
 

Defenc
Scientific
DRDC-R
April 201
 

Mobi

Summe

Tricia Will
Susan Wa
David Bro
Mazda Sa
Ronggong
Ming Li 
Pierre-Luc
DRDC – O
 
  
 

ce Resear
c Report  
DDC-2018-R
8 

ile netw

er 2017 

ink 
atson 
own 
almanian 
g Song 

c Drouin 
Ottawa Resea

rch and D

R032 

work f

arch Centre  

CAN UNCLA

Developm

CAN U

field ex

ASSIFIED 

ment Can

UNCLASSIFIE

xperim

ada 

ED 

ments 



CAN UNCLASSIFIED 

Template in use: (2017) SR Advanced Template_EN_4_2018-02-06_2_WW.dotm 
 
© Her Majesty the Queen in Right of Canada (Department of National Defence), 2018 

© Sa Majesté la Reine en droit du Canada (Ministère de la Défense nationale), 2018 
 
 

CAN UNCLASSIFIED 

IMPORTANT INFORMATIVE STATEMENTS  
 

This document was reviewed for Controlled Goods by Defence Research and Development Canada (DRDC) using the Schedule to 
the Defence Production Act. 

Disclaimer: Her Majesty the Queen in right of Canada, as represented by the Minister of National Defence ("Canada"), makes no 
representations or warranties, express or implied, of any kind whatsoever, and assumes no liability for the accuracy, reliability, 
completeness, currency or usefulness of any information, product, process or material included in this document. Nothing in this 
document should be interpreted as an endorsement for the specific use of any tool, technique or process examined in it. Any 
reliance on, or use of, any information, product, process or material included in this document is at the sole risk of the person so 
using it or relying on it. Canada does not assume any liability in respect of any damages or losses arising out of or in connection 
with the use of, or reliance on, any information, product, process or material included in this document. 

Endorsement statement: This publication has been peer-reviewed and published by the Editorial Office of Defence Research and 
Development Canada, an agency of the Department of National Defence of Canada. Inquiries can be sent to: Publications.DRDC-
RDDC@drdc-rddc.gc.ca. 

 
 



  

DRDC-RDDC-2018-R032 i 
 

  

Abstract  

This report describes field experiments undertaken in the summer of 2017 using network and data 
applications developed under the Tactical Network Operations project. The aims of the activity were to 
develop a field testing capability and to obtain insight into the performance of wireless networks in static 
and mobile operation. We completed a number of experiments, building on each other to understand the 
impact of the physical environment, the network topology and the applications. Preliminary data analysis 
has shown that path loss, even in relatively ideal unobstructed line-of-sight links, is highly variable over 
very small distances and across different devices: this impacts the potential for power-based emitter 
geolocation. Additionally, these experiments have revealed some of the complexities of application data 
transfer in mobile ad hoc networks, which involve data being relayed through other nodes en route from 
source to destination. In particular, we found that the traffic and MAC layer protocol messaging appeared 
to cause interference and collisions when routed via relays, resulting in unexpected degradations in 
throughput and packet loss performance. Future work to investigate this further will require more detailed 
over-the-air observations in addition to logging on the radio nodes. The data collected during these 
experiments will continue to support the project’s R&D activities, and further experiments will be 
planned to gain deeper insights and to investigate performance in more challenging environments. 

Significance to defence and security  

Future tactical networks will support a variety of application traffic types, and operate in mobile 
environments with dynamic topologies. To overcome the challenges in making these networks robust and 
resilient in dynamic and contested conditions or when under attack, and to reveal opportunities for 
exploitation, the complex interactions of the dynamic properties of the radio, network and traffic must be 
understood. The experiments and preliminary analysis reported herein represent a continuation of the 
R&D within the Tactical Network Operations project to achieve this goal. 
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Résumé  

Le rapport décrit des expériences menées sur le terrain pendant l’été 2017 à l’aide d’applications réseau et 
de données développées dans le cadre du Projet d’opérations de réseau tactique. Elles visaient à 
développer les capacités d’essai sur le terrain et de mieux comprendre le rendement des réseaux sans fil 
en fonctionnement statique et mobile. Nous avons mené à bien plusieurs expériences, en mettant à profit 
les résultats des premières pour les expériences ultérieures, afin de comprendre les répercussions sur le 
rendement de l’environnement, de la topologie du réseau et des applications. Une analyse préliminaire 
des données démontre que l’affaiblissement de propagation, même pour les liens en visibilité directe, 
passablement idéaux car libres d’obstructions, varie considérablement sur de très petites distances et d’un 
dispositif à l’autre; cela ne peut que jouer sur la géolocalisation des émetteurs en fonction de la puissance. 
Ces expériences ont aussi mis en lumière certains des aspects complexes des communications de données 
interapplications dans les réseaux mobiles spéciaux, car ces données sont relayées par des nœuds 
intermédiaires entre la source et la destination. Plus précisément, nous avons observé que les messages 
des protocoles de couche MAC semblent entraîner interférences et collisions s’ils sont transmis par relais; 
il en résulte la perte de paquets et une dégradation inattendue du rendement. Pour étudier cela plus avant, 
il nous faudra observer les radiocommunications plus en détail et journaliser l’activité des nœuds radio. 
Les données recueillies pendant ces expériences appuieront les activités de R et D du projet, et nous 
prévoyons d’autres expériences afin d’approfondir nos connaissances et d’étudier le rendement des 
réseaux en environnements plus difficiles. 

Importance pour la défense et la sécurité  

Les réseaux tactiques de l’avenir prendront en charge bien des types de communications entre 
applications, et devront fonctionner en environnements mobiles et selon des topologies dynamiques. Afin 
de surmonter les obstacles qui nous empêchent d’assurer la robustesse et la résilience de ces réseaux en 
situations dynamiques et contestées sinon carrément hostiles, et en dégager les occasions d’exploitation, il 
faut comprendre clairement les interactions complexes entre les caractéristiques dynamiques des 
émetteurs-récepteurs radio, du réseau et des communications qu’il véhicule. Les expériences et l’analyse 
préliminaire décrites dans le présent rapport s’inscrivent dans la lancée des recherches et du 
développement du Projet d’opérations de réseau tactique visant à atteindre cet objectif. 
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1 Introduction 

Wireless networks operate in a medium that is time-varying and unpredictable; these variations in the 
physical links among radios have repercussions for higher level radio, network and application functions. 
To maintain adequate application performance, networks should be resilient to changes in the physical 
medium. This is conventionally achieved by automatically adapting the throughputs of individual radios 
and, in the case of Mobile Ad Hoc Networks (MANETs), the network’s topology.  

The Tactical Network Operations (TNO) project, within the Director General (S&T) Joint Force 
Development (DGSTJFD) portfolio, started in April 2014. According to the Project Charter, the project 
“addresses the need for future wireless network security, management, and full-spectrum operations 
through a balance of R&D activities” [1]. A core facilitator of this project has been a MANET 
application, developed in preparation for the TNO project, which operates using WiFi at 2.4 GHz on 
Android phones and Linux laptops. This MANET implementation supports several network and cyber 
tools that we have developed, including Situational Awareness (SA) and Command and Control (C2) 
applications. Some of these tools were trialed at DRDC – Toronto Research Centre in 2014 [2]. 

To understand the performance of the SA and C2 applications in real conditions, it is necessary to test and 
evaluate the behavioural characteristics of the MANET over which they operate. While mathematical 
analysis and computer simulations are vital to the development of concepts for network use and cyber 
security, they are unable to reproduce the complete effects of the real world. Therefore, to understand the 
impact of the complex interactions within each radio and across the network as a whole, it is essential to 
perform live experiments.  

This report describes a number of field experiments that we undertook in the summer of 2017 at the 
Shirleys Bay campus, with the aims of developing a field testing capability and obtaining insight into the 
performance of wireless networks in static and mobile operation. The objectives of this report are: to 
document the planning and implementation of the experiments; to provide preliminary analyses of the 
data collected; and to identify lessons learned. These will inform future experiment activities within TNO 
and subsequent projects. 

In the remainder of this section, we give a summary of background concepts related to the experiments. In 
Section 2, a high-level view of the experimental plans and a brief description of the system components is 
presented. Details on each experiment phase and their outcomes are provided in Sections 3–6, and lessons 
learned and future experimental directions are presented in Section 7. Conclusions are summarised in 
Section 8. 

1.1 Background concepts 

1.1.1 Mobile ad hoc networks 

Mobile ad hoc networks, or MANETs, are a form of self-organising, infrastructure-less network, in which 
messages may be relayed through peer nodes, over multiple hops, to reach their destinations. Routes 
connecting pairs of nodes may be determined in a proactive way, meaning that routes are regularly 
re-computed regardless of demand, or in a reactive way, in which routes are computed only when 
demanded by network nodes. In both proactive and reactive modes, probing messages are sent by nodes 
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to estimate the quality of links to their immediate neighbours, and to exchange local information that is 
required to compute routes.  

In the MANET implemented and used in these experiments, the Optimised Link State Routing (OLSR) 
protocol [3] is used, which is a proactive routing protocol. We used the OLSRd implementation of OLSR 
version 1 [4]. Each node emits “Hello” messages at defined intervals, which are used to sense the links 
and exchange information about one- and two-hop neighbours, as well as Topology Control (TC) 
messages, which are used to inform each node about link states to support route computation. The 
intervals at which these messages are sent are configurable; it is known that these values should be 
adjusted to accommodate the speed of network nodes [5], but in our experiments, mobility was 
sufficiently low that we used the default values (2 s for Hello messages and 5 s for TC messages). 

The Ad Hoc On-Demand Distance Vector (AODV) routing protocol uses route request and route reply 
messages to compute routes from specified sources to desired destinations [6]. Only routes for active 
communications are maintained, and no resources are used to compute routes that are not needed. This 
protocol was designed for dynamic conditions and low network demand. An implementation of AODV 
has recently been completed within TNO, which will be used in future experimentation. 

1.1.2 Transport protocols 

Transport protocols are used in IP-enabled communications to provide a mechanism to deliver data 
streams from an application on one node to a (possibly different) application on another. In addition to 
carrying the data stream itself, the protocol also transmits control data to support error detection and 
correction, and may have some form of Automatic Repeat Request (ARQ) to retransmit uncorrectable 
packets.  

In these experiments, we used two of the most common transport protocols, the User Datagram Protocol 
(UDP) and the Transmission Control Protocol (TCP). UDP is “connectionless,” i.e., it is a “send-and-forget” 
protocol that does not ensure data delivery. It has only a small amount of overhead, to communicate the 
application information and for packet segmentation. However, note that for unicast (addressed to a 
specific destination) UDP in WiFi, there is a Medium Access (MAC) layer connection, in which the 
source node transmits a “request to send” (RTS) message, which is responded to by the destination with a 
“clear to send” (CTS) message. Further, Acknowledgements (ACKs) are issued by the MAC layer, so 
UDP operating over WiFi is not truly connectionless.  

TCP is a “connection-oriented” protocol, i.e., it uses extra overhead and re-transmissions to ensure that 
transmitted packets are received correctly, and in the correct order, (these are in addition to the MAC 
layer connection messages). Testing using the UDP protocol shows the number of packets that are lost 
due to poor link quality, while testing using the TCP protocol reveals the net application throughput, 
taking into account packet retransmissions due to poor link quality. Both these parameters are important 
in understanding how a network may support its applications. 



  

DRDC-RDDC-2018-R032 3 
 

  

2 Experiment plans and equipment 

2.1 Experiments overview 

As noted above, our objective with these experiments was to obtain insight into the performance of 
wireless networks in operational conditions, i.e., outdoors with nodes separated by tens of metres or more. 

The experiments were designed to build on lessons learned, starting at the physical layer, using 
performance results and observations to fine-tune experimental conditions for higher layers and more 
challenging tests. 

The first set of experiments, described in Section 3, were designed to evaluate the variation in received 
signal strength over small and large distances, and to determine whether there was a significant difference 
in measured received signal strength in different devices. This set of experiments directly informs the 
question of whether power-only measurements can support reasonably accurate geolocation of target 
nodes. 

Building on the knowledge obtained from the physical layer evaluations, in the second phase of 
experiments we considered the link quality and its impact on MANET operation, described in Section 4. 
These experiments were designed to gain insight into throughputs at different node separations, both 
without and with the aid of a relay node. Both static and mobile scenarios were considered, as a first step 
to understanding the impact mobility has on overall MANET performance. 

During the TNO project to-date, an application to implement a gateway concept connecting two or more 
MANETs, described in Error! Reference source not found., has been completed, building on previous 
work. A full understanding of the performance of this complex architecture in a real environment requires 
repeated experimentation, to develop and build upon insights gained. In this phase, the behaviour of a 
MANET using a three-hop route was investigated: this is a preliminary proxy to the use of gateways 
connecting the edges of two distinct MANETs, where gateways are essentially complex relays using two 
radio interfaces, each with its own network stack. The experiments and results of this phase are described 
in Section 5; future experiments are being planned to enhance our understanding of gateway performance. 

To support ongoing R&D in traffic analysis, on-air data packets were collected for different user 
applications, in single- and multi-hop scenarios. The applications used included blue force tracking, file 
transfer and TCP; in this experiment, the OLSR messages themselves were also part of the on-air data 
collected. The experimental setup and data sets are described in Section 6. 

2.2 Hardware 

For the experiments, we used Nexus 5 smart phones [8], which run the Cyanogenmod 13 operating 
system, which is an Android variant. This phone can be operated using its internal WiFi interface, and an 
external USB WiFi adapter can be used instead of, or in addition to, the internal interface. The external 
WiFi adapters we used were the Panda Wireless (PAU06) [9] and TPLink (TL-WN722N) [10] products.  
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2.3 Software 

We used the DRDC MANET application (app) IRN MC (for improvised radio network—MANET 
controller), based on the OLSR protocol, to provide the test networks used in our experiments. For 
measurements not using this app, a GPS synchronisation app developed at DRDC was used to establish 
precise location and timing. These apps were developed prior too, and during, the TNO project. 

To measure the received signal strength, we used the IRN Sensor app, which was developed at DRDC as 
part of a distributed network surveillance activity. It provides power measurements, averaged over short, 
definable windows associated with signals transmitted from selected nodes. 

To test the performance of UDP and TCP, we used the IRN Test app, which provides support for 
measuring packet delivery rates for UDP and throughput for TCP in configurable tests between specified 
nodes in the MANET. 

For data capture to support traffic analysis, in addition to the IRN Test app, we used the IRN blue force 
tracking app [11], which was developed as a de-risking prototype for the Tactical Edge Cyber Command 
and Control (TEC3) technical demonstrator [12]. The Serval Mesh app, an open source file sharing 
application [13], was also used for traffic generation. 

The Android phones have a Nethunter terminal function installed [14], which is open-source software 
developed as a penetration testing platform. This includes the “tcpdump” functionality, which is a packet 
analyser used to display and count data packets observed on a radio interface [15]. 

2.4 Measurement support 

The primary tool for supporting WiFi measurements was Wireshark [16], which is a network protocol 
analyser. Used on a laptop in conjunction with a Riverbed AirPcap adapter [17], WiFi packets can be 
captured on-air and analysed to identify data, control and management packets, by source and destination.  

2.5 Location 

We performed these experiments at the Shirleys Bay campus; an aerial view of the campus showing the 
area used for our experiments is shown in Figure 1. A more detailed view of the zones used for the 
experiments is shown in Figure 2. For the preliminary physical layer experiments (Section 3), we used the 
grassy area marked as “zone 1” in Figure 2, and for the subsequent measurements we used the straight 
portion of a gravel road in the north-east area, marked “zone 2.” These zones were selected because they 
are reasonably flat, and there are no buildings and little traffic; experiments were paused on the rare 
occasions that people or a vehicle passed through the experiment zone.  
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3 Physical layer evaluations 

3.1 Objectives 

We would like to be able to geolocate WiFi transmitters using simple, commercially available sensor 
hardware which does not require precise time synchronisation between the measuring devices. One way is 
to use the WiFi chipsets themselves to measure received power, convert the received power into a 
distance, and then estimate the position of the transmitter by trilateration. To relate the received power to 
the separation distance from the transmitter, we can use an expression of the received power ( ௥ܲ௫ in dBm) 
at some distance ݀ from the transmitter [18]: 

௥ܲ௫ ൌ ଴ܲ െ ߛ10 logଵ଴
݀
݀଴

 (1)

where ଴ܲ is the power measured at a reference distance ݀଴ from the transmitter, and ߛ is the path loss 
exponent, which is a constant ranging between 2 and 4 (typically) depending on the local environment. 
The accuracy and consistency of the received power estimates reported by a measuring device will have a 
direct impact on the accuracy of the geolocation estimates.  

The Received Signal Strength Indicator (RSSI) reported by a WiFi device is an approximation or an 
imperfect measure of the received power. The RSSI estimates the signal energy at the WiFi receiver 
during reception of the packet header; this data is available for successfully received packets only. As it is 
a measure of signal energy, the RSSI contains the energy from interference in addition to the received 
signal. The RSSI is reported differently by different chipset manufacturers, and is meant to measure 
signal quality within the chipset and its driver.  

We performed a preliminary set of outdoor measurements for three purposes: 1) to investigate the effect 
of local motion on RSSI; 2) to determine the amount of variability between RSSI measurements on 
different devices having the same RF hardware; and 3) to examine the predictability of the relationship 
between distance and RSSI, as in Equation (1). 

3.2 Plan and execution 

To conduct the experiments, we used Nexus 5 Android phones, which had the roles of transmitting 
device, receiving device, and measuring device. For the measuring device, we used the custom IRN 
Sensor app. This app reads the WiFi radiotap header attached to the packet by the WiFi firmware; the 
radiotap header exfiltrates the RSSI to upper layer software. The app then logs the per-packet RSSI along 
with other data, such as the time, originating MAC address, and destination MAC address. The transmitting 
and receiving devices were loaded with the IRN Test app, which allows the user to initiate custom traffic 
flows. The transmitting device always sends packets at full power (approximately 10.5 dBm on the internal 
interface [19]). 

The first experiment tested the variation in RSSI under local motion. We collected measurements in an 
open field environment (zone 1 in Figure 2). Two tripods were set up with a 50 m separation distance, 
where one tripod supported the transmitting Android device, and the other supported the measuring 
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device, both at roughly chest height. For each collection of RSSI data, we initiated a one minute flood of 
broadcast packets at a rate of 50 kB/s. To create local motion, with tripod holding the measuring device, 
the device was held away from the body and rotated in a horizontal circle roughly two wavelengths 
(25 cm) in diameter. Each rotation was executed over a period of a few seconds.  

The second experiment tested the effect of replacing the transmitting device with an equivalent device; 
that is, the same make and model of Android phone, having the same WiFi chipset. We kept the 
experimental setup the same for these experiments as for those with local motion, however in this case, 
the devices were stationary. Five different equivalent transmitting devices were tested. 

For the third experiment, the environment was a line-of-sight channel along a gravel road (zone 2 in 
Figure 2). The measuring device was placed in a tripod opposite the transmitting device, and the receiving 
device was nearby the measuring device. We varied the separation distance between the measuring device 
and the transmitting device from 25 m to 250 m in increments of 25 m. For a given separation distance, 
broadcasts were sustained for 90 seconds while RSSI data was collected. Naturally, as separation distance 
increased, the number of RSSI measurements collected within the 90 second period decreased due to a 
greater number of errored messages; for example, we collected 23,287 RSSI samples at 25 m, and 
277 samples at 250 m. We note that as a consequence, the RSSI data collected does not represent the full 
range of received powers seen by the receiving devices, particularly at larger separation distances. 

3.3 Preliminary results  

3.3.1 Effects of local motion  

We know that received signal strength can vary widely as the receiver is moved a few wavelengths, due to 
multipath propagation effects. To describe the effect of local motion in the first experiment, we report a 
simple mean and standard deviation in the RSSI values for each collection run. As shown in Table 1, for 
collection runs with stationary transmitting and measuring devices, the distribution of RSSIs has a smaller 
standard deviation1 (i.e., 1.1–1.3 dBm) compared with collection runs with local motion (i.e., 3.6–3.7 dBm). 
However, referring to Figure 3 (run 1), even when the devices are stationary, the distribution of measured 
RSSIs can vary widely. Mean RSSIs varied by up to 6 dB in our experiment (Figure 3, run 1 vs. run 3), 
which could result in significant discrepancies in geolocation based on received signal strength [20], [21]. 

Table 1: Mean and standard deviation of collected RSSI measurements,  
for stationary and moving receivers. 

~3000 measured packets each: Mean (dBm) Std. Dev. (dBm) 

Stationary, first run -61 1.1 

Stationary, second run -65 1.3 

Stationary, third run -67 1.1 

Local motion, first run -64 3.6 

Local motion, second run -64 3.7 

                                                      
1 Means and standard deviations were computed in log units. 
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4 MANET operation and link connectivity 

4.1 Objective 

The objective of this set of experiments was to gain an appreciation of the expected throughput of WiFi 
ad hoc network devices operating in a relatively benign environment free of major scatterers and with 
line-of-sight connectivity among neighbouring nodes. Note that our intent was not to arrive at exact 
throughput values for the networks in question, nor to identify precise ranges of expected throughput 
values, but was rather to make phenomenological observations of throughput in a number of different 
scenarios. The conditions we were interested in were: (1) the distance between nodes; (2) connectionless 
versus connection-oriented transport protocols; (3) direct communication between adjacent nodes versus 
communication through a single relay; and (4) mobile versus static nodes. 

The remainder of this section details the experimental setup and procedure followed in conducting this set 
of experiments, and a summary and discussion of the observed results. 

4.2 Experimental setup and procedure 

This set of experiments was undertaken in zone 2: a more detailed aerial view is shown in Figure 9. Prior 
to running the experiments, we selected a location along the road as a “starting position,” shown with a 
pink marker. We measured and marked intervals spaced 25 m apart from the starting position, running 
along the road, as indicated by the blue line; the yellow line in Figure 9 indicates a distance of 100 m, for 
reference. 

As noted in Section 2.2, these experiments used Android phones; in each case, one phone acted as a 
transmitter (denoted “Tx”) and another phone acted as a receiver (denoted “Rx”). Unless otherwise 
specified, the Tx phone was placed in a wooden holder on a tripod at the starting position for all 
experiments. Certain experiments also involved a third phone acting as a relay (denoted “H”). The phones 
operated as a MANET using IRN MC, and the Tx and Rx nodes used the IRN Test application to 
generate traffic for measuring network throughput. The internal WiFi interface was used for transmitting 
and receiving on all phones. 

The following sub-sections summarise the procedure we followed for the experiments we conducted to 
evaluate MANET operation and link connectivity. 
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The experiment was conducted once for each of the following Tx/Rx separations: 1 m, 50 m, 100 m, 
150 m, 200 m, 250 m. In all cases, the Rx phone was held upright by the experimenters at waist height. 

4.2.1.2 TCP transport—throughput  

For a particular separation of Tx and Rx, the IRN Test app was configured to measure the maximum TCP 
throughput of the channel. The throughput test was conducted for a duration of 120 s, with the IRN Test 
app instance on the Rx node recording the “instantaneous” observed TCP data rate once per second. 

The experiment was conducted once for each of the following Tx/Rx separations: 25 m, 50 m, 75 m, 100 
m, 125 m, 150 m, 175 m, 200 m, 225 m. In all cases, the Rx phone was held upright by the experimenters 
at waist height. 

4.2.2 UDP and TCP measurement between two mobile nodes  

The second experiment focused on the observed effect on communications when one node moved at a 
constant velocity relative to the other, static node. Once again, we examined both UDP and TCP transport 
layer cases. 

For all sub-experiments considered here, the Tx node was kept at the starting position. To create relative 
mobility between the Tx and Rx nodes, the Rx node was moved between the 50 m and 250 m markers at 
varying speeds. 

4.2.2.1 UDP transport—slow mobility  

The Rx phone was held at waist height by an experimenter such that their body did not obstruct the 
line-of-sight to the Tx phone, and the IRN Test app was configured to send UDP datagrams from Tx to 
Rx at a rate of 50 kB/s using the “UDP Fire and Forget” broadcast feature in IRN Test. As soon as IRN 
Test began sending data, the experimenter began walking from the 50 m mark to the 250 m mark at a 
slow pace, such that it took 175 s to cover the distance. This test was repeated, with the experimenter 
walking from the 250 m mark back to the 50 m mark. We ran this test twice (walking there and back 
twice), and used tcpdump to gather the packet capture data on both Tx and Rx nodes. 

4.2.2.2 UDP transport—fast mobility  

The Rx phone was held aloft by an experimenter in the back of a buggy located at the 50 m mark. The 
IRN Test app was configured to send UDP datagrams from Tx to Rx at a rate of 50 kB/s using the “UDP 
Fire and Forget” broadcast feature in IRN Test. As soon as IRN Test began sending data, the driver of the 
buggy accelerated to the maximum attainable speed (approximately 20 km/h) and continued driving to the 
250 m mark. This test was repeated 4 times. The test always ran from the 50 m to 250 m mark for safety 
reasons (it was deemed unsafe to drive the buggy backwards from 250 m to 50 m, and we always wanted 
the rider in the back positioned such that they were facing the Tx phone so we could not turn the buggy 
around). Each buggy ride took roughly 35 s to cover the 200 m distance. 

4.2.2.3 TCP transport—slow mobility  

The Rx phone was held at waist height by an experimenter, and the IRN Test app was configured to 
measure TCP maximum throughput. As soon as IRN Test began sending data, the experimenter began 
walking from the 50 m mark to the 250 m mark at a slow pace, such that it took 175 seconds to cover the 
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distance. This was repeated twice. The reverse route (from 250 m to 50 m) was not measured, since the 
TCP session would not initiate at a separation of 250 m between Tx and Rx (the three-way handshake 
could not complete as the nodes had poor connectivity). 

4.2.2.4 TCP transport—fast mobility  

The Rx phone was held by an experimenter in the back of a buggy located at the 50 m mark. The IRN 
Test app was configured to measure TCP maximum throughput. As soon as IRN Test began sending data, 
the driver of the buggy accelerated to the maximum attainable speed and continued driving to the 250 m 
mark. This test was conducted only once. 

4.2.3 TCP measurement between two nodes using a relay 

The final experiment in this set focused on the communication between two ad hoc nodes via a relay. For 
this experiment we examined only TCP maximum throughput and did not look at UDP packet drop rate. 
For all sub-experiments conducted here, three phones were used: one phone was at the starting position, 
another was at the 250 m mark, and a third phone served as the relay (the “H” phone) between these two. 

The IRN Test app was configured to measure the maximum TCP throughput. The throughput test was 
conducted for a duration of 120 s, with the IRN Test app instance on the Rx node recording the 
“instantaneous” observed TCP data rate once per second. 

The experiment was conducted for each of the following positions of the relay node: 75 m, 100 m, 125 m, 
150 m, 175 m. In all cases, the Rx phone and H phone were held upright by the experimenters at waist 
height. The first run of the experiment had the Tx node at the starting position and the Rx node at 250 m 
for each of the relay positions. A second run was conducted with the Tx and Rx nodes swapped such that 
the Rx node was at the starting position and the Tx node was at 250 m. 

4.3 Results and discussion 

All results discussed in this section correspond directly to the experiments described in Section 4.2. 
Section titles refer back in an identical fashion to the experimental setup and procedure titles, with the 
addition of the suffix “results” on each title. 

4.3.1 UDP and TCP measurement between two static nodes—results  

4.3.1.1 UDP transport—packet delivery rate  

In this experiment, tcpdump packet capture logs were collected on the Tx and Rx nodes. We filtered the 
logs to include only the UDP broadcast packets, which were sent at a rate of 50 kB/s. For each Tx/Rx 
separation distance we computed the packet delivery rate by observing the number of filtered packets 
collected at the Rx node compared to the number sent by the Tx node over the 120 s test duration. The 
packet delivery rate as a function of distance is shown in Figure 10. 

We observe that the packet delivery rate decreases as a function of Tx/Rx separation, as expected. At a 
separation of 1 m, we observe a packet delivery rate of 97.6%—indeed hardly any packets are dropped 
when the nodes are right next to each other. There is a precipitous drop observed between 100 m and 
150 m. By 250 m, no packets are observed at Rx, meaning that the packet delivery rate during this 
measurement is 0%. 
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6 Traffic analysis data capture 

6.1 Objectives 

The objective of this field experiment was to collect data from several MANET applications (e.g., TCP, 
UDP, file transfer, voice, short message, and SA) reaching their destinations via 1-hop, 2-hop and 3-hop 
routes in a real environment, and to eavesdrop on the wireless communication traffic over-the-air. The 
data collected will be used to support traffic analysis and other future research activities. The 
eavesdropped wireless traffic should contain detailed information from the physical layer up to the 
application layer. To get diverse traffic for analysis, three testing scenarios were used for generating and 
collecting 1-hop, 2-hop and 3-hop traffic respectively. 

6.2 Plan and execution 

To conduct the experiment, we put four Android phones on tripods in a line beside the road in zone 2 in 
Figure 2, with 125 m spacing, as shown in Figure 25, such that each phone had a direct link with its 
neighbour phones only. The OLSR routing protocol was running on each phone, using the IRN MC app, 
to create a routing table for traffic forwarding.  

We set the first phone as the source node to generate and fire application traffic and others as 1-hop, 
2-hop and 3-hop destinations depending on their distance from the source node. Three laptops were 
located near the source node, the destination node, and the middle of the source and destination nodes 
respectively, where the destination node could be one, two or three hops away, depending on each testing 
scenario. Wireshark was used on each laptop to eavesdrop on the over-the-air wireless traffic. Note that 
the laptops were not part of the testing MANET.  

To generate application traffic, the following apps were installed on each phone: IRN MC, IRN test, IRN 
blue force tracking and Serval Mesh.  

For testing and collecting TCP, UDP, and file transfer application traffic, the IRN MC and IRN test app 
were launched in the source and destination nodes. The traffic generation command was fired through 
IRN MC at the destination node and sent to the source node to generate related application traffic.  

For testing and collecting IRN blue force tracking traffic, the IRN blue force tracking app was launched 
on each phone, thereby broadcasting its SA messages to the others. 

For testing and collecting voice and short message traffic, Serval Mesh app was launched in the source 
and destination nodes and sent related traffic to each other.  
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7 Lessons learned and future work 

These experiments have enhanced our understanding of the effects of operational environments, and have 
given us the opportunity to stretch the capabilities of our current suite of network and cyber tools. In 
particular, these experiments proved valuable in providing us with a set of qualitative observations that 
give us a better “gut feel” for the operation of WiFi ad hoc links under various protocols and conditions. 

We have learned a number of lessons for both operation and experimentation, as well as advanced 
requirements for software capabilities and directions for future experimental work. 

7.1 Operational lessons learned 

The dynamic nature of the WiFi receiver and the wireless environment make it difficult to predict 
meaningful things about the system in a reliable way. For example, to model and predict the probability 
of success of packet delivery in a wireless network, researchers have looked beyond RF propagation 
models and have turned towards experimentation with real radios operating in particular networks 
[22],[23]. 

Our findings follow and support what those in the wireless networking community have found, that 
simple abstract models of propagation are a poor match to empirical data [24]. For example, our 
measured RSSI values varied under local motion and differed between WiFi devices. In particular, 
non-line-of-sight channels caused significant inaccuracy in the measured RSSI. We find that in practical 
scenarios, RF measurements of the RSSI alone will provide poor predictions of distance. 

These findings have an impact on the networked performance of the radios, as we found that throughput 
did not always match our expectations, which might be attributable either to varying channel conditions 
or to the complexities in the radio nodes themselves. For example, we observed that the “instantaneous 
throughput” of TCP was extremely variable even under conditions where the endpoints and environment 
were held static; the UDP packet delivery rate was much more stable under the same conditions. 

We found that the limit on the usable range of a link was approximately 125 m in relatively clear 
line-of-sight conditions (these radios emit at approximately 10.5 dBm at 2.4 GHz), and beyond this the 
packet delivery rate of UDP dropped precipitously, and the TCP throughput degraded significantly as 
well. At 250 m, there was virtually no connectivity at all. 

When communicating via a relay, higher throughput was achieved when the relay was closer to the centre 
of the nodes as opposed to closer to the edges (closer to the nodes themselves). This was attributed in part 
to co-channel interference and collisions between the two nearest nodes. It is not clear from our 
experiments where the bottleneck resides on a MANET route with two relays, given the complexity of 
factors at play. 

The two main types of application data exchange used in wireless communication (UDP and TCP) 
experience different impacts of relays in network operation. Unicast UDP data transmission appears to 
experience congestion through re-transmission and throttling messages via RTS, CTS and ACK (more 
investigation is required), while TCP data transmission suffers congestion due to re-transmission and 
throttling messages, e.g., ACK. Both TCP and UDP traffic data in MANETs reveal the realities of the 
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protocols; experiments with one traffic type and lessons from its behaviour cannot be substituted directly 
for the other.  

7.2 Experimental lessons learned 

In addition to qualitative observations, we learned a number of lessons and best practices that will help 
inform future experimental work. 

Pre-testing in the lab to make sure every app functions as expected, including being run multiple times 
back-to-back, is time well-spent. Preparing a detailed testing plan and documentation helps the field 
testing go smoothly. Preparation of the testing field before testing also saves time. Standardised methods 
for note taking to ensure accurate and thorough recording of conditions, rationale and results should be 
used, as plans need to be adjusted on-the-fly. It was also found that limiting testing time to half-a-day at a 
time is a more efficient use of the team’s time, as this allows for data validation and preliminary analysis 
between measurement collections.  

Even though we conducted throughput measurements over time periods of up to 120 s with the hopes of 
averaging out variability due to fading, it is clear that multiple, longer measurements are required to draw 
meaningful quantitative conclusions. This is especially true of TCP, which includes backoff intervals and 
timers on the scale of minutes (in some cases), meaning that single measurements cannot be relied on if 
the TCP session misses enough packets to cause a re-transmit and backoff cycle. 

Interpreting and fully explaining TCP throughput measurements and coming to firm conclusions would 
require monitoring more than just the throughput—it would be valuable to have logs at various levels of 
the protocol stack to know when/if TCP is retransmitting packets and/or entering a backoff cycle. 

Simple unicast UDP is not an appropriate choice to measure the raw packet delivery rate; although UDP 
is a connectionless protocol that will not “re-try” if packets are missed, the underlying MAC protocol 
(WiFi in this case) will nevertheless send re-transmissions if packets are missed by the receiver at layer 2. 
We learned this in early testing (results not reported here) and thus, for some of the testing reported here, 
we used broadcast UDP, in which the MAC will not re-transmit since no MAC-layer acknowledgements 
are expected in the case of a broadcast. One difficulty with this strategy, however, is that the broadcast 
packets are not typically forwarded by relay nodes, meaning that to measure the packet drop rate across a 
relay requires additional effort. 

We noted catastrophic connection-oriented traffic failures during some of the experiments, and sometime 
even short-range UDP tests failed. Analysis of the collected data during failures leads us to suspect they 
were due to the inconsistent alignment of WiFi radio modes among the nodes along the route, i.e., nodes 
using 802.11b/g/n. If the source and its neighbouring relay attempted to use a mode that did not match 
that of the destination and its relay, even for a short duration, then the connection would fail. This 
inconsistent alignment of en route radio modes is suspected to be exacerbated by increasing the number 
of relays in a route. This could be detected using Wireshark, however our implementation of that software 
is limited to b/g messages only. Unless the nodes were forced to be in 802.11g mode, the connection 
tended to be established on the 802.11n mode, by default, and we would not capture them. The data 
suggests that gateways may help manage consistent alignment of en-route radio modes, as well as 
co-channel interference, because the gateways, unlike relays, would be equipped with two radios 
partitioning a route to three point-to-point connections. 
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For experiments involving mobility, we note that to quantitatively measure its effects requires a rigorous 
test environment where the speed and path traversed can be carefully controlled to ensure repeatability.  

In many cases, it would be useful to perform preliminary tests (as we did here) to identify areas for 
further investigation and then follow up with more detailed testing to zero in on areas of interest. 

Overall, it is difficult to derive specific conclusions about the factors related to the more complex 
MANET operations, such as the bottlenecks we observed. To understand these operations more clearly, 
we must invest in designing specific experiments, each with multiple data points, to provide more rigour. 

7.3 Software development requirements 

We experienced difficulties in the operation of the IRN Test app, which relies on iPerf for certain 
measurements [25]. We were able to confirm that the tool provides the correct average data rate by 
cross-referencing with the tcpdump logs. However, the IRN Test app was found to be unreliable for 
repeated, sequential TCP tests in the field at long distances; to ensure repeatability, the tool needs to be 
reset and reconfigured after every test. There were also oddities observed in the test app logs when 
sequential tests were performed, in which the timestamps recorded went beyond the test duration 
specified in the test condition. A more robust test app to support future experimental work would be 
useful to alleviate this shortfall for data collection. 

To support data collection for future traffic analysis and other research activities, and to be able to 
demonstrate the impact of data latency or loss, a traffic generation app would be useful. This should 
provide a variety of application data from stored files, such as voice via UDP, video via UDP, data file 
via TCP, and data file FTP via TCP. 

WiFi incorporates an automated mode selection (802.11b/g/n), whereby the mode and data rate changes 
according to the instantaneous conditions. The ability to constrain modes (802.11b/g/n) and data rates 
within the test app would eliminate some of the complexity in evaluating network performance. 

7.4 Future experimental work 

Further experimentation is needed to support the Tactical Network Operations project, and subsequent 
Electromagnetic (EM) Cyber projects. In particular, we should develop an increasingly sophisticated set 
of experiments designed to collect rigorous data sets to increase our understanding of network operation 
under multiple relays, gateways and/or mobility. This will help develop new techniques to make networks 
more resilient, as well as identify opportunities for exploitation. 

We noted several areas where we should repeat the experiments to obtain additional data sets for 
analysing consistency and variation within operational environments. In particular, we will repeat link 
data rate tests with fixed data rates so we can eliminate one of the variables (Section 4.3.1), and we will 
repeat this with better-controlled mobility (Section 4.3.2). 

When a relay is introduced to the MANET, the testing becomes significantly more complex, and the test 
conditions need to be controlled carefully. We noted the need for more testing, in particular to verify the 
impact of different distances between the source and relay, and relay and destination. These experiments 
should be performed with fixed data rates and using Wireshark as a diagnostic tool to assess the impact of 
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MAC and TCP re-transmissions. This should also aid with determining when co-channel interference and 
collisions cause degradation in performance. 

Beyond the experiments reported here, future experiments will replace the relay nodes of Section 5 with 
gateways with the objective of understanding how the performance changes—this will provide insights 
into when and where relays and gateways can be used most effectively. 

As our research in traffic analysis techniques progresses, we will have a requirement for more complex 
over-the-air data captures, using more sophisticated network topologies and a larger variety of mixed 
traffic data.  

In our research work, we use the simulation tool EXata [26] to evaluate MANET concepts. It would be 
instructive to understand how well this tool emulates real operating conditions. From our results in 
Section 3, we do not expect very close alignment with path loss measurements, but we hope that the 
impacts of MAC and transport layer protocols will be well represented. Designing experiments for this 
purpose will be challenging; like the ones reported here, they will have to start simply, and build up to 
more complex scenarios. 

These experiments were performed in the simplest outdoor environment: unobstructed line-of-sight. 
Future experimental work should be planned in more challenging environments, such as urban and 
outdoor-indoor, where the propagation conditions and connectivity between nodes is even less 
predictable, and the effects of mobility will be more pronounced. 
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8 Conclusions 

This report describes the field experiments completed by the Tactical Network Operations team in the 
summer of 2017, along with some preliminary analysis of the data. These experiments were informative 
to our research, as they have shed light on challenges experienced in fielded networks that are not seen in 
a laboratory setting. The experiments were built upon each other, starting at the physical layer and 
developing to static and mobile networks with relays. 

The first key finding is that there is a significant variation in measured power levels (RSSI) among 
devices, and over a local region. These effects make geolocation of these low power devices to any useful 
resolution unrealistic using only RSSI measurements. These results also highlighted the challenges in 
relying on standard propagation models, even in fairly ideal conditions. 

Measuring the performance of different types of data is complicated by many dynamic components, 
including the radio interfaces themselves. While future tactical radios will probably use some degree of 
automated data rate selection, the implications of that added level of dynamism in an already dynamic 
network are complex. Mobility and relays further complicate the characterisation of network 
performance. 

The complexities of dynamic networks must be better understood, so that robustness can be built into the 
network operation, and the dynamism may be advantageous for increased resilience and defence. It is also 
important to recognise these dynamics in a target network, so that it can be correctly characterised for 
exploitation. To this end, further experiments are recommended, both for understanding the network 
operation and for data collection to characterise target networks. 
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