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Abstract

Extracting valuable information from large spatio-temporal datasets requires innova-
tive approaches that can efficiently deal with large amounts of data and, at the same
time, effectively reveal the underlying structure of the data, in order to provide useful
information to the decision making process.

Innovative knowledge discovery techniques have been developed which use a stochas-
tic mean-reverting modeling of the ships motion to reveal the underlying graphical
structure of maritime traffic. The generated knowledge enables numerous possibil-
ities, from graph-based multi-edge prediction to anomaly detection techniques, to
ship routing optimization. Altogether, the topics covered in this report represent the
theoretical framework that is required for the development of knowledge discovery
techniques able to reveal the underlying graph structure of maritime traffic, which
are documented in the companion report—Part II.

This report—Part I-—documents the formalization of the ship motion model, moti-
vating its use over other conventional models. Procedures to estimate the process
parameters are provided and its use for long-term prediction and data association is
investigated. The main limitation of this model, its applicability to non-maneuvering
targets only, is also overcome by formalizing an augmented version of the model that
fits the case of a vessel navigating by waypoints. Real-world data sets are used to
show the potential of the developed techniques in cases of practical relevance.

This work was done within the DRDC-CMRE collaborative research activity “Pattern
of life model parameterization for exploitation in Command and Control systems”
under the DRDC Project 01da on Next Generation Naval Command and Control
Systems.

Significance for defence and security

Understanding maritime traffic patterns is a part of a more complete Maritime Situ-
ational Awareness (MSA) and, ultimately, required to effectively classify and predict
activities of ships at sea. The amount of information currently available about ships
at sea is overwhelming to human operators, and the aid of automatic processing is
necessary and required to synthesize the information in clear and effective forms that
highlight important features and reject noise.

This report is a foundation for the development of a statistical framework for future
knowledge discovery techniques that can derive synthetic graphical representations
of the maritime traffic, which at the same time is able to efficiently handle the large
amounts of data at hand.
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Including a capability in next generation C2 systems to derive and represent Pat-
tern of Life also provides more effective decision making for operational and tactical
planning. For example, the more accurate predictability of maritime traffic enables
practical sensor cross cuing by space-based assets. This enhances the space based
ability to track and monitor vessels of interest. Another example is the consideration
of pattern of life information to plan maneuvers in areas where a Navy has little prior
experience. By having available the automatically derived pattern of life available in
an operating area, military planners will be able to include this information to make
more effective decisions either to ensure the safety of their own forces, or to apply a
greater operational non-munitions effect.

i DRDC-RDDC-2019-R058



Résumeé

L’extraction de l'information précieuse a partir de grands ensembles de données spatio-
temporelles nécessite des approches novatrices en mesure de traiter efficacement un grand
volume d’information tout en révélant la structure sous-jacente des données. Elle est ainsi
capable de fournir des renseignements utiles au processus décisionnel.

On a mis au point des techniques novatrices de découverte des connaissances a ’aide d’une
modélisation stochastique du mouvement des navires par retour & la moyenne en vue de révé-
ler la structure graphique sous-jacente du trafic maritime. Les connaissances générées offrent
de nombreuses possibilités, allant de la prédiction multibord graphique aux techniques de
détection d’anomalies, en passant par ’optimisation des routes des navires. Regroupés, les
sujets abordés dans le présent rapport représentent le cadre théorique nécessaire a 1'éla-
boration de techniques de découverte des connaissances capables de révéler la structure
graphique sous-jacente du trafic maritime, qui sont documentées dans le rapport complé-
mentaire - Partie II.

Le présent rapport, Partie I, documente la formalisation du modele de mouvement du
navire et promeut I’emploi de ce dernier plutét que des autres modeles conventionnels. En
outre, il comprend des procédures d’estimation des parametres du processus et on y étudie
I'information sur ’exécution de ce processus dans le cadre de la prévision a long terme et
de l’association de données. La principale limite de ce modele, a savoir son applicabilité
a des cibles sans manoeuvres seulement, est surmontée par la formalisation d’une version
améliorée adaptée au cas d’un navire naviguant a I’aide de points de cheminement. On utilise
des ensembles de données en situation réelle afin de démontrer le potentiel des techniques
élaborées dans des cas d’intérét pratique.

On a réalisé ce travail dans le cadre de I'activité de recherche concertée de RDDC CREM
«paramétrage du modele du mode de vie aux fins d’exploitation dans les systémes de com-
mandement et de contrdle » du projet 01da de RDDC sur les systémes de commandement
et de contrdle navals de prochaine génération.

Importance pour la défense et la sécurité

Comprendre les structures du trafic maritime fait partie d’'une connaissance de la situation
maritime (CSM) exhaustive et, au final, est nécessaire pour classer et prédire les activités
des navires en mer. Les opérateurs humains croulent sous le volume d’information actuel-
lement disponible sur les navires en mer; ils nécessitent donc une solution de traitement
automatique, également requise en vue de synthétiser I'information sous des formes claires
et concises qui soulignent les caractéristiques importantes et rejettent les données superflues.

Ce rapport sert de fondement & I’élaboration d’un cadre statistique pour les futures tech-
niques de découverte des connaissances qui permettront d’obtenir des syntheses graphiques
du trafic maritime ainsi que de traiter le volume important de données dont on dispose.
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Iinclusion, dans les systemes de C et C de prochaine génération, d’une capacité de dériver
et de représenter le mode de vie améliore le processus décisionnel relatif a la planification
opérationnelle et tactique. Par exemple, une prévisibilité accrue du trafic maritime permet la
signalisation réciproque d’objectifs par capteurs géospatiaux. On améliore ainsi la capacité
d’assurer la surveillance et le suivi spatiaux des navires d’intérét. Un autre exemple est la
prise en compte de 'information sur le mode de vie pour planifier les manceuvres dans les
zones ou la Marine a peu d’expérience antérieure. En disposant d’un mode de vie dérivé
automatiquement dans une zone d’opération, les planificateurs militaires pourront inclure
cette information afin d’améliorer la prise de décisions pour assurer la sécurité de leurs
propres forces ou pour appliquer un plus grand nombre d’incidences opérationnelles sans
munitions.
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1 Introduction

Maritime Situational Awareness (MSA), which is the understanding of all the activi-
ties carried out in the maritime domain and surrounding environment [1}, is essential
in order to support a timely decision making process. A key component of MSA is the
surveillance of traffic at sea. Thanks to technological advances and international reg-
ulations, a robust global surveillance capability for ships at sea is becoming a reality,
even though several limitations still remain.

Maritime traffic monitoring networks are increasingly being used for global-scale
surveillance. These networks are mainly based on the Automatic Identification Sys-
tem (AIS) with which ships, among other related information, broadcast their posi-
tion, speed and course details. Coastal radar and Synthetic Aperture Radar (SAR)
systems also contribute and complement the picture as non-cooperative surveillance
systems, but the amount of data they produce is inevitably less than that generated
by AIS networks.

Due to increasing traffic at sea and widespread compliance with national and interna-
tional requirements, worldwide networks of AIS receivers have considerably grown in
the last decade and are generating larger and larger volumes of AIS data. Examples
of global AIS networks can be easily found documented in literature that receive 800
million AIS messages every month, broadcast by over 100 000 unique vessels all over
the world, just through coastal receivers [2]. In addition to this, Satellite AIS (S-AIS)
is providing detection capability for non-coastal regions, with performance that de-
pends on satellite revisit rates, ship traffic density, and other factors [3].

Such amounts of data clearly pose significant challenges in terms of algorithmic com-
plexity and scalability, aspects that cannot be overlooked when it comes to design
and plan for any real-world application. Even more importantly, human operators
cannot possibly process these volumes of data and therefore suitable algorithms are
strictly required to extract information that can be useful for the decision making
process. Scientists and researchers have exerted significant effort in the study and
design of proper methods to extract information about ships’ behaviors, patterns and
statistics, effectively converting AIS, originally conceived only for collision avoidance,
into an essential means to achieve useful MSA.

Global AIS coverage is now an accepted reality. However, in practice, there are still
many factors negatively impacting the achievable refresh time (i.e. the frequency at
which new information is received). These factors include: the ability of a vessel to
turn off their AIS transponder, the higher error rate with respect to terrestrial AIS at
longer range, or unfavorable weather conditions (rain fade and similar phenomena).
Another reason is message collisions: the AIS protocol was designed for local radio
broadcast, but when receiving S-AIS over large field of view the probability of message
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collisions is significantly higher, effectively reducing the error-free detection rate.

In practice, vessels in open seas are often not continuously observed, and the resulting
coverage gaps clearly pose a challenge for wide area tracking. The impact of this
reduction in persistence would be in some sense be mitigated if accurate predictions
of ships’ positions could be computed as they navigate through such coverage gaps.

Unfortunately, the problem of accurate, long-term (i.e. several hours) vessel state
prediction has been somewhat overlooked in the tracking literature, with only few
works (partially) addressing this problem [4, 5]. In fact, the most widely adopted
motion model, namely the Nearly Constant Velocity (NCV) model [6, 7] is notably
not well suited to represent the long-term evolution of a vessel’s motion, as the ves-
sel position and velocity are unbounded; from another perspective, this amounts to
the uncertainty of the predicted position increasing cubically with the prediction
time. In conventional tracking applications, this is not a significant issue®, but it
is for long-term predictions. The use of the more suitable but less commonly used
Ornstein-Uhlenbeck (OU) process to model kinematics is not completely new to the
tracking community, and can be found described in a few works [9, 10, 11] available
in literature. The OU model is used here, to apply a a zero-mean-reversion effect,
with the aim being an improved short-term characterization of the target dynamics
prior to the long-term state prediction.

A novel formulation of the long-term prediction problem has recently been pro-
posed [8] and validated [12] against a very large dataset of AIS messages collected in
the Mediterranean Sea and broadcast by commercial ships. The proposed modeling
uses the OU process to stochastically represent the velocity of the vessel. With re-
spect to the NCV model, the OU process has an additional feedback loop that ensures
the velocity is bounded over time. In practice, there is a tendency of the process to
revert to a defined velocity value when the process value has moved away from it;
this effect is also called the mean-reversion effect. A similar process extending the
OU approach has been presented in [13] which adds further constrains on the vessel
movement variabilities for long-term state prediction. The simpler OU process model
from [8] is used for this work.

With this model, the prediction error covariance (uncertainty of the prediction) in
the position is a much more constrained time scaling law, increasing only linearly
(instead of cubically) with the prediction time, thanks to the additional feedback
loop. In other words, the proposed formulation reduces by orders of magnitude the
prediction error covariance (uncertainty). More importantly, it has been shown that,

! In conventional tracking applications, the surveillance systems are usually synchronous, meaning
they have a fixed scan time, and the prediction is referred to one time scan ahead [8]. The duration
of the scan time depends on the specific surveillance system, but is certainly short enough not to be
considered as long-term future.
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as the prediction time increases, the motion of the majority of commercial maritime
traffic is actually better modeled with the OU process than it is with the NCV.

With the same formalism as in [8], this report provides a broader sight on the global
theoretical framework and presents its applicative implications of operational rele-
vance, paving the way for the companion report—Part II that develops graph-based
knowledge discovery techniques. The present report is organized as follows. First,
the stochastic state equation is formalized and specialized to the OU mean-reverting
velocity motion model; an optimal prediction procedure and two different Maximum
Likelihood (ML) estimation techniques for the process parameters are introduced,
and the applicability of the prediction technique to the problem of long-term data
association is shown. Then, the focus will move onto the extension of the model
from [8] to the case of ship waypoint navigation, effectively mitigating the main lim-
itation of the modeling: its applicability to non-maneuvering vessels only. Finally,
some experimental results are presented, along with future perspectives in this line
of research.
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2 Dynamics model

This section is devoted to the formalization of the stochastic model for the vessel
dynamics. In [8], a stochastic mean-reverting process is proposed to represent the
vessel velocity. We will build on the same approach, which is different from that
is usually taken in conventional tracking applications, where the vessel velocity is
assumed constant in time and perturbed only by a white-noise process. The immediate
consequence of this formalism is that the vessel velocity grows unbounded with time.
To the contrary, the mean-reversion effect is obtained with a feedback loop that
maintains the vessel velocity bounded around a finite value, eventually making the
model better suited for long-term state predictions. Let us now indicate the state at

time ¢t € Rj with
s(t) = [x(t), y(t), &), 9], (1)

where the two coordinates z(t) and y(t), and the corresponding velocities @(t) and
y(t), in a two-dimensional Cartesian (z,y) reference system? are also denoted by

@(t) = [a(t), y()]' (2)
@(t) = [#(1), 5(1)]". (3)

In general, the vessel dynamics can be represented by a set of linear stochastic dif-
ferential equation (SDE), in the form [6]:

ds(t) = As(t) dt + Gu(t) dt + B dw(t), (4)

where A, B and G are constant matrices, u(t) is a deterministic function, and w(t)
is a standard bi-dimensional Wiener process. The first-order moment of the solution
of the state equation above lend itself to be interpreted, in the Bayesian sense, as the
optimal prediction equation for future states. In other words, given a state s(ty), the
optimal predictor of the state at a future time ¢ > tg can be written as follows

s(tlto) = E[s(t)|s(to)] == [x(tlto), y(¢lto), & (tlto), #(¢|to)]" (5)

where E [-] denotes the expected value operator. The main advantage of using a mean-
reverting process to represent the velocity component of the vessel state is related
to the properties of the Bayesian predictor, especially when ¢ — ¢, is not comparable
to the refresh period of the sensor that generates the measurements, being instead
orders of magnitude longer. Unsurprisingly, the estimator is highly dependent on the
specific stochastic process used in (4).

While usually the state observation is typically assumed to be affected by noise,
in our approach we assume direct observation of the vessel positional state. This

2 The choice to define the vessel state in the Cartesian coordinates is a standard one in the tracking
literature, e.g. see [7].

4 DRDC-RDDC-2019-R058



assumption might seem unrealistic, but it is plausible when considering some types of
real-world data, such as the AIS, with which ships broadcast their Global Positioning
System (GPS) position, whose measurement noise is negligible if compared with the
average size of commercial ships. Moreover, the assumption does not imply a loss in
generality and can be removed later.

Now, assuming that the vessel velocity can be modeled with an OU model, the
SDE (4) specializes to:

ds(t) = As(t)dt + Gvdt + B dw(t), (6)

where the control input accounts for the mean-reverting tendency of the velocity,
v = [vg,,]", and w(t) is a standard bi-dimensional Wiener process. The matrices A,

B and G are defined as:

T -

being ® and C' generic bi-dimensional matrices. Equation (6) has the form of a
Langevin dynamics [14] and can be solved in closed form by using It6 calculus [15, 16];
more details about the solution of the state equation can be found in Sect. 2.1.
If the @(t) process can be said to be of Ornstein-Uhlenbeck (OU) type [17, 18],
correspondingly we can say that x(t) is an Integrated Ornstein-Uhlenbeck (IOU)
process [18]. The parameters v, and v, in v = [v,, vy]T play a key role in the proposed
model, as they represent the typical velocities along x and y, respectively, of the
vessel on the trajectory under consideration. Roughly speaking, the velocity of the
process tends to drift over time towards its long-term mean; and the mean-reversion
tendency is stronger when the velocity is further away from that long-term mean. In
our application, this “mean” velocity is the ship cruise or desired velocity.

Finally, the diagonal terms of ® represent the mean reversion effect along the x and
y components, respectively, while the off-the-diagonal elements are representative of
the coupling effect between them. In any case, if ® is diagonalizable and has positive
eigenvalues, an affine transformation can be found that projects the matrix ® onto
another space where the reversion rate matrix is diagonal, i.e. ® = RT R}, being T’
a diagonal matrix. This idea is further expanded in Sec 2.2, where the general solution
to the coupled problem is provided.

2.1 Prediction procedure

As already mentioned, once that (6) is solved, the first-order moment of the solu-
tion of the SDE [15, 18] provides for the optimal state prediction s (¢|to), and the
second-order one for the related variance, which we will take as a measure of the pre-
diction uncertainty. This section is devoted to the derivation of the optimal prediction
procedure when the vessel velocity is represented by an OU process.
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Let us now assume, in the first instance, that ® = I' = diag (vy) is diagonal, being
vy = [%,vy]T the vector of eigenvalues of ® and devote Sect. 2.2 to the general
solution. For a moment, we will consider the velocity and positional parts of the state
separately. For the velocity part, we have that

e—%(t—to)
(t|tg) = v + [ 0 e_%(()t_to)] (x(ty) — v). (8)

Proceeding similarly for the vessel position, which is an IOU process, the following
expression can be derived

1—e— vz (t—to)
1—e77@i770) 0 ‘
x(tlto) = z(to) + (L —to) v + o Hmuw] (@(to)) —v).  (9)
Yy

Equations (8)—(9) can be assembled together to obtain the optimal prediction in
matrix form
s(tlto) = ®(t — to,y) s(to) + ¥ (t —to,7) v, (10)

where ®(t¢,7) is the analogue of the state transition matrix and ¥(¢,~)wv is often
called the control input function. Their definitions are respectively provided by equa-
tions (21) and (23) in Sect. 2.2.

Similarly, the estimator error covariance can be computed from the second moment of
the SDE solution, and its full expression is provided by (26) in Sect. 2.2. The variance
terms can be expressed as

E[(x (tlto) — = (1)"|z(to)] = (;;jff(% (t —to)) (11)
E[(y(tlto) =y (1))*|y(to)] = iﬁf(vy (t = t0)) (12)
E[(i (tlto) — @ (1)°|&(to)] = (;ig(% (t —to)) (13)
E[(§ (tlto) — 9 ())*|9(t0)] = Zgg(vy (t —t0)), (14)

where o2 and o7 are the diagonal elements of CCT, and f(t) and g(t) are the pre-

diction position and velocity error as normalized variance and are defined as

f(t):=

g(t) =

(2t +4e7t — e —3) (15)

(1-e). (16)

N RN —
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2.2 Coupled Ornstein-Uhlenbeck process

Let us now remove the assumption of ® being a diagonal matrix. We will show
that the optimal predictor shares the same basic structure of (10). To this aim, we
shall consider the SDE (6) again; by It6 calculus [16, 19], the first two moments are
computable as follows

t
E[s(t) |s(to)] = eAs(ty) + [ eAt9G v ds, (17)

to

and
Cls(t)ls()] = | At BT (oA-) ds, (18)

to

being C[-] the covariance operator. Assuming that © is diagonalizable, i.e. @ =
RT R represents its eigen decomposition, then the following relations hold

fo 1] o I | S5
A= lO —@] N lO —RI‘R’l_ = RAR™,
where _
= R O — 0 I
R = lo R] and A := 0 —I‘] . (19)
We can now exploit the power series of the matrix exponential to obtain a convenient
expression for e4?
> 1
At _ L Akgk
et = ;;) o A"t

=1 A B AD-1) /&
~S LRAWR

= k!
D — 1 Akik | -1
_R<k§::0k!At>R
— ReAt R, (20)

that can be reworked to highlight the dependence on t and ~

W [I (I-eT)r
@)= b = I 7 )T @1
On the other hand, the integral in (17) can be written in terms of ® (¢, )
t A t 0
W(t,~) ::/ A9 @ ds :/ D (t—s,7) ds, (22)
to to ]'_‘
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and allows for a closed-form solution

t1—(I—e T rl] |

I—e Tt (23)

U(t,y) = [

Combining together (17), (21) and (23) leads us to the first moment of the SDE
solution, which indeed shares the same structure of (10), apart from the projection
operated by R, i.e.

s(t|te) = R® (t — to,v) R 's(ty) + R (t — ty,y) R v, (24)

where ® (t,) is the state transition matrix and W(¢,~) is the control input function,
defined as before.

We can proceed analogously with the second order solution using eq. (18) and (21)

/tq)(t—s,'y) B (95] <I>T(t—s,7)d3>ﬁ_1 (25)

to

Cls(t) s(to)] = R (

where C' is the noise covariance in the transformed domain, whose entries are defined
as follows

— T 2
C=R'C(R'C) = ["x U"Zy].
Ory O,
Again, the problem can be solved in algebraically closed-form and for the second
moment of the SDE solution, we obtain
Cls(t)[s(to)] = RS (t —to) R, (26)

where X () = 3 0 35 (t). The matrix ¥ has the following form

r Cﬁc Oy o2 20,y ]
T2 e 292 Tz
Ozxy 0-71/ QUJCy 9y
3 Pl
X = o2 202y o2 204y (27)
2%% ’Yzé Yz Yoty
2
202y Ty 20ay Ty
L= 2% wtw v

and X (t) is defined as follows

S0t Wt ) S 2e3) _ oetr)z) K(ty,)
k(ts) 2l o 9(t7) 9((7 + 7))
20g) _ fOetn)2) (1) 9((s +7)%) g(t,)
(28)
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This latter equation is finally completed by the following function definitions of h(¢, )
and k(t), noting that f(t), g(t) have already been defined in (15) and (16).

l—e e  1—etw 11— e tatw
h(t,y) =1t — - + : (30)
Yz Yy Yz T Yy

k() = e (1-!). (31)
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3 Parameter estimation

At this point, the reader will notice that the optimal prediction (24) depends not only
on the prediction time, but also on the long-run mean velocity v and the reversion
rate =, the latter through the matrices ® and W. Similarly, the prediction error
covariance (26) depends on these process parameters and also on the process noise
C'. Since the parameters of the stochastic process are not known a priori in any real
application, they need to be estimated. In this section, we derive a procedure to
estimate the parameters 8 = (6,,0,) of the process, with

0, = (02,72,v:) and 6, = (0,7, vy) . (32)
An OU process is said to be Gaussian if, for all t; < t; < --- < t,, the n-vector
[s(t1),s(t2),...,s(t,)] is multivariate normally distributed. The OU process defined

by (6) is stationary, Gaussian and Markovian and it is an example of a Gaussian
process with bounded variance and stationary probability distribution, as opposed
as the Wiener process. This is due to the fact that in the latter, the drift term is
constant whereas in the OU it is dependent on the current value of the process: if it is
less than the long-term mean, the drift will be positive; on the contrary, if the current
value is higher than the long-term mean, the drift will be negative. The Gaussian
OU mean-reverting process is well suited for ML methods, but Least Squares (LS)
regression techniques are also applicable for the estimation of the parameters of the
discrete autoregressive version of the problem. The main advantage of using the ML
estimator in place of a LS technique, is that the former enables the estimation of the
parameters also in the case that the observation time intervals are not uniform, which
is of interest for real-world applications, where the time instants of observation are
often asynchronous. In the remainder of this section we will focus exclusively on ML
estimation.

The estimation will be performed by considering separately the z and y components
of the kinematic state. Therefore, to simplify the notation, we will use hereafter
0., 02y, Yoy and v, to denote quantities that can equally refer to the x or the y
coordinate.

The procedures in this section work in a batch fashion, and have for objective the
estimation of @ for a given trajectory, assuming first that either only the set of veloc-
ities is observed, and then that the entire sequence of kinematic states is observed,
which are denoted by @(¢;) and s(¢;), respectively, for j = 1,...,n, where n is the
number of samples in the trajectory.

The parameters 8 = (0,,0,) are not only unknown, but also specific to each given
trajectory and have therefore to be estimated from the measurement set. Due to the
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Markovian and Gaussian properties of (6) [16, 20], in the first case where only the
vessel velocity is observed, the likelihood function is explicitly given by [20]

H% D E(t-1),8), (33)

where ¢ (-) is the bivariate Gaussian distribution; while in the second case where the
vessel position and velocity are both observed, the likelihood takes the form

:ﬁ@wmwmmm, (34)

where ¢, () is now a four-variate Gaussian distribution. The parameter estimate, in
a ML sense, is then provided by the estimator

6 = arg mguxﬁ ().

However, this maximization might be computationally unfeasible. In order to simplify
the estimation procedure from a computational perspective, we can instead use the
marginal likelihood along = and y coordinates. This marginalization procedure is quite
standard, especially from the Bayesian perspective (assuming non-informative prior
in our case), i.e. the other coordinate (y if we are estimating parameters along = and
vice versa) is considered a nuisance parameter. The marginal likelihoods, for the case
of velocity observations only, are then given by:

£, (6 = TT 02 (64 li(1,-).6.), 3
£,0,) = T 65 3(6:) 19(t;1).0,) (36)

where ¢; () and ¢y, (-) are Gaussian distributions with mean and variance respectively
given by the velocity components, along the corresponding coordinate, of the first-
order (10) and second-order (26) moments of the solution of the SDE.

In the case the entire kinematic state is observed, the equations (35)—(36) become

H¢sz s,(t) |2(tj-1), 04), (37)
H% 8y(t;) 9(t;-1),6y) (38)

where s,(t) == [z(t),2(t)]", s,(t) == [y(t),y(t)]". In this case, ¢; (-) and ¢; () are
bivariate Gaussian distributions, whose mean and variance are given by the position
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and velocity components, along one or the other coordinate, of the first-order (10) and
second-order moments (26) of the solution of the SDE. Finally, the ML estimators
along x and y for the given trajectory are given by

0, = arg max L,(0,),
6, = arg max L,(0,). (39)

3.1 Procedure

For clarity, we define a generic coordinate u = {x, y} and a generic velocity © = {%, 3},
along with its corresponding long-term mean velocity v = v, ,, reversion rate v = v,
and noise term o = o0, ,. Also, when not otherwise stated, from now on the subscripts
are used to indicate the time variable, i.e. u; = u (¢;), for j = 1,...,n, where n is the
number of observed states within a given trajectory.

3.1.1 ML estimation from velocity samples

Inspired by [21], in order to derive a ML procedure for the estimation of the process
parameters, let us consider a single vessel trajectory, representing a realization of the
OU process. We observe the sequence of velocity samples of a quasi-rectilinear vessel
trajectory along a generic coordinate. Let this set be

Z = {uj}?:l :

In Section 3 the generic form of the likelihood of the observation, given the obser-
vations Z have been already provided (33) as well as a specialization for the two
Cartesian components of the vessel velocity (35) and (36). Under the assumptions of
stationarity, Gaussianity and Markovianity of the OU process, the log-likelihood of
Z can be derived from (35) or (36) with the relevant components of (10) and (26).
Omitting the constant terms, the log-likelihood has the form

. n o’ I & —274A;
6(9)——210g<m>—2j§log{1—e }
n (aj — v — (i1 —v) eﬂAj)Q

1 —e 278y

_ 12 (40)
g =
7=1
where n is the cardinality of the time intervals in Z and @ = (v,~,0) is the set of
process parameters. The term A; = ¢; —¢,_; represents the time elapsed between the
j-th and the immediately previous observation, enabling eventually the possibility of
estimating also the parameters of asynchronous OU processes (A; # Ay, j # k).
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The ML estimate 6 = (0,4,6) given Z is the one that satisfies the following first
order conditions

0¢(0)
ov

IAC)
vy

A
Oo

~—

=0,

)

=0,

~0. (41)

ot G

The log-likelihood (40) can be elaborated and leads us to the marginal likelihood of
Z with respect to v

(42)

Assuming 7 and o are non-zero, the first order conditions (41) leads to the ML
estimate of the long-term mean of the process:

. . _ANA n §A; -1
b=f(3) = Z Uy —tj-1¢ jAJ (Z 1_&) ) (43)

Ty
S lt+es

From here, following the same approach as before, one can differentiate (40) with
respect to o, thus obtaining the marginal log-likelihood of Z

2
86(0) __E+2lzn: (ﬂj—U—(ﬂj_l_U)e_’YAj) (44)
oo~ o o3 ot 1 —e 24 ’

which, if combined with conditions (41), provides an estimate of the noise term o

" (i = 0 = (i — 9) eI’

UQ(UW)JZ 1 — o274

n 4

The system of non-linear equations given by ¢ = f(§) and 6 = ¢ (9,4) together
with conditions (41) would lead to the ML estimator of -, but the solution would
not be available in closed form. A different approach is to substitute ¢ = f (%) and
& = g (0,%) directly into the likelihood function (40), obtaining the following

"o (g(f (7)) ,7)2>

2 2y
— ;]Zn:llog (1 — e_%AJ')

b o (= () = (g = f (7)) ™)
- Egjzl 1—e % ’ (45)

V(v =-
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having defined g, = ¢ (f (v),7v). Contrary to the solution of the aforementioned
system of non-linear equations, the minimization of (45) is a one-dimensional search
problem, whose solution can be shown to be the ML estimator of v:

A= argmvinV (7).

3.1.2 ML estimation from position and velocity samples

In the previous section, a procedure to compute the ML estimate of the process pa-
rameters has been described that only uses the velocity part of the state. With a
similar approach, we also derive another ML estimation procedure, which now pro-
cesses also the positional part of the state. Let us consider the joint position-velocity
state along a generic coordinate w; = [u(t;), u(t;)]" and let the set of observations be

Z = {uj};‘tzl .

Under the same hypotheses as in Sect. 3.1.1, the likelihood of Z along one of the
Cartesian coordinate and with respect to the process parameters v and o, given the
long-run mean parameter v, is provided by the specialization of (37)— (38), i.e

& \Ei(’m_% e
r I | = -2 4
(,y’ O-) _7:]_ 27?02 © ’ ’ ( 6)
with
Ai(7) = B () (47)

and p; is the difference between the state at time ¢; and the state predicted after A;
seconds from w;_1:

Hi ‘= U; — (I’(’y, Ai)ui_l — \I’(’y, Az) V. (48)

The matrices ® and W are the single-coordinate versions of (21) and (23), respectively.
Analogously, 3; is the single-coordinate version of (26), i.e

m=o | ] (A Sl @

where f, g and k are defined in (15), (16) and (31), respectively. Finally, the log-
likelihood can be written as
by
o?

l\D\»—l

l(vy,0) = —n (log o? + log 27r) —

> (log 5

Jj=1
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Proceeding as before, one can marginalize the log-likelihood 50 as follows

0l (v,0)

do? |,
g

=0=05(y)=,|— Z Ai(7); (51)

in order to obtain a functional form for the ML estimate of o that depends only on
7, which can be inserted back into (50) to remove the dependency on o. Finally, the
ML estimate of v amounts to a one-dimensional maximization operation, i.e.

§ = argmax ((y,6(7))- (52)

At this point the reader will note that this second ML procedure only provides for the
~v and o parameter estimates, but not for the long-run mean velocity v. Indeed, in this
approach this parameter has to be estimated first, for instance with a Sample Mean
Estimator (SME), which has been shown [22] to be consistent when the observation
sampling time is random, asymptotically efficient when the sampling time is constant,
and very close to the Cramér-Rao Lower Bound (CRLB) in cases of practical interest
for MSA, with a performance that can be quantified analytically in closed form.

DRDC-RDDC-2019-R058 15



4 Long-term data association

The proposed ship motion modeling is relevant to several applications of operational
relevance, such as the association of contacts from multiple sensors that are highly
intermittent or not synchronized. An example of this situation is the combined use
of SAR and (especially satellite) AIS observations, which are collected when the
satellite passes over the vessel, and made available when the satellite passes over a
downlink station. This can easily result in a several hours time difference between
the observation of the scene by the SAR and AIS sensors. It is therefore crucial to
accurately compute a vessel’s position from the time instant of one acquisition to
the time instant of the other, and it is especially important in trafficked areas, as
an accurate prediction procedure might be the only way to achieve the unambiguous
association of detections.

Another situation for the application of the OU modeling is the capability to ac-
curately estimate the future evolution of a vessel’s motion in the long term, under
normal circumstances, in order, for instance, to acquire the vessel with other sensors
that might have to be tasked or deployed in advance. Being able to accurately predict
the region of probable presence of the vessel in the long-term future increases the sen-
sor scheduling time horizon and, in turn, enables an overall more efficient allocation
of assets.

We refer to this class of problems as long-term prediction and association problems,
which is discussed in this section. We leverage the OU model to formalize a simple yet
effective gating procedure to associate heterogeneous observations of the same vessel
taken in different times, such as AIS and SAR data, even when the time difference is
of several hours. A metric is introduced to assess the performance of the association
procedure with respect to a baseline reference represented by the NCV motion model.
The experimental results obtained with the tools presented in this section are left to
Section 6.

4.1 Data gating strategy

The procedure to associate AIS contacts with their counterpart detections in a SAR
image is as simple as to propagate the vessel kinematic state at the time of the SAR
image acquisition, given the past AIS observations. To do so, a multidimensional
gating procedure can be used between the kinematic state predicted with the AIS
(and its error covariance) and the SAR data. A measurement in the gate, while
not guaranteed to have originated from the vessel the gate pertains to, is a valid
association candidate. Hence, the name of validation region or association region.

We assume that the SAR data d; at frame k coming from a vessel ¢ (i.e. a vessel
detected in an image acquired by a SAR system) is Gaussian distributed with mean
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:fzzlk_l and covariance P}‘/ﬂ w—1- Thus, its gate V,i” at frame k is defined by

R T A

with a probability depending on the threshold ~. The distance metric in (53) is also
called the Mahalanobis distance, which is a multi-dimensional generalization of the
idea of measuring how many standard deviations away a point & is from the mean
&}, of the related Gaussian distribution. Under the above-mentioned hypothesis,
this quadratic form is chi-squared distributed with n, degrees of freedom, n, being
the dimension of the positional part of the state. Thus, the probability Pg that dy is
in V;7 is defined as P {6k € V,i”}, which depends on both n, and + [7]. Finally, it
is worth remarking that the square root g of the threshold v, i.e. g = /7, is often
referred to as “number of sigmas" (standard deviations) of the gate.

Remark: :f:}tdk_l and Pi:|k—1 are given by the prediction formulas in Section 2.1. The
model parameters are estimated from the acquired AIS data in batches by exploiting
the procedure described in Section 3.

The gate equation (53) itself is a good starting point in order to define a suitable
metric to assess the performance of the gating procedure. This performance metric,
that we call the Gate Volume (GV) is, in other words, a measurement of how large the
gate is and, by extension, how ambiguous the association is. The GV can be defined
as the volume Vkm of the gating region V,i’7 in (53) corresponding to the threshold
v = g* for vessel t at frame k. The GV is the volume of the confidence region from a
multivariate normal distribution. The equation is [23]:

1/2 . 1/2
Vil = ca, ’YP2|1~:—1‘ =Cp, g " P2|k—1‘ ) (54)
where |-| indicates the determinant,
Nng /2
Cpy = (55)

© T (ng/241)

and I' () is the Gamma function. Assuming the NCV as a baseline reference, in Sec-
tion 6.2 we will show, in a real-world application, how the GV reflects the capability
of the OU modeling to significantly reduce the potential association ambiguity.
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5 A model for waypoint navigation

The majority of the maritime traffic is very regular, which can be observed in Figure 1,
where a ship traffic density map is shown. Maritime vessels, and especially commercial
vessels, generally seek to minimize fuel consumption and will therefore navigate along
the shortest path allowed by international and regional regulations.

Several works can be found in the pertaining scientific literature that, inspired by the
overall regularity of the maritime traffic, propose knowledge discovery algorithms and
strategies to extract synthetic representations of the maritime traffic [4, 5]. This report
shares that same basic intuition and overarching ambition. However, unlike previous
work, the fundamental building block here is the OU model. The main limitation of
this model which must be overcome is the validity only for non-maneuvering vessels,
meaning until the long-run mean velocity is constant®.

A modelling approach is inspired by the traffic behavior observed in Figure 1, where
evidently a significant part of the maritime traffic proceeds from waypoint to way-

3 More precisely, the modeling is valid until any of the process parameters does not change in time.
Y

However, in our experience the effect of a change in the reversion rate or process noise can be

considered prima facie a second order effect.

Figure 1: Maritime traffic density off the coast of Portugal. Higher concentrations of
traffic appear more green, and low concentrations as purple. It is apparent how
maritime traffic follows straight paths, or legs between consecutive waypoints. The
waypoint regions are also very localized in space.
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point, with very linear paths (legs) connecting the waypoints one to the other. Con-
sequently, a natural extension of the OU is that of waypoint navigation, where the
long-run mean velocity v is a piecewise function of time that is constant when the ship
is on a navigational leg, and has abrupt changes at waypoints and stopping points. In
this way, the state is still described by (6), with the only difference that the long-run
mean velocity v is a piecewise-constant function of the time, defined as

v, for t < ¢
vy, for M < t < @
v(t) = : : (56)
v, for D < ¢ < 0
Vo for W < ¢,

where ") is the time of the i-th waypoint, which correspond to a change of the
long-run mean velocity from the regime before to the one after the waypoint.

5.1 Change detection: single waypoint with known parameters

Following the theoretical framework formulation of quickest change detection [24],
a statistical procedure can be put in place to automatically estimate the long-run
mean velocity parameters on the navigational legs, detect the abrupt changes, and
then identify time and location of the changes.

Let us start the formulation with a simple case of detecting a single waypoint. It is
assumed that at an unknown time instant ¢t* the long-run mean velocity abruptly
changes from vg (hypothesis Hg) to v; (hypothesis H;), and the position of the
waypoint (stopping point) is given by ¢ = x(t*). The difference between a waypoint
and a stopping point is easily understood: the former is a change from, and to, a
non-zero velocity, i.e. vy # 0 and v; # 0, while the latter point is a point where the
vessel stops, i.e. v1 = 0.

We assume that the time change ¢* is synchronized with observation time instants,
ie. t* =ty € {tr},_,. Let us also elaborate the difference between two consecutive
instantaneous velocity samples of the vessel as follows

ZE = mk - Jkibk_l, with Jk = Re_rtR_l, (57)

recalling that R is the matrix of eigenvectors of ® and T' := diag(«y). In this way, the
zy, are time independent Gaussian random variables, i.e.

zr ~ N (z; (I — Ji) v; Ey)

with v € {vo, v1}. In our notation, N (z; u; E) denotes a Gaussian Probability Den-
sity Function (PDF) with mean p and covariance E. The mean of each zj, is dependent

DRDC-RDDC-2019-R058 19



on the long-term velocity, therefore the waypoint (stopping point) can be found by
detecting a change in the mean of z.

Formally, in this case study, we have, Vk:

f0(2k> LR, 22y R
N (58)

fl(zk?> : Zfxy Zh*41y -« -

where fo1(zx) = N ((I — Jy) vo.; Ep).

Now, in the case that all the parameters are known, i.e. the fy1(z)) are perfectly
known, the most suitable change detection procedure is Page’s test [25], as it has
asymptotically optimal properties (further details in [24]). Page’s test is based on the
clipped Cumulative Sum (CUSUM) statistic:

S), = max {o, Sy_1 + log Q)EZ; } . Syp=0. (59)

In practice, a change from v, to v; is declared when Sy exceeds a threshold h, and
such stopping time can be defined as

K =min{k:S, > h}. (60)

In the change detection framework the performance is defined in terms of Average
Run Length (ARL), under both hypotheses Ho; [24]. Specifically, the ARL under
Hq is the expected detection delay, i.e. the expected number of samples to wait for
correctly detecting a change; while the ARL under H, is the expected number of
samples for observing an erroneous detection (false alarm).

The time of the change can be estimated with a ML procedure [24] that looks for the
time of the last CUSUM reset before the stopping time. As in [24], we have, for our
case:

~

E*=K — N+ 1, (61)
Np = Nyp_11lgs, >0y + 1.
Where Ni is the number of observations since the last CUSUM reset. Then, the

estimated time of the change is the next available ¢;., which is < #k.

5.2 Change detection: multiple waypoints with unknown
parameters

In a real-world case, trajectories may contain a number of waypoints and stopping
points. In other words, the the long-term velocity is a piecewise-constant function of
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elements v;, 7 = 0,1,...,J — 1 where J is the unknown number of all the changes.
Formally, the zj, are distributed as expressed in (62), which generalizes the formulation
given in (58), where f;(zx) = N (I — Ji) vj; Bx).

fo(zr) = 21,20, ) Rhg—1
N\
fi(ze) : Zkys Rhp+1, 0 Rky—1
hN

fa(zr) : Rkt Bhi+1s "7 Bhy—1

N (62)

fi(ze) : Ry Bk 41 Bk -1

Moreover, the value of each v; is also unknown, except for the stopping points, in
which the velocity after or before the change is null. To estimate the piecewise long-
run mean velocity function, we propose a sequential procedure that generalizes Page’s
test (59). This procedure is determined by:

i) the long-run mean velocity value, v;;
ii) the changing times t;:; and
iii) the locations of the changes T

The long-run velocity can be efficiently estimated using a SME [22], provided that
the underlying unknown long-run velocity value is constant. Following [24], we ex-
ploit change detection algorithms to check this assumption, assuming that the time
duration between successive jumps is bounded from below. This assumption is nec-
essary for the initial estimation of the long-run velocity to be used in the subsequent
detection of change. An alternative choice to Page’s test (59)-(60) is the Generalized
Likelihood Ratio (GLR) test in which the null hypothesis (assumed known) is com-
pared against an alternative hypothesis in which the parameter is unknown. Even
if the GLR approach would be feasible, it is much more computationally expensive
w.r.t. the proposed approach and therefore not considered here.

The joint use of the estimation in [22] and the change detection results in the following
steps in the algorithm, which is also illustrated in Figure 2:

SO Initialization. Set j = 0. Estimate the long-run velocity, in a fixed-size time
interval N, during which the detection algorithm does not operate. The first
piece of the long-run velocity function is provided by

1 N
Vg = — n- 63
w it @
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S1

S2
S3

S4

22

In the case of a waypoint, define a set of P alternative hypotheses with P long-
term velocities that are relatively close to 9y, and formally indicated by ©; ,(6),
p=1,2,...,P. In the case of a stopping point, the alternative hypothesis is
given by a long-run velocity that is zero, then P = 1.

Activation of the change detection algorithm to find the j-th change against one
of the P alternative hypotheses. Set S;,; = 0 with ¢ = max {k;_l + M, O} + N,

where l;;*_l = 0, M is a delay parameter. Compute in parallel the following
CUSUM

fi1 p(zk)}

Sipk =max<0,9;,,1 +log =——"—— ¢, 64
Jpk { Jpk—1 fj(zk) (64)
Kj=min{k:S;pr>h,i<k<K}, (65)
pj = {p L Sipk > h} : (66)

where f;(zx) and fj11,(2x) are Gaussian distribution with long-term velocities
0, and ©;41,, respectively, i.e. fo(zx) = N (I — Ji) 0o; Bx) and fi1,(zx) =
N (I = Jg) 0j11,: Zk). In the case of a stopping point, fj11(z;) = N (0; Zg).
K is the number of time steps in the data.

If the minimum in (65) is never reached for any p, the procedure ends.

When a change is detected, the time of change is estimated as in (61):

ki =K;— Njg, +1, (67)
Nj,k = Nj’k_ll{S- ) k_1>0} + 1. (68)

The position of the change (i.e. the position of the waypoint or stopping point)
is then provided by & = x(f;.). Increment j.
J

Update the estimation of the long-run velocity after the change has been de-
tected:

] ki +M+N

n:l;;'.‘71+M

where the delay parameter M is used to skip the transitory points of the OU
process that would deteriorate the estimation performance. In the case of a
waypoint, the long-run velocities of the alternative hypothesis are updated ac-
cordingly to the parameters d, otherwise the long-run velocity is null. Return
to S1.
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Figure 2: Diagram of the complete change detection pipeline. The input is represented by raw AIS messages in NMEA
0183 format, that can be loaded in an Apache Spark Resilient Distributed Dataset (RDD) and immediately decoded.
The blocks in Stage 0 and Stage 1 mostly deal with the pre-processing of the data set: messages with invalid Maritime
Mobile Service Identifier (MMSI) numbers are discarded, the geographic coordinates are projected using the Universal
Transverse Mercator (UTM) projection. In Stage 1, the messages are arranged first in ship tracks and then split in
time-continuous segments. Qutliers are rejected using a speed gating and stage 2 is devoted to the change detection
procedure. In Stage 3 a status label is assigned to each detection, a quality score computed, and the Spark DataFrame
of detections eventually persisted to non-volatile memory (database or file).



For the waypoints, the alternative hypotheses should be representative of the devia-
tions, quantified by the parameter §, from the null hypothesis. If a bigger deviation
occurs, the change will still be detected but at the cost of a degraded detection per-
formance; in other words, the smaller is 9, the larger will be the detection delay for
a given false alarm rate.

Put differently, the choice of § poses a trade-off between the change detection per-
formance and the capability to detect small deviations from the null hypothesis. We
propose the following strategies to construct meaningful deviations from the null
hypothesis:

i) two-side additive deviation on both the axes

'lA7j+5€$ p:]_

~ . 'ﬁj—5ex p:2

v]+1,p(5> - ﬁj+6ey p:3 (7())
ﬁj—5ey p:4

where e, = [1,0]" and e, = [0,1]".

i1) two-side additive deviation on the direction Zv; of the long-run velocity of the
null hypothesis:

. R . v;+06 p=1
fosunsldl = Il 2o, ={ S5 P20

Interestingly, in several real-world data sets investigated so far, we have consistently
observed that vessels tend to conserve the magnitude of their velocity across the way-
points, changing only their bearing. Basically, even when maneuvering, vessels tend to
preserve their momentum, which is a very reasonable behavior from the perspective of
fuel consumption optimization. In this scenario, the alternative hypothesis proposed
in (71) seems best suited for the problem.

A peculiar aspect of the change detection approach that has been described is that,
as it is formulated, it lends itself to be implemented in a parallel and distributed
fashion, such as that shown in Figure 2 and documented in [26], which leverages the
Apache Spark framework.
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6 Experimental Results

This section presents some typical use cases that motivated the development of the
framework described in the previous sections. Towards this aim, two unclassified
data sets have been used: a first one was made available by the Royal Canadian
Navy (RCN) to DRDC, consisting in a large collection of ship contacts (mainly from
AIS) in the North Atlantic Ocean off the coast of Canada; the second one is made up
of a SAR image acquired by ESA’s Sentinel-1A on the 31 of May, 2016 off the coast
of Madagascar, and by the S-AIS data collected the same day in the same region that
was available in CMRE’s historical AIS database [2].

6.1 Canada data set: long-term association (AIS)

We have applied the OU modeling to a data set of AIS messages collected in the North
Atlantic Ocean off the coast of Canada and the United States by both terrestrial and
satellite AIS receivers.

Some selected trajectories, shown in Figures 3-6, have been isolated from the data set
and intentionally down-sampled, in order to obtain very sparse sequences of observa-
tions of the vessels that, after this stage, detections are separated in time by several
hours. Then, the first sample of each track is taken as initial state for the long-term
prediction and the predicted kinematic state is computed at each time instant when
an observation is made available in order to have a ground truth reference. In all the
experiments, the parameters of the OU process have been estimated directly from the
down-sampled data using the procedure described in Section 3.1.2, with the long-run
mean velocity v estimated by the use of a SME [22]. The estimated values of the
process parameters are reported in Table 1, for each presented case.

In each of the Figures 3-6, it is apparent the OU ship motion modeling is stable for
long-term state prediction (and association). In all of the examples, the prediction
(red crosses in the images) is qualitatively close to the ground truth (black triangles)
at the time of the prediction, and the covariance ellipses are never unreasonably large
(on the order of 10 to 20 km), even after the longest prediction time, 72 hours, shown
in the top panel of Figure 5. In other words, the long-term prediction procedure
documented in this report, is shown able to predict future positions of a vessel in
the long term. This is a crucial capability requirement in order to accurately and
efficiently cue, plan, and task additional reconnaissance of the vessel.

6.2 Madagascar data set: long-term association (SAR and AIS)

The second use case focuses on an example of association of AIS data with SAR
detections from an image taken several hours after the ship broadcast its last position.
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Figure 3: Long-term association example with the proposed approach. Horizontal
axis: longitude; vertical axis: latitude. Top panel: the “Acadian” oil /chemical tanker
(MMSI 316012950) off the coast of Nova Scotia and the related position and error co-
variance after 3, 6 and 9.5 hours from the initial state. Bottom panel: the “Arneborg”

cargo vessel (MMSI 246556000 ) in Lake Erie, with predictions at 2, 4, 6 and 9 hours

after the initial state.
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Figure 4: Long-term association example with the proposed approach. Horizontal
axis: longitude; vertical axis: latitude. Top panel: the “Niledutch Panther” container
vessel (MMSI 636017641 ) in the North Atlantic Ocean and the related position and
error covariance after ~ 4,7, 10, 14 and 20 hours from the initial state. Bottom panel:
the “Nysted Maersk” cargo vessel (MMSI 219954000 ) in the North Atlantic Ocean,
with predictions at every ~ 3 hours after the initial state. The last prediction is ~ 33
hours after the initial state.
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Figure 5: Long-term association example with the proposed approach. Horizontal
axis: longitude; vertical axis: latitude. Top panel: the “Hoegh Shanghai” container ship
(MMSI 258758000) off the coast of Nova Scotia and the related position and error
covariance after ~ 10, 20, 30, 40, 50 and 72 hours from the initial state. Bottom panel:
the “Mol Gratitude” container ship (MMSI 477462400) off the coast of Nova Scotia,
with predictions at every ~ 12 hours after the initial state. The last prediction is ~ 48
hours after the initial state.

28 DRDC-RDDC-2019-R058



®  Initial state
A Ground truth
Ship track
Prediction
Prediction error covariance

40
39

38

37 @®  Initial state
A Ground truth
Ship track
36 Prediction
Prediction error covariance

35
-38 -36 -34 -32 -30 -28 -26 -24
Figure 6: Long-term association example with the proposed approach. Horizontal
axis: longitude; vertical axis: latitude. Top panel: the “Eurasian Highway” vehicles
carrier (MMSI 432839000 ) off the coast of Massachusetts and the related position and
error covariance after ~ 10, 20 and 33 hours from the initial state. Bottom panel: the
“Vega Omikron” container ship (MMSI 636092662) in the North Atlantic Ocean, with
predictions at every ~ 10 hours after the initial state. The last prediction is ~ 45 hours
after the initial state.
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Table 1: Estimated values of the OU process parameters for the ship tracks of the
Canada data set considered in the experimental analysis.
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Figure 7: SAR image used in the experimental analysis with AIS trajectories over-
laid, which have been recorded in the area of the acquisition 6 hours prior and poste-
rior to the acquisition time. Red circles denote the AIS contacts. The three red squares
are centered in the positions of the vessels detected in the SAR image. A fourth AIS
trajectory yields no association with any SAR detection, since the acquisition time
does not result in the vessel being in the SAR frame of detection. Horizontal axis:
longitude; vertical axis: latitude. Produced from ESA remote sensing data.
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Figure 8: SAR images of the three cargo ships used in the experimental analysis,

matched with the corresponding AIS trajectories, overlaid in red. The category of

the ship has been inferred from the AIS information. Red crosses denote the SAR

detection, which is shown to be aligned with the corresponding AIS track in all the

three cases. Horizontal axes: longitude; vertical axes: latitude. Produced from ESA
remote sensing data.

A qualitative analysis is performed first, and then the performance is assessed in
terms of a performance metric, the GV (introduced in Section 4), as function of the
prediction time.

This time, the test data set is made up by a SAR image acquired by Sentinel-1A on
the 31 of May, 2016 off the coast of Madagascar, and by the S-AIS data collected the
same day in the same region and stored in CMRE’s historical AIS database. The data
set is also shown in Figure 7, with spatio-temporally compatible AIS tracks overlaid
in red. As it is shown by the closeups in Figure 8, three vessels can be detected by a
simple visual inspection of the SAR image.

Figure 9 shows the SAR image at several zoom levels with overlaid the prediction
based on the OU model and starting from an initial AIS state which was broadcast
approximately 9 hours before the acquisition of the SAR image. The red ellipse is the
prediction error covariance that one would get with the use of the NCV model, in
place of the OUj it is unrealistically large, being even larger than the entire footprint
of the SAR image, and it is shown only as a baseline reference. Conversely, the OU
prediction error covariance is much more constrained around the SAR detection,
and encompasses a single detection; in other words, with the OU model, there is no
ambiguity in the association of the SAR detection with the corresponding AIS track.

Finally, in Figure 10, the evolution of the GV is reported as a function of the time,
evaluated for the three detections in the dataset (Figure 8) and for the OU and NCV
model [6, 8]; two versions of this latter model have been considered, which have two
different prediction error scaling laws (proportionally to t* and ¢*). The three different
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Figure 9: SAR detection 1: (a) Overview; (b) and (c) Close-ups. The OU estimation
of the vessel position (magenta cross) almost overlaps the true AIS position (green
triangle), whereas NC'V provides an estimation (red cross), which is several kilometers
off the true position. Furthermore, the related 100 %-confidence prediction covariance
ellipses (plotted in red, NCV, and magenta, OU) are very different in size. Indeed, the
OU size is considerably smaller than that of NC'V. The AIS ship trajectory is depicted
with green dashed line. Horizontal axis: longitude; vertical axis: latitude. Produced
from ESA remote sensing data.
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Figure 10: Ellipse volumes over prediction time fixing y= 1 and theoretical curves
using average model parameters per ship category for the two NCV models and the
OU model.

markers define the measured volumes for the three vessels. The three colors indicate
the three compared prediction models (i.e. OU in cyan, NCV3 in red, and NCV4 in
black). The solid lines are instead obtained using the theoretical models [8] calculating
the volumes for the three long-term prediction models. The advantage of using the
OU model is that it leads to a significant r eduction oft he GV and, t hus, a global

reduction of ambiguity with respect to the NCV models. Such benefits become more

significant for longer prediction times.

6.3 Canada data set: waypoint detection

The final use c ases d emonstrates t he ¢ hange d etector, d escribed in S ection 5.1, at
work. The data that has been used is once again taken from the Canada data set.
Figures 11 and 12 depict two applications of the change detection procedure to two
different tracks. The left-hand side panels show the ship trajectories, with a black
triangle denoting the first data sample of the track. The red circles show the positions
of the detected changes in the long-run mean parameter. In the right-hand side,
from top to bottom, the instantaneous values of the Cartesian components of the
velocity are shown over time, along = and y, after which the instantaneous speed and
track orientation over time are reported, respectively; dots denote the instantaneous
values, solid lines their long-run mean counterparts and circles the change detections.
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Although it is not immediately clear how to properly assess the quality of the change
detector’s output by a simple visual inspection, the plots in the right panels of each
figure show that the procedure is able to achieve what appears to be a reasonable
result in term of detection of abrupt changes and estimation of the long-run mean
velocity regimes.

This operation can be repeated for every ship track in a given region of interest,
obtaining a set of change detections with corresponding long-run mean velocity values
before and after the change. With regular traffic such as that shown in shown in
Figure 1, the change detections are expected to condense around common waypoint
regions which can be identified and connected in order to build a graph model for
the maritime traffic. The theoretical and empirical tools to achieve such a result
are beyond the scope of this document and are instead document in a companion
report—Part II.

34 DRDC-RDDC-2019-R058



50

48 +
NEW
BRUNSWICK ,(\\ 10
PRINCE
46 F EDAW.A#D L R
ISLAND ’, _
, ’, = 5
-
NOVA scQrrh )
S -’
44 F 8 - y
.\ / 0 s
e’ 0 10 20 30 40

42 100
= = Ship track > 0 _
~J

¢ Change detections
A Last contact - -100

40

-66 -64 -62 -60 0 10 20 30 40
Time [h]

Figure 11: Example of the change detection procedure applied to a single track,
made up by the positions broadcast by the “Acadian” oil/chemical tanker (MMSI
316012950). The left-hand side panel shows the selected track, with the horizontal
and vertical axes reporting longitude and latitude, respectively. The black triangle
denotes the last data sample of the track and therefore shows the motion direction.
The red circles show the detected changes in the parameter. Right-hand side, from
top to bottom: instantaneous value of the Cartesian components of the velocity over
time, along x and y, respectively, and instantaneous track orientation; dots denote
the instantaneous values, solid lines the value of the parameter, and circles the
change detections.
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Figure 12: Example of the change detection procedure applied to a single track,
made up by the positions broadcast by the “Arneborg” cargo vessel (MMSI
246556000). The left-hand side panel shows the selected track, with the horizontal
and vertical axes reporting longitude and latitude, respectively. The black triangle
denotes the last data sample of the track and therefore shows the motion direction.
The red circles show the detected changes in the parameter. Right-hand side, from
top to bottom: instantaneous value of the Cartesian components of the velocity over
time, along x and y, respectively, and instantaneous track orientation; dots denote
the instantaneous values, solid lines the value of the parameter, and circles the change
detections. The careful reader will notice a missed change detection between 20 and
40 hours. This behavior can be ascribed to the noisy velocity angle. The noise in the
instantaneous velocity angle is an artifact resulting from the challenges in computing
the angle of a vector whose magnitude is very close to zero.
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7 Conclusion and future work

The idea to discover spatio-temporal patterns from moving object data is not new,
and indeed various and diverse approaches can be found in literature dealing with the
synthesis of spatio-temporal moving object data into concise patterns. These patterns
can be seen as abstract and synthetic representations of aggregates of many, similar
individual trajectories of objects in motion. Such representations do not only provide
insights on the underlying data structures, but also open up to a number of interesting
opportunities such as classification, anomaly detection, categorizing activities, and
prediction of future behaviors.

A well-known feature of global maritime traffic is that the majority of it is very
regular: ships, especially those involved in the transportation of goods, often if not
always seek to optimize fuel consumption, and therefore will naturally follow the most
convenient path allowed by international regulations and traffic separation schemata.
Nonetheless, a technique to efficiently process massive amounts of spatio-temporal
traffic data to reveal the underlying network structure, in the form of a graph or a
graphical model, has not yet been universally identified.

This report is built around the intuition that there is a feedback loop in a ship’s
motion and therefore the velocity of a vessel is not completely random. It has docu-
mented the modeling of the motion of a non-maneuvering ship through a stochastic
mean-reverting process that represents its velocity, from the mathematical formaliza-
tion to the derivation of a Bayesian-optimal prediction procedure that can be used
for long-term prediction and association of measurements from heterogeneous and
highly asynchronous sensors. Suitable procedures for the estimation of the parame-
ters of the stochastic process and for gating heterogeneous and asynchronous data
have been presented as well. Then, the model has been extended to the case of ship
waypoint navigation, and a statistical change detection procedure has been developed
to identify the time instants of change and, correspondingly, the navigational way-
points. Finally, some selected experimental results have been reported, in order to
demonstrate the relevance of the modeling to real-world applications, and real-world
data.

Altogether, this report has laid the theoretical background to enable the development
of knowledge discovery techniques in a probabilistic framework, which is documented
in the companion report—Part II.
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Lextraction de linformation précieuse a partir de grands ensembles de données spatio-
temporelles nécessite des approches novatrices en mesure de traiter efficacement un grand
volume d’information tout en révélant la structure sous-jacente des données. Elle est ainsi ca-
pable de fournir des renseignements utiles au processus décisionnel.

On a mis au point des techniques novatrices de découverte des connaissances a l'aide d’'une
modélisation stochastique du mouvement des navires par retour a la moyenne en vue de révéler
la structure graphique sous-jacente du trafic maritime. Les connaissances générées offrent de
nombreuses possibilités, allant de la prédiction multibord graphique aux techniques de détec-
tion d’'anomalies, en passant par I'optimisation des routes des navires. Regroupés, les sujets
abordés dans le présent rapport représentent le cadre théorique nécessaire a I'élaboration de
techniques de découverte des connaissances capables de révéler la structure graphique sous-
jacente du trafic maritime, qui sont documentées dans le rapport complémentaire - Partie 1.

Le présent rapport, Partie I, documente la formalisation du modéle de mouvement du navire
et promeut I'emploi de ce dernier plutét que des autres modéles conventionnels. En outre, il
comprend des procédures d’estimation des paramétres du processus et on y étudie I'information
sur I'exécution de ce processus dans le cadre de la prévision a long terme et de I'association
de données. La principale limite de ce modéle, a savoir son applicabilité a des cibles sans
manoeuvres seulement, est surmontée par la formalisation d’'une version améliorée adaptée
au cas d'un navire naviguant a l'aide de points de cheminement. On utilise des ensembles de
données en situation réelle afin de démontrer le potentiel des techniques élaborées dans des
cas d'intérét pratique.

On a réalisé ce travail dans le cadre de l'activité de recherche concertée de RDDC CREM
«paramétrage du modele du mode de vie aux fins d’exploitation dans les systémes de com-
mandement et de contrdle » du projet 01da de RDDC sur les systémes de commandement et
de contrble navals de prochaine génération.
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