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Abstract

The work presented in this report examines the impact process of a 10% gelatine soft body
material projectile striking a rigid target attached to a quartz force ring sensor. Using
the shock Hugoniot relations and the conservations equations, a theoretical relation was
obtained for the interface shock pressure. The Alekseevskii-Tate penetration equations
were used to interpret and determine the steady state pressure applied to the target.

Impact tests were conducted and the time histories of the force applied to the target were
measured. The force-time curves were examined to identify frequencies that were present in
the results and may be coming from the natural vibrations of the various parts that make
up the target. Bessel function solutions for the wave equation applied to the free vibration
of plates were used to identify and quantify the frequencies of the various plates in the
target assembly. These unwanted frequencies were removed using the Savitsky-Golay filter.
The shock pressures were then derived and very good comparison was obtained with the
theoretical values predicted by the interface shock pressure equation developed.

The Alekseevskii-Tate equation predicted very well the duration of the interaction between
the projectile and the target. However, the measured value of the pressure was in dis-
cordance with the expected stagnation pressure, Pstagnation = 1

2ρv2
i . In accordance with

the Alexseevskii-Tate equation, the results indicate the presence of a dynamic pressure
that maybe playing a significant role in the applied steady state pressure. A quantitative
measure of this dynamic pressure was obtained.

Significance for defence and security

Low strength materials such as water, gelatine, vulcanization rubber, wax, emulsions or
even aluminum foam are used for a broad range of applications involving impact and shock
loading conditions. These materials referred to as soft body materials, are not only used in
energy absorbing systems but also as surrogate materials for animals, birds and human body
tissues and organs. To minimize shock or impact induced effects such as the trauma and
damage caused by a projectile impacting human tissue, the interaction of the shock and the
subsequent loading caused by the projectile need to be clarified and understood in terms of
the propagation of the shock and the role of the ensuing material deformation mechanisms
such as strain rate effects and failure mechanisms. This work pushes the boundaries of the
methods to characterise these materials and could be useful in designing, developing and
testing of protective equipment or structures using soft body material surrogates.
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Résumé

L’étude présentée dans ce rapport examine le processus d’impact d’un projectile composé
d’un matériel mou de 10% gélatine qui frappe une cible rigide attaché à un capteur de force
annulaire. En utilisant les rapports de choc Hugoniot et les équations de conservation, une
relation théorique de pression de choc a été obtenue à l’interface entre le projectile et la
cible. Les équations de pénétrations d’Alekseevskii-Tate ont été utilisées pour déterminer
la pression stationnaire appliquée sur la cible.

Des tests d’impact ont été effectués et les courbes de variation de force contre le temps
appliqué sur la cible ont été obtenues. Ces courbes ont été examinés afin d’identifier des
fréquences présentes dans les signaux et il est fort probable que ces fréquences naturelles
peuvent provenir des différentes parties dont la cible est composée. Les solutions de fonctions
Bessel pour l’équation d’onde appliquée à la vibration libre des plaques ont été utilisées pour
identifier et déterminer quantitativement les fréquences des différentes plaques dont la cible
est composée. Ces fréquences indésirables ont été enlevées en utilisant le filtre Savitsky-
Golay. Subséquemment les pressions du choc ont été dérivées et une bonne comparaison
avec les valeurs théoriques a été obtenues.

L’équation d’Alekseevskii-Tate a très bien prédit la durée de l’interaction entre le projec-
tile et la cible. Cependant, le valeur de la pression a été en désaccord avec la pression
de stagnation Pstagnation = 1

2ρv2
i , anticipée. En interprétant les résultats selon les équa-

tions d’Alekseevskii-Tate, ces résultats indiquent la présence d’une pression dynamique qui
jouerait un rôle signifiant dans la pression de l’état d’équilibre appliquée. Une mesure quan-
titative de cette pression dynamique a été obtenue.

Importance pour la défense et la sécurité

Matériaux peu résistants tel que l’eau, la gélatine, le caoutchouc de vulcanisation, la cire,
les émulsions ou même la mousse d’aluminium ont été utilisés pour une large gamme
d’applications impliquant des conditions de choc et d’impact. Ces matériaux, appelés maté-
riaux de corps mous, ne sont pas seulement utilisés dans les systèmes d’absorption d’énergie,
mais d’autres sont utilisés comme matériaux de substitution pour les animaux, les oiseaux
et les tissus du corps humain et les organes. Pour minimiser les chocs ou les dommages
causés par un projectile touchant le tissu humain, l’interaction du choc et le comportement
ultérieur causé par le projectile doivent être clarifiés et compris en termes de propagation
du choc et du rôle de ces matériaux, tels que le taux de déformation. Ce travail pousse les
limites des méthodes de caractérisation de ces matériaux et pourrait jouer un rôle important
dans la méthode de conception, le développement et les essais d’équipement et structures
de protection.
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1 Introduction

Low strength materials such as water, porous and non-porous gelatine, room temperature
vulcanization (RTV) rubber, wax, emulsions or even aluminum foam are used for a broad
range of applications involving impact and shock loading conditions. These materials some-
times referred to as soft body materials, are not only used in energy absorbing systems but
more so some of these materials such as gelatine or RTV rubber are used as surrogate ma-
terials for animals, birds and human body tissues, organs and biological liquids. In recent
years in the medical domain, shock waves have been use for various applications and one of
the most successful examples is the non-invasive disintegration of unary tract stones using
extra-corporeal shock wave lithotripsy. Other examples of the shock loading of soft body
materials or soft body impacts include insects hitting an automobile windshield, birds strik-
ing an aero-engine or aircraft fuselage, ice particles impacting structures at high velocities,
snowballs falling on windows or a bullet striking and penetrating animal or human tissue
or even a lead bullet striking a steel target. During the impact of a soft body onto a hard
target such as an aircraft structure, the soft material is highly deformable and tends to flow
over the target. In the case where the target is the soft body and the impactor is hard
body, such as a bullet for example, the soft body material will flow over the hard impactor.
In all cases the soft body material will flow if the generated stress during impact greatly
exceeds its yield strength.

To minimize shock or impact induced effects such as damage to an aircraft structure from
a bird impact or the trauma and damage caused by a projectile impacting human tissue,
the interaction of the shock and the subsequent loading caused by the projectile need to
be clarified and understood in terms of the propagation, reflection of the shock and the
role of the ensuing material deformation mechanisms such as strain rate effects and failure
mechanisms. From the point of view of understanding the impact and dynamic response of
these soft body materials, in addition to performing experiments, physics based numerical
simulations of the impact and/or shock loading problem could prove extremely useful and
meaningful. However, to conduct these simulations the numerical schemes require reliable
material physical properties such as the constitutive properties, shock data or equations of
states and these are often obtained from carefully developed and validated experimental
methods.

1.1 Objective

In the examination of the impact of a soft body onto a target the shock and the steady state
pressures are parameters that are important in determining both the projectile and target
response. These parameters are normally measured at the projectile/target interface. To
measure these properties, many researchers have often used pressure transducers embedded
in the target surface where the projectile strikes the target. However, in all the work cited
although good results were obtained they were many difficulties, such as the limitation of
the pressure gauges, that rendered sometimes the accuracies of the data being questionable.
These include resonance frequencies that cause noise to appear or the gauges not having a
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fast enough response time to capture the fast rising edge due to especially strong shocks.
In fact Wilbeck [1], Lavoie [2], Heimbs [3], Hedayati and Sadighi [4], to name a few, all
highlighted these limitations and this led the authors to re-look at issues of the impact
problem and examine whether the shock and steady state parameters could be obtained
more precisely.

Thus, given the foregoing discussion, the objectives of this work were threefold. Firstly,
using the shock Hugoniot relations and the conservation equations, develop a relation for
the interface shock pressure and further to that, examine whether the Alekseevski-Tate
penetration equations could be applied to determine the steady state impact parameters.
Secondly, using a soft body projectile impacting a rigid target, investigate the feasibility
of using a force transducer as the rigid target to capture the force-time response at the
interface and then from that history examine whether or not the shock and steady state
pressures could be extracted. Thirdly, to interpret and compare the experimentally deduced
shock and steady state pressures with the theoretical values determined in accordance with
the shock Hugoniot relations and the Alekseevskii-Tate penetration equations.

1.2 Theoretical background

Most researchers [1–27] will agree that for most impact problems the mechanisms that
govern the impact process are very dependent on the striking velocity. With regards to
low strength materials, the 1978 literature and theoretical review provided in the work of
Wilbeck [1] and Barber, Taylor and Wilbeck [4, 5, 6] on the impact of low strength materials
still remain very relevant today because of the basic description of the impact process and
extensive experimental data available for a variety of bird surrogate materials striking rigid
targets. They define the very basic physical impact phenomena that occur with these
types of problems. The review conducted by Hiembs [2] includes a copious list of studies
on the subject of soft body impact and complements very well the modelling advances
made in simulating these types of impact while the recent text by Hedayati and Sadighi [3]
covers very well, albeit from an engineering standpoint, advances made in modelling and
experimental methods for examining the problem but focusing on the bird impact problem.
In a 2009 series of tests, Lavoie et al [7,8] attempted to measure the shock and steady state
interface pressures of gelatine projectiles striking an instrumented solid target and for many
reasons described by Hedayati and Sadighi [3] much discrepancies between the analytic,
numerical and the experimental results were found. In a 2014 study, Liu et al [9] carried
out bird impact experiments to guide and conduct numerical analysis of the problem but no
shock nor steady state interface pressures were measured or presented. Given the foregoing
discussion, it seems necessary to revisit the problem and the basic impact phenomena
involved and investigate if there is a way to measure the interface parameters from simple
impact experiments.

Hopkins and Kolsky [10] in their 1960 study of impact of solids defined five regimes of the
impact process depending on the striking velocity. These are the elastic impact, the plastic
impact, the hydrodynamic impact and the explosive impact. In an elastic impact the stress
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waves generated in the projectile or target do not exceed the strength of the materials and
thus, the response of the impact depends only on the elastic moduli and the elastic wave
velocities of the materials. As the impact velocity is increased a plastic impact occurs where
the stresses produced cause the material to deform plastically. In this case the material
strength is the governing factor of the response. As the impact velocity is further increased
the stresses generated by the deceleration of the material on impact greatly exceeds the
yield strength of the material and it starts to flow. In this hydrodynamic regime, the
material can be treated as a fluid for all intent and purposes and in this case it is the
material density and not the strength that dominates the response of the impact. In all the
regimes described stress waves propagate through the projectile and target. As the impact
velocity is increased and the velocity of the stress waves exceeds the characteristic wave or
acoustic velocity of the material, more energy is dissipated in the local region of the impact
area. Shock waves are now generated and the wave motion begins playing an increasingly
important role in the determination of the local stress distribution. The heat produced in
the impact zone is concentrated in this very small region and can be sufficient to melt or
vaporize the material. Hopkins and Kolsky [10] explains that the impact process in this
regime is very analogous to a small explosion occurring or taking place on the surface of
the target. Although these regimes have been defined very well for high strength materials
interaction there is no reason not to believe that these regimes are also applicable to low
strength materials as pointed out by Barber, Taylor and Wilbeck [1,3,4,5] in their study of
the characterization of bird impact on a rigid plate. When the stresses generated during
impact greatly exceed the yield strength of the material, the problem can be approached
hydro-dynamically This is because strength and viscosity have very little effect on material
response and rather, it is an equation of state relating the pressure, density and energy
that should be used to study or describe the material response. A very good example of
this is given by Hopkinson [11] in the studying of the impact of a lead bullet onto a steel
target in which he found experimentally that the stresses generated in the projectile by
the impact could be approximated with a fluid jet impacting the target. Other researchers
such as Birchoff [12], Heymann [13], Johnson and Vickers [14] to name a few, have also
confirmed this in their studies of high speed impact of water drops and jets impacting solid
surfaces. In all these investigations, there are several features of the impact process that
are of importance. Heymann [13] in fact, explained that these are the initial pressure, the
area over which the pressure is exerted, the lateral velocity of the material flow after impact
and the decay time of the impact forces.

A major hurdle in the area of soft body impact is that the stresses generated at the pro-
jectile/target interface could be so large that the target would also experience very large
deformations especially if the target is either thin or comprises of soft materials. This simul-
taneous large deformation of both the projectile and target makes uncoupling the target
response from that of the projectile very difficult. To decouple the soft body projectile
response, many researchers [1,4,5,7,8] have studied the impact of soft body cylinders on
rigid targets. Bowden and Brunton [15,16] in extensive studies of the deformation of solids
by liquid impact at supersonic speeds examined the impact of a flat-ended cylinder on a
rigid target and described the interface pressure as the water hammer pressure, P = ρc0u0
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where ρ is the density and c0 is the wave speed and u0 is the impact velocity. Bowden
and Field [17] in a later work on the investigation of impact of liquids and solids on rigid
targets explains that the water hammer equation of the pressure works only for low velocity
impact but for higher impact velocities the wave velocity, c0, must be replaced by the shock
velocity, Us, to give the true interface pressure. Many researchers have since validated this
theory and in fact, Glen [18] with his investigation on the dynamics of hypervelocity impact
of liquid jet impacting a rigid flat surface, has shown that the peak pressure at the surface
or interface is the shock pressure or Hugoniot pressure given by Pi = ρUsu0 where Us is
the shock speed. Once the release waves have propagated into the center of the cylinder
the pressure begins to decrease. After several reflections, the flow of the projectile will ap-
proach a steady state condition. The steady state pressure at the center of the projectile is
the stagnation pressure given by Pstagnation = 1

2ρu2
0, determined from Bernoulli’s equation

for steady state flow for an incompressible fluid. The work of Glen [18] confirmed these
observations made by Cook [19] and Heymann [13] who actually identified these two basic
regimes of water jet impact; the shock regime which is governed by the Hugoniot pressure
and steady flow regime governed by the stagnation pressure; there is general agreement on
this interpretation from the cited literature.

However, with regards to the characterization of soft body material impact, there are many
researchers who have made many contributions but the original work by Wilbeck [1] and
Barber et al [4,5,6] still stand out and are used extensively mostly in part because the
work provides large experimental data in addition to the basic hydrodynamic theory that
describes impact of soft body projectiles striking a flat rigid plate.
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2 Determination of the interface shock pressure and
speed from the shock Hugoniot relations

Figure 1 describes the four phases of the impact of a soft body projectile striking a rigid
target. Figure 1(a) shows the initial contact made by the projectile with an impact velocity
of u0. Assuming that the projectile is moving from left to right, a left hand moving shock
is generated in the projectile whereas a right hand moving shock is generated in the target.
With regards to the projectile, the left hand going shock leads to a significant pressure
gradient between the outside surface of the projectile and the center causing the outward
flow of the material as a release wave moves towards center of the projectile as illustrated
in Figure 1(b). After several reflections of the release waves the material flows steadily as
depicted in Figure 1(c). At this point the pressure at the center of the projectile is no more
the shock pressure but is at a steady state and is known as the stagnation pressure. The
material continues to flow until the projectile has essentially completely eroded away as
shown in Figure 1(d).

When a shock is generated, the shock front in the material moves with a velocity Us which
is material dependent. The material behind the shock front moves with a particle velocity,
up. For an impact problem, simply stated, a Hugoniot is a curve that contains all possible
equilibrium states at which a material can exist when shock loaded at different impact
velocities. It is in fact, an empirically derived curve that relates any of the following
variables to each other: the shock pressure, Ps, the shock and particle velocities, Us and up,
respectively, and ρ, the shock density. The Hugoniot is not an equation of state, although it
could be used in a similar manner and is sometimes used as an isentrope, even though strictly
speaking it is not because entropy does increase across the shock front. The Hugoniot is
normally derived experimentally where in the simplest case, the velocity Hugoniot, often
referred to as the Us − up curve, is an empirical relationship that relates the shock front
velocity, Us, with that of the particle, up. Experiments have shown that for most materials
it is a simple linear relationship that is expressed in the form

Us = c0 + sup (1)

where c0 is sometimes called the bulk sound speed but is also the intercept on the Us axis,
and s is the particle velocity coefficient obtained experimentally. Figure 2 shows the Us −up

curve for gelatine where c0 = 1445 m/s and s = 1.9. These experimental values are taken
from Gojani et al [20] and are presented in Table 1 along with similar values for the steel
target.

The real power of Equation (1) comes when it is used in conjunction with the equations of
conservation of mass, momentum, and energy. The three equations, Equations (2) to (4)
taken from Cooper [21] are given below, respectively, for the mass, momentum and energy.

ρ1
ρ0

= ν0
ν1

= Us − u0
Us − u1

(2)
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Figure 1: Illustration of the four stages of a soft body projectile striking a rigid target.

P1 − P0 = ρ0 (u1 − u0) (Us − u0) (3)

e1 − e0 = (P1u1 − P0u0)
ρ0 (Us − u0) + 1

2

u2

1 − u2
0


(4)

where the subscript "0" is for conditions ahead of the shock front and "1" is for after the shock
wave has passed. Equations (1) to (4) can be applied to all materials under shock loading
conditions. Now, consider the impact problem described in Figure 1 with the projectile
moving from left to right for convenience. Following the derivation set out in Cooper [21]
and Carlucci et al [22] to describe the shock pressure for the right going shock in the target,
that is for up > u0, combining Equation (1) with Equation (3), the momentum equation,
and rearranging the terms to make the pressure, P, the subject of the equation and as a
function of the material velocity u, the following P − u Hugoniot is obtained.
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Figure 2: The shock velocity – particle velocity or Us − up curve for
10% gelatine using parameters taken from Gojani et al [20].

P1t = ρ0tc0t (u1t − u0t) + ρ0tst (u1t − u0t)2 (5)

where the subscript t relates to the properties of the target material. For the left going
Hugoniot, that is for up < u0, the shock pressure equation would be given by

P1p = ρ0pc0p (u0p − u1p) + ρ0psp (u0p − u1p)2 (6)

where the subscript p relates to the properties of the projectile material.

As in the case shown in Figure 1, when a projectile impacts a target the following condi-
tions must apply. The pressure must be consistent across the interface and the velocity
of the particles of both materials at the interface must be the same to satisfy the conser-
vations equations. These conditions essentially corresponds to solving Equations (5) and
(6)simultaneously to determine the interface particle velocity and the shock pressure. Using
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Table 1: Materials properties for gelatine (Gojani et al [20]) and steel.

Property/parameter Gelatin Steel
Density, ρ (kg/m3) 1030 7800
Acoustic velocity, c0 (m/s) 1445 5800
Shock parameter, s 1.900 1.434

the parameters shown in Table 1, solving these two equations could be done graphically by
plotting the two pressures obtain from the two equations as a function of chosen particle ve-
locities. This is shown in Figure 3 where the shock pressure and the corresponding particle
velocity is indicated by the point marked X where the two graphs intersect. It is essential
to note here that for the left hand Hugoniot the pressure increases as the particle velocity is
decreased. This is because the initial velocity was not changed so it simply means that just
before impact the projectile’s velocity is suddenly decreased to produce the reduced particle
velocity so the amount by which the projectile’s velocity has been reduced manifests itself
as an increase in the pressure. The case where the particle velocity is zero indicates that the
projectile arrives with an initial velocity and essentially abruptly stops just before striking
the target thus the pressure is maximum in the projectile but zero at the target.

A more elegant way of determining the shock pressure and the particle velocity that exist at
the interface is to equate the left-going Hugoniot, Equation (5) to the right-going Hugoniot,
Equation (6). Equating these two equations and eliminating the pressure terms results in
a quadratic equation as a function of the common particle velocity, u and could be written
as

(ρ0psp − ρ0tst) u2 − (ρ0pc0p + 2ρ0pspu0p + ρ0tc0t − 2ρ0tstu0t) u+
ρ0pc0pu0p + ρ0pspu2

0p + ρ0tc0tu0tu0t − ρ0tstu
2
0t


= 0

(7)

The positive root of the Equation (7) gives the particle velocity at the interface with the
other root being meaningless. Substituting for the particle velocity in either Equation (5)
or (6) not only gives the Hugoniot pressure at the interface but importantly also that now
the particle velocity is known, the shock speed could be obtained from Equation (1).

Equation (3), the momentum equation, could also be used to obtain the interface shock
pressure, Ps, directly by setting the initial pressure, P0, = 0 and u0t = 0 to obtain

Ps = ρ0pUsu0p (8)

where Us is the shock speed and u0p is the projectile impact velocity. What is important
here is that once the shock speed is known it is simple to calculate the Hugoniot pressure
from Equation (8). Using the target and projectile parameters shown in Table 1, Figure 4
shows the variation of the interface shock pressure as a function of the impact velocity for
the gelatine projectile striking the rigid target described in Figure 1.
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Figure 3: Right and left hand shock pressure as a
function of the particle velocity – Ps − up curve.
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Figure 4: Variation of the interface shock pressure as a function of the impact velocity.
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3 Development of the steady state pressure from the
Alekseevskii-Tate penetration equations

In the 1960s Alekseevskii [23] and Tate [24] independently framed and formulated the pen-
etration equations that describe the behaviour of a long rod penetrator while it penetrates
a target at high velocity. These equations are given by

l
dvi

dt
= −Y

ρr
(9)

1
2ρr


vi − w)2


+ Y = 1

2ρtw
2 + R (10)

v = w − dl

dt
(11)

dPn

dt
= w (12)

where vi is the rod velocity, w is the penetration velocity, Pn is the penetration, l is the
penetrator length, t is the time after impact, Rt is the target strength and Yp is the pen-
etrator strength. ρp and ρt are, respectively, the penetrator and target densities. These
equations have been used over the decades to predict the penetration, penetration veloc-
ity, rod velocity and they have been integrated numerically by many researchers to give a
solution to the penetration problem. A very interesting description of these equations is
given by the work of Walters and Segletes [25] who developed an exact solution for these
equations. The solution was further refined by Segletes and Walters [26] but these exact
solutions yielded the penetration of the target as an implicit function of time. Walters and
Williams [27] reexamined the solution to the Alekseevskii-Tate equations and an explicit
perturbation solution for the penetration as a function of time was obtained. The results
compared very well with the exact numerical integration of the equations and the implicit
solution developed earlier. Three special conditions were identified and these are when the
target strength is very small or negligible to that of projectile and the penetrator penetrates
the target without much erosion of itself. Secondly, in the case where the target strength
is the same as the projectile strength a simple close form solution exists and the penetra-
tion could be calculated exactly. The third case considers that the projectile strength is
negligible compared to that of the target. In this case the projectile erodes way without
penetrating the target. This is essentially the case that is presented in the problem of a
soft body striking a rigid target. More recently Flis [28] modified the Alekseevskii-Tate
equations for rod penetration into porous targets and obtained very good results when
compared to experiments. As a result there seems to be very reasonable arguments that
these equations could be applied to the soft body impact problem at hand.

Equation (11) could be solved explicitly for the projectile erosion given that the penetration
velocity, w is 0. Therefore,

dl

dt
= vi (13)
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which implies essentially that the projectile erosion rate, dl

dt
is simply equal to impact

velocity, vi and the flow of the material at the target/projectile interface is considered to
be steady state. Performing this simple integration and rearranging the equation making t
the subject of the formula simply gives

t = l/v (14)

which is the time the projectile spends interacting with the target before being completely
eroded. Equations (9) and (12) are not required given that the penetration velocity is 0.

In Equation (10), setting the penetration velocity and taking the pressures as the usual
strength terms, as is done in Flis [28], the following equation is obtained

Pinterface = 1
2ρrv2

i + Y (15)

In the context of the case where the projectile strength is negligible with respect to that of
the target, that is Y = 0,

Pinterface = 1
2ρpv2 (16)

is obtained where Pinterface is referred to as the steady state stagnation pressure, Pstagnation,
that is often found in literature [1–27].
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4 Experiments—Description, arrangement and impact
tests

4.1 Experimental facility

An air gun impact facility, shown in Figure 5, was used to conduct the experiments.

Figure 5: DRDC’s air gun impact facility.

The air gun itself consists of an 1.8-m long, 40-mm diameter launch tube coupled to a
compressed air reservoir located below the launch tube. Coupling of the launch tube with
the reservoir is done via a mechanical valve which when opened releases the compressed
air which then directly pushes the projectile along the barrel. The pressure in the reservoir
determines the exit velocity of the projectile. At this time the maximum reservoir pressure
that could be used is 825 kPa (120 psi). A Photron high speed camera (Model SA-5 and
SA-1) recording at 20000 frames/s, was used to record the projectile release from the launch
package, its flight to the target and the projectile interaction with the target. The data
acquisition system, Genesis (Model 5-E), was used to trigger the camera and acquire the
force history data.
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4.2 Projectile, sabot and target description

To launch projectiles with the air gun, a sabot is required mainly because the diameter of
the penetrator is smaller than that of the launch tube. The sabot is, therefore, a structure
that holds the penetrator in place during its travel in the launch tube. Figures 6 (a), (b) and
(c) show, respectively, the inside and outside views of the sabot and the placement of the
projectile in the sabot. The sabot is separated from the penetrator after it exits the muzzle
of the gun and is trapped or stopped by what is known as a sabot trap, shown in Figure
6 (d). The projectile passes through the opening in the sabot trap and then continues on
towards the target.

Figure 6: Various configuration views of the sabot: (a) Outside view (b) Inside
view (c) View with the projectile placed in the sabot and (d) the separation of

the projectile from the sabot just before passing through the sabot trap.

Figure 7 shows an typical example of the projectile used for the experiments. The basic
projectile used for the tests was a 28-mm cylindrical gelatine rod with a hemispherical tip
and a nominal length of 102 mm. It was made from 10 % ballistic gelatine prepared using
the recipe taken from Lavoie et al [9].
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Figure 7: View of a typical 10% gelatine projectile. In this example
the length of the projectile is 130 mm whereas for the test results

presented the length of the projectile used was 102 mm.

To record the interaction between the projectile and target, a PCB Piezotronics Quartz
Force Ring Sensor Model 207C with a force measurement range of up to 445 kN was used.
Figure 8 (a) shows the ring load cell with a description of its basic characteristics. Figure 8
(b) shows the configuration in which the ring load cell was used. It was sandwiched between
two plates, the target disc and the support plate and was pre-constrained to 55000 N as
recommended by the manufacturer. This force load cell assembly was then clamped onto
the square plate of the target structure, as shown in Figure 9. The whole assembly was
then placed behind the sabot trap with the target disc in line with the barrel of the air gun
as shown earlier in Figure 5.
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Figure 8: The Piezotronics Quartz Force Ring Sensor
and sketch of its configuration within the target.

Figure 9: Experimental target setup.
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4.3 Experimental data reduction and analysis

Many tests were conducted during the course of the experiments where four tests represent-
ing different reservoir pressures were chosen to conduct the analysis. These four reservoir
pressures produced four impact velocities ranging between 75 to 119 m/s the maximum
velocity range that could be obtained from the air gun for the mass of the launch package
used. Table 2 shows a summary of the results obtained from the four tests conducted and
include the various projectile and gun parameters used to conduct the tests.

Table 2: Projectile launch parameters, impact velocity and maximum force measured.

Launch Package
(Projectile/Sabot)
mass (g)

Projectile
length (mm)

Gun
pressure
(kPa)

Impact
velocity
(m/s)

Maximum
measured
force (kN)

64.78/87.63 102.3 275 74 4.79
65.40/87.64 102.8 550 105 11.15
64.98/87.72 102.0 686 115 12.79
65.34/95.10 102.5 818 119 16.47

Figure 10 shows a sequence in time of the projectile/target interaction starting with the
projectile striking the target until it was, as in this case, completely eroded. The impact
velocity was 119 m/s. A closer look at the sequence of pictures reveals that the eroded
material that flows away from the target was made up of small shredded fragments of
gelatine. Figure 11 shows some of the shredded fragments collected from the 119 m/s
impact velocity test. The significance of these fragments would indicate that the strength
of the 10% non-porous gelatine, even though small, of the order of 10 to 50 MPa, compared
to the shock pressure of about 200 MPa, does appear to play a role in the steady state
pressure applied to the target. This aspect is discussed further below.

Figure 12 shows the force/time histories for the four tests. Examining these force curves,
it could be observed that there may be some unwanted high frequencies present that are
contributing to the actual force signal. It could also be observed that these high frequency
oscillations appear to influence the signal as the impact velocity was increased and thus
may need to be removed especially if they are not due to the projectile but rather from the
structural response of the target.
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Figure 10: Time sequence snapshots of the projectile/target
interaction for the 119 m/s impact velocity test case.
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Figure 11: A collection of shredded gelatine fragments
from the 119 m/s impact velocity test case.
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Figure 12: Force-time history for the four impact velocities—74, 105, 115 and 119 m/s.
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4.3.1 Examining the oscillations observed in the force—time histories.

As in most time history data acquired in a test, the data could be converted from its original
time domain to a frequency one using the Fourier Transform that is found in many data
analysis package such as MATLAB [29], for example. Figure 13 shows the frequency domain
for the four tests conducted and what could be observed are two identifiable frequencies,
one at 2000 and the other at 15000 Hz that are present in all the results. Comparing the
power amplitudes of these two frequencies, it is readily observed that they are influenced
by the impact velocity and it may be necessary to remove these frequencies depending on
their origins.

Figure 13: The force-time curves in the frequency domain
identifying frequencies that are present in the data.
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A manual roving hammer test was conducted, striking different parts of the target and its
supporting structure. In the hammer tests conducted, the two frequencies were stimulated
either when the target disc or supporting plate was struck. Neither frequency appeared
when other parts of the surrounding structure was struck. Thus, these hammer tests simply
indicated that these two frequencies were not generated by the projectile but came from the
free vibrations of the target plate induced from the impact. Although the tests could not
be used to identify which part of the target system, including the force ring transducer, the
oscillations came from, there was a strong possibility that the frequencies came from the
target disc and/or the supporting clamped plate that sandwiched the force ring transducer
and, consequently, this needed to be verified.

4.3.2 Determination of the target disc and support plate frequencies using
Bessel functions

The vibration and natural frequencies of plates is a subject that has long been studied
extensively over many years by numerous researchers such as Lamb [30,31], Powell and
Roberts [32], Southwell [33] and Robertson [34,35] to name a few. The 1977 work by Liessa
[36,37] presents a comprehensive analysis of much of the literature available for the vibration
of plates and presents an extensive and comprehensive set of available results for frequencies
and mode shapes of free vibration of different types of plates for a wide variety of boundary
an initial conditions. Liessa’s [37] and the more recent study by Wu et al [38] are used in
this study to determine the natural frequencies of the plates.

Obtaining the natural frequencies of plates depends very much on the boundary conditions
thus, very slight misinterpretation of the boundary conditions could lead to erroneous re-
sults. As a result, understanding the equations is important and a brief description of the
theory following that of Liessa [10] and Wu [11] is below but the reader is encouraged to
consult these two references for more comprehensive details.

The transverse displacement, w of the elastic vibration of a plate could be determined using
the classical wave equation

D∇4w + ρ
∂2w

∂t2 = 0 (17)

where ∇4 = ∇2∇2 and ∇2 = ∂2

∂x2 + ∂2

∂y2 is the Laplacian operator. D is the flexural rigidity
defined as

D = Eh3

12(1 − ν2) (18)

where ρ is the density, E is the Young’s modulus, h is the plate thickness, and ν is the
Poisson’s ratio. When free vibrations are assumed the displacement in the wave equation
can be expressed as

w = Wcos(ωt) (19)
where ω is angular frequency and W is amplitude as a function of position only. Substituting
Equation (19) into (17) and separating the variables yield

∇2W1 + k2W1 = 0 (20)
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∇2W2 + k2W2 = 0 (21)

where
k4 = ρω2

D
(22)

Equations (20) and (21) are two linear differential equations whose solutions when super-
imposed provides a solution to Equation (17). To determine the component frequencies
that are present in the free vibration of the plates, the Fourier transformation is used and
is given by

W (r, θ) =
∞

n=1
Wn(r) cos(nθ) +

∞
n=1

Wn(r) sin(nθ) (23)

Substituting Equation (23) into Equations (20) and (21) transformed in polar coordinates
gives the following differential equations

d2Wn1

dr2 + dWn1

dr
−


n2

r2 − k2


Wn1 = 0 (24)

d2Wn2

dr2 + dWn2

dr
−


n2

r2 − k2


Wn2 = 0 (25)

d2W ∗
n1

dr2 +
dW ∗

n1

dr
−


n2

r2 − k2


W ∗
n1 = 0 (26)

d2W ∗
n2

dr2 +
dW ∗

n2

dr
−


n2

r2 − k2


W ∗
n2 = 0 (27)

Equations (24) to (27) are recognized as forms of Bessel’s equations having solutions of the
form

Wn1 = AnJn(kr) + BnYn(kr) (28)

Wn2 = CnIn(kr) + DnKn(kr) (29)

W ∗
n1 = A∗

nJn(kr) + B∗
nYn(kr) (30)

W ∗
n2 = C∗

nIn(kr) + D∗
nKn(kr) (31)

where Jn and Yn are Bessel functions of the first and second kinds, respectively, and In and
Kn are modified Bessel function of the first and second kinds, respectively. The coefficients
An, Bn, Cn and Dn determine the mode shape and are solved for using the boundary con-
ditions. Thus, using Equations (28) to (31) a generalized solution to Equations (20) and
(21) could be written as

Wn(r, θ) =
∞

n=0
[AnJn(kr) + BnYn(kr) + CnIn(kr) + DnKn(kr)]cos(nθ)+

∞
n=1

[A∗
nJn(kr) + B∗

nYn(kr) + C∗
nIn(kr) + D∗

nKn(kr)]sin(nθ)
(32)
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When the center of a polar coordinate system is taken to coincide with the with the center
of the circular plate and the boundary conditions possess symmetry with respect to the
diameter of the circular plate then the sin terms in Equation (32) are not needed. Setting

λ = (kr) (33)

where k is given by Equation (22), for the nth mode, Equation (32) is reduced to

Wn(r, θ) = [AnJn(λ) + BnYn(λ) + CnIn(λ) + DnKn(λ)]cos(nθ) (34)

For determining the free vibration frequency of the target disc, consider the photograph of
the target system shown in Figure 9. The 120–mm disc that the projectile strikes is free
to vibrate around the circumference and is fixed or supported at the center by a 28-mm
cylindrical rod. In this case because the disc is fixed at the center over a 28-mm diameter
area, it behaves very similar to an annular disc with a clamped 28-mm diameter hole at the
center as was also observed by Aarønes [39] experimentally studying the natural frequencies
of a disk. This implies that the boundary conditions for the annular disc are such that

W (b) = dW (b)
dr

= 0 (35)

Mr(a) = Vr(a) = 0 (36)

where b in Equation (35) is the inner radius of the annulus. Mr(a) is the bending moment
and Vr(a) is the reaction force which is zero at a, the outer radius of the annulus. Sub-
stituting Equation (34) into the boundary conditions given by Equations (35) and (36) for
the first mode, n = 0, yields four homogeneous equations in An, Bn, Cn and Dn for which
a non-trivial solution can exist only if the determinant of the coefficients is zero. Setting
α = b

a , Liessa [37] determined the frequency determinant in terms of the Bessel functions
for the n = 0 mode and it is given by

J0(λ) Y0(λ) −I0(λ) + 2(1−ν)
λ I1(λ) −K0(λ) − 2(1−ν)

λ K1(λ)
J1(λ) Y1(λ) I1(λ) −K1(λ)
J0(αλ) Y0(αλ) I0(αλ) K0(αλ)
J1(αλ) Y1(αλ) I1(αλ) K1(αλ)

 = 0

Table 3, taken from Liessa [37], presents, for a steel plate, the eigenvalues λ2 obtained from
the determinant by evaluating the Bessel functions for different α = b

a ratios.

Given that from Equation (33) λ2 = k2r2 = k2a2 at r = a, substituting for k using Equation
(22), λ2 could be written as

λ2 = ω2r2


ρh

D
(37)

Knowing that the angular frequency ω = 2πf , where f is the frequency in Hz, Equation
(37) could be rewritten as

f = 1
2π

λ2

a


D

ρh
(38)
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Table 3: Values of λ2 = ωa2


ρh

D
for a free, clamped annulus, Liessa [10].

n = 0 n = 1 n = 2 n = 3
b/a λ2 b/a λ2 b/a λ2 b/a λ2

0.276 6.25 0.060 2.82 0.186 6.25 0.43 16
0.542 25.00 0.397 9.00 0.349 9.00 0.59 25
0.840 81.00 0.603 21.2 0.522 16.0 0.71 49

For the steel target disk used, the thickness is h = 19 mm, the inner radius of the annulus is
b = 14.3 mm and the outer radius is a = 60 mm. Thus, using Table 3, a b/a = 0.238 ratio
gives a λ2 = 6.25 for the n = 0 mode. Taking the elastic modulus for steel as E = 200 GPa,
the Poisson’s ratio as ν = 0.33 and the density as ρ = 7850 kg/m3, using Equation (38) a
frequency of fdisk = 2000 Hz is calculated. This is exactly one of the frequencies observed
in Figure 13.

For rectangular plates, Wu et al [38] developed a similar Bessel function solution for the
wave equation and in Cartesian coordinates it is given by

Wn(x, y) =
∞

m=−∞
[AnJm−n(kx)Jm(ky) + BnIn−m(kx) + Im(ky)] cos


mπ

2


+

∞
m=−∞

[AnJm−n(kx)Jm(ky) + BnIn−m(kx) + Im(ky)] sin


mπ

2

 (39)

For a clamped rectangular plate with sides a and b, the boundary conditions are such that

W (x = 0) = W (x = a) = 0 dW (x = 0)
dx

= dW (x = a)
dx

= 0 (40)

W (y = 0) = W (y = b) = 0 dW (y = 0)
dy

= dW (y = b)
dy

= 0 (41)

Using Equation (39) in the boundary conditions defined by Equations (40) and (41), Wu
et al [38] constructed the vibration mode function

Wn,m =(An {Jn−m(kx) + Jn−m [k(a − x)]} {Jm(ky) + Jm [k(b − y)]} +
Bn {In−m(kx) + In−m [k(a − x)]}

{Im(ky) + Im [k(b − y)]}) cos mπ

2 cos nπ

2

(42)

and showed that for a square plate, where a = b, with the boundary conditions described
by Equations (40) and (41), Equation (42) can be satisfied with m = n

2 , for m /= 0.
Setting λ = ka, the non-dimensional frequency and for a square plate b = a, the frequency
determinant in terms of the Bessel functions that Wu et al [38] developed is given by

det
Jn−m(λ) In−m(λ)

J
′
m(λ) I

′
m(λ)

 = 0
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where J
′
m(0) and I

′
m(λ) the derivative of the Bessel function of the first kind. Wu et al [38]

solved the determinant for the first 6 modes as a function of the non-dimensional frequency
parameter λ and these are given in Table 4 below. Liessa [37] also found the non-dimensional
frequency parameter for the same 6 modes using the Rayleigh-Ritz method and these are
also given in Table 4. The values by Liessa [37], Wu et al [38] and from finite elements
method [38] all compare very well.

Table 4: First 6 sets of non-dimensional frequency parameter, λ2 = ωa2


ρh

D
for a clamped square plate taken from Wu et al [38] and Liessa [37].

Mode λ2, Wu et al [38] λ2, Liessa [37] λ2, Finite Element [38]
1 34.877 35.990 35.450
2 69.666 73.411 72.029
3 84.583 108.270 103.700
4 114.212 131.639 129.411
5 140.107 132.250 130.279
6 153.815 165.151 -

For the clamped square steel plate problem at hand, a = 330 mm and the thickness
h = 35 mm. Using the density, ρ = 7800 kg/m3, the elastic modulus E = 200 GPa and
Poisson’s ratio ν = 0.3, the flexural rigidity, D, is calculated using Equation (18). From
Table 4 taking λ2 = 36 for the first mode and substituting for all the values in Equation (38)
a frequency, fplate = 15000 Hz is obtained. This is exactly the second frequency obtained
from the Fourier transform of the force-time histories shown in Figure 13.

Knowing now that these two free vibration frequencies are influencing the force histories,
they need to be removed and this is done in the next section.

4.3.3 Filtering of the unwanted oscillations

For the low frequency removal, a basic Butterworth band stop filter in MATLAB [29] was
used. The resulting filtered signal obtained was not distorted and the low frequency of 2000
Hz was removed. However, using a band stop filter for the high frequency of 15000 Hz
cause severe distortion and shifting of the resulting filtered curve. A literature review on
high frequency filtering revealed that the Savitsky-Golay [40] filter was used with success in
many domains for removing high frequencies and it was decided to use this for the problem
at hand.

The Saviztky-Golay [40] filter is based on the least squares polynomial fitting across a
moving window within the data in the time domain. As described by Acharya et al [41],
the basic principle of the Savitsky-Golay [40] filter is to obtained (2n + 1) equidistant
points centered about n = 0 to represent a polynomial of degree p. The Savitsky-Golay
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[40] filter computes the value of the least square polynomial over the entire sample space of
(2n + 1) points. Typically, a long polynomial, or a moderate order one allows a high level
of smoothing without attenuation of data features. As it turns out, the Saviztky-Golay [40]
filtering method is better than averaging because it tends to preserve features of the data
such as peak height and width, which are usually attenuated by the moving average filter.
Furthermore, the symmetric Saviztky-Golay [40,41] filters have zero phase so that features
of the signal are not shifted. Thus, if the signal has most of its energy in the passband
of the filter (implying significant over-sampling), the signal components are undistorted
while the high-frequency noise is reduced but not completely eliminated. In this fashion,
the number of data samples, (2n + 1), of a particular frequency to be removed becomes
important in determining the filter averaging window. For the filtering conducted on the
force time histories in this study, n is chosen to be the number of sample points in one
period of the oscillation to be removed.

The Savitsky-Golay [40] filter implemented in MATLAB [29] was used to conduct the fil-
tering. Figures 14 to 18 show Force-Time/Sample data point (SDP) histories for the four
different impact velocities. The original or raw data acquired is shown using the solid line
curve. In the 119 m/s impact velocity case, for the high frequency oscillations, the 2n data
points, indicated by SDP in Figure 14, is (193 − 123) = 70. Thus, the frame length for the
averaging window for the high frequency is 71, (2n + 1). Table 5 shows the frame lengths
chosen for removing the high frequencies for the four different impact velocity cases. In

Table 5: The Savitsky-Golay [40,41] filter frame length for the
high frequency removal for different impact velocities.

Impact velocity
(m/s)

High Frequency Frame
length (2n + 1)

119 71
115 71
105 71
74 61

Figures 14 to 17, the dashed and dotted curves show, respectively, the data with the high
and low frequencies removed. Figures 18 to 21 show the final filtered data with the identifi-
cation of force caused by the shock pressure. This is taken to be the maximum force arrived
at after the steep rise and corresponds to essentially to highest peak identified in the raw
data history in order to be consistent. The remainder of the force-time curve would indicate
the steady state loading of the target by the projectile until it is completed eroded or it
has rebounded. In the 74 m/s impact velocity case Figures 17 and 21 will show two peaks
in the force-time curve. In this case the video showed that the projectile broke into two
pieces before impact. Thus, essentially there were two impacts occurring onto the target.
The impact velocity of the second part may have been be a little lower than 74 m/s given
that it seemed to have struck the back end of the first part of the projectile before coming
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into contact with the target. For this reason the results are slightly inconsistent with those
of the other tests.

Figure 14: Comparison of raw force-time curve with the
filtered curve for the 119 m/s impact velocity case.
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Figure 15: Comparison of raw force-time curve with the
filtered curve for the 115 m/s impact velocity case.
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Figure 16: Comparison of raw force-time curve with the
filtered curve for the 105 m/s impact velocity case.
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Figure 17: Comparison of raw force-time curve with the
filtered curve for the 74 m/s impact velocity case.
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Figure 18: The force-time curve indicating the shock
force for the 119 m/s impact velocity case.
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Figure 19: The force-time curve indicating the shock
force for the 115 m/s impact velocity case.
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Figure 20: The force-time curve indicating the shock
force for the 105 m/s impact velocity case.
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Figure 21: The force-time curve indicating the shock
force for the 74 m/s impact velocity case.
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From the filtered data shown in Figures 18 to 21 the maximum force at impact for each
striking velocity was determined and are shown in Table 6 below along with the unfiltered
maximum force. Figure 22 shows a plot of the raw data maximum force and that from the
filtered data as a function of the impact velocity and it is obvious from the graph that as
the impact velocity increases the free vibrational frequencies of the target and supporting
plates significantly influence the measured force.

Table 6: Comparison of measured maximum force with that
obtained from filtered data as a function of impact velocity.

Impact velocity
(m/s)

Measured maximum
force (kN)

Filtered maximum force
(kN)

119 16.47 8.59
115 12.79 7.73
105 11.15 6.80
74 4.79 4.05
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Figure 22: Measured maximum force with and without
filtering as a function of impact velocity.
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4.3.4 Examining the impedance mismatch on the shock pressure

When a wave travelling in a medium encounters another medium with a different density
then part of the wave will continue to propagate into the new medium and part of the
wave will be reflected back into the original medium. The part that propagates in the new
medium is known as the transmitted wave whereas the part that propagates in the original
medium is known as the reflected wave. The ease with which an ultrasonic pulse can travel
through a material depends on a property called the impedance, Z. This is normally defined
as the product of the material’s density and its characteristic acoustic velocity. Thus,

Z = ρc0 (43)

where ρ is the density and c0 is the acoustic velocity. In the case of normal incidence, where
the propagation direction of the shock is orthogonal to the target surface, the amplitude of
the transmitted and reflected waves depend only on the change of impedance between the
two media and this is referred to as the impedance mismatch.

For the problem at hand, on impact of the projectile onto the target, a shock pressure
is generated at the interface between the projectile and the target but because of the
impedance mismatch the pressure generated divides up into the transmitted pressure pulse
that is transmitted into the target and the reflected pulse that is reflected back into the
projectile. The force transducer attached to the back side of the target disc, responds to
the transmitted pressure pulse and this shows up at the beginning of the force history
signal and, thus, the maximum force measured here provides a measure of the transmitted
shock pressure. Knowing the transmitted pressure could in turn be used to obtain the
interface shock pressure. A material under shock loading would be considered to have a
shock impedance where c0 in Equation (43) would be replaced with the shock speed, Us.
This is very well described by Cooper [21]. Studies, for example Cleveland et al [42], have
shown that the fraction of the impact shock pressure wave that is transmitted through the
target is given by the transmission coefficient, Tt as

Tt = 2Z2
Z1 + Z2

(44)

whereas, for the reflected wave, the coefficient, Tr, is given by

Tr = Z2 − Z1
Z1 + Z2

(45)

where Us1 and Us2 are the shock speeds in medium 1 and 2, respectively. Z1 = ρ1US1,
Z2 = ρ2US2 are the shock impedance for medium 1 and 2, respectively, and Tt + Tr = 1.
Because of this condition, medium 2 would be assigned to the gelatine projectile which has
the lower impedance of the two materials in contact whereas medium 1 would be assigned
to the steel target. Thus, given that the force transducer is at the back of the target plate,
the amplitude of the force measured at the beginning of force time history would be the
transmission fraction, Tt, of the original shock pressure at the projectile/target interface.
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Table 7 shows a summary of the important results for the four tests conducted. For each
impact velocity, vi, the corresponding interface particle velocity, up was calculated using
Equation (7). This in turn was used to calculate the shock speeds in the steel target and the
gelatine projectile, Usteel and Ugelatine using Equation (1). The shock speeds were then used
to calculate the material shock impedance which were used to evaluate the transmission
and reflective coefficients Tt and Tr using Equations (44) and (45). Knowing the force,
Fmax the transmission coefficient is used to determine the interface shock pressure, Ph. For
example, for the case where vi = 119 m/s, Tt = 0.073, thus, 7.3% of the of the interface
shock pressure was transmitted. Scaling this to 100% and dividing by the cross sectional
area of the projectile, 0.000616 m2, an interface pressure, Ph, of 191 MPa was obtained.

Table 7: A summary of results giving the impact velocity, vi, the interface particle
velocity, up, shock speed in steel target and gelatine projectile, Usteel and Ugelatine, the

transmission and reflective coefficients, Tt and Tr, the filtered experimental force
measured, Fmax and the interface pressure, Ph.

vi

(m/s)
up

(m/s)
Usteel

(m/s)
Ugelatine

(m/s)
Tr Tt Fexp

(kN)
Ph

(MPa)
Ph

(MPa)

119 3.8 5806 1663 0.927 0.073 8.59 191 196
115 3.8 5806 1655 0.927 0.073 7.73 174 189
105 3.8 5805 1637 0.923 0.072 6.80 154 171
74 2.7 5804 1581 0.931 0.069 4.05 95 116

Figure 23 shows a graph taken from Figure 4 for the theoretical interface pressure, Ph, as a
function of impact velocity but with the calculated experimental pressure given in Table 6.
It is immediately seen that the experimental results compares very well with the theoretical
values.
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Figure 23: Comparison of the calculated experimental shock pressure
with the theoretical value as a function of impact velocity.
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4.3.5 Examining the experimental results for the steady state pressure

For the particular impact problem at hand where the penetration velocity is zero given that
the target is rigid, it was shown earlier in Section 3 that the Alekseevski-Tate equations,
Equations (9) to (13) lend themselves very well in determining the steady state impact
conditions such as the projectile erosion rate, the time the projectile spends on the target
and the steady state interface pressure applied.

Equation (14) shows that the rate of change of the projectile length or its erosion rate is
simply the impact velocity. Performing the integration of Equation (14) gives Equation
(15) which provides the time the projectile spends loading the target. The results shown in
Table 8 shows that the time obtained analytically compares very well with the experimental
values.

Table 8: Comparison of experimentally measured time spent by the projectile
with that obtained analytically from the Alekseevski-Tate equation.

Impact velocity
(m/s)

Projectile
length (mm)

Measured
time (ms)

Time from Alekseevskii-Tate
Equation (15)(ms)

119 102.5 0.87 0.88
115 102.0 0.90 0.89
105 102.8 1.00 0.98
74 102.3 1.40 1.38

With respect to the steady state interface pressure, in accordance with Equation (10), if
the strength of the projectile material, Yp, is assumed to be negligible then Equation (10)
reduces to the well-established [10,11,12] steady state stagnation pressure at the interface,
Pstagnation = 1

2ρv2
i . However, interpretation of the experimental results does not seem to

indicate this. Consider the experimental results shown in Figures 24 to 27, Pstagnation is
plotted on the same axes as the experimentally derived pressure-time curves. Examination
of the two curves reveals that the Pstagnation is much lower than the experimentally derived
pressure by an amount, ∆P . This indicates the presence of a dynamic pressure that the
projectile material is applying to the target and is of the order of the shock pressure. This
observation could be explained in accordance with Equation (10) Pinterface = 1

2ρrv2 +Yp. If
Yp is taken into consideration [28], then setting Yp = ∆P , Yp could be termed as a dynamic
pressure applied by the gelatine and it is impact velocity dependent. It would seem difficult
to imagine that this could not be due alone to the strength of the projectile as is often used
in the case of other solid penetrators materials, because studies [43,44] have shown that the
fracture strength of gelatine at reasonably high strain rates is between 1–2 MPa so there
must be other phenomena occurring. A close observation of the projectile/target interface
provides one explanation. It appears that the gelatine material in the mushrooming region
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of the projectile is undergoing severe compression enough to cause a significant increase in
the bulk modulus which in turns manifests itself in a localised increase in the bulk density
enough to cause a significant rise in the pressure applied to the target. This continues
for about half way through the length of the projectile interaction with the target after
which the interface pressure dropped linearly to zero as the projectile erodes away. Table
9 presents the quasi static and strain rate data from Cronin et al [43] and Winter et al
[44] along with peak dynamic pressure obtained from this study. It would be worthwhile
to note that the data from Winter et al [44] is for 20% gelatine which has s density of 1060
kg/m

3 comparing to the 10% gelatine that is used in this study and that of Cronin et al
[43] that has a density of 1030 kg/m

3 . This would seem to be a reasonable inclusion to
make for guidance. Figure 28 shows ∆P as a function of impact velocity and a quadratic
fit to the data indicates that the peak dynamic pressure at the interface rapidly increases
with impact velocity.

Table 9: Experimental dynamic pressure, ∆P , as determined
in accordance with the Alekseevsii-Tate Equation (10).

Impact velocity
(m/s)

Pstagnation = 1
2ρv2

i

(MPa)
Peak dynamic strength ∆P
(MPa)

Cronin et al [41] (.01 s−1) - 1
Winter et al [40] (Quasi static) - 0.04

Winter et al [40] (920 s−1) - 1.1
119 1.40 244
115 1.00 228
105 0.90 195
74 0.87 92
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Figure 24: Dynamic strength of the gelatine projectile,
∆P , for the 119 m/s impact velocity case.
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Figure 25: Dynamic strength of the gelatine projectile,
∆P , for the 115 m/s impact velocity case.
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Figure 26: Dynamic strength of the gelatine projectile,
∆P , for the 105 m/s impact velocity case.
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Figure 27: Dynamic strength of the gelatine projectile,
∆P , for the 74 m/s impact velocity case.
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Figure 28: Dynamic strength of the gelatine projectile as a function of impact velocity.
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5 Conclusion

The work presented in this report examines the impact process of a soft body material
projectile, which in this case is made of 10% gelatine, striking a rigid target attached
to a quartz force ring sensor. The basic objective was to examine a newer approach to
determine whether the projectile/target interface parameters such as the shock and steady
state pressures could be determined from the measured force-time history and to present
validated experimental data that could be used for material constitutive model development
for simulation of the impact or shock loading of soft body materials. Using the shock
Hugoniot relations and the conservations equations, a theoretical shock pressure relation
was obtained for the shock pressure imparted into the target and the projectile at the
interface. The Alekseevskii-Tate penetration equations were used to determine the steady
state pressure applied to the target.

Impact tests were conducted with 10% gelatine projectiles and the force-time histories were
measured. The force time curves were examined to identify frequencies that were present in
the results and may be coming from the natural vibrations of the various parts that make
up the target. Vibration analysis methods such as the Bessel function solutions for the wave
equation applied to the free vibration of plates were used to obtain the frequencies of the
various plates in the target assembly. Once these frequencies were identified and determined
that they did not form part of the loading, they were removed using the Savitsky-Golay
filter. From the filtered Force-time histories, the shock pressures were derived and very
good comparison was obtained when compared to the theoretical values predicted by the
shock Hugoniot.

The Alekseevskii-Tate penetration equations were used to determine the steady state pres-
sure at the projectile/target interface and the duration of the interaction between the projec-
tile and target. The equations predicted very well the duration of the interaction. However,
the measured value of the steady state pressure was in discordance with the expected stag-
nation pressure, Pstagnation = 1

2ρv2
i . The presence of a dynamic pressure was observed and

when interpreted in accordance with the Alexseevskii-Tate equation, suggests that the ma-
terial dynamic strength manifested from the compression of the gelatine material caused
a change in the bulk modulus or density and, thus, resulting in an increased pressure. A
quantitative measure of this dynamic strength as a function of time was obtained and it is
dependent on the impact velocity. Given the significant value of this dynamic pressure, it
may be necessary to take this into account when these materials are used in shock loading
and impact scenarios.
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13. ABSTRACT/RÉSUMÉ (When available in the document, the French version of the abstract must be included here.)

The work presented in this report examines the impact process of a 10% gelatine soft body
material projectile striking a rigid target attached to a quartz force ring sensor. Using the shock
Hugoniot relations and the conservations equations, a theoretical relation was obtained for the
interface shock pressure. The Alekseevskii-Tate penetration equations were used to interpret
and determine the steady state pressure applied to the target.

Impact tests were conducted and the time histories of the force applied to the target were mea-
sured. The force-time curves were examined to identify frequencies that were present in the
results and may be coming from the natural vibrations of the various parts that make up the tar-
get. Bessel function solutions for the wave equation applied to the free vibration of plates were
used to identify and quantify the frequencies of the various plates in the target assembly. These
unwanted frequencies were removed using the Savitsky-Golay filter. The shock pressures were
then derived and very good comparison was obtained with the theoretical values predicted by
the interface shock pressure equation developed.

The Alekseevskii-Tate equation predicted very well the duration of the interaction between the
projectile and the target. However, the measured value of the pressure was in discordance with
the expected stagnation pressure, Pstagnation = 1

2 ρv2
i . In accordance with the Alexseevskii-Tate

equation, the results indicate the presence of a dynamic pressure that maybe playing a significant
role in the applied steady state pressure. A quantitative measure of this dynamic pressure was
obtained.

L’étude présentée dans ce rapport examine le processus d’impact d’un projectile composé d’un
matériel mou de 10% gélatine qui frappe une cible rigide attaché à un capteur de force annu-
laire. En utilisant les rapports de choc Hugoniot et les équations de conservation, une relation
théorique de pression de choc a été obtenue à l’interface entre le projectile et la cible. Les
équations de pénétrations d’Alekseevskii-Tate ont été utilisées pour déterminer la pression sta-
tionnaire appliquée sur la cible.

Des tests d’impact ont été effectués et les courbes de variation de force contre le temps appliqué
sur la cible ont été obtenues. Ces courbes ont été examinés afin d’identifier des fréquences
présentes dans les signaux et il est fort probable que ces fréquences naturelles peuvent provenir
des différentes parties dont la cible est composée. Les solutions de fonctions Bessel pour
l’équation d’onde appliquée à la vibration libre des plaques ont été utilisées pour identifier
et déterminer quantitativement les fréquences des différentes plaques dont la cible est com-
posée. Ces fréquences indésirables ont été enlevées en utilisant le filtre Savitsky-Golay. Sub-
séquemment les pressions du choc ont été dérivées et une bonne comparaison avec les valeurs
théoriques a été obtenues.

L’équation d’Alekseevskii-Tate a très bien prédit la durée de l’interaction entre le projectile et la
cible. Cependant, le valeur de la pression a été en désaccord avec la pression de stagnation
Pstagnation = 1

2 ρv2
i , anticipée. En interprétant les résultats selon les équations d’Alekseevskii-

Tate, ces résultats indiquent la présence d’une pression dynamique qui jouerait un rôle signifiant
dans la pression de l’état d’équilibre appliquée. Une mesure quantitative de cette pression dy-
namique a été obtenue.
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