃑⃑𝑃 are the gradients with respect to 
the central position and the momentum, 
respectively. Note that in Eq. 6 we neglected third 
and higher order derivative terms with respect to 
the momentum. Integrating Eq. 6 with respect to 𝑃⃑⃑ 
creates an energy conservation equation: 
 

𝜕𝑈

𝜕𝑇
+ ∇⃑⃑⃑𝑅 ∙ 𝑆 = 0, (7) 

 
where 𝑈 is the energy density: 
 

𝑈(𝑅⃑⃑, 𝑇) = ∫d3𝑃 (
ℏ𝜔𝑛2

𝑐2
)𝑊(𝑅⃑⃑, 𝑇, 𝑃⃑⃑), (8) 

 
and 𝑆 is the energy flux: 
 

𝑆(𝑅⃑⃑, 𝑇) = ∫d3𝑃𝑊(𝑅⃑⃑, 𝑇, 𝑃⃑⃑)𝑃⃑⃑. (9) 

 
It is this quantity that will serve to define the 
radiance in terms of Wigner functions. 
 
3. THE BRDF 

In this section we will review the definition of the 
BRDF, and then show how it can be defined in 

terms of Wigner functions. 
 
3.1. The definition of the BRDF 

Nicodemus defined the BRDF in terms of radiance 
[1], which he defined as the amount of 
electromagnetic energy going through a surface 
from a given direction per unit time, per unit solid 
angle, per unit area perpendicular to the direction. 
Nicodemus denotes radiance with a scalar function 
𝑁 with units of Watts per area per steradians, such 
that: 
 

𝑁 =
𝜕𝑃

cos 𝜃 𝜕Ω𝜕𝐴
, (10) 

 
where 𝜕𝑃, 𝜕Ω and 𝜕𝐴 are increments of power, 
solid angle and area respectively, and 𝜃 is the 
angle between the normal of the surface and the 
direction of the radiance. 

 
Figure 1.  Illustration of the BRDF definition. 

 
Fig. 1 illustrates the physical situation defining the 
BRDF. On the left there is the incoming radiance 
𝑁𝑖 on the surface increment 𝜕𝐴. This radiance 
comes from a solid angle increment 𝜕Ω𝑖 centred 
about the direction (solid black arrow) Ω⃑⃑⃑𝑖 = (𝜙𝑖 , 𝜃𝑖), 
where 𝜃𝑖 is the angle with respect to the surface 
normal 𝑛̂ and 𝜙𝑖 is the angle in the surface plane 
(not shown). The surface increment then emits 
radiance 𝑁𝑟 in the solid angle increment 𝜕Ω𝑟 
centred about the direction Ω⃑⃑⃑𝑟 = (𝜙𝑟 , 𝜃𝑟). The 
BRDF relates the radiances at the point 𝜌⃑𝑠 on the 
surface in the following way: 
 

𝑁𝑟(𝜌⃑𝑠, Ω⃑⃑⃑𝑟) = ∫ d
ℎ

Ω𝑖  𝑁𝑖(𝜌⃑𝑠, Ω⃑⃑⃑𝑖) cos 𝜃𝑖 

× 𝜎(𝜌⃑𝑠, Ω⃑⃑⃑𝑖; Ω⃑⃑⃑𝑟), 
(11) 

 
where 𝜎 is the BRDF (with units of inverse 
steradians) and the subscript ℎ beneath the 
integral signifies that the integration is limited to the 
hemisphere above the surface. Note that the 
cosine in the integrand of Eq. 11 means that only 
the incoming radiance that passes through the 
surface contributes to the emitted radiance. 
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3.2. Definition using Wigner functions 

We postulate the following definition of radiance in 
terms of the Wigner function: 
 

𝑁(𝑅⃑⃑, 𝑃̂) = ∫ d
∞

0

𝑃 𝑃3𝑊(𝑅⃑⃑, 𝑃, 𝑃̂), (12) 

 
where we explicitly decompose the momentum 
vector 𝑃⃑⃑ into its magnitude 𝑃 and its unit vector 𝑃̂, 
which encodes information about direction. We 
also assume that we have a time-independent 
steady-state. From our definition of the energy flux 
in Eq. 9, it is easy to see that: 
 

𝑆(𝑅⃑⃑) = ∫dΩ 𝑃̂ 𝑁(𝑅⃑⃑, 𝑃̂), (13) 

 
where the integration is over the entire sphere. 
Equation 13 is the relation we expect between 
radiance and energy flux. We now relate the 
emitted Wigner function with the incident Wigner 
function using a reflectance function Σ at the 
surface such that: 
 

𝑊𝑟(𝜌⃑𝑠, 𝑃⃑⃑𝑟) = ∫d3 𝑃𝑖  𝑊𝑖(𝜌⃑𝑠, 𝑃⃑⃑𝑖)Σ(𝜌⃑𝑠, 𝑃⃑⃑𝑖; 𝑃⃑⃑𝑟). (14) 

 
We obtain a model that conforms to Eq. 11 if we 
postulate the following: 
 

Σ(𝜌⃑𝑠, 𝑃⃑⃑𝑖; 𝑃⃑⃑𝑟) = −(
𝑃̂𝑖 ∙ 𝑛̂

𝑃𝑟
2
) 𝛿(𝑃𝑟 − 𝑃𝑖)

× 𝜎(𝜌⃑𝑠, 𝑃̂𝑖 , 𝑛̂; 𝑃̂𝑟). 
(15) 

 
The minus sign on the right-hand side of Eq. 15 is 
there to compensate for the fact that the inner 
product 𝑃̂𝑖 ∙ 𝑛̂ is negative, since the incoming ray 
forms an angle greater than 90 degrees with 
respect to the normal of the surface 𝑛̂ as shown in 
Fig. 1. Placing the reflectance function in Eq. 15 in 
Eq. 14 gives us: 
 

𝑊𝑟(𝜌⃑𝑠, 𝑃𝑟 , 𝑃̂𝑟) = ∫dΩ𝑖  𝑊𝑖(𝜌⃑𝑠, 𝑃𝑟 , 𝑃̂𝑖) cos 𝜃𝑖

× σ(𝜌⃑𝑠, 𝑃̂𝑖 , 𝑛̂; 𝑃̂𝑟). 
(16) 

 
If we multiply both sides of Eq. 16 by 𝑃𝑟3 and 
integrate, it is easy to see with the definition of 
radiance in Eq. 12 that we obtain the desired result 
in Eq. 11. 
 
4. THE ACTIVE IMAGING MODEL 

Having defined the BRDF in terms of Wigner 
functions, we are now ready to implement it in an 
active imaging model through the atmosphere. 
This model is illustrated in Fig. 2, where a laser 
emits a ray towards the target surface a distance 𝐿 
away. The ray travels through turbulence and gets 
deviated, it then is reflected off the target surface 

and returns to the imager, going through the 
turbulence a second time. 
 

 
Figure 2. Illustration of active imaging through 

atmospheric turbulence. 
 
Since the range of the target is typically much 
larger than the distance separating the laser from 
the imager, the incident and reflected rays are 
always very nearly parallel to the line-of-sight of 
the active imaging system (which we take to be the 
z-axis in our system of coordinates). We therefore 
begin by reviewing the paraxial approximation for 
propagation and the Wigner function. We then 
examine the simplifications that obtain for the 
BRDF in this limit. 
 
4.1. The paraxial propagation 

Since we assume a steady-state, the function 𝑢 
obeys the equation: 
 

∇2𝑢 + 𝑘0
2𝑛2𝑢 = 0 , (17) 

 
where 𝑘0 = 𝜔 𝑐⁄  is the nominal wavenumber for 
empty space. We also assume the 𝑢 propagates 
mainly along the z-axis so that 𝑢 = 𝑎 exp[𝑖𝑘0𝑧]. If 
we further assume that the refractive index has 
small turbulent fluctuations, such that 𝑛 = 1 + 𝑛1 
where 𝑛1 ≪ 1, we obtain the equation for 𝑎: 
 

∇𝜌
2𝑎 + 𝜕𝑧

2𝑎 + 2𝑖𝑘0𝜕𝑧𝑎 + 2𝑘0
2𝑛1𝑎 ≈ 0 , (18) 

 
where 𝜕𝑧 = 𝜕 𝜕𝑧⁄  is the partial derivative with 
respect to the z-coordinate and ∇⃑⃑⃑𝜌 is the gradient 
with along the x-y plane 𝜌⃑ = (𝑥, 𝑦). Finally, we 
assume that the function 𝑎 varies slowly along the 
z-axis with respect to the wavelength, so that 
|𝜕𝑧

2𝑎| ≪ |2𝑘0𝜕𝑧𝑎| and we get: 
 

𝑖𝜕𝑧𝑎 +
1

2𝑘0
∇𝜌
2𝑎 + 𝑘0𝑛1𝑎 ≈ 0 , (19) 

 
which is the paraxial propagation equation. Using 
these assumptions in the Wigner function definition 
Eq. 5 leads to: 
 

𝑊(𝑅⃑⃑, 𝑃⃑⃑) ≈
𝛿(𝑃𝑧 − ℏ𝑘0)

(ℏ𝑘0)
2

𝑊̃(𝑅⃑⃑, 𝑝), (20) 

 
where: 
 

Imager

Laser Target surface

L

R 

Outgoing ray

Reflected ray

𝑛̂
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𝑊̃(𝑅⃑⃑, 𝑝) = (
𝑘0
2𝜋

)
2

∫d2 𝐷 exp[−𝑖𝑘0𝑝 ∙ 𝐷⃑⃑⃑]

× 𝑎(𝐶 + 𝐷⃑⃑⃑ 2⁄ , 𝑍)𝑎∗(𝐶 − 𝐷⃑⃑⃑ 2⁄ , 𝑍). 
(21) 

 
In Eqs. 20 and 21 we used the notation 𝑅⃑⃑ = (𝐶, 𝑍), 
where 𝐶 is the central position along the x-y plane 
and 𝑍 is the central position along the z-axis. We 
also used the notation 𝑃⃑⃑ = (𝑃⃑⃑𝑐, 𝑃𝑧), where 𝑃⃑⃑𝑐 is the 
momentum conjugate to the 𝐶 coordinate and 𝑃𝑧 is 
conjugate to the 𝑍 coordinate. The momentum in 
Eq. 21 is 𝑝 = 𝑃⃑⃑𝑐 (ℏ𝑘0)⁄ , which is dimensionless and 
approximately equals the slope of the ray 
trajectory. The phase-space conservation equation 
for 𝑊̃ is approximately: 
 

𝜕𝑍𝑊̃ + ∇⃑⃑⃑𝐶 ∙ (𝑊̃𝑝) + ∇⃑⃑⃑𝐶𝑛1 ∙ ∇⃑⃑⃑𝑝𝑊̃ ≈ 0. (22) 
 
4.2. The paraxial BRDF 

We wish to model the BRDF as a more or less 
diffuse reflection, such as shown in Fig. 3 where 
the incident ray (grey arrow) produces a reflected 
ray (red arrow) along with scattered rays (blue 
arrows) distributed about the reflected ray. 
 

 
Figure 3. The diffuse reflection 

 
The reflected ray unit vector 𝑃̂0 obeys the relation: 
 

𝑃̂0 = 𝑃̂𝑖 − 2(𝑃̂𝑖 ∙ 𝑛̂)𝑛̂, (23) 
 
where 𝑛̂ is the normal of the reflecting surface. We 
model the target surface as a function: 
 

𝑍𝑠 = 𝑓(𝐶𝑠), (24) 
 
where 𝑍𝑠 is the z-coordinate of the surface as a 
function of the x-y coordinates of the target plane 
𝐶𝑠. The gradient of the target surface is: 
 

𝑔⃑ = ∇⃑⃑⃑𝐶𝑓, (25) 
 
and the surface normal unit vector is: 
 

𝑛̂ =
(−𝑔⃑, 1)

√1 + 𝑔2
 . (26) 

 

Likewise, the unit reflected and incident momenta 
vectors are: 
 

𝑃̂0 =
(𝑝0, 1)

√1 + 𝑝0
2
 ,   𝑃̂𝑖 = −

(𝑝𝑖 , 1)

√1 + 𝑝𝑖
2
 . (27) 

 
Since we want the paraxial approximation, the 
incident ray should be very nearly parallel to the z-
axis and so its slope should be very small: 𝑝𝑖 ≪ 1. 
Also assuming that the target surface gradient is 
small, 𝑔 ≪ 1, Eq. 23 becomes: 
 

𝑝0 ≈ −𝑝𝑖 − 2𝑔⃑, (28) 
 
since 𝑃̂𝑖 ∙ 𝑛̂ ≈ −1. Furthermore, in the paraxial limit 
the z-component of the momenta are almost equal 
to their magnitude, such that 𝑃𝑟𝑧 ≈ 𝑃𝑟 ≈ ℏ𝑘0 and 
𝑃𝑖𝑧 ≈ −𝑃𝑖 ≈ −ℏ𝑘0. Therefore, placing Eq. 15 and 
Eq. 20 in Eq. 14 and using all of the 
approximations mentioned in this section and 
integrating with respect to the momenta z-
components, we obtain: 
 

𝑊̃𝑟(𝐶𝑠, 𝑝𝑟) = ∫d2 𝑝𝑖  𝑊̃𝑖(𝐶𝑠, 𝑝𝑖)σ(𝐶𝑠, 𝑝𝑖 , 𝑔⃑; 𝑝𝑟), (29) 

 
where we use a Gaussian approximation for the 
BRDF: 
 
𝜎(𝐶𝑠, 𝑝𝑖 , 𝑔⃑; 𝑝𝑟) = 𝛼(𝐶𝑠) 

×
𝑘0
2𝑙2

2𝜋
exp [−

𝑘0
2𝑙2

2
(𝑝𝑟 + 𝑝𝑖 + 2𝑔⃑)2]. 

(30) 

 
In Eq. 30, the factor 𝜎(𝐶𝑠) is the reflectivity of the 
surface and is a function of position. The 
coherence length 𝑙(𝐶𝑠) controls the scattering of 
the rays about the reflection ray and is also a 
function of position. A coherence length much 
smaller than the wavelength corresponds to a wide 
spread of slopes, and a length much greater than 
the wavelength corresponds to a very narrow 
spread of the slopes. 
 
We can gain insight by considering the incident 
and scattered MCFs. Recalling the inversion 
formula in Eq. 3, we can write the equivalent of Eq. 
29 for MCFs: 
 

Γ̃𝑟(𝐶𝑠, 𝐷⃑⃑⃑𝑟) = ∫d2 𝐷𝑖  Γ̃𝑖(𝐶𝑠, 𝐷⃑⃑⃑𝑖) 𝛽(𝐶𝑠, 𝐷⃑⃑⃑𝑖, 𝑔⃑; 𝐷⃑⃑⃑𝑟), (31) 

 
where: 
 

𝛽(𝐶𝑠, 𝐷⃑⃑⃑𝑖 , 𝑔⃑; 𝐷⃑⃑⃑𝑟) = (
𝑘0
2𝜋

)
2

∫d2 𝑝𝑖 ∫d2 𝑝𝑟

× exp[𝑖𝑘0(𝑝𝑟 ∙ 𝐷⃑⃑⃑𝑟 − 𝑝𝑖 ∙ 𝐷⃑⃑⃑𝑖)] 𝜎(𝐶𝑠, 𝑝𝑖 , 𝑔⃑; 𝑝𝑟), 
(32) 

 
which gives: 
 

Surface

Normal to 
the surface 𝑛̂

Incident ray Scattered/reflected
rays
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𝛽(𝐶𝑠, 𝐷⃑⃑⃑𝑖 , 𝑔⃑; 𝐷⃑⃑⃑𝑟) = 𝛼(𝐶𝑠)𝛿(𝐷⃑⃑⃑𝑟 + 𝐷⃑⃑⃑𝑖)

× exp [−
𝐷𝑖
2

2𝑙2
+ 2𝑖𝑘0𝐷⃑⃑⃑𝑖 ∙ 𝑔⃑]. 

(33) 

 
Placing Eq. 33 in Eq. 31 results in the simple 
relationship: 
 

Γ̃𝑟(𝐶𝑠, 𝐷⃑⃑⃑𝑟) = Γ̃𝑖(𝐶𝑠, −𝐷⃑⃑⃑𝑟)𝛼(𝐶𝑠)

× exp [−
𝐷𝑟
2

2𝑙2
− 2𝑖𝑘0𝐷⃑⃑⃑𝑟 ∙ 𝑔⃑] 

(34) 

 
Equation 34 describes a simple BRDF for paraxial 
propagation with small target surface gradients. In 
it, we see that the scattered MCF has its 
coherence reduced by a factor exp[−𝐷𝑟

2 (2𝑙2)⁄ ]. 
Therefore, if the coherence length is very small, 
then a highly coherent incident MCF (such as from 
a plane wave) will result in an incoherent 
(Lambertian) scattered MCF. Conversely, a 
surface with a very large coherence length will not 
alter the coherence of the MCF, such that an 
incident plane wave will result in an outgoing plane 
wave with a wavenumber vector corresponding to 
a reflection with no diffusion or scattering. 
 
5. MODELING THE TURBULENCE 

We have adapted our passive turbulent imaging 
simulator [8, 9] to function as an active turbulent 
imaging simulator based on the BRDF developed 
above. We begin this section with a brief review of 
the model’s physical principles and how they 
interact with the BRDF, and then we show and 
comment on some sample outputs. 
 
5.1.  Physical principles 

Our model is based on an Extended Huygens-
Fresnel (EHF) principle (see Fante [10]). If we 
have the function 𝑎𝑒(𝜌⃑𝑒, 𝐿) on the emitting surface 
of a laser, and the want to find the corresponding 
incident function on the target surface 𝑎𝑖(𝜌⃑𝑠, 0) (as 
shown in Fig. 2), we use a propagator such that: 
 

𝑎𝑖(𝜌⃑𝑠, 0) = ∫d2 𝜌𝑒  𝑎𝑒(𝜌⃑𝑒 , 𝐿)𝜓(𝜌⃑𝑒, 𝐿; 𝜌⃑𝑠, 0), (35) 

 
where: 
 

𝜓 =
𝑘0
2𝜋𝑖𝐿

exp [
𝑖𝑘0
2𝐿

(𝜌⃑𝑠 − 𝜌⃑𝑒)
2 + 𝜒 + 𝑖𝑆] . (36) 

 
The first term in the exponent of Eq. 36 
corresponds to a spherical wave in empty space. 
The terms 𝜒(𝜌⃑𝑒 , 𝐿; 𝜌⃑𝑠, 0) and 𝑆(𝜌⃑𝑒, 𝐿; 𝜌⃑𝑠, 0) are 
fluctuations caused by turbulence of the log-
amplitude and phase, respectively. Note that the 
model uses the Rytov approximation for the log-
amplitude and phase fluctuations, making them 
linear integrals of the refractive index fluctuation 
field, 𝑛1. We will not elaborate on this here. 
 

The equation for the MCFs corresponding to Eq. 
35 is: 
 

Γ̃𝑖(𝐶𝑠, 𝐷⃑⃑⃑𝑠, 0) = ∫d2 𝐶𝑒∫d2 𝐷𝑒Γ̃𝑒(𝐶𝑒 , 𝐷⃑⃑⃑𝑒 , 𝐿)

× 𝐻(𝐶𝑒, 𝐷⃑⃑⃑𝑒 , 𝐿; 𝐶𝑠, 𝐷⃑⃑⃑𝑠, 0), 
(37) 

 
where: 
 

𝐻(𝐶𝑒, 𝐷⃑⃑⃑𝑒 , 𝐿; 𝐶𝑠, 𝐷⃑⃑⃑𝑠, 0) =  𝜓 (𝐶𝑒 +
𝐷⃑⃑⃑𝑒

2
; 𝐶𝑠 +

𝐷⃑⃑⃑𝑠

2
)

× 𝜓∗ (𝐶𝑒 −
𝐷⃑⃑⃑𝑒

2
; 𝐶𝑠 −

𝐷⃑⃑⃑𝑠

2
). 

(38) 

 
In order to find the scattered MCF, we will make 
two simplifications: first, we model the laser as a 
point source located at 𝐶𝑒 with an infinite beam 
divergence, and second we assume that the 
coherence length is significantly shorter than the 
correlation scales for 𝜒 and 𝑆. This means that 
surface is weakly specular and that we can expand 
those fields as a Taylor series and keep the zero 
and first order terms. From Eq. 34 we get: 
 

Γ̃𝑟(𝐶𝑠, 𝐷⃑⃑⃑𝑟) = 𝛼(𝐶𝑠) (
𝑘0
2𝜋𝐿

)
2

× exp [−
𝐷𝑟
2

2𝑙2
+ 2𝜒 + 𝑖𝑘0𝐷⃑⃑⃑𝑟 ∙ 𝛾⃑], 

(39) 

 
where: 
 

𝛾⃑ =
𝐶𝑠 − 𝐶𝑒

𝐿
+

1

𝑘0
∇⃑⃑⃑𝐶𝑆 − 2𝑔⃑. (40) 

 
The model then propagates the scattered MCF on 
the target surface to the imager through the same 
turbulence using Eqs. 37 and 38. Note that the 
model only uses the zero and first order derivatives 
at the target surface of the return 𝜒 and 𝑆 fields. 
 
5.2. Model outputs 

We now demonstrate the model by simulating the 
illumination of a ‘grey’ panel (i.e. mid-way between 
completely black and completely white) through 
turbulence, where the panel has a variable 
coherence length. The model input values are 
listed in Tab. 1. 
 

Table 1. Active imaging model input values 
Range 2.3 km 
Wavelength 4.2 μm 
IFOV 3.83 μrad 
Imager aperture diameter 18.36 cm 
Cn

2 5 e -14 m-2/3 
Turbulence outer scale 10 m 
Turbulence inner scale 6 mm 
 
The values in Tab. 1 are all adjustable parameters 
of the model. It can therefore model visible or IR 
imaging simply by altering the wavelength. The 
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input IFOV stands for Instantaneous Field Of View, 
and is the angular divergence of a pixel of the 
imager. The input Cn

2 is the refractive index 
structure parameter. It is a statistical parameter 
quantifying the strength of the optical turbulence 
since it appears in the structure function of the 
refractive index turbulent fluctuations in the inertial 
range: 
 

〈(𝑛1(𝑥⃑ + 𝑙, 𝑡) − 𝑛1(𝑥⃑, 𝑡))
2
〉 = 𝐶𝑛

2𝑙2 3⁄ , (41) 
 
where the angle brackets represent the average 
over the ensemble of turbulent fluctuations. The 
inertial range refers to turbulent eddies that are 
smaller than the scale where the turbulence is 
produced (the outer scale) and larger than the 
scale where viscous dissipation dominates (the 
inner scale). See Kaimal & Finnigan [11] for more 
details. 
 

 
Figure 4. The original grey panel 

 

 
Figure 5. Model output for grey panel with a 

coherence length of 8 mm 
 

Fig. 4 shows the original grey panel, whereas Fig. 
5 shows the model output of the grey panel with a 
coherence length of 8 mm as seen by the active 
imaging model using the parameter input values 
listed in Tab. 1. Since the coherence length is very 
much greater than the wavelength, the surface is 
very specular. And since the source is collocated 
with the imager, only the central region returns 
radiance back into the imager. In the outer region, 
the rays reflect/scatter at angles that miss the 
imager entirely. 
 

 
Figure 6. Model output for grey panel with a 

coherence length of 800 μm 
 

 
Figure 7. Model output for a Lambertian grey panel 
 
Fig. 6 shows the same output as in Fig. 5, but with 
a coherence length of 800 μm. Since the 
coherence length is considerably shorter, the rays 
scatter over a wider range of angles, resulting in a 
greater area that returns radiance back into the 
imager. 
 
Fig. 7 shows the output for a Lambertian surface, 
i.e. one where the coherence length is vanishingly 
small. That means that the rays scatter in every 
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direction, which results in the entire surface 
returning radiance to the imager. Note that the 
fluctuations in Fig. 7 are due entirely to the log-
amplitude fluctuations, whereas those in Figs. 5 
and 6 are also caused by the variable angle of 
arrival of the incident rays (modelled by the 
gradient of the function 𝑆 in Eq. 40). 

6. CONCLUSIONS

We have shown in this work how the BRDF of a 
surface can be expressed in terms of Wigner 
functions. This definition led to simplifications when 
we considered the paraxial approximation, which, 
in turn, led us to define the coherence length of a 
surface. This length describes how specular a 
surface is in a simple way. 

However, these simplifications also come with 
restrictions, the most serious being the demand 
that the surface gradient be very small. If a scene 
contains objects in the foreground, it is likely that 
their edges will have very large surface gradients. 
More work is therefore needed to develop a more 
complete theory so as to include very large 
gradients. 

The second most serious restriction is the demand 
that the surface be weakly specular so that the log-
amplitude and phase fluctuation fields could be 
truncated to first order in a Taylor series. This 
means that the model would have difficulty 
simulating strongly specular surfaces such as the 
one in Fig. 5. More study is needed to determine if 
the distortions created by this restriction are 
serious and need to be addressed by modifying 
the model in some way. 

Perhaps the least serious restriction is that the 
turbulence be weak enough so that the Rytov 
approximation holds. This restriction is a legacy 
from the passive turbulent imaging model on which 
the active model is built. It can be alleviated 
somewhat if the outgoing laser pulse is not 
modelled by the Rytov approximation (as is 
currently the case), but simulated by a split-step 
phase screen technique. However, this would still 
leave the problem of simulating the return 
propagation through strong turbulence for imaging. 

Nevertheless, we believe that the coherence 
length concept is a simple and useful tool for 
modelling the active imaging of a variety of 
surfaces through atmospheric turbulence. 
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